ANEXOS

La memoria de este trabajo se acompaña de los siguientes anexos:

- Anexo A: Modelo global
- Anexo B: Análisis de Monte-Carlo

Componente i →	SA	S _F	SI	S ₀₂	S _{NH4}	S _{NO2}	S _{NO3}	S _{N2}	S _{P04}	S _{CI}	S _{S2-}	S _{S0}	S _{TS}	S _{S04}	S _{CH4}	S _{HT}
Proceso j ↓	mg DQ0/l	mg DQ0/l	mg DQO/l	mg 02/l	mg N/l	mg N/l	mg N/l	mg N/l	mg P/l	mmol C/l	mg S/l	mg S/l	mg S/l	mg S/l	mg DQO/l	mmol H⁺/l
1) Hidrólisis aerobia	-	1-f _{SI}	f _{SI}	-	$\upsilon_{\rm NH4}{}^1$	-	-	-	v_{P04} ¹	υ_{CI}^1	-	-	-	-	-	υ_{HT}^1
2) Hidrólisis anóxica	-	1-f _{SI}	f _{SI}	-	$\upsilon_{\rm NH4}^2$	-	-	-	υ_{P04}^2	υ_{CI}^2	-	-	-	-	-	υ_{HT}^2
3) Hidrólisis anaerobia	-	1-f _{SI}	f _{SI}	-	$\upsilon_{\rm NH4}{}^3$	-	-	-	$\upsilon_{P04}{}^3$	$\upsilon_{CI}{}^3$	-	-	-	-	-	$\upsilon_{\text{HT}}{}^3$
4) Crec. aer. X _H - S _A	-1/Y _H	-	-	1-1/Y _H	$\upsilon_{\rm NH4}{}^4$	-	-	-	$\upsilon_{P04}{}^4$	$\upsilon_{\text{CI}}{}^4$	-	-	-	-	-	$\upsilon_{\rm HT}{}^4$
5) Crec. anóx S _{N02} X _H - S _A	-1/Y _{H,NO2}	-	-	-	$\upsilon_{\rm NH4}{}^5$	28/48·(1- 1/Y _{H,N02})	-	-28/48·(1- 1/Y _{H,N02})	υ_{PO4}^5	υ _{CI} ⁵	-	-	-	-	-	$\upsilon_{\rm HT}{}^5$
6) Crec. anóx S _{N03} X _H - S _A	-1/Y _{H,NO3}	-	-	-	$\upsilon_{\rm NH4}{}^6$	-	28/80·(1- 1/Y _{Н,NO3})	-28/80·(1- 1/Y _{H,N03})	v_{P04}^{6}	υ _{CI} ⁶	-	-	-	-	-	$\upsilon_{\rm HT}{}^6$
7) Crec. aer. X _H - S _F	-	-1/Y _H	-	1-1/Y _H	$\upsilon_{\rm NH4}{}^7$	-	-	-	$\upsilon_{PO4}{}^7$	$\upsilon_{CI}{}^7$	-	-	-	-	-	$\upsilon_{HT}{}^7$
8) Crec. anóx S _{NO2} X _H - S _F	-	-1/Y _{H,NO2}	-	-	$\upsilon_{\rm NH4}{}^8$	28/48·(1- 1/Y _{H,NO2})	-	-28/48⋅(1- 1/Y _{H,N02})	$\upsilon_{PO4}{}^8$	$\upsilon_{CI}{}^8$	-	-	-	-	-	$\upsilon_{\text{HT}}{}^8$
9) Crec. anóx S _{N03} X _H - S _F	-	-1/Y _{H,NO3}	-	-	$\upsilon_{NH4}{}^9$	-	28/80·(1- 1/Y _{H,N03})	-28/80·(1- 1/Y _{H,N03})	$\upsilon_{P04}{}^9$	$\upsilon_{\text{CI}}{}^9$	-	-	-	-	-	$\upsilon_{\text{HT}}{}^9$
10) Lisis X _H	-	-	-	-	$\upsilon_{\rm NH4}{}^{10}$	-	-	-	$\upsilon_{P04}{}^{10}$	$\upsilon_{\text{CI}}{}^{10}$	-	-	-	-	-	$\upsilon_{\rm HT}{}^{10}$
11) Crec. X _{AMM}	-	-	-	1-48/14.1/У _{АММ}	-1/Ү _{АММ} - і _{NBM}	1/Үамм	-	-	υ_{P04}^{11}	$\upsilon_{\text{CI}}{}^{11}$	-	-	-	-	-	$\upsilon_{\text{HT}}^{11}$
