
Management of generic and

multi-platform work�ows for

exploiting heterogeneous

environments on e-Science

June 2017

Author: Abel Antonio Carrión Collado

Advisors: Prof. Ignacio Blanquer Espert

Dr. Miguel Caballer Fernández





Firstly, I would like to express my sincere gratitude to my advisor Prof.
Ignacio Blanquer who provided me an opportunity to join his group. Without
his precious support it would not have been possible to conduct this research.

His patience, motivation, and knowledge are invaluable.

Besides, I would like to thank my advisor Dr. Miguel Caballer whose
guidance helped me in all the time of research and writing of this thesis. In
fact, the �heart� of this thesis lies in the results produced by his own thesis.

Also I would like to thank Ignacio Medina for suggesting some ideas that were
crucial in the development of this thesis.

I thank my fellow labmates for the stimulating discussions and for all the fun
we have had in the last ten years. In particular, I am grateful to Dr.

J.Damian Segrelles for his guidance during the �nal degree project and Prof.
Germán Moltó for suggesting some important changes to this document.

Last but not least, I would like to thank my family and friends for supporting
me spiritually throughout writing this thesis and my life in general.





Abstract

Scienti�c Work�ows (SWFs) are widely used to model applications in e-Science.
In this programming model, scienti�c applications are described as a set of
tasks that have dependencies among them. During the last decades, the exe-
cution of scienti�c work�ows has been successfully performed in the available
computing infrastructures (supercomputers, clusters and grids) using software
programs called Work�ow Management Systems (WMSs), which orchestrate
the workload on top of these computing infrastructures. However, because each
computing infrastructure has its own architecture and each scienti�c applica-
tion exploits e�ciently one of these infrastructures, it is necessary to organize
the way in which they are executed.

WMSs need to get the most out of all the available computing and storage
resources. Traditionally, scienti�c work�ow applications have been extensively
deployed in high-performance computing infrastructures (such as supercom-
puters and clusters) and grids. But, in the last years, the advent of cloud
computing infrastructures has opened the door of using on-demand infrastruc-
tures to complement or even replace local infrastructures. However, new issues
have arisen, such as the integration of hybrid resources or the compromise
between infrastructure reutilization and elasticity, everything on the basis of
cost-e�ciency.

v



The main contribution of this thesis is an ad-hoc solution for managing work-
�ows exploiting the capabilities of cloud computing orchestrators to deploy
resources on demand according to the workload and to combine heterogeneous
cloud providers (such as on-premise clouds and public clouds) and traditional
infrastructures (supercomputers and clusters) to minimize costs and response
time. The thesis does not propose yet another WMS, but demonstrates the
bene�ts of the integration of cloud orchestration when running complex work-
�ows. The thesis shows several con�guration experiments and multiple het-
erogeneous back-ends from a realistic comparative genomics work�ow called
Orthosearch, to migrate memory-intensive workload to public infrastructures
while keeping other blocks of the experiment running locally. The running time
and cost of the experiments is computed and best practices are suggested.

vi



Resumen

Los �ujos de trabajo cientí�cos son comúnmente usados para modelar aplica-
ciones en e-Ciencia. En este modelo de programación, las aplicaciones cientí-
�cas se describen como un conjunto de tareas que tienen dependencias entre
ellas. Durante las últimas décadas, la ejecución de �ujos de trabajo cientí-
�cos se ha llevado a cabo con éxito en las infraestructuras de computación
disponibles (supercomputadores, clústers y grids) haciendo uso de programas
software llamados Gestores de Flujos de Trabajos, los cuales distribuyen la
carga de trabajo en estas infraestructuras de computación. Sin embargo, de-
bido a que cada infraestructura de computación posee su propia arquitectura y
cada aplicación cientí�ca explota e�cientemente una de estas infraestructuras,
es necesario organizar la manera en que se ejecutan.

Los Gestores de Flujos de Trabajo necesitan aprovechar al máximo todos los
recursos de computación y almacenamiento disponibles. Habitualmente, las
aplicaciones cientí�cas de �ujos de trabajos han sido ejecutadas en recursos de
computación de altas prestaciones (tales como supercomputadores y clústers)
y grids. Sin embargo, en los últimos años, la aparición de las infraestructuras
de computación en la nube ha posibilitado el uso de infraestructuras bajo de-
manda para complementar o incluso reemplazar infraestructuras locales. No
obstante, este hecho plantea nuevas cuestiones, tales como la integración de
recursos híbridos o el compromiso entre la reutilización de la infraestructura y
la elasticidad, todo ello teniendo en cuenta que sea e�ciente en el coste.

vii



La principal contribución de esta tesis es una solución ad-hoc para gestionar
�ujos de trabajos explotando las capacidades de los orquestadores de recursos
de computación en la nube para desplegar recursos bajo demanda según la
carga de trabajo y combinar proveedores de computación en la nube heterogé-
neos (privados y públicos) e infraestructuras tradicionales (supercomputadores
y clústers) para minimizar el coste y el tiempo de respuesta. La tesis no pro-
pone otro gestor de �ujos de trabajo más, sino que demuestra los bene�cios
de la integración de la orquestación de la computación en la nube cuando se
ejecutan �ujos de trabajo complejos. La tesis muestra experimentos con difer-
entes con�guraciones y múltiples plataformas heterogéneas, haciendo uso de
un �ujo de trabajo real de genómica comparativa llamado Orthosearch, para
traspasar cargas de trabajo intensivas de memoria a infraestructuras públicas
mientras se mantienen otros bloques del experimento ejecutándose localmente.
El tiempo de respuesta y el coste de los experimentos son calculados, además
de sugerir buenas prácticas.

viii



Resum

Els �uxos de treball cientí�cs són comunament usats per a modelar aplicacions
en e-Ciència. En aquest model de programació, les aplicacions cientí�ques es
descriuen com un conjunt de tasques que tenen dependències entre elles. Du-
rant les últimes dècades, l'execució de �uxos de treball cientí�cs s'ha dut a
terme amb èxit en les infraestructures de computació disponibles (supercom-
putadors, clústers i grids) fent ús de programari anomenat Gestors de Fluxos de
Treballs, els quals distribueixen la càrrega de treball en aquestes infraestruc-
tures de computació. No obstant açò, a causa que cada infraestructura de
computació posseeix la seua pròpia arquitectura i cada aplicació cientí�ca ex-
plota e�cientment una d'aquestes infraestructures, és necessari organitzar la
manera en què s'executen.

Els Gestors de Fluxos de Treball necessiten apro�tar al màxim tots els recursos
de computació i emmagatzematge disponibles. Habitualment, les aplicacions
cientí�ques de �uxos de treballs han sigut executades en recursos de com-
putació d'altes prestacions (tals com supercomputadors i clústers) i grids. No
obstant açò, en els últims anys, l'aparició de les infraestructures de computació
en el núvol ha possibilitat l'ús d'infraestructures sota demanda per a comple-
mentar o �ns i tot reemplaçar infraestructures locals. No obstant açò, aquest
fet planteja noves qüestions, tals com la integració de recursos híbrids o el com-
promís entre la reutilització de la infraestructura i l'elasticitat, tot açò tenint
en compte que siga e�cient en el cost.

ix



La principal contribució d'aquesta tesi és una solució ad-hoc per a gestionar
�uxos de treballs explotant les capacitats dels orquestadors de recursos de com-
putació en el núvol per a desplegar recursos baix demanda segons la càrrega
de treball i combinar proveïdors de computació en el núvol heterogenis (pri-
vats i públics) i infraestructures tradicionals (supercomputadors i clústers) per
a minimitzar el cost i el temps de resposta. La tesi no proposa altre gestor
de �uxos de treball més, sinó que demostra els bene�cis de la integració de
l'orquestració de la computació en el núvol quan s'executen �uxos de treball
complexos. La tesi mostra experiments amb diferents con�guracions i múlti-
ples plataformes heterogènies, fent ús d'un �ux de treball real de genòmica
comparativa anomenat Orthosearch, per a traspassar càrregues de treball in-
tensives de memòria a infraestructures públiques mentre es mantenen altres
blocs de l'experiment executant-se localment. El temps de resposta i el cost
dels experiments són calculats, a més de suggerir bones pràctiques.

x



Contents

Abstract v

Resumen vi

Resum viii

Contents xi

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Thesis organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 State of the Art 5

2.1 Computing platforms survey . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Challenges of the execution of Work�ows in Clouds . . . . . . . . . . . . . . . 11

2.3 Virtual infrastructure deployment and orchestration systems . . . . . . . . 13

2.4 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

xi



Contents

3 Objectives and Methods 23

3.1 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4 System architecture 29

4.1 Architecture overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.2 Work�ow design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.3 Work�ow planning. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.4 Work�ow execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.5 Performance optimizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.6 Persistence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.7 Fault tolerance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.8 Provenance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5 Use case 61

5.1 Preliminary concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.2 Orthosearch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.3 Data selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

6 Experiments 65

6.1 Infrastructures used . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6.2 Sequential execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

6.3 Cloud Computing WMS-aided execution. . . . . . . . . . . . . . . . . . . . . . . 67

6.4 Overall analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

6.5 Hybrid platform execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

7 Conclusions and Future Work 75

7.1 Summary and main contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

xii



Contents

Bibliography 79

xiii





Chapter 1

Introduction

Traditional science is representative of two di�erent philosophical trends within
the history of science, theoretical (analytical) and experimental (observational).
But, in the last decades, Computer Science has revolutionized the way in which
science and engineering are conducted and nowadays is recognized as the �third
branch� of science along with theory and experimentation [1]. With the in-
clusion of computing, the term e-Science was de�ned as �the application of
computer technology to the undertaking of modern scienti�c investigation,
including the preparation, experimentation, data collection, results dissemina-
tion, and long-term storage and accessibility of all materials generated through
the scienti�c process� [2]. In short, e-Science is the Science in which the use
of the computers becomes indispensable for performing scienti�c research from
di�erent scienti�c areas in an e�cient way.

The relation between Science and computing goes back to the 1960s, when
powerful computers (in terms of speed calculation and storage capacity), called
supercomputers, were employed for performing scienti�c and engineering prob-
lems. At that time, a typical experimental scenario consisted in a repetitive
cycle of moving data to a supercomputer for processing, submitting the ex-
ecutions and retrieving the outputs from the data storage [3]. Obviously, it

1



Chapter 1. Introduction

was necessary to automate this process for allowing scientists to focus on their
research and not in the computational management. At the same time the
business community was addressing how to automate business processes and
as a result theWork�ow concept was born. In the business context, a Work�ow
can be de�ned as the orchestration of a set of activities in order to accomplish
a larger and sophisticated goal. A specialization of this idea was adopted by
the scienti�c research to model e-Science processes, the Scienti�c Work�ows
(SWFs). In this programming model, scienti�c applications are described as a
set of tasks that have dependencies among them. In this manner, a task will
start its execution only when the tasks it depends on have completed their
execution.

The execution of work�ow applications is a task with many issues. A typical
work�ow is composed of hundreds of tasks that must be executed in a coordi-
nated way. In addition, all these tasks must be submitted to speci�c computing
resources and the required inputs must be made available to the application.
In data intensive applications, the staging of the input �les demanded by a
task could require transferring vast amounts of data among resources. In this
complex scenario, it is possible to identify several single points of failure: the
reception of user inputs, the data transfer among tasks, tasks executions, hard-
ware crashes, etc. Thus, in all these scenarios it is necessary to carry out actions
for resuming the execution, such as retrying the data transfer, rescheduling the
task or resetting the resources. The software in charge of dealing with all these
aspects are called Work�ow Management Systems (WMSs).

As new computing paradigms emerge and infrastructures evolve, so do the
WMSs that support these computing back-ends. Scienti�c work�ow applica-
tions are deployed in high-performance computing (HPC) infrastructures, such
as clusters and supercomputers, and in highly distributed infrastructure, such
as the Grid. Grid Computing o�ers secure and collaborative resource sharing
across multiple, geographically distributed institutions. Due to the high impact
of Grid infrastructures on the research community, the de�nition of e-Science
was revised as �computationally intensive science that is carried out in highly
distributed network environments, or science that uses immense data sets�.
In the last years, a new distributed computing paradigm, Cloud Computing,
has emerged as another viable [4] platform for running scienti�c applications.
Some of its main features, such as rapid elasticity, resource pooling, and pay
per use, are well suited to the nature of scienti�c applications that experience

2



1.1 Motivation

a variable demand during its execution. In fact, a typical scenario involves
the execution of a scienti�c work�ow whose stages or phases have di�erent
computational requirements and therefore, a single infrastructure cannot deal
with the whole work�ow, as it may require overcommitting resources on stages
where are not needed.

As a consequence of the variable requirements (sequential and parallel execu-
tion, data and compute intensive) among the stages of the same work�ow that
model a scienti�c application (specially in the bioinformatics �eld), there is
a need for WMSs that e�ciently handle the execution of these work�ows to
enable new research discoveries.

1.1 Motivation

In order to avoid outsourcing the whole work�ow to external resources which
will lead to highter cost, or if it cannot be performed for IPR (Intellectual
Property Rights) or privacy issues, it is crucial that WMSs o�er multi-platform
support where only certain parts of the work�ow are migrated to external re-
sources. In order to achieve it, legacy WMSs have been updated to support
multiple platforms for the execution of work�ow applications, but they cannot
bene�t from all the features that the cloud computing provides. This is be-
cause most legacy WMSs are derived from grid computing projects and thus
are optimized for grids [5]. On the other hand, current WMS supporting clouds
are normally focused on fully supporting a small number of cloud computing
providers and ignore older computing platforms (i.e Grid, cluster and super-
computers).

So, this thesis shows how a multi-platform WMS can be developed on top of a
cloud orchestration system for executing SWFs on a heterogeneous computing
environment. The main contributions of this thesis are summarized in the
following points:

� An ad-hoc multi-platform WMS developed on top of a cloud orchestra-
tion system. It is important to remark that the aim of this thesis is
not to provide yet another WMS, but to show the usefulness of cloud
orchestrator systems for running complex work�ows on a heterogeneous

3



Chapter 1. Introduction

computing environments (such as on-premise clouds, clusters and public
clouds).

� The cloud orchestrator chosen allows on-demand and automatic infras-
tructure deployment depending on the work�ow workload.

� The infrastructures are contextualized according to the user's require-
ments and it is possible to use any Virtual Machine Image (VMI) from
any source.

� The system is evaluated using, as use case, a realistic comparative ge-
nomics work�ow called Orthosearch with di�erent con�gurations. These
scenarios suggest best practices for minimizing costs and running times.

1.2 Thesis organization

The remaining of the present thesis is structured as follows.

� Chapter 2 presents some basic de�nitions and terminology related to the
topic of the thesis along with a survey of the related state-of-the-art
solutions.

� Chapter 3 states the objectives of the thesis and the methodology fol-
lowed during its development.

� Chapter 4 presents all the aspects regarding the design of the ad-hoc
Work�ow Management System and how it is binded with the cloud or-
chestration system.

� Chapter 5 introduces the use case for the experiments, the bioinformatics
pipeline called Orthosearch.

� Chapter 6 explains the di�erent experiments carried out with the WMS
as well as an exhaustive analysis of the results.

