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Resumen

En la dltima década, la teorfa de los modos caracteristicos esta siendo utilizada
por muchos grupos de investigacion en todo el mundo. Este tema y su uso
en diferentes disefios de antenas metélicas estd creciendo muy rdpido. Sin
embargo, la mayoria de las aplicaciones se han concentrado Gnicamente en
antenas metélicas sin ninglin conocimiento fisico acerca de sus limitaciones
y su interpretacion fisica. Ademads, en lo que se refiere a cuerpos dieléctricos,
no han habido tantos articulos publicados como en metales. La razén es que
existen diferentes formulaciones integro-diferenciales y la interpretacion de sus
soluciones no es tan obvia como en cuerpos metélicos. En esta tesis se presenta
una interpretacion fisica de las soluciones de la Teoria de Modos Caracteristicos
al considerar cuerpos metdlicos y dieléctricos sin pérdidas.

Las conclusiones de esta tesis nos permitirdn comprender mejor las solu-
ciones de la Teoria de Modos Caracteristicos y sus limitaciones. Esto es
importante en ingenieria de antenas. Ademads, este andlisis permitird desarrollar
un nuevo método para el disefio de antenas basadas en resonadores dieléctricos,
DRA. Este método estd basado en la formulacion PMCHWT vy la funcién de
Green multicapa utilizada en el método de los momentos (MoM). A este nuevo
método se le ha denominado “Substructure Characteristic Mode method”, y
estd basado en la implementacién de los complementos Schur sobre las sub-
matrices del operador del MoM. Este estudio permite optimizar el ancho de
banda de radiacién de un DRA en el mismo proceso de andlisis tanto para el
dieléctrico como para la alimentacién, como por ejemplo una ranura. Ademas,
este método permite comprender como se comporta la ranura en presencia
del resonador dieléctrico y viceversa. Este método también puede usarse para
disefiar DRA usando permitividades bajas. Esto es importante en el disefio
de DRA porque la alimentacién perturba el sistema y produce un cambio en
las resonancias de los modos caracteristicos. Por lo tanto, al considerar la
alimentacion en el andlisis de modos caracteristicos se obtienen resultados mas



realistas compardndolos con los obtenidos mediante un andlisis convencional.
Asi, disefiando con el “Substructure Characteristic Mode method” se pueden
extraer nuevas conclusiones sobre el disefio de DRA mediante la Teoria de
Modos Caracteristicos.



Resum

En I’dltima decada, la teoria dels modes caracteristics esta sent utilitzada per
molts grups d’investigacio en tot el mén. Este tema i el seu Us en diferents
dissenys d’antenes metal-liques esta creixent molt rapidament. No obstant
aixo, la majoria de les aplicacions s’han concentrat inicament en superficies
conductores sense cap coneixement fisic sobre les seues limitacions i la seua
interpretacid fisica. Pel que fa a cossos dielectrics, no hi ha hagut tants articles
publicats com en metalls. La rad és que hi ha diferents formulacions integrod-
iferencials i la interpretaci6 de les seues solucions no és tan obvia com en cossos
conductors. En esta tesi es presenta una interpretacid teorica considerant cossos
conductors i dieléctrics sense perdues.

Les conclusions d’esta tesi ens permetran comprendre millor les solucions
de la Teoria de Modes Caracteristics i les seues limitacions. A¢o és important en
enginyeria d’antenes. A més, esta analisi permetra desenrotllar un nou metode
per al disseny d’antenes basades en ressonadors dielectrics, DRA. Este metode
esta basat en la formulacié PMCHWT i la funcié de Green multicapa utilitzada
en el metode dels moments (MoM). A este nou metode se li ha denominat
"Substructure Characteristic Mode method", i esta basat en la implementacié
dels complements Schur sobre les submatrius de I’operador del MoM. Este
estudi permet optimitzar I’amplada de banda de radiacié d’un DRA en el mateix
procés d’analisi tant per al dielectric com per a I’alimentacié, com per exem-
ple una ranura. A més, este metode permet comprendre com es comporta la
ranura en preseéncia del ressonador dieléctric i viceversa. Este metode també
pot usar-se per a dissenyar DRA usant baixes permitivitats. A¢d és important
en el disseny de DRA perque I’alimentacié pertorba el sistema i produix un
canvi en les ressonancies dels modes caracteristics. Per tant, al considerar
I’alimentacid en 1’analisi de modes caracteristics s’obtenen resultats més re-
alistes comparant-los amb els obtinguts per mitja d’una analisi convencional.
Aixi, dissenyant amb el "Substructure Characteristic Mode method" es poden
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extraure noves conclusions sobre el disseny de DRA per mitja de la Teoria de
Modes Caracteristics.



Abstract

The Theory of Characteristic Modes is being adopted by many research groups
around the world in the last decade. This topic and their use in different metallic
antenna design is growing very fast. However, most of the applications has
been only concentrated on conducting surfaces without any physical knowledge
about its limitations and its physical interpretation. As far as dielectric bodies
are concerned, there have not been so many published articles. The reason is
that there are different integro-differential formulations and the interpretation
of their solutions is not as obvious as in conducting bodies. Here, a theoret-
ical interpretation considering loss-less conducting and dielectric bodies is
presented.

The conclusions drawn in this thesis will allow us to better understand the
solutions of the Theory of Characteristic Modes and their limitations. This
is important for antenna engineering. In addition, this analysis will allow
to develop a novel method for the design of antennas based on dielectric
resonators, DRA. This method is called Substructure based-PMCHWT method,
and is based on the implementation of the Schur complements of the method
of moments matrix operator. This study permits to optimize the radiation
bandwidth in the same analysis process for both, the dielectric and the feed, e.g.
slot. Moreover, it allows to understand how the slot behaves in the presence
of the dielectric resonator and vice versa. This method can also be used to
design DRA using low permittivities. This is important in the design of DRA
because the feed perturbs the system and produces a shift in the resonances
of the characteristic modes. So, therefore, by considering the feed system in
the characteristic modes analysis a more realistic results than a conventional
analysis is obtained. On the other hand, the resonances of the characteristic
modes at low permittivities are displaced from what are the natural resonances
of the dielectric resonator and also the corresponding S11 resonance. Thus,
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designing with this new method it can draw new conclusions about the design
of DRA using the Theory of Characteristic Modes.
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Chapter 1

Introduction

1.1 Problem Statement and Motivation

Telecommunications is probably one of the driving forces in current civilization.
As a consequence antenna engineering is living a sweet moment since anten-
nas are needed for many applications and frequency bands. Medical devices,
e-commerce, bluetooth-enabled devices, wireless computer networks, drones,
Internet of Things (IoT), and wireless communications, are some of the new
applications where antennas are implemented to transmit and/or receive elec-
tromagnetic signals. Depending on the application, antennas are designed to
operate efficiently in a desired frequency range and meet the demanded speci-
fications. Moreover, they can take many geometrical forms and be composed
by metal and/or dielectric/magnetic materials to satisfy the requirements set
out. This is where the antenna engineer comes in. He is the responsible for
designing the antenna model effectively to fulfill all the requirements. In order
to do so, it is important to find the best computational design method to meet
the needs of the antenna to be designed.

Nowadays, the most popular computational techniques are probably the
method of moments (MoM) [56], the finite-difference time-domain (FDTD)
method [69], and the finite element method (FEM) [60]. These numerical
techniques are used depending on the user’s requirements. For instance, while
MoM is more efficient when designing open region problems involving PEC or
homogeneous media objects, FEM is more efficient for closed region problems
involving complex geometries and inhomogeneous media objects. Although
these three techniques usually provide approximately the same solutions (total



2 CHAPTER 1. INTRODUCTION

electromagnetic fields or currents), they do not provide a physical insight of
the electromagnetic phenomena involved. This, certainly, is not necessary
to design the antenna in a brute force way, but it is very much desirable to
understand better the design procedure and to be able to design more efficiently
and easily the antenna under concern. In this thesis, special focus will be given
to MoM, and also to the benefits that this method provides when diagonalizing
its corresponding integro-differential operators.

As far as MoM is concerned, two diagonalization procedures can be done.
The standard eigenvalue problem (SEP) that diagonalizes the entire MoM
operator, as done in the eigenmode expansion method (EEM) introduced by
Baum [13] and the generalized eigenvalue problem (GEP) considered in the
theory of characteristic modes (TCM), introduced by Garbacz [49]. These
methods diagonalize the electric field integral equation (EFIE) operator, Z =
R+ jX as follows: EEM with the SEP as ZI,, = v, I,,, and TCM with the GEP as
XJ, = A,RJ,. Although both techniques provide results which are independent
of any excitation and it is possible to see how much the eigenmodes contribute
to the total currents or fields when a source is added, there are many differences
between them. The most important differences are:

* The EEM provides the natural modes, while the TCM provides the
characteristic modes.

* The EEM solutions are generally complex valued, while the TCM solu-
tions are real numbers.

 To find the resonances of the EEM, known as natural resonances (NRs),
the use of the complex frequency plane is needed, while to find the reso-
nances provided by the TCM, known as characteristic mode resonances
(CMRy), it is only needed a real frequency axis.

* The EEM’s far field basis are not orthogonal, whereas the TCM is [57].

However, although both methods give a physical insight, the TCM is more
intuitive and less time-consuming during an antenna design procedure. This
results interesting because it is easier to handle and understand real than complex
valued solutions. This translates into an optimum way for antenna design. That
is why the TCM helps in the design, offering information that other methods
can not provide.
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Maybe, because of that, the number of publications dealing with the TCM
in the last ten years have soared, and the TCM is nowadays being considered a
key tool in the advanced antennas design methods. Fig. 1.1 shows the number
of publications as a function of time.
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Fig. 1.1 IEEExplore Characteristic Modes search. Number of publications
Versus years

As shown in Fig. 1.1, the number of publications as function of years follows
an exponential behaviour in IEEExplore. First, the characteristic mode idea
was introduced by Garbacz in 1965 (A), [49]. Later, Harrington et al. defined
the characteristic mode concept based on MoM in 1971 (B). It was in 2002
when the number of publications shooted. Then, the Electromagnetic Raditation
Group (GRE) at Universitat Politecnica de Valéncia started to develop two PhD
thesis published in 2007 [26], and 2008 [40]. In 2013, the GRE started working
on TCM to design DRA (D) [46]. Finally, in 2017 the number of publications
continue growing (E).

Some of the most interesting applications where the TCM is being applied
are vehicular antennas, chassis mobile phones, MIMO design, fractal antennas,
reflectarrays, patch antennas, DRA, inverse scattering and metamaterials, among
others. In addition, the TCM is being extended to other fields. Interestingly
enough, companies like Samsung, Siemens and Nokia are using TCM to design
their mobile antennas taking the effect of the chassis into account. As a last
token of the momentum TCM is gaining lately, it is worth mentioning that
FEKO, CST or WIPL-D, well-known electromagnetic simulation suites, have
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included CM computation modules in their solvers. As a matter of fact, in [27]
the performance of commercial simulators and academic packages have been
thoroughly investigated.

From this it derives the importance of studying the TCM and its perfor-
mance, because there are still unknown aspects in the interpretation of the
solutions provided by the TCM. Not only on PEC bodies, but also in dielec-
tric/magnetic bodies. It is also worth citing Baum in [14], and Chang and
Harrington in [28] in this regard, and I quote:

* Baum: "Another type of frequency domain modes is weighted eigen-
modes of the form used by Garbacz and Turpin, and by Harrington and
Mautz. These are referred to as characteristic modes to distinguish them
from the EEM eigenmodes. They have been shown to be useful for
frequency domain design and analysis of antennas and scatterers. These
characteristic modes have some similar relations to the singularity expan-
sion method (SEM) quantities but appear to be more complicated for this
purpose. More work is needed to further explore these relations." In
this work a comparison between the SEM and EEM was done in 1976.

* Chang and Harrington: "It is expected that this is one of the important
areas for future research. Many questions are still left unanswered in
the interpretation and application of characteristic modes to mate-
rial objects. It is hoped that this work will be of some value to future
researchers in their effort to gain a complete understanding of the theory
of characteristic modes." In this work the TCM was formulated consider-
ing the PMCHWT formulation for material bodies in 1977.

Thus, a physical interpretation of the solutions in metals and dielectrics is of
interest to establish the theoretical bases of the TCM. That is why, an objective
of this thesis is to try to provide an answer to some of the main theoretical
questions that remain open in this theory. This thesis will be the first to link
natural modes to characteristic modes for metal and dielectric materials.

In addition, as far as DRAs are concerned, they are designed based on
known natural modes for isolated DRAs without any considerations of the
excitation mechanisms and the involved ground plane. Including the excitation
mechanisms and the ground plane in the analysis will lead to more accurate
designs. This is other of the outcomes of this thesis.
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1.2 State of the Art

Since Garbacz first proposed the Theory of Characteristic Modes (TCM) in
1968, TCM is being increasingly used for antenna design and extended to other
fields in electromagnetics. This theory was first formulated by Garbacz for
metal bodies of arbitrary shape through the scattering matrix diagonalization
[49]. Conceptually, Garbacz was the first to show that there exists a modal
representation for any scattered or radiated field for any obstacle that acts as a
real Hilbert space basis [48]. Later, Harrington, Mautz and Chang reformulated
this theory establishing a more direct method to obtain Garbacz’s modal expan-
sion. They considered integro-differential formulations using the impedance
matrix of the Method of Moments (MoM), [28, 29, 54, 55]. The generalized
eigenvalue problem is solved for the eigenvalues and the eigencurrents. The
fields radiated by these eigencurrents are called Characteristic fields. Similarly
to the characteristic currents, characteristic fields also form an orthonormal real
basis in Hilbert space. Characteristic Modes (CM) depend only on the shape
and material of the body and are independent of any excitation. Moreover, as a
set of orthogonal eigenfunctions, they can be used to generate the total current
on its surface or on the radiated far field for any given excitation. Lastly, in
contrast to other forms of design methods, CM give a physical insight into the
radiating phenomena taking place in the antenna.

Methodologically, in order to extend the computation of CM to arbitrarily
shaped bodies, Harrington and Mautz generalize the analysis in 1971 based
on an integral equation formulation [53]. However no in-depth physical in-
terpretation for these modes was given for antenna analysis and design until
the work of Cabedo-Fabres [23, 26] where it was shown how the TCM can be
systematically applied to design wire and planar antennas. As a continuation of
Cabedo-Fabres’ work, in the same research group at Universtitat Politecnica de
Valéncia, Antonino-Daviu presented a work focused in the connection between
modal methods and characteristic modes and on the effect of the feeding con-
figuration and location on the modal excitation using the TCM [40]. Another
interesting dissertation about FDTD application in CM was published by Surit-
tikul [107, 108]. After these works, a dissertation about planar fractal antennas
was developed by Hazdra [107]. Later, Obeidat’s work used the TCM with the
theory of matching networks to increase both the input impedance bandwidth
and the far field radiation pattern bandwidth [88], and Raines’s thesis provided
a systematic approach to designing complex radiator systems, especially those
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involving more than one antenna [94]. Publications have soared in antenna
design since these theses.

From the application point of view, recently the TCM is being applied to
the design of shipboard antennas in HF band [32], chipless RFID tags [98],
slots etched in a metallic finite-sized ground plane [83, 84], orthogonal MIMO
handset antennas [73], Non-Foster circuits and multiport reactive matching
loading technique [42, 101], reflectarrays [25], vehicular antennas [87], and so
on. Another interesting area is metamaterials, in which a recent dissertation has
been published [93]. Moreover, thanks to the application of efficient algorithms
like Multilevel Fast Multiple Method Algorithm to CM computation [39], TCM
is expanding to new fields of application involving electrically larger bodies,
where the conventional MoM-based approach is severely challenged. On the
other hand, TCM is being also extended to other integral formulations. Some of
this formulations and its applications can be found in [34]. Other applications
in which TCM has been used are those related to use of the supporting structure
itself as an antenna. Here, the structure is able to broadcast radio signals.
These applications are amphibious assault vehicles [104], mobile phone chassis
[10, 11, 44], car chassis [75], ships [36], and aircrafts [31]. This is a practical
point of view, turning structures into transmitters making antennas more efficient
enhancing communication between transmitter and receiver.

Nevertheless, there are not many works to date on the use of this theory
to explain dielectric antennas and scatterers, or dielectric antennas containing
electric/magnetic parts. It is a more complex problem since different integral
equation approaches can be tried. It has been observed that depending on the
approach, modes obtained can change and its physical interpretation is not
obvious.

Concerning to conventional methods in designing dielectric-based antennas,
the most important references are the following. In 1939, Richtmyer [100]
showed that unmetallized dielectric objects can function much like metallic ob-
jects, which he called dielectric resonators (DR). It is well known that dielectric
objects can resonate in various modes. Due to that, DR were first implemented
as microwave filters in 1968 where high permittivity was used [37, 58]. Later,
Long et al. [76] introduced DR as application for antennas, called dielectric
resonator antennas (DRA). Radiation characteristics [65], computed resonance
frequencies [66], modal field distributions [62] and more, were realized for dif-
ferent canonical DRA. DRA have interesting features such as greater bandwidth,
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simple feeding, high radiation efficiency, and easy fabrication. Furthermore,
DRA avoid conducting loss when high frequencies are employed.

From the point of view of design, applying the TCM becomes interesting
because it allows us to obtain separately each CM that can be excited and the
best position for the feed in order to feed a selected mode. Moreover, the TCM
gives the possibility to know the contribution of these modes when the excitation
is considered. In addition, the TCM can be applied to a certain substructure part
of a more complex structures demonstrated in [7, 9, 20, 43, 106]. Such feature
is very appealing for DRA design methods since it separates the DR from the
slot or coaxial probe through which the DR is fed. This and other properties
will be discussed throughout this thesis.

The research considered in this thesis concerns mainly to the study of the
TCM applied to conducting and dielectric canonical bodies, an infinite circular
cylinder and a sphere. The selection of a canonical problem has been made
to be able to provide further knowledge not available from numerical analysis
even using the TCM. In addition, this thesis presents a novel method to design
DRA. This method provides more realistic results than the conventional design
methods. Furthermore, it also provides relevant information during the design
procedure not obtained from other techniques.

1.3 Structure of the Thesis

This thesis is divided into two parts. The first one deals with the physical inter-
pretation of characteristic resonances in conducting and dielectric bodies, and
the second part with the design of DRA with a new design method, extension
of the TCM.

Chapter 2 presents an introduction to the integral formulations governing
the TCM for the analysis of conducting and dielectric bodies. In the case
of conducting bodies the EFIE is used. Whereas for dielectrics, VIE and
PMCHWT formulations have been selected. The formulations presented here
do not consider losses.

In Chapter 3, characteristic mode resonances and natural resonances are
compared first for a straight wire, and later for an infinite PEC circular cylinder,
and a PEC sphere. Furthermore, a connection between the SEP and the GEP is
presented, helping to understand the definition of the characteristic eigenvalues
and their resonances. Finally, a method to obtain the dispersion diagram in a
PEC circular waveguide is presented.
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Chapter 4 presents a comparison between the natural resonances and char-
acteristic mode resonances for an infinite dielectric circular cylinder and a
dielectric sphere. This study has been done based on the PMCHWT formu-
lation. Moreover, some conclusions with regard the resonances of DR with
low permittivities are also presented. Finally, the physical contribution of the
so-called non-physical modes to the electric and magnetic equivalent currents,
and also to its associated fields is presented. This study has been analytically
realized for a TM? plane-wave incidence and an electric line source located
inside the cylinder.

Chapter 5 will focus exclusively on DRA design using previous conclusions
drawn in previous chapters. Here, a new method to design DRA based on the
substructure characteristic mode concept is developed. This method is compared
with a conventional approach based on the computation of characteristic modes
of an isolated DR. Unlike the conventional method, this new approach takes
into account the surrounding structures influencing the actual resonance of a
DR with low permittivity.

Finally, chapter 6 presents the conclusions arrived at in this thesis.



Chapter 2

The Theory of Characteristic
Modes

2.1 Introduction

In this chapter, a brief summary of the TCM applied to conducting, dielectric
and/or magnetic bodies is presented. The EFIE formulation for conducting bod-
ies is shown first. Then, the VIE-EFIE and the PMCHWT integro-differential
formulations used in dielectric bodies are also presented. The difference be-
tween these two last formulations is the domain where the equivalent currents
are defined. The VIE-EFIE uses only electric currents and are defined volu-
metrically inside the dielectric body. The PMCHWT formulation uses both
electric and magnetic currents and are defined on the dielectric and/or magnetic
body surface. There exists a complete VIE formulation defining any dielectric
and/or magnetic body, but for what comes to be the object of this thesis we are
only interested in dielectric bodies, although the conclusions of this thesis can
be generalized to the complete VIE formulation. Another important aspect in
differentiating both formulations is that the VIE-EFIE formulation serves for
solving both homogeneous and inhomogeneous dielectric bodies. In contrast to
this, the PMCHWT formulation only serves for solving homogeneous bodies.
It is important to note that since VIE-EFIE requires a volumetric meshing the
number of unknowns is greater than the PMCHWT formulation because it only
requires a surface meshing. Thus, the matrix operators calculation involved in
the PMCHWT formulation is much lighter than for the VIE-EFIE formulation.
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The integral formulations presented here will not consider lossy materials.
Furthermore, this thesis will only refer to homogeneous dielectric bodies.

2.2 Conducting Bodies

CM concept can be easily applied to any metallic surface after the appropriate
definition of the integro-differential operator involved. In this case, Harrington
and Mautz [54] defined the TCM using the EFIE formulation to obtain the same
modes defined by Garbacz in [49]. As far as this work is concerned, only PEC
bodies are studied.

2.2.1 Characteristic Currents and Characteristic Eigenvalues

Let the PEC body be represented as in Fig. 2.1, where E' and E* are the incident
and the scattered electric fields, respectively. The EFIE describes both the
tangential incident field, and scattered electric field on an arbitrary PEC surface
by imposing the following boundary conditions, /i x (E* +E’) =0.

—>

EH ESH®

>

% X

Fig. 2.1 A general PEC body. Image taken from the lecture notes of the ESoA
course book [74]

That means the tangential components of the total electric field, E" =
E’ + E', on the PEC body have to be zero. The scattered field E* can be
expressed as a function of the vector and scalar potentials.



2.2. CONDUCTING BODIES 11

E'=—joAJ)-Vo () 2.1

Where A and ¢ are the magnetic vector and the electric scalar potentials, and
are defined as

‘u elk‘r l“
A()) = P / / J(r) T ‘dS' Magnetic vector potential (2.2)
< _
ejklr |
o)) = ~imioe / / ’dS’ Electric scalar potential (2.3)
J

In equations (2.2) and (2.3), r is the observation point, r’ denotes the source
point, S is the scattering surface, S’ is the surface on which we integrate, ® is the
angular frequency, and U, € and k are the outer media permeability, permittivity,
and wavenumber, respectively.

Thus, substituting the potentials (2.2) and (2.3) in equation (2.1), and (2.1)
in 7 X (Es + Ei) = 0, the following expression is obtained

AxE = (2.4)

nx[]a),u//J G(lr—r’| dS’——V//V’ G(|r—r’|)dS

. k|r
In whichG(|r—r’|) = e"r‘ o7 1s the free space Green’s function. Furthermore,

equation (2.4) can be rewritten as an operator equation as follows,

[L@)+E],, =0 2.5)

tan

where L is a linear operator acting on the surface electric current. And the
subscript tan denotes the surface tangential component of the fields. Moreover,
because of its physical dimensions, this operator can be seen as an impedance
operator, i.e., it is recommended to redefine it as [—L(J)];sn = Z(J). Where the
operator Z is complex and symmetric. For convenience, it becomes interesting
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to separate the impedance operator into its real and imaginary parts such Z =
R+ jX. In such a way that we can use its mathematical properties, since R and
X are hermitian operators.

At this point, it is important to introduce the symmetric product (2.6). This
inner product reduces the operator equations into matrix equations.

(B,C) — //SBoCdS’ 2.6)

Where B and C are two vector functions of the square-integrable space on S.
The product (B*,C), where the asterisk denotes complex conjugate, defines an
inner product for the Hilbert space of square integrable vector functions on S.

Turning to the definition of the R operator, it is noteworthy that if R is
positive semidefinite, then the power radiated by a current J on S is (J*,RJ) > 0.
On the other hand, if no resonator field exist internal to §, i.e., no cavity is
involved, then R is positive definite, i.e., (J*,RJ) > 0, and that means all the
electric currents radiate some power, however small.

