ÍNDICE GENERAL

ÍNDICE	i
ÍNDICE DE FIGURAS	xi
ÍNDICE DE TABLAS	xxiii
ABREVIACIONES Y SÍMBOLOS	xxix
RESÚMENES	xxxv
PREFACIO	xliii
CAPÍTULO I. INTRODUCCIÓN	1
I.1. OBJETIVOS	3
I.2. MOTIVACIÓN	4
I.3. CONTRIBUCIÓN	5
I.4. TECNOLOGÍAS DE MEMBRANAS	6
I.4.1. Materiales de membrana	6
I.4.2. Fundamentos teóricos de los procesos de membrana	8
I.4.3. Procesos de membrana	8
I.4.4. Aplicaciones de los procesos de membrana	10
I.4.5. Ensuciamiento	11
I.5. LA ÓSMOSIS INVERSA	11
I.6. LA ÓSMOSIS DIRECTA	14
I.6.1. Desarrollo histórico	15
I.6.2. Procesos de membrana conducidos por ósmosis (ODMP)	16
I.6.3. Aplicaciones	17
I.6.4. Ventajas e inconvenientes	18

I.6.5. Membranas de ósmosis directa	. 19
I.6.6. Configuraciones y módulos de ósmosis directa	. 20
I.6.7. Disoluciones de arrastre	. 23
I.6.8. Modelado de la ósmosis directa	. 24
I.7. DISOLUCIONES DE ALIMENTACIÓN Y ARRASTRE EMPLEADAS	. 29
I.7.1. Estación depuradora de aguas residuales urbanas	. 29
I.7.2. Fangos de depuración	. 30
I.7.3. Tratamiento del fango	. 31
I.7.4. Escurrido de centrífuga	. 31
I.7.5. Salmuera procedente de fermentación de olivas de mesa	. 33
I.7.6. Agua residual de operaciones de salado de pieles de curtidos para su conservación	. 34
I.7.7. Salmuera de rechazo de proceso de desalación de agua de mar por ósmosis inversa	. 35
I.7.8. Residuo de proceso de absorción de amoníaco con ácido sulfúrico	. 35
I.8. BIORREACTOR DE MEMBRANAS (MBR) Y BIORREACTOR OSMÓTICO DE MEMBRANAS (OSMBR)	
I.8.1. Biorreactor de membranas (MBR)	. 35
I.8.2. Biorreactor osmótico de membranas (OsMBR)	. 37
CAPÍTULO II. MATERIALES Y MÉTODOS	. 57
II.1. DISOLUCIONES DE ARRASTRE EMPLEADAS	. 59
II.1.1. Disolución de arrastre simulada o sintética	. 59
II.1.2. Agua residual de la fermentación de la oliva	. 59
II.1.3. Agua residual de operaciones de salazón de pieles de curtidos para su conservación	. 60
II.1.4. Residuo de proceso de absorción de amoníaco con ácido sulfúrico	. 61

por ósmosis inversa	
II.2. DISOLUCIONES ALIMENTO EMPLEADAS	63
II.2.1. Agua residual de deshidratación por centrifugación (escurrido de centrífuga)	63
II.2.2. Fango secundario	64
II.2.3. Agua residual sintética de alimentación al OsMBR	65
II.3. PLANTAS DE LABORATORIO UTILIZADAS	65
II.3.1. Planta de laboratorio de ósmosis directa	65
II.3.1.1. Módulo de membranas de tipo plano de ósmosis directa	68
II.3.1.2. Membranas de ósmosis directa	69
II.3.2. Biorreactor osmótico de membrana (OsMBR)	69
II.3.3. Planta de laboratorio con reactor biológico secuencial (SBR)	72
II.4. Metodología de análisis y equipos analíticos	73
II.4.1. pH	73
II.4.2. Sólidos totales	73
II.4.3. Sólidos volátiles	74
II.4.4. Sólidos en suspensión	74
II.4.5. Demanda química de oxígeno (DQO)	74
II.4.6. Fósforo total	75
II.4.7. Nitrógeno amoniacal	75
II.4.8. Nitrógeno total	76
II.4.9. Determinación de iones	76
II.4.10. Microscopio de barrido electrónico (SEM)	76
II.4.11. Microscopía FESEM y EDX	77
II.4.12. Microscopio de fuerza atómica (AFM)	78
II.4.13. Medidor de potencial Z	78
II.4.14. Separación de la fracción soluble del agua o fango	79
II.4.15. Reactivos para limpieza de la planta y de las membranas	79

II.4.16. Tiempo de Succión Capilar (TSC)	0
II.4.17. Medidor de ángulo de contacto8	0
II.5. ENSAYOS DE ÓSMOSIS DIRECTA	2
II.5.1. Determinación de la presión osmótica de las disoluciones salinas	2
II.5.2. Conductividad8	4
II.5.3. Calibración conductividad vs concentración de NaCl8	4
II.5.4. Medida experimental de la densidad de flujo de permeado (Jw) 8	4
II.5.5. Medida experimental del flujo inverso de sales (Js)	5
II.5.6. Cálculo del paso inverso específico de sales	5
II.5.7. Cálculo teórico de Jw (flux de agua)	5
II.5.8. Cálculo teórico de Js	6
II.5.9. Caracterización de las membranas vírgenes8	6
II.5.10. Limpiezas (protocolos)8	6
II.5.11. Operación del biorreactor osmótico de membrana (OsMBR) 8	7
II.5.12. Listado de los ensayos realizados	9
CAPÍTULO III. RESULTADOS9	7
III.1. CARACTERIZACIÓN MEMBRANAS DE ÓSMOSIS DIRECTA9	9
III.1.1. Densidades de flujo de permeado y paso inverso de sales según la concentración de la disolución de arrastre para cada una de las 3 membranas ensayadas	0
III.1.2. Análisis por microscopía SEM y AFM de las membranas vírgenes10	2
III.1.3. Rugosidad de las membranas 10	8
III.1.4. Ángulo de contacto de las membranas 10	9
III.2. ESTUDIO DE LA APLICACIÓN DE AGUAS RESIDUALES INDUSTRIALES DE ALTA SALINIDAD COMO DISOLUCIÓN DE ARRASTRE EN LA CONCENTRACIÓN DEL ESCURRIDO DE CENTRÍFUGA110	0

