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Abstract

Relative order of functions measures specifically how different in growth two given functions are which helps to settle the
exact physical state of a system. In this paper for any two positive integers p and q, we introduce the notion of relative
(p, q) th proximate order of an entire function with respect to another entire function and prove its existence.
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1. Introduction

A single valued analytic function in the finite complex plane is called an entire (or integral) function. It is well known that
for example exp, sin, cos are all entire functions. In 1926 Rolf Nevanlinna initiated the value distribution theory of entire
functions which is a prominent branch of Complex Analysis and is the prime concern of this paper. In this line the value
distribution theory studies how an entire function assumes some values and conversely, what is in some specific manner
the influence on a function of taking certain values. It also deals with various aspects of the behaviour of entire functions
one of which is the study of comparative growth properties of entire functions. For any entire function f , the so called
maximum modulus function and denoted by M f , is defined on each non-negative real value r by

M f (r) = max
|z|=r
| f (z)| .

With the aim of estimating the growth of a nonconstant entire function f , Boas (Boas, 1954) introduced the concept of
order as the value ρ f which is generally used in computational purpose and is defined in terms of the growth of f respect
to the exp z function as

ρ f = lim sup
r→∞

log log M f (r)
log log Mexp (r)

= lim sup
r→∞

log log M f (r)
log (r)

(
0 ≤ ρ f ≤ ∞

)
.

Given another entire function g, the ratio M f (r)
Mg(r) as r → ∞ is called the growth of f with respect to g in terms of their

maximum moduli. If this relative growth happens to be k ∈ R, then

M f (r) ∝ kMg (r) as r → ∞.

With the aim of knowing the relative growth of functions of the same nonzero finite order, the type of a given such funtion
f was introduced as

τ f = lim sup
r→∞

log M f (r)
rρ f

(
0 ≤ τ f ≤ ∞

)
.

L. Bernal (Bernal, 1988) introduced the relative order between two entire functions to avoid comparing growth just with
exp . Thus the growth of entire functions may be studied in terms of its relative orders. In fact, some works on relative
order of entire functions and the growth estimates of composite entire functions on the basis of it have been explored in
(Chakraborty & Roy, 2006; Datta, Biswas, 2009; Datta, Biswas, 2010; Datta, Biswas, Biswas, 2013; Datta, Biswas &
Biswas, 2013; Datta, Biswas, & Pramanick, 2012; Lahiri & Banerjee, 2005). This has different applications related to
entropy as this is the amount of additional information needed to specify the exact physical state of a system, and relative
order of functions measures how different in growth two given functions are. Indeed very recently these ideas have been
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used by Alburquerque et al. (Albuquerque, Bernal-González, Pellegrino, & Seoane-Sepúlveda, 2014) who obtained new
Peano type results by showing that the subset of continuous surjections from Rm to Cn such that each value a in Cn is
assumed on an unbounded set of Rm is maximal strongly algebrable, i.e. there exists a c-generated free algebra contained
in CS (Rm,Cn) ∪ {0}, where CS (Rm,Cn) denotes the set of all continuous surjective mappings Rm → Cn.

On the other hand, Sánchez Ruiz et al. (Sánchez Ruiz, Datta, Biswas, & Mondal, 2014) have introduced a new type
of relative (p, q)th order of entire functions where p, q are any two positive integers revisiting the ideas developed by a
number of authors including Lahiri and Banerjee (Lahiri & D. Banerjee, 2005).

However, these concepts are not adequate for comparing the growth of entire functions with either zero or infinite order.
For this reason Valiron (Valiron, 1949) introduced the concept of a positive continuous function ρ f (r) for an entire function
f having finite order ρ f with the following properties:

(i) ρ f (r) is non-negative and continuous for r > r0, say,

(ii) ρ f (r) is differentiable for r ≥ r0 except possibly at isolated points at which ρ′f (r + 0) and ρ′f (r − 0) exist,

(iii) limr→∞ ρ f (r) = ρ f ,

(iv) limr→∞ rρ′f (r) log r = 0 and

(v) lim supr→∞
log M f (r)

rρ f (r) = 1.

