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Abstract

In this paper, a simultaneous canonical form of a pair of rectangular complex matrices
is developed. Using this new tool we give a necessary and sufficient condition to assure
that the reverse order law is valid for the weighted Moore-Penrose inverse. Additionally, we
characterize matrices ordered by the weighted star partial order and adjacent matrices as
applications.
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1 Introduction

For an m x n complex matrix A € C"*" of rank r > 0, a singular value decomposition (SVD) of
A [3, pp. 206]
A=UEZaeO)V”

is a well-known factorization where U € C™*™ and V € C"*™ are unitary matrices and > € R"*"
is a diagonal matrix; the so called singular values 01,09, ...,0, are on the diagonal of 3 ordered
as oy > 09 > > 0. > 0.

A simultaneous diagonalization for rectangular matrices is also possible under a certain condi-
tion. That is, a pair of matrices A € C™*™ and B € C™*™ has a simultaneous diagonalization [3,
Ex. 15, pp. 208] such as

A=UZ,V* and B=UXpV~,

with U € C™*™ and V € C™*" unitary and ¥ 4, ¥ 5 diagonal real matrices if and only if AB* and
B*A are both hermitian matrices.

On the other hand, a Hartwig-Spindelb6ck decomposition of a square matrix A € C™*™ of rank
r >0 [6, 1] is given by

(1)

where U € C™*"™ is unitary, X € C"™*" is a positive definite diagonal matrix and K € C™*", L €
Cr*(n=7) gatisfy the condition KK* + LL* = I,.

By keeping as far as possible the essential properties of all these factorizations, the main aim
of this paper is to present a simultaneous decomposition of a pair of rectangular complex matrices
without restrictions. Such a factorization is given in Section 2. In Section 3, we present some
applications. First of all, we study the reverse order law for the weighted Moore-Penrose inverse.
Secondly, we show the form of the matrices ordered by the weighted star partial order. And finally,
we characterize the adjacent matrices related by the weighted star partial order.
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2 A simultaneous canonical form of a pair of matrices

Theorem 1 Let A € C"*™ and B € C]**™. Then there exist unitary matrices U € C™*™ and
V e C™*™ such that

A:U{ Yadr Xads ]V*

0 0 and B:U{BlZB O]V*,

BiYp O

where ¥4 € R™" and Xp € R**% are positive definite diagonal matrices (with non-increasing
diagonal entries) and blocks Ay € C™ %, As € Crx(n=s) B, € C**", and By € C5*(m=7) satisfy

141141< + AQA; = Ir and BlBT + BQB; = Is.
Proof. First, let us consider singular value decompositions of A and B*:

AUA|: 0 O:|VA and B —UB 0 0 VB»

where Ug, Vg € C™*™ and V4,Upg € C™*™ are unitary matrices and ¥4 € R™" and Xg € R%**
are positive definite diagonal matrices (with non-increasing diagonal entries). It is clear that ViUp
and ViU, are unitary as well. Now, according to the decompositions of A and B, we partition

. A A
VAUB:{A; Ai}

Then, computing the (1,1)-block in ViUg(ViUp)* = I, and VEUA(ViUA)* = I, we obtain
A1 A} + As A5 = I, and By B + B2 B3 = I, respectively. Finally,

and ViU = [ B B } .

Bs By

_ XA @ * x XA @) Al A2 * Z14141 ZAAQ *
acoa % S v Q][4 % v e o
and
. _ Y¥p O |« . _ Y¥p O By By | e _ YpBi XpBs | .
B _UB[ . O}VBUAUA—UB[ . 0H33 BJUA_UB[ . . ]UA.

Defining U = U4 and V = Up and computing the conjugate transpose of B* we get the required
form for A and B. m

3 Applications

3.1 The reverse order law for the weighted Moore-Penrose inverse

Next result characterizes the reverse order law for Moore-Penrose inverses. For matrices A, B such
that AB exists, the following conditions are equivalent [3, pp. 176]:

(AB)' = BTAT & R(A*AB) C R(B),R(BB*A*) C R(A*) & R(A*ABB*) = R(BB*A* A),
(2)
where R(.) denotes the range of the matrix (.). For more properties and applications we refer the
reader to [4, 17, 18].
Next, we need the following technical result.

Lemma 2 Let X € C**", Y € C*b=7) 7 € CP** be matrices such that XX* +YY* = I, and

[ zx zvy Ik
M_[ o o }e@ .
Then :
X*ZT O
T
M_{Y*ZT O]



Proof. If we define
o { Xzt o }
Yzt o |’

it is easy to check the properties MEM = M, EME = E, (ME)* = ME, and (EM)* = EM.
The uniqueness of the Moore-Penrose inverse gives M = E. m

Notice that this lemma is a slight extension of [2, Formula (1.13)] and [12, Lemma 3] to
rectangular matrices, since both of them are valid for square matrices.

