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Abstract

This thesis is focused on the design and implementation of binary low-density
parity-check (LDPC) code decoders for high-speed modern communication
systems. The basic of LDPC codes and the performance and bottlenecks,
in terms of complexity and hardware efficiency, of the main soft-decision and
hard-decision decoding algorithms (such as Min-Sum, Optimized 2-bit Min-Sum
and Reliability-based iterative Majority-Logic) are analyzed. The complexity
and performance of those algorithms are improved to allow efficient hardware
architectures.

A new decoding algorithm called One-Minimum Min-Sum is proposed. It reduces
considerably the complexity of the check node update equations of the Min-Sum
algorithm. The second minimum is estimated from the first minimum value
by a means of a linear approximation that allows a dynamic adjustment. The
Optimized 2-bit Min-Sum algorithm is modified to initialize it with the complete
LLR values and to introduce the extrinsic information in the messages sent from
the variable nodes. Its variable node equation is reformulated to reduce its
complexity. Both algorithms were tested for the (2048,1723) RS-based LDPC code
and (16129,15372) LDPC code using an FPGA-based hardware emulator. They
exhibit BER performance very close to Min-Sum algorithm and do not introduce
early error-floor.

In order to show the hardware advantages of the proposed algorithms, hardware
decoders were implemented in a 90 nm CMOS process and FPGA devices based
on two types of architectures: full-parallel and partial-parallel one with horizontal
layered schedule. The results show that the decoders are more area-time efficient
than other published decoders and that the low-complexity of the Modified
Optimized 2-bit Min-Sum allows the implementation of 10 Gbps decoders in
current FPGA devices.

Finally, a new hard-decision decoding algorithm, the Historical-Extrinsic
Reliability-Based Iterative Decoder, is presented. This algorithm introduces
the new idea of considering hard-decision votes as soft-decision to compute the
extrinsic information of previous iterations. It is suitable for high-rate codes
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and improves the BER performance of the previous RBI-MLGD algorithms, with
similar complexity.
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Resumen

Esta tesis se ha centrado en el diseño e implementación de decodificadores binarios
basados en códigos de comprobación de paridad de baja densidad (LDPC) válidos
para los sistemas de comunicación modernos de alta velocidad. Los conceptos
básicos de códigos LDPC, sus prestaciones y cuellos de botella, en términos de
complejidad y eficiencia hardware, fueron analizados para los principales algoritmos
de decisión soft y decisión hard (como Min-Sum, Optimized 2-bit Min-Sum y
Reliability-based iterative Majority-Logic). La complejidad y prestaciones de estos
algoritmos se han mejorado para conseguir arquitecturas hardware eficientes.

Se ha propuesto un nuevo algoritmo de decodificación llamado One-Minimum
Min-Sum. Éste reduce considerablemente la complejidad de las ecuaciones de
actualización del nodo de comprobación del algoritmo Min-Sum. El segundo
mı́nimo se ha estimado a partir del valor del primer mı́nimo por medio de una
aproximación lineal, la cuál permite un ajuste dinámico. El algoritmo Optimized
2-bit Min-Sum se ha modificado para ser inicializado con los valores LLR e
introducir la información extŕınseca en los mensajes enviados desde los nodos
variables. La ecuación del nodo variable de este algoritmo ha sido reformulada
para reducir su complejidad. Ambos algoritmos fueron probados para el código
(2048,1723) RS-based LDPC y para el código (16129,15372) LDPC utilizando un
emulador hardware implementado en un dispositivo FPGA. Éstos han alcanzado
unas prestaciones de BER muy cercanas a las del algoritmo Min-Sum evitando,
además, la aparición temprana del fenómeno denominado suelo del error.

Con el objetivo de mostrar las ventajas hardware de los algoritmos propuestos, los
decodificadores se implementaron en hardware utilizando tecnoloǵıa CMOS de 90
nm y en dispositivos FPGA basados en dos tipos de arquitecturas: completamente
paralela y parcialmente paralela utilizando el método de actualización por
capas horizontales. Los resultados muestran que los decodificadores propuestos
e implementados son más eficientes en área-tiempo que otros decodificadores
publicados y que la baja complejidad del algoritmo Modified Optimized 2-bit
Min-Sum permite la implementación de decodificadores en los dispositivos FPGA
actuales consiguiendo una tasa de 10 Gbps.
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Finalmente, se ha presentado un nuevo algoritmo de decodificación de decisión
hard, el Historical-Extrinsic Reliability-Based Iterative Decoder. Este algoritmo
introduce la nueva idea de considerar los votos de decisión hard como decisión soft
para calcular la información extŕınseca de iteracions anteriores. Este algoritmo
es adecuado para códigos de alta velocidad y mejora el rendimiento BER de los
algoritmos RBI-MLGD anteriores, con una complejidad similar.
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Resum

Aquesta tesi s’ha centrat en el disseny i implementació de descodificadors binaris
basats en codis de comprovació de paritat de baixa densitat (LDPC) vàlids per
als sistemes de comunicació moderns d’alta velocitat. Els conceptes bàsics de
codis LDPC, les seues prestacions i colls de botella, en termes de complexitat i
eficiència hardware, van ser analitzats pels principals algoritmes de decisió soft
i decisió hard (com el Min-Sum, Optimized 2-bit Min-Sum y Reliability-based
iterative Majority-Logic). La complexitat i prestacions d’aquests algoritmes s’han
millorat per aconseguir arquitectures hardware eficients.

S’ha proposat un nou algoritme de descodificació anomenat One-Minimum
Min-Sum. Aquest redueix considerablement la complexitat de les equacions
d’actualització del node de comprovació del algoritme Min-Sum. El segon mı́nim
s’ha estimat a partir del valor del primer mı́nim per mitjà d’una aproximació
lineal, la qual permet un ajust dinàmic. L’algoritme Optimized 2-bit Min-Sum
s’ha modificat per ser inicialitzat amb els valors LLR i introduir la informació
extŕınseca en els missatges enviats des dels nodes variables. L’equació del node
variable d’aquest algoritme ha sigut reformulada per reduir la seva complexitat.
Tots dos algoritmes van ser provats per al codi (2048,1723) RS-based LDPC i per
al codi (16129,15372) LDPC utilitzant un emulador hardware implementat en un
dispositiu FPGA. Aquests han aconseguit unes prestacions BER molt properes
a les del algoritme Min-Sum evitant, a més, l’aparició primerenca del fenomen
denominat sòl de l’error.

Per tal de mostrar els avantatges hardware dels algoritmes proposats, els
descodificadors es varen implementar en hardware utilitzan una tecnologia CMOS
d’uns 90 nm i en dispositius FPGA basats en dos tipus d’arquitectures:
completament paral·lela i parcialment paral·lela utilitzant el mètode
d’actualització per capes horitzontals. Els resultats mostren que els descodificadors
proposats i implementats són més eficients en àrea-temps que altres descodificadors
publicats i que la baixa complexitat del algoritme Modified Optimized 2-bit
Min-Sum permet la implementació de decodificadors en els dispositius FPGA
actuals obtenint una taxa de 10 Gbps.
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Finalment, s’ha presentat un nou algoritme de descodificació de decisió hard,
el Historical-Extrinsic Reliability-Based Iterative Decoder. Aquest algoritme
presenta la nova idea de considerar els vots de decisió hard com decisió soft
per calcular la informació extŕınseca d’iteracions anteriors. Aquest algoritme
és adequat per als codis d’alta taxa i millora el rendiment BER dels algoritmes
RBI-MLGD anteriors, amb una complexitat similar.
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Preface

Nowadays, error correction codes (ECC) is involved in almost every communication
and storage system such as long-haul networks, space data link protocols [1],
digital TV, wireless communication [2], optical storage systems (e.g., BluRay,
DVD), magnetic storage systems, flash memories [3], etc. For this reason, it is
important that hardware designers know the performance of these codes in terms
of both error-correction capability and physical implementation parameters (i.e.,
the silicon area and throughput of the derived decoder) in order to choose the code
and the hardware architecture that fits better with the constraints of different
scenarios.

Since 1948, when Claude Shannon established a limit for any communication
channel, many different codes have been proposed, some of the most relevant
are: Hamming (1950) [4], Reed-Muller (1945) [5], Reed-Solomon (1960)
[6], Bose-Chaudhuri-Hocquengham (1960) [7], low-density parity-check (LDPC)
(1962) [8], Turbo codes (1993) [9], Polar codes (2009) [10], etc. Although in some
cases these codes achieve an error correction that is close to the channel capacity,
the complexity of the decoding process and the limitations of the technology did
not allow to implement their decoders in hardware. As an example, the first
hardware implementations of Reed-Solomon and LDPC decoders started about 30
and 40 years, respectively, after these codes were discovered. On the other hand,
these implementations belong to decoding algorithms that are sub-optimal [11],
in other words, algorithms that are adapted to be hardware friendly and allow a
practical tradeoff between silicon area, throughput and error correction capability.
However, with the improvement of processors, communication systems and storage
resources, three constraints force us to search for better decoding algorithms and
implementations: i) the technology scaling, which entails lowering the operating
voltages and increasing the integration densities, and hence the number of errors
increases; ii) the increase of speed in both communication and processing, which
requires high throughput subsystems that do not slow down the whole application
and iii) the need for reducing the power consumption, extremely important for
mobile devices, which depend on the battery life. So, the main challenge in ECC
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is the design of a decoder with the maximum error correction capability and a
throughput large enough to not become the bottleneck of the system.

Among all error correcting codes, LDPC codes are the most promising to overcome
the previously mentioned difficulties as they meet the requirements of good error
correction capability close to the Shannon limit, and reasonable complexity for
high-throuhgput decoding architectures.

This thesis is focused on reducing the complexity of different decoders based on
soft and hard decision algorithms including: the Min-Sum decoding algorithm,
with the proposal of a new decoder called One-Minimum Min-Sum (OMO-MS);
a new Reliability-Base Iterative Decoder (HE-RBID) with an improvement in the
error-rate performance; a Modified Optimized 2-bit Min-Sum decoder with less
complexity than other 2-bit LDPC decoders.

Objectives

This work continues with the line of research started in the Digital Communication
Laboratory with a previous Ph.D. thesis [33] in which a first approximation
to LDPC codes was done in order to: i) evaluate the behaviour of different
code constructions; ii) analyze different decoding algorithms; and iii) evaluate
the impact of quantization in the bit error rate performance. Taking all this
knowledge as starting point, this thesis is focused on the proposal of new forward
error correction (FEC) algorithms and architectures for LDPC codes that reduce
complexity and improve error correction performance in high-speed systems.
Therefore, the specific objectives of this thesis are:

1. To review the state of the art in LDPC, soft-decision and hard-decision
decoding algorithms with the aim of detecting the main bottlenecks in the
existing algorithms and decoder architectures.

2. To reduce the check node processor complexity for soft-decision decoders.

3. To reduce wiring congestion, especially for high-rate codes, with the aim of
increasing the maximum frequency of the derived architectures.

4. To reduce the number of bits of the messages exchanged between the check
node and the variable node processors in order to save storage resources and
hence to save silicon area.

5. To improve, reduce or eliminate the early performance degradation that
hard-decision LDPC decoders introduce for codes with low dv and non-EG
constructions.
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Methodology

The objectives of this thesis were achieved following the methodology described
below.

First, a study of the state of the art in coding theory was done, focused in FEC
and specially in binary LDPC codes. After this, the main decoding algorithms
were modeled using MATLAB software. The first software model is based on
floating-point and the second one applies a fixed-point precision model. This
models were taken as references/boundaries for our contributions.

After the previous step, modifications in the original algorithms were performed
in order to reduce the number of operations without introducing a significant
error correction degradation. This process was iterative. Modified versions of the
algorithms were modeled in MATLAB until a good tradeoff between the coding
gain in the waterfall region and the complexity was obtained.

Once verified the correct operation of the algorithms modeled in MATLAB, for
some of the proposed algorithms, an architecture was implemented in VHDL using
the computer software Quartus II Altera, ISE Xilinx and ASIC tools. Comparing
the output of the decoder implemented in VHDL with the output of the fixed-point
models, the proper functioning of the system was verified with the use of VHDL
language.

After the verification, the algorithm was implemented in hardware and its
behaviour was tested with a decoder emulator. The performance results were also
compared to the performance obtained with the software model of the emulator.
The emulator also allowed to explore the error-floor region which is more time
consuming and in some cases cannot be studied with software models.

Finally, the implementation results (area and speed) of the proposed solution
were compared to the ones found in literature. This process was repeated until a
significant improvement in the state-of-the-art was reached.

Contributions

The contributions of this thesis are listed below:

1. A complete tutorial based on the state of the art to divulge the best practices
in the design of efficient LDPC decoders for different scenarios and an
analysis of the best soft-decision algorithms and architectures.

2. The One-Minimum Min-Sum Decoding Algorithm (OMO-MSA) that reduces
to half the complexity of the check node update equations in low-density
parity-check (LDPC) decoding algorithms with negligible performance loss.
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3. A Modified Optimized 2-bit Min-Sum Decoding Algorithm (MO2-BIT-MSA)
and an architecture that improves the bit-error-rate performance of the
previous Optimized 2-bit Min-Sum Decoding Algorithm with less complexity,
and allows the implementation of very fast decoders in FPGA devices.

4. The Historical-Extrinsic Reliability-Based Iterative Decoder (HE-RBID)
that computes the extrinsic information of previous iterations of the variable
node improving the bit-error-rate performance of the previous RBI-MLGD
with less complexity.

Some of these contributions have been published or submitted to journals and
conferences:

• International Journals

1. J.M. Català, F. Garcia-Herrero, J.Valls, K. Liu and S. Lin Life
Fellow, IEEE, “Reliability-Based Iterative Decoding Algorithm for
LDPC Codes With Low Variable-Node Degree,” IEEE Communications
Letters, Vol.18, No.12, pp.2065-2068, Dec.2014

2. K. Gunnam, J.M. Català and F. Garcia-Herrero, “Algorithms and
VLSI Architectures for Low-Density Parity-Check Codes: Part 1
- Low-Complexity Iterative Decoding,” IEEE Solid-State Circuits
Magazine, Vol.8, No.4, pp.57-63, Nov.2016

3. K. Gunnam, J.M. Català and F. Garcia-Herrero, “Algorithms and VLSI
Architectures for Low-Density Parity-Check Codes: Part 2 - Efficient
Coding Architectures,” IEEE Solid-State Circuits Magazine, Vol.9,
No.1, pp.23-28, Jan.2017

• National Conferences

1. J.M. Català, F. Garcia-Herrero, J.Valls, K. Liu and S. Lin Life Fellow,
IEEE, “Reliability-Based Iterative Decoding Algorithm for LDPC
Codes With Low Variable-Node Degree,” Congreso XXIX Simposium
Nacional de la Unión Cient́ıfica Internacional de Radio, Valencia, Spain,
Jun.2014

Thesis structure

This memory is divided in five chapters. The first one briefly summarizes the
basics of the codes under study, and reviews the state of the art, identifying
the bottlenecks and the most interesting topics of research from the author’s
perspective. The second chapter deals with the reduction of complexity of the
check node of the conventional Min-Sum algorithm. The third chapter is focused on
the improvement of a 2-bit non uniform quantized Min-Sum algorithm. The fourth
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chapter introduces a new hard-decision decoding algorithm that improves the
coding gain of high-rate codes. In these chapters, first the algorithmic novelties and
their impact on the coding gain are detailed and, then, the derived architectures
or complexity analysis are presented. Each chapter includes its own conclusions
at the end and comparisons with the most efficient results found in literature.
Conclusions and topics for future work are outlined in the last chapter.
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Chapter 1

Backgound concepts for low-density
parity-check decoders

This first chapter reviews the basics of LDPC codes, the soft-decision iterative
decoding algorithms and hard-decision iterative ones. It is organized into
six sections. The first and second section introduce LDPC codes and
general decoding schedules. The third section shows the main existing
architectures for LDPC decoders. The fourth section describes the main
soft-decision algorithms based on belief propagation, which required to understand
better the soft-decision contributions of this thesis: i) Sum-Product, ii)
scaled Min-Sum, iii) Optimized 2-bit Min-Sum, and v) performance analysis
of the previously mentioned algorithms. The fifth section is focused on
hard-decision iterative decoding algorithms beginning with an introduction
and a description of the following three reliability-based iterative decoding
algorithms: i) Reliability-Based Iterative Majority-Logic Decoding algorithm
(RBI-MLGD), ii) Modified Reliability-Based Iterative Majority-Logic Decoding
algorithm (MRBI-MLGD) and iii) Reliability-Based Iterative Min-Sum Decoding
algorithm (RBI-MSD) and ending with a performance comparation of the
previously mentioned algorithms. In the final section the conclusions of this
chapter are outlined.
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1.1. LDPC codes

Let us define an LDPC code by its parity check matrix H. This parity check
matrix can be described as a sparse M ×N matrix, where: i) each one of the M
rows represents a parity check equation over GF (2q); and ii) the columns in H
correspond to each one of the received symbols. For the binary case, with q = 1,
the symbols are equal to bits, so N also represents the codeword length in terms
of bits. The codeword, denoted by c, can be computed by means of a generator
matrix G that satisfies the following equation G×HT = 0. The codeword is equal
to c = G × b, where b is the K -bit 1 information vector. The code rate can be
computed as K/N .

LDPC codes can also be represented by a Tanner Graph, which is a bipartite
graph with two different kind of nodes: check nodes and variable nodes. Each
check node mx (squares in Fig. 1.1) corresponds to one of the parity check
equations in H. The variable nodes, nx (circles in Fig. 1.1, also called bit nodes)
correspond to each one of the columns in H. An edge connects a check node
and a variable node if and only if the corresponding row and column share a
non-zero element in H. The number of non-zero elements in a row (i.e., the
number of variable nodes connected to a check node) is the degree of the check
node (dc) and the number of non-zero elements in a column (i.e., the number
of check nodes connected to a variable node) is the degree of the variable node
(dv). In Fig. 1.1 and Fig. 1.2 the two representations of the same code, the
Tanner graph and the parity-check matrix, can be compared. In this example the
degree of the check node is four and the degree of the variable node is three, as
dc and dv are limited by the maximum dc (dv) in all the check node (variable node).

m1 m2 m3 m4 m5

n1 n2 n3 n4 n5 n6

dc

dv

Figure 1.1: Representation of the parity check matrix H with a Tanner Graph.

1The parity check matrix H is of range K, over 2q
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Figure 1.2: Parity check matrix H.

The Tanner graph representation is useful to understand the general decoding
procedure that is explained in the next section.

1.2. Message-passing decoding schedules

The received vector at the decoder is y = c + e, where e is the error vector
introduced by the channel. The channel decoder transforms the received vector y
into a soft-decision vector L, which is loaded in each variable node. The complete
system can be found in Fig. 1.3.

Encoder Decoder

b c y c'

K N N K

eN

Channel detector
L

N

Figure 1.3: Simplified diagram of channel coding and decoding.

LDPC decoding algorithms are based on the message passing between check and
variable nodes. Each variable node sends information (messages) to its connected
check nodes. Once a check node has received all the messages from its neighbours
(connected variable nodes), it computes the parity check equation and modifies
the output messages depending on whether the equation was satisfied or not. The
variable nodes receive the updated messages from the connected check nodes and
update their values. After the update of the variable node information the process
starts again. This schedule can be repeated until a maximum number of iterations
is reached or until all the equations are satisfied.
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It is easy to deduce that with each iteration the decoder tries to converge to the
correct codeword, so the number of errors in the estimated one, c’, is reduced, as
can be seen in Fig. 1.4.

  Number

of bit errors

Iteration

0246
10

21

50

91

1 2 3 4 5 6 7

Figure 1.4: Evolution of the number of errors with the iterations.

Related to this, in each iteration the number of satisfied parity check equations
increases, as can be seen in Fig. 1.5, or in other words, the syndrome weight
(syndromes not equal to zero) decreases.

Iteration

Syndrome

  weight

1 2 3 4 5 6 7

310

136

60
26 14 10 6 0

Figure 1.5: Evolution of the syndrome weight with the iterations.

The syndromes are equal to the evaluation of the parity check equations. In the
following equations the syndromes of the parity check matrix in Fig. 1.2 are
represented.

s1 = n2 ⊕ n4
s2 = n1 ⊕ n2 ⊕ n4
s3 = n2 ⊕ n3 ⊕ n5
s4 = n1 ⊕ n6

s5 = n3 ⊕ n4 ⊕ n5 ⊕ n6
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Depending on how variable node messages are initialized and the nature (amount
of channel information) of the messages exchanged in the bipartite graph, two
types of decoders can be defined: hard-decision and soft-decision decoders. The
soft-decision decoders include a measure of the reliability of the information. The
hard-decision decoders only provide a result ‘0’ or ‘1’ without a measure of the
bit’s reliability.

Soft-decision decoders are analyzed in Sections 1.4; hard-decision decoders will be
described in Sections 1.5.

With independence of the information exchanged between nodes the decoding
process/schedule is as follows. In the first step of a soft-decision decoder for
LDPC codes, variable nodes ni are initialized with one metric of the reliability of
the corresponding received bit (yi). The most common metric is the log-likelihood

ratio (LLR), which can be calculated with Ln(yi) = log(P (yi=0)
P (yi=1) ), using the outputs

of a channel detector. For the Binary Phase Shift Keying (BPSK), LLR can
be calculated as Ln(yi) = 2 · yi/σ2, which simplifies the computational load of
the decoder, where σ2 is the noise variance assuming that the information is
transmitted by a channel with Additive White Gaussian Noise (AWGN).

When the iterative process starts each variable node, n, sends all its messages,

Q
(i)
n,m, which include the channel information of the associated bit to the connected

check nodes, m. The reliability metrics are recomputed based on the parity

constraints at each check node. The updated information R
(i)
m,n returns to the

neighbouring variable nodes. Each variable node updates its decision for the
estimated codeword based on the channel information from the initialization and
the extrinsic information from all the neighbouring check nodes. The process is
repeated until it converges to a valid codeword or until a time limit is reached
(maximum number of iterations).

In Fig. 1.6 and Fig. 1.7 the process for one code with three check nodes and seven
variable nodes is presented. This example is focused on the fourth bit (n = 3) and
the second check node (m = 1).

First, the variable node is initialized with the LLR for the variable node n = 3,
i.e., L3. This variable node sends the information to the connected check nodes,

the message that is sent to the check node m = 0 is Q
(0)
3,0. For check node m = 1 is

the message Q
(0)
3,1 and for check node m = 2 the message is Q

(0)
3,2 (Fig. 1.6b). Each

check node updates its messages and sends them back to the variable nodes. The

messages are R
(0)
0,3, R

(0)
1,3 and R

(0)
2,3 (Fig. 1.6c).

11



Chapter 1. Backgound concepts for low-density parity-check decoders

n = 0 n = 1 n = 2

m = 0

n = 3 n = 4

m = 1

n = 5 n = 6

m = 2

Channel Detector

L3

n = 0 n = 1 n = 2

m = 0

n = 3 n = 4

m = 1

n = 5 n = 6

m = 2

Q(0)
3,1

Q(0)
3,0 Q(0)

3,2

n = 0 n = 1 n = 2

m = 0

n = 3 n = 4

m = 1

n = 5 n = 6

m = 2

R(0)
1,3

R(0)
0,3 R(0)

2,3

(a)

(c)

(b)

Figure 1.6: (a) Step 1 of a message passing algorithm. (b) Step 2 of a message passing
algorithm. (c) Step 3 of a message passing algorithm.

In the second iteration, the variable node n = 3 only uses the extrinsic information
to update the messages that are going to be sent to the connected check nodes. As
an example, to compute the message for m = 0, the variable node only processes

R
(0)
1,3 and R

(0)
2,3 to calculate Q

(1)
3,0 (Fig. 1.7d). In order to compute the message for

m = 1, Q
(1)
3,1, the variable node only processes R

(0)
0,3 and R

(0)
2,3 (Fig. 1.7e) and to
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calculate the message for m = 2, Q
(1)
3,2, the variable node only processes R

(0)
0,3 and

R
(0)
1,3 (Fig. 1.7f).

n = 0 n = 1 n = 2

m = 0

n = 3 n = 4

m = 1

n = 5 n = 6

m = 2

R(0)
1,3

Q(1)
3,0 R(0)

2,3

n = 0 n = 1 n = 2

m = 0

n = 3 n = 4

m = 1

n = 5 n = 6

m = 2

Q(1)
3,1

R(0)
0,3 R(0)

2,3

n = 0 n = 1 n = 2

m = 0

n = 3 n = 4

m = 1

n = 5 n = 6

m = 2

R(0)
1,3

R(0)
0,3 Q(1)

3,2

(e)

(d)

(f)

Figure 1.7: (d) Step 4 of a message passing algorithm. (e) Step 5 of a message passing
algorithm. (f) Step 6 of a message passing algorithm.

To update the information of one check node, the use of its own messages from
previous iterations is avoided to eliminate the possibility of feeding back any error
introduced by this node. For this reason, one check node only “trusts” in the
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information updated in the variable node that processed the messages which come
from its neighbours, in other words, the extrinsic information.

This message exchange can be performed in two different ways: flooding (Fig.
1.8) and layered (Fig. 1.9). The flooding schedule first updates all the variable
nodes and then all the check nodes or viceversa, this is the first scheduling method
proposed in literature.

m1 m2 m3 m4 m5

n6n5n1 n2 n3 n4

m1 m2 m3 m4 m5

n6n5n1 n2 n3 n4

Figure 1.8: Tanner graph representation for one iteration with flooding or parallel
scheduling.

To speed up the convergence of the decoder this basic schedule can be varied.
Instead of computing first all the variable nodes and then all the check nodes, a
layered scheduling can be applied. This layered scheduling consists on updating
one check (variable) node at a time and, after each update, computing the new
messages of the connected variable (check) nodes. If the update is performed
row wise (updating each check node and all the variable nodes connected to this
updated check node at a time) the schedule is called horizontal layered, if the
update is performed column wise (updating each variable node and all the check
nodes connected to this updated variable node at a time), the schedule is called
vertical layered or shuffled.
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Figure 1.9: Tanner graph representation for one iteration with serial layered scheduling.

This layered scheduling converges faster because the nodes process the most
recently updated information when updating their messages. The size of the layer,
i.e., the processed check or variable nodes can be between one and the maximum
number of rows or columns, respectively as shown in Fig. 1.10.
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Figure 1.10: Tanner graph representation for one iteration with serial layered
scheduling, updating 2 check nodes at a time.

1.3. Hardware architectures for LDPC decoders

A general diagram of a LDPC decoder architecture can be found in Fig. 1.11,
where a general idea of the main blocks of the decoder is depicted. We found
two types of processors, the check node units (CNUs) and the variable node units
(VNUs) that compute the equations described in the following sections to perform
the operations of CN and VN algorithms. The rest of the decoder is formed

by memories to store: i) R
(i)
m,n messages from check node to the variable node

units; ii) Q
(i)
n,m messages from variable node to the check node units; and iii)

memories to store the estimated codeword reliability values Qn. These memories
can be implemented with RAM (double or single port) or registers depending on
the depth of the memories and the selected architecture. Finally, some ROM
memory is required to store the connections between check nodes and variable
nodes (location of non-zero elements). About 80% of the decoder’s area is allocated
to memory resources.

Regarding the speed of the decoder, the general throughput equation is shown in
Eq. 1.1.