Such a function is called a Lindelöf proximate order which makes unnecessary to consider functions of minimal or
maximal type, its existence being established op. cit. It was simplified by Shah (Shah, 1946), and Nandan et al. (Nandan,
Doherey, & Srivastava, 1980) extended this notion of proximate order for an entire function of one complex variable with
index-pair (p, q) with positive integers p ≥ q. Also Lahiri (Lahiri, 1989) generalised the idea of the proximate order for a
meromorphic function with finite generalised order and proved its existence.

As a consequence of the above it seems reasonable for any two positive integers, p, q, to define the relative (p, q)th
proximate order of an entire function with respect to another entire function. In this paper we do so and prove its existence.

2. Notation and Preliminary Remarks

Our notation is standard within the theory of Nevanlinna’s value distribution of entire functions, For short, given a real
function h and whenever the corresponding domain and range allow it we will use the notation

h[0] (x) = x, and

h[k] (x) = h
(
h[k−1] (x)

)
for k = 1, 2, 3, ...

omitting the parenthesis when h happens to be the log or exp function. Taking this into account the order (resp. lower
order) of an entire function f is given by

ρ f = lim sup
r→∞

log[2] M f (r)
log r

(resp. λ f = lim inf
r→∞

log[2] M f (r)
log r

).

Let us recall that Juneja, Kapoor and Bajpai (Juneja, Kapoor, Bajpai, 1976) defined the (p, q)-th order (resp. (p, q)-th
lower order) of an entire function f as follows:

ρ f (p, q) = lim sup
r→∞

log[p] M f (r)

log[q] r
(resp. λ f (p, q) = lim inf

r→∞

log[p] M f (r)

log[q] r
),

where p, q are any two positive integers with p ≥ q. These definitions extended the generalized order ρ[l]
f (resp. generalized

lower order λ[l]
f ) of an entire function f considered in (Sato, 1963) for each integer l ≥ 2 since these correspond to the

particular case ρ[l]
f = ρ f (l, 1) (resp. λ[l]

f = λ f (l, 1)). Clearly ρ f (2, 1) = ρ f and λ f (2, 1) = λ f . Related to this, let us recall
the following properties. If 0 < ρ f (p, q) < ∞, then

ρ f (p − n, q) = ∞ for n < p,

ρ f (p, q − n) = 0 for n < q,

ρ f (p + n, q + n) = 1 for n = 1, 2, ...
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Similarly for 0 < λ f (p, q) < ∞, one can easily verify that

λ f (p − n, q) = ∞ for n < p,

λ f (p, q − n) = 0 for n < q,
λ f (p + n, q + n) = 1 for n = 1, 2, ...

Recalling that for any pair of integer numbers m, n the Kroenecker function is defined by δm,n = 1 for m = n and δm,n = 0
for m , n, the aforementioned properties provide the following definition.

Definition 1. (Juneja, Kapoor, Bajpai, 1976) An entire function f is said to have index-pair (1, 1) if 0 < ρ f (1, 1) < ∞.
Otherwise, f is said to have index-pair (p, q) , (1, 1), p ≥ q ≥ 1, if δp−q,0 < ρ f (p, q) < ∞ and ρ f (p − 1, q − 1) < R+.

Definition 2. (Juneja, Kapoor, Bajpai, 1976) An entire function f is said to have lower index-pair (1, 1) if 0 < λ f (1, 1) <
∞. Otherwise, f has lower index-pair (p, q) , (1, 1), p ≥ q ≥ 1, if δp−q,0 < λ f (p, q) < ∞ and λ f (p − 1, q − 1) < R+.

Given a non-constant entire function f defined in the open complex plane, its maximum modulus function M f is strictly
increasing and continuous. Hence there exists its inverse function M−1

f : (| f (0)| ,∞) → (0,∞) with lims→∞ M−1
f (s) = ∞.

Bernal (Bernal, 1988) introduced the definition of relative order of f with respect to g, denoted by ρg ( f ) , as follows:

ρg ( f ) = inf
{
µ > 0 : M f (r) < Mg (rµ) for all r > r0 (µ) > 0

}
= lim sup

r→∞

log M−1
g M f (r)

log r
.