misma disolución de arrastre y diferente disolución de alimento
III.2.1.1. Comparación entre los ensayos 1 y 3, realizados con la misma membrana (HTI-CTA-ES), SFPA como disolución de arrastre y agua desionizada y escurrido de centrífuga como disoluciones de alimento, respectivamente
III.2.1.2. Comparación entre los ensayos 2 y 4, realizados con la misma membrana (HTI-CTA-ES), SART como disolución de arrastre y agua desionizada y escurrido de centrífuga como disoluciones de alimento, respectivamente
III.2.1.3. Comparación entre los ensayos 6 y 7, realizados con la misma membrana (HTI-CTA-NW), SART como disolución de arrastre y agua desionizada y escurrido de centrífuga como disoluciones de alimento, respectivamente
II.2.2. Comparación de ensayos utilizando la misma membrana, la misma disolución de alimento y diferente disolución de arrastre
III.2.2.1. Comparación entre los ensayos 1 y 2, realizados con la misma membrana (HTI-CTA-ES), agua desionizada como disolución de alimento y SFPA y SART como disoluciones de arrastre, respectivamente
III.2.2.2. Comparación entre los ensayos 3 y 4, realizados con la misma membrana (HTI-CTA-ES), escurrido de centrífuga como disolución de alimento y SFPA y SART como disoluciones de arrastre, respectivamente
III.2.2.3. Comparación entre los ensayos 5 y 6, realizados con la misma membrana (HTI-CTA-NW), agua desionizada como disolución de alimento y SFPA y SART como disoluciones de arrastre, respectivamente
II.2.3. Comparación de ensayos utilizando las mismas disoluciones de alimento y de arrastre y diferente tipo de membrana123
III.2.3.1. Comparación entre los ensayos 2 y 6, realizados con la misma disolución de alimento y arrastre (agua desionizada y SART respectivamente) y diferente membrana (HTI CTA ES y HTI CTA NW respectivamente)124

III.2.3.2. Comparación entre los ensayos 4 y 7, realizados con la misma disolución de alimento y arrastre (escurrido de centrífuga y SART respectivamente) y diferente membrana (HTI CTA ES y HTI CTA NW respectivamente)125
III.2.3.3. Comparación entre los ensayos 1 y 5, realizados con la misma disolución de alimento y arrastre (agua desionizada y SFPA respectivamente) y diferente membrana (HTI CTA ES y HTI CTA NW respectivamente)
III.2.4. Comparativa densidad de flujo de permeado (Jw) y paso inverso de sales (Js) teórico y experimental
III.3. APLICACIÓN DE LA ÓSMOSIS DIRECTA AL ESCURRIDO DE CENTRÍFUGA UTILIZANDO DISTINTAS DISOLUCIONES DE ARRASTRE EN ENSAYOS DE LARGA DURACIÓN130
III.3.1. Comparación de los ensayos DES1 y DES3 de larga duración realizados con la misma disolución de arrastre y alimento (salmuera y agua desionizada) pero diferente membrana (HTI CTA NW y AIM)
III.3.2. Comparación de los ensayos DES2 y DES4 de larga duración realizados con la misma disolución de arrastre y alimento (salmuera y escurrido de centrífuga) pero diferente membrana (HTI CTA NW y AIM)
III.3.3. Comparación de los ensayos RSA1 y RSA5 de larga duración realizados con la misma disolución de arrastre y alimento (RSA y agua desionizada) pero diferente membrana (HTI CTA NW y AIM respectivamente)
III.3.4. Comparación de los ensayos RSA2 y RSA4 de larga duración realizados con la misma disolución de arrastre y alimento (RSA y escurrido de centrífuga respectivamente) pero diferente membrana (HTI CTA NW y AIM respectivamente) 144
III.3.5. Comparación de los ensayos RSA6 y RSA7 de larga duración realizados con la misma membrana (AIM), disolución de arrastre (RSA) pero diferente disolución de alimento (escurrido de centrífuga y escurrido de centrífuga acidificada respectivamente)
III.3.6. Comparación de los ensayos DES1 y RSA1 de larga duración realizados con la misma membrana (HTI CTA NW), misma

disolución de alimento (agua desionizada) y diferente disolución de arrastre (salmuera y RSA respectivamente)	159
III.3.7. Comparación ensayos de larga duración utilizando la misma membrana (HTI CTA NW) y diferentes disoluciones de alimento y de arrastre (DES1, RSA1, DES2 y RSA2)	161
III.3.8. Comparación ensayos de larga duración utilizando la misma membrana (AIM) y diferentes disoluciones de alimento y de arrastre (DES3, RSA5, DES4 y RSA6)	162
III.4. BIORREACTOR OSMÓTICO DE MEMBRANA (OSMBR)	164
III.4.1. Ensayo previo (SSLM=14 g/L)	164
III.4.2. Ensayo previo (SSLM=5 g/L)	167
III.4.3. Ensayo de mayor duración (SSLM=5 g/L)	170
III.4.4. Comparación ensayos biorreactor osmótico de membranas	174
III.4.5. Comparación ensayos reactor biológico secuencial (SBR) y biorreactor osmótico de membranas (OsMBR)	175
III.5. ENSAYOS DE CONCENTRACIÓN DE FANGO SECUNDARIO DE EDAR	175
III.5.1. Ensayo preconcentración nº1	176
III.5.2. Ensayo preconcentración nº2	177
III.5.3. Ensayo preconcentración nº3	179
III.5.4. Ensayo concentración final	180
III.5.5. Comparación ensayos de concentración de fango secundario	181
CAPÍTULO IV. CONCLUSIONES	189
IV.1. CONCLUSIONES	191
IV.1.1. Caracterización membranas de ósmosis directa	191
IV.1.2. Caracterización disoluciones de alimento y de arrastre	191
IV.1.3. Estudio de la aplicación de aguas residuales industriales de alta salinidad como disolución de arrastre en la concentración del escurrido de centrífuga	193
IV.1.4. Biorreactor osmótico de membrana (OsMBR)	
IV.1.5. Ensavos de concentración de fango secundario de EDAR	

