The Čech number of $C_p(X)$ when X is an ordinal space

OFELIA T. ALAS AND ÁNGEL TAMARIZ-MASCARÚA*

Abstract. The Čech number of a space Z, $\check{C}(Z)$, is the pseudocharacter of Z in βZ. In this article we obtain, in ZFC and assuming SCH, some upper and lower bounds of the Čech number of spaces $C_p(X)$ of realvalued continuous functions defined on an ordinal space X with the pointwise convergence topology.

2000 AMS Classification: 54C35, 54A25, 54F05

Keywords: Spaces of continuous functions, topology of pointwise convergence, Čech number, ordinal space

1. Notations and Basic results

In this article, every space X is a Tychonoff space. The symbols ω (or \mathbb{N}), \mathbb{R}, I, \mathbb{Q} and \mathbb{P} stand for the set of natural numbers, the real numbers, the closed interval $[0,1]$, the rational numbers and the irrational numbers, respectively. Given two spaces X and Y, we denote by $C(X,Y)$ the set of all continuous functions from X to Y, and $C_p(X,Y)$ stands for $C(X,Y)$ equipped with the topology of pointwise convergence, that is, the topology in $C(X,Y)$ of subspace of the Tychonoff product Y^X. The space $C_p(X,\mathbb{R})$ is denoted by $C_p(X)$. The restriction of a function f with domain X to $A \subset X$ is denoted by $f|A$. For a space X, βX is its Stone-Čech compactification.

Recall that for $X \subset Y$, the pseudocharacter of X in Y is defined as

$$\Psi(X,Y) = \min\{|U| : U \text{ is a family of open sets in } Y \text{ and } X = \bigcap U\}.$$

Definition 1.1.

1. The Čech number of a space Z is $\check{C}(Z) = \Psi(Z,\beta Z)$.
2. The k-covering number of a space Z is $k cov(Z) = \min\{|K| : K \text{ is a compact cover of } Z\}$.

*Research supported by Fapesp, CONACyT and UNAM.
We have that (see Section 1 in [8]): \(\hat{C}(Z) = 1 \) if and only if \(Z \) is locally compact; \(\hat{C}(Z) \leq \omega \) if and only if \(Z \) is Čech-complete; \(\hat{C}(Z) = \text{kcov}(\beta Z \setminus Z) \); if \(Y \) is a closed subset of \(Z \), then \(\text{kcov}(Y) \leq \text{kcov}(Z) \) and \(\hat{C}(Y) \leq \hat{C}(Z) \); if \(f : Z \to Y \) is an onto continuous function, then \(\text{kcov}(Y) \leq \text{kcov}(Z) \); if \(f : Z \to Y \) is perfect and onto, then \(\text{kcov}(Y) = \text{kcov}(Z) \) and \(\hat{C}(Y) = \hat{C}(Z) \); if \(bZ \) is a compactification of \(Z \), then \(\hat{C}(Z) = \Psi(Z, bZ) \).

We know that \(\hat{C}(C_p(X)) \leq \aleph_0 \) if and only if \(X \) is countable and discrete ([7]), and \(\hat{C}(C_p(X, I)) \leq \aleph_0 \) if and only if \(X \) is discrete ([9]).

For a space \(X \), \(ec(X) \) (the essential cardinality of \(X \)) is the smallest cardinality of a closed and open subspace \(Y \) of \(X \) such that \(X \setminus Y \) is discrete. Observe that, for such a subspace \(Y \) of \(X \), \(\hat{C}(C_p(X, I)) = \hat{C}(C_p(Y, I)) \). In [8] it was pointed out that \(ec(X) \leq \hat{C}(C_p(X, I)) \) and \(\hat{C}(C_p(X)) = |X| \cdot \hat{C}(C_p(X, I)) \) always hold. So, if \(X \) is discrete, \(\hat{C}(C_p(X)) = |X| \), and if \(|X| = ec(X) \), \(\hat{C}(C_p(X)) = \hat{C}(C_p(X, I)) \).

Consider in the set of functions from \(\omega \) to \(\omega \), \(^*\omega \), the partial order \(\leq ^* \) defined by \(f \leq ^* g \) if \(f(n) \leq g(n) \) for all but finitely many \(n \in \omega \). A collection \(D \) of \(^*\omega \) is dominating if for every \(h \in ^*\omega \) there is \(f \in D \) such that \(h \leq ^* f \). As usual, we denote by \(\mathfrak{d} \) the cardinal number \(\text{min}(|D| : D \text{ is a dominating subset of } ^*\omega) \). It is known that \(\mathfrak{d} = \text{cov}(\mathcal{P}) \) (see [3]); so \(\mathfrak{d} = \hat{C}(\mathbb{Q}) \). Moreover, \(\omega_1 \leq \mathfrak{d} \leq \mathfrak{c} \), where \(\mathfrak{c} \) denotes the cardinality of \(\mathbb{R} \).

We will denote a cardinal number \(\tau \) with the discrete topology simply as \(\tau \); so, the space \(\tau^\omega \) is the Tychonoff product of \(\kappa \) copies of the discrete space \(\tau \). The cardinal number \(\tau \) with the order topology will be symbolized by \([0, \tau] \).