This definition coincides with the classical one (Titchmarsh, 1968) if g = exp. Analogously, the relative lower order of f
with respect to g, denoted by λg ( f ) , is defined as

λg ( f ) = lim inf
r→∞

log M−1
g M f (r)

log r
.

Recently, Sánchez Ruiz et al. (Sánchez Ruiz, Datta, Biswas, & Mondal, 2014) have introduced a definition of relative
(p, q)-th order ρ(p,q)

g ( f ) of an entire function f with respect to another entire function g, sharpenning an earlier definiton
of relative (p, q)-th order of Lahiri and Banerjee (Lahiri & Banerjee, 2005), from which the more natural particular case
ρ(k,1)

g ( f ) = ρk
g ( f ) arises. This is done as follows.

Definition 3. Let f , g be two entire functions with index-pairs (m, q) and (m, p), respectively, where p, q,m are positive
integers with m ≥ max(p, q). Then the relative (p, q)-th order of f with respect to g is defined by

ρ
(p,q)
g ( f ) = lim sup

r→∞

log[p] M−1
g M f (r)

log[q] r
.

And the relative (p, q)-th lower order of f with respect to g is defined by

λ
(p,q)
g ( f ) = lim inf

r→∞

log[p] M−1
g M f (r)

log[q] r
.

When (m, 1) and (m, k) are the index-pairs of f and g respectively, then Definition 3 reduces to definition of generalized
relative order (Lahiri & Banerjee, 2002). If the entire functions f and g have the same index-pair (p, 1), we get the
definition of relative order introduced by Bernal (Bernal, 1988) and if g = exp[m−1], then ρg ( f ) = ρ[m]

f and ρ(p,q)
g ( f ) =

ρ f (m, q). Also Definition 3 becomes the classical one given in (Titchmarsh, 1968) if f is an entire function with index-pair
(2, 1) and g = exp.

In order to refine the above growth scale, now we intend to introduce the definition of an intermediate comparison function,
called relative (p, q)th proximate order of entire function with respect to another entire function in the light of their index-
pair which is as follows. Its consistency will be established in Section 3.

Definition 4. Let f , g be two entire functions with index-pairs (m, q) and (m, p) respectively where p, q,m are posi-
tive integers with m ≥ max(p, q). For a finite relative (p, q)-th order ρ(p,q)

g ( f ) of f with respect to g, then a function
ρ

(p,q)
g ( f ) (r) : R+ → R is said to be a relative (p, q)th proximate order of f with respect to g if there is some r0 > 0 so that

it satisfies:
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(i) ρ(p,q)
g ( f ) (r) is non-negative and continuous for r > r0,

(ii) ρ(p,q)
g ( f ) (r) is differentiable for r ≥ r0 except possibly at isolated points where ρ(p,q)′

g ( f ) (r + 0) and ρ(p,q)′
g ( f ) (r − 0)

exist,

(iii) limr→∞ ρ
(p,q)
g ( f ) (r) = ρ(p,q)

g ( f ),

(iv) limr→∞ ρ
(p,q)′
g (r)

∏max(p,q)
i=0 log[i] r = 0,

(v) lim supr→∞
log[p−1] M−1

g M f (r)[
log[q−1] r

]ρ(p,q)
g ( f )(r)

= 1.

When (m, 1) and (m, k) are the index-pairs of f and g respectively, Definition 4 reduces to definition of generalized relative
proximate order. If the entire functions f and g have the same index-pair (p, 1), the above definition provides the relative
proximate order ρg ( f ) (r) .

The relative (p, q)th lower proximate order of an entire function with respect to another entire function may analogously
be defined, consistency being held by virtue of Section 3, too.