Throughput =
N × fclk

#iter × ( M
#CNU ×#clkCNU + N

#V NU ×#clkV NU + pipeline)

(1.1)

In this equation, fclk corresponds to the operating clock frequency of the decoder,
#iter is the number of iterations of the algorithm, #CNU is the number of CNU

16
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processors, #V NU is the number of VNU processors, #clkCNU is the number
of CNU’s clock cycles, #clkV NU is the number VNU’s clock cycles and pipeline
corresponds to the latency in the CNU and VNU due to the pipeline stages.

Q  n

Memory R
O

M

Check Node

Qnm
(i)

Rmn
(i)

Variable
Node

Memory

Memory

Figure 1.11: General diagram of a LDPC decoder architecture.

The three basic kinds of architectures are:

1. Fully-parallel architecture: it implements M check node processors and N
variable node processors. It maps each row and each column of the parity
check matrix H to a different processing unit which operates in parallel, so
all the connections of the Tanner graph are physically implemented. The
problem of implementing all the processing units in parallel is that the
wiring between processors is considerably large, including at least M × dc
connections between processors. As the wiring congestion increases with
the codeword length, it becomes the main limitation of the maximum
achievable throughput in most of the cases. On the other hand, the main
advantage of this kind of architecture is that it only needs a single cycle per
message-passing iteration, so this decoders are energy efficient, but due to
this, it implements the memory units for the message exchange in registers
increasing about three times the required area. The main purpose of this
kind of architecture is the implementation of the flooding schedule. As in
this case #CNU = M and #V NU = N are implemented, and the clock
cycles in each one is 1; the throughput of the fully-parallel architecture can
be calculated as is shown in Eq. 1.2.

Throughput =
N × fclk
#iter × 2

(1.2)

2. Fully-serial architecture: it consists of only one processing unit or core
and one memory block. This processing unit calculates a single check or
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Chapter 1. Backgound concepts for low-density parity-check decoders

variable node per cycle and it stores messages in a memory to be used in
the following calculations. This kind of architecture consumes the minimum
arithmetic resources and area as it increases the number of shared elements,
minimizing the decoder area. Also the reached operating frequency is higher,
as wiring is greatly reduced, due to the fact that the depth of the critical
path is minimized. The main problem is that throughput is dramatically
reduced to hundreds of kbps or tens of Mbps due to the increase of the
number of clock cycles. Thus fully-serial architectures are not recommended
for systems where latency is a critical parameter. The throughput of the
fully-serial architecture can be calculated as is shown in Eq. 1.3.

Throughput =
N × fclk

#iter × ((M +N + pipeline)×X)
(1.3)

In Eq. 1.3, X represents the number of times that the pipeline stages of
the decoder must be emptied per iteration to avoid memory conflicts. The
reduction of this equation is due to the fact that one CNU (#CNU = 1)
and VNU (#V NU = 1) are implemented each time.

3. Partially parallel architecture: it is a mix between fully-serial and
fully-parallel architectures. This architecture implements several check node
unit processors which compute the dc input messages from the connected
variable nodes, these messages are read from several banks of RAM memory

(Q
(i)
n,m memory). When the output messages of the check node processors

are available, they are stored in a different RAM memory from which the

check node inputs were read (R
(i)
m,n memory). The variable node processor

computes dv messages in parallel, these messages are read from R
(i)
m,n memory

and the outputs are written in Q
(i)
n,m memory. It is important to remark two

issues of this architecture. First, the variable nodes (check nodes) cannot be

computed until R
(i)
m,n (Q

(i)
n,m) memory is completely updated. The second

issue is that, depending on how we select the check nodes and/or variable
nodes that we want to update each clock cycle, we may experience some
conflicts, trying to write messages in the same address of the memories.
These memory conflicts can be avoided by reordering the parity check matrix
for the computation or selecting only the check nodes that do not share any
variable node.

In addition, using quasi-cyclic codes such as the ones in [11], message passing
memories are eliminated too and only the use of registers are required to store
the partial state and final state of CNU in addition to the FIFO for Q sign
memory and a memory for storing channel LLR and hard decision values.
Partially parallel architecture allows to obtain between hundreds of Mbps
to tens of Gbps and is now widely used for smaller length LDPC codes in
storage applications. In this case, the throughput of the partially-parallel
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architecture depends on the level of parallelization/serialization of the
architecture in Eq. 1.1.

1.4. Soft-decision decoding algorithms

1.4.1. Sum-Product algorithm

Belief propagation algorithm is used either in information theory or in artificial
intelligence. The feature of this decoder is that the messages passed along the
edges are probabilities or beliefs.

The first belief propagation algorithm proposed in literature for an LDPC decoder
is known as the sum-product algorithm (SPA) [15].

In the first stage of iteration i, the magnitude of the messages are computed, as
observed in Fig. 1.12. These magnitudes represent the reliability of the output
messages. The idea beneath the following equation is to search for the less reliable
message, which will limit the reliability of the decisions at the check node. In
other words, the output message (estimated codeword bit) will be as reliable as
the least reliable input message. For this reason, as the extrinsic information
is used (n′ ∈ N(m)\n), only the least reliable message within the messages of
neighbour nodes is looked for, not its own message. Note that the computation
of the reliability in the check node requires a product and a tanh(), which are
computationally complex operations.

κ(i)m,n = φ(|R(i)
m,n|) = φ(|Q(i−1)

n′,m |) where φ(x) =
∏

n′∈N(m)\n

tanh(
1

2
x), x ≥ 0

The second stage of the check node computation evaluates the parity check node
equation and estimates the value of the received bits. The algorithm maps the sign

of the value of the hard decision bit. According to equation Ln(yi) = log(P (yi=0
P (yi=1 )

and assuming binary phase-shift keying (BPSK) modulation, if the received bit
is more likely to be zero the sign is positive; if the received bit is more likely
to be one the sign is negative. So, it can be concluded that the logic one is
mapped to the negative sign and the logic zero is mapped to the positive sign. By
multiplying all the dc signs from the dc input messages the parity check equation
can be evaluated. If the result is positive (logic zero), the equation is satisfied and
the estimated output bits (and their corresponding signs) are equal to the input
bits (which are the incoming bits/messages from the variable node). On the other
hand, if the result is negative (logic one), the parity check equation is not satisfied
and the estimated bits may be flipped compared to the input bits. In the same
way as the magnitude, the bits are flipped considering the extrinsic information.
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n = 0 n = 1 n = 2

m = 0

n = 3 n = 4

m = 1

n = 5 n = 6

m = 2

|Q(0)
3,1|= 3.5

|Q(0)
2,1|= 1.5 |Q(0)

4,1|= 12.5

n = 0 n = 1 n = 2

m = 0

n = 3 n = 4

m = 1

n = 5 n = 6

m = 2

|R(0)
1,3|= 3.6

|R(0)
1,2|= 2.7 |R(0)

1,4|= 3.7

Figure 1.12: Check node magnitude processing for Sum-Product algorithm.

Hence, the signs that come from the neighbour nodes are multiplied to estimate
the value of one node. Note that the estimated value of one node is equal to the
multiplication of the neighbours (because multiplying the messages with the same
sign will always satisfy the equation). An example can be found in Fig. 1.13.
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n = 0 n = 1 n = 2

m = 0

n = 3 n = 4

m = 1

n = 5 n = 6

m = 2

Q(0)
3,1= -1

Q(0)
2,1= 1 Q(0)

4,1= 1

n = 0 n = 1 n = 2

m = 0

n = 3 n = 4

m = 1

n = 5 n = 6

m = 2

R(0)
1,3=1 

R(0)
1,2= -1 R(0)

1,4= -1

Figure 1.13: Check node sign processing for Sum-Product algorithm.

This process can be summarized with this equation, where sgn is the function that
extracts the sign of the messages:

σ(i)
m,n = (

∏
n′∈N(m)\n

sgn(Q
(i−1)
n′,m ))

After computing the reliability of the output messages (magnitude) and the hard
decision (sign), the output messages from the check node can be processed as:

R(i)
m,n = σ(i)

m,nφ
−1(κ(i)m,n)

At the variable node the output messages from the check node are added to the
channel information, ignoring the contribution of the own node according to the
next equation:

Q(i)
m,n = Ln +

∑
m′∈M(n)\m

R
(i)
m′,n

Finally, when all the σ
(i)
m,n are positive or the maximum number of iterations is

reached, all the messages from the check nodes are added at the variable nodes.
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At the end of each decoding iteration, hard decision is performed to estimate the
received codeword. The hard decision process consists on deciding whether the
recibe symbol is 1 ∈ GF (2) or 0 ∈ GF (2). Otherwise, check node and variable
node operation are computed again.

Qn = Ln +
∑

m∈M(n)

R(i)
m,n

x̂n =

{
1, Qn < 0
0, Qn ≥ 0

where Qn contains the reliability value of each bit in the tentative decoding
codeword. These values are calculated as the addition of the channel information
and the incoming check-to-variable messages, without excluding the intrinsic
information (note that it is different compared to the calculation of Qm,n).

Algorithm 1 Sum-Product decoding algorithm.

Input : Q
(0)
n = Ln, with n ∈ {0, ..., N − 1}

Iterative process
for i = 0→ Itmax − 1 do

Check-node update

1 κ(i)
m,n = φ(|Qi−1

n′,m|), φ(x) = −log(tanh(
1

2
x)), x ≥ 0

σ(i)
m,n = (

∏
n′∈N(m)\n

sgn(Q
(i−1)

n′,m )

R(i)
m,n = σ(i)

m,nφ
−1(κ(i)

m,n)
Variable-node update

2 Q(i)
m,n = Ln +

∑
m′∈M(n)\m

R
(i)

m′,n

Tentative decoding

3 Q(i)
n = Ln +

∑
m∈M(n)

R(i)
m,n

4 x̂
(i)
n =

{
1, Q

(i)
n < 0

0, Q
(i)
n ≥ 0, n ∈ {0, ..., N − 1}

5 sm =
∑

0≤n≤N−1

⊕x̂(i)n hm,n =
∑

n∈Nm

⊕x̂(i)n , m ∈ {0, ...,M − 1}

if (s(i) = 0) then {SKIP}
end
Output : x̂

Sum-Product decoding algorithm provides the best performance among all
the decoding algorithms for LDPC codes, but it requires high computational
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complexity due to the number of operations performed in the CN for the
calculation of tanh() and the product.

1.4.1.1. Example 1. Sum-Product algorithm

Assume that a bit sequence of seven zeros is transmitted on a channel with errors.
At the receiver, when we read these bits, assume that we have access to the analog
level of the received bit. The magnitude of the LLR correlates with the magnitude
of the received level. We take the positive sign as a logic 0 and the negative sign
as a logic 1.

In this example LLR values are computed as L0(y0) = +15 = n0, L1(y1) = +15 =
n1, L2(y2) = +15 = n2, L3(y3) = −1 = n3, L4(y4) = +15 = n4, L5(y5) = +15 =
n5 and L6(y6) = +15 = n6.

n = 0 n = 1 n = 2

m = 0

n = 3 n = 4

m = 1

n = 5 n = 6

m = 2

n = 0 n = 1 n = 2

m = 0

n = 3 n = 4

m = 1

n = 5 n = 6

m = 2

S0 = 1 S1 = 1 S2 = 1

+15

+15

-1
+15

-1 +15

+15 +15
-1

-1

-1

+14.3
-1

+14.3 -1

-1 -1
+14.3

+15 +15 +15 -1 +15 +15 +15

First iteration

+14Q(0)
n: +14 +14 +41.9 +14 +14 +14

+15 +15 +15 -1 +15 +15 +15

Figure 1.14: SPA example. First iteration.
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First, the variable nodes load these received LLR values. After this, messages are
sent from variable nodes to check nodes, computing the syndromes. Applying the
syndrome equation, the following results are obtained:

s0 = x̂
(0)
0 ⊕ x̂

(0)
1 ⊕ x̂

(0)
3 = 0⊕ 0⊕ 1 = 1

s1 = x̂
(0)
2 ⊕ x̂

(0)
3 ⊕ x̂

(0)
4 = 0⊕ 1⊕ 0 = 1

s2 = x̂
(0)
3 ⊕ x̂

(0)
5 ⊕ x̂

(0)
6 = 1⊕ 0⊕ 0 = 1

where

x̂(0)n =

{
1, Q

(0)
n < 0

0, Q
(0)
n ≥ 0

Once the syndromes are computed, the value that will satisfy each of the
parity-check equations is computed. Considering that the incoming messages from
the variable node can have an error (processing only the information from the
neighbours), the following equation is applied to determine the sign of the message
from the check node to the variable node:

sgn(R(i)
m,n) = sgn(Q(i−1)

n,m )⊕ sm

So applying this equation in this example:
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sgn(R
(0)
0,0) = sgn(Q

(0)
0,0)⊕ s0 = 0⊕ 1 = 1

sgn(R
(0)
0,1) = sgn(Q

(0)
1,0)⊕ s0 = 0⊕ 1 = 1

sgn(R
(0)
0,3) = sgn(Q

(0)
3,0)⊕ s0 = 1⊕ 1 = 0

sgn(R
(0)
1,2) = sgn(Q

(0)
2,1)⊕ s1 = 0⊕ 1 = 1

sgn(R
(0)
1,3) = sgn(Q

(0)
3,1)⊕ s1 = 1⊕ 1 = 0

sgn(R
(0)
1,4) = sgn(Q

(0)
4,1)⊕ s1 = 0⊕ 1 = 1

sgn(R
(0)
2,3) = sgn(Q

(0)
3,2)⊕ s2 = 1⊕ 1 = 0

sgn(R
(0)
2,5) = sgn(Q

(0)
5,2)⊕ s2 = 0⊕ 1 = 1

sgn(R
(0)
2,6) = sgn(Q

(0)
6,2)⊕ s2 = 0⊕ 1 = 1

The previous results can be compared to the sign of the message exchange in Fig.
1.14. The computation of the magnitude of the messages is done as follows:

|R(0)
0,0| = φ−1(φ(|Q(0)

0,0|)) = 2 · arctanh(tanh(15/2) · tanh(1/2)) = 1

|R(0)
0,1| = φ−1(φ(|Q(0)

1,0|)) = 2 · arctanh(tanh(15/2) · tanh(1/2)) = 1

|R(0)
0,3| = φ−1(φ(|Q(0)

3,0|)) = 2 · arctanh(tanh(15/2) · tanh(15/2)) = 14.3

|R(0)
1,2| = φ−1(φ(|Q(0)

2,1|)) = 2 · arctanh(tanh(1/2) · tanh(15/2)) = 1

|R(0)
1,3| = φ−1(φ(|Q(0)

3,1|)) = 2 · arctanh(tanh(15/2) · tanh(15/2)) = 14.3

|R(0)
1,4| = φ−1(φ(|Q(0)

4,1|)) = 2 · arctanh(tanh(15/2) · tanh(1/2)) = 1

|R(0)
2,3| = φ−1(φ(|Q(0)

3,2|)) = 2 · arctanh(tanh(15/2) · tanh(15/2)) = 14.3

|R(0)
2,5| = φ−1(φ(|Q(0)

5,2|)) = 2 · arctanh(tanh(1/2) · tanh(15/2)) = 1

|R(0)
2,6| = φ−1(φ(|Q(0)

6,2|)) = 2 · arctanh(tanh(1/2) · tanh(15/2)) = 1

where φ(x) =
∏
n′∈N(m)\n tanh( 1

2x), x ≥ 0

Finally, the tentative decoding is computed by adding the LLR value received from
the channel to the incoming check-to-variable node messages as follows:
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Q
(0)
0 = L0(y0) +R

(0)
0,0 = 15 + (−1) = +14

Q
(0)
1 = L1(y1) +R

(0)
0,1 = 15 + (−1) = +14

Q
(0)
2 = L2(y2) +R

(0)
1,2 = 15 + (−1) = +14

Q
(0)
3 = L3(y3) +R

(0)
0,3 +R

(0)
1,3 +R

(0)
2,3 = −1 + 14.3 + 14.3 + 14.3 = +41.9

Q
(0)
4 = L4(y4) +R

(0)
1,4 = 15 + (−1) = +14

Q
(0)
5 = L5(y5) +R

(0)
2,5 = 15 + (−1) = +14

Q
(0)
6 = L6(y6) +R

(0)
2,6 = 15 + (−1) = +14

The variable-to-check messages obtained are:

Q
(0)
0,0 = L0(y0) = +15

Q
(0)
1,0 = L1(y1) = +15

Q
(0)
2,0 = L2(y2) = +15

Q
(0)
3,0 = L3(y3) +R

(0)
1,3 +R

(0)
2,3 = −1 + 14.3 + 14.3 = +27.6

Q
(0)
3,1 = L3(y3) +R

(0)
0,3 +R

(0)
2,3 = −1 + 14.3 + 14.3 = +27.6

Q
(0)
3,2 = L3(y3) +R

(0)
0,3 +R

(0)
1,3 = −1 + 14.3 + 14.3 = +27.6

Q
(0)
4,1 = L4(y4) = +15

Q
(0)
5,2 = L5(y5) = +15

Q
(0)
6,3 = L6(y6) = +15

Performing a second iteration:
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n = 0 n = 1 n = 2 n = 3 n = 4 n = 5 n = 6

m = 0 m = 1 m = 2
S0 = 0 S1 = 0 S2 = 0

+15

+15

+27.6
+15

+27.6 +15

+15 +15
+27.6

Second iteration

n = 0 n = 1 n = 2 n = 3 n = 4 n = 5 n = 6

m = 0 m = 1 m = 2

+15

+15

+14.3
+15

+14.3 +15

+15 +15
+14.3

+15 +15 +15 -1 +15 +15 +15

+30Q(1)
n: +30 +30

HD: 0 0 0
+41.9 +30 +30 +30

0 0 0 0

+15 +15 +15 -1 +15 +15 +15

Figure 1.15: SPA example. Second iteration.

The messages computed in each variable node are sent from variable nodes to
check nodes, computing the syndromes:

s0 = x̂
(1)
0 ⊕ x̂

(1)
1 ⊕ x̂

(1)
3 = 0⊕ 0⊕ 0 = 0

s1 = x̂
(1)
2 ⊕ x̂

(1)
3 ⊕ x̂

(1)
4 = 0⊕ 0⊕ 0 = 0

s2 = x̂
(1)
3 ⊕ x̂

(1)
5 ⊕ x̂

(1)
6 = 0⊕ 0⊕ 0 = 0

where

x̂(1)n =

{
1, Q

(1)
n < 0

0, Q
(1)
n ≥ 0
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Once the syndromes are computed, the value that will satisfy each of the
parity-check equations is computed. On the one hand, the sign is calculated:

sgn(R
(1)
0,0) = sgn(Q

(1)
0,0)⊕ s0 = 0⊕ 0 = 0

sgn(R
(1)
0,1) = sgn(Q

(1)
1,0)⊕ s0 = 0⊕ 0 = 0

sgn(R
(1)
0,3) = sgn(Q

(1)
3,0)⊕ s0 = 0⊕ 0 = 0

sgn(R
(1)
1,2) = sgn(Q

(1)
2,1)⊕ s1 = 0⊕ 0 = 0

sgn(R
(1)
1,3) = sgn(Q

(1)
3,1)⊕ s1 = 0⊕ 0 = 0

sgn(R
(1)
1,4) = sgn(Q

(1)
4,1)⊕ s1 = 0⊕ 0 = 0

sgn(R
(1)
2,3) = sgn(Q

(1)
3,2)⊕ s2 = 0⊕ 0 = 0

sgn(R
(1)
2,5) = sgn(Q

(1)
5,2)⊕ s2 = 0⊕ 0 = 0

sgn(R
(1)
2,6) = sgn(Q

(1)
6,2)⊕ s2 = 0⊕ 0 = 0

On the other hand, the computation of the magnitude of the messages is done as
follows:

|R(1)
0,0| = φ−1(φ(|Q(1)

0,0|)) = 2 · arctanh(tanh(15/2) · tanh(27.6/2)) = 15

|R(1)
0,1| = φ−1(φ(|Q(1)

1,0|)) = 2 · arctanh(tanh(15/2) · tanh(27.6/2)) = 15

|R(1)
0,3| = φ−1(φ(|Q(1)

3,0|)) = 2 · arctanh(tanh(15/2) · tanh(15/2)) = 14.3

|R(1)
1,2| = φ−1(φ(|Q(1)

2,1|)) = 2 · arctanh(tanh(15/2) · tanh(27.6/2)) = 15

|R(1)
1,3| = φ−1(φ(|Q(1)

3,1|)) = 2 · arctanh(tanh(15/2) · tanh(15/2)) = 14.3

|R(1)
1,4| = φ−1(φ(|Q(1)

4,1|)) = 2 · arctanh(tanh(15/2) · tanh(27.6/2)) = 15

|R(1)
2,3| = φ−1(φ(|Q(1)

3,2|)) = 2 · arctanh(tanh(15/2) · tanh(15/2)) = 14.3

|R(1)
2,5| = φ−1(φ(|Q(1)

5,2|)) = 2 · arctanh(tanh(15/2) · tanh(27.6/2)) = 15

|R(1)
2,6| = φ−1(φ(|Q(1)

6,2|)) = 2 · arctanh(tanh(15/2) · tanh(27.6/2)) = 15

where φ(x) =
∏
n′∈N(m)\n tanh( 1

2x), x ≥ 0
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In this second iteration the reliability values for computing the tentative decoding
are:

Q
(1)
0 = L0(y0) +R

(1)
0,0 = 15 + 15 = +30

Q
(1)
1 = L1(y1) +R

(1)
0,1 = 15 + 15 = +30

Q
(1)
2 = L2(y2) +R

(1)
1,2 = 15 + 15 = +30

Q
(1)
3 = L3(y3) +R

(1)
0,3 +R

(1)
1,3 +R

(1)
2,3 = −1 + 14.3 + 14.3 + 14.3 = +41.9

Q
(1)
4 = L4(y4) +R

(1)
1,4 = 15 + 15 = +30

Q
(1)
5 = L5(y5) +R

(1)
2,5 = 15 + 15 = +30

Q
(1)
6 = L6(y6) +R

(1)
2,6 = 15 + 15 = +30

The variable-to-check messages obtained are:

Q
(1)
0,0 = L0(y0) = +15

Q
(1)
1,0 = L1(y1) = +15

Q
(1)
2,1 = L2(y2) = +15

Q
(1)
3,0 = L3(y3) +R

(1)
1,3 +R

(1)
2,3 = −1 + 14.3 + 14.3 = +27.6

Q
(1)
3,1 = L3(y3) +R

(1)
0,3 +R

(1)
2,3 = −1 + 14.3 + 14.3 = +27.6

Q
(1)
3,2 = L3(y3) +R

(1)
0,3 +R

(1)
1,3 = −1 + 14.3 + 14.3 = +27.6

Q
(1)
4,1 = L4(y4) = +15

Q
(1)
5,2 = L5(y5) = +15

Q
(1)
6,2 = L6(y6) = +15

Finally, it can be checked that all the syndromes are satisfied and, hence, the code
word is corrected. The error in variable node n = 3 has been corrected, flipping the
sign of the node from negative to positive. All the Qn messages are now positive,
and all the hard-decision messages are zero, as shown in Fig. 1.15.
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1.4.2. Scaled Min-Sum algorithm

The Min-Sum algorithm (MSA) [16] - [17] is a reduced complexity decoding
algorithm which simplifies operations in the check node compared to the SPA.
Note that tanh and product operations are eliminated in MSA.

In the first stage of iteration i, the magnitudes of the messages are computed as
follows:

κ(i)m,n = |R(i)
m,n| = min

n′∈N(m)\n
|Q(i−1)

n′,m |

The complexity of the calculation of the minimum magnitude can be greatly
reduced by applying the technique of the value reuse. It can be easily demonstrated
that the magnitude of the output messages, in (dc − 1) cases, is the absolute
minimum of the dc input messages. Only for the output message of the node that
sends the least reliable message, the magnitude will be the second least reliable
magnitude within the dc input messages. This computation is named as value

reuse (κ
(i)
m,n) because only one search of the first minimum magnitude and the

second minimum magnitude is required to compute the dc output messages, not
dc minimum searches.

κ(i)m,n = |R(i)
m,n| =


min |Q(i−1)

n′,m |, if min
n′∈N(m)

|Q(i−1)
n′,m | 6= |Q

(i−1)
n,m |

min2 |Q(i−1)
n′,m |, if min

n′∈N(m)
|Q(i−1)

n′,m | = |Q
(i−1)
n,m |

The process of the check node computation in the second phase is similar to the
SPA. Therefore, the output messages from the check node can be processed as:

R(i)
m,n = σ(i)

m,nκ
(i)
m,n

Finally, the output messages from the check node are computed as:

Q(i)
m,n = Ln + α

∑
m′∈M(n)\m

R
(i)
m′,n

To estimate the received codeword, Qn is used instead of Qm,n.

The Min-Sum algorithm overestimates the messages at the check node, so a scaling

factor or an offset correction factor should be applied to R
(i)
m,n messages and/or

Q
(i)
m,n messages for better performance, that is, to get a performance closer to

Sum-Product algorithm.
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1.4 Soft-decision decoding algorithms

Algorithm 2 Min-Sum decoding algorithm.

Input : Q
(0)
n = Ln, with n ∈ {0, ..., N − 1}

Iterative process
for i = 0→ Itmax − 1 do

Check-node update

1 κ(i)
m,n = min

n′∈N(m)\n
|Q(i−1)

n′,m |

σ(i)
m,n = (

∏
n′∈N(m)\n

sgn(Q
(i−1)

n′,m )

R(i)
m,n = σ(i)

m,nκ
(i)
m,n

Variable-node update

2 Q(i)
m,n = Ln + α

∑
m′∈M(n)\m

R
(i)

m′,n

Tentative decoding

3 Q(i)
n = Ln + α

∑
m∈M(n)

R(i)
m,n

4 x̂
(i)
n =

{
1, Q

(i)
n < 0

0, Q
(i)
n ≥ 0, n ∈ {0, ..., N − 1}

5 sm =
∑

0≤n≤N−1

⊕x̂(i)n hm,n =
∑

n∈Nm

⊕x̂(i)n , m ∈ {0, ...,M − 1}

if (s(i) = 0) then {SKIP}
end
Output : x̂

With the calculation of the two minimums, Min-Sum decoding algorithm reduces
complexity considerably by means of simplifying the number of operations
performed in the CN. But on the contrary, a slightly worse performance is obtained
compared to Sum-Product decoding algorithm. Although this algorithm reduces
the complexity compared to the previous one; it still has high complexity in the
CN because it requires a double tree to find the minimum in the derived hardware
implementations, and the magnitudes are quantized with more than two bits. This
quantization of more than two bits makes the exchange of messages larger. This
two facts have a great impact on the arithmetic resources and the wiring congestion
of the derived architectures.
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Chapter 1. Backgound concepts for low-density parity-check decoders

1.4.2.1. Example 2. Scaled Min-Sum algorithm

In this example we assume the same conditions as in Example 1, with the same
input values (LLR) and, in this case, we use a scale factor α = 0.75.

n = 0 n = 1 n = 2

m = 0

n = 3 n = 4

m = 1

n = 5 n = 6

m = 2

n = 0 n = 1 n = 2

m = 0

n = 3 n = 4

m = 1

n = 5 n = 6

m = 2

S0 = 1 S1 = 1 S2 = 1

+15

+15

-1 +15

-1 +15

+15 +15-1

-1

-1

+15 -1

+15 -1

-1 -1+15

+15 +15 +15 -1 +15 +15 +15

First iteration

+14.25Q(0)
n: +14.25 +14.25 +32.75 +14.25 +14.25 +14.25

+15 +15 +15 -1 +15 +15 +15

Figure 1.16: MSA example. First iteration.