Now, consider the following generalized eigenvalue equation

Z(In) = vaM(J1) (2.7)

where Z is the operator matrix to be diagonalized, J, are the eigencurrents of
the conducting body defined on S, v, their corresponding eigenvalues, and M a
weight operator to be chosen. Only if M = R the eigencurrent or characteristic
currents J, € R, and v, = 1 + jA,. Being A,, € R the characteristic eigenvalues.
Therefore, in order to get a more compact equation, these definitions can
be substituted in equation (2.7), i.e., M =R, v, = 1 + jA,, and Z = R+ jX.
Reordering it is easy to obtain the following equation governing in the TCM.

X(Jn) = A'nR(Jn) (2.8)

In (2.8) the characteristic currents J,, must satisfy the following orthogonal-
ity relationships.
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<Jm,Z(Jn)> = <J;:1’Z(Jn)> = (1 +]7Ln)6m,n (2.9
<Jm7R(Jn)> = <J;kan(Jn)> = 5"1-," (2.10)
<Jm,X(Jn)> = <J:1’X(Jn)> = )vnam,n (2.11)

The three equations define the power balance between reactive and active
power of the characteristic modes. Where 0, , is the Kronecker Delta function
defined as

s 1 ifm=n
L0 ifm#n

As can be seen from (2.10), these characteristic eigencurrents are normalized
to radiate unit power. Each eigencurrent associated with an internal resonance
cannot be normalized since they do not radiate. Nevertheless, they are not
needed for radiation problems, only for cavity problems. For the following, we
assume the eigencurrents to be normalized.

Equations (2.10) and (2.11) are implicitly included in equation (2.9). Thus,
these orthogonality relations are used to normalize the characteristic currents,
and to obtain the characteristic eigenvalues associated to those characteristic
currents.

To finalize with this discussion, it is important to understand how the eigen-
values are defined. By definition the characteristic eigenvalues, A, range from
—oo to +oo. Furthermore, if A, > 0, those related modes have predominantly
storing magnetic energy (inductive modes), while if A,, < 0, they predominantly
store electric energy (capacitive modes). A mode having A,, = 4oo is called an
internally resonant mode. And a mode having A, = 0 is called an externally
resonant mode. Those modes corresponding to the external resonances for the
conducting surface are those involved to design antennas and scatterers.

In addition, it is common to define another parameter widely used in the
TCM, the modal significance, [23].

1
MS, = H (2.12)

11
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This parameter has only dependence of the characteristic eigenvalue, and
it is another way of viewing the information contained in it. For example, the
resonance will be at MS,, = 1. The interesting thing about this parameter is that
it allows us to define the radiation bandwidth of a given mode, BW,.. BW,, is
defined as the range of frequencies in which the power radiated by the mode
is greater than half the power radiated at resonance, we have that MS = 0.707,
and therefore

BW, = Ju— (2.13)

Jr
In (2.13) fy is the upper frequency and f; the lower frequency. These are
the corresponding frequencies to the cut of M'S = 0.707 with the M, curve, and
[ the resonance frequency for that given mode, n. This is the bandwidth of each
characteristic mode that could intervene in the radiation of the antenna/scatterer
in the case to be excited.

2.2.2 Modal Solutions

Once the characteristic modes and its associated eigenvalues are obtained, it
is possible to construct the total current distribution and its associated radiated
fields through these solutions.

The total current distribution can be constructed considering the following
equation,

where @, is a coefficient to be determined for each corresponding characteristic
current J,,. o, can be obtained substituting (2.14) in equation (2.2.1), and using
the linearity of the L operator. By doing so, equation (2.15) can be obtained.

[Z a,L(J,) +E’] =0 (2.15)

tan

Next, an inner product considering each characteristic current J,, is consid-
ered. This gives the following equation,
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Y 0, Z(Jn)) = (I, EY) (2.16)

where m = 1,2,.... Here we have put Ly, = —Z, and dropped the subscript
"tan" on E'. Because of the orthogonality relationship (2.9), equation (2.16) is
reduced to

o (1+ jAy) = (I, E) (2.17)
where o, takes the following form,

(I EY
o, = m (2.18)

In equation (2.18), (J,,E) is called the modal excitation coefficient defined as

Vi=(J, E) = / /S J.EdS (2.19)

Thus, the total electric current distribution takes the form,

Va
V=Y (2.20)

If the eigencurrents J,, are not normalized, the term (1 + jA,) has to be replaced
by the term (1+ jA,)(Ju,R(J,)).

Let us now turn to the definition of the electric and magnetic fields. The
electric field E, and the magnetic field H,, produced by an eigencurrent J,
on S are called the characteristic fields. The set of all the E,, or H,, form a
Hilbert space throughout the space. These fields can be obtained once the
characteristic currents have been obtained from equation (2.1), and from its
associated magnetic field,
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E, = —joAJ,) = Ve (Jn) (2.21)

H — V<AL (2.22)
Ho

The interesting thing here is that when these fields are calculated on the sphere
surface at infinity, S., they are newly called characteristic far fields and fulfill
the following orthogonality relationship

I
- / / E E,dS=1 / / H H,dS' = 8., (2.23)
nJJs. Se

So therefore, the characteristic far fields have the property to be orthogonal.

By definition, the characteristic far fields can be obtained considering equation
(2.24)

E,— nH, xn— %w“e—ﬂ”l«“,,(e,q)) (2.24)

r

where F,, is defined as

F,= / / J.(t)e K gs’ (2.25)
JJS

Here 1 = \/u/¢€ is the intrinsic impedance of the space, n is the unit
radial vector on S. and (6, ¢) are the angular coordinates of the position on
S.. The complex vector F,, is called the characteristic pattern or eigenpattern
corresponding to the eigencurrent J,,. F), is calculated integrating on the object
surface, §’, where the electric sources J,, are located at the r’ position.

Since the far fields are linearly related with the currents they can also be
expanded in terms of the characteristic far fields considering the same excitation
coefficient (2.18)
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Vl

E= Z R (2.26)
H=Y _Vi_y, (2.27)
() '

2.3 Dielectric Bodies: EFIE-VIE

In this section a brief review of the theory of characteristic modes for lossless
dielectric bodies considering the EFIE-VIE formulation is presented. The
approach is similar to that used for conducting bodies, with regard to equation
Z(J) = E', but considering another definition for the operator and the involved
electric currents. Here, a dielectric body with volumetric equivalent electric
currents is considered.

2.3.1 Characteristic Currents and Characteristic Eigenvalues

Consider the homogeneous loss-free dielectric body represented in Fig. 2.2,
where the scattered field is related to the volumetric polarization currents J
according to

E = —joAJ) - Vo) =—2(J) (2.28)

where the magnetic vector potential and the electric scalar potential are now
integrated over the volume V

e]k\r r’|
/ / / V/ Magnetic vector potential
(2.29)
e]k|r r|
0(J) = / / / 7dV’ Electric scalar potential
47r Jjoe |

(2.30)
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EH’

Fig. 2.2 Homogeneous loss free dielectric body. Image taken from the lecture
notes of the ESoA course book [74].

If the polarization current is related to the total field by the constitutive
relationship

J = joAe(E' + E) (2.31)

where Ag = € — g, it is possible to rearrange in order to obtain the VIE-EFIE
substituting (2.31) in (2.28). That is

1

o v +Zy(J)=FE (2.32)

or in a more compact form

Z(J)=FE (2.33)

where the operator Z = Zy + 1/ jwAg, and can be treated as in the above section
for conducting bodies, but with respect to a volume symmetric product (2.34) in
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which B and C are two vector functions of the square-integrable space defined
onV.

(B,C) ://VBoCdV’ (2.34)

This serves to reduce the operator equations to matrix equations. From
the reciprocity theorem, it can be concluded that Zy is a symmetric operator,
(J1,Zv(J2)) = (J2,Zv(J1)), and if A€ is a scalar or a symmetric operator, Z
remains symmetric. In addition, Z can be expressed into its hermitian parts R
and X as Z =R+ jX, where

R= %(z+z*) (2.35)
1 %
X= 27_(z—z) (2.36)

It is important to note that the operator equation (2.33) takes the form as
that for conducting bodies, and the development of a TCM for dielectric bodies
when considering the volumetric equivalent electric currents is similar to that
for conducting bodies. Thus, the generalized eigenvalue equation defining the
characteristic modes is the same as for conducting bodies but considering the
operator presented by (2.33),

X(Jn) = )vnR(Jn) (2.37)

Here again the eigenvalues A, and all the characteristic currents are real
valued, since the involved operators X and R are hermitian. Moreover, the
volumetric characteristic current, J,,, can be normalized to radiate unit power
by using the following orthogonality relationships

<Jm>Z(Jn)> <J;§mZ(Jn)> =(1 +J7Ln)5m,n (2.38)
<Jm’R(Jn)> <J:17R(Jn)> = Sm,n (2.39)
<Jm,X(Jn)> = <J;:1aX(Jn)> = An(Sm,n (2-40)
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where 6, , is the Kronecker delta.

To finalize, it is important to define the characteristic eigenvalues provided
by the VIE-EFIE formulation. Here A, ranges from —eo to +e0. Furthermore,
if A, > 0, those related modes have predominantly storing magnetic energy
(inductive modes), while if A,, < 0 have predominantly storing electric energy
(capacitive modes). A mode having A, = 4o is called an internally resonant
mode. And a mode having 4, = 0 is called an externally resonant mode. Those
modes corresponding to the external resonances for the dielectric body are those
involved to design dielectric resonator antennas and dielectric scatterers.

2.3.2 Modal Solutions

In the same manner as for PEC bodies, a modal solution exists for J and takes
the following form

vi
=Y 0

n

Jn (2.41)

If the eigencurrents J, in equation (2.41) are not normalized, the term
(1+ jA,) has to be replaced by the term (1 + jA,)(Jun,R(J,)). On the other
hand, V! is defined as previously done for conducting bodies in equation (2.19)
but integrating over the volume where the volumetric currents are defined within
the dielectric, V.

Vi={(J, E) = / / /V J.Eav’ (2.42)

The electric field E, and the magnetic field H,, produced by a characteristic
current J,, are called characteristic fields and can be obtained from equation
(2.28), and from its associated magnetic field.

It is important to note, that when these fields are calculated on the surface
sphere at infinity, S, they are also called characteristic far fields and fulfill the
following orthogonality relationship

l / / E;EndS’ =1 / / H,’;HndS’ = Onn (2.43)
nJJss. Seo '
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In addition to the orthogonality relations presented by equations (2.38)-(2.40),
this is another of the properties that make interesting to use the TCM in antenna
design. (2.43) shows that the characteristic far fields are orthogonal.

Since the far fields are linearly related with the currents they can also
be expanded in terms of the characteristic far fields considering the same
coefficients used within the linear combination for the total electric current
(2.41).

E= Z 1+]Aﬂ (2.44)
Vl
H= Z EN7AL (2.45)

2.4 Dielectric and/or Magnetic Bodies: PMCHWT-SIE

The PMCHWT-SIE formulation for characteristic modes is more complex
than the EFIE-VIE formulation for dielectric bodies because there are both
electric and magnetic equivalent currents involved. In this problem, the surface
equivalence principle is used to find the matrix operator involved in the problem.
To do so, the real problem is then formulated in terms of an equivalent problem
facilitating the calculation of the electromagnetic fields in the regions of interest.

The formulation presented in this section only considers materials without
ohmic losses. Furthermore, this formulation can be applied for both dielectric
and/or magnetic bodies.

2.4.1 Characteristic Currents and Characteristic Eigenvalues

Consider the problem of an object as shown in Fig. 2.3. The object is charac-
terized by (&, U), and the surrounding media by (&1, i1 ), both homogeneous
materials. Moreover, the object is illuminated by an incident electric and
magnetic fields E” and H™, respectively.

Furthermore, the scattered fields outside (E;,H;) and inside (E,,H,) the
object are also defined in Fig. 2.3. The boundary conditions 7 X E; =71 X Ep
and 71 x H; = 71 X Hj are satisfied between the object and the surrounding media,
i.e., the object surface.
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Fig. 2.3 Original problem. Image taken from the lecture notes of the ESoA
course book [74]

As the surface equivalence principle establishes, it is possible to separate
the original problem presented in Fig. 2.3 into two equivalent problems as
presented in Fig. 2.4. As can be seen, the original problem is exactly the sum
of these two separate problems, one in which the interior fields are completely
zero and the outer fields are produced by the equivalent currents (J;,Mj), and
other in which the exterior fields are completely zero and the inner fields are
produced by the equivalent currents (J,M>). Both cases are shown in Fig. 2.4
as case 1 (right), and case 2 (left). These equivalent currents are related with
the fields according the following equations

Ji=AxH (2.46)

J, = —i' xH, (2.47)
M, =E; x it (2.48)
M, = E, x (2.49)

where 7 and A’ are the normal unit vectors pointing outwards and inwards the
surface S, respectively. Since the real problem does not present such equivalent
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E=H=0 — S

Fig. 2.4 Decomposition of the original problem. Left: The fields are zero
outside (case 2). Right: The fields are zero inside (case 1). Image taken from
the lecture notes of the ESoA course book [74]

surface currents, the following conditions must be satisfied to continue meeting
the boundary conditions on the surface S of the original problem.

Ji+J2=0 (2.50)
M, +M, =0 @2.51)

We now replace in both equivalent problems the medium of the zone where
there is EM field, by the medium of that volumetric zone where the field is zero.
So that the medium in the two zones becomes equal, both inside and outside the
object. That is, the entire space has to be formed by the medium 1 in Fig. 2.4
(right), and the entire space has to be formed by the medium 2 in Fig. 2.4 (left).
This means that the equivalent currents radiate into a homogeneous medium,
and therefore we can make use of the following equations to calculate the
radiated fields produced by the electric and magnetic equivalent currents.
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E = —joA vl - gllv x F(1)  gire (2.52)
H, = ;LV x AW — joF® —veD 4+ Hir (2.53)
E = —joA® —ve? - Slzv x F@ (2.54)
H, = MIQV x A® — joF® — v (2.55)

where the superscripts (1) and (2) refer to the exterior and interior regions,

respectively. Furthermore, the Green’s function of an unbounded homogeneous
/,) _ ejkih'*r"

medium is used, G;(|r —r . This can be seen from the potentials

]
defined below, fori =1, 2.

Al / / J:(0)Gi(Jr —1'|)as’ Magnetic vector potential
(2.56)

/ / M;(r’)Gi(|r —1'|)dS’ Electric vector potential
(2.57)

q)e(i) (r) = 471:](08, / / V'J:(r’)Gi(Jr—r'|)dS’  Electric scalar potential
(2.58)

¢,$f) (r) 47”(0‘”1 / / ([r—r'|)dS’ Magnetic scalar potential
(2.59)

This means the equivalent currents J; and M radiate the fields EW y H(l), and
the equivalent currents J, and M, radiate the fields E® y H?. Itis important to
note that since the problem considered has an external incident electromagnetic
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wave, the exterior fields E!) and H") are composed by the sum of the scattered
fields and the incident fields. While the fields in the interior region are only
described as a function of the scattered fields. On the contrary, if the incident
field were placed within the object, the definition would be different. In that
case, the incident fields would be summed in the interior region, within the
fields E®) and H®). This point will be interesting when analyzing the physical
meaning of the solutions provided by the PMCHWT formulation when applied
the TCM, as will be explained later.

Once the surface equivalence principle is understood, let us first construct
the integral equations of the PMCHWT formulation from the boundary condi-
tions for the electric field i x E; =71 x E,,

|
i x [jow //Jl(r’)Gl(\ r—r |)dS + —— V//V’Jl(r’)G1(| r—r |)ds’
S JOE; S
4V x //SMl(r’)G1(| r—r \)dS'—ja)uz//SJz(r’)Gg(\ r—r |)ds

- IV//SV’JZ(I")GZQ r—r |)ds -V x //SMz(r’)Gz(\ r—r |)ds]

JjOg
=AxE"™ (2.60)

and second, the boundary conditions for the magnetic field 7 x H; =71 x Hj,

1
JOuU

i [joe //SMl(r’)Gl(\r—r’ dS' - V//SV’Ml(r’)G1(|r—r’ S’

_Vx//SJl(r’)G1(!r—r’ |)dS’—jw82//SMz(r’)G2(|r—r’ )ds'

1

+jwuzv//gV,M2(r,)G2(| r—r’ |)dS/+V><//SJ2(I")G2(| r—r’ DdS/]

=AxH"™ (2.61)
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To simplify notation, and build the integro-differential equations system, let us
recall equations (2.60) and (2.61) by using the following operators

J(D.Ul//J )G (|r—r’ dS’—i-iV//V’ NGi(|r—r’|)dS

+]0)u2//J )G2(|r—1’ |dS'+—V//V’ NGy(|r—1 |)dS’
(2.62)

C(M) = V x //SM(r’)G1(| r—r |)dS +V x /SM(r’)Gz(] r—r|)ds’
(2.63)

CJ) = -V x //SJ(r’)Gl(] r—r [)ds —V x //SJ(r’)G2(| r—r |)ds

(2.64)

Ln(M) = ja)el/SM(r’)Gl(\ r—r |)ds'

V//VM )Gi(|r—r |)dS’ +]a)82/ M(r")Ga(| £ ¢ |)dS’
qul

quzv // VM(r)Ga(|r— 1’ [)dS' (2.65)

where they have been expressed in terms of one equivalent current J =J; = —J»
and M = M, = —M,, considering equations (2.50) and (2.51). With this, we
arrive at the following matrix expression

Le -C J - Einc
|: C Ln :| |: M :|tan a |: Hinc :|tan (266)
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The subscript tan means the tangential components on the surface. For the
characteristic mode analysis, the matrix operator in (2.66) has to be symmetric,
otherwise the characteristic mode solutions would be generally complex-valued.
That is why, (2.66) takes the following form,

Le —JC J EinC
. . - xyinc 267
|: _JC L :| |:JM:|tan |: JH :|tan ( )

The introduction of the imaginary number was first introduced by Chang and
Harrington in [29]. Equation (2.67) is simply the usual linear system operator
equation expressed below:

T(f) =g"™ (2.68)

where the subscript "fan" have been dropped for brevity. In (2.68),

_ s ) inc
T= |: _Z;C L]C :| ; = |: _]i{/[ :| ; gh= |: j]i:_linc :| (2.69)

Being T the operator tangent to the surface of the object, f the current vector,
and g the incident field vector. Let’s now define the symmetric product

(f.g) = / /S fegds (2.70)

This inner product reduces the components of the matrix operator to submatrices
in the matrix operator, in the same way as for the Galerkin MoM procedure
when using the same expansion and testing basis functions. On the other hand,
(f*,g) is a suitable inner product for the Hilbert space functions f and g on §'.
By reciprocity, it is easy to show that 7' is symmetric, (f;, Tf,) = (Tf},f,). The
operator T can be expressed in terms of its hermitian parts as T = T + jT>
where

L= r@+17) [zlvi Ig] 2.71)
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1

! X N } (2.72)

:?j(T_ *):[Nz B

So, considering the same definition of the generalized eigenvalue equation
presented in (2.8) and (2.37), here we have

[TZ] [fn] =M [Tl] [fn] (2.73)

In (2.73), both the characteristic eigenvalues A, and eigencurrents f,, are defined
to be real valued. The characteristic mode basis function is defined as

£, — Li/[] (2.74)

where J,, and M, are the basis functions determining the electric and magnetic
equivalent characteristic currents. The characteristic currents can be normalized
to radiate unit power using the following orthogonality relations

(£, T(£2)) = (€, T(£2)) = (14 jA0) S (2.75)
(£, Ti (£)) = (£5, T (£)) = S (2.76)
(£, o (£)) = (£, To(£,)) = Ay (2.77)

where 6, , is the Kronecker delta. Once the eigenvalues 4, are obtained, the
expression for the modal significance, MS, is the same as for metals, equation
(2.12).

The complete definition for the characteristic eigenvalues is not presented
in [28]. In fact, Chang and Harrington mentioned that many questions were
still left unanswered in the interpretation of the characteristic modes to material
objects. The interpretation of these solutions will be one of the purposes of this
thesis.
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2.4.2 Modal Solutions

After having introduced the eigenvalue and eigenfunction definitions, the total
equivalent current can be defined on the body surface as

f=Y af, (2.78)

where o, are the excitation coefficients of the characteristic currents f,,. In order
to obtain the definition for o, (2.78) has to be substituted in (2.68), and the
resulting equation after multiplying by the weight function f,, is

Y 00, T(£) = (£, 8™) (2.79)

Next, the orthogonality condition (2.75) is also applied to (2.79), and o,
takes the same form as in previous sections for both conducting and dielectric
bodies

<fn,gi”0>
n= T~ 2.80
D= U+ ) (2:50)
where
(£,,8") = / / (J,E™ —M,H") dS' (2.81)
S

On the other hand, the fields can be calculated through these results. Let us
define a field produced by a characteristic eigencurrent f;,

g=)y o8, (2.82)

As can be seen, the total field distribution can also be expressed as a sum of the
characteristic fields g, and its corresponding excitation coefficients o,. These
coefficients are the same as the calculated for the total current distribution
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(2.80). Moreover, the characteristic fields are composed by the electric and
magnetic fields, E, and H,,, respectively.

E,
g, = [an] (2.83)

In the radiation zone, the characteristic fields E, and H,, are known as
characteristic far fields, and only there, they satisfy the following orthogonality
relation,

f// EE dS’_n// H:H,dS' = (2.84)

where S.. is the sphere at infinity.



Chapter 3

Analysis of Resonances on PEC
Bodies

In this chapter, some aspects in the interpretation of the solutions provided by
the TCM of a PEC infinite circular cylinder and a PEC sphere are presented.
Firstly, natural resonances (NRs) and characteristic mode resonances (CMRs)
are introduced and compared. Secondly, characteristic eigenvalues are used
to find those NRs considering complex ka values. These analysis are firstly
done for the infinite circular cylinder, and after for the PEC sphere. It will be
seen that both the 2D (cylinder) and 3D (sphere) analysis provide the same
conclusions.

On the other hand, another analysis will be presented. By linking the
standard and the generalized eigenvalue problems a relation between NRs and
characteristic mode eigenvalues is shown. Moreover, the thesis stating that
external CMR does not imply maximum field scattering, or maximum current
distribution, is also demonstrated.

Furthermore, the internal resonances of the characteristic mode eigenvalues
are studied to obtain the dispersion curve of a circular PEC waveguide. For
this study, the EFIE considering oblique incidence have been solved. Finally,
the overall conclusions drawn in this chapter will be presented and some open
question will be proposed.

The results provided in this chapter will help to better understand CMs in
dielectric bodies.

31
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3.1 Introduction

NRs are well known in the field of target identification. They are aspect indepen-
dent, depending only on the intrinsic properties of the target and the surrounding
media. This makes them a good tool for detection and discrimination in radar
applications. In practice, NRs are extracted from the late time responses of
impinging electromagnetic waves. This can be done using some well known
theoretical procedures to extract the poles related with the target. Some of
the main techniques for pole extraction are the Singularity Expansion Method
(SEM) [16], the Prony’s method [82], the Matrix Pencil (MP) method [103],
and the Cauchy’s method [72]. These methods are also used to extract poles
from the radiated fields. An alternative approach, similar to SEM, would be to
determine the NRs by searching for the zeros of the determinant of the MoM
matrix in the complex frequency plane, [50, 66]. Or, equivalently, to find these
zeros using a standard eigenvalue problem (SEP), where natural eigenmodes
and natural eigenfrequencies are computed. This method is called eigenmode
expansion method (EEM), and it was introduced by Baum in [13]. All methods
mentioned above provide the same set of resonances. These NRs are in general
complex numbers and are also known as complex natural resonances (CNRs).
NRs can be classified into internal or external to the body under consideration.
Internal resonances are merely cavity resonances caused by the internal waves
experiencing multiple internal reflections. External resonances, however, are
caused by creeping waves propagating along the body surface with attenuation
due to the continuous radiation in the tangent direction. It is worth recalling
that, unlike external, internal resonances are pure real numbers because they are
undamped, representing those solutions that can not radiate outside the PEC
cavity.

Along with these resonances, the TCM is being widely used lately to find
other type of modes and resonances. However, there are still unknown aspects
in the interpretation of the resulting CMRs. Interestingly, as for NRs, CMRs
can also be classified into internal or external. As explained in [54], when an
eigenvalue is zero or infinite, the corresponding CM is resonating externally
or internally to the object, respectively. Therefore, in order to interpret these
solutions, it is interesting to look at the NRs since they are unique, regardless of
the technique considered to compute them or the formulation employed, [70].
In fact, to relate both procedures in which the NRs and the CMRs are found,
it is a matter which has not been yet determined, and it was first proposed by
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Baum in [14], where he quoted "More work is needed to further explore these
relations".