12) Lisis X _{AMM}	-	-	-	-	$\upsilon_{\rm NH4}{}^{12}$	-	-	-	$\upsilon_{P04}{}^{12}$	$\upsilon_{\text{CI}}{}^{12}$	-	-	-	-	-	$\upsilon_{\rm HT}{}^{12}$
13) Crec. X _{NIT}	-	-	-	$1-16/14 \cdot 1/Y_{NIT}$	$\upsilon_{\rm NH4}{}^{13}$	-1/Y _{NIT}	1/Y _{NIT}	-	$\upsilon_{P04}{}^{13}$	$\upsilon_{\text{CI}}{}^{13}$	-	-	-	-	-	$\upsilon_{\text{HT}}{}^{13}$
14) Lisis X _{NIT}	-	-	-	-	$\upsilon_{\rm NH4}{}^{14}$	-	-	-	$\upsilon_{P04}{}^{14}$	$\upsilon_{\text{CI}}{}^{14}$	-	-	-	-	-	$\upsilon_{\rm HT}{}^{14}$
15) Acum. X _{PHA}	-1	-	-	-	$\upsilon_{\rm NH4}{}^{15}$	-	-	-	Y_{PO4}	$\upsilon_{\text{CI}}{}^{15}$	-	-	-	-	-	$\upsilon_{\rm HT}{}^{15}$
16) Crec. aer. X _{PAO}	-	-	-	1-1/Y _{PAO}	$\upsilon_{\rm NH4}{}^{16}$	-	-	-	$\upsilon_{P04}{}^{16}$	$\upsilon_{\text{CI}}{}^{16}$	-	-	-	-	-	$\upsilon_{\rm HT}{}^{16}$
17) Crec. anóx S _{NO2} X _{PAO}	-	-	-	-	$\upsilon_{\rm NH4}{}^{17}$	28/48·(1- 1/Y _{PAO,NO2})	-	-28/48·(1- 1/Y _{PAO,NO2})	$\upsilon_{P04}{}^{17}$	$\upsilon_{\text{CI}}{}^{17}$	-	-	-	-	-	$\upsilon_{\text{HT}}^{17}$
18) Crec. anóx S _{NO3} X _{PAO}	-	-	-	-	$\upsilon_{\rm NH4}{}^{18}$	-	28/80·(1- 1/Y _{PAO,NO3})	-28/80·(1- 1/Y _{PAO,NO3})	$\upsilon_{\text{PO4}}{}^{18}$	$\upsilon_{\text{CI}}{}^{18}$	-	-	-	-	-	$\upsilon_{\rm HT}{}^{18}$
19) Acum. aer. X _{PP}	-	-	-	-Y _{PHA}	$\upsilon_{\rm NH4}{}^{19}$	-	-	-	-1	$\upsilon_{\text{CI}}{}^{19}$	-	-	-	-	-	$\upsilon_{\rm HT}{}^{19}$
20) Acum. anóx S _{NO2} X _{PP}	-	-	-	-	$\upsilon_{\rm NH4}{}^{20}$	-28/48·Y _{PHA,NO2}	-	28/48·Y _{PHA,NO2}	-1	$\upsilon_{\text{CI}}{}^{20}$	-	-	-	-	-	$\upsilon_{\rm HT}{}^{20}$
21) Acum. anóx S _{NO3} X _{PP}	-	-	-	-	$\upsilon_{\rm NH4}{}^{21}$	-	-28/80·Y _{PHA,NO3}	-28/80·Y _{PHA,NO2}	-1	$\upsilon_{\text{CI}}{}^{21}$	-	-	-	-	-	$\upsilon_{\rm HT}{}^{21}$
22) Lisis X _{PAO}	-	-	-	-	$\upsilon_{\rm NH4}^{22}$	-	-	-	$\upsilon_{P04}{}^{22}$	$\upsilon_{\text{CI}}{}^{22}$	-	-	-	-	-	$\upsilon_{\rm HT}{}^{22}$
23) Lisis X _{PHA}	1	-	-	-	$\upsilon_{NH4}{}^{23}$	-	-	-	$\upsilon_{P04}{}^{23}$	$\upsilon_{\text{CI}}{}^{23}$	-	-	-	-	-	$\upsilon_{\rm HT}{}^{23}$
24) Lisis X _{PP}	-	-	-	-	υ_{NH4}^{24}	-	-	-	1	$\upsilon_{\text{CI}}{}^{24}$	-	-	-	-	-	$\upsilon_{HT}{}^{24}$