Like in the previous example, first the LLR values are loaded in the variable nodes.
Once this is done, messages are sent from variable nodes to check nodes, computing
the syndromes:

s0 = x̂
(0)
0 ⊕ x̂

(0)
1 ⊕ x̂

(0)
3 = 0⊕ 0⊕ 1 = 1

s1 = x̂
(0)
2 ⊕ x̂

(0)
3 ⊕ x̂

(0)
4 = 0⊕ 1⊕ 0 = 1

s2 = x̂
(0)
3 ⊕ x̂

(0)
5 ⊕ x̂

(0)
6 = 1⊕ 0⊕ 0 = 1
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1.4 Soft-decision decoding algorithms

where

x̂(0)n =

{
1, Q

(0)
n < 0

0, Q
(0)
n ≥ 0

With the syndromes computed, the value that will satisfy each of the parity-check
equations is calculated. Considering that the incoming messages from the variable
node can have an error (processing only the information from the neighbours), the
following equation is applied to determine the sign of the message from the check
node to the variable node:

sgn(R(i)
m,n) = sgn(Q(i−1)

n,m )⊕ sm

So the signs are computed as:

sgn(R
(0)
0,0) = sgn(Q

(0)
0,0)⊕ s0 = 0⊕ 1 = 1

sgn(R
(0)
0,1) = sgn(Q

(0)
1,0)⊕ s0 = 0⊕ 1 = 1

sgn(R
(0)
0,3) = sgn(Q

(0)
3,0)⊕ s0 = 1⊕ 1 = 0

sgn(R
(0)
1,2) = sgn(Q

(0)
2,1)⊕ s1 = 0⊕ 1 = 1

sgn(R
(0)
1,3) = sgn(Q

(0)
3,1)⊕ s1 = 1⊕ 1 = 0

sgn(R
(0)
1,4) = sgn(Q

(0)
4,1)⊕ s1 = 0⊕ 1 = 1

sgn(R
(0)
2,3) = sgn(Q

(0)
3,2)⊕ s2 = 1⊕ 1 = 0

sgn(R
(0)
2,5) = sgn(Q

(0)
5,2)⊕ s2 = 0⊕ 1 = 1

sgn(R
(0)
2,6) = sgn(Q

(0)
6,2)⊕ s2 = 0⊕ 1 = 1

We can check the previous results with the sign of the message exchange in Fig.
1.16. Following with the computation of the magnitude of the messages, in this
case, the minimum of the absolute value of the neighbour messages is selected as
the magnitude of the check-node outputs:
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Chapter 1. Backgound concepts for low-density parity-check decoders

|R(0)
0,0| = min(|Q(0)

1,0|, |Q
(0)
3,0|) = 1

|R(0)
0,1| = min(|Q(0)

0,0|, |Q
(0)
3,0|) = 1

|R(0)
0,3| = min(|Q(0)

0,0|, |Q
(0)
1,0|) = 15

|R(0)
1,2| = min(|Q(0)

3,1|, |Q
(0)
4,1|) = 1

|R(0)
1,3| = min(|Q(0)

2,1|, |Q
(0)
4,1|) = 15

|R(0)
1,4| = min(|Q(0)

2,1|, |Q
(0)
3,1|) = 1

|R(0)
2,3| = min(|Q(0)

5,2|, |Q
(0)
6,2|) = 15

|R(0)
2,5| = min(|Q(0)

3,2|, |Q
(0)
6,2|) = 1

|R(0)
2,6| = min(|Q(0)

3,2|, |Q
(0)
5,2|) = 1

Finally, the tentative decoding is computed by adding the LLR value received from
the channel to the incoming check-to-variable node messages as follows:

Q
(0)
0 = L0(y0) + (α ·R(0)

0,0) = 15 + (0.75 · (−1)) = +14.25

Q
(0)
1 = L1(y1) + (α ·R(0)

0,1) = 15 + (0.75 · (−1)) = +14.25

Q
(0)
2 = L2(y2) + (α ·R(0)

1,2) = 15 + (0.75 · (−1)) = +14.25

Q
(0)
3 = L3(y3) + (α · (R(0)

0,3 +R
(0)
1,3 +R

(0)
2,3)) = (−1) + (0.75 · (15 + 15 + 15)) = +32.75

Q
(0)
4 = L4(y4) + (α ·R(0)

1,4) = 15 + (0.75 · (−1)) = +14.25

Q
(0)
5 = L5(y5) + (α ·R(0)

2,5) = 15 + (0.75 · (−1)) = +14.25

Q
(0)
6 = L6(y6) + (α ·R(0)

2,6) = 15 + (0.75 · (−1)) = +14.25

The variable-to-check messages obtained are:
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1.4 Soft-decision decoding algorithms

Q
(0)
0,0 = L0(y0) = +15

Q
(0)
1,0 = L1(y1) = +15

Q
(0)
2,1 = L2(y2) = +15

Q
(0)
3,0 = L3(y3) + (α · (R(0)

1,3 +R
(0)
2,3)) = (−1) + (0.75 · (15 + 15)) = +21.5

Q
(0)
3,1 = L3(y3) + (α · (R(0)

0,3 +R
(0)
2,3)) = (−1) + (0.75 · (15 + 15)) = +21.5

Q
(0)
3,2 = L3(y3) + (α · (R(0)

0,3 +R
(0)
1,3)) = (−1) + (0.75 · (15 + 15)) = +21.5

Q
(0)
4,1 = L4(y4) = +15

Q
(0)
5,2 = L5(y5) = +15

Q
(0)
6,2 = L6(y6) = +15

Performing a second iteration:
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n = 0 n = 1 n = 2 n = 3 n = 4 n = 5 n = 6

m = 0 m = 1 m = 2
S0 = 0 S1 = 0 S2 = 0

+15

+15

+21.5
+15

+21.5 +15

+15 +15
+21.5

Second iteration

n = 0 n = 1 n = 2 n = 3 n = 4 n = 5 n = 6

m = 0 m = 1 m = 2

+15

+15

+15
+15

+15 +15

+15 +15
+15

+15 +15 +15 -1 +15 +15 +15

+26.3Q(1)
n: +26.3 +26.3

HD: 0 0 0
+32.8 +26.3 +26.3 +26.3

0 0 0 0

+15 +15 +15 -1 +15 +15 +15

Figure 1.17: MSA example. Second iteration.

The messages computed in each variable node are sent from variable nodes to
check nodes, computing the syndromes:

s0 = x̂
(1)
0 ⊕ x̂

(1)
1 ⊕ x̂

(1)
3 = 0⊕ 0⊕ 0 = 0

s1 = x̂
(1)
2 ⊕ x̂

(1)
3 ⊕ x̂

(1)
4 = 0⊕ 0⊕ 0 = 0

s2 = x̂
(1)
3 ⊕ x̂

(1)
5 ⊕ x̂

(1)
6 = 0⊕ 0⊕ 0 = 0

where

x̂(1)n =

{
1, Q

(1)
n < 0

0, Q
(1)
n ≥ 0
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1.4 Soft-decision decoding algorithms

Once the syndromes are computed, the value that will satisfy each of the
parity-check equations is processed. On the one hand, the sign is calculated:

sgn(R
(1)
0,0) = sgn(Q

(1)
0,0)⊕ s0 = 0⊕ 0 = 0

sgn(R
(1)
0,1) = sgn(Q

(1)
1,0)⊕ s0 = 0⊕ 0 = 0

sgn(R
(1)
0,3) = sgn(Q

(1)
3,0)⊕ s0 = 0⊕ 0 = 0

sgn(R
(1)
1,2) = sgn(Q

(1)
2,1)⊕ s1 = 0⊕ 0 = 0

sgn(R
(1)
1,3) = sgn(Q

(1)
3,1)⊕ s1 = 0⊕ 0 = 0

sgn(R
(1)
1,4) = sgn(Q

(1)
4,1)⊕ s1 = 0⊕ 0 = 0

sgn(R
(1)
2,3) = sgn(Q

(1)
3,2)⊕ s2 = 0⊕ 0 = 0

sgn(R
(1)
2,5) = sgn(Q

(1)
5,2)⊕ s2 = 0⊕ 0 = 0

sgn(R
(1)
2,6) = sgn(Q

(1)
6,2)⊕ s2 = 0⊕ 0 = 0

On the other hand, the magnitude of the messages is computed:

|R(1)
0,0| = min(|Q(1)

1,0|, |Q
(1)
3,0|) = 15

|R(1)
0,1| = min(|Q(1)

0,0|, |Q
(1)
3,0|) = 15

|R(1)
0,3| = min(|Q(1)

0,0|, |Q
(1)
1,0|) = 15

|R(1)
1,2| = min(|Q(1)

3,1|, |Q
(1)
4,1|) = 15

|R(1)
1,3| = min(|Q(1)

2,1|, |Q
(1)
4,1|) = 15

|R(1)
1,4| = min(|Q(1)

2,1|, |Q
(1)
3,1|) = 15

|R(1)
2,3| = min(|Q(1)

5,2|, |Q
(1)
6,2|) = 15

|R(1)
2,5| = min(|Q(1)

3,2|, |Q
(1)
6,2|) = 15

|R(1)
2,6| = min(|Q(1)

3,2|, |Q
(1)
5,2|) = 15

In this second iteration, the reliability values for computing the tentative decoding
are:
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Chapter 1. Backgound concepts for low-density parity-check decoders

Q
(1)
0 = L0(y0) + (α ·R(1)

0,0) = 15 + (0.75 · 15) = +26.3

Q
(1)
1 = L1(y1) + (α ·R(1)

0,1) = 15 + (0.75 · 15) = +26.3

Q
(1)
2 = L2(y2) + (α ·R(1)

1,2) = 15 + (0.75 · 15) = +26.3

Q
(1)
3 = L3(y3) + (α · (R(1)

0,3 +R
(1)
1,3 +R

(1)
2,3)) = (−1) + (0.75 · (15 + 15 + 15)) = +32.8

Q
(1)
4 = L4(y4) + (α ·R(1)

1,4) = 15 + (0.75 · (−1)) = +26.3

Q
(1)
5 = L5(y5) + (α ·R(1)

2,5) = 15 + (0.75 · (−1)) = +26.3

Q
(1)
6 = L6(y6) + (α ·R(1)

2,6) = 15 + (0.75 · (−1)) = +26.3

The variable-to-check messages obtained are:

Q
(1)
0,0 = L0(y0) = +15

Q
(1)
1,0 = L1(y1) = +15

Q
(1)
2,1 = L2(y2) = +15

Q
(1)
3,0 = L3(y3) + (α · (R(1)

1,3 +R
(1)
2,3)) = (−1) + (0.75 · (15 + 15)) = +21.5

Q
(1)
3,1 = L3(y3) + (α · (R(1)

0,3 +R
(1)
2,3)) = (−1) + (0.75 · (15 + 15)) = +21.5

Q
(1)
3,2 = L3(y3) + (α · (R(1)

0,3 +R
(1)
1,3)) = (−1) + (0.75 · (15 + 15)) = +21.5

Q
(1)
4,1 = L4(y4) = +15

Q
(1)
5,2 = L5(y5) = +15

Q
(1)
6,2 = L6(y6) = +15

Finally, it can be checked that all the syndromes are satisfied and, hence, the code
word is corrected. The error in variable node n = 3 has been corrected, flipping the
sign of the node from negative to positive. All the Qn messages are now positive,
and all the hard-decision messages are zero, as shown in Fig. 1.17.
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1.4 Soft-decision decoding algorithms

1.4.3. Optimized 2-bit Min-Sum algorithm

An optimised 2-bit Min-Sum decoding algorithm was proposed in [18] in order to
reduce the complexity and the routing congestion of Min-Sum decoding algorithm.
This algorithm works as Min-Sum algorithm with the only difference that each
message sent from one node to another is 2 bits bsbm. These 2 bits are composed
of the hard decision of a received soft message bs, and the hard decision confidence
bm, where bm = 1 represents a high confidence and bm = 0 represents a low
confidence. Fig. 1.18 and Fig. 1.19 show the SPA and MSA routing congestion
and Optimized 2-bit MSA routing congestion, respectively.

m1 m2 m3 m4 m5

n1 n2 n3 n4 n5 n6

dc

dv

Figure 1.18: 6-bit message SPA and MSA interconnection.

m1 m2 m3 m4 m5

n1 n2 n3 n4 n5 n6

dc

dv

Figure 1.19: 2-bit message Optimized 2-bit min-sum decoding algorithms
interconnection.
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Defining y as the input message and Ty as an input threshold. Bit bs value is
equivalent to the sign of input message y and bit bm value is obtained doing a
comparation with Ty threshold as follows:

bsbm =


01, if y > Ty
00, if Ty ≥ y ≥ 0
10, if 0 > y ≥ −Ty
11, if y < −Ty

In this case, the check-to-variable and variable-to-check messages updating phases
are calculated as:

R(i)
m,n =

∏
n′∈N(m)\n

sign(Q
(i−1)
n′,m ) min

n′∈N(m)\n
|Q(i−1)

n′,m |

Q(i)
m,n = Qn = g(f(Ln) + α

∑
m∈M(n)

f(R(i)
m,n))

This algorithm has two functions which convert a 2-bit message into an integer
and an integer into a 2-bit message. These functions are f(·) and g(·), respectively.
α is the scaling factor used in this algorithm to improve the bit-error rate.

Three steps are needed to compute variable-to-check messages:

1. The input 2-bit data Ln or Rm′,n is converted through function f(·) to an
integer number, which represents the confidence level. The converted integer
is set to WL if bm = 0, low confidence, and to WH if bm = 1, high confidence.

f(bsbm) =


WL, if bsbm = 00
WH , if bsbm = 01
−WL, if bsbm = 10
−WH , if bsbm = 11

2. The addition of all the check nodes connected to the evaluated variable node
is performed to obtain the total confidence level.

3. The result from point 2 is turned back into a 2-bit message through function
g(·), doing a comparation with threshold, TL, designed to decide the new bit
value and whether its confidence level is high or low:

bsbm = g(x) =


00, if TL > x ≥ 0
01, if x ≥ TL
10, if 0 > x > −TL
11, if x ≤ −TL
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Finally the Qn is calulated. These values are calculated as the addition of
the channel information and the incoming check-to-variable messages, without
excluding the intrinsic information (note that in this case Qn = Qm,n).

Algorithm 3 Optimized 2 bit Min-Sum decoding algorithm.

Input : Q
(0)
n = Ln = bsbm, where

bs = sign(Ln)

bm =

{
1, if |Ln| > Ty

0, otherwise
Iterative process
for i = 0→ Itmax − 1 do

Check-node update

1 R(i)
m,n =

∏
n′∈N(m)\n

sign(Q
(i−1)

n′,m ) min
n′∈N(m)\n

|Q(i−1)

n′,m |

Variable-node update

2 Q(i)
n = Q(i)

m,n = g(f(Ln) + α
∑

m∈M(n)

f(R(i)
m,n))

Tentative decoding

3 x̂
(i)
n =

{
1, Q

(i)
n < 0

0, Q
(i)
n ≥ 0, n ∈ {0, ..., N − 1}

4 sm =
∑

0≤n≤N−1

⊕x̂(i)n hm,n =
∑

n∈Nm

⊕x̂(i)n , m ∈ {0, ...,M − 1}

if (s(i) = 0) then {SKIP}
end
Output : x̂

Optimized 2-bit Min-Sum decoding algorithm significantly reduces the complexity,
the hardware resources and the wiring congestion due to the use of only 2 bits
for each message. The equations for the check-to-variable and variable-to-check
require very simple combinatorial logic computations, which means a reduction
of logic gates in both computational units. In addition, using 2 bits for message
exchange, a large number of memory resources are reduced compared to SPA and
MSA. It should be pointed out that Optimized 2 bit Min-Sum decoding algorithm
is not well suited for decoding LDPC codes with very low column weights (2 or 3)
because of the large performance loss compared to SPA.
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1.4.3.1. Example 3. Optimized 2-bit Min-Sum algorithm

In this example we assume the same conditions and input values (LLR) as the
previous examples. Also, we use a scale factor α = 0.75 and TY = 1.5, WH = 5,
WL = 1 and TL = 3.

n = 0 n = 1 n = 2

m = 0

n = 3 n = 4

m = 1

n = 5 n = 6

m = 2

n = 0 n = 1 n = 2

m = 0

n = 3 n = 4

m = 1

n = 5 n = 6

m = 2

S0 = 1 S1 = 1 S2 = 1

01

01

10 01

10 01

01 0110

10

10

01 10

01 10

10 1001

+15 +15 +15 -1 +15 +15 +15

First iteration

01Q(0)
n: 01 01 01 01 01 01

+15 +15 +15 -1 +15 +15 +15

Figure 1.20: MS2-bit example. First iteration.

Like in the previous examples, variable nodes are loaded with the received LLR
values. Then, messages are sent from variable nodes to check nodes, computing
the syndromes:

s0 = x̂
(0)
0 ⊕ x̂

(0)
1 ⊕ x̂

(0)
3 = 0⊕ 0⊕ 1 = 1

s1 = x̂
(0)
2 ⊕ x̂

(0)
3 ⊕ x̂

(0)
4 = 0⊕ 1⊕ 0 = 1

s2 = x̂
(0)
3 ⊕ x̂

(0)
5 ⊕ x̂

(0)
6 = 1⊕ 0⊕ 0 = 1
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where

x̂(0)n =

{
1, Q

(0)
n < 0

0, Q
(0)
n ≥ 0

After that, the value that will satisfy each of the parity-check equations is
computed. Considering that the incoming messages from the variable node can
have an error (processing only the information from the neighbours), the sign of
the message from the check node to the variable node is computed using:

sgn(R(i)
m,n) = sgn(Q(i−1)

n,m )⊕ Sm

Therefore, by applying this equation we obtain:

sgn(R
(0)
0,0) = sgn(Q

(0)
0,0)⊕ S0 = 0⊕ 1 = 1

sgn(R
(0)
0,1) = sgn(Q

(0)
1,0)⊕ S0 = 0⊕ 1 = 1

sgn(R
(0)
0,3) = sgn(Q

(0)
3,0)⊕ S0 = 1⊕ 1 = 0

sgn(R
(0)
1,2) = sgn(Q

(0)
2,1)⊕ S1 = 0⊕ 1 = 1

sgn(R
(0)
1,3) = sgn(Q

(0)
3,1)⊕ S1 = 1⊕ 1 = 0

sgn(R
(0)
1,4) = sgn(Q

(0)
4,1)⊕ S1 = 0⊕ 1 = 1

sgn(R
(0)
2,3) = sgn(Q

(0)
3,2)⊕ S2 = 1⊕ 1 = 0

sgn(R
(0)
2,5) = sgn(Q

(0)
5,2)⊕ S2 = 0⊕ 1 = 1

sgn(R
(0)
2,6) = sgn(Q

(0)
6,2)⊕ S2 = 0⊕ 1 = 1

In Fig. 1.20, we can see that the signs of the messages exchanged are the same as
the previous results. The magnitude of the check-node outputs can be computed
as the minimum of the absolute value of the neighbour messages:
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|R(0)
0,0| = min(|Q(0)

1,0|, |Q
(0)
3,0|) = 0

|R(0)
0,1| = min(|Q(0)

0,0|, |Q
(0)
3,0|) = 0

|R(0)
0,3| = min(|Q(0)

0,0|, |Q
(0)
1,0|) = 0

|R(0)
1,2| = min(|Q(0)

3,1|, |Q
(0)
4,1|) = 0

|R(0)
1,3| = min(|Q(0)

2,1|, |Q
(0)
4,1|) = 0

|R(0)
1,4| = min(|Q(0)

2,1|, |Q
(0)
3,1|) = 0

|R(0)
2,3| = min(|Q(0)

5,2|, |Q
(0)
6,2|) = 0

|R(0)
2,5| = min(|Q(0)

3,2|, |Q
(0)
6,2|) = 0

|R(0)
2,6| = min(|Q(0)

3,2|, |Q
(0)
5,2|) = 0

Finally, the tentative decoding is computed by adding the LLR value received from
the channel to the incoming check-to-variable node messages as follows:

Q
(0)
0 = g(f(L0(y0)) + (α · f(R

(0)
0,0)) = g(5 + (0.75 · (−1))) = g(+4.25) = 01

Q
(0)
1 = g(f(L1(y1)) + (α · f(R

(0)
0,1)) = g(5 + (0.75 · (−1))) = g(+4.25) = 01

Q
(0)
2 = g(f(L2(y2)) + (α · f(R

(0)
1,2)) = g(5 + (0.75 · (−1))) = g(+4.25) = 01

Q
(0)
3 = g(f(L3(y3))+(α·f(R

(0)
0,3+R

(0)
1,3+R

(0)
2,3))) = g(−1+(0.75·(5+5+5))) = g(+10.25) = 01

Q
(0)
4 = g(f(L4(y4)) + (α · f(R

(0)
1,4)) = g(5 + (0.75 · (−1))) = g(+4.25) = 01

Q
(0)
5 = g(f(L5(y5)) + (α · f(R

(0)
2,5)) = g(5 + (0.75 · (−1))) = g(+4.25) = 01

Q
(0)
6 = g(f(L6(y6)) + (α · f(R

(0)
2,6)) = g(5 + (0.75 · (−1))) = g(+4.25) = 01

where f(x) =


WL, if x = 00
WH , if x = 01
−WL, if x = 10
−WH , if x = 11
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1.4 Soft-decision decoding algorithms

and g(x) =


00, if TL > x ≥ 0
01, if x ≥ TL
10, if 0 > x > −TL
11, if x ≤ −TL

Performing a second iteration:

n = 0 n = 1 n = 2 n = 3 n = 4 n = 5 n = 6

m = 0 m = 1 m = 2
S0 = 0 S1 = 0 S2 = 0

01

01

01 01

01 01

01 01
01

Second iteration

n = 0 n = 1 n = 2 n = 3 n = 4 n = 5 n = 6

m = 0 m = 1 m = 2

01

01

01 01

01 01

01 0101

+15 +15 +15 -1 +15 +15 +15

01Q(1)
n: 01 01

HD: 0 0 0
01 01 01 01
0 0 0 0

+15 +15 +15 -1 +15 +15 +15

Figure 1.21: MS2-bit example. Second iteration TY = 1.5.

The messages computed in each variable node are sent from variable nodes to
check nodes, computing the syndromes:
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Chapter 1. Backgound concepts for low-density parity-check decoders

s0 = x̂
(1)
0 ⊕ x̂

(1)
1 ⊕ x̂

(1)
3 = 0⊕ 0⊕ 0 = 0

s1 = x̂
(1)
2 ⊕ x̂

(1)
3 ⊕ x̂

(1)
4 = 0⊕ 0⊕ 0 = 0

s2 = x̂
(1)
3 ⊕ x̂

(1)
5 ⊕ x̂

(1)
6 = 0⊕ 0⊕ 0 = 0

where

x̂(1)n =

{
1, Q

(1)
n < 0

0, Q
(1)
n ≥ 0

Once the syndromes are calculated, the value that will satisfy each of the
parity-check equations is computed. On the one hand, the sign is processed:

sgn(R
(1)
0,0) = sgn(Q

(1)
0,0)⊕ s0 = 0⊕ 0 = 0

sgn(R
(1)
0,1) = sgn(Q

(1)
1,0)⊕ s0 = 0⊕ 0 = 0

sgn(R
(1)
0,3) = sgn(Q

(1)
3,0)⊕ s0 = 0⊕ 0 = 0

sgn(R
(1)
1,2) = sgn(Q

(1)
2,1)⊕ s1 = 0⊕ 0 = 0

sgn(R
(1)
1,3) = sgn(Q

(1)
3,1)⊕ s1 = 0⊕ 0 = 0

sgn(R
(1)
1,4) = sgn(Q

(1)
4,1)⊕ s1 = 0⊕ 0 = 0

sgn(R
(1)
2,3) = sgn(Q

(1)
3,2)⊕ s2 = 0⊕ 0 = 0

sgn(R
(1)
2,5) = sgn(Q

(1)
5,2)⊕ s2 = 0⊕ 0 = 0

sgn(R
(1)
2,6) = sgn(Q

(1)
6,2)⊕ s2 = 0⊕ 0 = 0

On the other hand, the computation of the magnitude of the messages is done as
follows:
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1.4 Soft-decision decoding algorithms

|R(1)
0,0| = min(|Q(1)

1,0|, |Q
(1)
3,0|) = 1

|R(1)
0,1| = min(|Q(1)

0,0|, |Q
(1)
3,0|) = 1

|R(1)
0,3| = min(|Q(1)

0,0|, |Q
(1)
1,0|) = 1

|R(1)
1,2| = min(|Q(1)

3,1|, |Q
(1)
4,1|) = 1

|R(1)
1,3| = min(|Q(1)

2,1|, |Q
(1)
4,1|) = 1

|R(1)
1,4| = min(|Q(1)

2,1|, |Q
(1)
3,1|) = 1

|R(1)
2,3| = min(|Q(1)

5,2|, |Q
(1)
6,2|) = 1

|R(1)
2,5| = min(|Q(1)

3,2|, |Q
(1)
6,2|) = 1

|R(1)
2,6| = min(|Q(1)

3,2|, |Q
(1)
5,2|) = 1

In this second iteration the reliability values for computing the tentative decoding
are:

Q
(1)
0 = g(f(L0(y0)) + (α · f(R

(1)
0,0)) = g(5 + (0.75 · (5))) = g(+8.75) = 01

Q
(1)
1 = g(f(L1(y1)) + (α · f(R

(1)
0,1)) = g(5 + (0.75 · (5))) = g(+8.75) = 01

Q
(1)
2 = g(f(L2(y2)) + (α · f(R

(1)
1,2)) = g(5 + (0.75 · (5))) = g(+8.75) = 01

Q
(1)
3 = g(f(L3(y3))+(α·f((R

(1)
0,3+R

(1)
1,3+R

(1)
2,3))) = g(−1+(0.75·(5+5+5))) = g(+10.25) = 01

Q
(1)
4 = g(f(L4(y4)) + (α · f(R

(1)
1,4)) = g(5 + (0.75 · (5))) = g(+8.75) = 01

Q
(1)
5 = g(f(L5(y5)) + (α · f(R

(1)
2,5)) = g(5 + (0.75 · (5))) = g(+8.75) = 01

Q
(1)
6 = g(f(L6(y6)) + (α · f(R

(1)
2,6)) = g(5 + (0.75 · (5))) = g(+8.75) = 01

where f(x) =


WL, if x = 00
WH , if x = 01
−WL, if x = 10
−WH , if x = 11

47



Chapter 1. Backgound concepts for low-density parity-check decoders

and g(x) =


00, if TL > x ≥ 0
01, if x ≥ TL
10, if 0 > x > −TL
11, if x ≤ −TL

Finally, it can be checked that all the syndromes are satisfied and, hence, the code
word is corrected. The error in variable node n = 3 has been corrected, flipping the
sign of the node from negative to positive. All the Qn messages are now positive,
and all the hard-decision messages are zero, as shown in Fig. 1.21.