Regarding to open PEC bodies, as dipoles or planar antennas, the TCM
proves to be a useful method for antenna design. This happens because the
resonance frequencies of the CMs and the natural modes are very close to
each other. Therefore, CMA is considered a good candidate for the design
of this type of antennas. Although this relation has not been studied before,
this introduction presents a result that shows the close vicinity of both families
of resonances, and the relatively low damping observed in its resonances, in
comparison with the closed PEC bodies examined later. Therefore, what is
presented next has been carried out with the only purpose of clarifying that there
is a small difference between both types of resonances for open bodies. And
this illustrates that different methods provide different resonance frequencies.

Let us firstly look for the NRs of a relatively thin straight wire, with d /L =
0.01, as an example:

-16-12 -8 4 O
oclL/c

Fig. 3.1 Natural resonances for a straight wire considering d /L = 0.01 extracted
from [111].
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Fig. 3.1 shows the natural resonances extracted from [111]. Note that the
frequency axes have been normalized as jwL/c and 6L/c, where a complex
wave number has been used, k = w/c + jo/c. These resonances have been
obtained by making zero the determinant of the method of moment matrix.
Another interesting observation is that natural resonances occur in layers [ =1,
[ =2, and so on. Moreover, the modes of the first layer are named as n = 1,
n=>2,etc.

Let us see now the characteristic eigenvalues of the same straight wire.
Note that the frequency x-axis in Fig. 3.2 is normalized as kL, i.e., in this case
kL = wL/c. The characteristic eigenvalues for each mode are differentiated as
n=1,n=2, etc. When A,, = 0 the characteristic mode is in an external CMR.

5
o
:-..c' P ..J./"" P f p——
/éj ol :. :_.‘ :...' ..._.c -‘.‘!
[n = 1 =2 k= 3 [n = 4 [n =5
30 5 T E
kL

Fig. 3.2 Characteristic mode eigenvalues for a straight wire considering d /L =
0.01.

In order to compare both types of resonances, Table 3.1 shows some of
the resonance frequencies obtained from Fig. 3.1 and Fig. 3.2 [111], and its
percentage difference A.

Table 3.1 shows that there is a small difference A between the CMRs and
the NRs. A decreases as the order mode 7 increases. As can be seen in Fig. 3.1,
the damping factor increases as the order mode increases. Thus, as the order of
the mode increases, the damping increases with it, and the percentage difference
between both families of resonances decreases. So therefore, this is the clearer
example in open PEC bodies where the difference between NRs and CMRs can



3.1. INTRODUCTION 35

Table 3.1 A comparison between some of the resonant frequencies provided by
the characteristic eigenvalues and the NRs

CMR | NR A(%)
2927 | 2873 | 1.87
6.011 | 5931 |1.29
9.110 | 9.010 | 1.10
12.221 | 12.101 | 0.99
15.334 | 15.196 | 0.90

N W =3

be seen. Another conclusion is that CMRs can only be compared with the first
layer of the NRs since they are the closest to the jwL/c axis.

In addition, it can also be seen from Fig. 3.1 that all NRs are external, since
there are no resonances on the jwL/c axis, which would be internal resonances
in that case. This happens because the straight wire is not a cavity and all
natural modes are leaking. As far as we know, the same is true for other types
of open PEC structures, e.g., patch antennas. And this is why the TCM works
very well for the design of planar antennas. However, we must be clear that
both methods provide different resonances and that, therefore, the CMs are
not the natural modes.

Concerning to PEC cavities, things work differently. Although some efforts
have been made in the past to establish the relation between NRs and CMRs.
In [21] and [5] it was shown that internal cavity NRs coincide with internal
CMRs. However, although external CMRs were also mentioned in [21], no
discussion was provided on the relation between them and external NRs. As
for [5], wrong conclusions were drawn. Moreover, in [99] it was wrongly
stated that NRs are the zeros of the eigenvalues of the governing equation in
CMA, (2.8). Furthermore, Sarkar et al. recently published some insightful
explanations about CMs and its resonances [102]. Building on that analysis, we
present here some additional statements supporting the ideas from Sarkar and
coauthors.

For that purpose, in this chapter, some aspects in the interpretation of
the CM solutions for a PEC infinite circular cylinder and a PEC sphere are
presented. Firstly, NRs and CMRs are compared. Secondly, it is observed that
NRs can be obtained from characteristic eigenvalues when complex ka-plane
is considered. Furthermore, by linking standard and generalized eigenvalue
problems, a mathematical relation between NRs and characteristic eigenvalues
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is found and presented. In addition, the thesis stating that external CMRs does
not imply maximum field scattering [102], is also demonstrated. Furthermore,
this chapter presents a new approach to finding the f — @ diagram for the
circular PEC waveguide through the CMRs. This has been done by analytically
solving the EFIE formulation considering the propagation constant k.

3.2 Natural Modes vs Characteristic Modes: A Defini-
tion

Consider a PEC scatterer illuminated by an incident electric field, E*. This
incident field induces an electric current distribution J flowing on the PEC
surface that radiates a scattered field E*. After imposing the boundary conditions
for the tangential field on the PEC surface, and considering that the scattered
field can be expressed as E* = —Z(J) the problem to be solved can be written
from the functional defined by the electric field integral equation (EFIE), (2.2.1).

Z(J(r,0)) =E(r,0) 3.1

Where the functional relation Z is

Z(J(r,w _ j(D‘LL// e]k|r r’| S’

[r—r’

ejk|r r’|
// ds’ 3.2)
471']608 r’|

In (3.2), r denotes the observation point, r’ the source point, S the scattering
surface, @ the angular frequency, and u, € and k the permeability, permittivity,
and the wavenumber, respectively. Equation (3.1) is solved for the current J
through the inverse of the impedance operator. That is J(r,w) = Z 'E'(r, w).

The resonance problem considered in this work is formulated in (3.3), where
no excitation is applied, i.e., E'(r, @) = 0. Equation (3.3) defines the natural
frequencies and natural modes of the target involved in the scattering process,
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Z(J(r,®)) =0 (3.3)

This means that one seeks for the nontrivial solutions of (3.3), which requires to
find the solutions for which Z is a singular operator. This generally occurs at an
infinite number of discrete complex frequencies, known as natural frequencies,
o =o'+ jo". Where @' provides the natural resonant frequency of a given
natural mode, and ®” its damping factor. The damping factor is linked to the
radiating properties of a given mode.

To find the singularities of the Z operator one can seek for the zeros of the

eigenvalues of the SEP presented by equation (3.4), i.e., v,, = 0. Or, equivalently,
to solve for det(Z) = 0, being Z a matrix operator, since det(Z) = H V.
n

Z1,(r,0) = v,I,,(r, w) (3.4)

In (3.4), I, is the natural basis or the natural modes. It is important to
note that both I,, and v, are generally complex, except for the related inner
solutions. From this natural base, it is possible to construct the total current
distribution J as

- (L(r,0),E')
Je0)= L3 o) (. 0)

IL,(r,m) (3.5)

This method is known as eigenfunction expansion method (EEM). More details
can be found in [13].

Total current J(r, ®) can be expanded in terms of so-called characteristic
modes as well. When using CMA, it is not necessary to resort to complex
frequencies and complex eigenvalues and eigenvectors to find the same J(r, ®).
Unlike the physical solutions provided by the EEM, CMA provides a mathe-
matical basis with some interesting properties facilitating their manipulation
and understanding when designing antennas or scatterers. CMA exploits the
mathematical properties of the Z operator to obtain real eigenvalues and
eigenmodes. Since Z = R+ jX is a complex symmetric operator, its real and
imaginary parts, R and X, are hermitian matrices. The following generalized or
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weighted eigenvalue problem defines the characteristic eigenvalues, A, and the
characteristic eigencurrents, J,,.

XJ,(r,®) = AR, (r, o) (3.6)

Remembering the theory presented in Chapter 2, by definition, the characteristic
eigenvalues, A, range from —eo to oo, Furthermore, if A,, > 0, the correspond-
ing modes have predominantly magnetic stored energy (inductive modes), while
if A, < 0 they have electric stored energy (capacitive modes). A mode having
An = teo is called an internally resonant mode (cavity mode). And a mode
having A,, = 0 is called an externally resonant mode. The modes corresponding
to external resonances are those considered in antenna and scatterer design.

Electric Current J can be also obtained from the expansion of their charac-
teristic eigensolutions as

B (Ju(r,0),E")
J(r, o) = ; (14 jA) (Ju(r,0),J,(r,0))

Ju(r,0) 3.7

From the antenna design point of view, having real solutions become more
practical than complex ones because they are easier to interpret. In fact, real
modes are described as standing waves which have fixed stationary nodes. On
the other hand, complex modes are described as travelling waves and appear
to have moving nodes on the structure. Thus, since for antenna design it
is interesting to know where to place the power supply to drive a particular
electromagnetic mode, the characteristic modes facilitates the design to the
engineers unlike the conventional design method, or the EEM, because whatever
the geometric shape of the antenna is, a set of orthogonal and real modes can
be obtained.

3.3 The Infinite PEC Circular Cylinder

In this section, NRs and CMRs for a PEC infinite circular cylinder are compared
when considering the EFIE impedance operator. For this purpose, the well
known analytical formulas to express the EFIE operator for TM* and TE*
polarizations are used [90, 114]. Equations (3.8) and (3.9) can be analytically
calculated from the procedure presented in Appendix A.1.
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. k
ZEFIE, TM; _ ?h (ka) H? (ka) (3.8)
7EFIE, TE; _ W”Tka]r/l (ka)H,;(z) (ka) 3.9)

In (3.8) and (3.9) a is the cylinder radius, H,(,z) (x) the Hankel functions of
second kind, J,,(x) the Bessel functions of first kind, n the azimuthal mode order
(n=0,1,2,3...), k the wavenumber, and 1) the intrinsic impedance. The primes
on the Bessel and Hankel functions denote differentiation with respect to the
entire argument.

3.3.1 Natural Resonances

NRs are extracted from the zeros of the determinant of the impedance matrix
operator. Thus, concerning the PEC infinite circular cylinder, equations (3.8)
and (3.9) have to be equal to zero. Some of the first natural resonances are
shown in Fig. 3.3.

8
+ TM;
« TE?
6 n
— o
2 0
— 4 +
= o :
2 2 *
o +
o +
O | | | | ]
0 0.5 1 1.5 2 2.5
Im(ka)

Fig. 3.3 Natural resonances of the infinite PEC circular cylinder.

T M and TE? resonances are marked with “+” and “o”, respectively. Consid-
ering the conclusions presented in [30] for the PEC sphere, the same can be
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concluded here: NRs in Fig. 3.3 can be separated into internal (cavity modes)
and external (surface modes or creeping waves) NRs.

The internal NRs are those located on the real axis and the external ones
are complex numbers. The imaginary part of these complex numbers (surface
modes) provides surface mode ability to radiate (radiation losses). Unlike the
surface modes, cavity modes do not radiate and that is why their resonances
are pure real numbers. Just for the sake of completeness, let us add that these
cavity resonances are transverse resonances and they are the cut-off frequencies
of the corresponding circular waveguide modes, i.e., J,(ka) = 0 (T M} modes)
and J),(ka) = 0 (TE? modes). This means that looking at equations (3.8) and

(3.9), external resonances can be calculated from H,Sz) (ka) = 0 (T M} modes)
and H'?) (ka) = 0 (T E: modes). External NRs are due to those surface waves
that circumnavigate the cylinder surface matching their phases so as to build up
to the resonance by constructive interference.

From the viewpoint of radar scattering, these external NRs can also be
approximately calculated from the radar cross section (RCS). The difference
between the NRs and the RCS spectrum is that the information in the RCS
spectrum is not as complete as that in the natural frequency spectrum [12].
Since resonant peaks in RCS plot do occur at real frequencies at which the
zeros of equations (3.8) and (3.9) are not zero, i.e., the natural resonances are
not excited. Furthermore, the RCS spectrum is partially a function of the angle
of incidence and polarization. Nevertheless, a good agreement is observed
in most cases for the real frequency pole coordinates when compared to the
RCS spectrum and physical information can be obtained from it, [86]. These
comments will serve to better understand the subsection where NRs and CMRs
are compared.

3.3.2 Characteristic Mode Resonances

CMRs are obtained from the GEP presented below [54]

XJn = )’nRJn (310)

where X and R are the imaginary and real part of the EFIE impendance matrix
operator , (Z = R+ jX), J, the characteristic currents, and A,, the characteristic
eigenvalues. By definition, A, = 0 and A, = £ (asymptotic behavior) are
being interpreted as external and internal CMRs, respectively.
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Concerning the infinite PEC cylinder, characteristic eigenvalues can be
found substituting equations (3.8) and (3.9) into (3.10). The analytical results
for their associated eigenvalues are

.Y,k
A,,TM":—J Ekzg G.11)
TE? Y,g (ka)
ATE — - (3.12)

Equations (3.11) and (3.12) can be also found in [49]. They are graphed in
Fig. 3.4.
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Fig. 3.4 Characteristic eigenvalues of the infinite PEC circular cylinder.

Let us consider for instance the 7'M} characteristic eigenvalues. Observing
equation (3.11) in Fig. 3.4, it can be clearly seen that the zero crossings of
An correspond with the zeros of the Neumann function, Y, (ka). Moreover,
when A, = deo (asymptotic behavior), it corresponds with the zeros of the
Bessel function, J, (ka). Therefore, ¥, (ka) = 0 and J, (ka) = 0 provide the
external and internal CMRs, respectively. Furthermore, it is also important
to note that in A,, curves, each asymptote is located between two consecutive
zeros. The consecutive asymptotes provide the order of the radial variation of a
given cavity mode, i.e., the corresponding A, for TM§ mode has m = 1,2,3...
asymptotes that are representing the cavity resonances with radial variations
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Table 3.2 Comparison between external natural resonances and external charac-
teristic modes resonances.

Re(ka) | Natural Resonances Characteristic Mode Res.

n TM, TE,: | TM,, TE,

0 X X 0.89 2.20

1 X 0.50 2.20 3.68

2 0.43 1.44 3.38 5.00

3 1.31 2.38 4.53 X

4 2.21 3.32 5.65 X
TM(Z)'M. They are for instance TM(Z)" 1 TM(Z)"Z, TM5,3, and so on. Regarding

the zero crossings of 4,, they are simply solutions related with the zeros of
the reactance operator X, as a result of using the GEP (3.4). As mentioned
above, since we are dealing with a circular PEC infinite cylinder these zeros are
exactly the zeros of the Neumann function. According to CMA, these are called
external CMRs. Interestingly, they do not coincide with the external NRs, as it
will be evidenced next. In fact, it will be shown that unlike for the straight wire,
in PEC cavities the NRs and the CMRs are very far each other.

The same can be concluded for the TE} characteristic modes, but consid-
ering equation (3.12). ¥, (ka) = 0 and J), (ka) = 0 lead to external and internal
CMRs, respectively.

3.3.3 Natural Resonances vs Characteristic Modes Resonances

With regard to internal resonances, it is obvious that both procedures lead to
exactly the same results, since both are calculated from J,,(ka) = 0 (TM}) and
J}(ka) = 0 (TE?). As for external resonances, Table 3.2 shows the correspond-
ing values obtained from Fig. 3.3 and Fig. 3.4. Contrary to [5, 99], where it
was stated that external NRs and CMRs were the same, here it is concluded
that both methods provide quite different resonances. Notice that letter X on
Table 3.2 is for points outside the graph region shown.

Nevertheless, it would be interesting to show whether characteristic eigen-
values (A,,) are somehow capable of providing the external NRs. Notice, though,
that external NRs involve complex ka values. However a complex argument
should not be used directly on (3.11) or (3.12) because these equations were
obtained by Garbacz assuming real ka values. That would lead to wrong solu-
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tions. Instead, the proper thing to do is introducing complex ka values in (A.13)
and (A.14) before solving equation (3.10). It is worth noting that 4, remains a
real number. The eigenvalues obtained for complex ka are shown in Fig. 3.5.

/T\-\_“-
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Fig. 3.5 Characteristic eigenvalues for different imaginary planes and the poles
of the natural resonances.

A few resonances have been chosen for the sake of illustration. Fig. 3.5
shows a schematic correspondence between the characteristic eigenvalues (4,,)
obtained for a set of imaginary ka planes and the natural resonance poles for
the PEC cylinder. The real part corresponds to the location of the resonant
frequencies and the imaginary part to the damping factor. The imaginary ka
planes selected contain external natural resonances of modes TE{, TM5 and
T M. These planes are Im(ka) = 0.65,1.28,2.42 (See fig. 3.3). Notice that each
eigenvalue trace crosses zero or have an asymptote right at the natural resonance
location. For Im(ka) = 0 plane, only the internal natural resonance of TM;
mode matches the eigenvalue trace. Therefore, now characteristic eigenvalues
are able to provide the NRs. Along with the NRs, the A, curves plotted show
other zero crossings and asymptotes. These are just due to singularities in X
or R operators in equation (3.10) with no physical meaning, to the authors’
knowledge.
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3.4 The PEC Sphere

In this section, the analysis performed on the infinite circular PEC cylinder is
briefly extended to the PEC sphere. The purpose of this analysis is not just
exploring the relationship between CMRs and NRs for this particular canonical
body, but demonstrating that the conclusions drawn from a 2D analysis can also
be extended to 3D bodies. To this purpose, the following analytical solutions
obtained from the EFIE are used here, [113],

ZEFIE, TM;, 7! (ka) H;(Z) (ka) (3.13)

ZEFIE. TE] o ] (ka)H (ka) (3.14)

Where J, (ka) and H (ka) are Riccati-Bessel and Riccati-Hankel functions
defined in [1], respectively. a is the sphere radius, n the azimuthal mode order
(n=1,2,3...), and k the wavenumber. The primes on the Riccati’s functions
denote differentiation with respect to the entire argument. Note that equations
(3.13) and (3.14) are written using the proportionality symbol "«", since there
exist some proportionality constants, but for the purpose of this section it is
enough to express the equations in this way.

The first difference to note between the cylinder and the sphere is that unlike
for the cylinder, where the electromagnetic modes are transverse to the z-axis,
for the sphere they are transverse to the radial direction, r. Furthermore, there is
also a mathematical relationship between the functions defined in the coordinate
systems used. While in the previous case they are cylindrical Bessel functions,
in this case they are spherical Bessel functions, and the same occurs for the
Hankel functions.

3.4.1 Natural Resonances

Since NRs are calculated making the det(Z(ka)) = 0, it is possible to extract the
natural resonances either internal and/or external using the ka complex plane
as done for the infinite circular cylinder. For the PEC sphere case, making use
of the equations (3.13) and (3.14) the internal NRs can be calculated doing
Ju(ka) = 0 and J),(ka) = 0, and the external NRs making 1 (ka) = 0 and
H! (?) (ka) = 0. These solutions are presented in Fig. 3.6.
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Fig. 3.6 Natural resonances of the PEC sphere.

Fig. 3.6 shows the NRs for a PEC sphere. TE], and TM] resonances are marked
by “o” and “+”, respectively. As for the cylinder, the real and imaginary parts
of the NRs define the resonant frequency and the damping factor, respectively.
Moreover, the same conclusions can be drawn for the PEC sphere. Internal NRs
can be found on the real ka axis, and external NRs are located in the ka complex
plane. As mentioned in the previous section, only internal resonances are
completely real because there is no leakage outside the sphere surface. These
NRs could also be found considering the scattering coefficient singularities as
presented in [30].

3.4.2 Characteristic Mode Resonances

Let us now consider the characteristic eigenvalues for the PEC sphere. Substitut-
ing equations (3.13) and (3.14) in equation (3.10), the characteristic eigenvalues
(3.15) and (3.16) are obtained.

R —— (3.15)

(3.16)
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These eigenvalues were first analytically obtained by Garbacz in [49]. Fig. 3.7
shows the characteristic eigenvalues (3.15) and (3.16).

10

Fig. 3.7 Characteristic eigenvalues of the PEC sphere.

As defined for the cylinder, when A,, — =eo it represents an internal CMR.
In contrast, when A4,, = O represents an external CMR. Thus, let us consider the
case, for instance, in which a TEZ mode is being studied. Observing equation
(3.16) in Fig. 3.7, it can be seen that the zero crossings of A, correspond with
the zeros of the Riccati-Neumann function, Y, (ka). On the other hand, when
An — too (assymptotic behaviour), it corresponds with the zeros of the Riccati-
Bessel function J, (ka). Therefore, Y, (ka) and J, (ka) provide the external
and internal CMRs, respectively. It is important to note that for a particular
mode, either TE] or TM], each asymptote represents the m-th order of the
radial variation of a given cavity mode. For example, the corresponding A,, for
the TE] mode has m = 1,2,3,... asymptotes that are representing the cavity
resonances with radial variation TE1’7m, ie., TE] |, TE1’72, TEf73, etc. With
regard to the consecutive zero cuts of a given eigeﬁvalue Ay, they are generally
understood as external CMRs. But as far as we know, they have no meaning for
closed PEC cavities. Interestingly, in the same way as for the PEC cylinder, the
external CMRs for the PEC sphere do not coincide with the external NRs, as it
will be discussed in the next section.

The same conclusions can be reached for the TM;, characteristic modes but
considering equation (3.15). Where Y/, (ka) = 0 and J, (ka) = 0 provide the
external and internal CMRs, respectively.
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3.4.3 Natural Resonances vs Characteristic Modes Resonances

As concluded in the analysis for the PEC cylinder, the same can be said for the
sphere with regard to the comparison between NRs and CMRs: only internal
resonances coincide. Obviously, in both procedures internal resonances are
found through the zeros of the Ricatti-Bessel functions J,(ka) and J},(ka) for
the TE) and TM;, modes, respectively. So, that is the reason why they are the
same.

As far as the external resonances are concerned, they are completely differ-
ent. A proof of this can be seen from Table 3.3. It can be easily seen that they
are clearly different. Table 3.3 shows the resonances obtained from Figs. 3.6
and 3.7.

Table 3.3 Comparison between external natural resonances and external charac-
teristic modes resonances for the PEC sphere.

Re(ka) | Natural Resonances Characteristic Mode Res.

n TEn,l TMn’l TEn,l TMnJ
1 0 0.88 2.80 4.48
2 0.87 1.81 3.96 5.74
3 1.76 2.76 5.09 X

Since the external NRs are located in the complex ka plane, it is interesting
to check whether it is possible to obtain them from the characteristic eigenvalues.
To do so, an imaginary axis is needed to find the external NRs. Fig. 3.8
shows two cases in which the imaginary planes Imag(ka) = 0.85 (left) and
Imag(ka) = 0.69 (right) have been considered to find the TE} and T M}, external
NRs (blue diamonds), respectively. Furthermore, it is interesting to mention
that the characteristic eigenvalues are still real functions for complex ka values.

With these analysis it is demonstrated that NRs can be found with charac-
teristic eigenvalues. Moreover, it is also demonstrated that external NRs and
external CMRs are different again for the 3D case of the PEC sphere.

3.5 Geometrical Relation between NR and CMR

At this point, it is interesting to explain why external NRs and external CMRs
are different. Furthermore, it is also important to explain their relation, since
Baum was the first to introduce this question in [14].
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Fig. 3.8 External NRs found with the characteristic eigenvalues for two different
cases. Left: TEs3, Imag(ka)=1.85. Right: TM, Imag(ka)=0.69. The blue
diamonds correspond to the resonant frequency of each natural mode.

As presented by equation (3.1), the electric current J is related to E through
the impedance operator Z as

Z(J)=E (3.17)

Z is a symmetric complex matrix operator containing the geometrical and
material information about the scatterer under study. Since the previous studies
on the PEC cylinder and the PEC sphere show that the same conclusions can
be drawn from the 2D and the 3D case, in this section we will stick to the PEC
cylinder study.

In order to relate NRs with the resonances obtained from the characteristic
eigenvalues, it is worth having a look to the standard eigenvalues obtained from
the SEP (3.4),

ZL, = v,1, (3.18)

where I, are the eigencurrents, and v, their associated eigenvalues. Since Z
is a non-hermitian symmetric matrix, both, eigenvalues and eigenvectors, are
generally complex. Since one seeks to solve the nontrivial solution for equation
(3.17), Z(J) = 0, natural resonances are calculated by forcing the determinant
of the impedance matrix operator to vanish, but the same can be achieved from
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the eigenvalues of the SEP (3.18) when they are set to zero, i.e., v, = 0. Thus,
natural resonances can be found if and only if v, = 0.

Let us consider the TE? solution of the infinite PEC circular cylinder as
an example. Note that since equations (3.8) and (3.9) represent a diagonal
impedance matrix operator, their associated impedance eigenvalues are exactly
the same equations. Then, from the SEP viewpoint we have

.k
i = 25, ka) H, (ka) (3.19)

Z

In order to study the eigenimpedance vnT E”, also known as characteristic
impedance, it is interesting to separate it into its real and imaginary parts,
Vi = 0 + jB,. Where o, and 3, represent the resistance and the reactance,
respectively. Characteristic impedance is commonly represented in polar co-
ordinates as Vv, = |V,|e/%. Where |v,| = /a2 + B2, and ¢, = arctan (B,/a,)
is the phase angle. This polar representation is called impedance diagram.
Considering the TE{ mode from equation (3.19), its impedance diagram is
presented in Fig. 3.9.
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Fig. 3.9 Impedance diagram for the TE} eigenimpedance.