Tabla A1. Estequiometría de los componentes solubles

Componente i →	SA	$S_{\rm F}$	SI	S ₀₂	S _{NH4}	S _{NO2}	S _{NO3}	S _{N2}	S_{PO4}	S _{CI}	S _{S2-}	S _{S0}	S _{TS}	S _{S04}	S _{CH4}	S _{HT}
Proceso j ↓	mg DQO/l	mg DQO/l	mg DQO/l	mg O2/l	mg N/l	mg N/l	mg N/l	mg N/l	mg P/l	mmol C/l	mg S/l	mg S/l	mg S/l	mg S/l	mg DQO/l	mmol H+/l
25) Crec. X _{SOB} - S _{S2}	-	-	-	1-1/2·1/Y _{SOB,1}	$\upsilon_{NH4}{}^{25}$	-	-	-	$\upsilon_{P04}{}^{25}$	$\upsilon_{\text{CI}}{}^{25}$	-1/Y _{SOB,1}	1/Y _{SOB,1}	-	-	-	$\upsilon_{\rm HT}{}^{25}$
26) Crec. X _{SOB} - X _{SO}	-	-	-	$1-3/2 \cdot 1/Y_{SOB,2}$	$\upsilon_{NH4}{}^{26}$	-	-	-	$\upsilon_{PO4}{}^{26}$	$\upsilon_{\text{CI}}{}^{26}$	-	-1/Y _{SOB,2}	-	$1/Y_{SOB,2}$	-	$\upsilon_{HT}{}^{26}$
27) Crec. X _{SOB} - S _{TS}	-	-	-	1-1/Y _{SOB,3}	$\upsilon_{\rm NH4}{}^{27}$	-	-	-	$\upsilon_{PO4}{}^{27}$	$\upsilon_{\text{CI}}{}^{27}$	-	-	-1/Y _{SOB,3}	1/Y _{SOB,3}	-	$\upsilon_{\rm HT}{}^{27}$
28) Lisis X _{SOB}	-	-	-	-	$\upsilon_{NH4}{}^{28}$	-	-	-	$\upsilon_{PO4}{}^{28}$	$\upsilon_{\text{CI}}{}^{28}$	-	-	-	-	-	$\upsilon_{\rm HT}{}^{28}$
29) Lisis X _{S0}	-	-	-	-	$\upsilon_{\rm NH4}{}^{29}$	-	-	-	$\upsilon_{PO4}{}^{29}$	υci ²⁹	-	1	-	-	-	$\upsilon_{\rm HT}{}^{29}$
30) Crec. X _{AD} - S _{S2} - S _{N03}	-	-	-	-	$\upsilon_{\rm NH4}{}^{30}$	-	28/80·(1- 1/2·1/Y _{AD1,1})	-28/80·(1- 1/2·1/Y _{AD1,1})	$\upsilon_{PO4}{}^{30}$	$\upsilon_{CI}{}^{30}$	-1/Y _{AD1,1}	1/Y _{AD1,1}	-	-	-	$\upsilon_{\rm HT}{}^{30}$
31) Crec. X _{AD} - S _{S0} - S _{N03}	-	-	-	-	$\upsilon_{\rm NH4}{}^{31}$	-	28/80·(1- 3/2·1/Y _{AD1,2})	-28/80·(1- 3/2·1/Y _{AD1,2})	$\upsilon_{P04}{}^{31}$	$\upsilon_{\text{CI}}{}^{31}$	-	-1/Y _{AD1,2}	-	1/Y _{AD1,2}	-	$\upsilon_{\text{HT}}{}^{31}$
32) Crec. X _{AD} - S _{S2} - S _{NO2}	-	-	-	-	$\upsilon_{\rm NH4}{}^{32}$	28/48·(1- 1/2·1/Y _{AD1,3})	-	-28/48·(1- 1/2·1/Y _{AD1,3})	$\upsilon_{P04}{}^{32}$	$\upsilon_{\text{CI}}{}^{32}$	-1/Y _{AD1,3}	1/Y _{AD1,3}	-	-	-	$\upsilon_{\text{HT}}{}^{32}$
33) Crec. X _{AD} - S _{S0} - S _{N02}	-	-	-	-	$\upsilon_{\rm NH4}{}^{33}$	28/48·(1- 3/2·1/Y _{AD1,4})	-	-28/48·(1- 3/2·1/Y _{AD1,4})	$\upsilon_{P04}{}^{33}$	υ _{CI} ³³	-	-1/Y _{AD1,4}	-	1/Y _{AD1,4}	-	$\upsilon_{\text{HT}}{}^{33}$
34) Crec. X _{AD} - S _{TS} - S _{NO3}	-	-	-	-	$\upsilon_{\rm NH4}{}^{34}$	-14/16·(1- 1/Y _{AD2,1})	14/16·(1- 1/Y _{AD2,1})	-	$\upsilon_{P04}{}^{34}$	$\upsilon_{\text{CI}}{}^{34}$	-	-	-1/Y _{AD2,1}	1/Y _{AD2,1}	-	$\upsilon_{\text{HT}}{}^{34}$
35) Crec. X _{AD} - S _{TS} - S _{NO2}	-	-	-	-	$\upsilon_{\rm NH4}{}^{35}$	28/48·(1- 1/Y _{AD2,2})	-	-28/48·(1- 1/Y _{AD2,2})	$\upsilon_{PO4}{}^{35}$	$\upsilon_{\text{CI}}{}^{35}$	-	-	-1/Y _{AD2,2}	1/Y _{AD2,2}	-	$\upsilon_{\rm HT}{}^{35}$
36) Lisis X _{AD}	-	-	-	-	$\upsilon_{\rm NH4}{}^{36}$	-	-	-	$\upsilon_{PO4}{}^{36}$	υ _{CI} ³⁶	-	-	-	-	-	$\upsilon_{\rm HT}{}^{36}$
37) Crec. X _{DAMO-A}	-	-	-	-	$\upsilon_{\rm NH4}{}^{37}$	-14/16·(1- 1/Y _{дамо-а})	14/16·(1- 1/Y _{DAMO-A})	-	$\upsilon_{P04}{}^{37}$	$\upsilon_{\text{CI}}{}^{37}$	-	-	-	-	-1/Y _{DAMO-A}	$\upsilon_{\rm HT}{}^{37}$
38) Lisis X _{DAMO-A}	-	-	-	-	$\upsilon_{NH4}{}^{38}$	-	-	-	$\upsilon_{PO4}{}^{38}$	$\upsilon_{\text{CI}}{}^{38}$	-	-	-	-	-	$\upsilon_{\rm HT}{}^{38}$
39) Crec. Х _{ДАМО-В}	-	-	-	-	$\upsilon_{\rm NH4}{}^{39}$	28/48·(1- 1/Y _{DAMO-B})	-	-28/48·(1- 1/Y _{DAMO-B})	$\upsilon_{P04}{}^{39}$	υ _{CI} ³⁹	-	-	-	-	-1/Үдамо-в	$\upsilon_{\text{HT}}{}^{39}$
40) Lisis X _{DAMO-B}	-	-	-	-	$\upsilon_{\rm NH4}{}^{40}$	-	-	-	$\upsilon_{PO4}{}^{40}$	$\upsilon_{\text{CI}}{}^{40}$	-	-	-	-	-	$\upsilon_{\rm HT}{}^{40}$
41) Ox. química S _{S2}	-	-	-	-3/2	-	-	-	-	-	-	-1	-	1/2	1/2	-	$\upsilon_{\rm HT}{}^{41}$
42) Desabsorción de S ₀₂	-	-	-	-1	-	-	-	-	-	-	-	-	-	-	-	-
43) Desabsorción de S _[NH3]	-	-	-	-	-1	-	-	-	-	-	-	-	-	-	-	$\upsilon_{\rm HT}{}^{43}$
44) Desabsorción de S _{N2}	-	-	-	-	-	-	-	-1	-	-	-	-	-	-	-	-
45) Desabsorción de S _[CO2]	-	-	-	-	-	-	-	-	-	-1	-	-	-	-	-	$\upsilon_{HT}{}^{45}$
46) Desabsorción de S _[H2S]	-	-	-	-	-	-	-	-	-	-	-1	-	-	-	-	$\upsilon_{\text{HT}}^{46}$
47) Desabsorción de S _{CH4}	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-1	-