In this article we will obtain some upper and lower bounds of \(\hat{C}(C_p(X, I)) \) when \(X \) is an ordinal space; so this article continues the efforts made in [1] and [8] in order to clarify the behavior of the number \(\hat{C}(C_p(X, I)) \) for several classes of spaces \(X \).

For notions and concepts not defined here the reader can consult [2] and [4].

2. The Čech number of \(C_p(X) \) when \(X \) is an ordinal space

For an ordinal number \(\alpha \), let us denote by \([0, \alpha]\) and \([0, \alpha)\) the set of ordinals \(< \alpha \) and the set of ordinals \(\leq \alpha \), respectively, with its order topology. Observe that for every ordinal number \(\alpha \leq \omega \), \([0, \alpha)\) is a discrete space, so, in this case, \(\hat{C}(C_p([0, \alpha), I)) = 1 \). If \(\omega < \alpha < \omega_1 \), then \([0, \alpha)\) is a countable metrizable space, hence, by Theorem 7.4 in [1], \(\hat{C}(C_p([0, \alpha), I)) = \mathfrak{d} \). We will analyze the number \(\hat{C}(C_p([0, \alpha), I)) \) for an arbitrary ordinal number \(\alpha \).

We are going to use the following symbols:

Notations 2.1. For each \(n < \omega \), we will denote as \(E_n \) the collection of intervals

\[
[0, 1/2^{n+1}), (1/2^{n+2}, 3/2^{n+2}), (1/2^{n+1}, 2/2^{n+1}), (3/2^{n+2}, 5/2^{n+2}), ...
\]

\[
..., ((2^n+2 - 2)/2^{n+2}, (2^n+2 - 1)/2^{n+2}), ((2^n+1 - 1)/2^{n+1}, 1].
\]

Observe that \(E_n \) is an irreducible open cover of \([0, 1]\) and each element in \(E_n \) has diameter \(= 1/2^{n+1} \). For a set \(S \) and a point \(y \in S \), we will use the symbol \([yS]^{<\omega} \) in order to denote the collection of finite subsets of \(S \) containing \(y \).
Moreover, if γ and α are ordinal numbers with $\gamma \leq \alpha$, $[\gamma, \alpha]$ is the set of ordinal numbers λ which satisfy $\gamma \leq \lambda \leq \alpha$. The expression $\alpha_0 < \alpha_1 < \ldots < \alpha_n < \ldots / \gamma$ will mean that the sequence $(\alpha_n)_{n<\omega}$ of ordinal numbers is strictly increasing and converges to γ.

Lemma 2.2. Let γ be an ordinal number such that there is $\omega < \alpha_0 < \alpha_1 < \ldots < \alpha_n < \ldots / \gamma$. Then $\check{C}(C_p([0, \gamma]), I) \leq \check{C}(C_p([0, \gamma]), I) \cdot \text{kcov}([\gamma]^\omega)$.

Proof. For $m < \omega$, $F \in [\gamma[\alpha_m, \gamma]]^{<\omega} = \{M \subset [\alpha_m, \gamma] : |M| < \aleph_0$ and $\gamma \in M\}$ and $n < \omega$, define

$$B(m, F, E) = \bigcup_{E \in E_n} B(m, F, E)$$

where $B(m, F, E) = \prod_{x \in [0, \gamma]} J_x$ with $J_x = E$ if $x \in F$, and $J_x = I$ otherwise. (So, $B(m, F, n)$ is open in $I^{[0, \gamma]}$.) Define

$$B(m, n) = \bigcap\{B(m, F, n) : F \in [\gamma[\alpha_m, \gamma]]^{<\omega}\}.$$

Observe that $B(m, n)$ is the intersection of at most $|\gamma|$ open sets $B(m, F, n)$.

Claim: G is the set of all functions $g : [0, \gamma] \rightarrow [0, 1]$ which are continuous at γ.

Proof of the claim: Let $g : [0, \gamma] \rightarrow [0, 1]$ be continuous at γ. Given $n < \omega$ there is $E \in E_n$ such that $g(\gamma) \in E$. Since g is continuous at γ, there is $\beta < \gamma$ so that $g(t) \in E$ if $t \in [\beta, \gamma]$. Fix $m < \omega$ so that $\beta < \alpha_m$. For every $F \in [\gamma[\alpha_m, \gamma]]^{<\omega}$ we have that $g \in B(m, F, E) \subset B(m, F, n)$; hence, $g \in B(m, n)$ and $G = \bigcap_{n<\omega} G(n)$.

Now, let $h \in G$. We are going to prove that h is continuous at γ. Assume the contrary, that is, there exist $\epsilon > 0$ and a sequence $t_0 < t_1 < \ldots < t_n < \ldots / \gamma$ such that

$$|f(t_j) - f(\gamma)| \geq \epsilon,$$

for every $j < \omega$. Fix $n < \omega$ such that $1/2^{n+1} < \epsilon$.

Since $h \in G$, then $h \in G(n)$ and there is $m \geq 0$ such that $h \in B(m, n)$. Choose $t_{n_p} > \alpha_m$ and take $F = \{t_{n_p}, \gamma\}$. Thus $h \in B(m, F, n)$, but if $E \in E_n$ and $h(\gamma) \in E$, then $h(t_{n_p}) \in E$, which is a contradiction. So, the claim has been proved.