In Fig. 3.9, a,, is plotted on the X-axis and 3, on the Y-axis. Each point
represented by vector v, is the characteristic impedance at a given frequency. In
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Fig. 3.9, frequency grows in the clockwise direction. As frequency increases, V;
is generating a circle. When v; = 0 it implies that |v;| =0 and ¢; = n/2 or —
7/2. Only in this case (considering real ka values), the EFIE eigenvalue (3.19)
breaks down giving an internal resonance. The internal resonance problem
is explained in [91] and [114] from the numerical viewpoint, and it is also
explained in [102] for the T M7 polarization considering characteristic modes.
On the other hand, v; experiences its minimum value (v; = ;) when ¢; = 0,
indicating the cylinder impedance is purely resistive. Moreover, right at this
frequency the cylinder is supposed to present a maximum value in its associated
eigencurrent under study. Finally, when ¢; > 0 and ¢; < 0, the associated
eigencurrent is behaving inductively and capacitively, respectively.

The analogy with the generalized equation governing characteristic modes
(3.10) is that since equation (3.10) can also be expressed as &, XJ,, = B,RJ,, it is
straightforward to write A, = 3,/ &,,. According to this, it is concluded that the
TCM diagonalizes the phase angle of the characteristic impedance. That
is why the information provided by A4, is related with the energy storage of
the scatterer under study, either inductive or capacitive, and the resonances,
as defined in section 3.3.2. This makes clear that the relation between the
eigenvalues obtained from the SEP and the GEP is

Vi = |V, | €/ @retantn) (3.20)

So, here is the relationship that helps to understand the difference between the
two solutions, and also links them.

Going forward, the external NRs are not presented in Fig. 3.9 (only the
internal ones), unless complex ka values were considered to achieve v, = 0,
as demonstrated in Fig. 3.5. Notice that at an external CMR, A, = 0. Thus,
¢ =0 and v, = |v,| and at its corresponding frequency, the condition v, = 0 is
not accomplished and the maximum eigencurrent is not obtained. This simple
reasoning contradicts the assumption done by other researchers that CMRs
and NRs are equal, and also that CMs radiate maximum field when they are in
resonance.

To finalize this discussion, let us explain what is happening in the total
electric current and the scattered electric field at a ka value for which an external
CM resonates. Since external resonances from characteristic eigenvalues do
occur at real frequencies for which equations (3.8) and (3.9) are not singular,
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the external NRs are not excited, i.e., the singularity condition det(Z) = 0 is
not met. Thus, the maximum radiated field and maximum current distribution
will not be in scattering resonance. To illustrate this point, let us consider the
same explanation procedure followed by Sarkar in [102]. As mentioned in the
previous section, external characteristic mode resonances for the TM} polar-
ization occur when Y,(ka) = 0. Unlike natural resonance, which is produced
for the complex ka value solving H,Ez) (ka) = 0, if ¥, (ka) = 0 is substituted in
equation (3.21), a maximum electric current does not occur at this ka real value.
The same can be said for the scattered field when one looks at equation (3.22).
Only H,Ez) (ka) = 0 breaks down the electric current and the scattered field.

—2E) & j e
el My (3.21)
n an:—ooHn (kll)
> T (k ;
Ei=-E Y k@) po) gy e (3.22)

" HP (ka)

As mentioned previously, the same happens for the RCS spectrum. They
give real ka values and the electric current and the scattered electric field are
approximately in resonance for those RCS resonances. That is to say, resonant
peaks in RCS plot do occur at real frequencies at which the zeros of equations
(3.8) and (3.9) are not zero. Nevertheless, a good agreement is observed in
most cases for the real frequency pole coordinates when compared to the RCS
spectrum and physical information can be obtained from it [86].

3.6 Open Question: Propagation and TCM

Until today, the TCM has only been used for the design of antennas and
scatterers. However, it may be of interest to apply them to closed waveguides,
since as it has been shown before, the internal resonances of the characteristic
modes predict the transverse resonances of the PEC cylinder, i.e., internal
NRs. And because the waveguides can also be designed considering the MoM
[105, 109, 110], and the TMC is built based on it, it could be useful to design
closed waveguides by using the TCM.
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Thus, the question is, could the characteristic eigenvalues give us the dis-
persion diagram of guided modes inside an arbitrary cross-section metallic
waveguide? Let us study the circular PEC waveguide as an example.

To study this, the EFIE of a circular PEC cylinder has to be solved con-
sidering oblique incidence. The entire analytical resolution of it can be seen
in Appendix A.1. Let us consider a circular waveguide with radius a = 5 mm
filled with air (k = k). The impedance matrix operator presented by equation
A.12 is shown below,

7 21a .
dwey
120, (kea)H (ki) gsz,,(k,a)H,?) (k)
k k
Ldu (k) B (ha) =20, (ka) =2 HP (ka) — I (ka) o (ka)
a ak; ak;

(3.23)

where k; = kosin(0), k, = —kocos(0), being 6 the incident angle of a plane
wave. As it differs with respect to other bodies, the impedance matrix has
dependence on the incident angle and therefore the characteristic eigenvalues
will also depend on 6. Let us therefore calculate the characteristic eigenvalues
from the generalized eigenvalue equation that governs the conducting bodies,
XJ, = A,RJ,. Therefore, separating the impedance matrix in its real R and
imaginary X part and substituting in the eigenvalue equation the following
curves are obtained.

As can be seen in Fig. 3.10, the eigenvalue curves of the TMy and T Ey modes
are presented for two different values of 6. In the case of a circular waveguide,
the angles of incidence are related with the phase of the electric currents
to generate its corresponding electromagnetic field propagating within the
guide. Furthermore, since the impedance matrix is a 2 X 2 matrix, after the
diagonalization the characteristic eigenvalues decouple each other generating
the corresponding 7'M, and T E,, family modes.

This has been shown in order to observe that the asymptotes of the eigenval-
ues move to the right as we move from 8 = 90° to lower angles. It is important
to note that 8 = 90° represents the eigenvalues of the circular cross-section
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Fig. 3.10 Characteristic eigenvalues for two different incidence angles. Above:
0 =90°. Below: 6 =45°. Both top and down represent the eigenvalues of the

TMy and T Ey modes

waveguide. Thus, the internal CMRs extracted from the asymptotes of the
eigenvalues will be in this case the cutoff frequencies of the modes. As regards
the internal CMRs extracted for the rest of the angles, since the incidence
is oblique, the EFIE sees the cylinder cross-section as if it were an elliptical
section generating the internal CMRs of it. This is an equivalent problem to
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that of the circular waveguide, and will provide the remaining information to
complete the entire dispersion diagram.

On the other hand, as defined in section 3.3.2, each asymptote generated
in the same eigenvalue refers to the corresponding resonance to the mode of
different order m, i.e., as can be seen in the above graph the 7'My mode has two
internal CMRs m = 1 and m = 2 in the frequency range shown. These have to
be represented such 7'My,,, and therefore TMp; and 7'My, modes. With respect
to the below graph, the internal CMRs of the TMy,, TMy,, T Eo; and T Ey; have
been shift as expected.

Thus, the idea to represent the dispersion diagram in a particular way is to
give values to the incidence angles to have the corresponding k,, and for each
value of the same, to extract those frequencies for which an asymptotic behavior
exists.

As it is well known, the conventional procedure uses the following formulas,
[92].

P

Tn(kMa) =0; KM =-—"=
a

p (3.24)

nm

J'(k'Ea)=0; Kk'E= ;

and uses the k; values to obtain the k, = |/ k3 — k? as a function of frequency.

In (3.24) P, and P, are the zeros of the Bessel function and its derivative,
respectively.

To show that the mentioned procedure works Fig. 3.11 shows the dispersion
diagrams obtained by this new method presented here, and the conventional one.
Dispersion curves obtained by these two methods superimposed each other, i.e.
they coincide.

This method works for the calculation of any of the modes of the circular
guide. The study of the characteristic modes, and other cross sections, remains
an open question to this work.

3.7 Conclusion

In this chapter, some aspects in the interpretation of the solutions obtained when
analyzing PEC cavities with the TCM have been presented. Firstly, NRs and
CMRs of the infinite PEC circular cylinder and a PEC sphere have been pre-
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Fig. 3.11 Dispersion diagram for the circular waveguide. Modes TMy;, T Ey1,
TMy,, and T Ey, Conventional method and CM method coincide each other.

sented using the analytical EFIE operators. These operators are those calculated
considering both TM} and T E polarizations. Secondly, NRs and CMRs have
been compared. It has been concluded that external NRs and external CMRs
are different. However, internal NRs and internal CMRs coincide. Moreover,
characteristic eigenvalues have been used to find NRs in complex ka plane. It
has been shown that characteristic eigenvalues remain real while it is possible
to locate NRs with them. In addition, it has been explained why external NRs
and external CMRs are different. This has been done using the SEP and the
polar representation of the characteristic impedance. It can be concluded that
characteristic eigenvalues are related with the phase angle of the characteristic
impedance and they do not predict external NRs when considering real ka val-
ues in PEC cavities. Furthermore, the thesis stating that being at a given external
CMR does not imply maximum wave scattering is also demonstrated. Finally, a
method to extract the dispersion diagram has been presented considering the
circular waveguide, whose solution coincides with the conventional one.

It is worth remarking, however, that the conclusions drawn, apply to a closed
conducting body exhibiting internal and external resonances. Open bodies such
as flat plates or thin dipoles will not show such important differences between
external CMRs and external NRs since the imaginary part of the latter are
significantly closer to the real axis.






Chapter 4

Analysis of Resonances on
Dielectric Bodies

Now we turn to the interpretation of the resonances provided by the theory of
characteristic modes (CMs) for dielectric bodies. The analysis has been per-
formed analytically based on surface integral equation (SIE) using the Poggio-
Miller-Chang-Harrington-Wu-Tsai (PMCHWT) formulation on a canonical
problem such as the infinite dielectric circular cylinder. Firstly, natural reso-
nances (NRs) and characteristic mode resonances (CMRs) are presented and
compared. It has been observed that CMRs are in general near to internal
NRs but not to external ones. It will also be demonstrated that characteristic
resonances become closer to internal natural ones as the relative permittivity
of the dielectric cylinder is increased. The same analysis, but numerically, has
been carried out for a dielectric sphere.

Furthermore, a detailed analysis of CMs and fields of an infinite dielectric
circular cylinder when computed through the PMCHWT formulation is carried
out. The purpose is to determine their contribution to the total field, inside
and outside the dielectric body and under two possible excitations: incident
plane wave or electric line source within the cylinder. The study has been
done analytically to provide necessary physical insight of the results obtained.
New details about so-called non-physical modes are provided, [8]. It is found
that these modes, that can be neglected outside the dielectric body, do have a
significant contribution to the inner field when the excitation source is within
the dielectric body. It is concluded that the terms physical and non-physical
CMs should more properly be replaced for radiating and non-radiating CMs.

57
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The conclusions obtained in this chapter will be considered for the develop-
ment of the design method presented in the next chapter.

4.1 Introduction

NRs (NRs) on dielectric bodies have been extensively studied in the past. Some
of the main geometries studied are the infinite circular cylinder and the sphere.
The infinite circular cylinder was first studied by Rayleigh [97], and the sphere
by Mie [77]. After these two works, many other works have been carried out
to understand physically the behavior of the electromagnetic fields inside and
outside of them. Linked to this, many of these works treated the resonance
problem of the natural modes that can be excited by a source.

For example, with regard to the infinite dielectric circular cylinder, in [112],
resonant modes, field patterns, resonant frequencies, and quality factors of
the modes were determined. In [41] internal and external resonant modes
for both TM* and T E* polarizations were analyzed providing a mathematical
procedure for singling out internal and external NRs without resorting to a
priori visualization of the electromagnetic field of the mode. Even if simple,
the analysis of an infinite dielectric circular cylinder may be of practical use in
problems such as the estimate of cylinder radius for optical-communications
fibers through its transverse resonances [89], [67], among others.

Concerning the dielectric sphere, in [38] natural resonant frequencies and
poles associated with the electromagnetic modes were analyzed. In [30], in-
ternal and external NRs were exhaustively studied via the Mie series, and in
[71], the Cauchy method was applied to extract the NRs of dielectric spheres
considering different parameters such as permittivity and conductivity.

The knowledge of these two canonical geometries has been very important,
not only for its own sake, but also for the insight it provides for other more
general geometries. That is why new methods have been developed to extract
NRs from arbitrary structures, such as the Cauchy method mentioned above.
Other methods are the Singularity Expansion Method (SEM) [15] and the
Prony’s method, among others. An alternative approach, similar to SEM, would
be to determine the NRs by searching the complex frequency plane for the zeros
of the determinant of the Method of Moments (MoM) matrix, [50, 66]. All the
methods mentioned provide the same set of resonances.

Unlike this type of resonances, the TCM provides other type of modes
and resonances. As for conducting bodies, when compared to NRs, whose
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resonances are generally complex, the resonances provided by CMA are all
real. Although many design-related works have been published, particularly
devoted to metallic antennas and scatterers, there are still theoretical aspects in
dielectric antennas that are unknown and need to be clarified to provide correct
interpretation of the characteristic mode solutions. In order to interpret these
solutions, it is interesting to use NRs as a reference. In this regard, NRs are
unique, regardless of the method considered to obtain them and the integral
formulation approach used [70]. It is worth mentioning [102], where some
insightful discussions about CMRs and NRs for conducting bodies led to greater
clarity on this subject. However, with regard to dielectric bodies, there are still
many issues to be clarified because the formulation derived in [29], if hastily
interpreted, may lead to misunderstandings. In [5] is concluded that NRs and
CMRs are very close to each other. Moreover, they found some spurious modes
called non-physical modes. On the other hand, in [19] it is concluded that
NRs and CMRs are in fact very different. This leads to opposite views. Due
to this misunderstandings, [35] and [33] proposed an alternative generalized
eigenvalue equation involving only the equivalent electric current on the surface.
Starting from the PMCHWT operator, they obtained a modified matrix operator
to form a new generalized eigenvalue equation from which CMs were calculated
for dielectric bodies. Furthermore, in [59], five integral equation formulations
were compared for CMA of dielectric resonators and concluded that PMCHWT
cannot fully predict resonant frequency of dielectric resonators.

Linked to the non-physical modes topic, a difficulty appears when under-
standing the CMs solutions provided by the PMCHWT formulation [91], since
this formulation provides two eigenvalues per mode. In [8] and [5], it appeared
that some of the solutions did not fulfill the orthonormality relation for the
characteristic fields proposed by Chang and Harrington in [29]. Furthermore,
considering the increasing number of applications using the PMCHWT formu-
lation, they advised to avoid these spurious solutions. These solutions were
regarded as non-physical, and after [5], some articles have been published
presenting new methods to avoid the non-physical modes. In [6] a characteris-
tic mode tracking algorithm for dielectric bodies was developed based on the
orthogonality condition for the fields eliminating the non-physical solutions.
The same author presented after [4], enhancing its existing tracking algorithm
[6], which is based on eigencurrent correlation and far zone eigenfield orthogo-
nality. On the other hand, in [79] a post-processing algorithm based on basis
function perturbation is developed to remove what they call non-real CMs , i.e.,
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non-physical modes, but considering lossy materials. Moreover, in [80] they
proposed a new postprocessing method capable of providing unique and real
CMs in all physical media, including lossy magnetic and dielectric materials.
The method removes the non-physical solutions, called now internal resonances
of a structure by defining a minimum radiated power. Furthermore, in [81] and
Miers and Lau [78] the extent of what they called internal resonance problem of
the PMCHWT formulation in mixed conductor-dielectric structures is explored
and a new method to remove them is presented. As a consequence, some
researchers prefer to study DRA with the well-known VIE, [115], when using
the TCM on dielectric bodies. In fact, FEKO [45] eliminates these solutions
from its results. But, even if these non-physical solutions do not satisfy the
orthonormality condition for the characteristic far fields, it is not demonstrated
yet that their contribution can be discarded for the total field within the dielectric
body when considering specific sources to excite them. So if it turns out that
these non-physical modes do contribute to the electromagnetic field within the
dielectric resonator, it would have been a mistake to name them that way, and it
will be necessary to redefine them accordingly, given their physical meaning.

In this chapter, the conclusions drawn by [5] and [19] will be discussed and
linked throughout the chapter. In addition, some aspects in the interpretation
of the resonances provided by CMA are analyzed. This has been done using
the analytical solution of the PMCHWT integro-differential operator for the
infinite dielectric circular cylinder, and numerically by using also the PMCHWT
formulation for the dielectric sphere. Firstly, NRs and CMRs are presented and
compared. Secondly, it is demonstrated that CMRs are only close to the internal
NRs and do not provide information at all about the external ones. Finally, it is
shown that CMRs become closer to internal NRs as the relative permittivity of
the dielectric cylinder is increased. Furthermore, it is also found that, for a given
permittivity, each natural mode observed, provides a different error between the
CMRs and the NRs. On the other hand, it is carried out an analysis concerning
mainly the physical interpretation of the CMs of an infinite dielectric circular
cylinder when a PMCHWT formulation is used. Given the canonical nature of
the problem, the analysis leads to explicit analytical solutions, providing faster
solutions and deeper knowledge than a purely numerical analysis. In addition,
this analytical solution will serve as a reference to compare with numerical
MoM solutions based on SIE. As part of the analysis, the contribution of each
eigensolution to the total electric and magnetic equivalent currents is discussed.
This discussion is carried out considering two situations: a normally incident
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T M? plane wave and an electric line source located inside the cylinder. This
will help to clarify the role of all CMs provided by the PMCHWT formulation,
and to clarify also the physical meaning of the so-called non-physical modes.

Since the intention of this chapter is to interpret the solutions in the TCM
in dielectrics, the results obtained in this chapter will be considered in Chapter
5. There, a new design method will be presented and applied to a rectangular
DRA.

4.2 The Infinite Dielectric Circular Cylinder

In this section, NRs and CMRs are compared through the PMCHWT formu-
lation. Since we are dealing with an infinite circular cylinder, the PMCHWT
operator can be written in its closed form for both the TM? and the TE* po-
larizations. [29] was followed to derive these analytical operators. Some of
the steps to find its closed form solution are explained in the following. More
detailed steps can be found in Appendix A.2.

Due to the rotational symmetry of the boundary surface, cylindrical har-
monics {cos(ng),sin(ng)} are selected as entire domain basis functions to
represent the CMs. As Garbacz stated in [49], CMs have to be selected real
and these modes are the appropriate basis functions for the circular cylinder.
The n indicates the n-th mode order. For simplicity in the calculation, the set of
cylindrical harmonics {ej”d’} has been chosen to solve the equations. Then, for
TM? and TE* cases we have

} 4.1)

T™? oo ™
(I) =2 Lo
M 2\ B
TE* oo alE° .
{ J } =Y tooben (4.2)
M n——oo nTEL
Thus the characteristic eigencurrents J, and M,, have to be {ej"¢}. In (4.1)
and (4.2) o, and f, are unknown Fourier coefficients to be found for a given

excitation. Operators L., L,, and C from equation (2.66) involve the two-
dimensional Green’s function G(p,p’) = %jHéz) (k|p —p'|), where the Hankel
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function of the second kind H(gz) (k|p — p’|) can be rewritten in series form
using the addition theorem of Hankel functions, [1]:

Z In(kap)HS (kap)e™ @090 p < p/

Hy? (Klp—p'|) = 43)
Z Ju(kip")H, (klp)ef’"(‘P ), p'<p
M=o
In (4.3), J,y(x) are the Bessel functions of the first kind, and k; and k;, are the
outer and the inner wavenumbers, respectively. To obtain the matrix operator,
a Galerkin method employing ¢/"? as basis and testing functions is used. The
inner product involved is defined in (4.4).

W= [u0)0r(0) do @)

Where u* is the complex conjugate of u. Inserting (4.1), (4.2) and (4.3) into
(2.66), and applying a left scalar multiplication by e~/"¢, equation (4.5) can be

obtained.
n . ) E!
T,; [ ° ] _ <{e—m¢,e—m [ | ]> «5)
B H'

where the matrix operator 7, is defined as

<J;7Le(‘ln)> <J:7_C(Mn)>
T, = (4.6)
(M, C(Jn)) (M, Ln(Mp)) ],

These solutions are calculated in Appendix A.2, and they are (A.35) and
(A.43) for the TM?: modes, and (A.45) and (A.46) for the TE: modes. Since
the eigenfunctions of the integral operators L., L, and C are used as basis
and testing functions (Galerkin procedure), sub-matrices associated to each
operator are diagonal. Therefore each n-th mode is decoupled from the others
and can be solved separately. Furthermore, since the infinite circular cylinder
is a canonical geometry, it is noteworthy to mention that n index dependence
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in matrix operator (4.6) implies orthogonality between the n» modes and they
can be solved independently from each other. Introducing equations (A.35) and
(A.43), or (A.45) and (A.46) in equation (4.5), the explicit expression (4.6) for
T can be obtained for the TM} and T E} modes, respectively. The sub-operators
forming matrix (4.6) are presented by equations (4.7-4.10) and (4.11-4.14), and
may be used for magnetic, dielectric, or magneto-dielectric bodies.

The sub-operators for the TM* polarization are the following:

(ﬁl&h»Z(MNw(mh@wﬂﬁ”@w%Huh@mﬂﬁ”@mﬂ @.7)
(5, —C(My)) = j(ma)? (kzj,g (kaa) H (ko) + k1 Jy (kia) HY? (kya ) (4.8)
(M:,C(J)) = — j(ma)? (/QJ’ (koa) HY (kaa) + ki, (kia) HiZ (kya) ) (4.9)
(

M Ln(My)) = (na)*® (ezj (koa) Hy?) (kaa) + &17), (kya) Hy> (lqa))
(4.10)

The sub-operators for the T E? polarization are the following:

(U L)) = (ma) 0 (o, (ko) Hi (ko) + ), (ki) Hi® (kra) )

(4.11)
(U, ~C(My)) = j(ma)? (kady (ko) HEY (ko) + Koo (ki) Hi® (kya) )

(4.12)
(M, C(J)) = — j(ma)? (kzj,; (koa) H (kaa) + Ky J, (k1a) H, ()(kla))

(4.13)

(M Lu(M,)) = (ma)* (82],, (kaa) H (kpa) + €17, (kya) H (kla)>
4.14)

Equations (4.7-4.10) and (4.11-4.14) represent the analytical TM: and TE}:
PMCHWT matrix sub-operators, where a is the cylinder radius, H,SZ) (x) are
the Hankel functions of the second kind, J,,(x) the Bessel functions of the first
kind, n the azimuthal mode order, k; the wavenumber, and the pairs (8.,-, u.,-) are
the permittivity and the permeability, respectively. The primes on the Bessel
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and Hankel functions denote differentiation with respect to the entire argument.
The subscripts j = 1 or j = 2 stands for outer and inner media, respectively.

The dielectric circular cylinder is shown in Fig. 4.1. The pairs (p,¢)
and (p’,¢’) are observation and source point locations in polar coordinates,
respectively.

erll Hr1

Fig. 4.1 Geometry and material of the considered infinite dielectric circular
cylinder

4.2.1 Natural Resonances

NRs are extracted from the zeros of the determinant of the PMCHW'T matrix
operator, [50]. Thus, concerning the infinite dielectric circular cylinder, the
determinant of the operator (4.6) have to be equal to zero to find its correspond-
ing NRs. The cylinder under study is €, =9 and y,, = 1, and the surrounding
media is considered to be vacuum. Substituting these values in (4.6) after
considering the corresponding sub-operators (4.7-4.10) and (4.11-4.14), some
of the first natural resonances of the TE: and TM7 modes for n =0,1,2,3 can
be found, respectively. These resonances are shown in Fig. 4.2.
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Fig. 4.2 NRs obtained from the SIE operator and the scattering coefficient of
the harmonic series solution. Obtained values match perfectly. Placement of
dividing vertical line at Im(k,a) = 0.75 is arbitrary, with the only purpose of
remarking where the internal/external NRs are located. Internal NRs are located
to the left of the line, and external NRs to the right. The relative permittivity of
the cylinder is & =9 and the outer media is considered vacuum.

In order to determine the zeros of det(7),(ka)), a standard zero-finding
routine is used as in [50].

These resonances are located in the k»a complex plane as done in [30]
for the dielectric sphere. kya = /&, & and U, are the wave number,
permittivity, and permeability of the inner media. The subscript "2" designates
the inner media. In Fig. 4.2 TM} and T E? modes are marked with "+" and "o",
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respectively. The real part of the NRs provides the resonant frequency, and the
imaginary part the damping factor. The damping factor provides information
on how a given mode is leaking.