IV.2. LÍNEAS DE INVESTIGACIÓN FUTURA	15
IV.2.1. Operación del biorreactor osmótico de membranas en ensayos de mayor duración)5
IV.2.2. Diseño y construcción planta biorreactor osmótico de membranas (OsMBR) y de ósmosis directa para concentración de nutrientes en escurrido de centrífuga a escala piloto	96
IV.2.3. Investigación de nuevos residuos que puedan tratarse mediante ósmosis directa empleándose como disoluciones de arrastre	96
IV.2.4. Fabricación de membranas de ósmosis directa	16
ANEXO I. CONTRIBUCIONES	9
ANEXO II. FICHA TÉCNICA MEMBRANAS20	13
ANEXO III. PLANTILLA DE CÁLCULO21	1

ÍNDICE DE FIGURAS

CAPÍTULO I. INTRODUCCIÓN.

Figura I-1. Diagrama del fenómeno de ósmosis directa	.14
Figura I-2. Diferentes modos de funcionamiento de los procesos	
osmóticos. Adaptado de [14]	.16
Figura I-3. Sentido del flujo de agua frente a la presión (ΔP) aplicada según	
el modo de funcionamiento. Adaptado de fuente: [14]	.17
Figura I-4. Concentración por polarización externa e interna. Fuente: [29]	.18
Figura I-5. Polarización por concentración interna. a) ICP concentrativa. b)	
ICP dilutiva. Fuente: [14]	.19
Figura I-6. Configuraciones a) Equicorriente ("co-current") b)	
Contracorriente ("counter-current). Fuente: [31]	.20
Figura I-7. Módulo de placas y marcos (fuente:[33])	
Figura I-8. Módulo de arrollamiento en espiral (desglose). Fuente: [14]	
Figura I-9. Módulos de membrana de tipo tubular	.22
Figura I-10. Membrana de fibra hueca (corte transversal). Fuente: [34]	.23
Figura I-11. Presión osmótica generada por diferentes disoluciones de	
arrastre (cloruro de sodio, cloruro de magnesio, sucrosa y	
maltosa). Fuente: [36]	.24
Figura I-12. Vista aérea de una Estación Depuradora de Aguas Residuales	
urbanas. Fuente: EPSAR (Generalitat Valenciana)	.29
Figura I-13. Diagrama estación depuradora de aguas residuales urbanas.	
Fuente: [40]	
Figura I-14. Esquema de una centrífuga. Fuente: [43]	
Figura I-15. Aceitunas en salmuera dentro de bidones	.33
Figura I-16. Comparación entre sistema convencional de fangos activos y	
un bioreactor de membranas o MBR. Arriba: proceso de	
fangos activos. Abajo: bioreactor de membranas. Fuente:2	
[53]	.36
Figura I-17. Diagrama de proceso de un biorreactor osmótico de	
membranas (OsMBR). En este caso con reconcentración de la	
disolución de arrastre mediante ósmosis inversa. Fuente: [53]	.38
Figura I-18. Evolución del número de artículos publicados sobre	
biorreactores osmóticos de membrana	.40

CAPÍTULO II. MATERIALES Y MÉTODOS.

Figura II-1. Diagrama planta piloto de ósmosis directa	67
Figura II-2. Planta de ósmosis directa a escala de laboratorio	
Figura II-3. Software "Kern BalanceConnection SCD-4.0"	68
Figura II-4. Módulo plano de ósmosis directa modelo CF042-FO de	
Sterlitech. a) vista general. b) mitad inferior	68
Figura II-5. Fotografía biorreactor osmótico de membrana (OsMBR)	70
Figura II-6. Diagrama biorreactor osmótico de membrana (OsMBR)	71
Figura II-7. Reactor biológico secuencial por lotes utilizado en la	
siembra del biorreactor osmótico (OsMBR)	72
Figura II-8. Microscopio de Barrido Electrónico (SEM)	76
Figura II-9. FESEM y EDX	
Figura II-10. Paneles de control del FESEM	77
Figura II-11. Microscopio de fuerza atómica	78
Figura II-12. Definición del ángulo de contacto (θ_c). Fuente: [12]	80
Figura II-13. Ángulos de contacto y mojabilidad. A la izquierda se	
representa una superficie hidrofílica mientras que a la	
derecha se representa una superficie hidrofóbica. Fuente:	
[13]	81
Figura II-14. Medidor de ángulo de contacto "Dataphysics OCA20" de	
Dataphysics Instruments GmbH	81
Figura II-15. Presión osmótica del cloruro sódico según C. Tan [16]	82
CAPÍTULO III. RESULTADOS.	
ON TIOLO III NEGGETABOSI	
Figura III-1. Correlación conductividad en función de la concentraci	ión de
cloruro sódico	
Figura III-2. Densidad de flujo de permeado (Jw) en función	
concentración de la disolución de arrastre (NaCl) para cao	
de las tres membranas estudiadas. Q=30 L/h (v=9.37 cm/s	s) 100
Figura III-3. Paso inverso de sales (Js) en función de la concentración	ı de la
disolución de arrastre (NaCl) para cada una de la	
membranas estudiadas. Q=30 L/h (v=9.37 cm/s)	101
Figura III-4. Micrografías SEM de la membrana "HTI CTA NW" virgen. a	a) cara
activa (50 aumentos) b) cara soporte (150 aumentos) c)	corte
transversal (100 aumentos)	102
Figura III-5. Micrografías AFM de la cara activa de la membrana HTI CT	TA NW
virgen. a) Resolución 20x20 micras b) Resolución 5x5 micr	ras 103