Now, we have $I^{[0, \gamma]} \setminus G = \bigcup_{n<\omega} (I^{[0, \gamma]} \setminus G(n))$, and

$$I^{[0, \gamma]} \setminus G(n) = \bigcap_{m<\omega} \bigcup_{E \in \Gamma_n} ((I^{[0, \gamma]} \setminus B(m, F, n))).$$

So $I^{[0, \gamma]} \setminus G(n)$ is an $F[\beta, \gamma]$-set. By Corollary 3.4 in [8], $\text{kcov}(I^{[0, \gamma]} \setminus G(n)) \leq \text{kcov}([\gamma]^\omega)$. Hence, $\check{C}(G) = \text{kcov}(I^{[0, \gamma]} \setminus G(n)) \leq \aleph_0 \cdot \text{kcov}([\gamma]^\omega)$. Thus, it follows that

$$\check{C}(C_p([0, \gamma]), I) \leq \check{C}(C_p([0, \gamma]), I) \cdot \text{kcov}([\gamma]^\omega).$$

\qed
Lemma 2.3. If $\gamma < \alpha$, then $\mathcal{C}(C_p([0, \gamma], I)) \leq \mathcal{C}(C_p([0, \alpha], I))$.

Proof. First case: $\gamma = \beta + 1$.

In this case, $[0, \gamma) = [0, \beta]$ and the function $\phi : [0, \alpha) \to [0, \beta]$ defined by $\phi(x) = x$ if $x \leq \beta$ and $\phi(x) = \beta$ if $x > \beta$ is a quotient. So, $\phi^\# : C_p([0, \beta], I) \to C_p([0, \alpha], I)$ defined by $\phi^\#(f) = f \circ \phi$, is a homeomorphism between $C_p([0, \beta], I)$ and a closed subset of $C_p([0, \alpha], I)$ (see [2], pages 13, 14). Then, in this case, $\mathcal{C}(C_p([0, \gamma], I)) \leq \mathcal{C}(C_p([0, \alpha], I))$.

Now, in order to finish the proof of this Lemma, it is enough to show that for every limit ordinal number α, $\mathcal{C}(C_p([0, \alpha], I)) \leq \mathcal{C}(C_p([0, \alpha], I))$.

Let $\kappa = \text{cof}(\alpha)$, and $\alpha_0 < \alpha_1 < \ldots < \alpha_\lambda < \ldots / \alpha$ with $\lambda < \kappa$. For each of these λ, we know, because of the proof of the first case, that $\kappa_\lambda = \mathcal{C}(C_p([0, \alpha_\lambda], I)) \leq \mathcal{C}(C_p([0, \alpha], I))$. Let, for each $\lambda < \kappa$, $\{V_\xi^\lambda : \xi < \kappa_\lambda\}$ be a collection of open subsets of $I^{[0, \alpha_\lambda]}$ such that $C_p([0, \alpha_\lambda], I) = \bigcap_{\xi \in \kappa_\lambda} V_\xi^\lambda$.

For each $\lambda < \kappa$ and each $\xi < \kappa_\lambda$, we take $W_\lambda^\xi = V_\xi^\lambda \times I^{(\alpha_\lambda, \alpha)}$. Each W_λ^ξ is open in $I^{(\alpha_\lambda, \alpha)}$ and $\bigcap_{\lambda < \kappa} \bigcap_{\xi < \kappa_\lambda} W_\lambda^\xi = C_p([0, \alpha], I)$. Therefore, $\mathcal{C}(C_p([0, \alpha], I)) \leq \kappa \cdot \sup_{\lambda < \kappa} \kappa_\lambda \leq \kappa \cdot \mathcal{C}(C_p([0, \alpha], I))$. But $\kappa \leq |\alpha| = \text{ec}([0, \alpha]) \leq \mathcal{C}(C_p([0, \alpha], I))$.

Then, $\mathcal{C}(C_p([0, \alpha], I)) \leq \mathcal{C}(C_p([0, \alpha], I))$. \hfill \Box

Lemma 2.4. Let α be a limit ordinal number $> \omega$. Then

$$\mathcal{C}(C_p([0, \alpha], I)) = |\alpha| \cdot \sup_{\gamma < \alpha} \mathcal{C}(C_p([0, \gamma], I)).$$

In particular, $\mathcal{C}(C_p([0, \alpha], I)) = \sup_{\gamma < \alpha} \mathcal{C}(C_p([0, \gamma], I))$ if $\text{cof}(\alpha) < \alpha$.

Proof. By Lemma 2.3, $\sup_{\gamma < \alpha} \mathcal{C}(C_p([0, \gamma], I)) \leq \mathcal{C}(C_p([0, \alpha], I))$, and, by Corollary 4.8 in [8], $|\alpha| \leq \mathcal{C}(C_p([0, \alpha], I))$.