Tabla A1 (continuación). Estequiometría de los componentes solubles

Componente i →	Xs	XI	X _H	Хамм	X _{NIT}	X _{PP}	X _{PHA}	X _{PAO}	X _{S0}	X _{SOB}	X _{AD}	X _{DAMO-A}	Хдамо-в	X _{SST}
Proceso j ↓	mg DQO/l	mg DQO/l	mg DQO/l	mg DQ0/l	mg DQ0/l	mg P/l	mg DQ0/l	mg DQO/l	mg S/l	mg DQO/l	mg DQO/l	mg DQO/l	mg DQO/l	mg SST/l
1) Hidrólisis aerobia	-1	-	-	-	-	-	-	-	-	-	-	-	-	υ_{SST}^1
2) Hidrólisis anóxica	-1	-	-	-	-	-	-	-	-	-	-	-	-	υ_{SST}^2
3) Hidrólisis anaerobia	-1	-	-	-	-	-	-	-	-	-	-	-	-	$\upsilon_{SST}{}^3$
4) Crec. aer. X _H - S _A	-	-	1	-	-	-	-	-	-	-	-	-	-	υ_{SST}^4
5) Crec. anóx S _{NO2} X _H - S _A	-	-	1	-	-	-	-	-	-	-	-	-	-	$\upsilon_{SST}{}^5$
6) Crec. anóx S _{NO3} X _H - S _A	-	-	1	-	-	-	-	-	-	-	-	-	-	υ_{SST}^{6}
7) Crec. aer. X _H - S _F	-	-	1	-	-	-	-	-	-	-	-	-	-	υ_{SST}^7
8) Crec. anóx S _{NO2} X _H - S _F	-	-	1	-	-	-	-	-	-	-	-	-	-	USST ⁸
9) Crec. anóx S _{NO3} X _H - S _F	-	-	1	-	-	-	-	-	-	-	-	-	-	υ_{SST}^9
10) Lisis X _H	1-f _{XI}	\mathbf{f}_{XI}	-1	-	-	-	-	-	-	-	-	-	-	$\upsilon_{\text{SST}}^{10}$
11) Crec. X _{AMM}	-	-	-	1	-	-	-	-	-	-	-	-	-	υ_{SST}^{11}
12) Lisis X _{AMM}	1-f _{XI}	f _{XI}	-	-1	-	-	-	-	-	-	-	-	-	υ_{SST}^{12}
13) Crec. X _{NIT}	-	-	-	-	1	-	-	-	-	-	-	-	-	$\upsilon_{\text{SST}}^{13}$
14) Lisis X _{NIT}	1-f _{XI}	f _{XI}	-	-	-1	-	-	-	-	-	-	-	-	υ_{SST}^{14}
15) Acum. X _{PHA}	-	-	-	-	-	-Y _{P04}	1	-	-	-	-	-	-	υ_{SST}^{15}
16) Crec. aer. X _{PAO}	-	-	-	-	-	-	-1/Y _{PAO}	1	-	-	-	-	-	USST ¹⁶
17) Crec. anóx S _{NO2} X _{PAO}	-	-	-	-	-	-	-1/Y _{PA0,N02}	1	-	-	-	-	-	υ_{SST}^{17}
18) Crec. anóx S _{NO3} X _{PAO}	-	-	-	-	-	-	-1/Y _{PA0,N03}	1	-	-	-	-	-	υ_{SST}^{18}
19) Acum. aer. X _{PP}	-	-	-	-	-	1	-Y _{PHA}	-	-	-	-	-	-	USST ¹⁹
20) Acum. anóx S _{NO2} X _{PP}	-	-	-	-	-	1	-Y _{PHA,NO2}	-	-	-	-	-	-	υ_{SST}^{20}
21) Acum. anóx S _{NO3} X _{PP}	-	-	-	-	-	1	-Y _{PHA,NO3}	-	-	-	-	-	-	υ_{SST}^{21}
22) Lisis X _{PAO}	1-f _{XI}	f _{XI}	-	-	-	-	-	-1	-	-	-	-	-	υ_{SST}^{22}
23) Lisis X _{PHA}	-	-	-	-	-	-	-1	-	-	-	-	-	-	υ_{SST}^{23}
24) Lisis X _{PP}	-	-	-	-	-	-1	-	-	-	-	-	-	-	υ_{SST}^{24}

Tabla A2. Estequiometría de los componentes particulados

Componente i →	Xs	XI	X _H	X _{AMM}	X _{NIT}	X_{PP}	X _{PHA}	X _{PAO}	X _{S0}	X _{SOB}	X _{AD}	X _{DAMO-A}	Х _{ДАМО-В}	X _{SST}
	ma DOO/l	ma D00/l	ma D00/l	ma D00/l	ma D00/l	ma P/l	ma D00/l	ma D00/l	ma S/I	ma DOO/l	ma D00/l	ma D00/l	ma D00/l	ma SST/l
Proceso j↓														
25) Crec. X _{SOB} - S _{S2}	-	-	-	-	-	-	-	-	-	1	-	-	-	υ_{SST}^{25}
26) Crec. X _{SOB} - X _{SO}	-	-	-	-	-	-	-	-	-	1	-	-	-	υ_{SST}^{26}
27) Crec. X _{SOB} - S _{TS}	-	-	-	-	-	-	-	-	-	1	-	-	-	υ_{SST}^{27}
28) Lisis X _{SOB}	1-f _{XI}	f _{XI}	-	-	-	-	-	-	-	-1	-	-	-	υ_{SST}^{28}
29) Lisis X _{S0}	-	-	-	-	-	-	-	-	-1	-	-	-	-	υ_{SST}^{29}
30) Crec. X _{AD} - S _{S2} - S _{NO3}	-	-	-	-	-	-	-	-	-	-	1	-	-	υ_{SST}^{30}
31) Crec. X _{AD} - S _{S0} - S _{N03}	-	-	-	-	-	-	-	-	-	-	1	-	-	υ_{SST}^{31}
32) Crec. X _{AD} - S _{S2} - S _{NO2}	-	-	-	-	-	-	-	-	-	-	1	-	-	υ_{SST}^{32}
33) Crec. X _{AD} - S _{S0} - S _{N02}	-	-	-	-	-	I	-	-	-	-	1	-	-	υ_{SST}^{33}
34) Crec. X _{AD} - S _{TS} - S _{NO3}	-	-	-	-	-	I	-	-	-	-	1	-	-	υ_{SST}^{34}
35) Crec. X _{AD} - S _{TS} - S _{NO2}	-	-	-	-	-	-	-	-	-	-	1	-	-	υ_{SST}^{35}
36) Lisis X _{AD}	1-f _{XI}	f _{XI}	-	-	-	-	-	-	-	-	-1	-	-	υ_{SST}^{36}
37) Crec. X _{DAMO-A}	-	-	-	-	-	I	-	-	-	-	-	1	-	υ_{SST}^{37}
38) Lisis X _{DAMO-A}	1-f _{XI}	\mathbf{f}_{XI}	-	-	-	-	-	-	-	-	-	-1	-	Usst ³⁸
39) Crec. Х _{DAMO-B}	-	-	-	-	-	I	-	-	-	-	-	-	1	Usst ³⁹
40) Lisis X _{DAMO-B}	1-f _{XI}	\mathbf{f}_{XI}	-	-	-	-	-	-	-	-	-	-	-1	υ_{SST}^{40}
41) Ox. química S _{S2}	-	-	-	-	-	I	-	-	-	-	-	-	-	-
42) Desabsorción de S ₀₂	-	-	-	-	-	-	-	-	-	-	-	-	-	-
43) Desabsorción de S _[NH3]	-	-	-	-	-	-	-	-	-	-	-	-	-	-
44) Desabsorción de S _{N2}	-	-	-	-	-	-	-	-	-	-	-	-	-	-
45) Desabsorción de S _[C02]	-	-	-	-	-	-	-	-	-	-	-	-	-	-
46) Desabsorción de S _[H2S]	-	-	-	-	-	-	-	-	-	-	-	-	-	-
47) Desabsorción de S _{CH4}	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Tabla A2 (continuación). Estequiometría de los componentes particulados