� Chapter 7 contains the conclusions derived from this thesis and future
research lines that can be explored in the future.

� Lastly, the �nal section of the document exposes the main contributions
of this thesis regarding to the collaborations established and the literature
derived as a result of it.

4



Chapter 2

State of the Art

This chapter introduces the state of the art in several concepts
(from general terms to more speci�c aspects) related with the top-
ics of the thesis. Section 3.1 begins the chapter with a general
description of the di�erent distributed computing paradigms refer-
enced along the text and a comparison between them. Following
that, Section 3.2 goes in depth about crucial issues that should be
addressed by any system that supports the execution of work�ow ap-
plications in cloud computing infrastructures. Section 3.3 reviews
di�erent orchestration solutions for the management of cloud com-
puting resources and justi�es the reason that has led to the choice
of one of these systems as a base for the ad-hoc WMS developed in
this thesis. Last but not least, Section 3.4 o�ers a list of the most
prominent Work�ow Management Systems found in the literature.

5



Chapter 2. State of the Art

2.1 Computing platforms survey

The three main distributed computing paradigms are: cluster, grid and cloud.

2.1.1 Cluster Computing

For many years, high-performance computing (HPC) was restricted to institu-
tions that could a�ord the signi�cantly expensive supercomputers of that time.
But, due to the need of HPC in small scale and at a lower cost, supercomput-
ers were replaced in most cases with clusters [6]. The introduction of cluster
platforms was driven by a number of academic projects, such as Beowulf [7],
Berkeley NOW [8] and HPVM [9].

A cluster is a collection of parallel or distributed computers
which are interconnected between themselves through high-speed
networks (such as gigabit Ethernet, SCI, Myrinet and In�ni-
band). They work together in the execution of compute and data
intensive tasks that would be not viable to execute on a single
computer. Clusters are used for high-availability and load bal-
ancing. The high availability is achieved by keeping redundant
nodes which are used as backup when components of the system
fail. This way, if one node fails there is another idle node which
will perform the task, removing single points of failure without
any hindrance. When multiple computers are linked together
in a cluster, they share computational workload as a single vir-
tual computer. From the users' point of view there are multiple
machines, but they function as a single virtual machine [6].

2.1.2 Grid Computing

The popularity of the Internet and the availability of powerful computers and
high-speed network technologies changed the way that computers were used.
Grid computing originated in the academia in the mid 1990s with the inten-
tion of facilitating users to remotely use idle computing power within other
computing centres when the local one was busy. Initially, it only referred to a
compute grid and had a rather limited number of users. However, after years of
development the grid became mainstream and became an e�ective way for co-
ordinated resource sharing and problem solving in dynamic, multi-institutional

6



2.1 Computing platforms survey

virtual organizations.

From its inception, Grid computing was conceptually based on the principles
of an electric power grid. A large number of electric power generating plants
interconnect with one another, providing standardized, reliable, cheap, and
ubiquitous access to electric power. Similarly, a computational Grid forms
a closed network of a large number of pooled resources providing standard-
ized, reliable, specialized, and pervasive access to high-end computational re-
sources [10]. However, some authors disagree on this analogy with the power
grid. Due to the intrinsic heterogeneity of the Grid, its resources o�er di�erent
characteristics, such as: quality of service, software stack, capability, type of
resource, etc. Thus, according to this, the user would be interested not only on
the resource itself (like in the power grid scenario) but also on the source from
where the resources consumed are provided. Formally, Grid computing [11]
combines computers from multiple administrative domains to reach a common
goal. One of the main strategies of grid computing is to use middleware to
divide parts of a program among several computers. Grid computing involves
computation in a distributed fashion, which may also involve the aggregation
of large-scale cluster computing-based systems. The size of a grid may vary
from a small network of computer workstations within a corporation to large
collaborations across many companies and networks.

The de�nitions given by remarkable people in the �eld are the following:

Buyya et. al. [10] de�ned grid as a type of parallel and dis-
tributed system that enables the sharing, selection, and aggre-
gation of geographically distributed autonomous resources dy-
namically at runtime depending on their availability, capability,
performance, cost, and users quality-of-service requirements.

Ian Foster [12] de�ned grid as a system that coordinates re-
sources which are not subject to centralized control, using stan-
dard, open, general-purpose protocols and interfaces to deliver
non-trivial qualities of service.

7



Chapter 2. State of the Art

2.1.3 Cloud Computing

Cloud Computing [13] is a computing model that emerged around the end of
2007. It provides a pool of computing resources which the users can access
through Internet. The basic principle of cloud computing is to shift the com-
puting done from the local computer into the network. Resource are requested
on-demand without any prior reservation and thus avoids over-provisioning
and improves resource usage.

Currently the most relevant and broadly accepted de�nition of Cloud Comput-
ing is the one provided by the National Institute of Standards and Technology
(NIST [14]).

According to the NIST, Cloud Computing is a model for en-
abling ubiquitous, convenient, on-demand network access to a
shared pool of con�gurable computing resources (e.g., networks,
servers, storage, applications and services) that can be rapidly
provisioned and released with minimal management e�ort or
service provider interaction.

This cloud model implies �ve essential characteristics, three service models and
four deployment models.

NIST de�nes �ve characteristics that any deployment must include to be con-
sidered a cloud:

� On-demand self-service. Consumers must be able to automatically pro-
vision computing resources, with no human interaction required from the
provider side.

� Broad network access. Computing resources are accessed through the
network by using standard mechanisms, independently of the client plat-
form.

� Resource pooling. Computing resources are pooled together, serving mul-
tiple users in a multi-tenant model, reassigning them dynamically based

8



2.1 Computing platforms survey

on the demand. These backend operations are transparent to the user,
in the sense that these details are generally concealed to them.

� Rapid elasticity. Resources can be dynamically provisioned and released,
in some cases automatically, scaling up and down rapidly. This ability
gives the user the illusion of unlimited capacity, adjusting the provision
of resources to the system load.

� Measured service. Resource usage can be monitored, controlled and re-
ported at some level of abstraction relevant to the type of resource.

The three basic service models are the following:

� Infrastructure as a Service (IaaS). The provided capability to the user is
processing, storage, network and other fundamental computing resources.
User has freedom to select the operating system and run arbitrary soft-
ware on this hardware.

� Platform as a Service (PaaS). The provided capability to the user is a
runtime or environment targeted to a particular programming language
or applications. User has the freedom to deploy and run applications
developed using languages, libraries or tools supported by the provider.
Although the user does not have control over the underlying hardware
con�guration (CPU, memory, etc.) he may have control over con�gura-
tion settings for the runtime.

� Software as a Service (SaaS). The provided capability to the user is a
ready-to-use software service hosted by the cloud platform. These ser-
vices are accessible over the network using a variety of client devices.
Users have no control over the underlying hardware or runtime con�gu-
ration, although services may provide con�gurable settings.

Finally, the four deployment models are:

� Public Cloud: The Cloud platform is provisioned for the use of the gen-
eral public. It may be owned and managed by a single organization, or
a combination of them.

� Private Cloud: The Cloud platform is provisioned for the exclusive use
by a particular organization. It may be owned and managed by the
organization itself, or by third party.

9



Chapter 2. State of the Art

� Community Cloud: The Cloud platform is provisioned for the exclusive
use by users of di�erent organizations. It may be owned and managed
by one or more of these organizations, by a third party or by any com-
bination of them.

� Hybrid Cloud: The Cloud platform is composed by two or more Cloud
deployments, which remain independent from each other and commu-
nicate exchanging data and applications using standard or proprietary
protocols.

2.1.4 Platform comparison

The purpose of this subsection is to highlight that the ideal platform for execut-
ing a scienti�c work�ow application will depend on the software and hardware
requirements of each task and the user pro�le (some have access to supercom-
puters, others to grids, etc.). Because each platform o�ers di�erent advantages
and disadvantages, there is not an ideal choice for every scenario, and thus, it
is crucial to be able to use as many platforms as possible.

When deploying scienti�c work�ow applications on clusters the priority of an
execution is to minimize the response time by maximizing the utilization of
the resources available for the work�ow.

When Grids became widespread, work�ows were also deployed on these infras-
tructures. Due to the highly-distributed nature of Grid resources, the schedul-
ing process became more complex and data movement across wide distances
may be necessary. In order to improve the scheduling process, researchers have
formulated many e�cient scheduling algorithms (mostly based on heuristics).
But, even in this case, the focus was on minimizing the execution time of
the work�ow. Although grids o�ered a huge amount of resources, their het-
erogeneity resulted on users being limited to those resources with a software
environment capable of supporting their legacy applications. Obviously, Grid
providers cannot support the diversity of all possible environments. Moreover,
the complexity behind grid infrastructures di�cult the design of user-friendly
interfaces for scientists without computer science background. In fact, popular
middlewares, such as UMD [15] are not easy to use if high-level user interfaces
are not provided on top of it.

10



2.2 Challenges of the execution of Work�ows in Clouds

The advent of Cloud Computing o�ered another viable platform for running
scienti�c applications [4]. In particular, the use of virtualization provides many
useful bene�ts for scienti�c applications including: customization of the soft-
ware stack by the user, performance isolation, check-pointing and migration,
better reproducibility of scienti�c analyses, and enhanced support of legacy
applications [5]. Other characteristics of the Cloud such as the elasticity and
pay-per-use are well suited to the nature of scienti�c work�ows that experience
a variable demand of software and hardware resources during the execution of
the di�erent tasks. Because clouds give the perception or illusion of in�nite
computing resources, the only limitations to the reduction of the execution
time are the available resources that the user can a�ord and the inner scalabil-
ity of the applications. Therefore, the goal in clouds is to achieve a trade-o�
between minimizing the execution time and the �nancial cost.

Security is a feature that becomes more di�cult to achieve on new platforms,
due to their intrinsic complex model. In this way, clusters are the option
recommended for hosting application where sensitive information is managed
while clouds are not feasible at all in this particular case. With respect to the
costs showed for each platform, we assume that grids are accessed with low (or
none) cost granted certi�cates expended by authorization entities and clouds
follow the pay-as-you-go model (minimizing the cost).

2.2 Challenges of the execution of Work�ows in Clouds

Every computing paradigm has unique challenges that have the potential to be
converted into opportunities for further research. In this section, the challenges
of the most recent computing paradigm, cloud computing, are highlighted.

Li et al. [16] identi�ed the following requirements for cloud-enabled work�ows:

� Dynamic resource provisioning : This is the capability of acquiring and
releasing resources as required to allocate the task of work�ow.

11



Chapter 2. State of the Art

� Scalability: This relates to the capability of reacting to conditions faced
during work�ow execution to maintain the balance between cost, utiliza-
tion, and execution time. In the context of this requirement, a change
in conditions means adapting to changes in user requirements at run-
time. The computing nodes are scaled up and down dynamically by the
application.

� Quality of Service: Allowing the user to de�ne deadlines is crucial for
time-critical work�ow applications that need to be completed before a
certain amount of time to have value (e.g. applications for prediction of
natural disasters, such as �oods, cyclones and bush�res). Therefore, the
goal is to use the minimum quantity of resources which guarantee that
the deadlines are met and costs are not exceeded.

� Fault tolerance: This is the possibility to automatically react to changes
in the available number of resources or tasks to be processed because of
failures. The system developed must be reliable.

� Security and privacy: Given that the data being managed by the work-
�ows can be sensitive, mechanisms for protection of the data, either
during transfer or once stored in a public cloud, must be available. The
applied method should also allow auditing the access and modi�cations
done to the data. Typically, the user has no idea where the data is stored.

� Multi-tenancy: When the number of applications running on the same
compute node increases, it will reduce the amount of bandwidth allo-
cated to each application which may lead to performance degradation.
Fortunately, the VM encapsulation in the cloud infrastructures eases the
isolation of the executions of di�erent work�ows and users, not existing
any interference between them.

� Provenance: This requirement involves the capability to collect and pro-
cess information about the system status and monitor the platform and
the application in real time.

As it will be shown later, many of these requirements will be addressed in this
thesis.

12



2.3 Virtual infrastructure deployment and orchestration systems

2.3 Virtual infrastructure deployment and orchestration

systems

The aim of this section is to describe a set of virtual management infrastructure
systems, a tool that allows the e�cient execution of scienti�c work�ow appli-
cations in a cloud environment. The list begins from more basic tools that are
provided as software layers on top of cloud providers, easing the deployment
of virtual infrastructures, to more recent and complex tools that automate the
whole life-cycle of an application in the cloud.

Some Cloud providers such as Amazon Web Services (AWS) provide opera-
tions for deploying infrastructures. AWS CloudFormation [17] gives devel-
opers and systems administrators a way to create and manage a collection of
related AWS resources, provisioning and updating them. In addition, AWS
made available a system called OpsWorks [18], an application management
service that allows to deploy and operate three-tier (load balancing, logic and
database) applications. It allows the contextualization of the VM by specify-
ing: package installation, software con�guration and resources such as storage.
Both tools emphasize the simplicity of integration with AWS services but at
the same time are limited to this cloud provider.

The Nimbus project has developed the Nimbus Context Broker [19]. The
Context Broker is a service that allows clients to coordinate large virtual clus-
ter launches automatically and repeatably. It is used for deploying what they
call "one-click" virtual clusters that function right after launch as opposed to
launching a set of "unconnected" virtual machines. It also provides a facility
to personalize VMs (seed them with secrets, access policies, and just-in-time
con�gurations).
It is limited to Nimbus clouds and providers that use the Amazon Elastic Cloud
Computing (EC2) interface.

Wrangler [20] is a system that automatically provisions and con�gures virtual
clusters in the cloud. The system allows users to send a XML description of
the desired virtual cluster to a web service, which manages the provisioning of
virtual machines and the deployment of software and services. It is capable of
interfacing with many di�erent cloud resource providers (currently it supports

13



Chapter 2. State of the Art

Amazon EC2, Eucalyptus [21], and OpenNebula [22].
Virtual clusters are speci�ed using a custom XML format. The XML format
describes virtual clusters as a collection of several nodes, which correspond to
virtual machines. Each node has a provider that speci�es the cloud resource
provider to provision the node from, and de�nes the characteristics of the vir-
tual machine to be provisioned, such as the VM image to use and the hardware
resource type (CPU, memory, disk, etc.). Each node can have multiple roles,
which describe the functions that will be performed by the node. Each role
is associated with a script, called the role script, that will be executed on the
node to con�gure it for that role. Roles can be customized using parameters,
which are passed to the role script when it is executed on the node. Role scripts
can be any executable �le, but are typically shell, Python or Perl scripts. Users
can write their own scripts to implement a custom role.
Although it uses XML as de�nition language and con�guration scripts are
provided from outside the VMs, it uses static VM images that require the
�wrangler� agent to be pre-installed. Each node can be deployed in a di�erent
cloud provider, but the user must indicate the speci�c details of the provider,
such as the instance type, etc.