Considering the conclusions presented in [30], the same can be concluded
here: the NRs can be separated into internal and external. The internal res-
onances are caused by the internal waves that experiment multiple internal
reflections, whereas the external resonances are caused by creeping waves.
These creeping waves propagate along the surface with attenuation due to the
continuous radiation in tangent direction. In Fig. 4.2, the internal NRs are on
the left-hand side of a vertical line, and the external NRs are located on the
right-hand side, both indicated by arrows. The vertical line only serves to divide
the graph between the internal and the external NRs, helping the understanding
of the graph . Notice that unlike PEC cavities, internal resonances are complex-
valued here. In order to differentiate between internal and external NRs, one
can use the formulas given by [41], where a complete analysis for an infinite
dielectric circular cylinder is shown to clearly distinguish between internal and
external modes for both 7M* and T E* polarization. For the T M* polarization,
the internal and external NRs can be found using the limits (4.17-4.19) and
(4.20), respectively,

lim [kaa@lym = ju1m =n#0 4.17)
&y —o0

lim [kza]()m = j17m_1 = m 75 1 (4.18)
&y =00

lim [kza]o_l =0 (419)
£, 00 ’

lim [kyalym = hom (4.20)
8,2—)00

Regarding the T E* polarization, the internal and external NRs can be found
using equations (4.21) and (4.22), respectively.
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im [kzalnm = jnm (4.21)

&y

Jim [l =, (4.22)

These equations provide the difference between internal and external reso-
nances. When the relative permittivity tends to infinity, internal NRs, which start
being complex valued, become real in the limit according to the corresponding
definition. On the contrary, external resonances remain complex-valued. This
allows one to distinguish between internal and external NRs.

To verify the correctness of equations (4.7-4.10) and (4.11-4.14) substituted
on matrix (4.6), a comparison between the scattering coefficient poles of the
harmonic series solution (4.23) and (4.24) is performed in Fig. 4.2.

TM? — mady(kaa)H\ (k1a) — T, (kaa) H® (kya) = 0 (4.23)
TE® = myJ. (kaa)H (kia) — M (kaa) HY? (kya) = 0 (4.24)

An excellent agreement among both procedures can be seen.

4.2.2 Characteristic Mode Resonances

As in the case of NRs, the resonances provided by characteristic mode analysis
are also classified in two types, internal and external. Nevertheless, as we will
see in the next subsection, they are different from NRs.

The characteristic eigenvalues of a given n-th mode for the infinite dielectric
circular cylinder are calculated by solving the weighted eigenvalue problem
(2.73) on the operator defined by equation (4.6), but after the symmetrization
presented by equation (2.67). That is to say:

<J;7Le(-]n)> _j <J;7C(Mn)>
T, = (4.25)
_j <M;:?C(Jn)> <M:;7Lm(Mn)>
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So therefore, the non-symmetric operator 7, expressed by equation (2.66) be-
comes T,, a symmetric one. As explained in Chapter 2, this is necessary to
obtain real eigencurrents and eigenvalues after the characteristic mode diago-
nalization procedure.

Thus, since 7}, is now symmetric, it can be expressed in terms of its Hermi-
tian parts as 7,, = T,, o + jT,,.im, and the eigenvalue equation defining the CMs
is

[Tmim] [fn] =M [Tmre] [fn] (4.26)

where T, and T, | are the imaginary and the real part of the PMCHWT ma-
trix operator 7,,. In (4.26), A, are real characteristic eigenvalues and f,, the
coefficients of the characteristic cylindrical modes {cos(n¢),sin(n¢)}, or CMs.
These coefficients are also real numbers. By definition, if A,, = 4-oo (asymptotic
behavior) or 4, = 0 it means that at those frequencies, there is a suspected
internal or external characteristic resonance, respectively.

Let us consider the same example as for the previous section: a non-
magnetic homogeneous cylinder with €,, = 9. The characteristic eigenvalues
obtained are shown in Fig. 4.10, in which the analytical eigenvalues are vali-
dated by comparing them with those obtained numerically by an in-house code
interfaced with FEKO. Notice that a 1-dimensional periodic boundary condition
and the surface equivalence principle were used to simulate the infinite cylinder
with FEKO.

Fig. 4.3 shows an excellent agreement between the numerical and the analytical
solutions. Those few points scattered outside the curve are due to numerical
errors. As shown in Fig. 4.3, two eigenvalues are obtained per each mode, as it
must be, given that PMCHWT is a 2 x 2 linear integro-differential operator. In
Fig. 4.3, the eigenvalues with superscripts 1 and 2 are referred to as the physical
and the non-physical characteristic eigenvalues, respectively. This notation is
adopted after [5], where a more detailed explanation can be seen.

In addition, each eigenvalue has its associated subscript indicating the
polarization type and the order of the cylindrical harmonic solution, i.e., TMZ,
TE;. It is interesting to note that eigenvalues corresponding to the TEj and
the TM7 coincide with each other. Now, turning to the non-physical modes,
this term was adopted in [8] because they were declared of no relevance in
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Fig. 4.3 Comparison between analytic and numerical characteristic eigenvalues
for the infinite dielectric circular cylinder. The relative permittivity of the
cylinder is €, =9 and the outer media is considered vacuum.

CMA. Therefore, the next subsection only deals with resonances of the physical
modes.

4.2.3 Natural Resonances vs Characteristic Mode Resonances

In this subsection the study concerns mainly the differences between NRs and
CMRs. NRs were compared with CMRs for DRs in [5], and [19]. In [5]
an isolated cylindrical dielectric resonator with €. = 79.7 was studied. They
concluded that the CMRs occur at the same frequencies as the natural modes
with an agreement between the two sets of frequencies within 4%. However,
in [19], an infinite dielectric circular cylinder with €., = 9 was analytically
analyzed concluding that CMRs were different from NRs, observing a larger
difference than in [5], and stating that CMR can be seen as a different type of
resonance. It is believed that the reason why [5] arrived at a different conclu-
sion was probably because a high relative permittivity value was used. Here,
however, it is observed that when lower relative permittivities are considered,
the differences between CMRs and NRs are much larger. The results presented
in this subsection are therefore crucial to the application of CMA to DRs and
dielectric resonator antenna design.
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The statements below will be demonstrated regarding the infinite dielectric
circular cylinder:

1. CMRs are distinct from NRs.

2. Internal (A, — +0) and external (A, = 0) CMRs provide values that are
close to internal NRs only, while external ones are not accounted for by
CMRs.

3. The gap found between CMRs and internal NRs differs depending on
the electromagnetic mode considered. In other words, each characteristic
mode differs from its corresponding natural mode in a different way
when it is subjected to permittivity variations and is compared with other
modes having different order.

To demonstrate that NRs are different from CMRs Table 4.1 and Table 4.2
show some of the resonances obtained by both procedures and plotted in
Figs. 4.2 and 4.3, respectively. It is obvious that the real part of the NRs
are completely different from their corresponding CMRs.

Table 4.1 NRs for the first and second modes (m = 1,2), poles (n =0, 1,2), for
the infinite dielectric circular cylinder graphed in Fig. 4.2.

kra | NRsm=1 NRsm =2

n ™y TE; T™; , TE;,

0 0.85+j0.43  2.27+j0.25 | 3.95+j0.36  5.44+j0.33
1

2

227+j0.25 3.65+j0.33 | 5.45+j0.32  6.93+j0.35
3.64+j0.12  4.78+j0.23 | 6.84+j0.25 8.27+j0.42

Table 4.2 External CMRs for the infinite dielectric circular cylinder obtained

1 2 1 2 P
from Azype, Afyes App: and A7, curves in Fig. 4.10. These values correspond

to the zero crossings of the eigenvalue curves.

Re(kya) | CMRs A} CMRs A}

n ™, TE,, | TM,, TE,
0 1.514 2.371 | 2.340 3.490
1 2.371 3.545 | 3.490 2.505
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It is interesting to note that, unlike a shielded cavity, whose internal NRs are
located on the real axis of frequencies, a dielectric cavity has its internal NRs on
the complex frequency plane because their corresponding internal modes leak.
This leakage is due to radiation losses through the cavity wall. For example,
an infinite PEC circular cylinder exhibits its internal resonances at frequencies
that meet conditions J, (ka) = 0 (TM?) and J},(ka) = 0 (TE?), resulting in real
frequencies. This can be seen from [102] where a thorough discussion regarding
internal NRs and CMRs for a PEC circular cylinder was carried out.

As can be seen from Table 4.1, the dielectric cylinder has complex-valued
internal resonances. On the other hand, we note that CMRs are represented on
the real kya axis. Let us consider for instance 7M§ mode as in [19] to check
the closeness between CMRs and NRs and the possible relation between them.
Fig. 4.4 shows CM eigenvalues as curves and NRs as circles (only internal
NRs). Recall that CM external resonance occurs for l} My = 0 while the internal

one is for l} Mg oo, Values are shown for three relative permittivity values
of &, =91in (a), &, =90 1n (b), and &, = 900 in (c).

From left to right, the blue circles correspond to the projection of the
internal NRs on the real kya axis for TM§;, T Mg, and T M, poles, respectively.
It is evident that depending on the relative permittivity used, the internal NRs
can be more or less predicted from the characteristic eigenvalues ATI M The
higher the relative permittivity, the closer the CMRs are to the NRs. This
occurs because internal NRs are in different imaginary planes, Im(kya) # 0, for
each permittivity, while CMRs are always located on Im(kya) = 0. It can be
concluded that CMRs are relatively close to the internal NRs depending on the
permittivity. The same applies to the RCS spectrum which also provides values
that are close to NRs, [86]. Therefore, although different, internal NRs are more
predictable using both internal and external CMRs as permittivity increases.

To end the demonstration on whether CMRs and internal NRs become closer
as the relative permittivity increases, Figs. 4.5 and 4.6 show the percentage
variation between CMRs and the real part of NRs. Fig. 4.5 shows the percentage
difference between the two types of resonances for the TM: (n = 0). As
permittivity decreases, the percentage difference increases significantly. The
same applies to Fig. 4.6, where TE: (n = 0) mode behavior is shown. The
percentage difference for TE: mode is less significant than for TM? mode
because TE? mode is located closer to Re(kya) axis than TM; is, i.e., the
damping is lower. This can be seen in Fig. 4.2.
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Re(kza)

Fig. 4.4 A comparison between the characteristic eigenvalues and internal NRs
(TM§,, TM§, and TM,, circles from left to right, respectively) considering
relative permittivity for the dielectric cylinder of €., = 9 in (a), &, = 90 in (b),
and &,, =900 in (c).

Why is this happening? The answer is simply because the higher the
permittivity of the dielectric body, the closer to the Re(k»a) axis the internal
resonances are, as explained by equations (4.17)-(4.22) above. That means
the cavity modes have less leakage, and therefore the damping factor is lower.
As a last evidence in this regard, Fig. 4.7 shows how TM? and TE? (n = 0)
resonances move into the complex kya plane as €,, decreases. Number next
to each pole in Fig. 4.7 is the corresponding &,, value. As g, decreases, the
damping becomes higher and so does radiation.
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Fig. 4.5 Comparison between CMRs and NRs versus €,, for TM* (n = 0) mode.

3 . \ 20
---CMRs
--‘NRs
2.8F —Difference (%)

N
(&)

Percentage difference (%)

110

N
N
T

Resonant frequency (k2a)

50 60 70 80 90

Fig. 4.6 Comparison between CMRs and the NRs versus €, for the TE* (n =0)
mode.
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Fig. 4.7 Displacement of the NRs due to the variation of the permittivity for the
TM? and TE* (n = 0) mode. Numbers below the poles are its corresponding
£,.

4.3 The Dielectric Sphere

In this section, the same analysis as the previously made for the infinite dielectric
circular cylinder is briefly presented for the dielectric sphere. In this study, the
aim is not only to present the relationship between NRs and CMRs, but also
to show that the same conclusions can be reached for the dielectric sphere (3D
analysis), as for the infinite circular dielectric cylinder (2D analysis).

Unlike the dielectric cylinder, for the dielectric sphere case it has not been
necessary to analytically solve the PMCHWT formulation. For this reason, a
numerical analysis has been performed to obtain the same conclusions as for
the cylinder. In addition, solutions presented in [30] are also considered.

4.3.1 Natural Resonances

In [30] is presented a robust analysis for the NRs of the dielectric sphere. The
method used in [30] is based on finding the zeros of the following equations:
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TE" — noJn(koa)HA? (kia) — m I, (koa)H (kya) = 0 (4.27)
™M — 02T (ko) (kya) — M T (koa) H (kya) = 0 (4.28)

These equations are the denominators of the scattering coefficients obtained via
Mie series solution [77]. Note that equations (4.23) and (4.24) for the infinite
dielectric cylinder have the same form as equations (4.27) and (4.28), but instead
of Bessel and Hankel functions, they are defined by using Riccati-Bessel and
Riccati-Hankel functions.

As demonstrated in Fig. 4.2 for the dielectric cylinder, NRs obtained from
(4.23) and (4.24) are exactly the same as the NRs obtained from the PMCHWT
analytical operator (4.6) when substituting the sub-operators (4.7-4.10) and
(4.11-4.14) for the TM? and TE} modes, respectively. Thus, in the analysis
presented here for the dielectric sphere, NRs obtained by equations (4.27) and
(4.28) will be enough to present the solutions aimed.

Let us consider a non-magnetic sphere with €, =9, as presented in [30].
The NRs obtained from equations (4.27) and (4.28) are presented in Fig. 4.8
In Fig. 4.8 TM), and T E], natural mode resonances are marked with "+" and "o",
respectively. As can be seen, these resonances are located in the kpa complex
plane as done for the dielectric cylinder in Fig. 4.2. The real part of the NRs
provides the resonant frequency, and the imaginary part the damping factor.
These NRs can also be separated in internal and external. Internal NRs are
on the left-hand side of the graph, and the external NRs are located on the
right-hand side, indicated by the name "surface wave poles". Notice that unlike
the PEC sphere, internal NRs are here complex valued due to the radiation
losses, or leakage.

At this point, we can say that for NRs the same conclusions are reached as
an infinite cylinder or a sphere. Let us see next what happens to the resonances
obtained from the CMA.

4.3.2 Characteristic Mode Resonances

In this subsection, the characteristic eigenvalues for a dielectric sphere with
relative permittivity €,, = 9 are presented. This has been done to find the CMRs.
Unlike the study for the infinite dielectric cylinder, in which its eigenvalues were
extracted analytically, the characteristic eigenvalues of the dielectric sphere
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Fig. 4.8 NRs obtained from the scattering coefficient of the Mie series solution.
Internal NRs are located to the left and external NRs on the right (surface wave
poles). The relative permittivity of the sphere is €,, = 9 and the outer media is
considered vacuum. [30].

have been extracted numerically. To carry out this study, FEKO software and a
MATLAB interface program have been used, since using only FEKO would
generate only one of the two families of characteristic eigenvalues obtained
when using the PMCHWT formulation. The characteristic eigenvalues obtained
are shown in Fig. 4.9.

As in the case of NRs, the resonances provided by characteristic mode
analysis are also classified in two types, internal and external. Nevertheless,
as we will see in the next subsection, they are different from NRs. On the
other hand, it is noteworthy that in the same way as what happens with the
characteristic eigenvalues of the PEC cylinder (Fig. 3.4) and the PEC sphere
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Fig. 4.9 Numerical characteristic eigenvalues for the dielectric sphere. The
relative permittivity of the sphere is €,, = 9 and the outer media is considered
vacuum.

(Fig. 3.7), the same applies when comparing the characteristic eigenvalues of
the dielectric cylinder (Fig. 4.10) and the dielectric sphere (Fig. 4.9). They have
the same form. Thus, this shows that the same conclusions can be drawn for
3D dielectric bodies from the analysis of the infinite dielectric circular cylinder,
i.e., a 2D analysis.

4.3.3 Natural Resonances vs Characteristic Mode Resonances

To demonstrate that NRs are different from CMRs, Table 4.3 shows some of
the resonances obtained by both procedures plotted in Figs. 4.8 and 4.9.

Table 4.3 NRs Re(kya) for the first mode (m = 1), poles (n = 1,2), for the

dielectric sphere graphed in Fig. 4.8.. External CMRs for the dielectric sphere

obtained from l}}v)p, k}i},, A}Q, and k}?r curves in Fig. 4.9.

Re(kya) | NRsm = 1 CMRs AV CMRs A

n ™, , TE,, | TM;, TE, | TM,, TE,,
1 437 305 | 3.95 3.02 | 2.99 4.08
2 532 437 | 528 432 | 4.15 XXX
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These external CMRs correspond to the zero crossings of the characteristic
eigenvalues. As can be seen from Table 4.3 the real part of the NRs are
different from their corresponding CMRs. The difference decreases as the mode
considered is of greater order.
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To end up with this analysis, a sphere of radius r = 1 ¢m studied in [68] is
compared with the CMRs obtained for €, = 10 and &, = 100. This shows the
dependence between the relative permittivity used and the existing percentage
difference between the NRs and the CMRs for the first mode, TE] |

Table 4.4 Percentage difference comparison between the NR frequency and the
CMR frequency of the TE{ | mode.

Re(k,a) | CMR (GHz) | NR (GHz) | Percentage Difference (%)
g =10 | 4.5468 4.4840 1.38
g =100 | 1.4881 1.4853 0.19

As the permittivity increases, the percentage difference decreases. It can be
concluded that NRs and CMRs are different, and this difference depends on the
relative permittivity used.

4.4 Non-physical Characteristic Mode Contribution

The objective of this section is to demonstrate that the so-called non-physical
modes can contribute to the electromagnetic field. Thus, it will be enough to
find a case for which these modes contribute to the total field, forcing us to
rethink the physical interpretation of these modes. Therefore, the simplest case
of a centered line source in the middle of the dielectric circular cylinder will
suffice to this purpose.

As it will be discussed later, since the total electric and magnetic current
distributions are function of their characteristic currents, it is useful to write
equation (4.26) as a function of their electric and magnetic characteristic cur-

(i) (@) .
rents, J» and M respectively.

(i) (i)
X N J R N, Jn
, o " . =2 t ‘ " ) (4.29)
Niw B |, | MM Ne G, |MM

In equation (4.29), X, B, R, G, N, and N,, are the general tangential opera-
tors used from the PMCHWT formulation in [28]. It is important to emphasize
that since each n-th mode has associated a system of two equations with two
unknowns, it will involve two eigenvalues and two characteristic eigencurrents.
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These two solutions can be obtained for each n-th mode independently of the
other modes solving (4.29), where i = 1,2 is the index to distinguish the two
solutions.

Now, let us consider as an example a non-magnetic cylinder of radius
a =5 mm and permittivity €, = 9. The outer media is assumed vacuum. See
Fig. 4.1. Next, the characteristic eigenvalues of the cylinder will be studied to
check whether the so-called non-physical modes contribute to the electromag-
netic field, and whether or not removing these solutions influence the accuracy
of the resulting fields.

The characteristic eigenvalues of the cylinder are shown in Fig. 4.10. These
analytical eigenvalues l,si), corresponding to matrix (4.25) using equations (4.7-
4.10) and (4.11-4.14), are obtained using (4.29). )L,Si) are compared with those
obtained numerically using FEKO [45]. Note that a 1-dimensional periodic
boundary condition and the surface equivalence principle were used to simulate
an infinite cylinder with FEKO. Fig. 4.10 shows an excellent agreement between
the numerical and the analytical solutions. Those few points scattered outside
the curve are due to purely numerical errors, since they do not fit with the curves
obtained analytically.

2 + T

NN

;| - Numerical®
)3 —Analyticall.

=0
) TE;
0 2 4 6 8 10

Frequency (GHz)

Fig. 4.10 Comparison between analytic and numerical characteristic eigenvalues
for the infinite dielectric circular cylinder

As Fig. 4.10 shows, two types of curves can be clearly distinguished: curves
with negative slope and curves with positive slope. Negative slope curves in
this context are referred to as non-physical mode eigenvalues and positive slope
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curves as the physical ones. To distinguish one eigenvalue from the other,
superscripts (1) and (2) in ln(l) and /1,52), have been used for physical and non-
physical modes, respectively. Furthermore, each eigenvalue has its associated
subscript indicating the polarization type and the order of the cylindrical har-
monic solution, e.g., TMj. It is interesting to see that eigenvalues corresponding
to TEj and TM7 coincide. Turning to the non-physical modes, this term was
adopted in [8] because they do not satisfy the far field orthonormality condition
(4.30) associated to the scattered characteristic far fields E, and E,,,.

111 / / E,E;ds = 8, (4.30)

Rather than obtaining a value of unity when m = n, the researchers in
[8] observed that the numerical evaluation of equation (4.30) on non-physical
modes produced close-to-zero values instead.
However, this analytical study reveals that, at least for a 2D circular cylinder,
an accurate computation of the far field under normal incidence leads to zero
when computing equation (4.30) for all non-physical modes and for any given
frequency. These results have been obtained using equations (4.31) for TM}
and (4.32) for TE? incidence.

z J e /kip
"=V Sk
e (4.31)
2n R o ,
%)‘ (w.uOJn Z—kM,, - (p) e Jkip cos(9—¢ )d(P/

£o J e—Jkip

Yy
P (4.32)

2T N ny /
]é (kan Z+ ouyt, - (p) e Jkip'cos(¢p—¢ )dq)’
0

In fact, what happens is that fields radiated by the equivalent electric and
magnetic currents in (4.31) and (4.32) cancel each other for the nonphysical
modes when m = n. So there is no field radiated by these non-physical modes.
Therefore, as a first conclusion, it would be inappropriate to say that condition
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(4.30) is not met for the non-physical modes since in reality there is no radiation
at all from these modes.

As is well known [28], the scattered field can be expressed as the sum of
the fields scattered by all characteristic currents. In view of previous result,
the question arises about whether these modes contribute to the total field in
the different regions involved and even whether the location of the source
with respect to the dielectric body (inside or outside) may play a role in their
contribution. As it will be demonstrated in the next section, the term non-
physical may not be completely appropriate for these modes since it is found
that they do contribute to the total electric field within the cylinder when the
source is also within it.

4.4.1 On the Contribution to the Field of the Two PMCHWT Eigen-
solutions.

To understand better the eigencurrents associated to eigenvalues l,sl) and

7Ln(2), it is necessary to go deeper into the formulation. The i-th eigenvector
of equation (4.29) is related to the i-th eigenvalue. These eigenvectors form
a weighted orthonormal set over the material body surface. Furthermore, the
two eigenvectors of each n mode combine to get the total induced current
distribution when an excitation field is considered. Depending on the location
of the source (internal or external to the surface of the cylinder), the i =1
and the i = 2 eigenvectors will be excited or not. Each i-th eigenvector is a
characteristic mode. An expression for the total induced current distribution as
a function of the CMs can be written as follows,

J o 2 Jit,ﬁ”
[]M] - Z ZY“I 200 {cos(ng),sin(ng)} (4.33)

n=—ooj=1 jMn"

where the excitation coefficients are
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l(i) k(i) Emc
[Jnn ]Mnn :| jHinC
=l @

Thus, the total current is given by the corresponding excited CMs given by
the two i-th solutions. Therefore both i-th eigenvectors and eigenvalues have to
be taken into account. The analytical results for the total current distribution
considering equation (4.33) for an external or an internal incident field are
presented below.

On the one hand, Figs. 4.11(a) and 4.11(b) show the total electric and mag-
netic equivalent currents obtained for a T M* plane wave impinging normally
on the dielectric cylinder surface at f =4 GHz. To calculate the total current
distribution using equation (4.33), the incident plane wave was written in terms
of cylindrical wave functions.

. +0<1 .

E"=Ey Y jL(kp)e™z (4.35)
. +00 1 . ~

H" =Eo/m Y, j~ " VI (kip)e™ ¢ (4.36)

n—=-—oo

Either in Fig. 4.11(a) or 4.11(b), the contribution of the non-physical
solution to the total current is found to be exactly zero. It can be seen that when
the TM* excitation is considered, only the solution with i = 1 contributes to the
total current distribution. Although obvious, it is important to point out that
since the contribution of non-physical modes to the total current is zero, their
contribution to the electromagnetic field will equally be zero, either inside or
outside the cylinder.