For each $\gamma < \alpha$, we write κ_γ instead of $\mathcal{C}(C_p([0, \gamma], I))$. Let $\{V_\xi^\gamma : \lambda < \kappa_\gamma\}$ be a collection of open sets in I^γ such that $C_p([0, \gamma], I) = \bigcap_{\lambda < \kappa_\gamma} V_\lambda^\gamma$. Now we put $W_\lambda^\gamma = V_\lambda^\gamma \times I^{(\gamma, \alpha)}$. We have that W_λ^γ is open for every $\gamma < \alpha$ and every $\lambda < \gamma$, and $C_p([0, \alpha], I) = \bigcap_{\gamma < \alpha} \bigcap_{\lambda < \gamma} W_\lambda^\gamma$. So, $\mathcal{C}(C_p([0, \alpha], I)) = |\alpha| \cdot \sup_{\gamma < \alpha} \mathcal{C}(C_p([0, \gamma], I))$. \hfill \Box

In order to prove the following result it is enough to mimic the prove of 5.12.(c) in [5].

Lemma 2.5. If α is an ordinal number with $\text{cof}(\alpha) > \omega$ and $f \in C_p([0, \alpha], I))$, then there is $\gamma_0 < \alpha$ for which $f \upharpoonright [\gamma_0, \alpha]$ is a constant function.

Lemma 2.6. If α is an ordinal number with cofinality $> \omega$, then $\mathcal{C}(C_p([0, \alpha], I)) = \mathcal{C}(C_p([0, \alpha], I))$.

Proof. Let $\kappa = \mathcal{C}(C_p([0, \alpha], I))$. There are open sets $V_\lambda (\lambda < \kappa)$ in $I^{(0, \alpha)}$ such that $C_p([0, \alpha], I) = \bigcap_{\lambda < \kappa} V_\lambda$. For each $\lambda < \kappa$, we take $W_\lambda = V_\lambda \times I^{(\alpha)}$. Each W_λ is open in $I^{(0, \alpha)}$ and $\bigcap_{\lambda < \kappa} W_\lambda = \{f : [0, \alpha] \to I \mid f \upharpoonright [0, \alpha] \in C_p([0, \alpha], I))\}$.

For each $(\gamma, \xi, E) \in \alpha \times \alpha \times E_n$, we take $B(\gamma, \xi, E) = \prod_{\lambda < \alpha} J_\lambda$ where $J_\lambda = E$ if $\lambda \in \{\xi + \gamma, \alpha\}$, and $J_\lambda = I$ otherwise. Let $B(\gamma, \xi, n) = \bigcup_{E \in E_n} B(\gamma, \xi, E)$. This implies that

$$\mathcal{C}(C_p([0, \alpha], I)) = \mathcal{C}(C_p([0, \alpha], I)).$$
Finally, we define $B(\gamma) = \bigcup_{\xi < \alpha} B(\gamma, \xi, n)$, which is an open subset of $I^{[0, \alpha]}$. We denote by M the set $\bigcap_{\lambda < \kappa} W_\lambda \cap \bigcap_{\gamma < \alpha} B(\gamma)$. We are going to prove that $C_p([0, \alpha], I) \subseteq M$.

Let $f \in C_p([0, \alpha], I)$. We know that $f \in \bigcap_{\lambda < \kappa} W_\lambda$, so we only have to prove that $f \in \bigcap_{\gamma < \alpha} B(\gamma)$. For $n < \omega$, there is $E \in \mathcal{E}_n$ such that $f(\alpha) \in E$. Since $f \in C([0, \alpha], I)$, there are $\gamma_0 < \alpha$ and $r_0 \in I$ such that $f(\lambda) = r_0$ if $\gamma_0 \leq \lambda < \alpha$. Let $\chi < \alpha$ such that $\chi + \gamma \geq \gamma_0$. Thus, $f \in B(\gamma, \chi, n) \subseteq B(\gamma)$. Therefore, $C_p([0, \alpha], I) \subseteq M$.

Take an element f of M. Since $f \in \bigcap_{\lambda < \kappa} W_\lambda$, f is continuous at every $\gamma < \alpha$, thus $\|f\|_{[0, \alpha]} = r_0$ for a $\gamma_0 < \alpha$ and an $r_0 \in I$.

For each $n < \omega$, and each $\gamma \geq \gamma_0$, $f \in B(\gamma, \xi, n)$ for some $\xi < \alpha$. Then, $|r_0 - f(\alpha)| = |f(\gamma + \xi) - f(\alpha)| < 1/2^n$. But, these relations hold for every n. So, $f(\alpha)$ must be equal to r_0, and this means that f is continuous at every point.

Therefore, $\hat{C}(C_p([0, \alpha], I)) \leq |\alpha| \cdot \hat{C}(C_p([0, \alpha], I))$. Since $\hat{C}(C_p([0, \alpha], I)) \geq \text{cc}(\alpha) = |\alpha|$, $\hat{C}(C_p([0, \alpha], I)) \leq \hat{C}(C_p([0, \alpha], I))$. Finally, Lemma 2.3 gives us the inequality $\hat{C}(C_p([0, \alpha], I)) \leq \hat{C}(C_p([0, \alpha], I))$. □

Theorem 2.7. For every ordinal number $\alpha > \omega$,

$$|\alpha| \cdot \mathfrak{d} \leq \hat{C}(C_p([0, \alpha], I)) \leq \text{cov}(|\alpha|^\omega).$$

Proof. Because of Theorem 7.4 in [1], Corollary 4.8 in [8] and Lemma 2.3 above, $|\alpha| \cdot \mathfrak{d} \leq \hat{C}(C_p([0, \alpha], I))$.