Figura III-6. Micrografías SEM de la membrana "HTI CTA ES" virgen.	-
activa (200 aumentos) b) cara soporte (200 aumen	itos) c)
sección transversal (750 aumentos)	
Figura III-7. Micrografías AFM de la cara activa de la membrana HTI	
virgen. a) Resolución 20x20 micras b) Resolución 5x5 mic	cras105
Figura III-8. Micrografía FESEM de una membrana "Aquaporin	Inside"
virgen. a) cara activa (20K aumentos) b) cara soporte	(5.07K
aumentos) c) sección transversal (2.03K aumentos)	106
Figura III-9. Micrografías AFM de la membrana Aquaporin Inside vir	gen. a)
cara activa y resolución 20x20 b) cara activa y resolución	า 5x5 c)
cara soporte y resolución 20x20 d) cara soporte y res	olución
5x5 micras	107
Figura III-10. Evolución de la densidad de flujo de permeado con el	tiempo
para los ensayos 1 y 3, realizados con la misma mer	mbrana
(HTI CTA ES), la misma disolución de arrastre (SFPA) y di	ferente
disolución de alimento (agua desionizada y es	currido
centrífuga, respectivamente). Q=65 L/h (v=20 cm/s)	111
Figura III-11. Micrografías SEM de la cara activa de la membrana tip	
CTA ES" utilizada en los ensayos 1 y 3. Disolución de ali	mento:
agua desionizada y escurrido centrífuga respectiva	
Disolución de arrastre: SFPA ultrafiltrada	
Figura III-12. Micrografía SEM de la cara soporte de la membrana tipo	
CTA ES" utilizada en el ensayo 1 y 3 (disolución alimento	
escurrido de centrífuga, disolución arrastre: SFPA ultrafil	-
Aumentos: 150x	
Figura III-13. Evolución de las conductividades de la disolución de arr	•
de alimento con el tiempo para los ensayos 1 y 3, rea	
con la misma membrana (HTI CTA ES), la misma disolu	
arrastre (SFPA) y diferente disolución de alimento	
desionizada y escurrido centrífuga, respectivamente). Q	
(v=20 cm/s)	
Figura III-14. Evolución de la densidad de flujo de permeado con el	-
para los ensayos 2 y 4, realizados con la misma mer	
(HTI CTA ES), la misma disolución de arrastre (SART) y di	
disolución de alimento (agua desionizada y escurr	
centrífuga respectivamente). Q=65 L/h (v=20 cm/s)	
Figura III-15. Evolución de las conductividades de la disolución de arr	•
de alimento con el tiempo para los ensayos 2 y 4, rea	
con la misma membrana (HTI CTA ES), la misma disolu	ción de

a	rrastre (SART) y diferente disolución de alimento (agua
d	desionizada y escurrido de centrífuga respectivamente). Q=65
L	./h (v=20 cm/s) 115
Figura III-16.	Evolución de la densidad de flujo de permeado con el tiempo
р	para los ensayos 6 y 7, realizados con la misma membrana
	HTI CTA NW), la misma disolución de arrastre (SART) y
•	diferente disolución de alimento (agua desionizada y escurrido
	le centrífuga respectivamente). Q=65 L/h (v=20 cm/s) 116
Figura III-17.	Evolución de las conductividades de la disolución de arrastre y
C	de alimento con el tiempo para los ensayos 6 y 7, realizados
C	on la misma membrana (HTI CTA NW), la misma disolución de
а	rrastre (SART) y diferente disolución de alimento (agua
C	desionizada y escurrido de centrífuga respectivamente). Q=65
L	/h (v=20 cm/s) 117
Figura III-18.	Evolución de la densidad de flujo de permeado con el tiempo
1	para los ensayos 1 y 2, realizados con la misma membrana
	(HTI CTA ES), la misma disolución de alimento (agua
(desionizada) y diferente disolución de arrastre (SFPA y SART
1	respectivamente).
-	Evolución de las conductividades de la disolución de arrastre y
C	de alimento con el tiempo para los ensayos 1 y 2, realizados
	con la misma membrana (HTI CTA ES), la misma disolución de
	llimento (agua desionizada) y diferente disolución de arrastre
-	SFPA y SART, respectivamente).
_	Evolución de la densidad de flujo de permeado con el tiempo
•	para los ensayos 3 y 4, realizados con la misma membrana
-	HTI CTA ES), la misma disolución de alimento (escurrido
	entrífuga) y diferente disolución de arrastre (SFPA y SART
	espectivamente). Q=65 L/h (v=20 cm/s) 120
_	Micrografía FESEM de la cara activa de una membrana en la
	que se observan precipitados sobre la misma121
•	Evolución de las conductividades de la disolución de arrastre y
	de alimento con el tiempo para los ensayos 3 y 4, realizados
	con la misma membrana (HTI CTA ES), la misma disolución de
	dimento (escurrido centrífuga) y diferente disolución de
	arrastre (SFPA y SART, respectivamente). Q=65 L/h (v=20
	:m/s)
-	Evolución de la densidad de flujo de permeado con el tiempo
r	para los ensavos 5 y 6 realizados con la misma membrana