If instead of using TY = 1.5 we would have used TY = 3/8, the sign of the variable
node three would not have been corrected as shown in Fig. 1.22. The reason is
that because this threshold TY is not optimal for this code as shown in Fig. 1.22.
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n = 0 n = 1 n = 2

m = 0

n = 3 n = 4

m = 1

n = 5 n = 6

m = 2

n = 0 n = 1 n = 2

m = 0

n = 3 n = 4

m = 1

n = 5 n = 6

m = 2

n = 0 n = 1 n = 2 n = 3 n = 4 n = 5 n = 6

S0 = 1 S1 = 1 S2 = 1

m = 0 m = 1 m = 2
S0 = 0 S1 = 0 S2 = 0

01

01

11 01

11 01

01 0111

11

11

01 11

01 11

11 1101

00

00

01 00

01 00

00 00
01

+15 +15 +15 -1 +15 +15 +15

First iteration

Second iteration

n = 0 n = 1 n = 2 n = 3 n = 4 n = 5 n = 6

m = 0 m = 1 m = 2

00

00

00 00

00 00

00 0000

+15 +15 +15 -1 +15 +15 +15

01P: 01 01
HD: 0 0 0

10 01 01 01
0 0 0 0

00P: 00 00 01 00 00 00

+15 +15 +15 -1 +15 +15 +15

+15 +15 +15 -1 +15 +15 +15

Figure 1.22: MS2-bit example. Second iteration TY = 3/8.
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Chapter 1. Backgound concepts for low-density parity-check decoders

1.4.4. Performance comparison of soft-decision LDPC decoders

Fig. 1.23 shows the BER performance of the previous algorithms: SPA, MSA
and Optimized 2-bit MSA. The code used to this simulation is the quasi-cyclic
(2048, 1723) RS-LDPC with dv = 6 and dc = 32 adopted for 10GBASE-T.
BPSK modulation and AWGN channel are assumed and the maximum number of
iterations is set to 30.
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αMSA (α = 0.75)
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Figure 1.23: SPA, MSA and Optimized 2-bits MSA performance.

In Fig. 1.23 two regions can be observed. The first one is called waterfall region,
which indicates the decoding quality of the algorithm (algorithm performance).
The second one is in the lower part of the curve where the slope decreases, called
error floor, which indicates that the algorithm has reached a point at which it is
not able to increase the rate of corrected errors even with larger Eb/N0. This error
floor can be caused by the structure of the code or by the decoding algorithms.

On the one hand, the best result obtained in the waterfall region has been with
SPA, at the expense of the highest complexity for the CNU, as explained before.
In Fig. 1.23, SPA outperforms MSA by 0.1 dB and Optimized 2-bit MSA by 0.7
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1.5 Hard-decision decoding algorithms

dB at BER 10−7. Also Optimized 2-bit MSA scheme has a performance loss of
0.5 dB from MSA at BER 10−7 and note that its slope is worse than the others.

On the other hand, as can be observed in Fig. 1.23, both MSA and Optimized
2-bit MSA have error floor at BER 10−10 and at BER 10−9, respectively.

1.5. Hard-decision decoding algorithms

Reliability-based iterative majority-logic decoding (RBI-MLGD) algorithms [29],
[30] for LDPC codes represent a very interesting type of alternatives to
decoders derived from the SPA [15] due to serveral reasons. The first one is
that majority-logic decoders do not require soft information based on channel
information at each iteration. Unlike SPA or MSA [16], [17], majority-logic
algorithms do not compute soft-decision information at the check-node, they only
perform hard-decision operations which reduce significantly the overall complexity.
The second reason is that the message exchanged between VN and CN is of just
one bit: the bit estimation done in the different edges. This advantage has a
great impact when the decoder is implemented in hardware, as more than 80% of
the delay and hence 80% of the speed is limited by routing [31], and routing is
proportional to the number of bits of the exchanged messages.

Despite the previously mentioned advantages, majority-logic decoders have also
some serious limitations: i) the BER performance and; ii) the degree distribution of
the code to be decoded. For codes with a construction method based on Euclidean
Geometry (EG codes) [11], the performance is very close to SPA and MSA [29], as
EG ones are majority-logic decodable codes. However, when codes with different
kinds of construction methods [8] - [10] are decoded with RBI-MLGD algorithms
(even when the degree distribution is similar to an EG code) a notable performance
loss in the BER curve is introduced. This performance loss can be greater than
1.5 dB compared to MSA. On the other hand, the degree distribution is crucial
if RBI-MLGD algorithms are to be used. If the variable-node degree (dv) is not
large enough (at least dv = 10), the RBI-MLGD is not able to correct most of the
errors, introducing an early degradation at a BER higher than 10−5 [30], which
makes it impractical for most modern communication or storage systems. The two
previous problems prevent majority-logic algorithms from being applied in many
systems, due to the fact that the hardware implementations of decoders usually
prefer low dv.
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Chapter 1. Backgound concepts for low-density parity-check decoders

1.5.1. Reliability-Based Iterative Majority-Logic algorithm

RBI-MLGD reaches an efficient trade-off between decoding performance and
computational complexity. This algorithm performs well for structured
majority-logic decodable LDPC codes with low decoding complexity.

In Algorithm 4 the RBI-MLGD from [29] is described. This algorithm is divided
into three main parts: i) initialization; ii) CN update; and iii) VN update.

Algorithm 4 RBI-MLGD.

Input : Q
(0)
n = %(yn), with n ∈ {0, ..., N − 1}

Iterative process
for i = 0→ Itmax − 1 do

Check-node update

1 x̂
(i)
n =

{
1, Q

(i)
n ≥ 0

0, otherwise, n ∈ {0, ..., N − 1}
2 s(i)m =

∑
0≤n≤N−1

⊕x̂(i)n hmn =
∑

n∈Nm

⊕x̂(i)n , m ∈ {0, ...,M − 1}

3 σ(i)
mn =

∑
n′∈Nm\n

⊕x̂(i)n′ = s(i)m ⊕ x̂(i)n , m ∈ {0, ...,M − 1}

Variable-node update

4 R(i)
n =

∑
m∈Mn

(2σ(i)
mn − 1), n ∈ {0, ..., N − 1}

5 Q(i+1)
n = Q(i)

n +R(i)
n , n ∈ {0, ..., N − 1}

Tentative decoding

if (s(i) = 0) then {SKIP}
end
Output : x̂

For the initialization, the RBI-MLGD quantizes the received vectors by using the
% function. The % function saturates the maximum amplitudes of the received
sequence and normalizes them by performing a division by ∆ (for more details we
refer to [30]). The output of the % function is taken as reliability information to

initialize the variable-nodes at iteration zero, Q
(0)
n .

During the check-node update, the syndromes of the M parity check equations
are computed. If the parity check equations are satisfied (sm = 0 in Step 2) the
new estimated bits are equal to the old ones (σmn = x̂n, Step 3), otherwise, the
estimated bits are flipped (σmn = sm⊕ x̂n = 1⊕ x̂n, Step 3). These new estimated
bits (σmn) can be interpreted as candidates in the voting process performed by
the majority-logic at the variable-nodes.

At the variable-node, σmn is transformed from bits to votes. According to Step 4
in Algorithm 4, the amplitude of the vote will be -1 if σmn = 0, and it will be +1 if
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1.5 Hard-decision decoding algorithms

σmn = 1. Depending on the majority vote, Rn will have the same sign as x̂n or not.
The recount of the votes (Rn) is added to Qn, which stores the channel information
(%(yn)) and the votes in the previous iterations (Step 5). The purpose of the votes
is trying to correct or validate the channel information (%(ym)) depending on the
number of parity check-nodes that are unsatisfied. In this case the VN passes full
messages (the incoming check-to-variable messages for each VN added to the value
received from the channel for that VN) (Qn) without excluding the value of the
CN to which the message is sent.

The algorithm stops when a maximum number of iterations is reached or all the
syndromes are equal to zero (tentative decoding step).

The first important idea derived from RBI-MLGD is that the message-passing of
this algorithm is binary. As it can be seen, the information from check-node to
variable-node are the candidate bits σmn, and the variable-node to check-node
messages are the hard-decision bits x̂n. This is important to keep complexity low
and reduce routing (increase speed) in hardware implementations [31].

The second important idea that can be extracted from Algorithm 4 is that in the
iterative process two different domains are mixed: the soft-information from the
channel and the votes. The votes, which are mapped in the case of RBI-MLGD
algorithm to +1 and -1, are an abstract representation of the reliability of a decision
based on the check-node information. In some cases, this uncorrelation between
the vote and the channel information introduces performance loss.

1.5.1.1. Example 5. Reliability-Based Iterative Majority-Logic
algorithm

Let us assume that a bit sequence of seven zeros is transmitted on a channel with
errors. The magnitude of the LLR is correlated with the magnitude of the received
level. We take the positive sign as a logic 0 and the negative sign as a logic 1.

In this example LLR values are computed as L0(y0) = −15 = n0, L1(y1) = −15 =
n1, L2(y2) = −15 = n2, L3(y3) = +1 = n3, L4(y4) = −15 = n4, L5(y5) = −15 =
n5 and L6(y6) = −15 = n6.
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n = 0 n = 1 n = 2

m = 0

n = 3 n = 4

m = 1

n = 5 n = 6

m = 2

n = 0 n = 1 n = 2

m = 0

n = 3 n = 4

m = 1

n = 5 n = 6

m = 2

S0 = 1 S1 = 1 S2 = 1

1

1

0 0

1 0

0 01

1

1

0 1

0 1

1 10

+15 +15 -15 +1 -15 -15 -15

First iteration

-14Q(1)
n: -14 -14 -2 -14 -14 -14

-15 -15 -15 +1 -15 -15 -15

Figure 1.24: RBI-MLGD example. First iteration.

First, the variable nodes load these received LLR values. After this, messages are
sent from VNs to CNs, and the syndromes are computed. Applying the syndrome
equation the following results are obtained:

s0 = x̂
(0)
0 ⊕ x̂

(0)
1 ⊕ x̂

(0)
3 = 0⊕ 0⊕ 1 = 1

s1 = x̂
(0)
2 ⊕ x̂

(0)
3 ⊕ x̂

(0)
4 = 0⊕ 1⊕ 0 = 1

s2 = x̂
(0)
3 ⊕ x̂

(0)
5 ⊕ x̂

(0)
6 = 1⊕ 0⊕ 0 = 1

where
x̂(0)n =

{
1, Q

(0)
n ≥ 0

0, otherwise
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Once the syndromes are computed, the value that will satisfy each of the
parity-check equations is computed. Considering that the incoming messages from
the VN can have an error (processing only the information from the neighbours),
the following equation is applied to determine the reliability of the message from
the check node to the variable node:

σ(i)
m,n = s(i)m ⊕ x̂(i)n ,m ∈ 0, ...,M − 1

So applying this equation in this example we obtain:

σ
(0)
0,0 = s

(0)
0 ⊕ x̂

(0)
0 = 1⊕ 0 = 1

σ
(0)
0,1 = s

(0)
0 ⊕ x̂

(0)
1 = 1⊕ 0 = 1

σ
(0)
0,3 = s

(0)
0 ⊕ x̂

(0)
3 = 1⊕ 1 = 0

σ
(0)
1,2 = s

(0)
1 ⊕ x̂

(0)
2 = 1⊕ 0 = 1

σ
(0)
1,3 = s

(0)
1 ⊕ x̂

(0)
3 = 1⊕ 1 = 0

σ
(0)
1,4 = s

(0)
1 ⊕ x̂

(0)
4 = 1⊕ 0 = 1

σ
(0)
2,3 = s

(0)
2 ⊕ x̂

(0)
3 = 1⊕ 1 = 0

σ
(0)
2,5 = s

(0)
2 ⊕ x̂

(0)
5 = 1⊕ 0 = 1

σ
(0)
2,6 = s

(0)
2 ⊕ x̂

(0)
6 = 1⊕ 0 = 1

The previous results can be compared to the reliability of the message exchange
in Fig. 1.24.

Finally, the tentative decoding is computed by adding the value received from the
channel to the incoming check-to-variable node messages as follows:
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Q
(1)
0 = Q

(0)
0 + (2 · σ(0)

0,0 − 1) = (−15) + 1 = −14

Q
(1)
1 = Q

(0)
1 + (2 · σ(0)

0,1 − 1) = (−15) + 1 = −14

Q
(1)
2 = Q

(0)
2 + (2 · σ(0)

1,2 − 1) = (−15) + 1 = −14

Q
(1)
3 = Q

(0)
3 +(2·σ(0)

0,3−1)+(2·σ(0)
1,3−1)+(2·σ(0)

2,3−1) = 1+(−1)+(−1)+(−1) = −2

Q
(1)
4 = Q

(0)
4 + (2 · σ(0)

1,4 − 1) = (−15) + 1 = −14

Q
(1)
5 = Q

(0)
5 + (2 · σ(0)

2,5 − 1) = (−15) + 1 = −14

Q
(1)
6 = Q

(0)
6 + (2 · σ(0)

2,6 − 1) = (−15) + 1 = −14

Performing a second iteration:

n = 0 n = 1 n = 2 n = 3 n = 4 n = 5 n = 6

m = 0 m = 1 m = 2
S0 = 0 S1 = 0 S2 = 0

0

0

0 0

0 0

0 0
0

Second iteration

n = 0 n = 1 n = 2 n = 3 n = 4 n = 5 n = 6

m = 0 m = 1 m = 2

0

0

0 0

0 0

0 00

-14 -14 -14 -2 -14 -14 -14

-15Q(2)
n: -15 -15 -5 -15 -15 -15

-14 -14 -14 -2 -14 -14 -14

Figure 1.25: RBI-MLGD example. Second iteration.
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The messages computed in each VN are sent from VNs to CNs, the syndromes are
computed.

s0 = x̂
(1)
0 ⊕ x̂

(1)
1 ⊕ x̂

(1)
3 = 0⊕ 0⊕ 0 = 0

s1 = x̂
(1)
2 ⊕ x̂

(1)
3 ⊕ x̂

(1)
4 = 0⊕ 0⊕ 0 = 0

s2 = x̂
(1)
3 ⊕ x̂

(1)
5 ⊕ x̂

(1)
6 = 0⊕ 0⊕ 0 = 0

where
x̂(1)n =

{
1, Q

(1)
n ≥ 0

0, otherwise

Once the syndromes are computed, the value that will satisfy each of the
parity-check equations is computed. The computation of the magnitude of the
messages is done as follows:

σ
(1)
0,0 = s

(1)
0 ⊕ x̂

(1)
0 = 0⊕ 0 = 0

σ
(1)
0,1 = s

(1)
0 ⊕ x̂

(1)
1 = 0⊕ 0 = 0

σ
(1)
0,3 = s

(1)
0 ⊕ x̂

(1)
3 = 0⊕ 0 = 0

σ
(1)
1,2 = s

(1)
1 ⊕ x̂

(1)
2 = 0⊕ 0 = 0

σ
(1)
1,3 = s

(1)
1 ⊕ x̂

(1)
3 = 0⊕ 0 = 0

σ
(1)
1,4 = s

(1)
1 ⊕ x̂

(1)
4 = 0⊕ 0 = 0

σ
(1)
2,3 = s

(1)
2 ⊕ x̂

(1)
3 = 0⊕ 0 = 0

σ
(1)
2,5 = s

(1)
2 ⊕ x̂

(1)
5 = 0⊕ 0 = 0

σ
(1)
2,6 = s

(1)
2 ⊕ x̂

(1)
6 = 0⊕ 0 = 0

In this second iteration the reliability values for computing the tentative decoding
are:
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Q
(2)
0 = Q

(1)
0 + (2 · σ(1)

0,0 − 1) = (−14) + (−1) = −15

Q
(2)
1 = Q

(1)
1 + (2 · σ(1)

0,1 − 1) = (−14) + (−1) = −15

Q
(2)
2 = Q

(1)
2 + (2 · σ(1)

1,2 − 1) = (−14) + (−1) = −15

Q
(2)
3 = Q

(1)
3 +(2·σ(1)

0,3−1)+(2·σ(1)
1,3−1)+(2·σ(1)

2,3−1) = (−2)+(−1)+(−1)+(−1) = −5

Q
(2)
4 = Q

(1)
4 + (2 · σ(1)

1,4 − 1) = (−14) + (−1) = −15

Q
(2)
5 = Q

(1)
5 + (2 · σ(1)

2,5 − 1) = (−14) + (−1) = −15

Q
(2)
6 = Q

(1)
6 + (2 · σ(1)

2,6 − 1) = (−14) + (−1) = −15

Finally, it can be checked that all the syndromes are satisfied and, hence, the code
word is corrected. The error in variable node n = 3 has been corrected, flipping the
sign of the node from positive to negative. All the Qn messages are now negative,
and all the hard-decision messages are zero, as shown in Fig. 1.25.

1.5.2. Modified Reliability-Based Iterative Majority-Logic
algorithm

Due to the performance loss introduced by the uncorrelation between the vote
and the channel information, authors from [30] proposed a modified RBI-MLGD
(MRBI-MLGD) algorithm trying to solve this problem.

The differences between MRBI-MLGD and RBI-MLGD are located at the
variable-node update equations. In order to match the concept of the votes with
the information from the channel, a scaling factor α is introduced in Step 4 [30].
This scaling factor compensates the differences between the channel information
and the constant amplitude of the votes, trying to balance the importance of
the hard-decision information (σmn from the check-node) and the soft-decision
(received y sequence), Eq. 1.4.

R(i)
n = [αR(i)

n ] = [α
∑
m∈Mn

(2σ(i)
mn − 1)] (1.4)

Moreover, Step 5 is also modified as shown in Eq. 1.5.

Q(i+1)
n = Q(0)

n +R(i)
n , n ∈ 0, ..., N − 1, (1.5)
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where Qn contains the reliability value of each bit in the tentative decoding
codeword.

This modification introduces an improvement of the coding gain as the ratio
“votes-soft input” is closer to the one found in the min-sum algorithm, this is
because it mimics the update performed in turbo decoders in which the output of
a variable-node is %(ym) plus the information from the check-node [30].

Algorithm 5 MRBI-MLGD.

Input : Q
(0)
n = %(yn), with n ∈ {0, ..., N − 1}

Iterative process
for i = 0→ Itmax − 1 do

Check-node update

1 x̂
(i)
n =

{
1, Q

(i)
n ≥ 0

0, otherwise, n ∈ {0, ..., N − 1}
2 s(i)m =

∑
0≤n≤N−1

⊕x̂(i)n hmn =
∑

n∈Nm

⊕x̂(i)n , m ∈ {0, ...,M − 1}

3 σ(i)
mn =

∑
n′∈Nm\n

⊕x̂(i)n′ = s(i)m ⊕ x̂(i)n , m ∈ {0, ...,M − 1}

Variable-node update

4 R(i)
n = [αR(i)

n ] = [α
∑

m∈Mn

(2σ(i)
mn − 1)], n ∈ {0, ..., N − 1}

5 Q(i+1)
n = Q(0)

n +R(i)
n , n ∈ {0, ..., N − 1}

Tentative decoding

if (s(i) = 0) then {SKIP}
end
Output : x̂

Unfortunately, MRBI-MLGD does not solve the problem of working with codes
with a degree distribution of low dv. As it is shown in [30], MRBI-MLGD algorithm
introduces an important degradation in performance, not being able to reach a bit
error rate below 10−3 when the degree of variable-node is low.

1.5.2.1. Example 6. Modified Reliability-Based Iterative
Majority-Logic algorithm

In this example we assume the same condition as in Example 5, with the same
input values (LLR) and in this case we use a scale factor α = 0.5.
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n = 0 n = 1 n = 2

m = 0

n = 3 n = 4

m = 1

n = 5 n = 6

m = 2

n = 0 n = 1 n = 2

m = 0

n = 3 n = 4

m = 1

n = 5 n = 6

m = 2

S0 = 1 S1 = 1 S2 = 1

0

0

1 0

1 0

0 01

1

1

0 1

0 1

1 10

-15 -15 -15 +1 -15 -15 -15

First iteration

-14.5Q(1)
n: -14.5 -14.5 -0.5 -14.5 -14.5 -14.5

-15 -15 -15 +1 -15 -15 -15

Figure 1.26: MRBI-MLGD example. First iteration.

Like in the previous example, first the LLR values are loaded in the VNs. Once
this is done, messages are sent from VNs to CNs and the syndromes are computed:

s0 = x̂
(0)
0 ⊕ x̂

(0)
1 ⊕ x̂

(0)
3 = 0⊕ 0⊕ 1 = 1

s1 = x̂
(0)
2 ⊕ x̂

(0)
3 ⊕ x̂

(0)
4 = 0⊕ 1⊕ 0 = 1

s2 = x̂
(0)
3 ⊕ x̂

(0)
5 ⊕ x̂

(0)
6 = 1⊕ 0⊕ 0 = 1

where
x̂(0)n =

{
1, Q

(0)
n ≥ 0

0, otherwise

With the syndromes computed, the value that will satisfy each of the parity-check
equations is calculated. Considering that the incoming messages from the VN can
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have an error (processing only the information from the neighbours), the following
equation is applied to determine the magnitude of the messages from the CN to
VN:

σ(i)
m,n = s(i)m ⊕ x̂(i)n ,m ∈ 0, ...,M − 1

So the magnitude is computed as:

σ
(0)
0,0 = s

(0)
0 ⊕ x̂

(0)
0 = 1⊕ 0 = 1

σ
(0)
0,1 = s

(0)
0 ⊕ x̂

(0)
1 = 1⊕ 0 = 1

σ
(0)
0,3 = s

(0)
0 ⊕ x̂

(0)
3 = 1⊕ 1 = 0

σ
(0)
1,2 = s

(0)
1 ⊕ x̂

(0)
2 = 1⊕ 0 = 1

σ
(0)
1,3 = s

(0)
1 ⊕ x̂

(0)
3 = 1⊕ 1 = 0

σ
(0)
1,4 = s

(0)
1 ⊕ x̂

(0)
4 = 1⊕ 0 = 1

σ
(0)
2,3 = s

(0)
2 ⊕ x̂

(0)
3 = 1⊕ 1 = 0

σ
(0)
2,5 = s

(0)
2 ⊕ x̂

(0)
5 = 1⊕ 0 = 1

σ
(0)
2,6 = s

(0)
2 ⊕ x̂

(0)
6 = 1⊕ 0 = 1

We can check the previous results with the magnitude of the message exchange in
Fig. 1.26.

Finally, the tentative decoding is computed by adding the value received from the
channel to the incoming check-to-variable node messages as follows:
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Q
(1)
0 = Q

(0)
0 + (α · (2 · σ(0)

0,0 − 1)) = (−15) + (0.5 · 1) = −14.5

Q
(1)
1 = Q

(0)
1 + (α · (2 · σ(0)

0,1 − 1)) = (−15) + (0.5 · 1) = −14.5

Q
(1)
2 = Q

(0)
2 + (α · (2 · σ(0)

1,2 − 1)) = (−15) + (0.5 · 1) = −14.5

Q
(1)
3 = Q

(0)
3 +(α·((2·σ(0)

0,3−1)+(2·σ(0)
1,3−1)+(2·σ(0)

2,3−1))) = 1+(0.5·((−1)+(−1)+(−1))) = −0.5

Q
(1)
4 = Q

(0)
4 + (α · (2 · σ(0)

1,4 − 1)) = (−15) + (0.5 · 1) = −14.5

Q
(1)
5 = Q

(0)
5 + (α · (2 · σ(0)

2,5 − 1)) = (−15) + (0.5 · 1) = −14.5

Q
(1)
6 = Q

(0)
6 + (α · (2 · σ(0)

2,6 − 1)) = (−15) + (0.5 · 1) = −14.5

Performing a second iteration:

n = 0 n = 1 n = 2 n = 3 n = 4 n = 5 n = 6

m = 0 m = 1 m = 2
S0 = 0 S1 = 0 S2 = 0

0

0

0 0

0 0

0 0
0

Second iteration

n = 0 n = 1 n = 2 n = 3 n = 4 n = 5 n = 6

m = 0 m = 1 m = 2

0

0

0 0

0 0

0 00

-15 -15 -15 +1 -15 -15 -15

-15.5Q(2)
n: -15.5 -15.5 -0.5 -15.5 -15.5 -15.5

-15 -15 -15 +1 -15 -15 -15

Figure 1.27: MRBI-MLGD example. Second iteration.
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The messages computed in each VN are sent from VNs to CNs, computing the
syndromes:

s0 = x̂
(1)
0 ⊕ x̂

(1)
1 ⊕ x̂

(1)
3 = 0⊕ 0⊕ 0 = 0

s1 = x̂
(1)
2 ⊕ x̂

(1)
3 ⊕ x̂

(1)
4 = 0⊕ 0⊕ 0 = 0

s2 = x̂
(1)
3 ⊕ x̂

(1)
5 ⊕ x̂

(1)
6 = 0⊕ 0⊕ 0 = 0

where
x̂(1)n =

{
1, Q

(1)
n ≥ 0

0, otherwise

Once the syndromes are computed, the value that will satisfy each of the
parity-check equations is processed. The computation of the magnitude of the
messages is done as follows:

σ
(1)
0,0 = s

(1)
0 ⊕ x̂

(1)
0 = 0⊕ 0 = 0

σ
(1)
0,1 = s

(1)
0 ⊕ x̂

(1)
1 = 0⊕ 0 = 0

σ
(1)
0,3 = s

(1)
0 ⊕ x̂

(1)
3 = 0⊕ 0 = 0

σ
(1)
1,2 = s

(1)
1 ⊕ x̂

(1)
2 = 0⊕ 0 = 0

σ
(1)
1,3 = s

(1)
1 ⊕ x̂

(1)
3 = 0⊕ 0 = 0

σ
(1)
1,4 = s

(1)
1 ⊕ x̂

(1)
4 = 0⊕ 0 = 0

σ
(1)
2,3 = s

(1)
2 ⊕ x̂

(1)
3 = 0⊕ 0 = 0

σ
(1)
2,5 = s

(1)
2 ⊕ x̂

(1)
5 = 0⊕ 0 = 0

σ
(1)
2,6 = s

(1)
2 ⊕ x̂

(1)
6 = 0⊕ 0 = 0

In this second iteration the reliability values for computing the tentative decoding
are:
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Q
(2)
0 = Q

(0)
0 + (α · (2 · σ(1)

0,0 − 1)) = (−15) + (0.5 · (−1)) = −15.5

Q
(2)
1 = Q

(0)
1 + (α · (2 · σ(1)

0,1 − 1)) = (−15) + (0.5 · (−1)) = −15.5

Q
(2)
2 = Q

(0)
2 + (α · (2 · σ(1)

1,2 − 1)) = (−15) + (0.5 · (−1)) = −15.5

Q
(2)
3 = Q

(0)
3 +(α·((2·σ(1)

0,3−1)+(2·σ(1)
1,3−1)+(2·σ(1)

2,3−1))) = 1+(0.5·((−1)+(−1)+(−1))) = −0.5

Q
(2)
4 = Q

(0)
4 + (α · (2 · σ(1)

1,4 − 1)) = (−15) + (0.5 · (−1)) = −15.5

Q
(2)
5 = Q

(0)
5 + (α · (2 · σ(1)

2,5 − 1)) = (−15) + (0.5 · (−1)) = −15.5

Q
(2)
6 = Q

(0)
6 + (α · (2 · σ(1)

2,6 − 1)) = (−15) + (0.5 · (−1)) = −15.5

Finally, it can be checked that all the syndromes are satisfied and, hence, the code
word is corrected. The error in VN n = 3 has been corrected, flipping the sign of
the node from positive to negative. All the Qn messages are now negative, and all
the hard-decision messages are zero, as shown in Fig. 1.27.