Componente i →		SA	S _F	SI	S ₀₂	$S_{\rm NH4}$	S _{NO2}	S _{NO3}	S _{N2}	S_{PO4}	S _{CI}	S _{S2-}	S _{S0}	S _{TS}	S _{S04}	S _{CH4}	Sht
		mg DQO/l	mg DQO/l	mg DQ0/l	mg O₂/l	mg N/l	mg N/l	mg N/l	mg N/l	mg P/l	mmol C/l	mg S/l	mg S/l	mg S/l	mg S/l	mg DQ0/l	mmol H⁺/l
	DQO	1	1	1	-1	0	-48/14	-64/14	-48/28	0	0	0	-1/2	-1	-2	1	0
	Ν	0	i _{NSF}	i _{NSI}	0	1	1	1	1	0	0	0	0	0	0	0	0
Р	0	i _{PSF}	i _{PSI}	0	0	0	0	0	1	0	0	0	0	0	0	0	
Materiales a	С	2/64	i _{CSF}	icsi	0	0	0	0	0	0	1	0	0	0	0	1/64	0
conservar	S	0	0	0	0	0	0	0	0	0	0	1	1	1	1	0	0
	SST	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	H+	1/64	0	0	0	-1/14	1/14	1/14	0	3/31	2	2/32	0	2/64	2/32	0	-1

Tabla A3. Matriz de composición de los componentes solubles

Tabla A4. Matriz de composición de los componentes particulados

Componente i →		Xs	XI	X _H	Хамм	X _{NIT}	X_{PP}	X_{PHA}	X _{PAO}	X_{S0}	X _{SOB}	X_{AD}	X _{DAMO-A}	Хдамо-в	X _{SST}
		mg DQ0/l	mg DQ0/l	mg DQO/l	mg DQ0/l	mg DQ0/l	mg P/l	mg DQO/l	mg DQ0/l	mg S/l	mg DQ0/l	mg DQO/l	mg DQO/l	mg DQ0/l	mg SST/l
	DQO	1	1	1	1	1	0	1	1	-1/2	1	1	1	1	0
	Ν	i _{NXS}	i _{NXI}	i _{NBM}	i _{NBM}	i _{NBM}	0	0	i _{NBM}	0	i _{NBM}	i _{NBM}	i _{NBM}	i _{NBM}	0
Р	Р	i _{PXS}	i _{PXI}	ірвм	і _{РВМ}	i _{PBM}	1	0	і _{РВМ}	0	ірвм	ірвм	ірвм	ірвм	0
Materiales a	С	i _{CXS}	i _{CXI}	i _{CBM}	і _{свм}	і _{СВМ}	0	1/36	i _{свм}	0	і _{свм}	і _{свм}	i _{CBM}	і _{свм}	0
conservar	S	0	0	0	0	0	0	0	0	1	0	0	0	0	0
	SST	i _{sstxs}	i _{sstxi}	İ SSTBM	İ SSTBM	i sstbм	3.32	0.6	i sstвм	1	İ SSTBM	İ SSTBM	İ SSTBM	i sstвм	-1
	H+	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Procesos	Expresiones cinéticas
1) Hidrólisis aerobia	$\frac{dX_{S}}{dt} = k_{h} \cdot M_{O2} \cdot \frac{X_{S}/X_{H}}{k_{XS} + X_{S}/X_{H}} \cdot X_{H} \cdot I_{pH1}$
2) Hidrólisis anóxica	$\frac{dX_{S}}{dt} = k_{h} \cdot I_{O2} \cdot M_{NO3} \cdot \frac{X_{S}/X_{H}}{k_{XS} + X_{S}/X_{H}} \cdot X_{H} \cdot \eta_{hid-anox} \cdot I_{pH1}$
3) Hidrólisis anaerobia	$\frac{dX_S}{dt} = k_h \cdot I_{O2} \cdot I_{NO3} \cdot \frac{X_S / X_H}{k_{XS} + X_S / X_H} \cdot X_H \cdot \eta_{hid-ana} \cdot I_{pH1}$
4) Crecimiento aerobio X _H - S _A	$\frac{dX_{H}}{dt} = \mu_{h} \cdot M_{O2} \cdot M_{SA} \cdot \frac{S_{A}}{S_{A} + S_{F}} \cdot M_{NH4} \cdot M_{PO4} \cdot X_{H} \cdot I_{pH1}$
5) Crecimiento anóxico - S _{NO2} X _H - S _A	$\frac{dX_{H}}{dt} = \mu_{h} \cdot I_{O2} \cdot M_{NO2} \cdot \frac{S_{NO2}}{S_{NO2} + S_{NO3}} \cdot M_{SA} \cdot \frac{S_{A}}{S_{A} + S_{F}} \cdot M_{NH4} \cdot M_{PO4} \cdot X_{H} \cdot \eta_{NO2-H} \cdot I_{pH1}$
6) Crecimiento anóxico - S _{NO3} X _H - S _A	$\frac{dX_{H}}{dt} = \mu_{h} \cdot I_{O2} \cdot M_{NO3} \cdot \frac{S_{NO3}}{S_{NO2} + S_{NO3}} \cdot M_{SA} \cdot \frac{S_{A}}{S_{A} + S_{F}} \cdot M_{NH4} \cdot M_{PO4} \cdot X_{H} \cdot \eta_{NO3-H} \cdot I_{pH1}$
7) Crecimiento aerobio X _H - S _F	$\frac{dX_{H}}{dt} = \mu_{h} \cdot M_{O2} \cdot M_{SF} \cdot \frac{S_{F}}{S_{A} + S_{F}} \cdot M_{NH4} \cdot M_{PO4} \cdot X_{H} \cdot I_{pH1}$
8) Crecimiento anóxico - S _{NO2} X _H – S _F	$\frac{dX_{H}}{dt} = \mu_{h} \cdot I_{O2} \cdot M_{NO2} \cdot \frac{S_{NO2}}{S_{NO2} + S_{NO3}} \cdot M_{SF} \cdot \frac{S_{F}}{S_{A} + S_{F}} \cdot M_{NH4} \cdot M_{PO4} \cdot X_{H} \cdot \eta_{NO2-H} \cdot I_{pH1}$
9) Crecimiento anóxico - S _{NO3} X _H – S _F	$\frac{dX_{H}}{dt} = \mu_{h} \cdot I_{O2} \cdot M_{NO3} \cdot \frac{S_{NO3}}{S_{NO2} + S_{NO3}} \cdot M_{SF} \cdot \frac{S_{F}}{S_{A} + S_{F}} \cdot M_{NH4} \cdot M_{PO4} \cdot X_{H} \cdot \eta_{NO3-H} \cdot I_{pH1}$
10) Lisis X _H	$\frac{\mathrm{dX}_{\mathrm{H}}}{\mathrm{dt}} = \mathrm{b}_{\mathrm{h}} \cdot \mathrm{X}_{\mathrm{H}}$