Vagrant [23] is an automation tool with a domain-speci�c language (DSL)
that is used to automate the creation of VMs and VM environments. The idea
is that a user can create a set of instructions, using Vagrant's DSL, that will set
up one or more VMs and possibly con�gure those VMs. Vagrant is composed
of the following components. Providers are the �back-end� of Vagrant. Va-
grant itself does not provide any virtualization functionality; it relies on other
products. Providers are how Vagrant interacts with the products that will do
the actual virtualization work. A provider could be VirtualBox (included by
default with Vagrant), VMware Fusion, Hyper-V, vCloud Air, or AWS. At the
heart of Vagrant are boxes. Boxes are the prede�ned images that are used by
Vagrant to build the environment according to the instructions provided by the
user. A box may be a plain OS installation, or it may be an OS installation plus
one or more applications installed. Boxes may support only a single provider
or may support multiple providers (for example, a box might only work with
VirtualBox, or it might support VirtualBox and VMware Fusion). A single
box supports a single provider. The Vagrant�le contains the instructions from
the user, expressed in Vagrant's DSL, on what the environment should look
like, how many VMs, what type of VM, the provider, how they are connected,
etc. The Vagrant DSL (and therefore Vagrant�les) are based on Ruby.

14



2.3 Virtual infrastructure deployment and orchestration systems

Cloudify [24] is an open source TOSCA-based [25] cloud orchestration soft-
ware platform written in Python and YAML. Built on a YAML DSL (Domain
Speci�c Language) con�guration �les called �blueprints� which de�ne the ap-
plication's con�gurations, services and their dependencies. With these, Cloud-
ify automates the deployment phases of applications to Cloud computing and
Virtualization infrastructure. The blueprints describe how the application in-
teracts with the data center through APIs to execute the de�ned blueprint
con�gurations.
These blueprint �les describe the execution plans for the lifecycle of the appli-
cation for installing, starting, terminating, orchestrating and monitoring the
application stack. Cloudify uses the blueprint as input that describes the de-
ployment plan and is responsible for executing it on the cloud environments.
The blueprint also employs cloud driver con�guration �les as well, to describe
machines and their images for the chosen cloud, making it possible to manage
the infrastructure as code. For each component it describes the location of the
binaries, installation and monitoring con�gurations. By creating an abstrac-
tion layer that isolates the code from the underlying infrastructure, Cloudify
is able to support most cloud providers. Cloudify also supports con�guration
management tools such as Chef [26], Puppet [27] and Ansible [28] for the appli-
cation deployment phase, as a method of deploying and con�guring application
services.

Heat [29] implements an orchestration engine to launch multiple composite
cloud applications based on templates in the form of text �les that can be
treated like code. A Heat template describes the infrastructure for a cloud
application in a text �le that is readable and writable by humans, and can
be checked into version control, etc. A native Heat template is being devel-
oped, but Heat provides compatibility with the AWS CloudFormation template
format, so that many existing CloudFormation templates can be launched
on OpenStack [30]. Infrastructure resources that can be described include:
servers, volumes, security groups, users, etc. Heat provides both an OpenStack-
native REST API and a CloudFormation-compatible Query API. Templates
can also specify the relationships between resources (e.g. this volume is con-
nected to this server). This enables Heat to call out to the OpenStack APIs to
create the whole infrastructure in the correct order to completely launch the
desired application. Although, Heat primarily manages infrastructures, the
templates integrate well with software con�guration management tools such

15



Chapter 2. State of the Art

as Puppet and Chef.

Cloud Foundry [31] is an open source cloud computing platform as a ser-
vice (PaaS). When an application is deployed to Cloud Foundry, an image is
created for it and stored internally. The image is then deployed in an isolated
environment, called Warden container. For multiple instances, multiple images
are started on multiple containers. Cloud Foundry's internal Controller uses
the BOSH deployment description language to get the underlying infrastruc-
ture to spin up virtual machines to run the Warden containers on. When an
application is terminated, all its VMs can be recycled for another application
to use. If the application instance crashes, its container is killed and a new
Warden container is started automatically. A container only ever runs only
one application.

The Infrastructure Manager(IM) [32] is a cloud computing orchestrator that
eases the use of IaaS (Infrastructure as a Service) clouds by automating the
VMI selection, deployment, con�guration, software installation, monitoring
and update of Virtual Appliances. The main features of this tool are:

� A language speci�cation of software and hardware requirements for the
user applications that can be used by both non-expert (since it is easy
to encapsulate recipes as building blocks) and advanced users (due to its
high expressivity), called RADL (Resource and Application Description
Language) [32].

� Another component, the VMRC (Virtual Machine Resource Catalog) [33]
is used to select the most suitable Virtual Machine Image (VMI) based
on the user expressed requirements.

� Provision of Virtual Machines on both, public clouds (Amazon EC2,
Microsoft Azure, etc.), private clouds (OpenNebula, OpenStack, etc.)
and federated cloud environments (such as EGI FedCloud or FogBow).

� Run-time contextualization of the infrastructure that installs and con-
�gures the software required that may not be pre-installed in the VMIs
selected, using the Ansible [28] tool.

� Elasticity management support.

16



2.3 Virtual infrastructure deployment and orchestration systems

� Last but not least, it provides two APIs to enable high-level components
to access the functionality: XML-RPC and REST APIs. These APIs
provide a set of simple functions for clients to create, destroy, and get
information about the infrastructures. The RADL language is used both
to create and to get the information about the infrastructures. The
IM also provides functions to add and remove resources and modify the
features of the existing ones, both hardware and software on run-time.

VMRC

Infrastructure Manager

Cloud
Selector

VMRC

Cloud Connector

Conf.
Manager

Ficheros 
Conf & CTX

XML-RPC API REST API

Web Interface CLI Interface

MV

MV

MV

...

RADL

VM Master

Cntxt.
Agent

Ansible

OpenNebula OpenStack EC2 ...

Ansible

VMRC

...

Figure 2.1: Infrastructure Manager architecture.

Figure 2.1 shows the architecture of the Infrastructure Manager. On the top,
the client interfaces currently available for users are depicted (Web and Com-

17



Chapter 2. State of the Art

mand Line Interfaces). The IM in the center of the �gure provides the up-
per layers with the functionality through the APIs provided (XML-RPC and
REST). The IM uses the �Cloud Selector� component to connect to the VMRC
service to get the list of VMIs that best �t the user requirements (expressed
in the RADL document) and merge this information with the list of available
cloud deployments for the user, in order to get the best option. The �Cloud
Connector� layer makes e�ective the provision of VMs in the cloud deploy-
ments. It provides an homogeneous interface to connect with the di�erent
cloud middlewares. Finally, once the VMs are deployed and in the running
state, the �Con�guration Manager� is in charge of managing the contextual-
ization of all the VMs of the infrastructures using the Ansible utility.

2.4 Related work

Although the aim of the thesis is not to o�er yet another WMS but an exe-
cution system that can be abstracted from WMSs, related work can only be
found in the state-of-the-art WMSs. Moreover, given the impact of the cloud
computing paradigm in the WMS landscape, they have been split into two
categories: pre-cloud era WMSs and post-cloud era WMSs.

The following ones belong to the pre-cloud era:

ASKALON [34] is an application development and computing environment
whose initial aim was to simplify the execution of applications that can bene�t
from the potential of Grid infrastructures. Scienti�c work�ows executed in
the ASKALON environment are based on the model described in the AGWL
speci�cation language [35]. AGWL documents can express DAGs (Directed
Acyclic Graphs) [36] as well as work�ow graphs containing loops and con-
ditional branches which impose control. When clouds became mainstream,
ASKALON was extended to support executions on cloud computing environ-
ments. Although [37] shows the execution of a meteorological application in
public and private clouds (Eucalyptus and Amazon EC2), there is no evidence
of a multi-platform execution, where di�erent infrastructures are used simul-
taneously.

18



2.4 Related work

Galaxy [38] is an open, web-based approach that facilitates genomics research.
It provides a collaborative environment for performing complex analyses, with
automatic provenance tracking, allowing the transparent sharing of compu-
tational details, intent and context. Its objective is to o�er accessible, re-
producible and transparent computational research. A Galaxy instance can
utilize compute clusters for running jobs, and can be easily interfaced with
portable batch system (PBS) or Sun Grid Engine (SGE) clusters. Galaxy can
be also instantiated on cloud computing infrastructures, primarily Amazon
Elastic Computing Cloud (EC2). The approach used by Galaxy in the cloud
consists on deploying a cloud cluster with a particular Galaxy AMI (Amazon
Machine Image) at the beginning of the work�ow execution. The drawback of
this static virtual cluster is the under usage of the resources when processing
complex pipelines with variable resource demands.

Taverna [39] is a WMS with a strong focus on bioinformatics where all com-
putational work�ow steps are Web Services. Work�ows can be designed and
executed on local desktop machines through the workbench or through other
clients or web interfaces using the server mode. The server accepts requests
from many users to execute remote work�ows with support of clusters, su-
percomputers, Grids or cloud environments. In order to use the di�erent re-
sources, users have to interact with non user-friendly services. Moreover, the
execution of the whole work�ow can only be deployed in a single infrastructure.

MOTEUR [40] is a work�ow engine originally designed to run Taverna [39]
work�ows in European Grid infrastructures. Its main feature is to enable
data, service and work�ow parallelism during the execution of the work�ow.
Although designed to e�ciently exploit Grid infrastructures, MOTEUR is an
agnostic infrastructure work�ow enactor. To the best of our knowledge, there
are no examples in the literature that show the behaviour of this engine in a
cloud or multi-platform scenario.

Pegasus [41] is a mature WMS that combines features such as portability
across a wide range of infrastructures (clusters, grids and clouds), scalability,
data management capabilities, exhaustive monitoring and complex work�ow
restructuring or transformations. It can be used with popular programming
languages among the scienti�c community (such as Java, Python, Perl) through

19



Chapter 2. State of the Art

its APIs (application programming interfaces) and also supports submission via
web portals. According to [42], in order to deploy Pegasus work�ows in the
cloud, users have to con�gure cloud instances as an HTCondor pool. Simi-
lar to the Galaxy case, all the resources needed by the work�ow are deployed
statically. Moreover, the VM image used for worker instances must contain
HTCondor, the Pegasus client tools, and the application, and must be con�g-
ured to contact the submit node to receive jobs. So, users cannot use a VM
image of their choice.

SwinDeW-C [43] (Swinburne Decentralised Work�ow for Cloud) is a decen-
tralized (based on peer to peer) WMS derived from its predecessor, SwinDeW-
G, a decentralized grid work�ow system. Due to its decentralized approach,
the system excels at QoS management. Moreover, because it inherits the com-
ponents of a previous grid project, the work�ows can be executed on grid and
the cloud. SwinDeW-C has been only tested in SwinCloud, a cloud comput-
ing simulation environment built on the computing facilities of the Swinburne
University of Technology.

Triana [44] is a work�ow environment focused at the Web services level. Tri-
ana is a work�ow environment that consists of a graphical user interface and an
underlying subsystem, which allows integration with multiple services and in-
terfaces. Its Web service orientation enables the execution of mixed-component
work�ows which interconnect WS-RF services, P2P services, Grid services and
Cloud services.

VGrADS [45] is a WMS that provides abstract management of grid and
cloud resources. The execution system includes fault tolerance and deadline
mechanisms. Because the project is more oriented towards batch-driven work-
�ows than data-intensive work�ows, the executions can be con�gured to use
advanced reservation of resources. The virtual grid abstraction of VGrADS
uni�es work�ow execution over batch queue systems (with and without ad-
vanced reservations) and cloud computing sites (including Amazon EC2 and
Eucalyptus).

20



2.4 Related work

WS-PGRADE [46] is a generic distributed computing infrastructure gate-
way framework that provides a work�ow-oriented framework that enables the
development, execution and monitoring of scienti�c work�ows where the nodes
of these work�ows can access several infrastructures including clusters, Grids,
desktop Grids, academic and commercial clouds. WS-PGRADE leverages the
use of a web service based application called the Distributed Computing In-
frastructure (DCI) Bridge. This web application enables work�ow manage-
ment systems to access transparently several infrastructures using the Basic
Execution Service (BES) [47] interface. The cloud resources that users can
access through the DCI Bridge must be previously registered by the Bridge's
administrator (cloud provider endpoint, VM id, VM size, VM quota). From
the end-user's point of view, this fact limits the cloud resources that can be
accessed. In our solution, the resources are contextualized following the re-
quirements expressed by the user.

In the post-Cloud era we �nd the following tools:

The Globus Galaxies platform [48] is a group of components that enable
the deployment of SaaS(Software as a Service) scienti�c gateways. The plat-
form leverages the Galaxy [38] work�ow system for the execution of scien-
ti�c work�ows; Globus transfer for transferring large amounts of data; Globus
Nexus for identity managements and authentication; and other components
such as Swift [49] for parallel execution and HTCondor for scheduling. Al-
though Globus Galaxies implements elastic scaling by providing on-demand
cloud computing resources, this feature works exclusively on the Amazon Elas-
tic Cloud Computing (EC2).

SciCumulus [50] is a cloud middleware that acts as intermediary between
WMSs and cloud infrastructures, promoting the work�ow parallelism follow-
ing the MTC (Many Tasks Computing) paradigm. It makes transparent the
complexity behind the management of cloud computing platforms to the sci-
entists and collects distributed provenance data for reproducibility purposes.
Analogous to the Galaxy case, the system deploys static virtual clusters for
the work�ow executions.

21



Chapter 2. State of the Art

Table 2.1: Comparison between state-of-the-art WMSs.

Infrastructures Multi-platform Resource provisioning VMI customization
ASKALON Grid and Cloud No Static No
Galaxy Cluster and Cloud No Static No
MOTEUR Any (Grid oriented) No No No
Pegasus Cluster, Grid and Cloud Yes Static No
SwinDeW-C Grid and Cloud No Static No
Taverna Cluster, Grid and Cloud Yes Static No
Triana Grid and Cloud Yes Static No
VGrADS Grid and Cloud No Reservation No
WS-PGRADE Cluster, Grid and Cloud Yes Static No
Globus Galaxies Cloud (EC2) No Static cloud-init based
SciCumulus Cloud No Static No

Table 2.1 summarizes and compares the features of all the tools reviewed.
The meaning of each column is the following:

� Infrastructures: List of infrastructure types supported.

� Multi-Platform: If the WMS o�ers the possibility of using several infras-
tructures simultaneously in a single work�ow execution.

� Resource provisioning: The way in which resources are provided. It
can be `Static' if all the resources needed by the work�ow are leased
before the beginning of the execution, `Just in time' if the resources are
requested adaptively only when they are actually used, and `Reservation'
of resources if the deployment is batch-oriented instead of data-oriented.

� VMI customization: Speci�es the type of customization support provided
by the tool.

A generalized de�ciency of all systems mentioned before is that they not o�er
just-in-time infrastructure deployment that provisions resources depending on
the work�ow workload (elasticity through dynamic provisioning). Moreover,
almost any system allows resource contextualization according to the user re-
quirements. Therefore, the next chapter exposes the main objectives of this
Thesis.

22



Chapter 3

Objectives and Methods

The aim of this chapter is twofold: to present the objectives
of the thesis and the methods followed for the attainment of these
goals. Section 3.1 starts exposing the general objective of the thesis,
followed by the list of aspects that must be considered, the goals that
every aspect must meet and the tasks that must be done to achieve
the goals. Next, Section 3.2 details the methods or research plan
that has been used as a guide for the development of the tasks of
the thesis.