1.5.3. Reliability-Based Iterative Min-Sum algorithm

Reliability-based iterative min-sum decoding algorithm (RBI-MSD) is the
alternative proposed in [30] to avoid an early performance degradation. This
algorithm introduces soft-information and transforms the one-bit message-passing
decoder into an integer message-passing decoder increasing its complexity. This
algorithm also uses a scaling factor α to modify the total extrinsic information to
compensate the performance degradation as shown in Eq. 1.6:

R∼(i)n = [α
∑
m∈Mn

U (i)
mn], (1.6)

where U
(i)
mn is the extrinsic message passed from the m-th check node to the n-th

variable node at the i-th iteration. The integer message U
(i)
mn plays a role equivalent

to 2σ
(i)
mn − 1 in the RBI-MLGD and MRBI-MLGD algorithms:

U (i)
mn = (2σ(i)

mn − 1) min
n′∈Nm\n

|Q(i)
n′ |, (1.7)

being Q
(i)
n′ the reliability message of vn′ , which is always clipped into the interval

[-(2b−1 - 1),(2b−1 - 1)].
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Algorithm 6 RBI-MSD.

Input : Q
(0)
n = %(yn), with n ∈ {0, ..., N − 1}

Iterative process
for i = 0→ Itmax − 1 do

Check-node update

1 x̂
(i)
n =

{
1, Q

(i)
n ≥ 0

0, otherwise, n ∈ {0, ..., N − 1}
2 s(i)m =

∑
0≤n≤N−1

⊕x̂(i)n hmn =
∑

n∈Nm

⊕x̂(i)n , m ∈ {0, ...,M − 1}

3 σ(i)
mn =

∑
n′∈Nm\n

⊕x̂(i)n′ = s(i)m ⊕ x̂(i)n , m ∈ {0, ...,M − 1}

4 U (i)
mn = (2σ(i)

mn − 1) min
n′∈Nm\n

|Q(i)

n′ |

Variable-node update

5 R∼(i)
n = [α

∑
m∈Mn

U (i)
mn], n ∈ {0, ..., N − 1}

6 Q(i+1)
n = Q(0)

n +R∼(i)
n , n ∈ {0, ..., N − 1}

Tentative decoding

if (s(i) = 0) then {SKIP}
end
Output : x̂

The RBI-MSD algorithm differs from Min-Sum decoding algorithm in that
RBI-MSD passes full messages (the incoming check-to-variable messages for each
VN added to the value received from the channel for that VN) (Qn) without
excluding the value of the CN to which the message is directed.

1.5.3.1. Example 7. Reliability-Based Iterative Min-Sum algorithm

In this example we assume the same conditions and input values from the previous
examples. Also we use a scale factor α = 0.5.
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n = 0 n = 1 n = 2

m = 0

n = 3 n = 4

m = 1

n = 5 n = 6

m = 2

n = 0 n = 1 n = 2

m = 0

n = 3 n = 4

m = 1

n = 5 n = 6

m = 2

S0 = 1 S1 = 1 S2 = 1

0

0

1 0

1 0

0 01

+1

+1

-15 +1

-15 +1

+1 +1-15

-15 -15 -15 +1 -15 -15 -15

First iteration

-14.5Q(1)
n: -14.5 -14.5 -21.5 -14.5 -14.5 -14.5

-15 -15 -15 +1 -15 -15 -15

Figure 1.28: RBI-MSD example. First iteration.

Like in the previous examples, VNs are loaded with received LLR values. Then
messages are sent from VNs to CNs, computing the syndromes:

s0 = x̂
(0)
0 ⊕ x̂

(0)
1 ⊕ x̂

(0)
3 = 0⊕ 0⊕ 1 = 1

s1 = x̂
(0)
2 ⊕ x̂

(0)
3 ⊕ x̂

(0)
4 = 0⊕ 1⊕ 0 = 1

s2 = x̂
(0)
3 ⊕ x̂

(0)
5 ⊕ x̂

(0)
6 = 1⊕ 0⊕ 0 = 1

where
x̂(0)n =

{
1, Q

(0)
n ≥ 0

0, otherwise

After that, the value that will satisfy each of the parity-check equations is
computed. Considering that the incoming messages from the VN can have an error
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(processing only the information from the neighbours), the sign of the messages
from the CN to VN are computed using:

σ(i)
m,n = s(i)m ⊕ x̂(i)n ,m ∈ 0, ...,M − 1

Therefore, by applying this equation we obtain:

σ
(0)
0,0 = s

(0)
0 ⊕ x̂

(0)
0 = 1⊕ 0 = 1

σ
(0)
0,1 = s

(0)
0 ⊕ x̂

(0)
1 = 1⊕ 0 = 1

σ
(0)
0,3 = s

(0)
0 ⊕ x̂

(0)
3 = 1⊕ 1 = 0

σ
(0)
1,2 = s

(0)
1 ⊕ x̂

(0)
2 = 1⊕ 0 = 1

σ
(0)
1,3 = s

(0)
1 ⊕ x̂

(0)
3 = 1⊕ 1 = 0

σ
(0)
1,4 = s

(0)
1 ⊕ x̂

(0)
4 = 1⊕ 0 = 1

σ
(0)
2,3 = s

(0)
2 ⊕ x̂

(0)
3 = 1⊕ 1 = 0

σ
(0)
2,5 = s

(0)
2 ⊕ x̂

(0)
5 = 1⊕ 0 = 1

σ
(0)
2,6 = s

(0)
2 ⊕ x̂

(0)
6 = 1⊕ 0 = 1

In Fig. 1.28, we can see that the signs of the messages exchanged are the same as
the previous results. The magnitude of the CN outputs can be computed as the
minimum of the absolute value of the neighbours messages:
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U
(0)
0,0 = min(|Q(0)

1,0|, |Q
(0)
3,0| = 1

U
(0)
0,1 = min(|Q(0)

0,0|, |Q
(0)
3,0| = 1

U
(0)
0,3 = min(|Q(0)

0,0|, |Q
(0)
1,0| = 15

U
(0)
1,2 = min(|Q(0)

3,1|, |Q
(0)
4,1| = 1

U
(0)
1,3 = min(|Q(0)

2,1|, |Q
(0)
4,1| = 15

U
(0)
1,4 = min(|Q(0)

2,1|, |Q
(0)
3,1| = 1

U
(0)
2,3 = min(|Q(0)

5,2|, |Q
(0)
6,3| = 15

U
(0)
2,5 = min(|Q(0)

3,2|, |Q
(0)
6,2| = 1

U
(0)
2,6 = min(|Q(0)

3,2|, |Q
(0)
5,2| = 1

Finally, the tentative decoding is computed by adding the value received from the
channel to the incoming check-to-variable node messages as follows:

Q
(1)
0 = Q

(0)
0 + (α · U (0)

0,0 ) = (−15) + (0.5 · 1) = −14.5

Q
(1)
1 = Q

(0)
1 + (α · U (0)

0,1 ) = (−15) + (0.5 · 1) = −14.5

Q
(1)
2 = Q

(0)
2 + (α · U (0)

1,2 ) = (−15) + (0.5 · 1) = −14.5

Q
(1)
3 = Q

(0)
3 +(α·(U (0)

0,3 +U
(0)
1,3 +U

(0)
2,3 )) = 1+(0.5·((−15)+(−15)+(−15))) = −21.5

Q
(1)
4 = Q

(0)
4 + (α · U (0)

1,4 ) = (−15) + (0.5 · 1) = −14.5

Q
(1)
5 = Q

(0)
5 + (α · U (0)

2,5 ) = (−15) + (0.5 · 1) = −14.5

Q
(1)
6 = Q

(0)
6 + (α · U (0)

2,6 ) = (−15) + (0.5 · 1) = −14.5

Performing a second iteration:
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n = 0 n = 1 n = 2 n = 3 n = 4 n = 5 n = 6

m = 0 m = 1 m = 2
S0 = 0 S1 = 0 S2 = 0

0

0

0 0

0 0

0 0
0

Second iteration

n = 0 n = 1 n = 2 n = 3 n = 4 n = 5 n = 6

m = 0 m = 1 m = 2

-14.5

-14.5

-14.5 -14.5

-14.5 -14.5

-14.5 -14.5-14.5

-15 -15 -15 +1 -15 -15 -15

-22.25Q(2)
n: -22.25 -22.25 -20.75 -22.25 -22.25 -22.25

-15 -15 -15 +1 -15 -15 -15

Figure 1.29: RBI-MSD example. Second iteration.

The messages computed in each VN are sent from VNs to CNs, computing the
syndromes:

s0 = x̂
(1)
0 ⊕ x̂

(1)
1 ⊕ x̂

(1)
3 = 0⊕ 0⊕ 0 = 0

s1 = x̂
(1)
2 ⊕ x̂

(1)
3 ⊕ x̂

(1)
4 = 0⊕ 0⊕ 0 = 0

s2 = x̂
(1)
3 ⊕ x̂

(1)
5 ⊕ x̂

(1)
6 = 0⊕ 0⊕ 0 = 0

where
x̂(1)n =

{
1, Q

(1)
n ≥ 0

0, otherwise
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Once the syndromes are computed, the value that will satisfy each of the
parity-check equations is processed. The computation of the magnitude of the
messages is done as follows:

σ
(1)
0,0 = s

(1)
0 ⊕ x̂

(1)
0 = 0⊕ 0 = 0

σ
(1)
0,1 = s

(1)
0 ⊕ x̂

(1)
1 = 0⊕ 0 = 0

σ
(1)
0,3 = s

(1)
0 ⊕ x̂

(1)
3 = 0⊕ 0 = 0

σ
(1)
1,2 = s

(1)
1 ⊕ x̂

(1)
2 = 0⊕ 0 = 0

σ
(1)
1,3 = s

(1)
1 ⊕ x̂

(1)
3 = 0⊕ 0 = 0

σ
(1)
1,4 = s

(1)
1 ⊕ x̂

(1)
4 = 0⊕ 0 = 0

σ
(1)
2,3 = s

(1)
2 ⊕ x̂

(1)
3 = 0⊕ 0 = 0

σ
(1)
2,5 = s

(1)
2 ⊕ x̂

(1)
5 = 0⊕ 0 = 0

σ
(1)
2,6 = s

(1)
2 ⊕ x̂

(1)
6 = 0⊕ 0 = 0

On the other hand, the computation of the magnitude of the messages is done as
follows:

U
(1)
0,0 = min(|Q(1)

1,0|, |Q
(1)
3,0| = 14.5

U
(1)
0,1 = min(|Q(1)

0,0|, |Q
(1)
3,0| = 14.5

U
(1)
0,3 = min(|Q(1)

0,0|, |Q
(1)
1,0| = 14.5

U
(1)
1,2 = min(|Q(1)

3,1|, |Q
(1)
4,1| = 14.5

U
(1)
1,3 = min(|Q(1)

2,1|, |Q
(1)
4,1| = 14.5

U
(1)
1,4 = min(|Q(1)

2,1|, |Q
(1)
3,1| = 14.5

U
(1)
2,3 = min(|Q(1)

5,2|, |Q
(1)
6,3| = 14.5

U
(1)
2,5 = min(|Q(1)

3,2|, |Q
(1)
6,2| = 14.5

U
(1)
2,6 = min(|Q(1)

3,2|, |Q
(1)
5,2| = 14.5
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In this second iteration the reliability values for computing the tentative decoding
are:

Q
(2)
0 = Q

(0)
0 + (α · U (1)

0,0 ) = (−15) + (0.5 · (−14.5)) = −22.25

Q
(2)
1 = Q

(0)
1 + (α · U (1)

0,1 ) = (−15) + (0.5 · (−14.5)) = −22.25

Q
(2)
2 = Q

(0)
2 + (α · U (1)

1,2 ) = (−15) + (0.5 · (−14.5)) = −22.25

Q
(2)
3 = Q

(0)
3 +(α·(U (1)

0,3+U
(1)
1,3+U

(1)
2,3 )) = 1+(0.5·((−14.5)+(−14.5)+(−14.5))) = −20.75

Q
(2)
4 = Q

(0)
4 + (α · U (1)

1,4 ) = (−15) + (0.5 · (−14.5)) = −22.25

Q
(2)
5 = Q

(0)
5 + (α · U (1)

2,5 ) = (−15) + (0.5 · (−14.5)) = −22.25

Q
(2)
6 = Q

(0)
6 + (α · U (1)

2,6 ) = (−15) + (0.5 · (−14.5)) = −22.25

Finally, it can be checked that all the syndromes are satisfied and, hence, the code
word is corrected. The error in VN n = 3 has been corrected, flipping the sign of
the node from positive to negative. All the Qn messages are now negative, and all
the hard-decision messages are zero, as shown in Fig. 1.29.

Note that the magnitudes obtained after the second iteration are much larger than
those obtained in the previous hard-decision examples, which indicates that the
values obtained in this case are more reliable, so this algorithm converges faster
than the previous ones.

1.5.4. Performance comparison of RBI decoders

Fig. 1.30 shows the BER performace of the previous algorithms RBI-MLGD,
MRBI-MLGD, RBI-MSD and MSA. The code used in this simulation is the
(2304,2048) Algebraic LDPC code with dc = 36 and dv = 6 and the maximum
number of iterations is set to 20.
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Figure 1.30: RBI-MLGD, MRBI-MLGD, RBI-MSD and MSA performance for the
(2304,2048) Algebraic LDPC codes.

In Fig. 1.30 it can be observed that RBI-MSD outperforms RBI-MLGD and
MRBI-MLGD by 1.2 dB at BER 10−4 at the expense of increasing complexity.
In addition RBI-MSD has a performance loss of 0.1 dB with respect to MSA
at BER 10−5. As for RBI-MLGD and MRBI-MLGD, RBI-MLGD scheme has a
performance loss ≈ 0.1 dB compared to MRBI-MLGD following both of them the
same slope.

1.6. Conclusions

In this chapter we have reviewed the basics of LDPCs needed to understand
the contribution of this thesis. The message passing decoding schedules have
been introduced and the three basic hardware architectures for LDPC decoders,
fully-parallel, fully-serial and partially-parallel, have been analyzed. Three
soft-decision decoding algorithms, SPA, MSA and Optimized 2-bit Min-Sum, and
three hard-decision ones, RBI-MLGD, MRBI-MLGD and RBI-MSD, have been
presented and their performance comparison have been included.
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For the architectural implementation, it is concluded that the fully-parallel
architecture is energy efficient due to the fact that it only needs a single cycle
per message-passing iteration, at the expenses of a high wiring congestion and
an increase of the area due to the use of registers. With the use of fully-serial
architecture, routing congestion is greatly reduced and area is minimized obtaining
in this case an increase of the number of clock cycles (throughput is dramatically
reduced). So, the use of this architecture is only for systems in which latency
is not a critical parameter. With the aim of obtaining an architecture with
the improvements of the previous architectures, partially-parallel architecture was
introduced, obtaining a balance of the benefits of the two previous architectures
by partitioning H into rowwise and columnwise groupings so that a set of check
node and variable node updates can be done per cycle.

From the previous analysis it can be concluded that the Sum-Product decoding
algorithm provides the best performance but requires the highest computational
complexity. In order to reduce the arithmetic resources of SPA, scaled Min-Sum
decoding algorithm was proposed. However, scaled Min-Sum causes slightly
performance degradations and its complexity is still moderated. With the aim
of reducing complexity and routing congestion of MSA, Optimized 2-bit Min-Sum
decoding algorithm was proposed, which reduces the message-passing to two bits
and gets improvements in routing but with a small loss in coding gain.

Among the three hard-decision decoding algorithms presented, it can be concluded
that the RBI-MSD achieves the best decoding performance but it has high
complexity due to it is an integer message-passing algorithm which contains
soft information compared to binary message-passing algorithms as RBI-MLGD
and MRBI-MLGD. In addition RBI-MSD and MRBI-MLGD use a scaling factor
to compensate the performance degradation and try to balance the differences
between the channel information and the constant amplitude of the votes.

Moreover, the RBI-MLGD uses the previouly updated messages Q
(i)
n in the

iterative procedures while MRBI-MLGD and RBI-MSD use the initial messages

Q
(0)
n in the iterative procedure.
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Chapter 2

One-Minimum-Only Min-Sum
Algorithm (OMO-MSA)

2.1. Introduction

Since the first decoding algorithm, SPA, appeared, several proposals have been
published in order to reduce or solve the check node complexity. Among these
proposals, the one that has a better trade-off between complexity and coding gain
is MSA.

As we have seen in the previous chapter, to compute the reliability of the results

obtained from the parity check equation, the check node messages, R
(i)
m,n, are

calculated as

R(i)
m,n = σ(i)

m,nκ
(i)
m,n =

∏
n′∈N(m)\n

sgn(Q
(i−1)
n′,m ) min

n′∈N(m)\n
|Q(i−1)

n′,m |.

From the two parts that compose this equation, the first one, the sign calculation,
is not computationally complex, since the size of the data is one bit and the
operation to be performed is a simple logical operation.

However, although the MSA has reduced the check node complexity, it remains a
bottleneck of processing due to the second part of this equation, the magnitude of
the messages:

κ(i)m,n = min
n′∈N(m)\n

|Q(i−1)
n′,m |.
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The complexity in the calculation of the magnitude is due to the size of the
operands, which is greater than one bit. The number of operations in this case
depends on dc, which can be large, especially for very high-rate codes. In order to
know the number of comparisons that performs each check node (CN), the case of
a CN with dc = 8 is analyzed, following the example of Fig. 2.1.

n = 0 n = 1 n = 2

m = 0

n = 3 n = 4 n = 5 n = 6 n = 7

+2 -1 +6 +3 +2 +8 +10 +4

n = 0 n = 1 n = 2

m = 0

n = 3 n = 4 n = 5 n = 6 n = 7

-1 +2 -1 -1 -1 -1 -1 -1

Figure 2.1: MSA with dc = 8.

Applying the σ(i)
m,n =

∏
n′∈N(m)\n

sgn(Q
(i−1)
n′,m ) equation of the sign calculation, we

obtain:
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As can be seen, the operation performed is a logic xor with a 1-bit operand.
Following with the computation of the magnitude of the messages κ(i)m,n =

min
n′∈N(m)\n

|Q(i−1)
n′,m |:

κ
(0)
0,0 = min(|Q(0)

0,1|, |Q
(0)
0,2|, |Q

(0)
0,3|, |Q

(0)
0,4|, |Q

(0)
0,5|, |Q

(0)
0,6|, |Q

(0)
0,7|) = 1
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As can be concluded, in the magnitude calculation 7 × 8 = 56 comparisons are
performed to search the minimum (7 comparisons in each of the 8 VNs, remember
that the intrinsic information of the node is not computed), so the number of
comparisons are dc × (dc − 1).
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The previous example shows the first method used in the literature to search the
magnitudes and their assignment to each VN. This search is improved by the
value-reuse technique (Chapter 1), which reduces the search of the magnitudes to
a search of two minimums, firstly searching for min1, then searching for min2 and,
finally, assigning to each VN min1 or min2. In this latter method, the number
of comparisons are reduced to (2 × dc − 1) + dc = 3 × dc − 1. Even with this
value-reuse technique the complexity is still too high.

As our goal is to reduce the complexity of calculating the magnitude, three different
options can be analyzed:

1. To avoid or simplify the way of calculating min1.

2. To avoid or simplify the way of calculating min2.

3. To avoid or simplify the way of calculating min1 and min2.

Analyzing the three options, it is observed that min1 approximation (first option)
would produce a greater impact since it is sent to dc − 1 nodes, as it can be seen
in Fig. 2.2.

n = 0 n = 1 n = 2 n = 3

m = 1

min1

min1

min2

min1

Figure 2.2: Tanner Graph.

Therefore, we discard this case because an erroneous calculation of this approach
would greatly affect the decoding. The approximation of the min2 would have less
impact because the min2 is only sent to one node. In addition, it would reduce
the complexity since dc − 1 comparisons are eliminated. The third option will be
discussed in the next chapter with the 2-bit decoders.

Therefore, starting from the hypothesis that estimating the second minimum will
have a smaller impact than estimating the first minimum, several methods to
approximate the second minimum at the check node have been recently proposed.

The first one is the single-minimum MSA from [21] - [22], in which the second
minimum is computed by means of applying a constant correction factor on the
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first minimum. This technique has the lowest complexity but, unfortunately, it
introduces some important performance degradation in the error-floor region due
to the use of a constant correction factor applied to the absolute minimum in order
to estimate the second one. This happens because the difference between min1
and min2 is not constant through the iterations and for different signal-to-noise
ratio values, as it is shown in Fig. 2.3 and Fig. 2.4, respectively.
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Figure 2.3: Difference between min1 and min2 through the iterations. Where CNn
corresponds to the n-th CN equation from the (2048,1723) LDPC code.
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Figure 2.4: Difference between min1 and min2 through the different signal-to-noise
ratio values. Where CNn corresponds to the n-th CN equation from the (2048,1723)
LDPC code.

The second method to approximate min2 tries to overcome the previously
mentioned problem proposing an algorithm named as variable-weight MSA [23].
The variable-weight MSA avoids performance degradation by means of computing
a correction factor different for each iteration or range of iterations. This algorithm
requires an optimization of parameters that depends on the number of iteration,
the value of the correction factor in the previous iterations and the signal-to-noise.
The main disadvantage of the method proposed in [23] is how to obtain the
correction factor. To compute the value of the correction factor for iteration i
in an heuristic way, the values of i+ 1 and i− 1 have to be considered, because as
authors from [23] indicate, the decision made on a correction factor for one iteration
will be influenced by correction factors from previous iterations. Moreover, the
optimization process in [23] needs to be repeated for each signal-to-noise ratio,
and each LDPC code. Another disadvantage of this process is that the channel
status should be known at any time in order to change the weights.
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2.2 Only one minimum check node approximation

Although performance degradation is avoided, the min2 calculation is still
dependent on constant values and not on other parameters, this keeps the variation
of the difference between the two minimums and the iterations/signal-to-noise.

In order to solve the previous problems we proposed a novel approximation to
compute the second minimum without increasing the complexity or sacrificing
error correction performance. This new estimation combines the simplicity form
[21] - [22], with the adaptability from [23], as the proposed method does not use
the same correction factor in different iterations. Moreover, this approximation
does not require a thorough off-line optimization (finding the best combination
of parameters for each iteration and signal-to-noise ratio), because with only
two constant factors per code the second minimum is estimated dynamically.
Also, our solution does not degrade the correction performance and allows a
faster optimization of the parameters and higher area-throughput efficiency in
the derived hardware implementations, as will be seen in the following sections.

2.2. Only one minimum check node approximation

The main idea of the approximation proposed in this thesis is to provide an
estimator that allows a dynamic adjustment of the correction factor, which is
adapted automatically to the iteration number and the signal-to-noise ratio. We
call this approach one minimum only Min-Sum algorithm (OMO-MSA).

The min1 is the least reliable estimator of all received messages and the min2 is
the second least reliable element. So, the information that gives us the difference
between min1 and min2 is the difference in reliability between the calculation of
some messages and others. Therefore, our aim is to obtain a measure of the less
reliable message in comparison to the other messages, and due to this we have
decided to use another message other than min2 to make the estimation of the
min2.

Let us define the sets N0(m) and N1(m) as N0(m) ∪N1(m) = N(m), where the
cardinality of N0(m) and N1(m) is ]N0(m) = ]N1(m) = dc/2.

Let define min1 as the absolute minimum of N(M) as

min1 = min( min
n′∈N0(m)

(|Qn′,m|), min
n′∈N1(m)

(|Qn′,m|)). (2.1)

From the previous equation, the complementary operation,

min
′′′

2 = max( min
n′∈N0(m)

(|Qn′,m|), min
n′∈N1(m)

(|Qn′,m|)), (2.2)

81



Chapter 2. One-Minimum-Only Min-Sum Algorithm (OMO-MSA)

will satisfy1 that in a 50% of the cases min
′′′

2 is equal to the second minimum
(min2), (min1 ∈ N0(m) ∧min2 ∈ N1(m)) ∨ (min1 ∈ N1(m) ∧min2 ∈ N0(m)),
and in the rest of cases, the value is larger, (min1,min2 ∈ N0(m)) ∨ (
min1,min2 ∈ N1(m)).

For example, having two sets with the same number of elements dc/2 = 4, two
cases can be found, as shown in Fig. 2.5 and 2.6.

N0(m) N1(m)

n = 0 n = 1 n = 2

m = 0

n = 3 n = 4 n = 5 n = 6 n = 7

10 3 8 2 6 4 1 3

Figure 2.5: min1 and min2 are located in different sets.

In Figure 2.5, it can be analyzed the first scenario where min1 = 1 is in the
N1(m) and min2 = 2 is in the N0(m) set:(min1 ∈ N0(m) ∧min2 ∈ N1(m)) ∨
(min1 ∈ N1(m) ∧min2 ∈ N0(m)). So, in this case min

′′′

2 ∈ N0(m) = min2.

1Assuming, without loss of generality, the equiprobability of the distribution of the dc
messages
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N0(m) N1(m)

n = 0 n = 1 n = 2

m = 0

n = 3 n = 4 n = 5 n = 6 n = 7

10 3 8 3 6 4 1 2

Figure 2.6: min1 and min2 are located in the same set.

On the other hand, in Fig. 2.6 we can see the case in which min1 and min2 are
in the same subset N1(m): (min1,min2 ∈ N0(m)) ∨ ( min1,min2 ∈ N1(m)). In
this case the min

′′′

2 has a magnitude larger than the min2.

The scenarios from Fig. 2.5 and Fig. 2.6 can be generalized concluding than min
′′′

2

is an upper bound, or overestimation, of min2. This upper bound provides useful
information of the distance between min1 and the rest of the messages at the
check node, but it cannot be used as a final approximation because we would be
assuming that there is more distance between the less reliable and a more reliable
value, and we would be making an incorrect estimation of the channel. So, min2 is
between min1 and min

′′′

2 , and this distance may depend on the code, the channel
and other variables such as the SNR. Due to this fact, we would need to have
some degree of flexibility to estimate min2, therefore, we propose to make a linear
approximation as we explain next.

To compensate the min
′′′

2 value, a second estimator is computed using min1 as a
lower bound. The min1 value is multiplied by a correction factor, α2, similarly
to the one in [21] to modify its magnitude. Combining both approximations, we
obtain min∗2 = min1 · α2 +min

′′′

2 · γ, which is similar to an average of two bound
values. Both α2 and γ allow us to weight each one of the approximations depending
on the code. It is important to remark that min∗2 auto-adjusts the correction value
applied to min1,

χ = α2 +
min

′′′

2

min1
· γ,
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because the estimation includes a reference of the magnitude of the rest of the
messages. So min∗2 = min1 · χ.

For example, with the input values to the check node shown in Fig. 2.7, first, the
search for the min1 is performed in both sets N0(m) and N1(m). Observing Fig.
2.7 it is concluded that min1 = −0.61. Once min1 is obtained, we choose min

′′′

2 ,
in this example min

′′′

2 = −4.94. With the values calculated above and using an
α2 = 0.75 and γ = 1, we apply the correction factor as follows:

min∗2 = min1 · χ = min1 · α2 +min
′′′

2 · γ = (−0.61) · 0.75 +−4.94 · 1 = −5.4

N0(m) N1(m)

n = 0 n = 1 n = 2

m = 0

n = 3 n = 4 n = 5 n = 6 n = 7

-0.61 12.57 -22.42 -3.71 19.65 -4.94 -7.69 13.25

Figure 2.7: CN inputs.