	(HTI CTA NW), la misma disolución de alimento (agua
	desionizada) y diferente disolución de arrastre (SFPA y SART
	respectivamente). Q=65 L/h (v=20 cm/s)122
Figura III-24	Levolución de las conductividades de la disolución de arrastre y
	de alimento con el tiempo para los ensayos 5 y 6, realizados
	con la misma membrana (HTI CTA NW), la misma disolución de
	alimento (agua desionizada) y diferente disolución de arrastre
	(SFPA y SART, respectivamente). Q=65 L/h (v=20 cm/s)123
Figura III-25	5. Evolución de la densidad de flujo de permeado con el tiempo
	para los ensayos 2 y 6, realizados con la misma disolución de
	alimento y arrastre (agua desionizada y SART respectivamente)
	y diferente membrana (HTI CTA ES y HTI CTA NW
	respectivamente). Q=65 L/h (v=20 cm/s)124
Figura III-2	6. Evolución de las conductividades de las disoluciones de
J	alimento y de arrastre con el tiempo para los ensayos 2 y 6,
	realizados con la misma disolución de alimento y arrastre (agua
	desionizada y SART respectivamente) y diferente membrana
	(HTI CTA ES y HTI CTA NW respectivamente). Q=65 L/h (v=20
	cm/s)124
Figura III-27	7. Evolución de la densidad de flujo de permeado con el tiempo
	para los ensayos 4 y 7, realizados con la misma disolución de
	alimento y arrastre (escurrido centrífuga y SART
	respectivamente) y diferente membrana (HTI CTA ES y HTI CTA
	NW respectivamente). Q=65 L/h (v=20 cm/s)125
Figura III-2	8. Evolución de las conductividades de las disoluciones de
	alimento y arrastre con el tiempo para los ensayos 4 y 7,
	realizados con la misma disolución de alimento y arrastre
	(escurrido centrífuga y SART respectivamente) y diferente
	membrana (HTI CTA ES y HTI CTA NW respectivamente). Q=65
	L/h (v=20 cm/s)126
Figura III-29	D. Evolución de la densidad de flujo de permeado con el tiempo
	para los ensayos 1 y 5, realizados con la misma disolución de
	alimento y arrastre (agua desionizada y SFPA respectivamente)
	y diferente membrana (HTI CTA ES y HTI CTA NW
	respectivamente). Q=65 L/h (v=20 cm/s)127
Figura III-30). Evolución de la conductividad de las disoluciones de alimento
	y de arrastre con el tiempo para los ensayos 1 y 5, realizados
	con la misma disolución de alimento y arrastre (agua
	desionizada y SFPA respectivamente) y diferente membrana

(HTI CTA ES y HTI CTA NW respectivamente). Q=65 L/h (20
cm/s)
Figura III-31. Evolución densidad de flujo de permeado (Jw) a lo largo del
tiempo. Membranas: "HTI CTA NW" y "AIM". Disolución
alimento: agua desionizada. Disolución arrastre: salmuera.
Q=30 L/h (v=9.37cm/s)
Figura III-32. Evolución conductividades disoluciones de alimento y de
arrastre a lo largo del tiempo. Membranas: "HTI CTA NW" y
"AIM". Disolución alimento: agua desionizada. Disolución
arrastre: salmuera. Q=30 L/h (v=9.37cm/s)
Figura III-33. Comparación entre los pasos específicos de sales (PIES) de los
ensayos DES1 (membrana "HTI CTA NW") y DES3 (membrana
"AIM") para varios cationes. Disolución de alimento: agua
osmotizada. Disolución de arrastre: salmuera
Figura III-34. Comparación entre los pasos específicos de sales (PIES) de los
ensayos DES1 (membrana "HTI CTA NW") y DES3 (membrana
"AIM") para varios aniones. Disolución de alimento: agua
osmotizada. Disolución de arrastre: salmuera
Figura III-35. Evolución densidad de flujo de permeado (Jw) a lo largo del
tiempo. Membranas: "HTI CTA NW" y "AIM". Disolución
alimento: escurrido centrífuga. Disolución arrastre: salmuera.
Q=30 L/h (v=9.37cm/s)
Figura III-36. Evolución conductividades disoluciones de alimento y de
arrastre a lo largo del tiempo. Membranas: "HTI CTA NW" y
"AIM". Disolución alimento: escurrido centrífuga. Disolución
arrastre: salmuera. Q=30 L/h (v=9.37cm/s)137
Figura III-37. Evolución densidad de flujo de permeado (Jw) a lo largo del
tiempo. Membranas: HTI CTA NW (RSA1) y AIM (RSA5).
Disolución alimento: agua desionizada. Disolución arrastre:
RSA. Q=30 L/h (v=9.37cm/s)
Figura III-38. Evolución de la conductividad de las disoluciones de arrastre y
alimento a lo largo del tiempo. Membranas: HTI CTA NW
(RSA1) y AIM (RSA5). Disolución alimento: agua desionizada.
Disolución arrastre: RSA. Q=30 L/h (v=9.37cm/s) 140
Figura III-39. Paso inverso específico de sales (PIES) para cationes para los
ensayos RSA1 y RSA5. Membranas: HTI CTA NW y AIM
respectivamente143