3.1 Objectives

The general objective of the thesis is to demonstrate the bene�ts of the inte-
gration of cloud orchestration in WMSs when running complex work�ows. For
that purpose, this section proposes the design of an ad-hoc WMS for execut-
ing scienti�c applications on top of a cloud orchestration system. The WMS
will exploit key features of the cloud computing paradigm, such as deploying
resources on demand, but at the same time it will support the execution of
work�ows on heterogeneous cloud providers (such as on-premise clouds and
public clouds) and traditional infrastructures (supercomputers and clusters)
to minimize costs and response time.

23



Chapter 3. Objectives and Methods

Firstly, the ad-hoc WMS must consider all the features regarding the de�nition
of the work�ow, and execution management in the desired platforms. Thus,
the facets that should be taken into account are:

� Work�ow de�nition: Users need a mean to specify the application
that they want to execute. For that end, the following data should be
provided:

� Tasks: A scienti�c application presented as a work�ow is composed
of computation steps or stages that correspond to the tasks of the
application.

� Task execution order: The tasks of a scienti�c application must
be executed in a concrete order. In a work�ow model this is ex-
pressed via dependencies between tasks (i.e a task B has a direct
dependence with task A if A must be executed before starting B).

� Execution environment: The user should be allowed to indicate
the software con�guration required by each task: Operating System
(�avour, version, etc.) and the software bundle. Some tasks may
have software dependencies di�erent from other tasks, which could
be of great importance if we deal with license software. The provi-
sioning cost when dealing with license software in public clouds can
be signi�cant and thus, it will be of most importance to minimize
the number of compute instances that will use the license software.

� Target platform: Each task of the work�ow could be executed in
the computing platform that �ts better the execution model of the
task.

� Hardware con�guration: In addition to the platform, it is in-
teresting to be able to specify, for each task, the hardware con�gu-
ration: the number of nodes, the memory size, disks and capacity,
etc.

� Execution management: According to the requirements expressed by
the user, the system must handle the execution in the corresponding
resources with the proper con�guration. This facet entails the following
actions:

24



3.1 Objectives

� Support of traditional platforms: Infrastructures (such as su-
percomputers, clusters and grids) should be supported for executing
the work�ow tasks.

� Cloud Computing support: The e�cient and e�ective execution
of scienti�c work�ows in cloud computing infrastructures requires
bene�ting from the features provided by cloud orchestrators:

* Virtual Machine selection: According to the software re-
quirements of the user, the rightmost Virtual Machine Image
must be chosen.

* Infrastructure deployment: The infrastructure must be set-
up and made available for execution.

* Virtual Machine contextualization: Software dependencies
of the task must be pre-installed in the virtual machines that
will host them.

* Just-in-time provisioning and release of resources: Re-
sources will be provisioned only when they are needed and re-
leased when they are no longer necessary .

* Use of customized resources: The resources must re�ect
the hardware and software requirements indicated by the user.

To achieve these objectives, it will necessary to perform the following tasks:

� To specify a work�ow de�nition language that allows users to describe
any scienti�c application. The language should be easy to understand
(as similar as possible to natural language) for non-advanced users but
at the same time it should allow to introduce all the relevant data for
doing exactly what the user needs to do.

� To design an ad-hoc and multi-platform WMS that allows using tra-
ditional infrastructures (supercomputers, clusters and grids) as well as
clouds in a e�cient and e�ective way.

� To design a set of drivers for connecting the WMS with the di�erent
infrastructures. In particular, all the functionality regarding cloud in-
frastructures is already provided by the cloud orchestration systems.

� To evaluate the system using a realistic scenario that re�ects the bene-
�ts achieved with the integration of cloud orchestration in a simple but
functional WMS.

25



Chapter 3. Objectives and Methods

3.2 Methods

This section describes the methodology followed during the development of the
thesis, in chronological order.

3.2.1 Work�ow Management Systems review

The starting point of any research work begins with a survey of the state
of the art and the recent development on the �eld of interest, the Work�ow
Management Systems. The aim of this survey is to identify functionality gaps
in projects that have dealt with similar issues. These projects will help to
outline the features of the new system that will ��ll� the gaps present in current
WMSs. Moreover, the knowledge retrieved from the projects can be used to
optimize other features. The expected output of this methodological step is a
list of features to be included in the �nal system (see chapter 2).

3.2.2 Cloud orchestration systems review

Upon reviewing the features of the system to implement, it was detected that
all the functionality regarding the e�cient and e�ective use of cloud infrastruc-
tures was provided by tools known as cloud orchestration systems. So, in the
next step it was imperative to study the state of the art solutions and select
the one that �ts the requirements of this thesis. After the cloud orchestration
system has been chosen, it will tested and studied for future integration with
the WMS (see chapter 2).

3.2.3 Work�ow speci�cation language methodology

One of the crucial parts of the thesis is to analyse the user requirements for
de�ning the work�ows, taking into account that the language speci�cation
should be as close as possible to natural language (easing the process to non-
advanced users) and versatile. This methodology begins with a revision of
the data exchange languages available and the goal is to provide a complete
template with the work�ow speci�cation in the language chosen (see chapter
4).

26



3.2 Methods

3.2.4 Design and implementation of the WMS

The core part of the thesis comprises the design of the ad-hoc and multi-
platform WMS. The WMS must account the simplicity of the work�ow speci-
�cation and the support of work�ow execution on heterogeneous environments.
The outcome of this task is a working prototype of the WMS that implements
all the features listed in the �rst methodological step (see chapter 4).

3.2.5 Experimental testing

The last step consists on the experimental testing of the system in the previous
step. A realistic use case will be ideal for demonstrating the capabilities of the
system as well as for giving computational support to a concrete scienti�c
problem at the same time (see chapters 5 and 6).

27





Chapter 4

System architecture

This chapter describes the design and implementation of the ar-
chitecture behind the ad-hoc WMS developed. The chapter begins
with Section 4.1 showing the di�erent parts of the system architec-
ture. Next, Section 4.2 extensively details the work�ow speci�cation
language how the work�ow introduced by the user with the previous
language is transformed into something that can be understood and
executed by the work�ow engine. Next, Section 4.3 exposes various
performance optimizations geared towards reducing the turnaround
and cost of the experiments. Last but not least, Sections 4.4, 4.5 and
4.6 outline the persistence, fault tolerance and provenance modules
of the system, respectively.

4.1 Architecture overview

The system architecture has been designed taking into consideration the ob-
jectives set in the previous chapter. The overall organization of the system
is presented in [51], where the design is depicted in Figure 4.1. This schema
is based on [52], one of the most cited papers about the taxonomy of Grid
WMSs. The architecture presented in that paper has been extended in this
thesis to support heterogeneous environments. This section begins listing the

29



Chapter 4. System architecture

Users

Workflow Design 
& Definition

Build Time
Run Time

Workflow Execution 
& Control

Interaction with 
Computing 
Resources

Workflow Management System

Cloud resourcesCluster resources

Private
Cloud

Public
Cloud

Parser & 
Validator

Planner

Runtime

Fault 
Tolerance

Data 
Manager

Persistence & 
Provenance

User 
Storage

Workflow 
Specification

Connectors / Drivers

Cloud Orchestrator

Figure 4.1: WMS architecture overview.

design principles that have guided the de�nition of the architecture and then
describes each one of the components and their role in the management of
work�ows in heterogeneous environments.

30



4.1 Architecture overview

4.1.1 Design principles

The design principles represent a set of guidelines that avoid creating a bad
architecture design. If the architecture adheres to the following principles,
costs and maintenance will be minimized while usability and extendibility will
be promoted. The key principles of the architecture are:

� Platform-agnostic client. The client has been developed using a
platform-agnostic programming language and thus can be used in major
Operating Systems.

� Generality. It should be possible to execute any kind of work�ow ap-
plication that can be expressed using the work�ow structure explained
below.

� Extensibility. The architecture can be extended to include new func-
tionality such as support for a new computing and/or storage back-ends.

� Modularity. A change on a part of the system should not require
changes on the rest of the system if the interfaces are preserved.

� Multi-platform. Each stage/node of the work�ow can be executed
using di�erent computing back-ends.

� Compliant to the essential characteristics of the NIST Cloud
computing de�nition. When using cloud resources, the system follows
the requirements expressed by the National Institute of Standards and
Technology (NIST) cloud computing de�nition (see De�nition 1), with
respect to resource provision: on-demand self service, multitenancy and
rapid elasticity.

De�nition 1 �Cloud computing is a model for enabling ubiquitous, con-
venient, on-demand network access to a shared pool of con�gurable
computing resources (e.g., networks, servers, storage, applications, and
services) that can be rapidly provisioned and released withminimal
management e�ort or service provider interaction�.

31



Chapter 4. System architecture

4.1.2 Components

As Figure 4.1 shows, at the highest level, the functions of Work�ow Manage-
ment Systems could be split into build time functions and run time functions.

Build time components

The build-time functions comprise the de�nition and modelling of work�ow
tasks and their dependencies. Users interact with work�ow modelling tools or
with the work�ow speci�cation directly to generate a work�ow speci�cation.
This element constitutes the entry point of the system.

Run time components

Run-time functions entail the work�ow execution management and the inter-
action with the computing resources. Initially, the work�ow speci�cation gen-
erated at built-time is validated by the parser component. If the speci�cation
is valid, then the planner component transforms it into an executable work�ow
that can be used by the runtime element. The main functions of the runtime
are: scheduling tasks to jobs, moving the data between resources, restoring the
execution �ow when a job fails and storing provenance data for reproducibil-
ity purposes. The runtime achieves these goals through the following modules:
fault tolerance, data manager and persistence and provenance. The interaction
of the WMS with the computing and data resources is provided via di�erent
connectors or drivers for each back-end.

4.2 Work�ow design

The work�ow design includes three key factors, namely (a) work�ow structure,
(b) work�ow model/speci�cation and (c) work�ow composition system.

4.2.1 Work�ow structure

Most scienti�c applications can be modelled using the work�ow programming
model. In this model, the application is composed of multiple tasks that are
connected according to their dependencies. The work�ow structure also known
as work�ow pattern [53] [54] indicates the temporal relationship between these
tasks. Figure 4.2 shows the taxonomy of the work�ow structure where the

32



4.2 Work�ow design

Figure 4.2: Work�ow structure taxonomy.

green lines highlight the types supported by the ad-hoc WMS developed in
this Thesis. In general, a work�ow can be represented as a DAG or a non-
DAG.

The system proposed supports DAG-based work�ows (see Figure 4.3. In these
work�ows, the structure can be classi�ed as sequence, parallelism, and choice.
Sequence is de�ned as an ordered series of computational tasks, with one task
starting after a previous task has completed. Parallelism represents tasks which
are performed concurrently, rather than serially. In choice control pattern, a
task is selected when its associated conditions are true. In the concrete case
of the WMS designed, a task has dependencies in the form of �les and it will
start its execution only when the output �le(s) of the task(s) it depends on are
available. This kind of work�ows are called data-driven DAGs.

Figure 4.3: A typical scienti�c application modelled as a DAG.

In addition to all patterns contained in a DAG-based work�ow, a non-DAG
work�ow also includes the iteration structure in which sections of work�ow
tasks in an iteration block are allowed to be repeated. Iteration is also known
as loop or cycle. Although there are WMSs that provide conditional and loop
functionalities, the work�ow language becomes more complex and therefore its

33



Chapter 4. System architecture

adoption might be limited.

These four types of work�ow structure, namely sequence, parallelism, choice
and iteration, can be used to construct many complex work�ows.

4.2.2 Work�ow Model/Speci�cation

Work�ow Model (also called work�ow speci�cation) de�nes a work�ow includ-
ing its task de�nition and structure. There are two types of work�ow models,
namely abstract work�ow and concrete. They are also referred to as abstract
work�ows and concrete work�ows [55] [56]. In some literature [57] concrete
models are referred to as executable work�ows.

In an abstract model, a work�ow is described in an abstract form without re-
ferring to speci�c resources for task execution. An abstract model provides a
�exible way for users to de�ne work�ows without being concerned about low-
level implementation details. Tasks in an abstract model are portable and can
be mapped onto any suitable platforms at run-time by using suitable discov-
ery and mapping mechanisms. Using abstract models also eases the sharing of
work�ow description between users working in the same scienti�c �eld.

In contrast, a concrete model binds work�ow tasks to speci�c resources. In
some cases, a concrete model may include tasks acting as data movement to
transfer data in and out of the computation.

Given the dynamic nature of the distributed computing paradigms, it is more
suitable for users to de�ne work�ow applications in abstract models. How-
ever, concrete models may be used by some end users who want to control
the execution sequence [58]. A full or partial concrete model can be gener-
ated just before or during the work�ow execution according to the status of
the resources. The proposal for the WMS of this thesis is a model between
abstract and concrete, that has been named as semi-concrete work�ow spec-
i�cation. The model is called semi-concrete because the user must include
references to the resources that the task must be mapped to, but at the same
time, this work�ow is in a non-executable stage (does not contain speci�c tasks
for moving data, deploying resources, etc.).

34



4.2 Work�ow design

4.2.3 Work�ow Composition System

Work�ow composition systems are designed for enabling users to assemble com-
ponents into work�ows. For that purpose, systems must provide a high level
view of the work�ow applications, hiding the complex aspects of the underlying
infrastructures. Figure 4.4 shows the taxonomy for the work�ow composition
systems. User-directed composition systems allow users to edit work�ows di-
rectly, whereas automatic composition systems generate work�ows for users
automatically. In general, users can use work�ow languages for language-based
modelling and the tools for graph-based modelling to compose work�ows.

Within language-based modeling, users may express work�ow using a markup
language such as eXtensible Markup Language (XML) [59] or other formats.
Language-based modelling may be convenient for advanced users, but they
require to memorize a lot of language-speci�c syntax. However, work�ow lan-
guages are more appropriate for sharing and manipulation, whereas the graph-
ical representations are intuitive but they require to be converted into other
formats for manipulation. So, work�ow languages are designed to bridge the
gap between the user interface and the work�ow execution engine.

Graph-based modelling allows graphical de�nition of an arbitrary work�ow
through a few basic graph elements. It allows users to work with a graphical
representation of the work�ow. Users can compose and review a work�ow by
just clicking and dropping the elements of interest. It avoids low-level details
and hence enables users to focus on higher levels of abstraction at application
level [60]. The major modeling approaches are Petri Nets [61], UML (Uni�ed
Modeling Language) [62] and user-de�ned component. Graph-based modelling
is very intuitive and can be handled easily even by a non-expert user. However,
the layout of work�ow components on a display screen can become very huge
and di�cult to manage [36].

Another option is to have a system which composes work�ows automatically.
Compared with user-directed systems, automatic composition systems are ideal
for large scale work�ows which are very time consuming to compose manually.
However, the automatic composition of application components is challenging
because it is di�cult to capture the functionality of components and data types
used by the system.

As Figure 4.4 depicts, the WMS of the thesis provides user-directed composi-
tion through language-based modelling. Although XML-based languages are

35



Chapter 4. System architecture

Figure 4.4: Work�ow composition system taxonomy.

widely used for work�ow speci�cation and many tools are provided to validate
the syntax and semantics of an XML document, in this thesis it has been cho-
sen Java Script Object Notation (JSON) [63] as modelling language. JSON is
not classi�ed as a markup language and it o�ers some bene�ts over XML: it is
less verbose, easier to write and read for humans and does not require writing
end tags.