To calculate the values of α2 and γ, an optimization is done depending on the
signal-to-noise ratio and the iterations, but having a quotient, it was self-tuning.
Then, we chose an intermediate point between the slope of the waterfall and the
area of error floor, first ensuring that the slope of waterfall is as close as possible
to the waterfall slope of the original MSA (without approximation). Once at this
point, we perform the optimization of the parameters. It is important to remark
that this proposal only needs to optimize two parameters. No further searches
with different iteration values or signal-to-noise ratios are required as far as there
is only one constant value of α2 and γ for each code, and these values only change
with the code.

To sum up this process only has to be applied once, as follows:

1. Look for the min1 and min
′′′

2 in N0(m) and N1(m).

2. Multiply by two constants α2 and γ.

3. Perform an addition.
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This correction factor does not depend on dc and it has no complexity, in addition
we save dc − 1 operations.

2.3. Only one minimum check node architecture

For the hardware implementation of MSA’s CNU, two minimum values are
searched among the dc inputs using a two minimum comparator tree, whose
hardware complexity is:

NComparators = (dc − 1) + (2 · (dc
2
− 1)).

As for multiplexers:

NMultiplexers = dc + (4 · (dc
2
− 1)).

Fig. 2.8 shows the MSA CNU architecture and the comparator blocks used in the
different stages of the tree. The pipeline registers are drawn as dashed lines. The
critical path is made of two multiplexors and one comparator and is determined
by the module R20.
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R2i0

Q0 Q1 Q2 Q3 Q4 Q5 Q6 Q7

n0 n1 n2 n3 n4 n5 n6 n7
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R0 R1 R2 R3 R4 R5 R6 R7

R2i0 R2i0 R2i0
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>

01 01 sign
01 01 01
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min1min2

(b)

(c)

R2i0

R20

> > >

Figure 2.8: (a) MSA CNU architecture. (b) Initial Radix-2 block (R2i0). (c) Radix-2
block (R20).

As regarding OMO, in terms of hardware, only one adder to sum min1 · α2 and
min

′′′

2 · γ are required as shown in Fig. 2.9. No extra control or memories are
needed. The multiplication by α2 and γ is wired as the factors are selected as
powers of two. This will have a great impact on area compared to MSA decoders
as we will show in next section. As in the previous figure, pipeline registers are
drawn as dashed lines and the critical path is reduced in one multiplexor as well
as the wiring conexions are almost half.
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Figure 2.9: OMO CNU architecture.

The number of comparators and multiplexers are shown in Eq. 2.3 and Eq. 2.4
respectively.

NComparators = dc − 1. (2.3)

NMultiplexers = 2 · (dc − 1). (2.4)

The critical path is reduced with respect to MSA due to the elimination of Radix-2
blocks (R20).

Figures 2.10, 2.11 and 2.12 compare the number of comparators, multiplexers and
registers, respectively, of MSA and OMO-MSA, for different values of dc (from 2
to 64).
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Figure 2.10: MSA and OMO-MSA number of comparators.
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Figure 2.11: MSA and OMO-MSA number of multiplexers.
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Figure 2.12: MSA and OMO-MSA number of registers.

2.4. Error correction performance

Firstly, performance tests were performed using a computer cluster and we
obtained the results for the waterfall region (BER ≥ 10−8). But, as our objective
was also to verify that this algorithm still worked properly in the error-floor region,
where the probability of error is very low (BER < 10−8), and it was not feasible
to obtain results in a reasonable time with the computer network, we used a
hardware emulator implemented in an FPGA [27]. With the use of this emulator
with a decoding rate of 1.35Gbps (1 core), configurable up to 4 cores, we were able
to obtain the results between BER < 10−8 and BER > 10−15.

Fig. 2.13 shows the blocks of the hardware emulator. It is composed of the
following blocks:

90



2.4 Error correction performance

Symbol generator

LDPC decoder

Error estimator

C
o
m

m
u
n

ic
a
tio

n
 a

n
d
 c

o
n

tro
l

RS-232

...

...

AWGN channel
+

Figure 2.13: Block diagram of the hardware emulator.

1. Symbol generator. In this block the symbols are generated from a codeword
stored in a ROM. The bits of the codeword are modulated in BPSK and
AWGN is added in order to emulate the AWGN channel.

2. LDPC decoder. Here the decoder is implemented using a partially parallel
architecture based on memories, as described in the previous chapter.

3. Error estimator. In this block the number of erroneous bits per iteration
is calculated by comparing the output of the decoder with the codeword
transmitted, which is stored in a ROM.

4. Communication and control. This block is responsible for the internal control
of the hardware emulator and the communication with the software interface.

Fig. 2.14 shows the BER performance of the scaled MSA and the OMO-MSA
quantized with seven bits for the (2048, 1723) LDPC code, applied to the IEEE
802.3an standard, with parameters dc = 32, dv = 6. These simulations have
been obtained using the FPGA-based emulator. Both decoders include the scaling
factor α, that provides the best performance.
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Figure 2.14: BER performance of MSA and OMO-MSA (seven-bit quantization) for
the (2048, 1723) LDPC code in red lines and (2304, 2048) LDPC code in blue lines.

It can be seen that our approach has similar performance in the waterfall region,
with just 0.08 dB of performance loss up to BER = 10−11, and in the error floor
region, from BER = 10−11 to BER = 10−14, slightly improves the performance.
This negligible differences are due to the use of hardware friendly coefficients
(powers of two) and also to the quantized model. Similar behaviour can be
observed in Fig. 2.14 for the (2304, 2048) LDPC code with parameters dc = 36,
dv = 6 constructed using the method proposed in [10]. For this code, both the
waterfall and the error floor region have almost the same performance, with a
difference of less than 0.05 dB, showing that the proposed method to approximate
the second minimum at the check node introduces only a small performance
degradation compared to the MSA with full processing.
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Figure 2.15: OMO-MSA BER performance at 5, 10, 15 and 48 iteration for the
(2048,1723) LDPC code.

In Fig. 2.15 OMO-MSA with 5, 10, 15 and 48 iterations for the (2048,1723)
LDPC code is represented. As can be seen a performance loss between 0.1 dBs
and 0.15 dBs at BER 10−5 and 0.1 dBs at BER 10−5 is obtained with 15 and 10
iterations, respectively, compared to OMO-MSA with 48 iterations. Between 48
and 5 iterations it can be observed a difference of 0.4 dBs at BER 10−5.
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Figure 2.16: OMO-MSA BER performance at 5, 10, 15 and 48 iteration for the
(2304,2048) LDPC code.

In Fig. 2.16 OMO-MSA with 5, 10, 15 and 48 iterations for the (2304,2048) LDPC
code is represented. As can be seen there is a difference in performance of 0.15
dBs between OMO-MSA with 48 and OMO-MSA with 15 iterations and 0.2 dBs
between OMO-MSA with 48 and OMO-MSA with 10 iterations at BER 10−5.
Between 48 and 5 iterations it can be observed a difference of 0.5 dBs at BER
10−4.

Finally, the (16129, 15372) LDPC code with dc = 127 and dv = 6 proposed
in [28] is analyzed. This code has a special interest due to its very high rate
and its good behaviour in the error floor region, which is remarkable compared
to the rest of high-rate codes. The implemented emulator that includes the HDL
implementation of the decoder showed how our approximation and the initial
hypothesis is confirmed as the OMO decoder does not introduce any performance
degradation in the error floor region, Fig. 2.17. In addition, the performance loss
in the waterfall is almost negligible (0.1 dB).
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Figure 2.17: BER performance of MSA and OMO-MSA for the (16129,15372) LDPC
codes.

On the other hand, another issue that was taken into account is that working with
finite precision there is more probability that many values are repeated, so more
than one min1 can be found among the input messages. This will affect to the
performance of the decoder. In order to test different scenarios we performed the
following test if more than one min1 was detected:

1. Test called OMO1. We assigned the min1 value to all the outputs. In this
test we considered that there was not enough precision to detect the least
reliable element and, therefore, we assumed that all the incoming messages
were unreliable.

2. Test called OMO2. We assigned the min2 value to all the outputs. In
this case we considered that there was enough precision to detect the least
reliable element, so we assumed that all incoming messages were reliable. In
Fig. 2.18, the results of this test are worse in the waterfall region due to
the fact that we assumed that with several unreliable messages in the input,
reliable outputs were obtained.

95



Chapter 2. One-Minimum-Only Min-Sum Algorithm (OMO-MSA)

3. Test called OMO3. We assigned the min1 value if the corresponding
input has a value different to min1 and we assigned the min2 value if the
corresponding input was equal to min1. In this third test, we considered
that there was an intermediate precision to detect the least reliable element,
therefore, we assumed that incoming messages could be as reliable as
unreliable.

Finally, Test 1 (OMO1) was chosen because of its better performance in the
waterfall region as in the error-floor region Fig. 2.18, and because of the
small changes in the check node architectures.
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Figure 2.18: BER performance of OMO 1, OMO 2 and OMO 3 test for the (2048,1723)
LDPC codes.
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2.5. Hardware results and comparisons

The proposed OMO-MSA was implemented following the layered architecture from
[23] for the (2048, 1723) LDPC code and the (16129,15372) LDPC code. As both
codes have a dv = 6, the layered architecture was dimensioned to compute one
iteration in 6 clock cycles. It means that 64 and 762 check nodes were parallelized
for the (2048,1723) code and (16129,15372) code, respectively. VHDL was used
for the description of the hardware. Cadence RTL Compiler and SOC encounter
tools were employed for synthesis and place and route, respectively, with a 90 nm
CMOS process of nine layers with standard cells and operating conditions of 25◦C
and 1.2 V. The obtained results are summarized in Table 2.1 together with the
most efficient MSA decoders found in literature, implemented for the same codes
and under the same technology.

Decoder Area Frequency Throughput Ratio
throughput/

area
(mm2) (MHz) (Gbps) (Gbps/mm2)

Proposed OMO decoder 3.15 132 11.2 3.55
Variable-weight MSA [23] 3.84 226 12.8 3.34

Split-row MSA [24] 9.68 156 29.64 3
MSA [23] 4.84 121 7.1 1.47
MSA [25] 5.35 137 7.79 1.45
MSA [26] 9.2 348 11.85 1.28

Table 2.1: ASIC implementation results of OMO and different MSA decoders for the
(2048, 1723) LDPC code.

For the (2048,1723) LDPC, results show how the new approximation obtains
the smallest area in all cases. Compared to other approximations of the second
minimum [23] we can see that our proposal saves 18% of area due to the fact that it
does not require to store and control the use of different correction factors for the
different range iterations. If we compare to regular MSA decoders, area is reduced
between 41% [25] and 66% [24] depending on the degree of parallelism of the
decoder. This work reaches similar throughput to the approximation introduced
in [23] and the decoder from [26]; and improves by 44% the throughput of [25].

In terms of efficiency, measured as throughput/area, our proposal is slightly more
efficient than the approximation from [23] and it does not require a complex
optimization of parameters that changes with iterations or with the signal-to-noise
ratio, so it reduces the time of design without sacrificing hardware advantages.
On the other hand, the OMO-MSA increases between 18% [24] and 177% [26] the
efficiency of the MSA decoder, depending on the design.
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If we compare exactly the same decoder with and without the approximation
(MSA decoder from [23]), we can see that the area saving is about 35% and the
maximum frequency is increased about 10%, because of the reduction of the critical
path in the minimum finder. The throughput is also increased, making the total
efficiency in terms of throughput/area ratio two times larger by introducing this
novel estimation of the second minimum in the decoder.

Table 2.2 shows the results of the implementation of the same layered decoder
using MSA and the proposed OMO check node for the (16129,15372) LDPC. It
can be seen how the same decoder with conventional MSA check node has an
area overhead of 10.8% compared to the OMO decoder. In addition, frequency is
increased in 28.9% and the total throughput is improved in a 28.9%. This proposal
is 1.736 times smaller than previous decoders and 1.44 times more efficient than
MSA [23] . It is important to remark that simulations showed that this decoders
does not introduce any performance degradation for BER > 10−16 and the coding
gain in the waterfall is almost the same.

Decoder Area Frequency Throughput (Gbps) Ratio
throughput/

area
(mm2) (MHz) (15it)/(10it)/(5it) (Gbps/mm2)

OMO-MSA 14.173 48 8.6/12.9/25.8 0.6067
MSA 15.909 37.23 6.67/10/20 0.4192

Table 2.2: ASIC implementation results of decoders for the (16129, 15372) LDPC code.

Finally, it is worth mentioning that the proposed approximation can be applied to
other architectures.

2.6. Conclusions

In this chapter a new approximation to estimate the second minimum of an
LDPC check node processor is introduced. This algorithm reduces not only
the complexity of the check node update hardware but also the complexity of
the design parameters compared to other lossless approximation. This proposal
makes independent the required correction coefficients of the iterations or the
signal-to-noise ratio, allowing the decoder to automatically adjust the second
minimum estimator without adding extra complexity. The derived architecture
improves the efficiency of the MSA by 18% in terms of throughput/area ratio.

98



Chapter 3

Modified-Optimized 2-Bit Min-Sum
Algorithm (MO2-BIT-MSA

3.1. Introduction

In the previous chapter it was concluded that the difference between min1 and
min2 is more important than the absolute value of the magnitude. Taking into
account this fact, in this chapter min1 and min2 values are estimated with the
smallest number of quantization bits. The complexity of the decoding process and
the wiring congestion will be reduced with respect to the two main algorithms,
SPA and MSA, when the number of quantized bits are reduced, as will be seen in
the next section.

The smallest number of bits to quantize the value of the min1 and min2 is one
bit, but this case corresponds to a hard decision algorithm which will be analyzed
in the next chapter. Therefore, for the soft-decision algorithm we are going to
address in this chapter, the number of bits to quantize these two values is 2 bits.

The two main methods of quantization are: uniform and non-uniform. The
first one uses the same distance between the reconstruction levels and it does
not make any assumption about the nature of the signal to be quantized,
resulting in a large number of quantization errors for soft-decoding when the
number of levels is small. As regarding the second one, the distance between
reconstruction levels is not always the same, this is, it is a non-linear quantification.
This method of quantification studies the nature of the signal to obtain an
optimal quantification and to minimize the errors. So under the same number
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of bits, non-uniform quantification achieves better performance than uniform
quantification for soft-decision decoders, as will be shown later.

As in this case our objective is to distinguish the less reliable input values from the
most reliable ones, a threshold of reliability is defined. To avoid losing accuracy
of information and, therefore, to minimize errors in the system, non-uniform
quantification is the most appropiate method in this case.

To the best knowledge of the authors the algorithm O2-BIT-MSA proposed in [18],
summarized in Chapter 1, is the most efficient one to reduce the quantization to
two bits. However, it has two weak points. The first and main weakness of this
algorithm is that the BER performance is deteriorated at high SNR, which results
in an early error floor. The second drawback is that the algorithm has several
interrelated parameters and this fact makes its design difficult and time consuming.
In this chapter we propose a modification of this algorithm that we called Modified
Optimized 2-bit Min-Sum Algorithm (MO2-bit-MSA). The new algorithm has a
BER performance very close to the MSA and maintains its low complexity. On
the other hand, a method to simplify the selection of the parameters and to reduce
the design time is proposed. Finally, to show the advantage of its low complexity,
several hardware architectures were implemented in FPGA and a 90 nm CMOS
process and compared with MSA implementations.

3.2. Channel quantization

The performance of the decoder is directly proportional to the amount of input
information (LLR). The loss of information (accuracy) due to the quantization
can lead to the high occurrence of less reliable input values, degradating the
performance of the system.

In [18], the input messages from the channel y (LLR) are quantized to a value that
can be coded with 2 bits depending on a input threshold Ty, as seen in Eq. 3.1:

bsbm =


01, if y > Ty
00, if Ty ≥ y ≥ 0
10, if 0 > y ≥ −Ty
11, if y < −Ty

(3.1)

where bit bs corresponds to the sign of the input message y and bit bm is the
result of the comparation with the threshold Ty, which means that bm = 1 is a
high reliable bit and bm = 0 is a low reliable one. Therefore, the choice of a reliable
or less reliable value depends on Ty, which can result in a worse performance in
the case of not having enough accuracy.
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With the aim of improving the performance of [18], the first step is to remove
the non-uniform 2-bit input quantification and this allows more input accuracy as
shown in Algorithm 7.

Algorithm 7 1st modification of Optimized 2 bit Min-Sum decoding algorithm.

Input : Q
(0)
n = Ln

Iterative process
for i = 0→ Itmax − 1 do

Check-node update

1 R(i)
m,n =

∏
n′∈N(m)\n

sign(Q
(i−1)

n′,m ) min
n′∈N(m)\n

|Q(i−1)

n′,m |

Variable-node update

2 Q(i)
n = Q(i)

m,n = g(Ln + α
∑

m∈M(n)

f(R(i)
m,n))

Tentative decoding

3 x̂
(i)
n =

{
1, Q

(i)
n < 0,

0, Q
(i)
n ≥ 0, n ∈ {0, ..., N − 1}

4 sm =
∑

0≤n≤N−1

⊕x̂(i)n hm,n =
∑

n∈Nm

⊕x̂(i)n , m ∈ {0, ...,M − 1}

if (s(i) = 0) then {SKIP}
end
Output : x̂

3.3. Optimization of parameters

As we saw in the introduction of the Optimized 2-bit min-sum decoding algorithm
of chapter 1 or in [18], the coding gain of this algorithm depends on the values
of five parameters (WH , WL, TL, Ty and α). In the previous subsection it was
concluded that with the elimination of the input threshold Ty, it was possible to
improve the performance, therefore, only four of the previous five parameters can
be taken into account.

After the analysis of the relation among these four parameters, we conclude
that only the parameters WH , WL and TL depend on each other, whereas the
value of α does not depend on the previous parameters, since it depends on the
relation of proportionality between the channel messages and the internal messages
interchanged in the decoding process.

Although the number of dependent parameters was reduced, the selection of
the optimal values for these three interrelated parameters is a difficult and
time-consuming process that involves many simulations, which are done as follows.
The values of one parameter are swept and the other two are kept fixed, then the
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results are observed, and the process is repeated for the remaining parameters
until an optimal combination is found.

To avoid this time-consuming process and to facilitate the implementation of
this algorithm with different LDPC codes, a method to select the values of the
parameters and to reduce the amount of simulations is proposed in this thesis.

From the Algorithm 7, we call TRn (Total Reliability of a VN) to the term obtained
by adding the reliability of all the messages taking into account their signs:

TRn =
∑

m∈M(n)

f(R(i)
m,n), (3.2)

where the f(·) function was defined in Chapter 1. Let’s suppose that the
target code is the (2048,1723) RS-LDPC with dv = 6 and dc = 32 adopted for
10GBASE-T. As a VN processes only dv = 6 messages and each message has a
possible reliability value of WH or WL, where WH > WL, there is a finite set
of possible total reliability values TRn. From this set, we take the subset that
accomplishes TRn = |xWH ± yWL| with x + y = dv = 6 (x and y are natural
numbers), as the values with highest and lowest reliability are included and is big
enough to represent the behaviour of the complete set. This subset is enumerated
in Table 3.1 for the case of the (2048,1723) LDPC code.

Total reliability in one VN

|6WH |
|5WH ± 1WL|
|4WH ± 2WL|
|3WH ± 3WL|
|2WH ± 4WL|
|1WH ± 5WL|
|6WL|

Table 3.1: Possible reliability values obtained by adding the reliability of each message
in a variable node of dv = 6.

In order to guarantee that the decoding process works properly, the combination
of messages more reliable must have high reliability. Thus, the values of WH and
WL should accomplish the following conditions:

1. |6WH | is the highest reliability value.

2. |1WH − 5WL| is the lowest reliability value.

3. |aWH ± yWL| > |bWH ± yWL| if a > b, a+ y = b+ y = 6,
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where a and b are natural numbers. Fig. 3.1 shows graphically how the subset
TRn must be sorted according the previous conditions. As can be seen in the
right-hand side column of Fig. 3.1, there are several values of TRn whose relative
order is impossible to know a priori (e.g. |2WH−4WL|, |1WH +5WL| and |6WL|).
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Figure 3.1: Sorted reliability values of the selected subset of TRn.

In order to check the values of WH and WL that result in a sorted subset as
indicated previously, different cases were analyzed assuming WL = 1 and with
WH from WH = 2WL to WH = 7WL. The sorted subset of each case is shown
in Table 3.2. Note that it was concluded that the difference between min1 and
min2 is more important than the absolute value of their magnitude, so to fix the
parameter WL to 1 will not incur any performance penalization. On the other
hand, the parameter α will be used to stablish a proportionality between the
magnitudes of the incoming channel and the internal messages.

Analyzing the different cases, it is observed in Table 3.2 that the cases 2 and 3 do
not accomplish the established conditions. In case 2, |2WH−4WL| < |WH−5WL|
and, in case 3, |2WH − 4WL| = |WH − 5WL|. So these cases are discarted. On
the other hand, Tabla 3.2 guide us to choose the value for the threshold TL. As
can be seen, it has to be decided how to divide the table in two parts to generate
the outputs of the variable node, which is composed of two bits: the sign bit and
the reliability bit. This is the task performed by function g(·) explained in Section
1.4.3. The value of the reliability bit is chosen as follows: 0 for the combinations
with reliability lower than TL, and 1 otherwise.

From now on, several simulations were performed to find the best cases and it was
found that the best combination was WH = 5WL with |2WH − 4WL| as the limit
stablished decides the output reliability, as shown in Fig. 3.2.
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Reliability x ±y case 7 case 6 case 5 Reliability bit
order WH=7WL WH=6WL WH=5WL of g(·)

11 (highest) 6 0 42 36 30 1
10 5 1 36 31 26 1
9 5 -1 34 29 24 1
8 4 2 30 26 22 1
7 4 -2 26 22 18 1
6 3 3 24 21 18 1
5 2 4 18 16 14 1
4 3 -3 18 15 12 1
3 1 5 12 11 10 1
2 0 6 6 6 6 0
1 2 -4 10 8 6 0

0 (lowest) 1 -5 2 1 0 0

Reliability x ±y case 4 case 3 case 2 Reliability bit
order WH=4WL WH=3WL WH=2WL of g(·)

11 (highest) 6 0 24 18 12 1
10 5 1 21 16 11 1
9 5 -1 19 14 9 1
8 4 2 18 14 10 1
7 4 -2 14 10 6 1
6 3 3 15 12 9 1
5 2 4 12 10 8 1
4 3 -3 9 6 3 1
3 1 5 9 8 7 1
2 0 6 6 6 6 0
1 2 -4 4 2 0 0

0 (lowest) 1 -5 1 2 3 0

Table 3.2: TRn values and output reliability bit at variable node for different cases.
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Figure 3.2: Graphical representation of the boundary between the two output reliability
bit values at variable node.

Therefore, to obtain the optimal value of each of the 3 constants: WH , WL and
TL, we have the following equations:

WL = 1,WH = 5WL = 5 (3.3)

TL = (2WH − 4WL) · α (3.4)

In Fig. 3.3 BER performance of O2-BIT-MSA from [18] and O2-BIT-MSA with
optimum parameters are plotted for the (2048,1723) RS-LDPC code with 48
iterations. Applying the above equations, the optimum parameters are: WH = 5,
WL = 1, TL = 3 and α = 0.5.
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Figure 3.3: Original O2-BIT-MSA with Ty = 3/8 and algorithm 7 with optimum
parameters BER performance. WH = 5, WL = 1 and TL = 3.

As can be seen, the proposed modification described in Algorithm 7 using the
optimized parameters exhibits a 0.3 dBs of coding gain with respect to the
O2-BIT-MSA. On the other hand, it also can be seen that the O2-BIT-MSA
exhibits worse error correction performance at high Eb/N0 values: the error
floor appears before and more strongly manifested. This problem will be solved
introducing extrinsic information on the algorithm, as explained in the next
section.

3.4. Inclusion of the extrinsic information

As explained in Section 1.2 of Chapter 1, in the process of message passing, when
the information of one CN or VN is updated, it is avoided to use its own messages
(intrinsic information) from the previous iterations to eliminate the possibility of
feeding back any error introduced by this node.
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3.4 Extrinsic information

Analyzing the proposal of [18], it is observed that when VNs update their messages
(Eq. 3.5), each message sent to the CNs takes into account the intrinsic information
from the previous iterations. Therefore, the VNs feed back any previously
produced error, which results in a deterioration of performace.

Q(i)
mn = g(Ln + α

∑
m∈M(n)

f(R(i)
mn)) (3.5)

In order to avoid this situation, another modification of the original algorithm
is proposed. It consists of updating the messages taking into account only the
incoming messages from the neighbours, i.e. using only extrinsic information.
This modification is named MO2-BIT-MSA and in Algorithm 7, the Eq. 3.5 is
now rewritten as shown in Eq. 3.6.

Q(i)
mn = g(Ln + α

∑
m′∈M(n)\m

f(R
(i)
m′n)) (3.6)

Therefore, the MO2-BIT-MSA algorithm, which includes the extrinsic information
and does not use the Ty threshold, is reformulated as shown in Algorithm 8.

Algorithm 8 Modified Optimized 2 bit Min-Sum decoding algorithm.

Input : Q
(0)
n = Ln

Iterative process
for i = 0→ Itmax − 1 do

Check-node update

1 R(i)
m,n =

∏
n′∈N(m)\n

sign(Q
(i−1)

n′,m ) min
n′∈N(m)\n

|Q(i−1)

n′,m |

Variable-node update

2 Q(i)
m,n = g(Ln + α

∑
m′∈M(n)\m

f(R
(i)

m′,n))

Tentative decoding

3 Q(i)
n = g(Ln + α

∑
m′∈M(n)

f(R(i)
m,n))

4 x̂
(i)
n =

{
1, Q

(i)
n < 0,

0, Q
(i)
n ≥ 0, n ∈ {0, ..., N − 1}

5 sm =
∑

0≤n≤N−1

⊕x̂(i)n hm,n =
∑

n∈Nm

⊕x̂(i)n , m ∈ (0, ...,M − 1)

if (s(i) = 0) then SKIP
end
Output : x̂
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Figure 3.4: BER performance of O2-BIT-MSA with Ty = 3/8 and MO2-BIT-MSA.
WH = 5, WL = 1 and TL = 3.

Fig. 3.4 shows the BER performance of the original O2-BIT-MSA and
MO2-BIT-MSA. Both of them are simulated using the optimum parameters
obtained in previous sections. The code used for this simulation is the (2048,1723)
RS-LDPC with dv = 6 and dc = 32 using a maximum number of iterations of 48
as in [18]. Original O2-BIT-MSA from [18] was simulated using the message from
channel as input instead of using LLRs. On the other hand, MO2-BIT-MSA was
simulated using the LLRs as input, since as our goal is to let the greater accuracy at
the input, the input was not limited to the range -1, 1 from the BPSK modulation.
As can be seen in Fig. 3.4, the error correction performance of MO2-BIT-MSA
with WH = 5, WL = 1 and TL = 3 is substantially improved. It outperforms in
0.6 dBs the performance of O2-BIT-MSA at BER 10−8.
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3.5 Error correction performance

3.5. Error correction performance comparison with MSA

Fig. 3.5 shows the BER performance of the MO2-BIT-MSA and MSA with an
scaling factor α (αMSA). The code used for this simulation is the quasi-cyclic
(2048,1723) RS-LDPC with dv = 6 and dc = 32 adopted for 10GBASE-T.
BPSK modulation and AWGN channel are assumed and the maximum number
of iterations used is 48. These simulations were obtained using the FPGA-based
emulator [27] in order to see how the proposed algorithm behaves at very high
Eb/No values.
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Figure 3.5: MO2-BIT-MSA, MSA (2-bit) and MSA (6-bit) BER performance for the
(2048,1723) LDPC codes. WH = 5, WL = 1 and TL = 3.