Definition 5. Let f and g be any two entire functions with index-pairs (m, q) and (m, p) respectively where p, q,m are
positive integers such that m ≥ max(p, q). For a finite relative (p, q)-th lower order of f with respect to g, λ(p,q)

g ( f ) , then
a function λ(p,q)

g ( f ) (r) : R+ → R is said to be a relative (p, q)th lower proximate order of f with respect to g if there is
some r0 > 0 so that it satisfies:

(i) λ(p,q)
g ( f ) (r) is non-negative and continuous for r > r0,

(ii) λ(p,q)
g ( f ) (r) is differentiable for r ≥ r0 except possibly at isolated points at which λ(p,q)′

g ( f ) (r+0) and λ(p,q)′
g ( f ) (r−0)

exist,

(iii) limr→∞ λ
(p,q)
g ( f ) (r) = λ(p,q)

g ( f ),

(iv) limr→∞ λ
(p,q)′
g (r)

∏max(p,q)
i=0 log[ j] r = 0,

(v) lim infr→∞
log[p−1] M−1

g M f (r)[
log[q−1] r

]λ(p,q)
g ( f )(r)

= 1.

3. Main Results

In this section we state the main results of the paper. We include the proof of the first main Theorem 1 for the sake of
completeness. The others are basically omitted since they are easily proved with the same techniques or with some easy
reasonings.

Theorem 1. Let f , g be any two entire functions with index-pairs (m, q) and (m, p) respectively where p, q,m are positive
integers with m ≥ max(p, q). If the relative (p, q)-th order ρ(p,q)

g ( f ) is finite, then the relative (p, q)th proximate order
ρ

(p,q)
g ( f ) (r) of f with respect to g exists.

Proof. We distinguish the following two cases:
Case I. Assume p ≥ q. Then we write

σ (r) =
log[p] M−1

g M f (r)

log[q] r

and it can be easily proved that σ (r) is continuous and

lim sup
r→∞
σ (r) = ρ(p,q)

g ( f ) .

Now we consider the following three sub cases:
Sub Case AI. Let σ (r) > ρ(p,q)

g ( f ) for at least a sequence of values of r tending to infinity. Then we define the non
increasing real function

ϕ(r) = max
x≥r
{σ (x)}.
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Now let us take R1 > R with R1 > exp[p+2] 1 and σ (R) > ρ(p,q)
g ( f ).

Then for any given r ≥ R1, we obtain that σ (r) ≤ σ (R). As σ (r) is continuous, there exists r1 ∈ [R,R1] such that

σ (r1) = max
R≤x≤R1

{σ (x)}.

Clearly r1 > exp[p+2] 1 and ϕ(r1) = σ (r1), there being a sequence of such r1 values tending to infinity.
Let us now consider that ρ(p,q)

g ( f ) (r1) = ϕ(r1) and let t1 be the smallest integer not smaller than 1 + r1 such that ϕ(r1) >
ϕ(t1). Also we define ρ(p,q)

g ( f ) (r) = ρ(p,q)
g ( f ) (r1) for r1 < r ≤ t1. Now we observe that:

(i) ϕ(r) and ρ(p,q)
g ( f ) (r1) − log[p+2] r + log[p+2] t1 are continuous functions,

(ii) ρ(p,q)
g ( f ) (r1) − log[p+2] r + log[p+2] t1 > ϕ(t1) for r (> t1) sufficiently close to t1 and

(iii) ϕ(r) is non increasing.

Consequently we can define u1 > t1 as follows:

ρ
(p,q)
g ( f ) (r) = ρ(p,q)

g ( f ) (r1) − log[p+2] r + log[p+2] t1 for t1 ≤ r ≤ u1,

ρ
(p,q)
g ( f ) (r) = ϕ(r) for r = u1 and

ρ
(p,q)
g ( f ) (r) > ϕ(r) for t1 ≤ r < u1.

Let now r2 be the smallest value of r for which r2 ≥ u1 and ϕ(r2) = σ (r2). If r2 > u1 then let ρ(p,q)
g ( f ) (r) = ϕ(r) for

u1 ≤ r ≤ r2. Then it can be easily shown that ϕ(r) and ρ(p,q)
g ( f ) (r) are both constant in u1 ≤ r ≤ r2. By repeating this

process, we obtain that ρ(p,q)
g ( f ) (r) is differentiable in adjacent intervals.

Moreover ρ(p,q)′
g (r) coincides with 0 or

(∏p+1
i=0 log[i] r

)−1
and

ρ
(p,q)
g ( f ) (r) ≥ ϕ(r) ≥ σ (r) for all r ≥ r1.