Now, if $\omega < \alpha < \omega_1$, we have that $\hat{C}(C_p([0, \alpha], I)) \leq \text{cov}(|\alpha|^\omega)$ because of Corollary 4.2 in [1].

We are going to finish the proof by induction. Assume that the inequality $\hat{C}(C_p([0, \gamma], I)) \leq \text{cov}(|\gamma|^\omega)$ holds for every $\omega < \gamma < \alpha$. By Lemma 2.4 and inductive hypothesis, if α is a limit ordinal, then

$$\hat{C}(C_p([0, \alpha], I)) \leq |\alpha| \cdot \sup_{\gamma < \alpha} \text{cov}(|\gamma|^\omega) \leq \text{cov}(|\alpha|^\omega).$$

If $\alpha = \gamma_0 + 2$, then $\hat{C}(C_p([0, \alpha], I)) = \hat{C}(C_p([0, \gamma_0 + 1], I)) \leq \text{cov}(|\gamma_0 + 1|^\omega) = \text{cov}(|\alpha|^\omega)$.

Now assume that $\alpha = \gamma_0 + 1$, γ_0 is a limit and $\text{cof}(\gamma_0) = \omega$. We know by Lemma 2.2 that $\hat{C}(C_p([0, \gamma_0 + 1], I)) \leq \hat{C}(C_p([0, \gamma_0], I) \cdot \text{cof}(\gamma_0) = |\alpha|)$. So, by inductive hypothesis we obtain what is required.

The last possible case: $\alpha = \gamma_0 + 1$, γ_0 is limit and $\text{cof}(\gamma_0) > \omega$.

By Lemma 2.6, we have $\hat{C}(C_p([0, \gamma_0 + 1], I)) = |\alpha| \cdot \hat{C}(C_p([0, \gamma_0], I))$. By inductive hypothesis, $\hat{C}(C_p([0, \gamma_0], I) \leq \text{cov}(|\alpha|^\omega)$. Since $|\alpha| \leq \text{cov}(|\alpha|^\omega)$, we conclude that $\hat{C}(C_p([0, \alpha], I)) \leq \text{cov}(|\alpha|^\omega)$. □

As a consequence of Proposition 3.6 in [8] (see Proposition 2.11, below) and the previous Theorem, we obtain:

Corollary 2.8. For an ordinal number $\omega < \alpha < \omega_\omega$, $\hat{C}(C_p([0, \alpha], I)) = |\alpha| \cdot \mathfrak{d}$.
In particular, we have:

Corollary 2.9. \(\hat{C}(C_p([0, \omega_1], I)) = \hat{C}(C_p([0, \omega_1], I)) = \emptyset \).

By using similar techniques to those used throughout this section we can also prove the following result.

Corollary 2.10. For every ordinal number \(\alpha > \omega \) and every \(1 \leq n < \omega \),
\[
|\alpha| \cdot \mathfrak{d} \leq \hat{C}(C_p([0, \alpha]^n, I)) \leq \text{cov}(|\alpha|^n).
\]

For a generalized linearly ordered topological space \(X \), \(\chi(X) \leq \text{ec}(X) \), so \(\chi(X) \leq \hat{C}(C_p(X, I)) \), where \(\chi(X) \) is the character of \(X \). This is not the case for every topological space, even if \(X \) is a countable \(\text{EG} \)-space, as was pointed out by O. Okunev to the authors. Indeed, let \(X \) be a countable dense subset of \(C_p(I) \). We have that \(\chi(X) = \chi(C_p(I)) = \epsilon \) and \(\hat{C}(C_p(X, I)) = \emptyset \).

So, it is consistent with \(\text{ZFC} \) that there is a countable \(\text{EG} \)-space \(X \) with \(\chi(X) > \hat{C}(C_p(X, I)) \).

One is tempted to think that for every linearly ordered space \(X \), the relation \(\hat{C}(C_p(X, I)) \leq \text{cov}(\chi(X)^\omega) \) is plausible. But this illusion vanishes quickly: in fact, when \(\mathfrak{d} < 2^\omega \) and \(X \) is the double arrow, then \(X \) has countable character and \(\text{ec}(X) = |X| = 2^\omega \). Hence, \(\hat{C}(C_p(X, I)) \geq 2^\omega > \mathfrak{d} = \text{cov}(\chi(X)^\omega) \) (compare with Theorem 2.7, above, and Corollary 7.7 in [1]).

In [8] the following was remarked:

Proposition 2.11.

1. For every cardinal number \(\omega \leq \tau < \omega_\omega \), \(\text{cov}(\tau^\omega) = \tau \cdot \mathfrak{d} \).
2. For every cardinal \(\tau \geq \lambda \), \(\text{cov}((\tau^+)\lambda) = \tau^+ \cdot \text{cov}(\tau^\lambda) \).
3. If \(\text{cf}(\tau) > \lambda \), then \(\text{cov}(\tau^\lambda) = \tau \cdot \sup\{\text{cov}(\mu^\lambda) : \mu < \tau\} \).