As can be seen in Fig. 3.5, if the MSA is quantified with only 2 bits to reduce its
complexity, its performance is drastically deteriorated, and it loses nearly all its
correction capability. On the other hand, the proposed algorithm has a behaviour
similar to the scaled MSA with 6 bits, with a performance loss lower than 0.01
dBs. Futhermore, it follows the same error-floor pattern as the MSA, i.e. both
error-floors appear at a BER 10−10.
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Figure 3.6: MO2-BIT-MSA BER performance at 5, 10, 15 and 48 iteration for the
(2048,1723) LDPC code.

In Fig. 3.6 the BER performance of MO2-BIT-MSA with 5, 10, 15 and 48 iterations
is represented. As can be seen, MO2-BIT-MSA with 15 and 10 iterations are very
close to the MO2-BIT-MSA obtained with 48 iterations, with a difference of 0.1
dBs and 0.2 dBs, respectively, at BER = 10−7. It can be observed a performance
loss of 0.7 dBs between MO2-BIT-MSA with 48 and 5 iterations at BER 10−7.

The MO2-BIT-MSA was also tested for the (16129,15372) LDPC code. Fig. 3.7
shows its BER performance with WH = 7, WL = 1 and TL = 3, together with the
one of the MSA and OMO-MSA for the same code. It can be seen that it exhibits
a performance loss of only 0.2 dBs for BER = 10−12 with respect the MSA and,
despite its low number of bits in the interchanged messages, it does not degradate
the performance at high SNR.
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111



Chapter 3. Modified-Optimized 2-Bit Min-Sum Algorithm (MO2-BIT-MSA

5 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 6

10
�13

10
�12

10
�11

10
�10

10
�9

10
�8

10
�7

10
�6

10
�5

10
�4

10
�3

10
�2

E
b
/N

0
(dB)

B
E

R

5 Iterations

10 Iterations

15 Iterations

48 Iterations

Figure 3.8: MO2-BIT-MSA BER performance at 5, 10, 15 and 48 iteration for the
(16129,15372) LDPC code.

As can be seen in Fig. 3.8 a performance loss of less than 0.05 dBs at BER of
10−12 and less than 0.1 dBs at BER 10−10 is obtained with 15 and 10 iterations,
respectively, compared to MO2-BIT-MSA with 48 iterations. The performance
difference between MO2-BIT-MSA with 5 iterations and MO2-BIT-MSA with 48
iterations is 0.35 dBs at BER of 10−5.

3.6. Modified Optimized 2-bit MSA architecture

For the hardware implementation of MO2-BIT-MSA, first a fully-parallel
architecture was implemented, then, the pipeline interleaved technique was applied
to process several codes in parallel.
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3.6 Modified Optimized 2-bit MSA architecture

3.6.1. MO2-BIT-MSA fully-parallel architecture

A fully-parallel architecture implements M CNUs and N VNUs connected as
indicated by the Tanner graph of the code parity matrix. Due to the fact that
M and N are usually big numbers, a careful design of these blocks have to be
done, minimizing their hardware components, as they will be multiplied by M
or N if belong to the CNUs or VNUs, respectively. In this section the design
of a fully-parallel decoder architecture suitable for FPGA implementation for the
(2048,1723) RS-LDPC code is detailed, although it can be easily generalized for
other codes. This code has a parity matrix of M × N = 384 × 2048, and the
degrees of variable and check nodes are dv = 6 and dc = 32, respectively.

The designed architecture uses the half-broadcast technique from [31] applied to
the CNUs. It reduces the number of wires that are sent from the CNUs to the
VNUs. So, instead of sending different messages from a CNU to each VNU, only
one message (composed of sign, min1 and min2) is sent, i.e. only 3 bits are
delivered from each CNU. On the other hand, the VNUs have to store their own
messages, which have to be used to determine if the incoming messages are the
min1 or min2.

The scheme of a CNU is depicted in Fig. 3.9. CNU performs very simple logic
operations due to the fact that the messages have only 2 bits: the sign bit and the
reliability bit. This unit is only composed of a tree of 1-bit logic functions (xors)
to compute the parity check of the 32 (dc) input signs and a tree of 6-input and
2-output logic functions to compute min1 and min2 from 32 (dc) reliability input
bits. It was decided to divide the function to calculate the min1 and min2 into
6-input functions, to match with the LUT size of the FPGA device used in the
implementation. The pipeline registers are drawn as dashed lines in the scheme.

Q0 Q5 Q6 Q11 Q12 Q17 Q18 Q23 Q24 Q29 Q30 Q31

m11 m21

min1 min2

min1 min2

min1 min2

min1 min2

m12 m22

min1 min2

m13 m23

min1 min2

m14 m24

min1 min2

m15 m25

min1 min2

m21m25Q31 m11m15Q30

m1 m2

XOR

sign

...

Figure 3.9: MO2-BIT-MSA CNU architecture.
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The VNU has to compute dv = 6 output messages and a decision bit according
the following equations (which are rewritten here for the sake of readability):

Q(i)
n = g(Ln + α

∑
m∈M(n)

f(R(i)
m,n)) (3.7)

Q(i)
m,n = g(Ln + α

∑
m′∈M(n)\m

f(R
(i)
m′,n)), (3.8)

being the function g(·):

g(x) =

 bs = sign(x)

bm =

{
1, if |x| > TL
0, otherwise

Fig. 3.10 shows the scheme of an VNU architecture that implements the previous
equations. The first stage is composed of 6 (dv) 5-input LUTs (CSF), which
perform the compare-and-select operations, required to decide if the incoming
message reliability value is the min1 or min2, together with the application of the
f(·) function, shown in Table 3.3. The output of the CSF LUTs are added to
obtain the total reliability (TRn) of the VNU. The extrinsic values are computed
subtracting the output of each CSF from the TRn value. Then, they are scaled
by α, added to the LLR value and processed by the g(·) function. On the other
hand, the TRn value is scaled by α and added to the LLR input to obtain the
decision bit. Finally, 6 (dv) multiplexers are used to propagate the information
of the LLR in the initialization process, without taking into account the initial
values of the f(·) and g(·) functions. As can be seen in Fig. 3.10, the VNU cell
requires 3 · dv = 18 adders, (dv + 1) = 7 multipliers by a constant value, dv = 6
f(·) fucntions, (dv + 1) = 7 g(·) functions and dv = 6 2-bit 2-to-1 multiplexers.
Its critical path is 1 f(·) function, 5 adders, 1 multiplier by a constant and 1
multiplexor.

f(·) g(·)
Message from Integer for Addition Message to

memory addition result memory

00 WL TL > x ≥ 0 00
01 WH x ≥ TL 01
10 −WL 0 > x > −TL 10
11 −WH x ≤ −TL 11

Table 3.3: Function f(·) and function g(·).
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Figure 3.10: MO2-BIT-MSA VNU architecture.

The complexity of the VNU can be reduced if the equations 3.7 and 3.8 are
rewritten taking α as common factor:

Q(i)
n = g(α(

Ln
α

+
∑

m∈M(n)

f(R(i)
m,n))) (3.9)

Q(i)
m,n = g(α(

Ln
α

+
∑

m′∈M(n)\m

f(R
(i)
m′,n))), (3.10)
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On the other hand, the common factor α can be removed if the function g(·) is
modified scaling by α the threshold value of TL, as shown in the final equations:

Q(i)
n = g

′
(
Ln
α

+
∑

m∈M(n)

f(R(i)
m,n)) (3.11)

Q(i)
m,n = g

′
(
Ln
α

+
∑

m′∈M(n)\m

f(R
(i)
m′,n)), (3.12)

where the new function g′(·) is defined as:

g
′
(x) =


bs = sign(x)

bm =

{
1, if |x| > TL

α
0, otherwise

The new implementation scheme of the VNU is shown in Fig. 3.11. As can be
seen, now it requires 2 · dv = 12 adders, 1 multiplier by a constant value, dv = 6
f(·) functions, (dv + 1) = 7 g(·) functions and dv = 6 2-bit 2-to-1 multiplexers.
So, dv adders and dv multipliers by constant are saved. Futhermore, the critical
path is reduced in one adder stage and 1 multiplier by a constant.
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Figure 3.11: MO2-BIT-MSA VNU architecture.

Finally, as the latest FPGA devices (Xilinx Serie-7 and Altera Cyclone IV and
Arria devices) allow the implementation of n-bit ternary adders (S = A+B +C)
using n LUTs and the carry-propagation logic (i.e. the same hardware cost of
a n-bit 2-operand adder), the scheme of Fig. 3.11 can be optimized for FPGA
implementation regrouping the additions in groups of three, as shown in Fig.
3.12. In this case, the VNU saves 3 adders and reduces the critical path in one
adder stage with respect to the VNU of Fig. 3.11. This is the scheme used in the
implemented architecture.

117



Chapter 3. Modified-Optimized 2-Bit Min-Sum Algorithm (MO2-BIT-MSA

R0

CSF CSF CSF CSF CSF CSF

+

+

G'

Ln

- - - - - -

G' G' G' G' G'

R1 R2 R3 R4 R5

Q0 Q1 Q2 Q3 Q4 Q5

G'

x1/+

x̂

Figure 3.12: MO2-BIT-MSA VNU architecture.

3.6.2. MO2-BIT-MSA fully-parallel pipeline interleaved

As discussed in Section 1.2, Chapter 1, the flooding schedule first updates all the
VNs and, then, all the CNs. The parallel architecture presented in the previous
section only requires to have registered the outputs of the VNUs, so each iteration
of the algorithm is computed in one clock cycle (this case is represented in Fig.
3.13.a, where the thick black line represents the registers). If both, the VNUs and
CNUs, are implemented with registered outputs (as in Fig. 3.13.b), each iteration
is computed in two clock cycles: in a clock cycle only all the CNUs are enabled
and all the VNUs are disabled not performing any computation, or vice versa.
This extra pipeline stage included in the CNUs outputs does not involve any
throughput advantage: the working clock frequency could be as much doubled
(this term is in the numerator of the throughput equation Eq. 3.13), but it is
completely compensated by the two clock cycles required by each iteration (which
is in the denominator of the throughput equation). However, these clock cycles of
inactivity of each processors can be exploited by decoding 2 independent received
frames (codes) at the same time.

This technique, called pipeline interleaved, inserts registers into the architecture
with the objective to execute multiple processes or threads concurrently like
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multithreading technique in computer programming. In this case this technique is
used to decode several codes concurrently, without interference between them.

The schemes to process 2 and 4 interleaved codes are shown in Fig. 3.13.b and
Fig. 3.13.c, respectively. The architecture to decode 2 codes requires to register
the outputs of all VNUs and CNUs, while the architecture to decode 4 codes has
also the inputs of all VNUs and CNUs registered. Note that it could seem that
the delays among registers are not equalized in the topology to decode 4 codes
of Fig. 3.13.c, as the paths between VNUS outputs and CNUs inputs or between
CNUs outputs and VNUs inputs are only composed of wires and not involve any
computation. However, due to the very high wiring congestion between CNUs
and VNUs, their propagation delays can be as long as the ones of the CNUs and
VNUs.

VNUs

Ln1
Ln2
Ln3
Ln4

Ln1
Ln2

CNUs

VNUs

CNUs

VNUs

CNUs

a) b) c)
Ln1

Figure 3.13: MO2-BIT-MSA fully-parallel pipeline interleaved. a) without pipeline
interleaved. b) pipeline interleaved for 2 codes. c) pipeline interleaved for 4 codes.

In the case of processing 2 codes concurrently, initially code 1 (C1) enters into the
VNU to be processed, at the next clock cycle C1 enters into the CNU and the
code 2 (C2) enters into the VNU. So while a code is being processed in one unit
(CNU or VNU) the other is processed in the other unit (CNU or VNU) as shown
in Fig. 3.14:

C1VNU

CNU C1 

C1 

C1 

C2

C2

C2

t

Figure 3.14: MO2-BIT-MSA fully-parallel pipeline interleaved for 2 codes.
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In the case of processing 4 codes concurrently, the process is as follows. In the first
clock cyle, C1 is processed in the VNU, next C1 waits for one clock cycle while C2
is processed in VNU. At the next clock cycle, C1 is processed in CNU, C2 waits
for one clock cycle and C3 is processed in VNU. Finally, at the next clock cycle,
C1 waits for a one clock cycle, C2 is processed into CNU, C3 waits for a one clock
cycle and C4 is processed into VNU as observed in Fig. 3.15.
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Figure 3.15: MO2-BIT-MSA fully-parallel pipeline interleaved for 4 codes.

Due to the fact that half broadcasting is used in the fully-parallel architecture, the
VNU stores its own generated messages and are used to select between the min1
or min2 of the incoming messages (this is represented by the feedback line of the
VNU scheme of Fig. 3.16). In order to properly complete the design of the pipeline
interleaved fully-parallel architecture, the feedback lines of the VNUs must be
delayed to compensate the extra delays added in the VNUs and CNUs. Therefore,
one extra delay and three extra delays have to be included in the feedback lines of
the VNUs for the 2-code and 4-code pipeline interleaved architectures, as shown
in Fig. 3.17 and Fig. 3.18, respectively.
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Figure 3.16: MO2-BIT-MSA VNU fully-parallel pipeline interleaved architecture for 1
codes.
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Figure 3.17: MO2-BIT-MSA VNU fully-parallel pipeline interleaved architecture for 2
codes.
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Figure 3.18: MO2-BIT-MSA VNU fully-parallel pipeline interleaved architecture for 4
codes.

Pipeline interleaved technique can be useful to improve the throughput of the
parallel decoder if the additional registers included in the architecture shorten the
critical path, increasing its working frequency. The throughput of the parallel
architecture is

T =
N × fclk

#clk ×#iter
, (3.13)

where N is the code length, fclk the clock frequency, #clk is the number of
clock cycles per iteration and #iter the number of iterations. When a pipeline
interleaved of q codes, where q = #clk, are used the throughput equation is given
by:

T =
q ×N × fclk
#clk ×#iter

=
N × fclk

#iter
. (3.14)

As can be observed from the previous equation, the throughput directly raises as
the term #clk is not any more in the denominator. Futhermore, the throughput
also profits from the increase of the working clock frequency, fclk, due to the extra
pipeline stages.
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3.6.3. Layered MO2-BIT-MSA

A special case of partial-parallel architecture suitable to implement Gbps decoders
is the one that performs the message-passing using the horizontal layered schedule
[34].

In the general case of a conventional MSA, a partial parallel architecture with
horizontal layered schedule is derived as follows. The VNs always updates their
soft-output information, SOn, as :

SOn = Qn = Ln +
∑

m∈M(n)

Rm,n (3.15)

The layered architecture computes the soft-output information in three steps:

1. Qm,n = SOoldn −Roldm,n
2. Rnewm,n = FMS(Qm,n), n ∈ N(m)

3. SOnewn = Rnewm,n +Qm,n,

where FMS is the function that performs the MSA in the CNs. These three steps
are computed with the layered processor (LP), as depicted in Fig. 3.19, which is
the basic cell of the partial-parallel architecture with horizontal layered scheduling.

... - +

SO1

SO2

SOdc

Ln

SOn
old

Rm,n
old

Rm,n
new

Qm,n SOn
new

...

FMS+

Figure 3.19: Scheme of the layered processor for MSA.

Next, we show the equations needed to derive the same layered architecture for the
MO2-BIT-MSA algorithm. In this algorithm, the soft-output information, SOn,
is computed as:

SOn = Ln +
∑

m∈M(n)

f(Rm,n), (3.16)

and the steps required to obtain the new soft-output value in one VN are:
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1. EIm,n = SOoldn − f(Roldm,n)

2. Qm,n = g(EIm,n)

3. Rnewm,n = FMS(Qm,n), n ∈ N(m)

4. SOnewn = f(Rnewm,n) + EIm,n.

From these equations the scheme of the layered processor is shown in Fig. 3.20.
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Figure 3.20: Scheme of the layered processor for MO2-BIT-MSA.

The (16129,15372) LDPC is too large to implement a fully-parallel decoder.
Therefore, we used the layered processor of Fig. 3.20 to implement a partial
parallel decoder for this code. It has a parity matrix of M × N = 762 × 16129,
and the degrees of variable and check nodes are dv = 6 and dc = 127, respectively.
The architecture computes in parallel one layer using 127 layered processors as the
one of Fig. 3.20, so one iteration is completed in 6 clock cycles.

3.7. Hardware results and comparisons

The decoder architectures presented in previous sections for the (2048,1723)
RS-LDPC code were modelled with VHDL and implemented in the Arria 10
10AX115-GES Altera device. This device was selected after many tries with Xilinx
Virtex-7 devices. The main disadvantage of large Xilinx FPGA devices is that they
are composed of several logic regions mounted on a passive silicon interposer with
fast but limited number of connections among them. For example, the Virtex-7
T2000 device (the largest of the Virtex-7 family) has 13270 interconnections
among logic regions, what makes impossible to route full-parallel LDPC decoders,
which are characterized by a very high number of connections. The Arria 10
10AX115-GES device is the biggest one available in the Quartus Prime v.16
software, which was used to obtain the results. This device has 427200 ALMs
(adaptive Logic Modules) composed of 2 ALUTs (Altera Look-Up Tables) and 4
FF (Flip-Flops), i.e. it contains a total of 854400 ALUTs and 1708800 FFs.
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Table 3.4 shows the results of the implementation of the full-parallel architectures.
It gives the number of ALMs, LUTs and FFs, the number of clock cycles per
iteration (#cycles), the maximum clock frequency (fclk), and the throughput for
15, 10 and 5 iterations of the algorithm. Three versions of the fully-parallel decoder
are evaluated: 1) convetional decoder architecture with 1 clock cycle per iteration
(v1 co), where the output of the VNUs are registered; 2) decoder with 2 clock
cycles per iteration (v1 c1), where both the outputs of the VNUs and CNUs are
registered; and 3) decoder with 4 clock cycles per iteration (v2 c2) with inputs
and outputs of the VNUs and CNUs registered.

From the results of Table 3.4 it can be concluded that the faster decoder is achieved
by registering both the output of the VNUs and CNUs. It reaches 11 Gbps with
10 iterations.

vr cr #ALMs #ALUTs #FFs fclk #cycles Throughput
(Gbps)

(15it)/(10it)/(5it)

v1 c0 183016 324940 48838 48 1 6.5/9.8/19.6
v1 c1 181501 326148 53170 109 2 7.4/11.1/22.3
v1 c2 181626 326150 139312 167 4 5.7/8.5/17.1

Table 3.4: Results of the implementation of full-parallel MO2-BIT-MSA decoders for
the (2048,1723) LDPC code.

Table 3.5 presents the results of the implementation of full-parallel
pipeline-interleaved decoders for the cases of interleaving #int cod = 2 and 4
codes. As can be seen, this technique is suitable to increase the throughput of the
decoder. The throughput is basically doubled when two codes are interleaved and
trebled with 4 interleaved codes.

#int cod #ALMs #ALUTs #FFs fclk #cycles Throughput
(Gbps)

(15it)/(10it)/(5it)

2 193803 326150 88976 115 2 15.7/23.5/47.1
4 212331 338438 245799 161 4 21.9/32.9/65.9

Table 3.5: Results of the implementation of full-parallel pipeline interleaved
MO2-BIT-MSA decoders for the (2048,1723) LDPC code.

For comparison purposes, a fully-parallel decoder and a layered decoder for the
MSA algorithm with 6-bit messages were implemented in the same Arria 10 device.
The results are detailed in Table 3.6. The fully-parallel decoder exceeds the
capacity of the device, so only the synthesis stage could be completed. It requires
nearly three times more ALUTs than the proposed architectures. On the other

125



Chapter 3. Modified-Optimized 2-Bit Min-Sum Algorithm (MO2-BIT-MSA

hand, the layered uses 26% less number of ALUTs but reaches a throughput 11
times lower.

MS version #ALMs #ALUTs #FFs fclk #cycles Throughput
(Gbps)

(15it)/(10it)/(5it)

FULL-PAR 631938 1125108 118936 - 2 -/-/-
LAYERED 167214 239335 36062 30.1 6 0.7/1/2.1

Table 3.6: Results of the implementation of 6-bit MSA decoders for the (2048,1723)
LDPC code.

A layered decoder architecture was modelled with VHDL for the (16129,15372)
LDPC code and implemented in a 90 nm CMOS process of nine layers with
standard cells and operating conditions of 25◦C and 1.2 V using Cadence RTL
Compiler and SOC encounter tools. The obtained place and route results are
summarized in Table 3.7. For the sake of readability, the results of MSA and
OMO-MSA given in Chapter 2 for the same LDPC code and implemented in the
same process are rewritten in this table.

Decoder Area Frequency Throughput (Gbps) Ratio
throughput/area

(mm2) (MHz) (15it)/(10it)/(5it) (Gbps/mm2)

MO2-BIT-MSA 8.154 70.7 12.67/19/38 1.55
OMO-MSA 14.173 48 8.6/12.9/25.8 0.6067
MSA [20] 15.909 37.23 6.67/10/20 0.4192

Table 3.7: Results of the ASIC implementation for the (16129,15372) LDPC code
decoders.

For the (16129,15372) LDPC code, we can see from Table 3.7 that the
MO2-BIT-MSA full layered decoder reduces the area in 42% and 48%, and
increases the throughput in 47% and 90% with respect to OMO-MSA and MSA,
respectively. Futhermore, simulations made with a FPGA emulator showed that
MO2-BIT-MSA does not introduce error-floor.
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3.8. Conclusions

In this chapter the optimized 2-bit MSA algorithm is improved using the LLR
as input and including the extrinsic information in the messages sent from the
variable nodes to the check nodes. As the algorithm has several interrelated
parameters, a method to reduce the simulation time needed to find their optimum
values is presented. The resulting algorithm performs very close to the MSA,
which is shown with the (2048,1723) RS-LDPC and (16129,15372) LDPC codes.
Several fully-parallel architectures were implemented in an FPGA device for the
(2048,1723) RS-LDPC code using our proposed VNU, which reduces the decoder
complexity. A throughput 11 times higher than a layered MSA architecture is
reached with only an ALUT area overhead of 36%. The pipeline-interleaving
technique is applied successfully doubling the throughput when two codes are
interleaved. A layered decoder for the (16129,15372) LDPC code was implemented
in a 90 CMOS process reaching the double of throughput and half area with respect
the layered MSA.
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Chapter 4

Historical-extrinsic reliability-based
iterative decoder (HE-RBID)

4.1. Introduction

As seen in Chapter 1, Section 1.5, iterative hard-decision algorithms are not able to
correct most of the errors and introduce an early degradation at BER higher than
10−5 [30], which make them impractical for most modern communication or storage
systems. For example, analog-to-digital converters for optical communications
need very few bits in their operation and they consume a lot, in this case it would
be more efficient to use a hard-decision decoder instead of a soft-decision decoder.
Due to these real problems, we are interested in proposing a hard-decision decoder
close to the performance of a soft-decision decoder.

In order to solve the degradation of performance due to a low dv in high-rate codes,
we propose a new reliability-based iterative majority-logic decoding (RBI-MLGD)
algorithm that computes the extrinsic information of previous iterations of the
varible node. This decoding algorithm is called historical-extrinsic reliability-based
iterative decoder (HE-RBID) and improves the BER performace of the previous
RBI-MLGD [29] and [30]. HE-RBID is particularly interesting for codes with
a low degree of variable node, where traditional RBI-MLGD algorithms do not
provide a good behaviour. HE-RBID ensures good performance without searching
for the minimum at the check node and only by exchanging 1-bit messages between
variable and check nodes.

129



Chapter 4. Historical-extrinsic reliability-based iterative decoder (HE-RBID)

4.2. HE-RBID algorithm

The more soft-decision is included in the check-node, the better performance in
the waterfall region is obtained. This is the strategy followed by the RBI-MSD
algorithm, which uses integer reliability information in the check-node updates.
However, the lack of soft-decision information in the check-node update does not
justify that RBI-MLGD algorithms introduce some early performance degradation
when the degree of the variable-node is low. We assume that the degradation of
performance of RBI-MLGD algorithms is due to the lack of extrinsic information
in the variable-node update. Therefore, we introduce here the new idea of
considering hard-decision votes as soft-decision and extract from them the extrinsic
information at the variable-node (hard-decision extrinsic (H-Ex) computation).

The H-Ex method was tested with both variable-node updating rules: 1) the
one followed by RBI-MLGD in which the historical-reliability data are taken into
account by accumulating the votes of all the previous iterations; and 2) the one
followed by MRBI-MLGD in which only the initial reliability is added to the
newly updated sum of votes, emulating the turbo decoder update (Tu-DU). The
scaling factor α is required in both options, non-Tu-DU (1) and Tu-DU (2), to
maintain a balance between the voting information and the incoming soft input
from the channel. As it will be shown in next Section, the H-Ex method with
Tu-DU introduces an early degradation in the BER performance, so hereafter we
will focus on H-Ex method with non-TU-DU.

The proposal of this thesis is that each hard-decision at the check-node is also a
one-bit message as in the RBI-MLGD algorithms, but in this case is calculated
based on the extrinsic information computed at the variable-node, Qm,n as in Eq.
4.1.

x̂(i)m,n =

{
1, Q

(i)
m,n ≥ 0, m ∈ {0, ...,M − 1}, n ∈ Nm

0, otherwise
(4.1)

Due to the computation of the extrinsic information, the reliability of the
hard-decision applied to calculate the check-node equations, as in Eq. 4.2 and
Eq. 4.3, is increased.

s(i)m =
∑

0≤n≤N−1

x̂(i)m,nhm,n =
∑
n∈Nm

x̂(i)m,n, m ∈ {0, ...,M − 1} (4.2)

σ(i)
m,n =

∑
n′∈Nm\n

x̂
(i)
m,n′ = s(i)m ⊕ x̂(i)m,n, m ∈ {0, ...,M − 1} (4.3)
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Moreover, the vote counting at the variable-node is extrinsic (H-Ex) as in Eq. 4.4,
as for the edge Rm,n we only consider the information from the sets of check nodes
m′ ∈ Mn\m. So, if the edge (m,n) has one error, it does not affect to the edge
itself.

R(i)
m,n = [α

∑
m′∈Mn\m

(2σ
(i)
m′,n − 1)], n ∈ {0, ..., N − 1} (4.4)

Finally, Eq. 4.5 considers the H-Ex information from all the iterations, in
other words, non-Tu-DU is applied. Non-Tu-DU ensures that the decoder takes
into account not only the information of the last vote, but also the historical
information of the H-Ex votes of the rest of previous iterations. This makes the
algorithm converge slower than algorithms derived from SPA but improves the
performace for codes with low dv. This non-Tu-DU allows us to partially overcome
the absence of a high number of check-nodes to make a reliable decision in one
iteration by “remembering” the decision of a low number of check-nodes in a larger
number of iterations.

Q(i+1)
m,n = Q(i)

m,n +R(i)
m,n, m ∈ {0, ...,M − 1}, n ∈ Nm (4.5)

This algorithm is named as Historical-Extrinsic Reliability-Based Iterative
Decoding (HE-RBID) and replaces steps 1 to 5 of RBI-MLGD algorithm with
Eq. 4.1 - Eq. 4.5 as can be seen in Algorithm 9.