Also ρ(p,q)
g ( f ) (r) = σ (r) for a sequence of values of r tending to infinity and ρ(p,q)

g ( f ) (r) is non increasing for r ≥ r1.

So

ρ
(p,q)
g ( f ) = lim sup

r→∞
σ (r) = lim

r→∞
ϕ (r)

i.e., lim sup
r→∞
ρ

(p,q)
g ( f ) (r) = lim inf

r→∞
ρ

(p,q)
g ( f ) (r)

= lim
r→∞
ρ

(p,q)
g ( f ) (r) = ρ(p,q)

g ( f )

and

lim
r→∞
ρ

(p,q)′
g (r)

p∏
i=0

log[i] r = 0.

Again we get that

log[p−1] M−1
g M f (r) =

[
log[q−1] r

]σ(r)
=
[
log[q−1] r

]ρ(p,q)
g ( f )(r)

for a sequence of values of r tending to infinity and

log[p−1] M−1
g M f (r) <

[
log[q−1] r

]ρ(p,q)
g ( f )(r)

for the remaning r’s. Hence

lim sup
r→∞

log[p−1] M−1
g M f (r)[

log[q−1] r
]ρ(p,q)

g ( f )(r)
= 1.
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The continuity of ρ(p,q)
g ( f ) (r) for r ≥ r1 follows by construction.

Sub Case BI. Let σ (r) < ρ(p,q)
g ( f ) for all sufficiently large values of r tending to infinity. Now we define the real function

ξ(r) = max
X≤x≤r
{σ (x)},

where X > exp[p+2] 1 is such that σ (r) < ρ(p,q)
g ( f ) whenever x ≥ X.

Here we note that ξ(r) is non decreasing and the roots of

ξ(x) = ρ(p,q)
g ( f ) + log[p+2] x − log[p+2] r

are smaller than r for all sufficiently large values of r ≥ X.

Now for a suitable large value v1 > X, we define

ρ
(p,q)
g ( f ) (v1) = ρ(p,q)

g ( f ) ,

ρ
(p,q)
g ( f ) (r) = ρ(p,q)

g ( f ) + log[p+2] r − log[p+2] v1 for s1 ≤ r ≤ v1 where s1 < v1 is such that ξ(s1) = ρ(p,q)
g ( f ) (s1).

In fact s1 is given by the largest positive root of

ξ(x) = ρ(p,q)
g ( f ) + log[p+2] x − log[p+2] v1.

If ξ(s1) , σ (s1) let ω1 be an upper bound of the ω < s1 at which ξ(ω) is different from σ (ω) . If we define ρ(p,q)
g ( f ) (r) =

ξ(r) for ω1 ≤ r ≤ s1, it is clear that ξ(r) is constant in [ω1, s1], hence ρ(p,q)
g ( f ) (r) is constant in [ω1, s1], too.

If ξ(s1) = σ (s1) we take ω1 = s1. Now we choose v2 > v1 suitably large and let ρ(p,q)
g ( f ) (v1) = ρ(p,q)

g ( f ) and

ρ
(p,q)
g ( f ) (r) = ρ(p,q)

g ( f ) + log[p+2] r − log[p+2] v2

for s2 ≤ r ≤ v2 where s2 < v2 is such that ξ(s2) = ρ(p,q)
g ( f ) (s2) .

If ξ(s2) , ρ(p,q)
g ( f ) (s2) then suppose that ρ(p,q)

g ( f ) (r) = ξ(r) for ω2 ≤ r ≤ s2, with ω2 mimicking the behavour of ω1.

Hence ρ(p,q)
g ( f ) (r) is constant in [ω2, s2].

If ξ(s2) = σ (s2) we take ω2 = s2.