Let us consider now an electric line source within the cylinder. The source
is located along the z-axis for simplicity. As in the example above, equation
(4.33) is used, but now the incident electric and magnetic fields are,
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Fig. 4.11 Contribution of each eigensolution when impinging by a normally
incident TMz plane wave: (a) To the total electric current. (b) To the total
magnetic current.
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H" — 4%}1{2) (k2p)$ (4.38)

The goal is to know whether non-physical modes are excited or not. Since
the excitation is rotationally symmetric, so are the equivalent currents and only
T MG mode contributes to the total field. Table 4.5 shows amplitude and phase
of the total electric and magnetic equivalent currents obtained for this case.
Results were obtained for a frequency of 4 GHz. Unlike for a plane wave, in this
case both characteristic mode solutions, i = 1 and i = 2, do contribute to total
equivalent currents. Both modes are meaningful under this sort of excitation.
Letter X in Table 4.5 is used to simplify notation and stands for electric, J, or
magnetic current, M.

Table 4.5 Contribution of each eigensolution to the total electric J and magnetic
current M for an electric line source excitation located on the z-axis. Abs (A/m)
and Phase (rad).

[Abs, Phase] X=J X=M
}/?Xét‘gl) [2.8732e+10, 2.9148] | [4.5211e+12, 1.3441]
yzngéZ) [3.1861e+08, 1.8454] | [5.6004e+11, 0.2746]

21'2:1 yl.OXééi) [2.8887e+10, 2.9052] | [4.8154e+12, 1.2419]

Now, the electric field radiated by the physical (i = 1) and non-physical
(i = 2) solutions produced by the currents in Table 4.5 are obtained. Equations
(4.39) and (4.40) are the scattered outer and inner electric fields, respectively.
These fields are obtained in terms of the CMs i =1 and i = 2.
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Figs. 4.12(a), 4.12(b) and 4.12(c) show these fields graphically as a function
of the radial distance to the origin, p. Fig. 4.12(a) shows the total electric field.
It includes the contribution of the line source and the equivalent currents. As
expected, the field is continuous at the surface interface, p =5 mm. Figs. 4.12(b)
and 4.12(c) show the scattered electric field generated by the equivalent currents
i=1 and i = 2, respectively. Notice that a different scale was used in Fig.
4.12(c) for clarity. It is worth noticing that the outer scattered field radiated
by the equivalent current corresponding to i = 2 is zero. This current only
contributes to the inner scattered field, p < 5 mm.

For the sake of completeness, it is also interesting to show the behavior
of the magnetic field radiated by the physical (i = 1) and non-physical (i = 2)
solutions produced by the currents in Table 4.5, as done for the electric field.
Equations (4.41) and (4.42) are the scattered outer and inner magnetic fields,
respectively. These fields are obtained in terms of the CMs i =1 and i = 2.
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The same behaviour can be observed for the magnetic field. Figs. 4.13(a),
4.13(b) and 4.13(c) show these fields graphically as a function of the radial
distance to the origin, p.

Following the discussion in previous section, these results support the
motive for which the so-called non-physical modes do not comply with the
orthonormality condition (4.30). There is no electromagnetic radiation from
non-physical characteristic mode outside the cylinder surface. Therefore they
should be named more properly as non-radiating modes instead, since they do
contribute to inner fields when source is inside.

These analytical results allow us to understand better the characteristic
eigenvalues obtained numerically from the PMCHWT formulation in previous
studies, when analyzing an infinite dielectric circular cylinder. These conclu-
sions are independent of frequency, material or radius used for the cylinder.

Due to the presented similarities between the infinite circular dielectric
cylinder and the dielectric sphere provided in this Chapter, it is expected that
the problem of a dielectric sphere with a spherical point source centered on its
interior can also excite non-physical modes. It is therefore important to perform
a review of excitation mechanisms in dielectric resonators whose source is
inside when using the PMCHWT formulation. Since if one of the two families
of solutions obtained by the theory of CMs is eliminated, it is very probable
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that an error is made in the total equivalent currents J and M, and therefore, an
error in its associated total electromagnetic field.

The resonances of the non-physical modes have not been considered in the
next chapter, since the excitation used is a slot, and this is not located within
the surface defined by the dielectric resonator.

4.5 Conclusions

In summary, it has been shown that CMRs are different from NRs, for both
an infinite circular cylinder and a dielectric sphere. At most, and depending
on the relative permittivity considered, CMRs might be used as a first guess
in an internal NR search in the complex frequency plane. In addition, CMRs
only predict internal NRs because of their proximity to the Re(kya) axis. The
differences between CMRs and internal NRs depend on relative permittivity.
Large &, provide closer values. This is due to a decrease in the dumping
factor of a given particular mode. Besides, it has been observed that the
difference between both CMRs and internal NRs also depends on the particular
electromagnetic mode considered. The analysis has been performed analytically
for the cylinder and numerically for the sphere. the analytic one provides the
accurate analytical solutions required to establish reliable observations. Notice
that subtle resonance differences between the two families of modes has led
other authors to misinterpretations.

On the other hand, the object of this chapter has been to analyze accurately
and to clarify the underlying physics of the two characteristic mode solutions
provided by the PMCHWT formulation for dielectric bodies. For that purpose,
the dielectric cylinder has been studied to take advantage of the fact that we
had its analytical solution, furthermore, it is worth mentioning that this study
could not have been done numerically using the electromagnetic suite FEKO
[45] because non-physical solutions are no longer available in its software.
For such canonical problem, the analytical solution cuts out from the results
interpretation any shadow associated to numerical errors. Thanks to that, it
has been possible to demonstrate that all solutions provided by the PMCHWT
formulation have indeed a physical meaning. This was necessary since, to date,
there has been doubts on certain mathematical solutions of this formulation
which were classified as non-physical. In reality so-called non-physical modes
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do contribute to the field within the cylinder when the excitation is also in it.
Therefore it would be more appropriate to qualify them as non-radiating modes.

It is important to emphasize that the results obtained in this chapter do not
contradict the key finding in [8] regarding the non-radiating nature of their
non-physical modes for 3D arbitrary geometries, only that these solutions do not
have to be eliminated. In fact it supports it and clarifies the cause behind these
modes not satisfying the field orthogonality relation. Likewise, it is reasonable
to infer that non-radiating modes will also contribute too to the field within a
3D arbitrary structure when the source is within it, as they do for the cylinder,
since the cause of it lays on the properties of the PMCHWT integro-differential
operator, not in the geometry itself. Certainly this statement will require a
numerical proof but this is left for future work.

After the conclusions obtained in this chapter, it is of interest to develop
a DRA design method in which to design with low permittivities does not
become a problem. Moreover, it is also of interest to present a method in which
the CMRs include part of the feeding. This can be done in order to obtain
more realistic resonances compared with those obtained from the S11 antenna
parameter, which also considers the feeding. This will be presented in the next
chapter.
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Fig. 4.12 Electric field contribution inside and outside the cylinder by the two
equivalent currents when fed by an electric line source in the z-axis (f = 4 GHz,
a=>5mm, &, =9): (a) Total electric field . (b) Scattered field due to the i =1
equivalent currents. (c) Scattered field due to the i = 2 equivalent currents
(non-physical modes solution).
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Fig. 4.13 Magnetic field contribution inside and outside the cylinder by the two
equivalent currents when fed by an electric line source in the z-axis (f =4 GHz,
a=>5mm, &, =9). (a) Total magnetic field. (b) Scattered field due to the
i = 1 equivalent currents. (c) Scattered field due to the i = 2 equivalent currents
(non-physical modes solution).






Chapter 5

Dielectric Resonator Antenna
Design

In this chapter, two methods to design a rectangular dielectric resonator antenna
(RDRA) are presented. These methods are based on the TCM. The first method
designs a RDRA using the VIE formulation and uses as excitation a slot-coupled
to a microstrip line. The method is fairly straightforward and intuitive but leads
to somehow inaccurate results due to errors in determining DR resonance for low
permittivities. The second method is more robust and designs a RDRA using the
concept of substructure characteristic modes. PMCHWT formulation will be
used for the DR while the planar multilayer Green’s function (PGF) formulation
is used on the feeding slot in a ground plane (called bellow as SGP). Unlike
the first method, the slot is excited now by a coplanar waveguide (CPW). Both
designs have been realized to work for the ISM-band at 60 GHz. Both methods
excites the same TE7;; mode inside the RDRA. This has been done in order
to force radiation as a magnetic dipole. Moreover, both methods are applied
on low permittivity DRs. It is worth mentioning that the antennas are designed
assuming the manufacturing characteristics of the LTCC technology, with the
purpose of manufacturing later in a single sintering process. So therefore, the
design procedure have been adapted to fully exploit the possibilities of the
LTCC technology. Additionally, the topics covered in the previous chapter
will be discussed in practice. It will be seen that the non-radiating modes do
not impair the interpretation of the solutions in these more complex structures.

93
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Also, it will become clear the shift in resonance frequency of the resonances
obtained from the characteristic eigenvalues with respect to the internal NRs.

5.1 Introduction

In recent years, research in wireless communications technology at 60 GHz
is increasing to meet the demand of shared gigabytes between mobile devices.
Applications require miniaturization, portability, low cost in the manufacturing
process and high packaging grade. Especially at these frequencies, the dielectric
resonator antenna (DRA), introduced by Long in 1983 [76], allows these charac-
teristics and avoid losses in the metal produced by millimeter waves. In addition,
the DRA have other features as greater bandwidth, easy feeding, high radiation
efficiency and easy fabrication [96]. They are mounted on a ground plane or on
a grounded dielectric substrate of lower permittivity. Furthermore, DRAs can
be fed with different excitation mechanisms such as slots [64], coaxial probes
[63], waveguides [2], and image lines [3].

As a multilayer mass production and low cost technology, low temperature
sinterized ceramic (LTCC, low temperature cofired ceramics) might be an
option for manufacturing these antennas [51]. DRAs are usually manufactured
with ceramic materials and the possibility to include the DRA in the same
manufacturing process becomes interesting [52]. LTCC offers many features
and possibilities as vertical integration of an arbitrary number of layers. The low
loss nature of these substrates at microwave and millimeter-wave frequencies
makes LTCC a very interesting manufacturing technology. Moreover, this
manufacturing process allows us to fabricate the model at very low permittivies
compared to what is usually employed for DRAs. The benefits of using low
permittivities is to have the possibility of widening the impedance bandwidth
[95].

To date, the design of DRAs has been done mainly through the magnetic-
wall model (MWM) [85]. This model uses a formula that relates the DR
dimensions to its resonant frequency. However, it is a model that is limited to
canonical geometries and, in addition, an error of up to 20 % can be expected
when it is intended to design on low permittivities (around &, = 10). This model
has been widely used for the design of filters, whose permittivities are much
higher. Along with the MWM, there are also other conventional procedures
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to design DRAs. For example, numerical methods, as the eigenmode solver
based on the finite element method (FEM) [17] and integral equations methods
based on the MoM [61], among others. These methods are more precise than
the MWM, and have the possibility to extend the models to more general
geometries. In recent years, however, DRA has begun to be designed with the
help of TCM. It is noteworthy that after the success in recent years designing
conducting antennas with TCM [24], this theory is currently being extended
to the design of DRAs [18, 20, 46, 47]. So far, there are not many examples,
but they are growing every day because TCM plays an important role when
looking for the resonances of dielectric cavities, or just to understand better
their radiating nature. The fact is that, unlike the rest of methods, CM provides
a physical interpretation of the radiation for a given structure. Therefore, the
TCM becomes promising because it is not necessary to study the resonances
in the complex frequency plane, since its solutions are on the real axis. In
addition, the extension to other non-canonical geometries is straightforward.
Another advantage of designing with the TCM is the flexibility it provides when
it comes to manipulating its matrix operators. Yet, although there has been
some difficulties in interpreting their solutions in dielectrics as discussed in
previous chapters, it still is an appealing tool for antenna engineers. Therefore,
if these difficulties are solved, the TCM will become even more interesting for
dielectric-based antennas design.

The main difficulties encountered throughout this thesis have been solved
in this chapter, and they are the following:

* Some non-radiating modes appear when using the PMCHWT formulation
and it is important to know their exact role before proceed to design.

As shown in chapter 4, the non-radiating modes do not have to be re-
moved because due to their non-radiating nature, they contribute only to
the DR inner field, and only in the case it is fed from the inside. So, as
far as this subject is concerned, this issue is resolved.

* For low permittivities the resonances provided by the TCM are very
different to the NRs. This resonance frequency shift can be solved as
follows:

It is possible to circumvent this problem using the concept of character-
istic modes of substructures that was first proposed in [43]. Here, it is
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applied to DRA design. This concept allows us to determine accurately
the characteristic modes of a given structure pertubed by the surrounding
structures. In this way, a more realistic computation of resonances is done
in comparison with the isolated DR case. To carry out this procedure,
use is made of the characteristic modes of the Schur complement of the
DR and the SGP sub-matrices of the impedance matrix obtained from
MoM. This extension takes into account the behavior of the SGP in the
presence of the DR, and vice versa. Therefore it is possible to design
the DR and the SGP at the same time. Moreover, it gives information
about the DRA that with the VIE-method, or other conventional methods,
cannot be obtained.

5.2 VIE-Method

The method involves two parts. In the first part the isolated DR is designed by
the TCM based on the VIE formulation. The DR is assumed to be on an infinite
ground plane. The second part of the method includes the other components
that conform the antenna. These are a slot, a substrate, and the microstrip line.
These will be added after the CMA design of the isolated DR.

5.2.1 Rectangular DR Design Procedure

The EFIE-VIE integro-differential operator presented in Section 2.3 will be
used. For that purpose the electromagnetic software FEKO and MatLab have
been linked to extract in Matlab the characteristic eigenvalues, eigenvectors and
eigenfields. This can be done from the impedance matrix provided by FEKO,
since FEKO internally uses the EFIE-VIE.

The design procedure is sketched in Fig. 5.1.
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X(Jn) - lnR(Jn)
AMATI,AB‘ D

Fig. 5.1 Numerical procedure used to find the characteristic eigenvalues and
eigenmodes of the rectangular DR.

The steps taken for the DR design are summarized in the following:

1. A model is created in FEKO defining the frequency, materials, and the
3D geometry of the DR. Selection is made of the solver, VIE in this case.
The DR is meshed with tetrahedral volume elements.

2. MATLAB imports the data from the impedance matrix calculated by
FEKO. Data is post-processed using the equation that governs the TCM,
(2.37). Perform the same procedure for each frequency. Graph the
characteristic eigenvalues to check whether the eigenvalue of the main
mode is in the required frequency range. If this goal is not achieved, return
to FEKO (Step 1) and change the design parameters at your convenience
to center the eigenvalue curve at the design frequency. Repeat this
procedure as many times as necessary.
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3. Observation is made of the associated characteristic currents of a particu-
lar eigenvalue, the characteristic vector associated with a characteristic
eigenvalue is imported from MATLAB to FEKO by selecting it at a given
frequency. With this, it is possible to visualize the current distribution in
POSTFEKO. After introducing the characteristic currents in FEKO it is
also possible to see its radiated far fields. If currents or fields do not have
the desired distribution, change the geometry of the DR in FEKO (Step
1) and redesign it. This has to be done to try to meet the specifications of
the antenna. Steps 2 and 3 go hand in hand.

4. The design process ends once the DR design goals are achieved.

Following the above design steps, the RDRA is designed with the initial
specifications given below. Since the idea is to adapt the design procedure such
that the possibilities of the LTCC technology is fully exploit with a minimum
required number of layers, the DR has to show the same relative permittivity as
the microstrip substrate, because both has to be fabricated in the same sintering
process. Thus, the DR permittivity used is LTCC Ferro A6-M with & = 5.9
and tand = 0.001. Furthermore, the DR is designed for ISM-band at 60 GHz.

As shown in Fig. 5.2, the radiating element is designed on an infinite ground
plane, as it will be present later when fed through a slot. The length, width
and height of the DR are L, W and #, respectively. Note that the infinite PEC
ground plane works as a mirror according to the Method of Images, and the DR
height has to be reduced to half.

=)

L W

Fig. 5.2 Transformation of the DR to a half height DR on an infinite ground
plane.
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This trick allows us to reduce the computation procedure since the impedance
matrix is reduced. Furthermore, in doing so, those electric modes parallel to
the ground plane are eliminated. Therefore, the impedance matrix operator
obtained from VIE will only have the information of interest related to the DR.

The next step now is to calculate the impedance matrix from the Matlab
interface program and diagonalize them for each frequency. For the diagonaliza-
tion we make use of the characteristic equation (2.37). The eigenvalues found
are represented in Fig. 5.3.
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Fig. 5.3 Characteristic eigenvalues for the rectangular DR.

By definition, the resonant frequency can be found when A, = 0. Fig. 5.3
shows the TE11; mode resonating at 58 GHz. The final dimensions obtained
from the eigenvalues for this rectagular DR are L=W =3 mm and 2 = 0.6 mm
(6 LTCC layers).
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Modal Significance
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Fig. 5.4 Modal significance curves for the rectangular DR.

According to [85], the rectangular DR can have degenarated modes depend-
ing on the involved symmetries. In this case the height is smaller than the base
dimensions, so the TE}; eigenvalue shown in Fig. 5.3 belongs to the TE7,, and
TE;{,, modes, since the TE},, will be resonating at upper frequencies. Thus,
the eigenvalues for TE},, and TEy,, modes are the same, and therefore they
are degenerated.

Another useful way to see the resonances from the eigenvalues is using the
modal significance defined by equation (2.12).

Fig. 5.4 represents the normalized amplitudes for the characteristic currents,
independently of the excitation. As shown in Fig. 5.4, up to the horizontal green
line located at MS = 0.707 the current modes radiate half the power. Because of
this, it is easy to see the wide bandwidth for the degenerated TEY,, and TE;
modes in relation to the other modes.

Let us see now the volumetric distribution currents for the TE7;, and TE{ 1
modes at 58 GHz.
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y y

Fig. 5.5 Volumetric current distribution J at 58 GHz: Left TE},, mode. Right
TEY,

Since the modes are degenerated, i.e. they share the same eigenvalue, their
distribution currents have to be orthogonal to each other. Fig. 5.5 shows the
electric currents J, of these two modes . If mode TE; |, is selected, a proper
location and orientation of the slot must be decided. For that, the easiest way
is observing the orientation of the magnetic field at the ground level. Fig. 5.6
shows the electric and magnetic characteristic fields produced by the volumetric
current distribution J at 58 GHz. Therefore, it is clear that the slot must be
placed at the center of the DR and oriented along the y-axis.

5.2.2 RDRA Design Procedure

Let us now turn to the second part of the design in which we have to introduce
a slot, the dielectric substrate and the microstrip waveguide responsible to feed
the slot. Since the objective is to excite the TE{;; mode we used a rectangular
slot on the infinite ground plane to avoid the excitation of other modes. The
interesting thing here is that the variables to be optimized have been reduced
with the previous analysis of characteristic modes. And now the only task left
is to match the microstrip line and the slot to the DR. It should not be forgotten
that since an LTCC fabrication is in mind, the substrate will exhibit the same
permitivity as the DR, and the height of the substrate will depend on the height
of the layers after the co-firing, since LTCC is a technology of multi-layer
packaging.
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(b)

Fig. 5.6 Inner characteristic fields of the TE;;; mode at 58 GHz. a) Electric
field. b) Magnetic field.
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Fig. 5.7 shows the FEKO scheme of a conventional slot-coupled RDRA. It
can be seen that the microstrip line is oriented along the x-axis to couple the
maximum amount of energy to the slot.

The substrate used is LTCC Ferro A6-M with & = 5.9 and tané = 0.001.
After optimizing the antenna the height of the substrate is d = 0.1 mm (1 LTCC
layer), the 50  microstrip line has a width W,, = 0.14 mm, and the length for
the stub is Ly = 0.77 mm. The slot dimensions are length Ly = 1.5 mm and
width W, = 0.2 mm. Therefore, considering the height of the DR, the whole
antenna is constructed on a 7-layer LTCC model.

The simulated results are obtained with FEKO program. In Fig. 5.8, the
reflection coefficient and the realized gain are shown. Due to the low permittivity
of the RDRA, the bandwidth covers from 60 GHz to 70 GHz for S;; < —10
dB, reaching an impedance bandwidth of 33 % and covering the ISM band at
60 GHz. Fig. 5.9 illustrates the total electric and magnetic fields obtained after
feeding through the microstrip coupled-slot at 58 GHz. We achieve the TE; |,
mode selected by using the TCM. Finally, the far field pattern for both, the
xz-plane and the yz-plane are shown. This radiation pattern is that of a magnetic
dipole as expected.

Finally, it is worth highlighting the difference between the resonance com-
puted for the DR from the TCM at 58 GHz, and the one finally obtained for the
DRA from the S;;, which is at 63 GHz. This difference is due to two causes.
On the one hand, the previous chapter showed that using low permitivities
the TCM produce an error with respect to the NR. The lower the permittivity
the greater the difference between the two. On the other hand, since a slot,
a substrate, and a microstrip line are added to the DR, a perturbation on the
resonance of the DR appears. Of course, there is a big difference between
these two resonances. While the resonances of the TCM are independent of the
excitation, those provided by the S;; do depend on it. Anyway, how could we
bring the characteristic resonance closer to that of the S1;? The answer to this
question will be given in the next section.

A final point is that the same DRA design procedure, could have been
carried out using a PMCHWT-SIE formulation instead of VIE. Since the eigen-
values obtained with the VIE formulation can be seen as a subset of those
obtained with PMCHW'T-SIE, exactly the same results would have been ob-
tained. This is clearly shown in Fig. 5.11.

Unlike SIE solution, VIE provides one eigenvalue per mode for dielectrics.
It is easy to see that in Fig. 5.11 the solution from VIE is contained in SIE.
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(a) Profile view

L .
d
N

(b) Scheme

Fig. 5.7 Profile view and scheme of the microstrip slot-coupled RDRA
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Fig. 5.8 S11 and realized gain after considering the optimized parameters for
the RDRA



106 CHAPTER 5. DIELECTRIC RESONATOR ANTENNA DESIGN

(a) Electric

(b) Magnetic

Fig. 5.9 Total electric and magnetic fields excited by the microstrip coupled-slot
at 58 GHz.
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Fig. 5.10 Realized gain for xz-plane (¢ = 0) and y-z plane (¢ = 90)

Thus, the same eigenvalues can be obtained for VIE as for SIE and thus the
same resonance frequencies. Exception is made for the modes corresponding
to eigenvalues with negative slope. These eigenvalues corresponds to the non-
radiating modes studied in the previous chapter and are not present in VIE.
Anyway, as the slot is outside the DR the non-radiating modes will not be
excited, and therefore they will not contribute to the electromagnetic field.

5.3 Substructures Characteristic Mode Method

A new design procedure for slot-coupled RDRA using CMs is applied here for
the first time. This study allows to optimize the radiation bandwidth in the same
analysis process for both the DR and the SGP. This procedure consists of two
parts. First, a DR and a SGP are designed with the PMCHW'T formulation and
the planar Green’s function, respectively. During the second part of the method
a CPW will be add. This represents a difference with respect to the previous
design method. The reason is that it was found that the CPW transmission
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Fig. 5.11 Comparison between SIE (top) and VIE (down) characteristic eigen-
values for a RDR (&, = 10.2) with dimensions ¢ = b = 15 mm and 2 = 7 mm

line could be more appropriate for the frequency band involved an the LTCC
technology.

5.3.1 Rectangular DR Design Procedure

The numerical procedure to design a DR is the same as the one presented
in Fig. 5.1 except when considering the impedance matrices and their post-
processing. Here, instead of considering only the impedance matrix of an
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isolated DR with an infinite ground plane, the slot and the dielectric substrate,
called SGP, are considered as part of the impedance operator too. The main idea
here is to calculate the characteristic modes of a DR in the presence of a slot and
vice versa. Therefore, the total impedance matrix, Zy,;, has to be inspected
to know which components of the matrix belong to the DR, and which others
belong to the SGP set. These components are related with the basis functions
used in the surface meshing employed by the MoM. Once these components
are known the corresponding blocks to these two objects will be post-processed
and diagonalized. Furthermore, in comparison with the previous design method,
it will be seen that the resonance frequencies obtained with this design method
are closer to the real ones when considering low permittivities.

Theory

Let us see Zryq in Fig. 5.12. This matrix is obtained with FEKO by using the
MoM. On the one hand, we use the Planar Green’s Functions for Multilayered
Media function to define the SGP. On the other hand, we use the SIE formulation
based on the PMCHWT for solving the DR. After running the simulations, the
operator Zr,, is obtained and opened from Matlab.

In Zrya1, Z4 and Y, are the impedance and admittance block matrices cor-
responding to the isolated dielectric, ¥ the admittance block matrix for the
isolated SGP, and the C, L and K are the matrices of the corresponding mutual
coupling blocks.

Due to the antisymmetries appeared in Zg,,,;, we perform the same change
as Harrington proposed in [29], leaving a completely symmetric matrix. Other-
wise, the characteristic eigenvalues and eigenfunctions would not be real but
complex.