Lemma 2.12. For every cardinal number \(\kappa \) with \(\text{cof}(\kappa) = \omega \), we have that \(\text{cov}(\kappa^\omega) > \kappa \).

Proof. Let \(\{K_\lambda : \lambda < \kappa\} \) be a collection of compact subsets of \(\kappa^\omega \). Let \(\alpha_0 < \alpha_1 < \ldots < \alpha_n < \ldots \) be an strictly increasing sequence of cardinal numbers converging to \(\kappa \). We are going to prove that \(\bigcup_{\lambda < \kappa} K_\lambda \) is a proper subset of \(\kappa^\omega \). Denote by \(\pi_n : \kappa^\omega \rightarrow \kappa \) the \(n \)-projection. Since \(\pi_n \) is continuous and \(K_\lambda \) is compact, \(\pi_n(K_\lambda) \) is a compact subset of the discrete space \(\kappa \), so, it is finite. Thus, we have that \(|\bigcup_{\lambda < \kappa_0} \pi_n(K_\lambda)| \leq \alpha_n < \kappa \) for each \(n < \omega \). Hence, for every \(n < \omega \), we can take \(\xi_n \in \kappa \setminus \bigcup_{\lambda < \alpha_n} \pi_n(K_\lambda) \). Consider the point \(\xi = (\xi_n)_{n < \omega} \) of \(\kappa^\omega \). We claim that \(\xi \notin \bigcup_{\lambda < \kappa} K_\lambda \). Indeed, assume that \(\xi \in K_{\lambda_0} \). There is \(n < \omega \) such that \(\lambda_0 < \alpha_n \). So, \(\xi_n \in \bigcup_{\lambda < \alpha_n} \pi_n(K_\lambda) \) which is not possible. \(\square \)

Recall that the Singular Cardinals Hypothesis (SCH) is the assertion:

For every singular cardinal number \(\kappa \), if \(2^{\text{cof}(\kappa)} < \kappa \), then \(\kappa^{\text{cof}(\kappa)} = \kappa^+ \).

A proposition, apparently weaker than SCH, is: “for every cardinal number \(\kappa \) with \(\text{cof}(\kappa) = \omega \), if \(2^\omega < \kappa \), then \(\kappa^\omega = \kappa^+ \)”. But this last assertion is equivalent to SCH as was settled by Silver (see [6], Theorem 23).
Proposition 2.13. If we assume SCH and \(c \leq (\omega_\omega)^+ \), and if \(\tau \) is an infinite cardinal number, then

\[
(*) \quad k\text{cov}(\tau^\omega) = \begin{cases}
\tau \cdot \omega & \text{if } \omega \leq \tau < \omega_\omega \\
\tau & \text{if } \tau > \omega_\omega \text{ and } \text{cof}(\tau) > \omega \\
\tau^+ & \text{if } \tau > \omega \text{ and } \text{cof}(\tau) = \omega
\end{cases}
\]

Proof. Our proposition is true for every \(\omega \leq \tau < \omega_\omega \) because of (1) in Proposition 2.11.

Assume now that \(\kappa \geq \omega_\omega \) and that (*) holds for every \(\tau < \kappa \). We are going to prove the assertion for \(\kappa \).

Case 1: \(\text{cof}(\kappa) = \omega \). By Lemma 2.12, \(k\text{cov}(\kappa^\omega) > \kappa \). On the other hand, \(k\text{cov}(\kappa^\omega) < \kappa^\omega \).

First two subcases: Either \(c < \omega_\omega \) or \(\kappa > \omega_\omega \). In both subcases, we can apply SCH and conclude that \(k\text{cov}(\kappa^\omega) = \kappa^+ \).

Third subcase: \(c = (\omega_\omega)^+ \) and \(\kappa = \omega_\omega \). In this case we have \(k\text{cov}((\omega_\omega)^\omega) \leq (\omega_\omega)^\omega \leq c^\omega = c = (\omega_\omega)^+ \). Moreover, by Lemma 2.12, \((\omega_\omega)^+ \leq k\text{cov}((\omega_\omega)^\omega) \). Therefore, \(k\text{cov}((\omega_\omega)^\omega) = (\omega_\omega)^+ \).

Case 2: \(\text{cof}(\kappa) > \omega \). By Proposition 2.11 (3), \(k\text{cov}(\kappa^\omega) = \kappa \cdot \sup\{k\text{cov}(\mu^\omega) : \omega \leq \mu < \kappa \} \). By inductive hypothesis we have that for each \(\mu < \kappa \)

\[
(***) \quad k\text{cov}(\mu^\omega) = \begin{cases}
\mu \cdot \omega & \text{if } \omega \leq \mu < \omega_\omega \\
\mu & \text{if } \mu > \omega_\omega \text{ and } \text{cof}(\mu) > \omega \\
\mu^+ & \text{if } \mu > \omega \text{ and } \text{cof}(\mu) = \omega
\end{cases}
\]

First subcase: \(\kappa \) is a limit cardinal. For every \(\mu < \kappa \), \(k\text{cov}(\mu^\omega) < \kappa \) (because of (***) and because we assumed that \(\kappa > (\omega_\omega)^+ \geq c \geq \omega \)); and so \(\sup\{k\text{cov}(\mu^\omega) : \mu < \kappa \} = \kappa \). Thus, \(k\text{cov}(\kappa^\omega) = \kappa \).