Figura III-40. Paso inverso específico de sales (PIES) para aniones para los
ensayos RSA1 y RSA5. Membranas: HTI CTA NW y AIM
respectivamente143
Figura III-41. Evolución densidad de flujo de permeado (Jw) a lo largo del
tiempo. Membranas: HTI CTA NW (RSA2) y AIM (RSA4).
Disolución alimento: escurrido de centrífuga. Disolución
arrastre: RSA. Q=30 L/h (v=9.37 cm/s)144
Figura III-42. Evolución de las conductividades de las disoluciones de
arrastre y de alimento a lo largo del tiempo. Membranas: HTI
CTA NW (RSA2) y AIM (RSA4). Disolución alimento: escurrido
centrífuga. Disolución arrastre: RSA. Q=30 L/h (v=9.37 cm/s)145
Figura III-43. Imagen FESEM de la cara activa de la membrana tipo
"Aquaporin Inside" utilizada en el ensayo RSA6 (membrana:
"AIM", disolución de arrastre: RSA, disolución de alimento:
escurrido de centrífuga)149
Figura III-44. Imagen FESEM en la que se muestra la primera área en
particular analizada (rectángulo blanco) mediante EDX. Cara
activa de la membrana tipo "Aquaporin Inside" utilizada en el
ensayo RSA6 (membrana: "AIM", disolución de arrastre: RSA,
disolución de alimento: escurrido de centrífuga)150
Figura III-45. Espectro EDX del área seleccionada en la Figura III-44. Cara
activa de la membrana tipo "Aquaporin Inside" utilizada en el
ensayo RSA6 (membrana: "AIM", disolución de arrastre: RSA,
disolución de alimento: escurrido de centrífuga)151
Figura III-46. Imagen FESEM en la que se muestra la segunda área en
particular analizada (rectángulo blanco) mediante EDX. Cara
activa de la membrana tipo "Aquaporin Inside" utilizada en el
ensayo RSA6 (membrana: "AIM", disolución de arrastre: RSA,
disolución de alimento: escurrido de centrífuga)151
Figura III-47. Espectro EDX del área seleccionada en la Figura III-46. Cara
activa de la membrana tipo "Aquaporin Inside" utilizada en el
ensayo RSA6 (membrana: "AIM", disolución de arrastre: RSA, disolución de alimento: escurrido de centrífuga)152
Figura III-48. Imagen FESEM en la que se muestra la tercera área en
particular analizada (punto blanco) mediante EDX. Cara activa
de la membrana tipo "Aquaporin Inside" utilizada en el ensayo
RSA6 (membrana: "AIM", disolución de arrastre: RSA,
disolución de alimento: escurrido de centrífuga)152
disolucion de allinento. Escurrido de centinugaj132

-	Espectro EDX del área seleccionada en la Figura III-48. Cara activa de la membrana tipo "Aquaporin Inside" utilizada en el
	ensayo RSA6 (membrana: "AIM", disolución de arrastre: RSA,
	disolución de alimento: escurrido de centrífuga)
	Evolución de las densidades de flujo de permeado (Jw) a lo
•	largo del tiempo para los ensayos RSA6 y RSA7. Membrana:
	AIM. Disoluciones de alimento: escurrido centrífuga y escurrido
	centrífuga acidificado (pH 7.3) respectivamente. Disolución
	arrastre: RSA. Q=30 L/h 154
-	. Evolución conductividades disoluciones de alimento y de
	arrastre a lo largo del tiempo para los ensayos RSA6 y RSA7.
	Membrana: Aquaporin Inside. Disolución alimento: escurrido
	centrífuga acidificado (pH 7.3). Disolución arrastre: RSA. Q=30
	L/h
-	Evolución densidad de flujo de permeado (Jw) a lo largo del
	tiempo de los ensayos DES1 y RSA1. Membrana HTI CTA NW.
	Disolución de alimento: agua desionizada. Disoluciones de alimento: salmuera vs sulfato amónico (DES1 y RSA1
	respectivamente). Q=30 L/h 160
	. Evolución conductividades de alimento y de arrastre a lo largo
•	del tiempo de los ensayos DES1 y RSA1. Membrana HTI CTA
	NW. Disolución de alimento: agua desionizada. Disoluciones de
	alimento: salmuera vs sulfato amónico (DES1 y RSA1
	respectivamente). Q=30 L/h 160
Figura III-54.	Evolución de la densidad de flujo de permeado para los cuatro
	ensayos comparados (DES1, DES2, RSA1 y RSA2). Membrana:
	"HTI CTA NW". Q=30 L/h 162
_	Evolución de la densidad de flujo de permeado para los cuatro
	ensayos comparados (DES3, DES4, RSA5 y RSA6). Membrana:
	"AIM". Q=30 L/h
-	Evolución temporal de la densidad de flujo de permeado (Jw) y
	de la conductividad de la disolución de alimento. Ensayo con
	biorreactor osmótico de membrana (OsMBR). Concentración
	SSLM: 14 g/L. Carga másica: 0.06 gDQO/gSS·d
-	Evolución temporal de la densidad de flujo de permeado (Jw)
	y de la conductividad de la disolución de arrastre. Ensayo con
	biorreactor osmótico de membrana (OsMBR). Concentración SSLM: 14 g/L. Carga másica: 0.06 gDQO/gSS·d166
	33LIVI. 14 8/ L. Carga Masica: 0.00 8DQO/833.0 100