4.2.4 Work�ow Speci�cation Language

One of the objectives of the Thesis was to allow users to describe the work�ow
application to execute and the hardware, software and con�guration require-
ments of the resources where the work�ow is going to be deployed. For that
end, this section describes the design of the Work�ow Speci�cation Language
for providing the following features:

� It should allow to de�ne the work�ow tasks and their dependencies.

� It should address hardware requirements (number of processors, memory,
etc), software requirements (bundles, libraries) and con�guration param-
eters of the target resources. This is specially important for shaping the
Virtual Machines in Cloud Computing infrastructures.

� It is recommended to use a language and terminology close to the one
used by the underlying orchestration system.

� The language should be accessible to non-advanced users.

It is important to remark that work�ow tasks in cloud environments entail a
set of features that can be split into two categories:

36



4.2 Work�ow design

� Features related to the Virtual Machine Image. These features will be
used by the cloud orchestration system for searching the optimal image
in the repository of Virtual Machine images. Examples of these charac-
teristics are: the Operating System or the applications installed.

� Features related with the deployment of Virtual Machines. For example,
memory size or number of CPUs, cores per CPU, etc. These features
will be used by the cloud orchestration system for properly deploying
the Virtual Machines.

Abstract work�ow skeleton

The structure of the abstract work�ow is composed of two elements: the re-
source information �le and the semi-abstract work�ow instance.

Resource information �le

Firstly, to transform the work�ow instance into a concrete or executable work-
�ow, the WMS needs the information showed in Listing 1.

{

"comment": "Definition of 1 or more hosts"

"hosts": [

],

"comment": "Definition of 0 or more software environments"

"environments": [

],

"comment": "User-provided input files"

"inputFiles": [

]

}

Listing 1: Resource information �le skeleton.

Therefore, a resource information �le contains three sections:

37



Chapter 4. System architecture

� Information about the front-end hosts of the platforms. The key word
�hosts� is used for providing all the information needed to access the
di�erent computing platforms through their front-end nodes.

� Execution environments used by the work�ow tasks deployed on cloud
computing platforms. It de�nes the required features of the VMI (Virtual
Machine Image) to use as a base to create the VMs, such as the Operating
System and the software packages that should be installed on it. The
cloud orchestration system obtains the VMIs from the image repository
associated to each deployment.

� Last but not least, section named with the key word �inputFiles� declares
the user-provided input �les of the work�ow from their local host (where
the WMS client is running) or from a remote location.

Below are listed the considered properties for de�ning an element of each sec-
tion of the resource information �le.

Host properties The host properties that can be de�ned in the resource
information �le are represented by the following tokens or key words:

� hostId: (string) Acts as a primary key or identi�er of the host element
in the work�ow speci�cation environment. As it will shown below, this
identi�er will be used for referencing the host object in the semi-abstract
work�ow.

� type:. (string) Nominal property that indicates the infrastructure type.
Values allowed are: �Cluster� and �Cloud�.

� subType:. (string) Value that takes a di�erent meaning depending on
the infrastructure type. If type is �Cluster� then �subType� is the type of
scheduler (e.g. LRMS, etc.). In the �Cloud� case it refers to the particular
cloud provider to use (e.g. OpenNebula, OpenStack, Microsoft Azure,
etc.)

� hostName: (string) In contrast to �hostId�, �hostName� is the canonical
name of the host that will be used for connection issues.

� port: (4-digit integer) In addition to the hostName it is necessary to
know the connection port.

38



4.2 Work�ow design

� credentials: It indicates how to access the host, either using a pair
user/password (like in the OpenNebula case) or a public key. In turn,
credentials is composed of the following attributes:

� type: (string) The value can be user (pair user/password) or pub-
licKey.

� userName: (string) Name of the user.

� passWord: (string) Password access.

� publicKey: (string) Public key for accessing the node.

� privateKey: (string) Private key for accessing the node.

Environment properties The environment features that can be de�ned in
the resource information �le are the following:

� environmentId: (string) It is the identi�er of the whole environment
object in the work�ow speci�cation context. In the semi-abstract work-
�ow it will be used for referencing the environment information contained
in the object.

� osName: (string) Operating System Name (e.g. �linux�, �windows�).

� arch: (string) Architecture type. The valid values are: i686 and x86_64.

� osFlavour: (string) Operating System �avour (e.g. if osName is �linux�
osFlavour can be set to �ubuntu�, �debian�, �centOS�, etc. and if osName
is �windows� then osFlavour can be �windows xp�, �windows 7�, etc.).

� osVersion: (string) It must be a string composed of integers separated
by dots. For instance: �10.04�, �7.1.2�.

� packages: (string) A list of names of software bundles that must be
pre-installed in the Virtual Machines in order to successfully run the
applications.

39



Chapter 4. System architecture

inputFiles properties The input �le properties are the ones listed next:

� id: (string) Unique identi�er of the stageOut element.

� type: (string) In the current version, due to the data �ow nature of the
work�ow, the type will set to �File�

� URI: (string) Uniform Resource Identi�er of the �le. It can be a �le in
the local �lesystem or in a remote �le server.

Semi-concrete work�ow instance

The second part of the abstract work�ow is the semi-concrete work�ow instance
that includes the de�nition of the tasks and the connectivity between them.
Listing 2 shows its general structure.

{

"comment": "Declaration of 1 or more stages",

"stages": [

{

"id": " ",

"comment": "The mapping task-resource is provided by the user",

"hostId": " ",

"environmentId": " ",

"comment": "Information about the execution nodes",

"nodes": [

],

"comment": "0 or more command-line executions",

"execution": [

],

"comment": "0 or more input files of the stage",

"stageIn": [

"comment": "0 or more output files of the stage",

],

"stageOut": [

]

}

]

}

Listing 2: Semi-concrete work�ow structure.

40



4.2 Work�ow design

In the semi-concrete work�ow case, the description comprises one main section:
the list of �stages� or work�ow tasks. Each stage object contains a set of
properties described below and four lists: �nodes�, �execution�, �stageIn� and
�stageOut�.

Stage properties The properties that can be de�ned for a stage element in
the semi-abstract work�ow are:

� id: (string) It is the identi�er of the task.

� hostId: (string) Reference to the host object, de�ned in the resource
con�guration �le, that will be in charge of hosting the stage.

� environmentId: (string) (optional) Reference to the software environ-
ment (de�ned in the resource information �le) which will be used for
shaping the execution nodes.

� nodes: (list) A list with the information about the nodes that will be
used for executing the stage. See below the properties of a node object.

� execution: (list) A task can be composed by a group of command-line
executions that will be called sequentially. See below the properties of
an execution object.

� stageIn (list) The list of input �les required for the task. See below the
properties of a stageIn object

� stageOut (list) The list of products or outputs of the stage. See below
the properties of a stageOut object.

Node properties The characteristics of a node element are the following:

� numNodes: (positive integer) Number of CPUs requested by the task.

� coresPerNode: (positive integer) Number of computation cores of each
CPU.

� memorySize: (positive integer, followed by a character that denotes the
unit: B -byte, K -kilobyte, M -megabyte, G-gigabyte, T -terabyte) The
quantity of RAM memory of each node.

41



Chapter 4. System architecture

� disks: An ordered array of disks to re�ect the order in the Virtual
Machine (disk.0, disk.1, etc.) The disk 0 is a special case because is the
boot disk of the system. The attributes considered for a disk are:

� nDisk: (positive integer) The identi�er of the disk.

� diskSize: (positive integer, followed by a character that denotes the
unit: B -byte, K -kilobyte, M -megabyte, G-gigabyte, T -terabyte)
The amount of memory for the disk with identi�er �nDisk�.

Execution properties An execution element contains the following prop-
erties:

� path: (string) Absolute location or relative to the working directory
(the one in which the systems logs will be available when accessing the
platform) of the executable.

� arguments: (string) List of arguments that will be used with the path
for invoking the command-line execution. Some arguments can appear
as references to stageIn or stageOut elements using the token �#�.

stageIn property (semi-abstract work�ow) In contrast to the resource
information �le, the stageIn elements in the semi-abstract work�ow only con-
tain a property called �id� which is a reference to either an input �le de�ned
in the resource information �le or an output �le of the present document (in-
termediate result).

stageOut properties The properties of the stageOut are very similar to the
ones de�ned for the stageIn elements in the resource information �le.

� id: (string) Unique identi�er of the stageOut element.

� type: (string) In the current version, due to the data �ow nature of the
work�ow, the type will set to �File�.

� �lterIn: (string) The output �les of the stageOut object will be those
that match the regular expression.

� replica: (string) URI location where the result will be saved for prove-
nance or fault-tolerance purposes.

42



4.2 Work�ow design

A work�ow speci�cation example

Let's suppose that a user wants to specify the work�ow showed in Figure 4.5,
composed of 2 stages: A and B. As the Figure shows, the stage A is deployed
in a cloud environment while the stage B is executed in a cluster.

Figure 4.5: Work�ow diagram example.

In �rst place, the user provides the resource information �le showed in Listing 3.

43



Chapter 4. System architecture

{

"hosts": [

{

"hostId": "ramses",

"type": "Cloud",

"subType": "OpenNebula",

"hostName": "ramses.i3m.upv.es",

"port": "1111",

"credentials": {

"userName": "username1",

"passWord": "password2"

}

},

{

"hostId": "kahan",

"type": "Cluster",

"subType": "PBS",

"hostName": "kahan.dsic.upv.es",

"port": "9999",

"credentials": {

"userName": "userName2",

"passWord": "passWord2"

}

}

],

"environments": [

{

"environmentId": "ubuntu64bit",

"osName": "linux",

"arch": "x86_64",

"osFlavour": "ubuntu",

"osVersion": "14.04",

"packages": [

"unzip"

]

}

],

"inputFiles": [

{

"id": "input0",

"type": "File",

"values": [

"db.zip"

],

"extract": "true"

}

]

}

Listing 3: Resource information �le example.

44



4.2 Work�ow design

The resource information �le shows that are two kinds of hosts identi�ed with
the labels �ramses� and �kahan�. The host �ramses� is the front-end to an
OpenNebula cloud infrastructure while �kahan� is a cluster that provides a
PBS (Portable Batch Scheduler) scheduler. Moreover, the user has de�ned
an environment for the cloud platform, called �ubuntu64bit�. According to
the information provided in this section, the environment requires installing
a 64-bit ubuntu linux Operating System (in concrete, the version 14.04) with
the package �unzip� for extracting compressed �les. Finally, the inputFiles
section indicates that the work�ow has only one external dependency labelled
as �input0� which contains the �db.zip� �le. The property �extract� is used in
the context of zipped �les for automatically extracting the �les upon arrival to
their destinations (the local disk of the execution node).

The next step is to de�ne the semi-abstract work�ow instance like the one
showed in Listing 4.

{

"stages": [

{

"id": "A",

"hostId": "#ramses",

"environmentId": "#ubuntu64bit",

"nodes": [

{

"numNodes": "4",

"coresPerNode": "1",

"memorySize": "4096m",

"disks": [

{

"nDisk": "0",

"diskSize": "20g"

}

]

}

],

"execution": [

{

"path": "cat",

"arguments": "#input0(1) >> A.out"

}

],

"stageIn": [

{

"id": "#input0"

}

],

45



Chapter 4. System architecture

"stageOut": [

{

"id": "output0",

"type": "File",

"filterIn": "A.out",

"replica": "none"

}

]

},

{

"id": "B",

"hostId": "kahan",

"execution": [

{

"path": "head",

"arguments": "-n 10 #output0 > B.out"

}

],

"stageIn": [

{

"id": "#output0"

}

],

"stageOut": [

{

"id": "output1",

"type": "File",

"filterIn": "B.out",

"replica": "none"

}

]

}

]

}

Listing 4: Semi-abstract work�ow example

In the semi-concrete work�ow instance the user has de�ned two stage elements
corresponding to the tasks A and B of the proposed work�ow.
On the one hand, the stage A is going to be executed using the host ramses (the
OpenNebula cloud front-end de�ned in the resource con�guration �le) with the
environment �ubuntu64bit�. For this �rst task, 4 single-core nodes with 4GB
of memory and a shared disk of 20GB are going to be used. The execution
of the task A invokes the unix-command �cat� in each node associated to the
task for each single �le contained in input0. Then, the �rst 10 lines of each
�le are appended to a �le named �A.out�. The input �le of the process is the
stageIn input0 de�ned in the resource con�guration �le which consisted of a
zipped �le with �lename �db.zip�. Obviously, the output of this task is the �le
�A.out�.

46



4.3 Work�ow planning

On the other hand, the stage B is going to be run in the cluster labelled as
�kahan�. The limit to the number of nodes in this case is given by the number
of physical nodes of the cluster. For that reason, this information should be
only provided in the command and not as a �eld of the speci�cation. The
execution of B consists on extracting the �rst ten lines of the �le produced by
the task A (A.out) and writing the result in the �le �B.out�. This last �le will
be the output of the task B and the work�ow.

Work�ow parsing and validation
Upon providing the abstract work�ow speci�cation and the resource con�gu-
ration �le to the system, both �les are examined by a parser to check if the
syntax of these documents is compliant to the JSON speci�cation. Because
the system is mostly implemented in the Java programming language, we use
Jackson [64] for parsing work�ow documents.
If the validation passes, the WMS performs a semantic validation of the JSON
documents. Among other rules, the semantic validator checks that every ref-
erence (to a host, environment or input �le) in the abstract work�ow exists
in the resource con�guration �le. If the semantic validator �nds any error, it
prompts to the user the erroneous �le and line.
Moreover, the identi�ers of the di�erent elements should be unique (two dif-
ferent stages cannot share the same id) and the values should match certain
regular expressions (for instance, memory is an integer followed by the charac-
ters `m'(mega), `g'(giga) or `t'(tera)). Lastly, because the system only supports
work�ows that can be modelled as DAGs, the module performs an structural
validation of the graph to make sure that it does not contain any cycle.

4.3 Work�ow planning

Work�ow mapping refers to the process of translating abstract work�ows to
concrete work�ows. As shown in Figure 4.6, mapping strategies of work�ow
applications can be categorized into either static or dynamic. In a static
planning, concrete models have to be generated before the execution according
to current information about the execution environment and the dynamically
changing (like in the Grid case) is not taken into account. In contrast, a
dynamic planning uses both dynamic information and static information
about the resources to make scheduling decisions at run-time.

Static planning, also known as full-ahead planning, include user-directed
and simulation-based scheduling. In user-directed scheduling, users emulate
the scheduling process and make resources mapping decisions according to

47



Chapter 4. System architecture

their knowledge, preference and/or performance criteria. In simulation-based
scheduling, the �best� schedule is achieved by simulating task execution on
a given set of resources before a work�ow starts execution. The simulation
can be processed based on static information or the result of performance
estimation.