Tabla A5 (continuación). Expresiones cinéticas

Procesos	Expresiones cinéticas
11) Crecimiento X _{AMM}	$\frac{dX_{AMM}}{dt} = \mu_{AMM} \cdot M_{O2} \cdot M_{CI} \cdot M_{NH4} \cdot M_{PO4} \cdot X_{AMM} \cdot I_{[HNO_2]} \cdot I_{pH1}$
12) Lisis X _{AMM}	$\frac{\mathrm{d} \mathrm{X}_{\mathrm{AMM}}}{\mathrm{d} \mathrm{t}} = \mathrm{b}_{\mathrm{AMM}} \cdot \mathrm{X}_{\mathrm{AMM}}$
13) Crecimiento X _{NIT}	$\frac{dX_{NIT}}{dt} = \mu_{NIT} \cdot M_{O2} \cdot M_{CI} \cdot M_{NO2} \cdot M_{NH4} \cdot M_{PO4} \cdot X_{NIT} \cdot I_{[HNO_2]} \cdot I_{pH2}$
14) Lisis X _{NIT}	$\frac{dX_{NIT}}{dt} = b_{NIT} \cdot X_{NIT}$
15) Acumulación X _{PHA}	$\frac{dX_{PHA}}{dt} = q_{PHA} \cdot M_{SA} \cdot \frac{X_{PP}/X_{PAO}}{k_{PP} + X_{PP}/X_{PAO}} \cdot X_{PAO} \cdot I_{pH1}$
16) Crecimiento aerobio X _{PAO}	$\frac{dX_{PAO}}{dt} = \mu_{PAO} \cdot M_{O2} \cdot \frac{X_{PHA}/X_{PAO}}{k_{PHA} + X_{PHA}/X_{PAO}} \cdot M_{NH4} \cdot M_{PO4} \cdot X_{PAO} \cdot I_{pH1}$
17) Crecimiento anóxico - S _{NO2} X _{PAO}	$\frac{\mathrm{d}X_{PAO}}{\mathrm{d}t} = \mu_{PAO} \cdot I_{O2} \cdot M_{NO2} \cdot \frac{S_{NO2}}{S_{NO2} + S_{NO3}} \cdot \frac{X_{PHA}/X_{PAO}}{k_{PHA} + X_{PHA}/X_{PAO}} \cdot M_{NH4} \cdot M_{PO4} \cdot X_{PAO} \cdot \eta_{NO2-PAO} \cdot I_{PH1}$
18) Crecimiento anóxico - S _{NO3} X _{PAO}	$\frac{\mathrm{d}X_{PAO}}{\mathrm{d}t} = \mu_{PAO} \cdot I_{O2} \cdot M_{NO3} \cdot \frac{S_{NO3}}{S_{NO2} + S_{NO3}} \cdot \frac{X_{PHA}/X_{PAO}}{k_{PHA} + X_{PHA}/X_{PAO}} \cdot M_{NH4} \cdot M_{PO4} \cdot X_{PAO} \cdot \eta_{NO3-PAO} \cdot I_{PH1}$
19) Acumulación aerobia X _{PP}	$\frac{\mathrm{dX}_{PP}}{\mathrm{dt}} = q_{PP} \cdot M_{O2} \cdot \frac{X_{PHA}/X_{PAO}}{k_{PHAPP} + X_{PHA}/X_{PAO}} \cdot \frac{S_{PO4}}{k_{PS} + S_{PO4}} \cdot \frac{k_{maxPP} - X_{PP}/X_{PAO}}{k_{IPP} + k_{maxPP} - X_{PP}/X_{PAO}} \cdot X_{PAO} \cdot I_{pH1}$
20) Acumulación anóxica - S _{NO2} X _{PP}	$\frac{dX_{PP}}{dt} = q_{PP} \cdot I_{O2} \cdot M_{NO2} \cdot \frac{S_{NO2}}{S_{NO2} + S_{NO3}} \cdot \frac{X_{PHA}/X_{PAO}}{k_{PHAPP} + X_{PHA}/X_{PAO}} \cdot \frac{S_{PO4}}{k_{PS} + S_{PO4}} \cdot \frac{k_{maxPP} - X_{PP}/X_{PAO}}{k_{IPP} + k_{maxPP} - X_{PP}/X_{PAO}} \cdot X_{PAO} \cdot \eta_{NO2-PAO} \cdot I_{PH1}$