Second subcase: Assume now that \(\kappa = \mu_0^+ \). In this case, by Proposition 2.11, \(k\text{cov}(\kappa^\omega) = \kappa \cdot k\text{cov}(\mu_0^\omega) \). Because of (***) and because \(\mu_0 \geq \omega_\omega \), \(k\text{cov}(\mu_0^\omega) \leq \kappa \). We conclude that \(k\text{cov}(\kappa^\omega) = \kappa \). \(\Box \)

Proposition 2.14. Let \(\kappa \) be a cardinal number with \(\text{cof}(\kappa) = \omega \). Then

\[
\check{C}(C_p([0, \kappa], I)) > \kappa.
\]

Proof. Let \(0 = \alpha_0 < \alpha_1 < \cdots < \alpha_n < \cdots \) be a strictly increasing sequence of cardinal numbers converging to \(\kappa \). Assume that \(\{V_\lambda : \lambda < \kappa \} \) is a collection of open sets in \(I^{[0, \kappa]} \) which satisfies \(C_p([0, \kappa], I) \subset \bigcap_{\lambda < \kappa} V_\lambda \). We are going to prove that \(\bigcap_{\lambda < \kappa} V_\lambda \) contains a function \(h : [0, \kappa] \to I \) which is not continuous. In order to construct \(h \), we are going to define, by induction, the following sequences:
(i) elements t_0, \ldots, t_n, \ldots which belong to $[0, \kappa]$ such that
 1. $0 = t_0 < t_1 < \cdots < t_n < \ldots$,
 2. $t_i \geq \alpha_i$ for each $0 \leq i < \omega$,
 3. each t_i is an isolated ordinal, and
 4. $\kappa = \lim(t_n)$;

(ii) subsets $G_0, \ldots, G_n, \ldots \subseteq [0, \kappa]$ with $|G_i| \leq \alpha_i$ for every $i < \omega$, and such that each function which equals 0 in G_i and 1 in $\{t_0, \ldots, t_i\}$ belongs to $\bigcap_{\lambda < \alpha} V_\lambda$ for every $0 \leq i < \omega$ and $(\bigcup_n G_n) \cap \{t_0, \ldots, t_n, \ldots\} = \emptyset$;

(iii) functions $f_0, f_1, \ldots, f_n, \ldots$ such that $f_0 \equiv 0$, and f_i is the characteristic function defined by $\{t_0, \ldots, t_i-1\}$ for each $0 < i < \omega$.

Let f_0 be the constant function equal to 0. Assume that we have already defined t_0, \ldots, t_{s-1}, G_0, \ldots, G_{s-1} and f_0, \ldots, f_{s-1}. We now choose an isolated point $t_s \in [\alpha_s, \kappa) \setminus G_0 \cup \ldots \cup G_{s-1}$ (this is possible because $|G_0 \cup \ldots \cup G_{s-1}| < \kappa$). Consider the characteristic function defined by $\{t_0, \ldots, t_{s-1}, t_s\}$, f_s. This function is continuous, so it belongs to $\bigcap_{\lambda < \alpha_s} V_\lambda$. For each $\lambda < \alpha_s$, there is a canonical open set A_λ^s of the form $[f_s(x_1^s, \ldots, x_n^s(\lambda)); 1/m^s(\lambda)] = \{f \in I^{[0,\kappa]} : |f_s(x^s_1) - f(x)| < 1/m^s(\lambda) \forall 1 \leq i \leq n^s(\lambda)\}$ satisfying $f_s \in A_\lambda^s \subset V_\lambda$. For each $\lambda < \alpha_s$, we take $F_\lambda = [x_1^s, \ldots, x_n^s(\lambda)]$. Put $G_s = \bigcup_{\lambda < \alpha_s} F_\lambda \setminus \{t_0, \ldots, t_s\}$. It happens that $\{f \in I^{[0,\kappa]} : f(x) = 0 \forall x \in G_s$ and $f(t_i) = 1 \forall 0 < i < s\}$ is a subset of $\bigcap_{\lambda < \alpha_s} V_\lambda$. This finishes the inductive construction of the required sequences.

Now, consider the function $h : [0, \kappa] \rightarrow [0, 1]$ defined by $h(x) = 0$ if $x \not\in \{t_0, \ldots, t_n, \ldots\}$, and $h(t_n) = 1$ for every $n < \omega$. This function h is not continuous at κ because $h(\kappa) = 0$, $\kappa = \lim(t_n)$, and $h(t_n) = 1$ for all $n < \omega$.