Dynamic schemes include prediction-based and just in-time scheduling.
Prediction-based dynamic scheduling uses dynamic information in conjunction
with some results based on prediction. It is similar to simulation-based static
scheduling, in which the scheduler is required to predict the performance of
task execution on resources and generate a near optimal schedule for the task
before it starts execution. However, it changes the initial schedule dynamically
during the execution. Rather than making a schedule ahead, just in-time
schedule [56] only makes scheduling decisions at the time of task execution.
Dynamic schemes are critical when using Grid resources due to its dynamic
nature where utilization and availability of resources changes over time and
the optimal resource can join at any time

As it was explained in the Work�ow Speci�cation Language section, the
WMS developed in this Thesis uses abstract work�ows called semi-abstract
work�ows because the user has to indicate the resources that they want to
use for each task of the work�ow. This is possible due to the static nature of
the environments supported (supercomputers, clusters and clouds). Thus, it
uses an static user-directed planning strategy.

Figure 4.6: Planning schema taxonomy.

48



4.3 Work�ow planning

4.3.1 Work�ow restructuring at build time
In addition to the information about the environment, the mapping (or
planning) process of the user's abstract work�ow to the �nal executable
work�ow requires optimizing the work�ow. During this build time process,
the underlying initial DAG undergoes a series of re�nements geared to-
wards optimizing the overall performance. In additions, transformations are
performed for actual cloud computing support and data management. In
fact, the work�ow restructuring process explained below distinguishes the
WMS developed in this Thesis from other systems with similar purposes by
providing a novel approach that dynamically provisions and releases cloud
computing assets. The following sections detail the process step-by-step.

Stage merging As Figure 4.7 displays, the �rst re�nement fuses two or more
sequential tasks if the following conditions are given:

� All the stages are executed on the same infrastructure with the same
environment features.

� Only the �rst stage has input dependencies with tasks di�erent from the
ones to be merged.

� Only the last stage has output dependences with other external tasks

Of course, this conversion is not mandatory and its purpose is to optimize or
simplify the execution �ow.

Figure 4.7: Fusion of sequential stages.

49



Chapter 4. System architecture

Data management tasks The second transformation (see Figure 4.8) adds
data management tasks (labelled as COPY) before every task of the work�ow
obtained in the previous step. The goal of these tasks is to stage-in/out the
required input by the tasks or outputs to user selected locations, respectively.

Figure 4.8: Addition of data management tasks.

Cloud computing oriented tasks Finally, if a task is executed on cloud
computing resources (see Figure 4.9), it is necessary to add tasks that deploy
the resources only when they are needed and undeploys them when the prod-
ucts have been copied to their destinations. In order to accomplish this, the
planner adds a synthetic task (called DEPLOY) before the stage-in task pro-
duced in the previous step and another task (UNDEPLOY) after the stage-in
of subsequent tasks.

Figure 4.9: Task for the dynamic provisioning and release of resources.

A work�ow restructuring example Figure 4.10 shows the restructuring
process of a simple work�ow with 5 tasks where stages S0 and S1 are executed
on the same cloud platform with the same environment speci�cations, S2 and
S4 are executed on a cluster, and S3 is also deployed in a cloud infrastructure.
Although the next section will exhaustively explain the implementation of
each task, the planner generates �ve types of of tasks: deploy, copy, undeploy,
cleanup and copyout.

50



4.4 Work�ow execution

S0

DEPLOY
S01

S01

COPY
S01

COPY
S2

COPY
S4

S4

UNDEPLOY
S01

S2

S4 COPYOUT
S4

UNDEPLOY
S3

S1

S01

S2 S3

S01

COPY
S01

COPY
S2

S2

COPYOUT
D

COPY S4

S2 S3

S4

COPY
S3

S3

S4

DEPLOY
S3

COPY
S3

S3

CLEANUP
S4

CLEANUP
S2

Figure 4.10: Transformation steps of an abstract work�ow into an executable work-
�ow. From left to right: 0 (abstract work�ow de�ned by the user), 1 (fusion of stages),
2 (addition of data management stages), 3 (inclusion of stages for cloud computing
support).

4.4 Work�ow execution

Once the mapper has produced the executable, it is submitted to the work�ow
execution engine. The execution of the work�ow begins with the initialization
of every element: the state of the tasks are set to IDLE and the state of
the inputs/outputs to DISABLED. Next, due to the data-�ow nature of the
work�ow system, the inputs provided by the user are ENABLED, allowing the
execution of the �rst task(s). The pseudocode of the work�ow execution engine
is controlled by two core functions (see Figure 4.11): runTask and getStatus.
The runtime checks if all the inputs of a task are enabled, calling runTask
in that case. When a task is submitted, the engine periodically monitors
its status through the getStatus function and if it has �nished successfully,

51



Chapter 4. System architecture

1: Initialize listStage
2: while nTasks> 0 do
3: for task= 0 to listStageSize do
4: taskStatus←getStatus()
5: if taskStatus=ENABLED then
6: taskStatus←RUNNING
7: runTask()
8: else
9: if taskStatus=FINISHED then

10: nTasks=nTasks−1
11: listStage.drop(task)
12: task.enableOutputDependences()
13: end if
14: end if
15: end for
16: WaitForStatusChangeEvent
17: end while

Figure 4.11: Work�ow execution engine algorithm

enables the outputs of the tasks (which in turn are normally inputs of the
next tasks). Obviously, the behaviour of runTask and getStatus will vary
according to infrastructure (cluster and cloud) and the task type (deploy, copy,
user-de�ned, undeploy, cleanup or copyout). The next sections explain the
functionality of runTask and getStatus for each task type.

Deploy task execution
The execution of a deploy task is required when the user desires to execute
a task of the abstract work�ow in a cloud platform. In order to dynamically
deploy cloud computing resources, the system makes a request to the cloud
orchestrator system, the Infrastructure Manager [32].

In order to request the services of the IM, the WMS uses the API based
on the XML-RPC protocol. The runTask function in a deploy task needs
to build a RADL document with the hardware and software requirements
of the task expressed in the JSON document. Using this RADL document,
the WMS invokes the IM to con�gure the cloud deployment as a Portable
Batch System (PBS) cluster where all nodes share the same disk via NFS.
In this manner, PBS acts as the scheduler of the jobs that the stage should

52



4.4 Work�ow execution

execute. The getStatus invokes the API function that queries the status of the
infrastructure. The task is considered to be �nished when the status returned
by the IM is con�gured. From this point on, the WMS interacts with the
cloud infrastructure through SSH, using the information returned by the API
call (public IP and user credentials).

Copy task execution
The copy task is in charge of the data management during the execution, one
of the most crucial parts of any WMS. These tasks are executed regardless
of the computing platform used (cluster or cloud). When runTask is called
for a copy task, the �rst step is to declare an unique name for the execution
directory (our system uses the current epoch time). Then, this execution
identi�er is used for creating the execution directory in the �le system of the
target infrastructure. Now that the execution directory is ready for hosting the
task data, the function of runTask is staging-in the data. As a convention, our
system distinguishes between two types of stage-ins: the ones that begin with
the word input and the ones that begin with output. Inputs are user-provided
data while outputs are data whose origin is another task of the work�ow (i.e
intermediate data).
With respect to the input data, the system can download any �le that can be
retrieved with the protocols supported by the unix wget command (http, https
and ftp). If the URI of the input �le de�ned in the con�guration �le does not
use any of these protocols, the system assumes that the �le is in the user local
space. Another important issue is the possibility of explicitly indicating that
the input �les should be extracted on the destination resources. However, since
there are tools that require compressed data as input, this extraction should
be optional. In any case, the stage-in of an input �le triggers the submission of
a job to the physical or virtual cluster scheduler for downloading the �le and
next, if it is required, extracting the �le. The system supports almost every
popular compression format (.zip, .rar, .gz, .tar).
The other type of stage-ins are the intermediate results produced by previous
tasks in the DAG. To handle the transference of this kind of data, the WMS
submits a basic job that invokes the scp (Secure Copy Protocol) program with
the corresponding credentials and arguments.
The goal of getStatus in a copy task is to make sure that all the copy jobs
submitted by runTask have �nished successfully. If there is a least one job
pending, the status of the copy task returned is RUNNING, otherwise the
system considers that the task is completed (status FINISHED) and enables
the stage-outs of the stage.

53



Chapter 4. System architecture

User-de�ned task execution
In contrast to the previous tasks, user-de�ned tasks are the same that appear
in the abstract work�ow speci�cation but now they are executable. In our
WMS, a user-de�ned task is said to be executable when two conditions
are met: �rstly, the target infrastructure is already available (the cluster is
accessible or the cloud computing platform is deployed), and secondly, the
input data needed by the tasks has been staged-in to these resources. As it
can be appreciated, both conditions correspond to the actions performed by
the DEPLOY task and COPY task, respectively.
According to the abstract work�ow, a task can contain a block of executions
or commands to execute. When the runTask function is invoked for this kind
of tasks, the WMS analyses the commands to determine if there is parallelism
in the submission of the job or not. The parallelism of a task is explicitly
indicated by the user in the abstract work�ow, appending the �(x)� expression
to an argument where x is the granularity (i.e. the number of �les used per
job). For instance, let's suppose the scenario showed in Figure 4.12. As the
compressed input �le contains four �les, two jobs are submitted for processing
two �les of db.zip each. If after the analysis the token �(x)� is not found,
then the system considers that the task is not parallel and only one job is
submitted in that case, passing all the arguments as parameters to the job.

process0
./test #input0(2)

file0.txt
file1.txt
file2.txt
file3.txt

file0.txt
file1.txt
file2.txt
file3.txt

input0
db.zip

./test file0.txt 
file1.txt

PBS

./test file2.txt 
file3.txt

Figure 4.12: Execution of a parallel task.

Once runTask has submitted all the jobs of the stage to the infrastructure, the
goal of getStatus is monitoring the status of all jobs until all of them reach a
�nal state (�nished or failed).

54



4.4 Work�ow execution

Undeploy task execution
Due to the variable demand of resources that scienti�c work�ows experience
during the execution of the di�erent stages, when a cloud computing task
�nishes and the output data has been staged-out, the resources assigned to it
are no longer needed and they must be freed. Moreover, because of the pay as
you go model of this paradigm, the undeployment of resources keeps the user
costs down.
As in the deployment task execution case, the runTask function calls the proper
function of the IM XML-RPC API, destroyInfrastructure.
The aim of getStatus in this case is to make sure that the infrastructure removal
operation is correctly carried out. This is especially important when public
clouds are used to avoid incurring in unnecessary costs.

Cleanup task execution
The cleanup task is the equivalent of the undeploy task but for the case of
clusters. Because a work�ow stage usually generates large amounts of data and
clusters are infrastructures shared with other users, a best practice consists on
cleaning up the data once it has been staged-out. Thus, the function runTask
simply deletes via SSH the whole execution directory created for the task and
getStatus makes sure that the operation is actually done.

Copyout task execution
From the user's point of view, the purpose of the copyout tasks is to retrieve
the data products of the computations. The mapper attaches these special
tasks only to the �nal tasks of the abstract work�ow speci�cation (i.e tasks
which do not have dependencies with other tasks).
The runTask function starts the stage-out of the output to one or more lo-
cations. The default action is to transfer the data to the user local space
(where the submit host is being executed). If besides the �eld replica of the
output contains references to another data storage sites, the data will be also
copied to these locations. The other function, getStatus, will monitor the data
transference until all of them are completed.

55



Chapter 4. System architecture

4.5 Performance optimizations

This section lists a set of optimizations geared towards improving the perfor-
mance e�ciency, in terms of time and costs.

4.5.1 Custom load balancing
When dealing with short running tasks (on the order of minutes or seconds),
one of the most common problems of distributed computing infrastructures
is the overhead as a consequence of the queueing time on the computing
resource schedulers. This fact results on an increase of the response time
of the scienti�c applications. When the WMS executes a parallel stage
composed of several tasks, it uses task clustering techniques that group short
tasks into coarse-grained tasks, thus greatly reducing the queuing time in the
target resources. Our WMS currently implements two clustering techniques,
although advanced users can implement and include their own strategies with
minimal e�ort. These are the cluster techniques available by default in the
WMS:
Random clustering. This strategy is recommended when the computational
cost of processing the input �les is similar or unknown. The system computes
the clustering granularity, taking into account that: �rstly, the number of jobs
has to be greater or equal than the number of parallel instances available and
secondly, the total estimated execution time of a single job cannot exceed a
certain walltime value.
Size clustering. If the runtime of the tasks has a high variance, the
previous technique may load balance poorly in some situations, producing
clustered jobs of small tasks and others of larger tasks. In these cases, if
the computational load of a task depends on the �le size, the size clustering
strategy can be used to create jobs with approximately the same total �le size
(i.e. the same amount of time required to process).

4.5.2 Partial enabling of outputs
If a stage of the work�ow executes many trivially parallel jobs, the enabling of
the stage-outs can be done in two modes: standard and partial. The standard
mode is the one in which the runtime waits for every parallel job of the stage
to have �nished successfully, before enabling the stage-outs. On the contrary,
in the partial activation mode, the runtime enables a stage-out as soon as a
partial output is available. When using cloud computing infrastructures this
behaviour can be very e�ective for overlapping the deployment and copy stages
of the next stages while the previous stage is still in execution. Nevertheless,
it also increases the usage of the infrastructures.

56



4.6 Persistence

4.5.3 Prefetching: Partial enabling of stages
Similar to the partial enabling of outputs, in some cases, it could be interesting
to allow the partial enabling of a stage (i.e. the stage is considered by the run-
time as ENABLED when at least one of its input dependencies is ENABLED).
As it will be shown below, in the experimentation section, this functionality is
useful for pre-fetching input data to the next stages of the work�ow.

4.6 Persistence

As it was mentioned before, we assume that the user has access where the
WMS is running and it has permanent connection during the work�ow execu-
tion. Nevertheless, a typical use case involves executing a scienti�c work�ow
composed of stages with a signi�cant computational cost (in the order of days
or even weeks) and so, demanding a permanent connection to the user machine
is not a viable measure. For that reason, the system includes a persistence layer
that periodically saves the state of the work�ow, allowing users to interrupt the
execution and resume it later. The persistence has been implemented using
the NoSQL database system MongoDB [65]. In addition to the features of-
fered by the NoSQL approach (simplicity of design, horizontal scaling, among
others) over the traditional relational databases, MongoDB uses JSON-like
documents, favouring the straightforward translation between the work�ow
descriptions and the database documents.

4.7 Fault tolerance

In a heterogeneous environment, the failure of a work�ow execution can occur
for various reasons: the variation in the execution environment con�guration
(specially in supercomputers and clusters), non-availability of the required
software components, overloaded resource conditions, system running out
of memory, and faults in computational and network components. A WMS
should be able to identify and handle failures and support reliable execution.

As shown in Figure 4.13, work�ow failure handling techniques are divided
into two di�erent levels, namely task-level and work�ow-level. Task-level
techniques mask the e�ects of the execution failure of tasks in the work�ow,
while work�ow-level techniques manipulate the work�ow structure such as the
execution �ow to deal with erroneous conditions.

Task-level techniques can be catalogued intro retry, alternate resources,
checkpoint/restart and replication. The retry technique is the simplest failure
recovery technique, as it simply tries to execute the same task on the same
resource after failure. The alternate resource technique submits a failed task

57



Chapter 4. System architecture

to another resource. The checkpoint/restart technique moves failed tasks
transparently to other resources, so that the task can continue its execution
from the point of failure. The replication technique runs the same task
simultaneously on di�erent resources to ensure task executed provided that at
least one of the replicas does not fail.