As discussed below, certain conditions should be met to preserve the her-
miticity of our operators. The new matrix takes the following form,

Zs —jC | —jL

Zrwa =1 —JC" Ya | K (5.1

—jl' K | Y
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Fig. 5.12 Graphical explanation about the information contained in the MoM
operator Zryqj-

Once the matrix is made symmetric, we rename it by blocks,

D | M

Z}olal = (52)
M| S

In equation (5.2) D is the block containing the impedance matrix of the isolated
DR, S is the block containing the admittance matrix of the SGP, and M the
block which contains the information about the mutual coupling between the
SGP and the DR. Our goal now is to calculate the characteristic modes for the
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SGP in the presence of the DR, and vice versa, through the Schur complement
of our operator Z,, .
Let us consider the complete system of equations governed by MoM in

which the operator (5.2) has been calculated,

D M f ginc
= . 5.3)
Mt S JM mec
tan tan
This reduced system of equations has exactly the same form as (2.66). In (5.3)
the j factor has been also included in M and H" as in the operator (5.1). This
has been done to preserve the equality of the original equation system. The f
currents and the g"¢ excitation vector are defined in (2.69). On the other hand,
M is the equivalent magnetic current for the slot, and H™ its magnetic field
excitation vector.
Now, since CMs are independent of any excitation it is possible to solve the
following equation system,

D M f 0
= (5.4)
M S M 0

tan tan

From where a homogeneous system of two equations and two unknowns can
be extracted (Rename jM = h)

D(f)+M(h)=0 (5.5)

M (f)+S(h)=0 (5.6)

Solving for fin (5.5), f = —D~'M(h). Substituting in (5.6), a single equation
in h is obtained,

[S—M'(D"'M)|h=0 (5.7)

If we do the same on h, the following relation is obtained,
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[D-—M(S7'M")|f=0 (5.8)

Note that both f and h have been decoupled. Now f and h have new operators
acting on them. The method of extraction of this operators is called extraction
of the Schur complements of an operator. In addition, these two new operators
are known as substructure operators in the context of characteristic mode theory
because they give us the possibility to know how one structure is affected by
the other and vice versa.

Once the concept is understood, it is possible to calculate the Schur com-
plements directly from the total impedance matrix Zf, ;. (5.2).

The Schur complements are related to the dielectric block D and the SGP
block S, as shown below.

* Schur complement of S'in Z7, :

[D]suy =D —MS™'M' if S~! exist (5.9

* Schur complement of D in Z7,, ,:

[Slsuy =S —M'D'M if D! exist (5.10)

Equations (5.9) and (5.10) present the substructure operators corresponding to
the DR and the SGP, respectively. These are the new operators to be diagonal-
ized with the TCM. The importance of extracting the [S]s,, operator is that after
diagonalizing it will provide the characteristic modes of the substructure SGP
under the influence of the DR. In other words, the substructure operator play
the role of a numerical specialized Green’s function of the SGP that takes into
account the boundary condition of a nearby DR. Therefore, we can see how
the resonances are altered by having a SGP isolated, or in the presence of the
dielectric resonator, just including or not the DR. Similarly, the same can be
said about the DR in the presence of the SGP, block [D]s.

Matrix [D]s,; contains the information of how the DR behaves in the pres-
ence of the SGP, while matrix [S]s,, contains the information of how the SGP
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behaves in the presence of the DR. And that is why we can study their disturbed
resonances.

As the Schur complement theory is being applied to our operators, the
following conditions must be met, [22]:

* Re(Z},,.;) is positive semidefinite if and only if Re(D) and Re([D]su»)
are both positive semidefinite.

* Re(Z},,,) is positive semidefinite if and only if Re(D) and Re([D]sus)

are both positive semidefinite.

* Re(Z},,.;) is positive semidefinite if and only if Re(S) and Re([S]sy) are
both positive semidefinite.

* If Re(D) is positive semidefinite, then Re(Z7,, ;) will be positive semidef-
inite if and only if Re([D]s,s) is positive semidefinite.

o If Re(S) is positive semidefinite, then Re(Z7,, ;) will be positive semidef-

inite if and only if Re([S]sys) is positive semidefinite.

These conditions are crucial for both eigenvalues and eigenfunctions to be
real. Here lies the importance of the symmetrization carried out in (5.1). With
this, the power radiated by the equivalent surface currents will always be greater
than or equal to zero, as they must be.

Now we can apply the generalized eigenvalue problem to the matrices
[D]sup and [S]sup, to obtain the equations that will allow us to calculate the
characteristic modes.

Im([D]sup) 12 = AP Re([D]s,) 17 (5.11)

Im([S]sub) I3 = ASRe([S]suv) I (5.12)

Where A, are the characteristic eigenvalues and I, the characteristic eigencur-
rents.

The problem at hand is more complex than the conventional TCM PEC
problem. Therefore care must be taken in interpreting the physical meaning of
the eigenvalues of the substructures. These are shown below
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l,? — doo  Internal resonance (5.13)
AP A5 =0 External resonance (5.14)
AP >0,25 <0 Inductive behavior (5.15)
AP <0,A5 >0 Capacitive behavior (5.16)

The definition of the eigenvalues are as in chapters 3 and 4. Concerning AP,
the external and internal resonances are close to natural resonances of the DR
disturbed by the SGP. And for A3, the external CMRs approach to the external
NRs of the SGP perturbed by the DR. For the case of the SGP there is no
internal resonance because is not a closed surface. Furthermore, it is important
to note the change in sign of A’ with respect to electric current eigenvalues
since now characteristic currents are magnetic.

At this point, it is of interest to do some comments related to the information
that can be obtained from the eigenvalues previously presented. Let us study
AS, for instance, since as it will be presented later in the DRA design it plays
an important role in the SCM method. As Fig. 5.13 presents, there are several
antenna configurations named as A, B, C and D. These configurations consider
the following:

A An infinite ground plane with a slot (isolated slot)

B An infinite ground plane with dielectric substrate below (thickness
th ”)

* C An infinite ground plane with a dielectric substrate below (thickness
"h1"), plus a dielectric substrate of infinite thickness from above.

* D An infinite ground plane with dielectric substrate below (thickness
"h1"), plus a dielectric substrate of thickness "h2" above.

* E An infinite ground plane with dielectric substrate below ("h1" thick-
ness), plus a DR above the "h2" height and a square base with "a" by

n_n

a



5.3. SUBSTRUCTURES CHARACTERISTIC MODE METHOD 115

Eigenvalues

F(GHZ)

Fig. 5.13 A comparison between slot eigenvalues for different configurations
with some dielectric insertions

As can be seen, several dielectric inclusions have been considered in
Fig. 5.13, from the isolated slot (A) to the DRA (D). This has been realized to
show the potential of this method. Resonances will be those in which A5 =0

In A, /l;f resonates around 14 GHz. When introduced a substrate in B,
as done if microstrip or coplanar waveguides were used, the slot resonates
at 6.9 GHz. If we now use an infinite dielectric medium above the slot, 1,5
resonates at a lower frquency as expected, 4.5 GHz (C). So far there is nothing
new here. But in D, A5 starts to show some perturbation effect at 6 GHz when
the infinite dielectric media above the slot is limited in the x and y directions.
This limits are the same as the aquare base dimmensions of the DR, i.e., "a" by
"a". And the resonance is about 4.4 GHz. And finally in E, the fact to reduce
the dielectric that is above the slot until the high of the DR produces many
perturbations in A, and furthermore, two resonances at 4.3 GHz and 4.6 GHz
due to the first two modes that can be excited in the DR. The last, is the most
important effect that can be extracted from A>. Because in addition to see the
resonances of the slot in the presence of the dielectric, A5 gives information of
how a slot increase the bandwidth when introducing a DR on it. This method is
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very interesting because we can clearly see the change that occurs in the slot
response when dielectrics are included or not.

Application of the Theory

In the following we apply the theory developed in the previous section, and
interpret the results with the purpose of designing a DRA fed by a coplanar
waveguide slot. See a sketch in Fig. 5.14.
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Fig. 5.14 Antenna parameters and scheme.

For the SGP and the DR design, we will use equations (5.11) and (5.12) using a
characteristic mode MATLAB interface created between MAT LAB and FEKO.
This is the same procedure as described previously for the VIE formulation.
The only difference is that two operators have to be diagonalized here. After
the diagonalization, it is possible to see the eigenvalues, eigenvectors and
eigenfields. The results obtained for the eigenvalues are shown in Fig. 5.15.
Fig. 5.15 shows the results for AP and 7LlS for those parameters that maxi-
mize the radiation bandwidth for the DRA and the slot. As shown in Fig. 5.15
left, the points A and B show the resonances given by the TE;; mode, also
known as magnetic dipole mode. Unlike the VIE method presented before,
in which the TEj; eigenvalue shown in Fig. 5.3 exhibited two degenerated
eigenvalues, TEy,, and TE},,, due to the symmetry between the xz-plane and
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Fig. 5.15 Characteristic eigenvalues. Left: AP. Right: A9

yz-plane, here things are different. Modes passing through A and B are those
of the TE7,, and TE7,,, respectively. However, to our surprise, the system
provides us a more realistic case in terms of characteristic modes, and therefore
in terms of resonances. The two modes appear now non-degenerate. The reason
for the non-degeneration is because the underlying symmetry has been broken
by an external perturbation, the slot in this case. This phenomenon can only
be appreciated by using this method. This causes the splitting in the degen-
erate eigenvalues and that is why they resonate at different frequencies. This
information provided by this model is very interesting when it comes to design,
because unlike the model of magnetic walls, whose f.; = 64 GHz for the same
parameters of the DRA, or the VIE method presented before, this model is
more accurate and gives the possibility of separately viewing modes TE7,, and
TEY,, as two distinct modes. Finally, notice the modes with negative slope.
These are the non-radiating modes,which do not impair the interpretation given
above.
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Regarding to the SGP eigenvalues shown in Fig. 5.15 right, they are lIS ~0
for the desired frequency range, meaning that the slot in fact radiates efficiently
at these frequencies. Point C is the resonant frequency of the SGP, but because
of the presence of the DRA the whole curve deformes with respect to the usual
eigenvalue curve for slots or dipoles and approaches to zero in a wide range
of frequencies. With this approach, we have found that there is a slot width
for which the bandwidth of the antenna is maximized. Thus, a considerable
radiation bandwidth is achieved. In addition, as we shall see later in the S11
parameter, the eigenvalue curve of the slot is centered at 60 GHz. This is due
to having chosen a slot length that makes it resonate at 66 GHz (point C in
Fig. 5.15), and a DR size that in which the TE]|; mode resonates at 54 GHz
(point A in Fig. 5.15). In this way, the resonance of the complete structure, the
DRA, can be centered at 60 GHz, and this is why this method provides more
realistic values than when studying isolated DRs.

Once the eigenvalues are studied, let us see the characteristic currents asso-
ciated to them. Figs. 5.16 and 5.17 show the electric (right) and magnetic (left)
characteristic currents for the TE] |, and TEY,, modes, respectively. Unlike in
the previous method the fields appear to be significantly different despite they
are two degenerate modes. The effect of the perturbing slot is clearly the cause.
Therefore a more reliable design can be expected from this method since it
provides the actual field distribution in the presence of the surrounding media.

Fig. 5.16 Characteristic eigencurrents TE7,,. Left: Magnetic. Right: Electric.

The optimum dimensions found for the DR and the SGP shown in Fig. 5.14
are the following: the length of the slot, Ly = 850 um, the width of the slot,
W =70 pum, the width and the length of the DR, /, = [/, = 2 mm, height of
the DR, [, = 548 um (6-layer LTCC) and the substrate thickness, 7 = 274 um
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Fig. 5.17 Characteristic eigencurrents TE7,,. Left: Magnetic. Right: Electric.

(3-layer LTCC). The material we used in this design is HL2000 from Heraeus
& = 7.3 and tan § = 0.0026.

5.3.2 RDRA Design Procedure

Once we have the optimal parameters for the DR and the SGP designed with
the TCM, we can model in HF' SS the complete antenna. Now we will include
the CPW, and we will optimize only the parameters corresponding to the CPW
design. This has been realized to excite properly the TE7,, mode of the DRA.

The model constructed in HF' SS is shown in Fig. 5.14, where the parameters
involved in the modeling are shown. In the upper left part of the figure, A,
the top view of the DRA is displayed with the CPW. The CPW parameters
after optimization are the following: the center of the coplanar waveguide,
s = 0.36 mm, and the gap, w = 70 um. Finally, the bottom right, D, displays
the parameters of the ground plane, length and width, L=20mmy W = 14 mm,
respectively. The CPW is adapted to 50 Q at 60 GHz. Note that no optimization
was required for the DRA after the characteristic mode design. And note
also that unlike the VIE procedure, here we included a finite ground plane.
Only the CPW and the ground plane were optimized in order to match the
complete antenna. This method help us to reduce the optimization process and
to understand the physics behind the figures that with other methods would not
be possible to address.

After computation, we can check whether the electric and magnetic fields
in the cavity correspond to the electrical and magnetic current characteristics
presented in Fig. 4.33. The result of the electric and magnetic fields inside
the DRA at 60 GHz is shown in Fig. 5.18. As we can see, the TE}|; mode is
excited as expected.
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Fig. 5.18 Fields inside the cavity at 60 GHz. Left: Magnetic. Right: Electric.

The far field radiated by the TEj,, is shown in Fig.5.19. We can see the
cuts in the E-plane, perpendicular to the slot, and the H-plane in the direction
of the slot. Note that both plots are normalized to their respective maximum
values.
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Fig. 5.19 Far field radiated by the TE7,, at 60 GHz

Finally, Fig. 5.20 provides the results of the reflection coefficient of the
antenna. As we can see, a bandwidth that remains below —10 dB from 56 GHz
approximately to more than 70 GHz is achieved , i.e., more than 23 %.
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Fig. 5.20 Reflection coefficient of the RDRA.

5.4 Conclusions

We have investigated a new way to design a rectangular DR coupled to a CPW-
fed slot. This new approach allows us to understand how the slot behaves in the
presence of the DRA, and vice versa. It simplifies the DR-slot-ground plane
design in the same procedure. Unlike other design methods, the Substructure
Characteristic Mode method explains why the slot increases its bandwidth when
a DR is placed on it. Furthermore, it is also concluded that even using low
permittivities it is possible to design DRAs in an efficient manner. On the
other hand, the intended LTCC manufacturing technology have been taken into
account in the design to have the possibility to performe the feeding mechanism
and DRA in the same sintering process. Due to the low permittivity of the DRA
the bandwidth is 23 %, covering completely the 60 GHz ISM band. We have
managed to select mode TE7,; with the TCM, and then it was verified that it
could be fed efficiently by the CPW. Finally, we have presented the radiation
patterns for the E- and H-planes.






Chapter 6

Conclusions and Future Work

6.1 Conclusions

The main objective of this thesis has been to interpret solutions of the theory of
characteristic modes applied on metallic and dielectric bodies, to later develop a
new method to design dielectric resonator antennas. It is worth noticing that this
thesis is the first to link natural modes and characteristic modes for conducting
and dielectric materials, and specifically for DRA.

Since the theory of characteristic modes is being widely used for the antenna
design, the task carried out in this thesis becomes relevant. Currently, DRAs
are designed based on known natural modes for isolated DR without any
considerations of the excitation mechanisms or the infinite ground plane. So,
without a solid knowledge, optimization techniques or ’trial and error’ based
on full wave analysis software with proper initial design, mainly depend on
designer’s experience to provide a proper design for these antennas. This
thesis helps in making the proper design including the excitation and nearby
surrounding. Such a procedure will provide the proper design tool for antenna
engineering. The studies and conclusions presented in the thesis are detailed
below:

In Chapter 3, a comparison has been made between the resonances obtained
by the TCM and the natural resonances. This study has been performed for both
an infinite circular cylinder and a PEC sphere. The object of this study has been
to demonstrate that these two sets of resonances are different. This conclusion is
important because publications have been found that confuse these resonances.
In addition to this study, the comparison between the two families of resonances
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for an electric dipole is also presented. It is concluded that since the natural
resonances are the only ones specific to the object and with physical meaning,
the characteristic mode resonances are just close to them. The lower the
damping factor of the natural resonances, the closer the TCM resonances will be
to the natural ones. The confusion between the two has occurred because for flat
antennas both families of external resonances are very close to each other, since
there are no natural internal resonances. In contrast, in the case of conducting
closed bodies that can give rise to cavities, while the internal resonances are
equal, because the damping factor is zero, the external characteristic resonances
and external natural resonances are completely different because the last have a
considerable damping factor. In addition, only after introducing complex values
on ka argument into the characteristic eigenvalues, both for the cylinder and for
the sphere, external natural resonances could be obtained from the characteristic
mode procedure. It is important to mention that the same conclusions have been
drawn for the cylinder (2D analysis) as for the sphere (3D analysis).

Chapter 3 also presented a geometrical relation between complex natural
resonances and characteristic mode resonances. It was concluded that the
theory of characteristic modes diagonalizes the phase angle of the characteristic
impedance. Indeed, that is why in the definition of the characteristic eigenvalue
it is related to the storage of electric and magnetic energy, for A, less than zero
and A, greater than zero, respectively.

Additionally, it is shown that in fact, for A, = 0, characteristic modes do
not radiate maximum field nor the total current becomes maximum when they
are on an external characteristic resonance mode. This fact is based on the
same idea as before. For flat antennas there seems to be a maximum of electric
current, and radiated field when A,, = 0 because both resonant families, external
natural and external characteristic are very close to each other. Only on the
complex natural frequency the phenomenon of resonance really happens.

Finally, Chapter 3 presented a method for extracting the dispersion diagram
of a circular PEC waveguide. This has been possible after analytically solving
the EFIE considering oblique incidence. In this way, the dependence of k; is
in the impedance matrix Z. The idea was to look for internal characteristic
resonances of Z matrix for different values of k.. The results are exactly the
same as those obtained by the conventional method.

In Chapter 4, an analysis of natural resonances and characteristic mode
resonances was presented. This analysis studied the infinite dielectric circular
cylinder and the dielectric sphere. With respect to the study of the infinite
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dielectric circular cylinder, the PMCHWT formulation has been analytically
solved. While for the study of the dielectric sphere the study has been purely
numerical, also based on the PMCHWT formulation. The analytical study al-
lowed us to draw conclusions that would be impossible by a numerical analysis.
In fact, thanks to the analytical solutions it has been possible to do variations
on the dielectric constant and to use complex frequencies, that could not have
been possible to extract with FEKO. Regarding the cylinder analysis, it has
been demonstrated that the resonances defined by the characteristic eigenvalues,
internal and external, are not the same as the internal and external natural ones.
It has been observed that when A, is either zero or infinite, the associated fre-
quencies are close to the internal natural resonances for different modes. This
means that for an eigenvalue obtained with the value of the order n = 0, for
instance, each successive 4, = 0 and A,, = o, corresponds to the pole m =1 in
the first case and m = 2 in the second, and so forth. So the conclusion is that the
characteristic mode resonances give only frequency values which are close but
not equal to internal natural resonances. And also that the proximity between
characteristic mode resonances and internal natural resonances depends on the
relative permittivity of the dielectric cylinder. As the permittivity decreases, the
difference between both resonances becomes larger. For example, it was found
that for & = 10 the first characteristic resonance of the TM; mode differed
from the natural one around 40%. However, for € = 90 this difference was
about 15%. Likewise, for a given permittivity, as the mode order increases
the internal natural resonances get usually closer to the real frequency axis, as
a rule. Therefore, the difference between characteristic and internal natural
resonances will become smaller. For example, the T Ej mode exhibits a differ-
ence between the two families of resonances of about 4% for & = 10. That
means the difference also depends on the mode that is being compared. This
differences have to be considered when one intends to design DRAs with the
theory of characteristic modes, since it could be possible to make a mistake in
the design. The same conclusions have been reached for the dielectric sphere,
meaning that the conclusions arrived at in this chapter could be extended to any
3D geometry.

In addition, Chapter 4 also examined the contribution to the total current
and the total field of the non-radiating modes. Here, the analytical solution
have played an important role, since there is no chance to observe these types
of modes in FEKO. As already explained in Chapter 4, the non-physical ter-
minology is being currently accepted to such extent that numerical procedures
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have been developed and inplemented in commercial solvers for getting rid of
these modes. What has been shown here is that these modes are only modes
that do not radiate to the exterior of the cylinder surface but they do contribute
to the field inside the dielectric cylinder when excited properly. In this case,
the infinite dielectric cylinder has been fed by an infinite electric wire source
located in the center of the cylinder. The result has been that when properly
excited, they do contribute to the total electric and magnetic field. Therefore,
the non-physical modes have physical meaning and it is proposed to rename
them as non-radiating modes.

In Chapter 5, a method based on characteristic modes of substructures has
been proposed. This method has been compared with a more conventional
EFIE-VIE method for the design of a RDRA with very low permittivity. This
has been done in order to show that the CMRs provide better results when con-
sidering also the surrounding media, not only the isolated DR. This study has
been done because for low permittivities the resonances provided by the char-
acteristic eigenvalues differ significantly from the internal natural resonances.
Furthermore, unlike the VIE method, the Substructure based method offers
the possibility of differentiating non-degenerate modes. When the surrounding
media is included in the design the DR symmetries are broken and eigenvalues
viewed as degenerated with the VIE method, can be viewed as non-degenerate
with the Substructure based method. The results obtained from Substructure
based method provides resonances which are closer to what they really should
be. Therefore, it provides a more realistic view of what physically happens in
the antenna.

Finally, with regard to the antennas that have been designed: A RDRA
excited by a microstrip feeder with a rectangular coupled slot has been designed
with the VIE method. The antenna has been designed with Ferro A6-M material
(& =5.9,tans = 0.001), and for ISM-band at 60GHz. The proposed antenna
has an impedance bandwidth of 33% for S;; < —10 dB. Also, a RDRA fed
by a coplanar waveguide and a slot have been designed with the Substructure
method. The results obtained show that the proposed antenna radiation band-
width determined by 10-dB return loss can be as wide as 14 GHz, more than
23% centered at about 60 GHz. The material used was HL2000 from Heraeus
(¢, =17.3, tang = 0.0026). Both designs have been realized to fully exploit the
fabrication characteristics of the LTCC with the minimum required number of
layers, and in the same sintering process. The first antenna have been designed
with 7 layers, and the second with 6 layers.
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6.2 Future Work

During the realization of this thesis, new questions and research lines have
emerged with interest in what relates to antenna design through the theory of
characteristic modes.

First of all, it is worth mentioning the study of closed waveguides. In the
thesis it was presented for the first time how to extract the dispersion diagram
from the characteristic eigenvalues in an analytic way. Taking into account that
the analysis with characteristic modes is being extended to other design areas,
this would be a promising area of application. As future work it is proposed to
extract the currents and characteristic fields inside the waveguide, and to study
the advantages that would contribute against the conventional design method.
Considering that this theory is built on the MoM, guides with arbitrary section
could be studied.

Linked to this, a waveguide can be seen as a periodic structure on the
propagation axis. It could be said that this is a one-dimensional periodic
structure with a wave vector k,, oriented in the direction of propagation z. In
the same way as for the circular waveguide, in which it has been possible to
extract the dispersion diagram, it will also be possible to extract it considering
periodicity in ky and/or k_, i.e., in a 2D or 3D periodic structure. This means that
it is possible to extract the band diagram of periodic structures from the theory
of characteristic modes. The key is to study the way in which it is calculated
from the MoM, det(Z) = 0, and from what is explained in this thesis find the
resonances of the characteristic eigenvalues that construct the band diagram.
It would also be important to relate the Floquet modes with the characteristic
modes.

In addition, as studied for the PEC cylinder and the PEC sphere, it would
be interesting to study to find the natural resonances for the straight wire, the
dielectric cylinder and the dielectric sphere. Concerning the infinite dielectric
cylinder, some different aspects were found in comparison with the PEC cylin-
der and the PEC sphere. Unlike the latter ones, the analytical eigenvalues after
considering complex ka values were complex valued, not real numbers. And
the real part of both eigenvalues, the non-radiating and the radiating modes,
converged on their corresponding natural resonances. This study is not yet
solved, since the PMCHWT formulation do not meet the relation presented for
conducting bodies (3.20). The PMCHWT formulation is a more complicated
problem and in order to understand more its eigenvalues, a relation between the
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natural modes and the characteristic modes would help to understand more the
behavior and interpretation of characteristic modes in dielectric materials.

On the other hand, there is a rather interesting future work in regard to the
study of the dielectric sphere. Try to excite the non-radiating modes through a
point source inside. In this thesis it has been shown that for both the eigenvalues
and their resonances the sphere and the cylinder follow the same physics. It
could be questioned that since one case is 2D and the other is 3D its results could
be different. But after the analysis made, it has been observed that they follow
the same pattern, and that regardless of the geometry, the differences appear
when using different integral-differential formulations, as seen in Fig. 5.11. That
is why it is thought that in the same way as for the dielectric cylinder, excited
from an infinite conductor wire, for the sphere could also be the case through a
point source inside. This would lead us to conclude with absolute validity that
non-physical modes do have physical meaning in other 3D geometries. And
therefore, in DR fed from the inside the non-physical modes play an important
role.