Also suppose that ρ(p,q)
g ( f ) (r) = ρ(p,q)

g ( f ) (ω2) − log[p+2] r + log[p+2] ω2 for q1 ≤ r ≤ ω2 where q1 < ω2 is the point of
intersection of y = ρ(p,q)

g ( f ) with y = ρ(p,q)
g ( f ) (ω2)− log[p+2] x+ log[p+2] ω2. Now it is also possible to choose v2 so large

that v1 < q1 and for the case under consideration, let us consider ρ(p,q)
g ( f ) (r) = ρ(p,q)

g ( f ) for v1 ≤ r ≤ q1. Therefore if we
repeat this process it can be shown that for all r ≥ v1, ρ

(p,q)
g ( f ) ≥ ρ(p,q)

g ( f ) (r) ≥ ξ(r) ≥ σ (r) and ρ(p,q)
g ( f ) (r) = σ (r) for

r = ω1, ω2, ...

Hence we obtain that

lim sup
r→∞
ρ

(p,q)
g ( f ) (r) = lim inf

r→∞
ρ

(p,q)
g ( f ) (r) = lim

r→∞
ρ

(p,q)
g ( f ) (r) = ρ(p,q)

g ( f )

since

log[p−1] M−1
g M f (r) =

[
log[q−1] r

]σ(r)
=
[
log[q−1] r

]ρ(p,q)
g ( f )(r)

for a sequence of values of r tending to infinity and

log[p−1] M−1
g M f (r) <

[
log[q−1] r

]ρ(p,q)
g ( f )(r)

for remaning r’s. Therefore it follows that

lim sup
r→∞

log[p−1] M−1
g M f (r)[

log[q−1] r
]ρ(p,q)

g ( f )(r)
= 1.
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Furthermore, ρ(p,q)
g ( f ) (r) is differentiable in adjacent intervals and

ρ
(p,q)′
g (r) = 0 or

 p+1∏
i=0

log[i] r


−1

.

Consequently,

lim
r→∞
ρ

(p,q)′
g (r)

p∏
i=0

log[i] r = 0.

Once again, continuity of ρ(p,q)
g ( f ) (r) follows by construction.

Sub Case CI. Let σ (r) = ρ(p,q)
g ( f ) for at least a sequence of values of r tending to infinity. Now considering ρ(p,q)

g ( f ) (r) =
ρ

(p,q)
g ( f ) for all sufficiently large values of r one can easily verify the existance of the relative (p, q)th proximate order for

the case under consideration.

Case II. Assume q ≥ p. Now let us consider the following function

σ (r) =
[
log[q−1] r

]−ρ(p,q)
g ( f )

· log[p−1] M−1
g M f (r) .

Therefore it can easily be shown that

lim sup
r→∞

logσ (r)

log[q] r
= 0.

Now putting x = log[q] r and y = logσ (r), we obtain that

y = logσ
(
exp[q] x

)
.

So

lim sup
r→∞

logσ
(
exp[q] x

)
x

= lim sup
r→∞

logσ (r)

log[q] r
= 0

which shows that for any abritrary ε > 0 and for large values of x, x ≥ x0 (ε) , the entire curve y = logσ
(
exp[q] x

)
lies

below the line y = εx and, on the other hand, there are points on the curve with arbitrarily large abscissae lying above the
line y = −εx.

Now we consider the following two sub cases:

Sub Case AII. Let us consider that lim supr→∞ logσ
(
exp[q] x

)
= +∞. Now we construct the smallest convex domain so

that it contains the positive ray of the x axis and all the points of the curve y = logσ
(
exp[q] x

)
. Thus the boundary of

newly formed domain lying above the x-axis is a continuous curve and we denote it as y = δ (x). This curve must satisfy
the following properties:

(I) The curve is convex from the above,

(II) limx→∞
δ(x)

x = 0,

(III) logσ
(
exp[q] x

)
≤ δ (x) ,

(IV) logσ
(
exp[q] x

)
= δ (x) at the extreme points of the curve y = δ (x) and

(V) The curve y = δ (x) contains a sequence of extreme points tending to infinity.

Also the curve y = δ (x) is made differentiable in the neighbourhood of each angular point ( if necessary) by making some
unessential changes. Thus it is assumed that the curve y = δ (x) is differentiable everywhere. Hence from (I) and (II),
above it follows that limx→∞ δ

′(x) = 0 and from (III) we have

log[p−1] M−1
g M f (r) ≤

[
log[q−1] r

]ρ(p,q)
g ( f )(r)

7
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where

ρ
(p,q)
g ( f ) (r) = ρ(p,q)

g ( f ) +
δ
(
log[q] r

)
log[q] r

.