To perform the tentative decoding, Qn is approximated by means of Qm,n, because
with independence of the index m ∈ Mn selected (step 6 Algorithm 9), if the
condition for early termination is satisfied, all the variable nodes converge to the
same solution in most of the cases, avoiding performance loss in the waterfall
region.
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Algorithm 9 HE-RBID.

Input : Q
(0)
n = %(yn), with n ∈ {0, ..., N − 1}

Iterative process
for i = 0→ Itmax − 1 do

Check-node update

1 x̂
(i)
mn =

{
1, Q

(i)
mn ≥ 0

0, otherwise

2 s(i)m =
∑

0≤n≤N−1

⊕x̂(i)mnhmn =
∑

n∈Nm

⊕x̂(i)mn, m ∈ {0, ...,M − 1}

3 σ(i)
mn =

∑
n′∈N\n

⊕x̂(i)mn′ = s(i)m ⊕ x̂(i)mn, m ∈ {0, ...,M − 1}

Variable-node update

4 R(i)
mn = α

∑
m′∈Mn\m

(2σ
(i)

m′n − 1), n ∈ {0, ..., N − 1}

5 Q(i+1)
mn = Q(i)

mn +R(i)
mn, m ∈ {0, ...,M − 1}, n ∈ Nm

Tentative decoding

6 Q(i+1)
n = Q(i+1)

mn , rand(m) ∈ {0, ...,M − 1}, n ∈ Nm

x̂
(i+1)
n =

{
1, Q

(i+1)
n ≥ 0

0, otherwise

if (s(i) = 0) then SKIP
end
Output : x̂

1.6.4.1. Example 1. Historical-extrinsic reliability-based iterative
decoder

Let us assume that a bit sequence of seven zeros is transmitted on a channel with
errors. The magnitude of the LLR is correlated with the magnitude of the received
level. We take the positive sign as a logic 0 and the negative sign as a logic 1.

In this example LLR values are computed as L0(y0) = −15 = n0, L1(y1) = −15 =
n1, L2(y2) = −15 = n2, L3(y3) = +1 = n3, L4(y4) = −15 = n4, L5(y5) = −15 =
n5 and L6(y6) = −15 = n6 and in this case we use a scale factor α = 0.5.

132



4.2 HE-RBID algorithm

n = 0 n = 1 n = 2

m = 0

n = 3 n = 4

m = 1

n = 5 n = 6

m = 2

n = 0 n = 1 n = 2

m = 0

n = 3 n = 4

m = 1

n = 5 n = 6

m = 2

S0 = 1 S1 = 1 S2 = 1

0

0

1 0

1 0

0 01

1

1

0 1

0 1

1 10

-15 -15 -15 +1 -15 -15 -15

First iteration

-15Q(1)
m,n: -15 -15  0 -15 -15 -15

-15 -15 -15 +1 -15 -15 -15

Q(0)
m,n:

Figure 4.1: HE-RBID example. First iteration.

First, the LLR values are loaded in the VNs. Once this is done, messages are sent
from VNs to CNs and the syndromes are computed:

s
(0)
0 = x̂

(0)
0,0 ⊕ x̂

(0)
0,1 ⊕ x̂

(0)
0,3 = 0⊕ 0⊕ 1 = 1

s
(0)
1 = x̂

(0)
1,2 ⊕ x̂

(0)
1,3 ⊕ x̂

(0)
1,4 = 0⊕ 1⊕ 0 = 1

s
(0)
2 = x̂

(0)
2,3 ⊕ x̂

(0)
2,5 ⊕ x̂

(0)
2,6 = 1⊕ 0⊕ 0 = 1

where
x̂(0)m,n =

{
1, Q

(0)
m,n ≥ 0

0, otherwise

With the syndromes computed, the value that will satisfy each of the parity-check
equations is calculated. Considering that the incoming messages from the VN can
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have an error (processing only the information from the neighbours), the following
equation is applied to determine the magnitude of the messages from the CN to
VN:

σ(i)
m,n = s(i)m ⊕ x̂(i)m,n

So the magnitude is computed as:

σ
(0)
0,0 = s

(0)
0 ⊕ x̂

(0)
0,0 = 1⊕ 0 = 1

σ
(0)
0,1 = s

(0)
0 ⊕ x̂

(0)
0,1 = 1⊕ 0 = 1

σ
(0)
0,3 = s

(0)
0 ⊕ x̂

(0)
0,3 = 1⊕ 1 = 0

σ
(0)
1,2 = s

(0)
1 ⊕ x̂

(0)
1,2 = 1⊕ 0 = 1

σ
(0)
1,3 = s

(0)
1 ⊕ x̂

(0)
1,3 = 1⊕ 1 = 0

σ
(0)
1,4 = s

(0)
1 ⊕ x̂

(0)
1,4 = 1⊕ 0 = 1

σ
(0)
2,3 = s

(0)
2 ⊕ x̂

(0)
2,3 = 1⊕ 1 = 0

σ
(0)
2,5 = s

(0)
2 ⊕ x̂

(0)
2,5 = 1⊕ 0 = 1

σ
(0)
2,6 = s

(0)
2 ⊕ x̂

(0)
2,6 = 1⊕ 0 = 1

We can check the previous results with the magnitude of the message exchange in
Fig. 4.1.

Finally, the tentative decoding is computed by adding the LLR value received from
the channel to the incoming check-to-variable node messages as follows:
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Q
(1)
0,0 = Q

(0)
0 = −15

Q
(1)
0,1 = Q

(0)
1 = −15

Q
(1)
1,2 = Q

(0)
2 = −15

Q
(1)
0,3 = Q

(0)
3 = Q

(0)
0,3+(α ·((2 ·σ(0)

1,3−1)+(2 ·σ(0)
2,3−1))) = 1+(0.5 ·((−1)+(−1))) = 0

Q
(1)
1,3 = Q

(0)
1,3 + (α · ((2 · σ(0)

0,3 − 1) + (2 · σ(0)
2,3 − 1))) = 1 + (0.5 · ((−1) + (−1))) = 0

Q
(1)
2,3 = Q

(0)
2,3 + (α · ((2 · σ(0)

0,3 − 1) + (2 · σ(0)
1,3 − 1))) = 1 + (0.5 · ((−1) + (−1))) = 0

Q
(1)
1,4 = Q

(0)
4 = −15

Q
(1)
2,5 = Q

(0)
5 = −15

Q
(1)
2,6 = Q

(0)
6 = −15

Performing a second iteration:
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n = 0 n = 1 n = 2 n = 3 n = 4 n = 5 n = 6

m = 0 m = 1 m = 2
S0 = 0 S1 = 0 S2 = 0

0

0

1 0

1 0

0 0
1

Second iteration

n = 0 n = 1 n = 2 n = 3 n = 4 n = 5 n = 6

m = 0 m = 1 m = 2

1

1

0 1

0 1

1 10

-15 -15 -15 0 -15 -15 -15

-15Q(2)
m,n: -15 -15 -1 -15 -15 -15

-15 -15 -15 0 -15 -15 -15

Figure 4.2: HE-RBID example. Second iteration.

The messages computed in each VN are sent from VNs to CNs, computing the
syndromes:

s
(1)
0 = x̂

(1)
0,0 ⊕ x̂

(1)
0,1 ⊕ x̂

(1)
0,3 = 0⊕ 0⊕ 1 = 1

s
(1)
1 = x̂

(1)
1,2 ⊕ x̂

(1)
1,3 ⊕ x̂

(1)
1,4 = 0⊕ 1⊕ 0 = 1

s
(1)
2 = x̂

(1)
2,3 ⊕ x̂

(1)
2,5 ⊕ x̂

(1)
2,6 = 1⊕ 0⊕ 0 = 1

where
x̂(1)m,n =

{
1, Q

(1)
m,n ≥ 0

0, otherwise
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Once the syndromes are computed, the value that will satisfy each of the
parity-check equations is processed. The computation of the magnitude of the
messages is done as follows:

σ
(1)
0,0 = s

(1)
0 ⊕ x̂

(1)
0,0 = 1⊕ 0 = 1

σ
(1)
0,1 = s

(1)
0 ⊕ x̂

(1)
0,1 = 1⊕ 0 = 1

σ
(1)
0,3 = s

(1)
0 ⊕ x̂

(1)
0,3 = 1⊕ 1 = 0

σ
(1)
1,2 = s

(1)
1 ⊕ x̂

(1)
1,2 = 1⊕ 0 = 1

σ
(1)
1,3 = s

(1)
1 ⊕ x̂

(1)
1,3 = 1⊕ 1 = 0

σ
(1)
1,4 = s

(1)
1 ⊕ x̂

(1)
1,4 = 1⊕ 0 = 1

σ
(1)
2,3 = s

(1)
2 ⊕ x̂

(1)
2,3 = 1⊕ 1 = 0

σ
(1)
2,5 = s

(1)
2 ⊕ x̂

(1)
2,5 = 1⊕ 0 = 1

σ
(1)
2,6 = s

(1)
2 ⊕ x̂

(1)
2,6 = 1⊕ 0 = 1

In this second iteration, the reliability values for computing the tentative decoding
are:

Q
(2)
0,0 = Q

(1)
0 = −15

Q
(2)
0,1 = Q

(1)
1 = −15

Q
(2)
1,2 = Q

(1)
2 = −15

Q
(2)
0,3 = Q

(1)
3 = Q

(1)
0,3+(α·((2·σ(1)

1,3−1)+(2·σ(0)
2,3−1))) = (0)+(0.5·((−1)+(−1))) = −1

Q
(2)
1,3 = Q

(1)
1,3 + (α · ((2 ·σ(1)

0,3 − 1) + (2 ·σ(0)
2,3 − 1))) = (0) + (0.5 · ((−1) + (−1))) = −1

Q
(2)
2,3 = Q

(1)
2,3 + (α · ((2 ·σ(1)

0,3 − 1) + (2 ·σ(0)
1,3 − 1))) = (0) + (0.5 · ((−1) + (−1))) = −1

Q
(2)
1,4 = Q

(1)
4 = −15

Q
(2)
2,5 = Q

(1)
5 = −15

Q
(2)
2,6 = Q

(1)
6 = −15
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Performing a third iteration:

n = 0 n = 1 n = 2 n = 3 n = 4 n = 5 n = 6

m = 0 m = 1 m = 2
S0 = 0 S1 = 0 S2 = 0

0

0

0 0

0 0

0 0
0

Third iteration

n = 0 n = 1 n = 2 n = 3 n = 4 n = 5 n = 6

m = 0 m = 1 m = 2

0

0

0 0

0 0

0 00

-15 -15 -15 -1 -15 -15 -15

-15Q(3)
m,n: -15 -15 -2 -15 -15 -15

-15 -15 -15 -1 -15 -15 -15

Figure 4.3: HE-RBID example. Third iteration.

Finally, it can be checked that all the syndromes are satisfied and, hence, the code
word is corrected. The error in VN n = 3 has been corrected, flipping the sign
of the node from positive to negative. All the Qm,n messages are now negative,
and all the hard-decision messages are zero, as shown in Fig. 4.3. Note that the
decisions taken by the algorithm require more iterations because the convergence
is slower, which helps the algorithm not to diverge towards an incorrect solution
in case of errors.

4.3. Error correction performance

Performance tests were performed using three different types of codes:

1. (2304,2048) algebraic LDPC code [10] with dc = 36 and dv = 6.

2. (2304,1920) LDPC code for Wimax [32] with dc = 20 and dv = 4.
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3. (2048,1723) Reed-Solomon-based LDPC code [9] with dc = 32 and dv = 6.
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Figure 4.4: BER performance of several LDPC decoding algorithms for the (2304,2048)
algebraic LDPC code (20 iterations).
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Figure 4.5: BER performance of several LDPC decoding algorithms for the (2304,1920)
LDPC code for Wimax (20 iterations).
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Figure 4.6: BER performance of several LDPC decoding algorithms for the (2048,1723)
Reed-Solomon-based LDPC code (20 iterations).

For the (2304,2048) algebraic LDPC code (Fig. 4.4) and the (2304,1920) LDPC
code for Wimax (Fig. 4.5) we can see that HE-RBID reduces the early degradation
at least two orders of magnitude compared to (M)RBI-MLGD with a reduction
of complexity compared to RBI-MSD and MSA, at a cost of 0.7 dB and 0.8 dB
of performance loss in the waterfall region, respectively. With the (2048,1723)
Reed-Solomon-based LDPC code, HE-RBID introduces a performance loss of 0.7
dB at BER = 10−10 compared to MSA but with a complexity reduction (Fig.
4.6). If we compare HE-RBID to (M)RBI-MLGD, the first one reduces the early
degradation at BER = 10−6 to at least 10−10. In all the cases a decoding algorithm
that combines Tu-DU and H-Ex computation shows an early degradation that it
is not practical for real applications.
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4.4. Complexity analysis

In Table 4.1 we include the complexity of RBI-MLGD, MRBI-MLGD, HE-RBID
and RBI-MSD algorithms in terms of number of operations per iteration.
RBI-MLGD, MRBI-MLGD, HE-RBID and RBI-MSD involve the same number
of binary operations; the main differences in complexity are in the number of
real-number additions/subtractions and comparisons 1.

Algorithm Binary Operation Addition/ Comparison Bits of
Subtraction Message

Passing

(M)RBI 2× (dc − 1)×M +N dc ×M 0 1
-MLGD

RBI 2× (dc − 1)×M +N dc ×M (dc ×M)× q
-MSD ×(dc − 2)

HE-RBID 2× (dc − 1)×M +N 2× dc ×M 0 1
-RBID

Table 4.1: Complexity per iteration for different LDPC decoding algorithms.

RBI-MSD needs the processing of dc − 2 comparisons at each edge of the code
(remember that there are dc × M edges) which is similar to the number of
comparisons of MSA from [16]. In fact, RBI-MSD has less complexity compared
to MSA with independence of the version [16], [17]. Due to this, if HE-RBID
is less complex in terms of operations per iteration than RBI-MSD, it will be
less complex than MSA, even with a greater reduction in complexity. HE-RBID
duplicates the number of additions/subtractions because the H-Ex processing is
required. Finally, it is important to remark once again that HE-RBID, RBI-MLGD
and MRBI-MLGD only perform one-bit message passing, while RBI-MSD requires
q-bit message passing, where usually q = 8 according to [30]. To have a reference
of complexity of the mentioned algorithms, we enumerate the total number of
operations per iteration (OPI) required for the codes:

1. (2304,2048) algebraic LDPC code:

• (M)RBID = 29KOPI

• RBI −MSD = 342KOPI

• HE −RBID(α = 0.25) = 38KOPI

2. (2304,1920) LDPC code for Wimax:

• (M)RBID = 24KOPI

1Note that multiplications by the scaling factor α, which is constant, are omitted because
they are negligible compared to the rest of the complexity.
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• RBI −MSD = 162KOPI

• HE −RBID(α = 0.75) = 32KOPI

3. (2048,1723) Reed-Solomon-based LDPC code:

• (M)RBID = 38KOPI

• RBI −MSD = 406KOPI

• HE −RBID(α = 0.375) = 50KOPI

From the previous results we see that HE-RBID is (32K− 24K)/24k = 33% more
complex than (M)RBI-MLGD in the most restrictive case. On the other hand,
RBI-MSD is heavily dependent on dc. Our proposal is between five and eight
times less complex than RBI-MSD for the (2304,1920) LDPC code for Wimax and
the (2048,1723) Reed-Solomon-based LDPC code respectively.

Although the objective of this chapter is not to implement a hardware architecture
but to analyze how to reduce the complexity of the decoding algorithm and to
improve the error floor in RBI-MLGD algorithms, the following aspects can be
easily deduced in terms of the derived architectures:

1. Area: Although HE-RBID duplicates the number of additions/substractions,
as shown in Table 4.1, the number of bits of message passing is only one
compared to q bits of RBI-MSD. So, the final complexity is reduced with
respect to RBI-MSD and, also, the required area.

2. Throughput: The critical path of RBI-MSD and HE-RBID is the same, but
since the HE-RBID has fewer bits to exchange between CNU and VNU,
the routing will be smaller and, therefore, there will be less congestion and
higher decoding speed.

3. Consumption: The consumption of an element is related to the transition
from one logic level to another, therefore, although HE-RBID has a smaller
number of operations with respect to RBI-MSD, it reduces the number of
transitions, so it lowers the consumption. Also, since there are less bits
used in each operation, consumption is further reduced. Therefore, using
HE-RBID lower power is required.

4.5. Conclusions

In this chapter a new RBI-MLGD algorithm is proposed. This algorithm, named as
HE-RBID, reduces between five and nine times the complexity of RBI-MSD at the
cost of some performance loss (0.7-0.8 dB) in the waterfall. The proposed solution
avoids the early performance degradation that RBI-MLGD and MRBI-MLGD
introduce with codes of low dv and non-EG construnction. HE-RBID computes
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the extrinsic information from hard-decision votes of previous iterations at the
varible node (hard-decision extrinsic (H-Ex) computation), while it does not
increase complexity by more than 33%. In addition, the new proposal also
improves the coding gain at the error floor region. HE-RBID uses the extrinsic
information of previous iterations as soft-decision information without searching
for the minimum at the check node like RBI-MSD, besides, our proposal is based
on one-bit message-passing and so, no integer reliability is used in the CN, in
contrast to RBI-MSD.
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Chapter 5

Conclusions and future work

The objective of this thesis was the design of high-efficiency decoder architectures
based on LDPC codes, and in particular for Min-sum and Reliability-based
decoders. In this chapter the main conclusions of the thesis are exposed and
the future lines of research are drawn.

5.1. Conclusions

Focused on the objective of improving LDPC decoders in order to obtain
architectures with the best tradeoff between error correction performance and
throughput-area ratio, the state of the art was reviewed with the aim of detecting
the main bottlenecks in: i) algorithms complexity, ii) bit error rate performance
and iii) hardware architectures. Derived from this analysis a tutorial guide was
elaborated. Part of the guidelines included there are outlined in the following
paragraphs.

First, the basics of LDPC codes and the message passing decoding schedules were
introduced. Next, the three basic hardware architectures for LDPC decoders
were analyzed, concluding that using a partially-parallel architecture, a balance
between the benefits of fully-parallel (energetically efficient) and fully-serial (with
very low routing congestion and area) architectures is obtained. Partially-parallel
architecture improves efficiency by partitioning H into rowwise and columnwise
groups so that a set of check-node and variable-node updates can be done per
cycle.

SPA and scaled MSA were presented with their performance in Chapter 1. From
the analysis of these two soft-decision decoding algorithms it was concluded that
SPA provides the best performance at expenses of a high computational complexity
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in the check node. In order to reduce this complexity the best proposal to achieve
a better trade-off between complexity and coding gain is scaled MSA. However,
scaled MSA causes a slightly performance degradation and its complexity is still
moderated due to the number of operations in the calculation of the magnitude
at the check-node, which depends on dc especially large for very high-rate codes.

In Chapter 2, a new approximation to estimate the second minimum magnitude
called One Minimum Only Min-Sum algorithm (OMO-MSA) is proposed. The
OMO-MSA reduces the complexity of the check node update hardware using an
estimated min2 value, instead of computing it. The estimation is performed
by a linear approximation tuned with two parameters and allows a dynamic
adjustment of the correction factor, which is adapted automatically to the iteration
number and to the signal-to-noise ratio. The design of the tuning parameters
is quite simple compared to other lossless approximations. It was shown that
our solution has a performance very close to MSA: three LDPC codes based
on different construction methods were evaluated obtaining a performance loss
lower than 0.1 dB in all the cases. The performance at high SNR values was also
evaluated using an FPGA-based hardware emulator. It was demonstrated that the
OMO simplification does not degrade the correction performance at high SNR.
An interesting result is that for the (2048,1723) LDPC code used in the IEEE
803.an standard, the OMO algorithm has a 0.2 dB of coding gain with respect
to MSA at BER = 10−13. It was also shown that the reduction of complexity
of the proposed OMO-MSA leads to a higher area-throughput efficiency in the
hardware decoder implementations. A hardware OMO check node was derived
and used to implement partial parallel decoders with horizontal layered schedule
for the (2048,1723) LDPC code and the (16129,15372) LDPC code. The decoders
were modelled in VHDL and implemented in a 90 nm CMOS process. The
implementation results indicate that the decoder for the (2048,1723) LDPC code
improves the efficiency of the MSA by 18% in terms of throughput/area ratio, and
the one for the (16129,15372) LDPC code improves the throughput in 28.9% and
reduces the area 1.7 times.

A third soft-decision decoding algorithm, Optimized 2-bit MSA (O2-BIT-MSA)
was analyzed in Chapter 1. From previous analysis, it was concluded that
Optimized 2-bit MSA reduces the routing congestion with the use of two bits in the
message-passing but with a moderate loss in the coding gain with respect to SPA
and MSA. Furthermore, the algorithm performance depends on five parameters,
whose optimization is difficult and time-consuming, as requires many simulations.
In order to overcome those weak points the Modified Optimized 2-bit Min-Sum
Algorithm (MO2-BIT-MSA) is proposed in Chapter 3. The first modification
introduced in the MO2-BIT-MSA is the use of the LLR in the variable nodes with
uniform quantization of several bits instead of 2-bit non-uniform one. This has an
important impact on the BER performance, while the routing congestion is not
affected: the interchanged messages are kept with 2 bits. A method to find the
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optimum values for the parameters of the algorithm was exposed, which helps to
reduce the number of simulations. Using this new approach it is shown for the
(2048,1723) LDPC code that a coding gain of 0.2 dBs with respect to O2-BIT-MSA
is achieved, but the performance curve suffers of an early error floor that arises at
BER = 10−8. A second modification is applied to the MO2-BIT-MSA to overcome
this problem: the extrinsic information is introduced in the variable node messages.
It has a great impact on the performance, but it increases the number of messages
sent from the variable nodes in a factor dv. A coding gain improvement of 0.6
dB is achieved for the (2048,1723) LDPC code. In order to analyze its behaviour
at high SNR values, the CNU and VNU of the MO2-BIT-MSA were modelled
in VHDL and used in an FPGA-based hardware emulator. It is shown that the
proposed algorithm performs very close to the MSA (with a performance loss of
0.01 dBs) and follows the same error floor pattern as the MSA. The algorithm was
also evaluated for the (16129,15372) LDPC code, which does not exhibits error
floor, using the hardware emulator. In this case a performance loss of 0.2 dB is
obtained without the introduction of error floor. Two main features make the
MO2-BIT-MSA to be attractive for high speed implementations in FPGA devices
using a fully-parallel architecture: the extreme simplicity of the check node (it only
requires logic operations) and the reduced number of connections between check
and variable nodes. However, its variable node is more complex than the one of the
conventional MSA. In order to reduce the complexity of the VNU, an algorithm
transformation is proposed that saves 9 adders and 6 constant multipliers per
VNU for the (2048,1723) LDPC code. Fully-parallel architectures were modelled
in VHDL and implemented in an Altera Arria 10 device. A throughput of 11 Gbps
is obtained with a decoder configured for 10 iterations (with 0.2 dB of performance
loss). Fully-parallel pipeline-interleaved decoders were also modelled in VHDL and
implemented in the same FPGA device. Throughputs with 10 iteration of 23 Gbps
and 32 Gbps are obtained when 2 and 4 codes are interleaved. Under the best
knowledge of the author, these are the highest throughputs reported for FPGA
devices with the used code. On the other hand, a partial parallel architecture
with horizontal layered scheduling was derived for the MO2-BIT-MSA. A decoder
for the (16129,15372) LDPC code using this layered architecture was modelled in
VHDL and implemented in a 90 nm CMOS process. The decoder has an area of
8.1 mm2 and reaches 19 Gbps with 10 iterations, which is nearly the double of
throughput with nearly half the area of a MSA with the same architecture.

After analyzing in Chapter 1 hard-decision LDPC decoders based on
reliability-based iterative proposals, RBI-MLGD, MRBI-MLGD and RBI-MSD,
it was concluded that the main limitation of these algorithms is its inability to
improve the coding gain of high-rate codes (with low dv) at the error-floor region.
The only algorithm that does not degrade the error correction performance for
high Eb/N0 is the RBI-MSD, but it uses soft-decision information, which yields
into an increase of complexity similar to other decoders like MSA. To solve this
problem, avoiding soft-decision messages, the differences between RBI algorithms
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and other algorithms like MSA were studied. Two deviations were detected: i)
RBI algorithms do not perform the computation of the extrinsic information in
the hard-decision messages and ii) there is a lack of historical information from the
previous iterations because of the emulation of turbo-decoder updates (Tu-DU).
For this reason, algorithms with different combinations of Tu-DU and non-Tu-DU
configurations and with the inclusion of extrinsic information calculation were
designed and tested. After comparing the results of the decoding algorithms with
different kinds of codes based on several code construction methods (algebraic
LDPC, Reed-Solomon codes, etc.), it was concluded that the best combination is
the non-Tu-DU and the calculation of extrinsic information based on hard-decision
messages. This configuration obtained the best results in the waterfall region and
avoided the early error-floor degradation introduced by the other hard-decision
LDPC decoders such as RBI-MLGD. Moreover, the tentative decoding process
was simplified by means of approximating the estimation of the decoder codeword
to the variable node messages. The combination of all this features was named as
HE-RBID. The proposed HE-RBID from Chapter 4 reduces between five and nine
times the complexity of RBID-MSD at a cost of a performance loss (0.7-0.8 dB)
in the waterfall. In addition, HE-RBID avoids the early performance degradation
that RBI-MLGD and MRBI-MLGD introduce with codes of low dv and it improves
the coding gain at the error-floor region with a complexity increment of 33% in the
worst scenario. Finally, HE-RBID will allow to derive architectures with higher
throughput, as the message passing is reduced to one bit and, hence, the global
routing is greatly reduced and, area and consumption will be smaller due to the
replacement of integer operations by binary computation.

5.2. Future research lines

In this last section we address some research lines that could be carried out on the
basis of this thesis.

• Threshold split-row technique proposed in [24] was demonstrated to be
effective reducing the routing congestion and the area of full-parallel
decoders. This technique could be adapted to the OMO-MSA to implement
faster decoders.

• The MO2-BIT-MSA has a performance very close to the MSA with
very low complexity. That complexity reduction has made possible the
implementation in an FPGA device of a 11 Gbps decoder for the (2048,1723)
LDPC code. However, this code exhibits an error floor at BER = 10−10 that
prevents its use in certain applications, like optical communications. One
working line is to apply and develop techniques to reduce the error floor, like
the ones in [35], without compromise the low complexity of the algorithm
and to implement a 10 Gbps decoder with low error floor in an FPGA device.
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• Recently, a new dimension of parallelism unrolling the iterations of the
decoding algorithm has been proposed in [36] and [37] to design ultra-high
throughput LDPC decoders. This technique has serious problems of routing
congestion and power consumption. The MO2-BIT-MSA, thanks to its low
complexity and reduced wiring between CNUs and VNUs, could be a good
candidate to be implemented in a fully-parallel unrolled architecture.

• It was shown that the proposed HE-RBID algorithm exhibits good
performance with high-rate codes while it keeps low complexity and very low
wiring between CNUs and VNUs, but it was not shown how those advantages
are translated to a hardware decoder. Therefore, a high-speed decoder
architecture based on this algorithm could be developed and implemented.
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