Figure 4.13: Fault tolerance taxonomy.

Work�ow-level techniques include alternate task, redundancy, user-de�ned ex-
ception handling and rescue work�ow. The �rst three approaches assume that
there is more than one implementation for a certain computation with di�erent
execution characteristics. The alternate task technique executes another im-
plementation of a certain task if the previous one failed, while the redundancy
technique executes multiple alternative tasks simultaneously. The user-de�ned
exception handling allows the users to specify a special treatment for a certain
failure of a task in work�ow. The rescue work�ow technique ignores the failed
tasks and continues to execute the remainder of the work�ow until no more
forward progress can be made. Then, a rescue work�ow description, which
indicates failed nodes with statistical information, is generated for later sub-
mission.

Figure 4.13 depicts that the WMS of this thesis implements a task-level retry
based technique. Due to the di�erence in terms of requirements between the
stages that compose a work�ow, the WMS de�nes di�erent retry policies for
each stage. The policies simply de�ne the number of retries in case of software
failure or hardware failure. The user indicates such values in the abstract work-
�ow speci�cation, using the object retries and its �elds OnWallTimeExceeded,
OnSoftwareFailure and OnHardwareFailure inside a stage object. If, for some
reason, a task exceeds the maximum number of retries for any type of failure,
the execution of the whole work�ow is aborted. The checkpoint/restart tech-
nique provided by the persistence module can be always applied if the error

58



4.8 Provenance

takes place during a deployment stage. In other stages the recovery will only
be possible if the sources of all the input �les of the stage are still available (i.e.
input �les of the work�ow or outputs that have been replicated to intermediary
storage resources via the replica �eld in the JSON speci�cation).

4.8 Provenance

Work�ow provenance is a record of the history of the creation of a data object.
If the data object was created as the result of a work�ow then there must
be a way to record the history of that event. The provenance information
includes for each process: time stamp, program version number, component
version number, execution host, library versions and the data products used.
Work�ow provenance is crucial for users to be able to follow the evolution of
their executions and to determine the cause behind a failure. This information
allows users to reproduce the result and reproducibility is a critical component
of the scienti�c method. Because the ad-hoc WMS of this thesis is more a
proof-of-concept development than a production system, instead of using the
W3C PROV speci�cation [66], it implements a custom and simple provenance
module that registers in a local �le all the information.

59





Chapter 5

Use case

The aim of this chapter is to present a realistic comparative ge-
nomic work�ow used as use case for evaluating the system developed
in this thesis. To fully understand the use case, the chapter begins
introducing basic terminology related with the use case. After that,
the use case is described along with a diagram of the computational
steps (or stages) that compose it.

5.1 Preliminary concepts

Prior to describing the work�ow, it is necessary to introduce the following
concepts:

5.1.1 Comparative genomics
Comparative genomics mainly refers to homology and evolutionary dynamics
between organisms, genes and proteins. Be it through complete or speci�c
genomic comparison, such discipline may provide a deeper understanding on
how species evolved over time [67]. In addition, functional studies allow for a
greater observation on health, phenotype, coding exons, noncoding RNAs and
many other aspects related to the species genomic complexity and lineage-
speci�c adaptations [68] [67].

61



Chapter 5. Use case

5.1.2 Homology and homology inference
Homology is a very broad comparative genomics concept, which comprises a
relationship of common descen between genes or proteins. Even though there
are several homology related scenarios, such as orthology, paralogy, horizontal
gene transfer, gene loss, xenologs and others - our work focuses on orthology
and paralogy [68]. Orthology is characterized when the same genes or proteins
are present in distinct species, due to a speciation event. Paralogy relates to
duplicated genes - usually in the same species - although they may be inferred
in distinct organisms [68].

As ortholog genes tend to preserve their ancestor function, these can be used
in order to improve the annotation of data obtained from newly sequenced
genes in several organisms. Furthermore, ortholog prediction can also be
used to provide better understanding and evolutionary classi�cation of such
genes. [68] [69].

High quality ortholog prediction is a desirable aspect for many studies,
especially when dealing with incomplete or lacking experimental genomic
data [70]. In addition, it also has a direct impact on many comparative ge-
nomics tasks, such as functional characterization, genome annotation, con-
served regulatory elements identi�cation, orthologous databases creation and
others [71] [72] [73] [74].

5.2 Orthosearch

OrthoSearch (Orthologous Gene Searcher) [75] [76] is a genomics comparative
work�ow. Initially conceived as a Perl-based routine, it is a pro�le-protein, re-
ciprocal best hits (RBH) based solution for homology inference among species.
It comprises several stages and uses distinct bioinformatics tools, such as
Ma�t [77] and HMMER [78] which confront an orthologous database with
an organism multifasta protein data. The abstract work�ow is depicted in
Figure 5.1.
It displays that the structure of the Orthosearch pipeline is composed of 8
stages: ma�t, fasta2stockholm, hmmbuild, hmmsearch, cat, hmmpress, hmm-
scan and Reciprocal_Best_Hits.

62



5.3 Data selection

Organism

Multifasta

Protein Data

fasta2stockholm

Mafft

hmmbuild

cat

hmmpress

hmmscan

hmmsearch

Reciprocal

Best Hits 

Data

Reciprocal

Best Hits

Ortholog

Database

Figure 5.1: Orthosearch abstract work�ow.

5.3 Data selection

It was selected a subset of EggNOG database version 4 [79] which comprises
eukaryotic ortholog groups only, EggNOG KOG.
The protozoan specie selected to be confronted with EggNOG KOG database
was Cryptosporidium hominis. Cryptosporidium species causes acute gas-
troenteritis and diarrhea. It is potentially dangerous, with high levels of mor-
bidity and mortality in AIDS patients [80]. In fact, there is no e�ective treat-
ment or prevention for such infection in humans so far [81].

This protozoan specie is responsible for the death of thousands to millions
humans. In addition, there are either no vaccines for such or the available
treatments are mostly inadequate due to toxicity and drug resistance [82] [83].

Therefore, comparative genomics experiments among such pathogens genomes
that may lead us to a deeper knowledge of these organisms biology are of pub-
lic health interest. These may aid on the discovery of new issues related to

63



Chapter 5. Use case

the pathogenicity of such, as well as help to design new, more speci�c drugs
to treat the infected patients or even prevent the infection itself.

64



Chapter 6

Experiments

This chapter presents the results obtained from the set of ex-
periments carried out with the use case introduced in the previous
chapter. On one hand, the aim of the �rst group of experiments
is to evaluate the sequential execution of the use case against the
executions on cloud resources with di�erent con�guration param-
eters. On the other hand, the second group of experiments prove
the bene�ts obtained from executing the use case in a heterogeneous
environment.

6.1 Infrastructures used

Among the resources that we use for running the experiments, there is a pri-
vate Cloud that runs OpenNebula and is based on 8 machines, each equiped
with 2 processors with 14 core nodes (28 cores per node) and 64 GB of main
memory. Therefore the entire infrastructure provides 224 cores and 512 GB of
main memory. We also run our experiments on Amazon EC2 using instances
of m4.xlarge type. Finally, some experiments make use of a cluster named
kahan with 6 dual processor nodes, where each node contains 2 AMD Opteron
processors with 16 cores and 8GB of main memory.

65



Chapter 6. Experiments

6.2 Sequential execution

The serialized version of the pipeline was entirely executed in two di�erent
computing resources with similar performance capabilities: a cluster and a
VM instance, both provided with 16 CPU cores, 16GB RAM and 100GB disk.
Figure 6.1 shows a Gantt chart for the sequential execution of Orthosearch
when using the cluster resource while Figure 6.2 the corresponding chart when
using the cloud computing asset.

Figure 6.1: Orthosearch serial execution using a cluster.

66



6.3 Cloud Computing WMS-aided execution

Figure 6.2: Orthosearch serial execution using a Virtual Machine instance.

From the previous Gantt charts, we extract two interesting facts. Firstly, only
three stages of the pipeline take an average of 86,14% of the total time for
both scenarios. These computing intensive stages are: ma�t, hmmbuild and
hmmscan. Secondly, the serial execution of the pipeline in the cloud is slightly
slower (0,9%) than the cluster one, as a result of the overheads derived from
the deployment and undeployment of the asset and in lesser extent to the use
of virtualized resources.

6.3 Cloud Computing WMS-aided execution

The next step of experimentation involved executing the pipeline in a private
Open-Nebula based cloud computing infrastructure, using the WMS developed
in this work. Table 6.1 summarizes the con�guration de�ned in the JSON
document (abstract work�ow) for every stage of the pipeline.
In order to better understand the Gantt charts showed below, Figure 6.3 de-
picts the executable work�ow generated by the planner component of the WMS
after processing the abstract work�ow speci�cation. As it can be appreci-
ated, according to the planner optimizations and cloud conversions exposed
in previous sections, the 8 original stages of the work�ow have been simpli-
�ed to 5 stages: ma�t/fasta2stockholm/hmmbuild; hmmsearch; cat; hmm-
press/hmmscan and best-hits. For brevity and clarity, the following Gantt
charts cut down the names of the fused stages using only the name of the �rst
stage (i.e hmmpress/hmmscan will be referenced as hmmpress).

67



Chapter 6. Experiments

DEPLOY

COPY

Mafft
f2stockholm
hmmbuild

DEPLOY

COPY COPY

hmmsearch
hmmpress
hmmscan

DEPLOY

COPY

Best-Hits

COPYOUT

UNDEPLOY
Best-Hits

UNDEPLOY
hmmpress
hmmscan

UNDEPLOY
hmmsearch

Ortholog 
Database

Organism 
Multifasta 

Protein Data

UNDEPLOY
Mafft

f2stockholm
hmmbuild

DEPLOY

DEPLOY

COPY

cat

UNDEPLOY
cat

Figure 6.3: Executable work�ow for Orthosearch.

68



6.3 Cloud Computing WMS-aided execution

Table 6.1: Con�guration parameters for each Orthosearch stage

#Node Cores/node Memory Disk Parallel

ma�t 16 1 4GB 40GB Trivially
fasta2stockholm 16 1 4GB 40GB Trivially
hmmbuild 16 1 4GB 40GB Trivially
hmmsearch 16 1 4GB 40GB Trivially
cat 1 1 4GB 40GB None
hmmpress 1 4 16GB 40GB None
hmmscan 1 4 16GB 40GB None
best-hits 1 1 16GB 50GB None

6.3.1 Execution without pre-fetching
Figure 6.4 shows the Gantt diagram for the execution of Orthosearch when
the pre-fetching option of the WMS is not enabled. In this chart, processing
times in the nodes are depicted with red bars while blue bars correspond to data
transference actions. The striped pattern in some of the data transference bars
(blue) means that it is an intermittent action. As an example, let's examine the
�COPY hmmsearch� timeline. The WMS only will copy a hmmsearch input
�le when a new partial output of ma�t is available. After transferring a partial
result, the COPY hmmsearch stage will go idle, waiting for a new result from
ma�t. Finally, the black arrows delimit the time between the deployment and
undeployment of a stage and the number of nodes deployed, pointing out the
cost associated.

6.3.2 Execution with pre-fetching
The execution of Orthosearch with the pre-fetching option of the WMS enabled
can be seen in Figure 6.5. The main di�erence with respect to the scenario
without pre-fetching is that the last stage of the pipeline, best-hits, is activated
by the WMS runtime once the �rst partial result of hmmsearch is available for
copying. At the same time, the undeployment of the computing resources
associated to hmmsearch is activated sooner. As it is shown below, these
di�erences will have an impact on minimizing the usage of resources.

69



Chapter 6. Experiments

Figure 6.4: Orthosearch execution using the WMS with pre-fetching not enabled.

Figure 6.5: Orthosearch execution using the WMS with pre-fetching enabled.

70



6.4 Overall analysis

6.3.3 Performance comparison
The aim of this section is to compare both scenarios (with pre-fetching and
without pre-fetching) in terms of makespan or response time of the experiment
and total CPU usage. With respect to the response time, we see that both
scenarios require approximately the same time to be completed: an average
of 466.3 minutes. However, when analysing the total CPU usage, we can
observe an important di�erence. The total CPU usage for a stage is the time
that the associated resources are deployed (time di�erence between the end of
UNDEPLOY and the end of DEPLOY), linearly weighted with the number of
nodes. Graphically, the total CPU is the sum of the longitudes of the black
arrows showed in the Gantt chart, individually multiplied by the number of
nodes of the stage. According to that, the total CPU usage for the scenario
with pre-fetching is 5888 minutes and 9851 for the case without pre-fetching
of best-hits (an increase of 67% in resource usage). Thus, to optimize the
execution of the experiment, the user has to properly con�gure the parameters
of the WMS, leveraging its empiric knowledge about the behaviour of the
work�ow being deployed.

6.4 Overall analysis

Figure 6.6 and Figure 6.7 show a comparison in terms of makespan (response
time) and total CPU usage, respectively, for the 4 scenarios presented in the
previous sections: serial execution using a cluster, serial execution in a VM
instance and cloud computing WMS-aided executions (with and without pre-
fetching). Paying attention to the response time, we can clearly see the bene�ts
of using a distributed approach with the aid of the WMS: a reduction from
2060,7 minutes (about 1 day and 10 hours) to only 466,3 minutes (7,7 hours).
Obviously, this speed-up of the makespan comes at the expense of using more
computational resources, as it is re�ected in the blue bars of the graph. Nev-
ertheless, as it was commented before, it is possible to minimize the resource
usage in the WMS case by properly con�guring the parameters which control
the execution (load balancing, granularity, pre-fetching, etc.).

71



Chapter 6. Experiments

Figure 6.6: Response time comparison for di�erent scenarios.

Figure 6.7: CPU usage comparison for di�erent scenarios.

72



6.5 Hybrid platform execution

6.5 Hybrid platform execution

The goal of the present section is to highlight the bene�ts of using the multi-
platform (cluster and cloud) feature of the WMS developed in this work.

6.5.1 Orthosearch's critical path
In order to understand the scenarios presented below, it is necessary to be
aware of the critical path for the Orthosearch executable work�ow. The critical
path can be seen in Figure 6.3, following the dependency arrows with greater
thickness. Thus, the critical path is composed of the following sequence of
stages: ma�t/fasta2stockholm/hmmbuild - cat - hmmpress/hmmscan - best-
hits.