The equivalences in (2) give conditions on matrices A and B such that the reverse order law
is valid. Related results can be found in [5, 14, 15]. Next theorem describes the form of both
matrices A and B for which the Moore-Penrose inverse satisfies that property.

Theorem 3 Let A € C™*" and B € C*™. Then (AB)" = BYAT if and only if there exist
unitary matrices U € C™*™ and V € C™™™ such that

_ YaAr YaAp % _ YpB1 YpBs *
A=U [ 0 0 } 1% and B=V o o U~

where X4 € R™" and g € R%*® are positive definite diagonal matrices (with non-increasing
diagonal entries), blocks Ay € C™*%, Ay € C™*("=%) By € C**", and By € C*(™=") satisfy
A1AT + A A5 =1,., B1B} + BoBj = I, and

(ZaAXp) =25t Arn

Proof. Applying Theorem 1 to the pair of matrices A and B* we can assure that there exist
unitary matrices U € C"*™ and V € C"*" such that

YaA 4 }V*

A:U{ o 0

and B*:U[ Bi2p O}V*,

BiYp O

where ¥4 € R™" and X € R%*® are positive definite diagonal matrices (with non-increasing
diagonal entries) and blocks A; € C™**, Ay € C™*("=%) B; € C**", and By € C**(™~7) gsatisfy

AAT+ AyAy =1, BB} + ByBj = I,.

Then,

0 0 0 O

« | BaAr EYaAs YpB1 YXpDB3
5 [ - et

[ (X4A135)B1 (24A413B)B,

and applying Lemma 2 we get

Applying twice Lemma 2 we obtain

U B AT = [ BiY,;' O ] [ Ayt o } _ [ BixptA;syt o }

BiY,t O || A3t O Byt At O

Hence, (AB)' = BTAT if and only if Bf(X4A4:%p)" = BiS5 AN, and B3 (S44:55)" =
B;E;ATE;. Pre-multiplying both equalities by B; and Bs, respectively, and using B1 B} +
ByBh = I, we arrive at (Z44,%p) = 25'4157 =

Now, if we consider three Hermitian positive definite matrices M, R € C™*™ and N € C"*",
we can apply Theorem 3 to the pair of matrices A := MY2AN~'/2 and B := N'/2BR~1/2 to
get a generalization of the reverse order law [9, 16] taking into account that the {M, N }-weighted
Moore-Penrose inverse of A € C™*" is given by

A}'WN — N—1/2(M1/2AN—1/2)TM1/2.



Corollary 4 Let A € C"*", B € C*™ and consider three Hermitian positive definite matrices

M,R € C™*™_ and N € C"*"™. Then (AB)RLR = B}L\LRA}LV[’N if and only if there exist unitary

matrices U € C™*™ gnd V € C"*"™ such that

YAA YA
0] (0]

YpB1 XpDBs

* pl/2
0 o U'R"~,

A=M"1Y2U [ } VEN1/2 and B=N"12y

where X4 € R™" and ¥ € R**S are positive definite diagonal matrices (with non-increasing
diagonal entries), blocks Ay € C™*%, Ay € C™*("=%) By € C**", and By € C*(m=") satisfy
Ay A5+ Ay Ay =1, B1B} + BoB3 = I, and (S 4A:55) = 2514780

3.2 (M, N)-Star partial order and adjacent matrices

We remind that a pair of matrices A, B € C™*"™ are ordered under the star order <*, and written
A <* B,if AA* = BA* and A*A = A*B [7, 8, 11, 13]. It is well-known that inequalities under
<* are preserved under unitary equivalences, that is A <* B if and only if SAT <* SBT for all
unitary matrices S € C™*™ and T' € C"*". We will denote by N (.) the null space of the matrix

Theorem 5 Let A € C"*™ and B € CI"*". Then A <* B if and only if there exist unitary
matrices U € C™ ™ and V € C* ™ and a matriz Z € C™=")% such that

S4A, O } - S A 0 } .

AU[ 0O o I~ A*4) O

and B=U [ 7
where X4 € R™" is a positive definite diagonal matriz (with non-increasing diagonal entries),
and block A; € C™** satisfies A1 A} = I,.

Proof. Applying Theorem 1 to the pair of matrices A and B we can assure that there exist
unitary matrices U € C™*™ and V € C™*" such that

YaA1 XaA }V*

A:U[ o 0

and BzU[BlEB O}V*,

BiYp O

where ¥4 € R™" and Y € R%*® are positive definite diagonal matrices (with non-increasing
diagonal entries) and blocks A; € C™*°, Ay € Cr*(n=s) B, € C**", and By € C**(m~7) gatisfy

(A) AAT + AsAy =1,,  (B) BB} + ByBj = I,

Then, A <* B if and only if U*AV <* U*BV. Using the block forms of A and B and making
some computations, the last inequality is equivalent to the matrix equation system given by:

(a) BiYpA; =%4, (b) BiXpA; =0, (c) AjX4 A = AjYaBiYE, (d) A3X4 A4, =0.