Procesos	Expresiones cinéticas
21) Acumulación anóxica - S _{NO3} X _{PP}	$\frac{dX_{PP}}{dt} = q_{PP} \cdot I_{O2} \cdot M_{NO3} \cdot \frac{S_{NO3}}{S_{NO2} + S_{NO3}} \cdot \frac{X_{PHA}/X_{PAO}}{k_{PHAPP} + X_{PHA}/X_{PAO}} \cdot \frac{S_{PO4}}{k_{PS} + S_{PO4}} \cdot \frac{k_{maxPP} - X_{PP}/X_{PAO}}{k_{IPP} + k_{maxPP} - X_{PP}/X_{PAO}} \cdot X_{PAO} \cdot \eta_{NO3-PAO} \cdot I_{PH1}$
22) Lisis X _{PAO}	$\frac{\mathrm{dX}_{\mathrm{PAO}}}{\mathrm{dt}} = \mathrm{b}_{\mathrm{PAO}} \cdot \mathrm{X}_{\mathrm{PAO}}$
23) Lisis X _{PHA}	$\frac{\mathrm{dX}_{\mathrm{PHA}}}{\mathrm{dt}} = \mathbf{b}_{\mathrm{PHA}} \cdot \mathbf{X}_{\mathrm{PHA}}$
24) Lisis X _{PP}	$\frac{\mathrm{dX}_{\mathrm{PP}}}{\mathrm{dt}} = \mathbf{b}_{\mathrm{PP}} \cdot \mathbf{X}_{\mathrm{PP}}$
25) Crecimiento X_{SOB} - S_{S2}	$\frac{\mathrm{dX}_{\mathrm{SOB}}}{\mathrm{dt}} = \mu_{\mathrm{SOB}} \cdot \mathrm{M}_{\mathrm{O2}} \cdot \mathrm{M}_{\mathrm{S2}} \cdot \left(1 - \left(\frac{\mathrm{X}_{\mathrm{S0}}/\mathrm{X}_{\mathrm{SOB}}}{[\mathrm{X}_{\mathrm{S0}}/\mathrm{X}_{\mathrm{SOB}}]_{\mathrm{max}}}\right)^{\alpha}\right) \cdot \mathrm{M}_{\mathrm{CI}} \cdot \mathrm{M}_{\mathrm{NH4}} \cdot \mathrm{M}_{\mathrm{PO4}} \cdot \mathrm{X}_{\mathrm{SOB}} \cdot \mathrm{I}_{[\mathrm{H}_{2}\mathrm{S}]} \cdot \mathrm{I}_{\mathrm{pH1}}$
26) Crecimiento X_{SOB} - S_{SO}	$\frac{dX_{SOB}}{dt} = \mu_{SOB} \cdot M_{O2} \cdot I_{S2} \cdot \frac{X_{S0}/X_{SOB}}{k_{S0} + X_{S0}/X_{SOB}} \cdot \frac{X_{S0}/X_{SOB}}{X_{S0}/X_{SOB} + S_{TS}} \cdot M_{CI} \cdot M_{NH4} \cdot M_{PO4} \cdot X_{SOB} \cdot \eta_{S0} \cdot I_{[H_2S]} \cdot I_{pH1}$
27) Crecimiento X _{SOB} - S _{TS}	$\frac{dX_{SOB}}{dt} = \mu_{SOB} \cdot M_{O2} \cdot I_{S2} \cdot M_{TS} \cdot \frac{S_{TS}}{X_{SO}/X_{SOB} + S_{TS}} \cdot M_{CI} \cdot M_{NH4} \cdot M_{PO4} \cdot X_{SOB} \cdot \eta_{TS} \cdot I_{[H_2S]} \cdot I_{pH1}$
28) Lisis X _{SOB}	$\frac{\mathrm{dX}_{\mathrm{SOB}}}{\mathrm{dt}} = \mathrm{b}_{\mathrm{SOB}} \cdot \mathrm{X}_{\mathrm{SOB}}$
29) Lisis X _{S0}	$\frac{\mathrm{dX}_{\mathrm{S0}}}{\mathrm{dt}} = \mathbf{b}_{\mathrm{S0}} \cdot \mathbf{X}_{\mathrm{S0}}$
30) Crecimiento X _{AD} - S _{S2} - S _{N03}	$\frac{dX_{AD}}{dt} = \mu_{AD} \cdot \eta_{AD1,1} \cdot I_{O2} \cdot \frac{S_{NO3}}{k_{NO3,1} + S_{NO3}} \cdot \frac{S_{NO3}}{S_{NO3} + S_{NO2}} \cdot M_{S2} \cdot M_{CI} \cdot M_{NH4} \cdot M_{PO4} \cdot X_{AD} \cdot I_{[HNO_2]} \cdot I_{[H_2S]} \cdot I_{pH1}$