Now, take $\alpha_0 \in \kappa$. There exists $l < \omega$ such that $\alpha_0 < \alpha_l$. Since h is equal to 0 in G_l and 1 in $\{t_0, \ldots, t_l\}$, then $h \in \bigcap_{\lambda < \alpha_l} V_\lambda$. Therefore, $h \in V_{\omega_\kappa}$. So, $C_p([0, \kappa], I)$ is not equal to $\bigcap_{\lambda < \kappa} V_\lambda$. This means that $\dot{C}(C_p([0, \kappa], I)) > \kappa$. □

Theorem 2.15. $SCH + \varepsilon \leq (\omega_\kappa)^+$ implies:

\[
\dot{C}(C_p([0, \alpha], I)) = \begin{cases} \\
1 & \text{if } \alpha \leq \omega \\
|\alpha| \cdot \varepsilon & \text{if } \alpha > \omega \text{ and } \omega \leq |\alpha| < \omega_\omega \\
|\alpha| & \text{if } |\alpha| > \omega_\omega \text{ and } \text{cof}(|\alpha|) > \omega \\
|\alpha|^+ & \text{if } \text{cof}(|\alpha|) = \omega \text{ and } \alpha \text{ is a cardinal number} > \omega_\omega \\
|\alpha| & \text{if } |\alpha| = \omega_\omega \text{ and } \varepsilon < (\omega_\kappa)^+ \\
|\alpha|^+ & \text{if } |\alpha| = \omega_\omega \text{ and } \varepsilon = (\omega_\kappa)^+ \\
\end{cases}
\]

Proof. If $\alpha \leq \omega$, $C_p([0, \alpha], I) = I^{[0,\alpha]}$, so $\dot{C}(C_p([0, \alpha], I)) = 1$.

If $\alpha > \omega$ and $\omega \leq |\alpha| < \omega_\omega$, we obtain our result because of Theorem 2.7 and Proposition 2.13.

If $|\alpha| > \omega_\omega$ and $\text{cof}(|\alpha|) > \omega$, by Theorem 2.7 and Proposition 2.13,

\[
|\alpha| \cdot \varepsilon = |\alpha| \leq \dot{C}(C_p([0, \alpha], I)) \leq \text{kcov}(|\alpha|^\omega) = |\alpha|.
\]
Thus, if $\text{cof}(|\alpha|) = \omega$ and α is a cardinal number $> \omega_\omega$, by Lemma 2.4,
\[
\check{C}(C_p([0, \alpha), I)) = |\alpha| \cdot \sup_{\gamma < \alpha} \check{C}(C_p([0, \gamma), I))
\]
The number α is a limit ordinal and for every $\gamma < \alpha$,
\[
\check{C}(C_p([0, \gamma), I)) \leq |\gamma|^+ \cdot \mathfrak{d}.
\]
Since $\mathfrak{d} \leq (\omega_\omega)^+ < |\alpha|$, then $\check{C}(C_p([0, \alpha), I)) = |\alpha|$.

By Lemma 2.4 and Theorem 2.7, if $|\alpha| = \omega_\omega$, then
\[
\omega_\omega \cdot \mathfrak{d} \leq \check{C}(C_p([0, \alpha), I)) = |\alpha| \cdot \sup_{\gamma < \alpha} \check{C}(C_p([0, \gamma), I)) \leq |\alpha| \cdot \sup_{\gamma < \alpha} (|\gamma|^+ \cdot \mathfrak{d}).
\]
Thus, if $|\alpha| = \omega_\omega$ and $\mathfrak{d} < (\omega_\omega)^+$, $\check{C}(C_p([0, \alpha), I)) = |\alpha|$. Assume now that $\text{cof}(|\alpha|) = \omega$, $|\alpha| > \omega_\omega$ and α is not a cardinal number. There exists a cardinal number κ such that $\kappa = |\alpha|$ and $[0, \alpha) = [0, \kappa) \oplus [\kappa + 1, \alpha)$. So, $\check{C}(C_p([0, \alpha), I)) = \check{C}(C_p([0, \kappa), I)) \cdot \check{C}(C_p(\kappa, 1, \alpha), I)) = \check{C}(C_p([0, \kappa), I))$ (see Proposition 1.10 in [8] and Lemma 2.3). By Theorem 2.7 and Proposition 2.14, $\kappa \cdot \mathfrak{d} \leq \check{C}(C_p([0, \kappa), I)) \leq \kappa^+$. Being κ a cardinal number $> \omega_\omega$ with cofinality ω, it must be $> (\omega_\omega)^+$; so $\kappa > \mathfrak{d}$ and, then, $\kappa \leq \check{C}(C_p([0, \kappa), I)) \leq \kappa^+$. Now we use Proposition 2.14, and conclude that $\check{C}(C_p([0, \alpha), I)) = \kappa^+ = |\alpha|^+$. Finally, assume that $|\alpha| = \omega_\omega$ and $\mathfrak{d} = (\omega_\omega)^+$. By Theorems 2.7 and Proposition 2.13 we have
\[
|\alpha| \cdot \mathfrak{d} \leq \check{C}(C_p([0, \alpha), I)) \leq k_{cov}(|\alpha|^+) = (\omega_\omega)^+.
\]
And we conclude: $\check{C}(C_p([0, \alpha), I)) = |\alpha|^+$. \hfill \Box

REFERENCES

Received August 2006
Accepted February 2007

Ofelia T. Alas (alas@ime.usp.br)
Universidade de São Paulo, Caixa Postal 66281, CEP 05311-970, São Paulo, Brasil.

Ángel Tamariz-Mascarúa (atamariz@servidor.unam.mx)
Departamento de Matemáticas, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad Universitaria, México D.F. 04510, México.