From (d) we get (¥4A42)*(X4A3) = O, which yields Ay = O. So, AjA} = I,. Then, we have
found the form of matrix A.

The remaining computations will give the form of matrix B. Indeed, pre-multiplying (a) by
By, (b) by By and adding them we obtain XA} = B1X 4 after using (B). Thus, By = ZBA*l‘Zzl.
On the other hand, pre-multiplying (c) by A; and using the non-singularity of ¥4 we arrive at
Ya4A) = Bi¥p, or equivalently, B; = EglATEA. Now, we obtain A; from both expressions
of By and using A; A} = I, we have I, = (X,'BiYp)(X5' B1X4), that is, BfB; = I,.. Hence,
(B1B})? = By B;. In order to find an expression for Bz, we observe that B3 By = B3 (SpA{Y,!) =
(B3XpA1)% " = O by (b) and so By Bf By = O holds. So, R(By) C N(BB;) = R(I; — B1B}),
from which By = (I, — B;B})Z for some Z. Now, BiYp = (B4A4:155)Es = $44; and BiYp =
Z*(I, — ByB})Sp = Z*(I, — SpAiS 'S A A S5 )8 = Z°Sp (1, — AT Ay) = Z(I, — AT Ay), for
some Z. ®

Considering the (M, N)-star partial order [9] given by A <y B if and only if A}L\/[’NA =
AR[’NB and AA}L\LN = BARLN for A, B € C"™*" we can extend Theorem 5 to the weighted case

(using again the matrices A and B as in Subsection 3.1).



Corollary 6 Let A € C**", B € CI"*" and let two Hermitian positive definite matrices M €
Cm*™ and N € C"*". Then A <y y B if and only if there exist unitary matrices U € C™*™

and V € C™™ gnd a matriz Z € C™=7)%s gych that

YaA1 O
@) 0

YaA (0]

* AT—1/2
21— a4 o |V

A:M1/2U[ }V*N‘l/g and B=MY2U

where ¥4 € R™" is a positive definite diagonal matriz (with non-increasing diagonal entries),
and block Ay € C™** satisfies A1 AT = I,.

In order to state the last application, we recall that two matrices A € C"*" and B € C"*"
are called adjacent if rank(B — A) =1 [10].

Theorem 7 Let A € C"*"™ and B € C"*"™ be two matrices such that A <* B. Then A and B
are adjacent if and only if there exist unitary matrices U € C™*™ and V' € C"*™ and a matriz
Z € Cm=)%s sych that

Sady O],
0 O}V

YA (0]

and — B=UL 7, Zata)) 0

A=U [ v,
where X4 € R™" is a positive definite diagonal matriz (with non-increasing diagonal entries),
s=r+1 and block A; € C™* satisfies A1 A} = I, and N(Z) NN (4;) = {0}.

Proof. Applying Theorem 5 to the pair of matrices A and B we can assure that there exist
unitary matrices U € C"*™ and V € C"*" and a matrix Z € C(™~")*% such that
YaA1 O } v YaA O

and — B=U1 7, " atA) O

A_U{() 0 Ve
where ¥4 € R™*" is a positive definite diagonal matrix (with non-increasing diagonal entries) and
block A; € C"** satisfies A1 A} = I,.. Since star order implies minus order, that is, A <* B implies
A <~ B (see [7, 13]), we notice that rank(B — A) = rank(B) — rank(A) = s — r holds. From
(A1A1)? = AT A = (A7 A))* and rank(A;A;) = rank(A; A}) = r we can assure that there exists
a unitary matrix S € C***® such that A7A; = S(I, ®Os_,)S*. Then I, —ATA; = S(O, ®I5_,)S*,
that is rank(I;— A3 A1) = s—r. Hence, A and B are adjacent if and only if rank(Z(I,—A; A7)) = 1.
In this case, s = r+ 1. Using the Sylvester formula rank(Z(I,+1 — AJA1)) = rank(l11 — A7 A1) —
dim(N(Z) N R(I,+1 — AjA1)) and the fact that R(I,41 — A} A1) = N(A1) holds, we obtain that
rank(Z(I; — AfA;)) = 1 if and only if N(Z) NN (4;) ={0}. =
The weighted case is given in the following result.

Corollary 8 Let A € C"*", B € CI**™ and consider two Hermitian positive definite matrices
M e C™*™ and N € C"™" such that A <3, y B. Then A and B are adjacent if and only if there

exist unitary matrices U € C™ ™ and V € C*™™ and a matriz Z € C=7)%5 sych that

¥aA1 O
@) 0

SaAy 0]

* 1/2
21, - a34y) o |V

A:M_1/2U[ }V*Nl/g and B=M12U

where X4 € R™" is a positive definite diagonal matriz (with non-increasing diagonal entries),
s=r+1 and block A; € C™** satisfies A1A} = I, and N(Z)NN(A;) = {0}.
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