Now from (II) it follows that

lim
r→∞
ρ

(p,q)
g ( f ) (r) = lim

r→∞

ρ(p,q)
g ( f ) +

δ
(
log[q] r

)
log[q] r

 = ρ(p,q)
g ( f ) .

Also in view of the properties (IV) and (V) one can easily verify that there exists a sequence of values of r tending to
infinity for which

log[p−1] M−1
g M f (r) =

[
log[q−1] r

]ρ(p,q)
g ( f )(r)

i.e., lim sup
r→∞

log[p−1] M−1
g M f (r)[

log[q−1] r
]ρ(p,q)

g ( f )(r)
= 1

and limr→∞ ρ
(p,q)′
g (r)

∏q
i=0 log[i] r = 0 holds.

Thus we have constructed the function ρ(p,q)
g ( f ) (r).

Sub Case BII. In order to generalize the case, let us consider a concave function β (x) which satisfies the following
properties:

(I) limx→∞ β
′ (x) = 0,

(II) limx→∞
β(x)

x = 0 and

(III) lim supr→∞
[
logσ

(
exp[q] x

)
+ β (x)

]
= ∞.

With the goal of constructing β (x) we go through the following steps:

First we consider a segment a1 of the line y = −ε1x from the origin to a point x1 where logσ
(
exp[q] x1

)
> −ε1x1 + 1.

Having chosen a positive number ε2 < ε1 we draw a segment a2 of the line y + ε1x1 = −ε2 (x − x1) from the point
(x1,−ε1x1) to a point x2 > x1 satisfying logσ

(
exp[q] x2

)
> −ε1x1 − ε2 (x2 − x1) + 2. Then we choose a segment a3 with

slope −ε3 (0 < ε3 < ε2) , etc. The selected {εn} is strictly decreasing with εn → 0 but the sequence {xn} of points is strictly
increasing with xn → ∞. The polygonal function y = β1 (x) constructed in this manner satisfies

lim
x→∞

β1 (x)
x
= 0.

The function β1 (x) can be made everywhere differentiable by changing it in an unessential manner in the neighbourhood
of each angular point. The function β (x) defined as β (x) = −β1 (x) has the required properties.

A convex majorant β2 (x) for the function logσ
(
exp[q] x

)
+ β (x) is now considered and writing

δ (x) = β2 (x) − β (x)

yields
logσ

(
exp[q] x

)
≤ δ (x) .

Moreover,
logσ

(
exp[q] x′n

)
= δ
(
x′n
)

on some sequence
{
x′n
}∞
1 of extreme points, x′n → ∞.

Also if the function ρ(p,q)
g ( f ) (r) is defined as

ρ
(p,q)
g ( f ) (r) = ρ(p,q)

g ( f ) +
δ
(
log[q] r

)
log[q] r

,

8
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it can easily be seen that

lim
x→∞
δ′ (x) = 0, lim

x→∞

δ (x)
x
= 0.

Hence limr→∞ ρ
(p,q)
g ( f ) (r) = ρ(p,q)

g ( f ) and

lim
r→∞
ρ

(p,q)′
g (r)

q∏
i=0

log[i] r = 0.

Moreover

log[p−1] M−1
g M f (r) ≤

[
log[q−1] r

]ρ(p,q)
g ( f )(r)

and

log[p−1] M−1
g M f (rn) =

[
log[q−1] rn

]ρ(p,q)
g ( f )(rn)

for some sequence {rn} , rn → ∞. Therefore

lim sup
r→∞

log[p−1] M−1
g M f (r)[

log[q−1] r
]ρ(p,q)

g ( f )(r)
= 1,

and the proof is complete. �

The following theorem’s proof can be obtained in the line of Theorem 1.