Finally, it is important to note that as future work it is would be interesting
to design Multiple Input Multiple Output (MIMO) DRA with the Substructure
based-PMCHWT method. Since the orthogonal modes of a unique DRA can
behave as different channels for sending information. And since to excite these
modes different mechanisms of excitation are needed this method becomes
interesting. In addition to mention the final master thesis [106] arising from the
Substructure based-PMCHWT method presented here.
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Appendix A

Analytical Solutions

The two analytical solutions presented in this appendix have contributed to the
main theoretical concepts presented in this thesis. These analytical solutions
have helped to obtain solutions that with a conventional EM software will be im-
possible, or very difficult due to the time-consuming computation. The novelty
to present these analytical solutions can help to explore even more numerical
solutions in CMA or the MoM. Furthermore, these analytical solutions can be
used to find a precise quantity of interest over a whole range of parameters.
With this a better physical insight can be easily gained.

A.1 The Infinite PEC Circular Cylinder Considering
Oblique Incidence

In this section an infinite PEC circular cylinder is analytically solved consider-
ing oblique incidence in the EFIE formulation. This solution will help to find
the dispersion diagram of the propagating modes in a metallic circular waveg-
uide through the characteristic modes eigenvalues. This analytical solution is
introduced here for the first time. ,

Let us consider an incident electric field Ef = Ele_jkf, with e~/% depen-
dence. The EFIE presented in Chapter 2 can be obtained by considering the
following boundary conditions, the tangent total electric field is zero on the
surface of the PEC body:
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nx (E'+E)=0 (A.1)
(E'+E°) [1an =0 (A.2)
Ei|tan = _Es‘tan (A3)

Next, subscript zan is dropped for simplicity, and E* = — jwA — V¢. To analyt-
ically solve the EFIE (A.3) considering oblique incidence, the electric current
(A.4) has to be used.

J() =Tl +Jgug = Y (anej"qyué + Bnej"d)/ucv’) (A4

n=—oo

Moreover, both A and ¢ have to include the term e/ in the cylindrical har-
monic expansion of the Green function. Solving first for the magnetic vector
potential A, we have:

A= [.L//J G(r,r')dS =

5]

2
/,La/ Z OCe]”q) —ikdy Z I k,r (k r)e Jmg o= jm¢’ ]kzd(b-i-

n——oo Wl**w

,ua/ Z B/ ¢y o Z I (ker') H, (k r) el e imd oikig g —
n—-—oo m——w
(AS)

Now, to integrate, the primed unitary vectors have to be substituted as a function
of the non-primed unitary vectors. That is u_ = u, and uj, = sin(¢ — ¢")u, +
cos(¢ — @' )uy. To simplify the calculus in (A.5) the above unitary vector u, is
not considered because the solution only consider the tangential components.

Moreover, it is important to use that cos(¢ — ¢') = 3 (ej(‘l’_‘i’/) +e‘j(¢_¢1)).
Thus, substituting formulas and rearranging equation (A.5), it is obtained the
following equation,
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A=

'Z —jk:Z elkiy, Z o, Z I ktr) ,g,)(ktr ﬂnd)/ oind’' *Jm¢d¢_|_

] n—=—oo m—=—oo

,u —jkZ pik: ()
s ug 3 B Y ) ) ()

n_7°° n—=-—o0

1 : 2n Py : / : 2n Py . ’
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741; e IkT pik: Z < (ktr) ()(k,r)ef ¢uz+

m=—oo

I () 5 )5 (Bl 4 Byl
(A.6)

Where the Kronecker Delta function definition (A.7) has been used to solve
the above integrals.

2T :
/ e](m$1)¢e—]”¢d¢ = 27[5;11:;:1,11 (A7)
0

Let us solve for the gradient of the electric scalar potential V¢:

fV//—V’ )G(r,r)dS' =

V V/ a, ]nd) —jk.7 / ]nd) 7]kz /
1 oo
— Z (k,r) H? )(k r)eime” mg’ gik: 2dg’ =
4j =

(A.8)
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—jwe
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Once A and V¢ are calculated, the impedance matrix operator components
can be obtained through the inner product of these two operators with e~/"9.
Then, separately we have,
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3 B 3 (k') HY (ki) e el (i, + ) [ e‘f”‘”ef’""’w] =
r 0

(271')2ak ( ) —jk, 7 jk.z n
W (k[ ) (k,r) e e OC <kZuZ + ;UQ)) —
(27)*a j7i) k2 jkz
1oe 7 —Ju (k') Hy” (kyr) e /5% /%2, ( U+ u¢) (A.11)

Considering now equations (A.10) and (A.11) and reordering them, the
following impedance matrix operator can be obtained:
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B (27)*a

- dwe
120, (kea)H\ (ki) gkzjn(k,a)H,Sz) (k)
" fd (ki) H? (ko) ks b (a) ™ B (ka) — k2T (ka)HL? (ka)
a ak; ak;

(A.12)

This operator can be particularized for other cases of interest in this thesis. That
is k; = 0, what means the electromagnetic plane wave has normal incidence
on the cylinder surface, i.e., we obtain the transverse electric and magnetic
impedance operators for normal incidence. It can also been conclude that
characteristic eigenvalues depend on the excitation incident angle, i.e., k.

ZEFIE, TM; _ n”TkaJn (ka) H’$2) (ka) (A.13)
. k
ZEFIE, TE; _ ?Jﬁ (ka)H.® (ka) (A.14)

These two operators coincide with the operators found in [114] and [90].

A.2 The Infinite Dielectric and/or Magnetic Circular
Cylinder

In this section, the analytical solution for an infinite dielectric and/or magnetic
circular cylinder is presented considering normal incidence. This solution is
presented here for the first time, since no solutions in bibliography have been
found considering the PMCHWT integro-differential equation.

Let us consider the PMCHWT-SIE formulation presented in section 2.4.
The boundary conditions for the electric and magnetic fields are i x E; =i X E;
and 71 x H; = i1 X Hp, respectively. Being the subscript 2 for the inner media,
and subscript 1 for the surrounding media. Where the fields can be expressed
as a function of their corresponding potentials and the incidents electric and
magnetic fields,
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E = —joA vl - SV F) 4 g (A.15)
1
1
H, = Ev x A — R — vl 4 pine (A.16)
1
1
E = —joA® —vel? - SV F® (A.17)
2
1
H,= —VxA® _ joF® —vgP (A.18)
J25)
Using the potentials defined as
Al / J:(r)Gi([r—1'|)dS’ Magnetic vector potential
(A.19)
/ / M;(r’)Gi([r —1'|)dS’ Electric vector potential
(A.20)
q)e(i) (r)= 47r]coe, / / V'J:(r’)Gi(Jr—r'|)dS’  Electric scalar potential
(A.21)
OIS //V’M’G '|)dS’  Magnetic scalar potential
Om’ (1) amjom Js r r|) agnetic scalar potentia

(A.22)

it is possible to introduce the Graf’s additional theorem for cylindrical functions

i L,
m=-—oo 4-]
SR e

Z IJJm (klr) m

m—=—oo

(kir) /™9 e=im9'
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and the corresponding cylindrical expansion for the electric and magnetic
currents for the 7M* polarization

Ji)= Y o'y (A.24)

n=—oo

M;(r) = i Bue ugy (A.25)

n=—oo0

Now, considering (2.50) and (2.51) we can also consider equations (A.26) and
(A.27) to write equations 71 X E; =i x E; and 71 x H; = 7i x H as a function
of only one current, J; and M.

Ji=-J (A.26)
M, = —M, (A27)

Let us then begin by solving the integral equation for the electric field,
nxE; =nxE,.

—]O)A(l) _V¢£l)_'glvxF(l)+Einc:| _
1

tan

1
—joA® — vl - Zvx F<2>] (A.28)
& tan
Dropping the subscript tan, which means the tangential components of the
vectors involved, and reorganizing, the following expression can be directly
obtained

E™ = joA®) + Vol + giv <« F — joA® —vel? — glv xF® (A29)
1 2

Now, to simplify the calculus in (A.29) the unitary vector u, is not considered
because the solution only consider the tangential components. So therefore, sub-
stituting equations (A.19)-(A.22) in (A.29), and also using (A.26) and (A.27),
equation (A.29) takes the form,
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. 1
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S S
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JOE; S S

Introducing expressions (A.23), (A.24), and (A.25) in (A.30), equation (A.31)
is obtained.
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Now, to integrate, the primed unitary vectors have to be substituted as a
function of the non-primed unitary vectors. That is u, = u, and u’q) = sin(¢ —
¢')u, +cos(¢ — ¢')uy. Moreover, it is important to use that cos(¢ — ¢’) =
% e/(9=9") +e (¢=9¢") ) On the other hand, the Kronecker Delta function
definition (A.7) has been used to solve the above integrals. Thus, substituting
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these formulas and rearranging equation (A.31), the following equation is
obtained,

oo

B = ? Y o (s (kar) Y (kor') + o (ki) HEY (ki) ) w4

m=—oo
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At this point, the inner product defined as < e~/"?u,, E” > has to be intro-
duced to delete the summations in (A.32), in the same way as done in equations
(A.10) and (A.11). Moreover, equation (A.33) has also to be considered,

Z Am Ol 5m¥1,n = am+10y (A33)

m—=—oo

And the result is,
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< e 0w, B >= a0 (ol (kar) HY (kar') + iy (k') HZ (ki) ) o

20
+ 7"2 ( r(Hr)l (kar’) I (kor) —Hrsi)l (kar") Ju (kﬂ)) B

2
+”2—k1(n+1 (kar') B (kor) = Joy (k) B (1) ) By (A34)

Rearranging by using the Bessel recurrence relations 2—”T (x) =T—1(x)+
Ty41(x) and 2T’( ) = T,—1(x) — T,+1(x), and the Wronskian J,,(x)H, P (x) —
J) (x)H,(lz) (x) = 2, itis finally obtained

< €_jn¢llz,Einc >= 71'261(0 (,Uz.]n (kzl") H,(,z) (kzr/) + .uljn (k] I’/) Hr(,z) (k] r)) oy,

44@@%@4@ﬂﬂ#q@@+hhwﬂ) (m@)m (A.35)

Let us continue by solving the integral equation for the magnetic field,
il X H1 =nx Hz.

[ joF) V%l+quAm+HW] =

tan

— joF® V%l+;VxAU] (A.36)
tan

Dropping the subscript tan, which means the tangential components of the
vectors involved, and reorganizing, the following expression can be directly
obtained

Hi"e :ij(l)'i‘V(brEzl) —;VXA( )—](DF Vq)m —l—‘ul \% XA( )
1

(A.37)
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Now, to simplify the calculus in (A.37) the unitary vector u, is not considered
because the solution only consider the tangential components. So therefore, sub-
stituting equations (A.19)-(A.22) in (A.37), and also using (A.26) and (A.27),
equation (A.37) takes the form,

. 1
H" = joe / M, (r')G,(r,r)dS' — -
jog || 1(r')Ga(r,r) o

v / /S VM, ()G (r,')dS —

Vx/ Ml(r’)Gz(r,r’)dS’—l—ja)sl/ M, (r')G;(r,r')dS -
s s

qulv//VMl )Gy (r,r')dS' — Vx/J1 )G (r,r)dS’ (A.38)

Introducing expressions (A.23), (A.24), and (A.25) in (A.38), equation (A.39)
is obtained.

H" = aa)sz/ Z Bae™ uy Z I (kar) H z%)(kzr)ejmq’e mo' 4!+

n—=-—oo m—-—oo

n=—o0 m—=—o0

a o oo .
V/ 4 e/ uy I (kor) k ) el e=imd’ g/

iVx/ Z aneJ¢u/ Z I (kar) H, kzr)e]m% mg’ do’+
4j 0 e

weE
. 1/ Z ﬁneJ ¢ll¢/ Z Jm kll" (klr)e]md’e jme’ d¢+

n——oo m—=—oo

a 21 o " . L
Vs VA ind’y I k k jm¢ ,—jm¢’ 14!
4o /0 (Z Pue u¢> Z (1’ Hi (ar) o= dg

Nn—=—oo0 m—=—oo

—Vx/ Y ae™uy Y dy (k') HE (ki)™ im0 dg! (A39)

n=—oo m=—oo

Now, to integrate, the primed unitary vectors have to be substituted as a func-
tion of the non-primed unitary vectors. That is u, = u, and u’¢ = sin(¢ —
¢')u, +cos(¢ — ¢')uy. Moreover, it is important to use that cos(¢ — ¢’) =
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1(ei(9=9) 4 =i (¢*¢,)>. On the other hand, the Kronecker Delta function defi-

nition (A.7) has been used to solve the above integrals. Thus, substituting these
formulas and rearranging equation (A.39), the following equation is obtained,

oo

Taw

Hinc — T Z (82‘]}11 (kzr) ( ) (kzr) +€1Jm (klr/) H}’Elz) (klr)) .

n=-—oo

<ej(m+1)¢[3 | +eltm=hog 71)u¢f

na 1 e N (2) 5
- Hy; Jjme -
Sorr L (M i (lor) Hy? (Kat') + m] (k') B (ki) ) mPei™ Bug+

m=—oo

ﬂ y I (kar) H, D (kor! o (kir ) H (kir) ) moy,e™u (A.40)
o

m=—co

At this point, the inner product defined as < e~/"®uy, H"™ > has to be intro-
duced to delete the summations in (A.40), in the same way as done in equations
(A.10) and (A.11). Moreover, equation (A.41) has also to be considered,

Z A O 5m:Fl,n = ap+10y (A.41)

m=—oco

And the result is,
<eij"¢u¢,H"”c> = (na)’ -

(51 Gor) 2 (k) + 5 (0 B2, ) +

(822 wit (ar) iy (kar') + 2Jn+l (kir')H), (klr))}ﬁ

(man)?

1 1
. (HZJ,, (kor) H (ko) + e (kor) HYY (kzr’)) Bu+

(na)’nr (J,, (kar) HY (Kat') + 0, (Ko ') HY (klr)) o (A.42)
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Rearranging by using the Bessel recurrence relations 2 IT(x) = T,
To+1(x) and 2T, (x) = T,—1 (x) — Tp41(x), and the Wronskian J,(x)H,
T ()HP (x) = 2, it is finally obtained

=S~
~
S
—
—
=
~—

<e—jn¢u¢’Hinc> —
— j(ma)? (]QJ,’l (kyr) j2is) (kar") + k1 J, (kar) Hy P (klr)) O+

(na)2w<82J (kar) Hi?) (ko) + €1, () Hy (klr)) B, (A.43)

Concerning the TE* case can be exactly extracted considering the same
analytical procedure but considering the equivalent currents (A.44). Another
way is considering the duality between the TM* and T E* electromagnetic fields.

TE? o TE? ~
{ 134 } =) { g"TEZ }em{ 4 } (A.44)
n=-—co n Z

The final solutions for the TE* are:

< e—jn(bu(b,Einc >
(zao (1) (kor) B (ko) + iy (') B () )

j(ma)? (kzj,; (kar) H (ko) + nJy (ko) HY) (ky ! )) B, (A.45)

< e Mu, H" >=
—j(TL’(l)2 (kz],/l (kzr)H,Ez) (kzr ) +kiJy (kzl’) ( ) (klr )) O+

(7'561)2(1) (82.],1 (kzl’) H,52) (kzi’/) + 81Jn (kli” ) (klr)) ﬁn (A.46)



Appendix B

Publications

B.1

1.

B.2

Journals

Tomas Bernabeu-Jiménez, Alejandro Valero-Nogueira, Felipe Vico,
Ahmed A Kishk: A Comparison between Natural Resonances and Char-
acteristic Mode Resonances of an infinite circular cylinder- IEEE Anten-
nas and Propagation, Vol. 65, no. 5, pp. 2759-2763, May. 2017.

. Tomas Bernabeu-Jiménez, Alejandro Valero-Nogueira, Felipe Vico,

Ahmed A Kishk: Internal Natural Resonances Prediction through the
Theory of Characteristic Modes-(Under minor revision review for publi-
cation in Radio Science).

. Tomas Bernabeu-Jiménez, Alejandro Valero-Nogueira, Felipe Vico,

Ahmed A Kishk: On the Contribution to the Field of the Non-Physical
Characteristic Modes-(Under minor revision review for publication in
Transactions on Antennas and Propagation).

International Conferences

. F Gallée, T Bernabeu-Jiménez, M Cabedo-Fabres, E Antonino-Daviu,

A Valero-Nogueira: Application of the Theory of Characteristic Modes
to the Design of Compact Metallic Strip Antenna with Multilayer Tech-
nology (LTCC). Antennas and Propagation (EuCAP), 7th European Con-
ference 1891,1895, 8-12 April 2013, Gothenburg, Sweden; 04/2013

155



156

APPENDIX B. PUBLICATIONS

Frangois Gallée, T Bernabeu-Jiménez, Marta Cabedo-Fabres, E Antonino-
Daviu, A Valero-Nogueira, Christian Person: Conception d’une antenne
de type DRA a 60GHz avec la théorie des modes caractéristiques. 18
emes Journées Nationales Microondes, Paris; 05/2013

. T Bernabeu-Jiménez, Felipe Vico-Bondia, A Valero-Noguera, Marta

Cabedo-Fabres, E Antonino-Daviu, Frangois Gallée: Understanding
the Analytical Formulation of the Characteristic Modes of a Metal-
lic Sphere. Antennas and Propagation Society International Symposium
(APSURSI), Orlando; 07/2013

. T. Bernabeu-Jiménez, A. Valero-Nogueira, F. Vico-Bondia, A. Vila-

Jimenez, D. Sanchez-Escuderos, F. Gallé: A 60-GHz Coplanar-Waveguide-
Fed Slot-Coupled Rectangular DRA Design Using The Theory of Char-

acteristic Modes. European Conference on Antennas and Propagation,

Lisbon (Portugal); 04/2015

. Francois Gallé, J P Coupez, Marta Cabedo-Fabres, Eva Antonino-Daviu,

T. Bernabeu-Jiménez, A. Valero-Nogueira: Use of the Characteristic
Modes Theory for the Design of an Antenna in a Harsh Environment from
a Generic Antenna Topology. European Conference on Antennas and
Propagation, Lisbon (Portugal); 04/2015

T Bernabeu-Jiménez, A Valero-Nogueira, F Vico-Bondia, A A Kishk:
New Look of the Mysteries of the Characteristic Modes. 1st URSI At-
lantic Radio Science Conference, May, 2015 (URSI AT- RASC), Gran
Canaria (Spain)

. T Bernabeu-Jiménez, A Valero-Nogueira, F Vico-Bondia, Ahmed A

Kishk: Relation between Characteristic Modes and Complex Natural Res-
onances. IEEE International Symposium on Antennas and Propagation
and USNC-URSI National Radio ScienceMeeting, Vancouver (Canada),
July, 2015.



B.3. NATIONAL CONFERENCES 157

8. T Bernabeu-Jiménez, A Valero-Nogueira, F Vico-Bondia, E Antonino-
Daviu, M Cabedo-Fabres: A 60-GHz LTCC Rectangular Dielectric Res-
onator Antenna design with Characteristic Modes Theory. IEEE Inter-
national Symposium on Antennas and Propagation (APS), Memphis,
Tennessee; 07/2014

9. M. Cabedo-Fabres, E. Antonino-Daviu, T. Bernabeu-Jimenez, M. Ferrando-
Bataller: Review and application of the theory of characteristic modes
for open radiating structures. 2015 European Microwave Conference
(EuMC 2015)

B.3 National Conferences

1. Tomas Bernabeu-Jiménez, Alejandro Valero-Nogueira, Felipe Vico-
Bondia, Antonio Vila-Jiménez, Daniel Sanchez-Escuderos: Disefio de
una DRA Alimentada por Ranura y Guia de Ondas Coplanar medi-
ante la Teoria de Modos Caracteristicos a 60GHz en Tecnologia LTCC.
XXIX Simposium Nacional de la Unién Cientifica Internacional de Radio
(URSI), Valencia (Spain); 09/2014

B.4 Nonrelated

1. Felipe Vico, Miguel Ferrando-Bataller, Tomas Bernabeu-Jiménez, An-
tonio Berenguer: A High Order Locally Corrected Nystrom Implementa-
tion of the Decoupled Potential Integral Equation. European Conference
on Antennas and Propagation, Lisbon (Portugal); 04/2015

2. Antonio Berenguer, Mariano Baquero-Escudero, Daniel Sanchez-Escuderos,
Tomas Bernabeu-Jimenez, Felipe Vico: Design of coupled-line compo-
nents with the Suspended-Strip Gap Waveguide at mm-wave frequencies.
2015 USNC-URSI Radio Science Meeting (Joint with AP-S Symposium)



158

APPENDIX B. PUBLICATIONS

3. Felipe Vico, Miguel Ferrando-Bataller, Tomas Bernabeu-Jimenez, An-

tonio Berenguer: Decoupled potential integral equation applied to com-
plex geometries. 2015 IEEE International Symposium on Antennas and
Propagation & USNC/URSI National Radio Science Meeting

. Felipe Vico, Miguel Ferrando-Bataller, Tomas Bernabeu Jimenez, Daniel

Sanchez-Escuderos: A decoupled charge-current formulation for the
scattering of homogeneous lossless dielectrics. 2016 10th European Con-
ference on Antennas and Propagation (EuCAP)

. F Vico, M Ferrando-Bataller, T Bernabeu-Jiménez, D Sinchez-Escuderos:

A non-resonant single source augmented integral equation for the scatter-
ing problem of homogeneous lossless dielectrics, 2016 IEEE International
Symposium on Antennas and Propagation (APSURSI)



	Table of contents
	List of figures
	List of tables
	Nomenclature
	1 Introduction
	1.1 Problem Statement and Motivation
	1.2 State of the Art
	1.3 Structure of the Thesis

	2 The Theory of Characteristic Modes
	2.1 Introduction
	2.2 Conducting Bodies
	2.2.1 Characteristic Currents and Characteristic Eigenvalues
	2.2.2 Modal Solutions

	2.3 Dielectric Bodies: EFIE-VIE
	2.3.1 Characteristic Currents and Characteristic Eigenvalues
	2.3.2 Modal Solutions

	2.4 Dielectric and/or Magnetic Bodies: PMCHWT-SIE
	2.4.1 Characteristic Currents and Characteristic Eigenvalues
	2.4.2 Modal Solutions


	3 Analysis of Resonances on PEC Bodies
	3.1 Introduction
	3.2 Natural Modes vs Characteristic Modes: A Definition
	3.3 The Infinite PEC Circular Cylinder
	3.3.1 Natural Resonances
	3.3.2 Characteristic Mode Resonances
	3.3.3 Natural Resonances vs Characteristic Modes Resonances

	3.4 The PEC Sphere
	3.4.1 Natural Resonances
	3.4.2 Characteristic Mode Resonances
	3.4.3 Natural Resonances vs Characteristic Modes Resonances

	3.5 Geometrical Relation between NR and CMR
	3.6 Open Question: Propagation and TCM
	3.7 Conclusion

	4 Analysis of Resonances on Dielectric Bodies
	4.1 Introduction
	4.2 The Infinite Dielectric Circular Cylinder
	4.2.1 Natural Resonances
	4.2.2 Characteristic Mode Resonances
	4.2.3 Natural Resonances vs Characteristic Mode Resonances

	4.3 The Dielectric Sphere
	4.3.1 Natural Resonances
	4.3.2 Characteristic Mode Resonances
	4.3.3 Natural Resonances vs Characteristic Mode Resonances

	4.4 Non-physical Characteristic Mode Contribution
	4.4.1 On the Contribution to the Field of the Two PMCHWT Eigensolutions.

	4.5 Conclusions

	5 Dielectric Resonator Antenna Design
	5.1 Introduction
	5.2 VIE-Method
	5.2.1 Rectangular DR Design Procedure
	5.2.2 RDRA Design Procedure

	5.3 Substructures Characteristic Mode Method
	5.3.1 Rectangular DR Design Procedure
	5.3.2 RDRA Design Procedure

	5.4 Conclusions

	6 Conclusions and Future Work
	6.1 Conclusions
	6.2 Future Work

	References
	Appendix A Analytical Solutions
	A.1 The Infinite PEC Circular Cylinder Considering Oblique Incidence
	A.2 The Infinite Dielectric and/or Magnetic Circular Cylinder

	Appendix B Publications
	B.1 Journals
	B.2 International Conferences
	B.3 National Conferences
	B.4 Nonrelated