Figura III-58. Evolución temporal de las densidades de flujo de permeado
experimentales y teóricas. Ensayo con biorreactor osmótico de
membrana (OsMBR). Concentración SSLM: 14 g/L. Carga
másica: 0.06 gDQO/gSS·d167
Figura III-59. Evolución temporal de la densidad de flujo de permeado (Jw)
y de la conductividad de la disolución de alimento. Ensayo con
biorreactor osmótico de membrana (OsMBR). Concentración
SSLM: 5 g/L. Carga másica: 0.12 gDQO/gSS·d168
Figura III-60. Evolución temporal de la densidad de flujo de permeado (Jw)
y de la conductividad de la disolución de arrastre. Ensayo con
biorreactor osmótico de membrana (OsMBR). Concentración
SSLM: 5 g/L. Carga másica: 0.12 gDQO/gSS·d168
Figura III-61. Evolución temporal de las densidades de flujo de permeado
experimentales y teóricas. Ensayo con biorreactor osmótico de
membrana (OsMBR). Concentración SSLM: 5 g/L. Carga másica:
0.12 gDQO/gSS·d169
Figura III-62. Evolución temporal de la densidad de flujo de permeado (Jw)
y de la conductividad de la disolución de alimento. Ensayo con
biorreactor osmótico de membrana (OsMBR). Concentración
SSLM: 5 g/L. Carga másica: 0.12 gDQO/gSS·d170
Figura III-63. Micrografía FESEM de la cara activa de la membrana tipo "HTI
CTA NW" utilizada en los ensayos del biorreactor osmótico de
membranas. a) vista general a pocos aumentos. b) ampliación
en donde se observa claramente la suciedad depositada171
Figura III-64. Micrografía FESEM de la cara soporte de la membrana tipo
"HTI CTA NW" utilizada en el biorreactor osmótico de
membranas. Aumentos: 92 x172
Figura III-65. Evolución temporal de la densidad de flujo de permeado (Jw)
y de la conductividad de la disolución de arrastre. Ensayo con
biorreactor osmótico de membrana (OsMBR). Concentración
SSLM: 5 g/L. Carga másica: 0.12 gDQO/gSS·d172
Figura III-66. Evolución temporal de las densidades de flujo de permeado
experimentales y teóricas. Ensayo con biorreactor osmótico de
membrana (OsMBR). Concentración SSLM: 5 g/L. Carga másica:
0.12 gDQO/gSS·d
Figura III-67. Evolución de la densidad de flujo de permeado con el tiempo.
Ensayo de preconcentración nº1. Membrana: HTI CTA ES.
Disolución de alimento: fango secundario EDAR. Disolución de
arrastre: sintética imitando SART. O=30 L/h (v=9.37 cm/s)176

Figura III-68. Evolución de las conductividades de las disoluciones de
arrastre y de alimento con el tiempo. Ensayo de
preconcentración nº1. Membrana: HTI CTA ES. Disolución de
alimento: fango secundario EDAR. Disolución de arrastre:
sintética imitando SART. Q=30 L/h (v=9.37 cm/s) 177
Figura III-69. Evolución de la densidad de flujo de permeado con el tiempo.
Ensayo de preconcentración nº2. Membrana: HTI CTA ES.
Disolución de arrastre: sintética imitando SART. Q=30 L/h
(v=9.37 cm/s) 178
Figura III-70. Evolución de las conductividades de las disoluciones de
arrastre y de alimento con el tiempo. Ensayo de
preconcentración nº2. Membrana: HTI CTA ES. Disolución de
alimento: fango secundario EDAR. Disolución de arrastre:
sintética imitando SART. Q=30 L/h (v=9.37 cm/s) 178
Figura III-71. Evolución de la densidad de flujo de permeado con el tiempo.
Ensayo de preconcentración nº3. Membrana: HTI CTA ES.
Disolución de alimento: fango secundario EDAR. Disolución de
arrastre: sintética imitando SART. Q=30 L/h (v=9.37 cm/s) 179
Figura III-72. Evolución de las conductividades de las disoluciones de
arrastre y de alimento con el tiempo. Ensayo de
preconcentración nº3. Membrana: HTI CTA ES. Disolución de
alimento: fango secundario EDAR. Disolución de arrastre: sintética imitando SART. Q=30 L/h (v=9.37 cm/s)
Figura III-73. Evolución de la densidad de flujo de permeado con el tiempo.
Ensayo de concentración final. Membrana: HTI CTA ES.
Disolución de alimento: fango secundario EDAR. Disolución de
arrastre: sintética imitando SART. Q=30 L/h (v=9.37 cm/s) 180
Figura III-74. Evolución de las conductividades de las disoluciones de
arrastre con el tiempo. Ensayo de concentración final.
Membrana: HTI CTA ES. Disolución de alimento: fango
secundario EDAR. Disolución de arrastre: sintética imitando
SART. Q=30 L/h (v=9.37 cm/s)
SAKT. Q=30 L/n (v=9.37 cm/s) 181

ÍNDICE DE TABLAS

CAPÍTULO I. INTRODUCCIÓN.

Tabla I-1. Desarrollo histórico de los materiales para membranas. Fuente:	
[3]	7
Tabla I-2. Evolución histórica de los modelos teóricos de los procesos de	
membrana. Fuente: [3]	8
Tabla I-3. Clasificación de los procesos de membrana. Fuente: [3]	9
Tabla I-4. Clasificación de los procesos de membrana según tamaño de poro	
de la membrana y presión aplicada. Fuente: adaptado de [3]	.10
Tabla I-5. Hitos históricos en el desarrollo de la ósmosis directa y la ósmosis	
de presión retardada (Fuentes: [13][14][15])	.15
Tabla I-6. Composición típica de escurrido de centrífuga. Fuente: [20]	
Tabla I-7. Comparativa ensayos con biorreactor osmótico de membranas	
disponibles en la bibliografía	.41
, , , , , , , , , , , , , , , , , , ,	
CAPÍTULO II. MATERIALES Y MÉTODOS.	
Tabla II-1. Características de la salmuera resultante de la fermentación de	
la oliva de mesa	.60
Tabla II-2. Caracterización del agua residual de operaciones de salazón de	
pieles de curtidos para su conservación	61
Tabla II-3. Caracterización del residuo de proceso de absorción de	
amoníaco con ácido sulfúrico (sin ajustar pH)	.62
Tabla II-4. Caracterización del residuo de proceso de absorción de	
amoníaco con ácido sulfúrico (con el pH ajustado)	.62
Tabla II-5. Caracterización salmuera de rechazo de proceso de desalación	
de agua de mar por ósmosis inversa	.63
Tabla II-6. Características del agua residual de la deshidratación de	
biomasa digerida mediante centrifugación	
Tabla II-7. Caracterización fango secundario	.65
Tabla II-8. Coeficientes osmóticos para corrección de la presión osmótica	
para el caso concreto del cloruro sódico (m es la molalidad)	83
Tabla II-9. Listado de ensayos de corta duración. Disoluciones de arrastre:	
SART y SFPA. Disoluciones de alimento: agua desionizada y	
escurrido de centrífuga	.90
Tabla II-10 . Ensayos de larga duración realizados con residuo de sulfato	
amónico (RSAx) como disolución de arrastre	91