Theorem 2. Let f , g be any two entire functions with index-pairs (m, q) and (m, p) , respectively where p, q,m are positive
integers with m ≥ max(p, q). If the relative (p, q)-th lower order λ(p,q)

g ( f ) of f with respect to g is finite and non zero, then
the relative (p, q)th lower proximate order λ(p,q)

g ( f ) (r) of f with respect to g exists.

Now we recall the that a positive function η (r) is called slowly increasing (Srivastava & Kumar, 2009), if limr→∞
η(nr)
η(r) = 1.

We will say that η (r) is uniform slowly increasing if the aforementioned limit happens to exist uniformly in m on each
interval 0 < b ≤ n < m < ∞.
The proofs of the following corollary can be carried out using the same techniques involved in (Nandan, Doherey, &
Srivastava, 1980).

Corollary 1. Let ρ(p,q)
g ( f ) (r) and λ(p,q)

g ( f ) (r) be respectively the relative (p, q)th proximate order and the relative (p, q)th
lower proximate order of f with respect to g, and let ρ(p,q)

g ( f ) and λ(p,q)
g ( f ) be the relative (p, q)-th order and relative

(p, q)-th lower order of f with respect to g for any positive integers p and q. Then:

1. The functions
[
log[q−1] r

]ρ(p,q)
g ( f )(r)

[
log[q−1] r

]ρ(p,q)
g ( f )

and
[
log[q−1] r

]λ(p,q)
g ( f )(r)

[
log[q−1] r

]λ(p,q)
g ( f )

are uniform slowly increasing.

2. The functions
[
log[q−1] r

]ρ(p,q)
g ( f )(r)

and
[
log[q−1] r

]λ(p,q)
g ( f )(r)

are monotone increasing for sufficiently large values of r.

3. For 0 < l ≤ k ≤ m < ∞ and r → ∞, we have that[
log[q−1] (kr)

]ρ(p,q)
g ( f )(kr)

·
[
log[q−1] r

]ρ(p,q)
g ( f )

[
log[q−1] (kr)

]ρ(p,q)
g ( f )

·
[
log[q−1] r

]ρ(p,q)
g ( f )(r)

∝ 1,

[
log[q−1] (kr)

]λ(p,q)
g ( f )(kr)

·
[
log[q−1] r

]λ(p,q)
g ( f )

[
log[q−1] (kr)

]λ(p,q)
g ( f )

·
[
log[q−1] r

]λ(p,q)
g ( f )(r)

∝ 1

hold uniformly in k.

9
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4. For γ < min
{(

1 + ρ(p,q)
g ( f )

)
,
(
1 + λ(p,q)

g ( f )
)}

, we have

∫ r
r0

[
log[q−1] x

]ρ(p,q)
g ( f )(x)−γ dx∏q−2

i=0 log[i] x
=

1
ρ

(p,q)
g ( f )−γ+1

[
log[q−1] r

]ρ(p,q)
g ( f )(r)−γ+1

+ o
[
log[q−1] r

]ρ(p,q)
g ( f )(r)−γ+1

and ∫ r
r0

[
log[q−1] x

]λ(p,q)
g ( f )(x)−γ dx∏q−2

i=0 log[i] x
=

1
λ

(p,q)
g ( f )−γ+1

[
log[q−1] r

]λ(p,q)
g ( f )(r)−γ+1

+ o
[
log[q−1] r

]λ(p,q)
g ( f )(r)−γ+1

.

4. Conclusions

The main aim of the paper is to extend and modify the notion of proximate order (lower proximate order) to relative
proximate order (relative lower proximate order) of higher dimentions in case of entire functions.

The results of this paper, in connection with Nevanlinna’s Value Distributibution theory of entire functions on the basis
of relative (p, q)th proximate order and relative (p, q)th proximate lower order, may have a wide range of applications
in Complex Dynamics, Factorization Theory of entire functions of single complex variable, the solution of complex
differential equations etc. In fact, Complex Dynamics is a thrust area in modern function theory and it is solely based on
the study of fixed points of entire functions as well as the normality of them. Factorization theory of entire functions is
another branch of applications of Nevanlinna’s theory which deals on how a given entire function can be factorized into
simpler entire functions as well as in the study of the properties of the solutions of complex differential equations.
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