Procesos	Expresiones cinéticas
31) Crecimiento X _{AD} - S _{S0} - S _{N03}	$\frac{dX_{AD}}{dt} = \mu_{AD} \cdot \eta_{AD1,2} \cdot I_{O2} \cdot \frac{S_{NO3}}{k_{NO3,1} + S_{NO3}} \cdot \frac{S_{NO3}}{S_{NO3} + S_{NO2}} \cdot I_{S2} \cdot M_{S0} \cdot \frac{S_{S0}}{S_{S0} + S_{TS}} \cdot M_{CI} \cdot M_{NH4} \cdot M_{PO4} \cdot X_{AD} \cdot I_{[HNO_2]} \cdot I_{[H_2S]} \cdot I_{pH1}$
32) Crecimiento X _{AD} - S _{S2} - S _{NO2}	$\frac{dX_{AD}}{dt} = \mu_{AD} \cdot \eta_{AD1,3} \cdot I_{O2} \cdot \frac{S_{NO2}}{k_{NO2,1} + S_{NO2}} \cdot \frac{S_{NO2}}{S_{NO3} + S_{NO2}} \cdot M_{S2} \cdot M_{CI} \cdot M_{NH4} \cdot M_{PO4} \cdot X_{AD} \cdot I_{[HNO_2]} \cdot I_{[H_2S]} \cdot I_{pH1}$
33) Crecimiento X _{AD} - S _{S0} - S _{NO2}	$\frac{dX_{AD}}{dt} = \mu_{AD} \cdot \eta_{AD1,4} \cdot I_{02} \cdot \frac{S_{N02}}{k_{N02,1} + S_{N02}} \cdot \frac{S_{N02}}{S_{N03} + S_{N02}} \cdot I_{S2} \cdot M_{S0} \cdot \frac{S_{S0}}{S_{S0} + S_{TS}} \cdot M_{CI} \cdot M_{NH4} \cdot M_{PO4} \cdot X_{AD} \cdot I_{[HNO_2]} \cdot I_{[H_2S]} \cdot I_{pH1}$
34) Crecimiento X _{AD} - S _{TS} - S _{NO3}	$\frac{dX_{AD}}{dt} = \mu_{AD} \cdot \eta_{AD2,1} \cdot I_{O2} \cdot \frac{S_{NO3}}{k_{NO3,2} + S_{NO3}} \cdot \frac{S_{NO3}}{S_{NO3} + S_{NO2}} \cdot I_{S2} \cdot M_{TS} \cdot \frac{S_{TS}}{S_{S0} + S_{TS}} \cdot M_{CI} \cdot M_{NH4} \cdot M_{PO4} \cdot X_{AD} \cdot I_{[HNO_2]} \cdot I_{[H_2S]} \cdot I_{pH1}$
35) Crecimiento X _{AD} - S _{TS} - S _{NO2}	$\frac{dX_{AD}}{dt} = \mu_{AD} \cdot \eta_{AD2,2} \cdot I_{O2} \cdot \frac{S_{NO2}}{k_{NO2,2} + S_{NO2}} \cdot \frac{S_{NO2}}{S_{NO3} + S_{NO2}} \cdot I_{S2} \cdot M_{TS} \cdot \frac{S_{TS}}{S_{S0} + S_{TS}} \cdot M_{CI} \cdot M_{NH4} \cdot M_{PO4} \cdot X_{AD} \cdot I_{[HNO_2]} \cdot I_{[H_2S]} \cdot I_{pH1}$
36) Lisis X _{AD}	$\frac{\mathrm{dX}_{\mathrm{AD}}}{\mathrm{dt}} = \mathrm{b}_{\mathrm{AD}} \cdot \mathrm{X}_{\mathrm{AD}}$
37) Crecimiento X _{DAMO-A}	$\frac{dX_{DAMO-A}}{dt} = \mu_{DAMO-A} \cdot I_{O2} \cdot M_{NO3} \cdot M_{CH4} \cdot M_{NH4} \cdot M_{PO4} \cdot X_{DAMO-A} \cdot I_{[HNO_2]} \cdot I_{pH1}$
38) Lisis X _{DAMO-A}	$\frac{dX_{DAMO-A}}{dt} = b_{DAMO-A} \cdot X_{DAMO-A}$
39) Crecimiento X _{DAMO-B}	$\frac{dX_{DAMO-B}}{dt} = \mu_{DAMO-B} \cdot I_{O2} \cdot M_{NO2} \cdot M_{CH4} \cdot M_{NH4} \cdot M_{PO4} \cdot X_{DAMO-B} \cdot I_{[HNO_2]} \cdot I_{pH1}$
40) Lisis X _{DAMO-B}	$\frac{\mathrm{dX}_{\mathrm{DAMO-B}}}{\mathrm{dt}} = \mathbf{b}_{\mathrm{DAMO-B}} \cdot \mathbf{X}_{\mathrm{DAMO-B}}$

Procesos	Expresiones cinéticas
41) Ox. química S _{S2}	$\frac{dS_{S2}}{dt} = \frac{k_{H_2Sc} + k_{HS}^{-}c \cdot K_{a1} \cdot 10^{pH}}{1 + K_{a1} \cdot 10^{pH}} \cdot \theta_{ox}^{T-20} \cdot S_{S2}^{mc} \cdot S_{O2}^{nc}$
42) Desabsorción de S ₀₂	$\frac{dS_{02}}{dt} = K_{La,02} \cdot (S_{02} - S_{02}^*)$
43) Desabsorción de S _[NH3]	$\frac{\mathrm{dS}_{[\mathrm{NH3}]}}{\mathrm{dt}} = \mathrm{K}_{\mathrm{La,NH3}} \cdot \left(\mathrm{S}_{[\mathrm{NH3}]} - \mathrm{S}_{[\mathrm{NH3}]}^*\right)$
44) Desabsorción de S _{N2}	$\frac{\mathrm{dS}_{\mathrm{N2}}}{\mathrm{dt}} = \mathrm{K}_{\mathrm{La},\mathrm{N2}} \cdot (\mathrm{S}_{\mathrm{N2}} - \mathrm{S}_{\mathrm{N2}}^{*})$
45) Desabsorción de S _[C02]	$\frac{\mathrm{dS}_{[\mathrm{CO2}]}}{\mathrm{dt}} = \mathrm{K}_{\mathrm{La},\mathrm{CO2}} \cdot \left(\mathrm{S}_{[\mathrm{CO2}]} - \mathrm{S}_{[\mathrm{CO2}]}^*\right)$
46) Desabsorción de S _[H2S]	$\frac{\mathrm{dS}_{[\mathrm{H2S}]}}{\mathrm{dt}} = \mathrm{K}_{\mathrm{La},\mathrm{H2S}} \cdot \left(\mathrm{S}_{[\mathrm{H2S}]} - \mathrm{S}^{*}_{[\mathrm{H2S}]} \right)$
47) Desabsorción de S _{CH4}	$\frac{\mathrm{dS}_{\mathrm{CH4}}}{\mathrm{dt}} = \mathrm{K}_{\mathrm{La,CH4}} \cdot (\mathrm{S}_{\mathrm{CH4}} - \mathrm{S}_{\mathrm{CH4}}^{*})$

Tabla A5 (continuación). Expresiones cinéticas

ANEXO B ANÁLISIS DE MONTE-CARLO

Figura B1. Análisis de Monte-Carlo del modelo de los microorganismos sulfuro-oxidantes

Figura B2. Análisis de Monte-Carlo del modelo de los microorganismos autótrofos desnitrificantes para el ensayo nº1

Figura B3. Análisis de Monte-Carlo del modelo de los microorganismos autótrofos desnitrificantes para el ensayo nº2

Figura B4. Análisis de Monte-Carlo del modelo de los microorganismos autótrofos desnitrificantes para el ensayo nº3