Tabla II-11. Ensayos de larga duración realizados con salmuera de	
desalación por ósmosis inversa (DESx)	92
Tabla II-12. Ensayos de larga duración de concentración de fango	
secundario utilizando una disolución simulada que imita el	
agua residual del proceso de salado de pieles no curtidas	
(SART)	93
Tabla II-13. Ensayos de media y larga duración realizados con el	
biorreactor osmótico de membranas, utilizando como	
disolución de arrastre agua simulada que imita el agua residual	
del proceso de salado de pieles no curtidas (SART)	94
CAPÍTULO III. RESULTADOS.	
Tabla III-1. Rugosidades de las caras activas de las membranas de ósmosis	
directa ensayadas	108
Tabla III-2. Rugosidades de las caras soporte de las membranas de	
ósmosis directa ensayadas	109
Tabla III-3. Ángulo de contacto de las diferentes membranas de ósmosis	
directa ensayada	109
Tabla III-4. Listado ensayos realizados con SFPA y SART como disolución	
de arrastre	110
Tabla III-5. Comparación densidad de flujo de permeado y paso inverso de	
sales teóricos frente a los experimentales	. 129
Tabla III-6. Ensayos realizados con salmuera de desalación por ósmosis	
inversa (DESx)	. 131
Tabla III-7. Ensayos realizados con residuo de sulfato amónico (RSAx)	. 131
Tabla III-8. Composición iónica disoluciones ensayos DES1 y DES3.	
Membranas "HTI CTA NW" y "AIM" respectivamente.	
Disolución de alimento: agua desionizada. Disolución de	
arrastre: salmuera	. 134
Tabla III-9. Composición iónica disoluciones de arrastre ensayos DES2 y	
DES4. Membranas "HTI CTA NW" y "AIM" respectivamente.	
Disolución de alimento: escurrido de centrífuga. Disolución de	
arrastre: salmuera	.138
Tabla III-10. Composición iónica disoluciones de alimento de los ensayos	
DES2 y DES4. Membrana "HTI CTA NW" y "AIM"	
respectivamente. Disolución de alimento: escurrido	
centrífuga. Disolución de arrastre: salmuera	139

Tabla III-11.	Composición iónica disoluciones de arrastre de los ensayos	
	RSA1 y RSA5. Membrana "HTI CTA NW" y "AIM"	
	respectivamente. Disolución de alimento: agua desionizada.	
	Disolución de arrastre: RSA	141
Tabla III-12.	Composición iónica disoluciones de alimento de los ensayos	
	RSA1 y RSA5. Membrana "HTI CTA NW" y "AIM"	
	respectivamente. Disolución de alimento: agua desionizada.	
	Disolución de arrastre: RSA	142
Tabla III-13.	Ensayo RSA2. Analítica disolución de alimento (escurrido de	
	centrífuga)	146
Tabla III-14.	Composición iónica disoluciones de arrastre de los ensayos	
	RSA2 y RSA4. Membrana "HTI CTA NW" y "AIM"	
	respectivamente. Disolución de alimento: escurrido	
	centrífuga. Disolución de arrastre: RSA	147
Tabla III-15.	Composición iónica disoluciones de alimento de los ensayos	
	RSA2 y RSA4. Membrana "HTI CTA NW" y "AIM"	
	respectivamente. Disolución de alimento: escurrido	
	centrífuga. Disolución de arrastre: RSA	148
Tabla III-16.	Balance de materia para el fósforo y el nitrógeno en la	
	disolución de alimento (escurrido de centrífuga) de los	
	ensayos RSA2 y RSA4 al inicio y al final del ensayo	149
Tabla III-17.	Composición iónica disoluciones de arrastre ensayos RSA6 y	
	RSA7 (acidificado). Membrana "AIM" respectivamente.	
	Disolución de alimento: escurrido de centrífuga. Disolución	
	de arrastre: RSA.	156
Tabla III-18.	Composición iónica disoluciones de alimento de los ensayos	
	RSA6 y RSA7 (acidificado). Membrana "AIM". Disolución de	
	alimento: escurrido centrífuga. Disolución de arrastre: RSA1	157
Tabla III-19.	Ensayos RSA6 y RSA7. Analítica disolución de alimento	
	(escurrido de centrífuga)	158
Tabla III-20.	Balance de materia para nitrógeno y fósforo ensayos RSA6 y	
	RSA7	159
Tabla III-21.	Comparación ensayos de concentración. Densidades de flujo	
	de permeado inicial y finales y duración del ensayo1	182
Tabla III-22.	Comparación ensayos de concentración. Conductividades de	
	las disoluciones de arrastre y alimento inicial y finales	182
	Sólidos totales ensayos de concentración de fango secundario	
	EDAR	183

Tabla III-24. Relaciones de concentración de sólidos totales y de	
volúmenes de los ensayos de concentración de fango	
secundario de FDAR	184