6.5.2 Performance analysis
In Figure 6.8, there are three time-lines that show the execution time of Or-
thosearch's critical path for three di�erent scenarios: full cluster on the top,
hybrid (cluster and Amazon EC2) in the middle and full cloud (Amazon EC2)
in the bottom. In turn, each time-line is divided into three sections or portions:
ma�t-cat (red bar), hmmpress/hmmscan (green bar) and best-hits (blue bar).
The analysis begins with the execution of Orthosearch in the cluster described
above. We can clearly identify that hmmpress/hmmscan is the longest pro-
cess, taking 69% of the total time. The explanation behind this bottleneck is
that the hmmpress and hmmscan processes for the input data selected require
about 12GB of memory size to avoid the �swapping� e�ect and the `kahan'
cluster has only a total of 8GB. Thus, we proceed to optimize the execution by
requesting the deployment of this memory-intensive process in a public cloud
(Amazon EC2) with a single 16GB memory VM (m4.xlarge type). The results
can be checked in the middle bar of Figure 6.8. Now, because the data to be
processed �ts in the memory of the EC2 VM (cache e�ect), the execution time
of hmmpress/hmmscan is reduced by 30%, despite of the overheads associated
to a cloud execution. Furthermore, we notice that the transference data be-
tween di�erent platforms incurs in another overhead that can be mitigated by
executing the whole work�ow in the public cloud (Amazon EC2), where all the
transferences are done between nodes of the same platform, which usually are
geographically close. In this way, we achieve a reduction of the total time of
16% with respect the hybrid scenario and 32,43% with respect the full cluster
case. Moreover, taking into account that the cluster is an infrastructure with
marginal additional operation cost, each reduction of the time achieved in the
previous scenarios incurs in a greater cost. Thus, we conclude that full cluster
is the slowest scenario but the one that does not imply additional costs; full

73



Chapter 6. Experiments

Figure 6.8: Time-line of Orthosearch's critical path for 3 scenarios.

cloud is the fastest one but also the most expensive; and the hybrid scenario
is a compromise of both.

74



Chapter 7

Conclusions and Future Work

7.1 Summary and main contributions

In the e-Science context, the e�ective and e�cient use of all the available
computational resources is becoming increasingly important for performing
scienti�c research, due to the over�owing amount of data being generated.
Moreover, the advent of Cloud Computing and its core characteristics (rapid
elasticity, resource pooling, and pay-per-use, among others) are well-suited to
the nature of scienti�c applications that experience a variable demand during
its execution. Because e-Science processes are modelled with work�ows,
software components called Work�ow Management Systems (WMSs) play a
crucial role in this data deluge scenario.

In the last years, many WMSs derived from projects in the area of grid
computing were updated to support the execution on Cloud resources.
However, many of their features are optimized for grids and thus are unable
to o�er the most key aspects. On the other hand, new generation WMSs
normally are focused on fully supporting a small number of cloud computing
providers and ignore older computing platforms.

For that reason, the main contribution of this thesis is an ad-hoc solution for
managing work�ows exploiting the capabilities of cloud computing orchestra-
tors to deploy resources adaptively according to the workload and to combine
heterogeneous cloud providers (such as on-premise clouds and public clouds)

75



Chapter 7. Conclusions and Future Work

and traditional infrastructures (supercomputers and clusters) to minimize
costs and response time. The thesis does not propose yet another WMS, but
highlights the bene�ts of the integration of cloud orchestration when running
complex work�ows. In fact, the cloud orchestration system can be ported to
any state-of-the-art WMS.

The tool developed in this work has been successfully tested using a realistic
comparative genomics work�ow called Orthosearch. An exhaustive analysis
has been performed, using several con�gurations to migrate memory-intensive
workload to public infrastructures while keeping other blocks of the experiment
running locally. The running time and cost of the experiments is computed
and best practices are suggested.

The main contributions of the thesis can be split into three categories:
conference contributions and journal contributions and events.

The following list showcases the conference contributions related with this
thesis:

� Blanquer Espert, Ignacio; Carrión Collado, Abel Antonio; Hernández
García, Vicente; Pignatelli, Miguel; Tamames, Javier. A Comparison
Between mpiBLAST on Supercomputers and High-Throughput BLAST
on Grid Infrastructures. In: First EELA-2 Conference Bogota (Colom-
bia): CIEMAT; 2009-03-01. 129-137.

� Blanquer Espert, Ignacio; Carrión Collado, Abel Antonio; Hernández
García, Vicente; Pignatelli, Miguel; Tamames, Javier. Improving the ex-
ecution of Bioinformatics applications by using pilot jobs. In: 3RD.
IBERIAN GRID INFRASTRUCTURE CONFERENCE VALENCIA:
NETBIBLO SL; 2009-05-22. 43-53.

� Blanquer Espert, Ignacio; Carrión Collado, Abel Antonio; Hernández
García, Vicente; Conejero Tomas, Vicente; Forment Millet, José Javier.
Estimating the horizontal gene transfer between prokaryotes and plants
by using e-Science infrastructures. In: Second EELA-2 Conference
Choroní (Venezuela): CIEMAT; 2009-11-01. 49-58.

� Blanquer Espert, Ignacio; Carrión Collado, Abel Antonio; Hernández
García, Vicente. Estimating the performance of BLAST runs in the
EGEE Grid. In: 5th EGEE User Forum, Uppsala (Suecia): European
Grid Initiative (EGI); 2010.

76



7.1 Summary and main contributions

� Blanquer Espert, Ignacio; Carrión Collado, Abel Antonio; Hernández
García, Vicente. Characterizing Grid experiments in Bioinformatics for
an e�cient scheduling. In: VECPAR'10, Berkeley, CA (USA): Lawrence
Berkeley National Laboratory, CITRIS, University of Porto; 2010.

� Lezzi, D., Rafanell, R., Carrión, A., Espert, I. B., Hernández, V., &
Badia, R. M. (2011, August). Enabling e-Science applications on the
Cloud with COMPSs. In European Conference on Parallel Processing
(pp. 25-34). Springer Berlin Heidelberg.

� Carrión, A., Blanquer, I., & Hernández, V. (2012). A service-based
BLAST command tool supported by cloud infrastructures. Stud Health
Technol Inform, 175, 69-77.

� Carrión, A., Blanquer, I., Caballer, M., González, C. Y., & Medina, I.
(2014). Design of a Generic Architecture for executing Bioinformatics
Work�ows on Distributed Infrastructures. In IWBBIO (pp. 563-574).

� Carrión, A., Kotowski, N., Caballer, M., Blanquer, I., Jardim, R., &
Dávila, A. M. Design and implementation of a Generic and Multi-
Platform Work�ow System. In 8th Iberian Grid Infrastructure Confer-
ence Proceedings (p. 77).

� Carrión, A., Caballer, M., Blanquer, I., Kotowski, N., & Dávila, A. M.
R. (2015, January). A Multi-Platform Work�ow Management System
optimized for Cloud Computing Platforms. In Proceedings of the Inter-
national Conference on Parallel and Distributed Processing Techniques
and Applications (PDPTA) (p. 424). The Steering Committee of The
World Congress in Computer Science, Computer Engineering and Ap-
plied Computing (WorldComp)

The journal contributions related with the work of this thesis are listed below:
� Avila-George, H., Torres-Jiménez, J., Rangel-Valdez, N., Carrión, A.,
& Hernández, V. (2012). Supercomputing and grid computing on the
veri�cation of covering arrays. The Journal of supercomputing, 62(2),
916-945.

� Himer Avila-George, Jose Torres-Jiménez, Abel Carrión and Vicente
Hernández (2012). Using Grid Computing for Constructing Ternary
Covering Arrays, Grid Computing - Technology and Applications,
Widespread Coverage and New Horizons, Dr. Soha Maad (Ed.), InTech,
DOI: 10.5772/36019.

� Abel Carrión, Ignacio Blanquer, Miguel Caballer and Nelson Ko-
towski (2017). Managing Work�ows on top of a Cloud Computing
Orchestrator for using heterogeneous environments on e-Science, In-
ternational Journal of Grid and Web Services, Indersciences, DOI:
10.1504/IJWGS.2017.10003225.

The work related with this thesis and presented in the context of events are:

77



Chapter 7. Conclusions and Future Work

� Abel Carrión, Ignacio Blanquer and Vicente Hernández. Aplicación
biomédica gBLAST. In: 3a Reunión Plenaria Red Espa nola de e-Ciencia,
Universidad Politécnica de Valencia (Valencia), 2009.

� Abel Carrión, Ignacio Blanquer and Vicente Hernández. Enabling e-
Science applications on the Cloud through VENUS-C. In: Cloud Com-
puting Workshop, UMA (Universidad de Málaga) (Málaga), 2011.

� Abel Carrión, Ignacio Blanquer and Vicente Hernández. Hands-on:
Implementation of a BLAST porting to VENUS-C GW and Windows
Azure. In: HCCA Cloud Computing Workshop, ICCH - International
Co-location Center Hagenberg, Linz (Austria), 2011.

Finally, all the work has been made publicly available in the following GitHub
repository: https://github.com/abel-carrion.

7.2 Future Work

There are basically three research lines that can be followed to extend the work
developed in this thesis.
The �rst research line entails adding support of containers to the ad-hoc WMS.
In contrast to the infrastructures already supported (cluster, supercomputers
and clouds), the complexity of adding the use of containers is trivial because
the IM already supports them.

With the container support included and tested, the next logical improvement
would be to reuse the computing resources between work�ow stages whenever
it is possible. In the cloud computing case, the use of the vertical and hor-
izontal elasticity comes in handy to adapt the hardware di�erences between
two consecutive stages. In most cases, this strategy will not only impact by
signi�cantly reducing the deployment time of the work�ow execution, but also
it will minimize the time dedicated to transferring intermediate �les.

As it was stated before, the cloud orchestration system is ready to be ported
to any state-of-the-art WMS. Thus, the �nal step would be to integrate all the
work done in this thesis and the previous research lines in a mature and in
production WMS.

78



Bibliography

[1] Daniel Atkins. �Revolutionizing science and engineering through cyber-
infrastructure: Report of the National Science Foundation blue-ribbon
advisory panel on cyberinfrastructure�. In: (2003) (cit. on p. 1).

[2] Shannon Bohle. �What is E-science and how should it be man-
aged?� In: Nature. com, Spektrum der Wissenschaft (Scienti�c Amer-
ican), http://www. scilogs. com/scienti�c_and_medicallib raries/what-
is-e-science-and-how-should-it-be-managed (2013) (cit. on p. 1).

[3] Ewa Deelman et al. �Work�ows and e-Science: An overview of work-
�ow system features and capabilities�. In: Future Generation Computer
Systems 25.5 (2009), pp. 528�540 (cit. on p. 1).

[4] Christina Ho�a et al. �On the use of cloud computing for scienti�c work-
�ows�. In: eScience, 2008. eScience'08. IEEE Fourth International Con-
ference on. IEEE. 2008, pp. 640�645 (cit. on pp. 2, 11).

[5] Rodrigo N Calheiros et al. �Adaptive Execution of Scienti�c Work�ow
Applications on Clouds�. In: Cloud Computing with e-Science Applica-
tions (2015), p. 73 (cit. on pp. 3, 11).

[6] Naidila Sadashiv and SM Dilip Kumar. �Cluster, grid and cloud com-
puting: A detailed comparison�. In: Computer Science & Education
(ICCSE), 2011 6th International Conference on. IEEE. 2011, pp. 477�
482 (cit. on p. 6).

79



Bibliography

[7] Donald J Becker et al. �BEOWULF: A parallel workstation for scien-
ti�c computation�. In: Proceedings, International Conference on Parallel
Processing. Vol. 95. 1995 (cit. on p. 6).

[8] David E Culler et al. �Parallel computing on the Berkeley NOW�. In: 9th
Joint Symposium on Parallel Processing. 1997 (cit. on p. 6).

[9] High Performance Virtual Machines. http : / / cseweb . ucsd . edu /
groups/csag/html/projects/hpvm.html. Accessed: 2016-11-15 (cit.
on p. 6).

[10] Madhu Chetty and Rajkumar Buyya. �Weaving computational Grids:
How analogous are they with electrical Grids?� In: Computing in Science
& Engineering 4.4 (2002), pp. 61�71 (cit. on p. 7).

[11] Klaus Krauter, Rajkumar Buyya, and Muthucumaru Maheswaran. �A
taxonomy and survey of grid resource management systems for dis-
tributed computing�. In: Software: Practice and Experience 32.2 (2002),
pp. 135�164 (cit. on p. 7).

[12] Ian Foster. �What is the grid? a three point checklist, July 2002�. In:
ThreePoint-Check. pdf (2006) (cit. on p. 7).

[13] Rajkumar Buyya et al. �Cloud computing and emerging IT platforms:
Vision, hype, and reality for delivering computing as the 5th utility�. In:
Future Generation computer systems 25.6 (2009), pp. 599�616 (cit. on
p. 8).

[14] Peter Mell and Tim Grance. �The NIST de�nition of cloud computing�.
In: (2011) (cit. on p. 8).

[15] Erwin Laure et al. �Programming the Grid with gLite�. In: Computa-
tional methods in science and technology 12.1 (2006), pp. 33�45 (cit. on
p. 10).

[16] Xiaorong Li et al. �Design and development of an adaptive work�ow-
enabled spatial-temporal analytics framework�. In: Parallel and Dis-
tributed Systems (ICPADS), 2012 IEEE 18th International Conference
on. IEEE. 2012, pp. 862�867 (cit. on p. 11).

80

http://cseweb.ucsd.edu/groups/csag/html/projects/hpvm.html
http://cseweb.ucsd.edu/groups/csag/html/projects/hpvm.html


Bibliography

[17] AWS CloudFormation. https://aws.amazon.com/cloudformation/.
Accessed: 2016-11-15 (cit. on p. 13).

[18] AWS OpsWorks. https://aws.amazon.com/opsworks/. Accessed: 2016-
11-15 (cit. on p. 13).

[19] Katarzyna Keahey and Tim Freeman. �Contextualization: Providing one-
click virtual clusters�. In: eScience, 2008. eScience'08. IEEE Fourth In-
ternational Conference on. IEEE. 2008, pp. 301�308 (cit. on p. 13).

[20] Gideon Juve and Ewa Deelman. �Wrangler: virtual cluster provisioning
for the cloud�. In: Proceedings of the 20th international symposium on
High performance distributed computing. ACM. 2011, pp. 277�278 (cit.
on p. 13).

[21] Daniel Nurmi et al. �The eucalyptus open-source cloud-computing sys-
tem�. In: Cluster Computing and the Grid, 2009. CCGRID'09. 9th
IEEE/ACM International Symposium on. IEEE. 2009, pp. 124�131 (cit.
on p. 14).

[22] Dejan Milojivic, Ignacio M Llorente, and Ruben S Montero. �Open-
nebula: A cloud management tool�. In: IEEE Internet Computing 15.2
(2011), pp. 11�14 (cit. on p. 14).

[23] HashiCorp: Vagrant (2013). http://www.vagrantup.com/. Accessed:
2016-11-15 (cit. on p. 14).

[24] Cloudify. http : / / getcloudify . org/. Accessed: 2016-11-15 (cit. on
p. 15).

[25] Tobias Binz et al. �TOSCA: portable automated deployment and man-
agement of cloud applications�. In: Advanced Web Services. Springer,
2014, pp. 527�549 (cit. on p. 15).

[26] Chef. https://www.chef.io/chef/. Accessed: 2016-11-15 (cit. on p. 15).

[27] Puppet. https://puppet.com/. Accessed: 2016-11-15 (cit. on p. 15).

81

https://aws.amazon.com/cloudformation/
https://aws.amazon.com/opsworks/
http://www.vagrantup.com/
http://getcloudify.org/
https://www.chef.io/chef/
https://puppet.com/


Bibliography

[28] Ansible. http : / / www . ansible . com/. Accessed: 2016-11-15 (cit. on
pp. 15, 16).

[29] Heat. https://wiki.openstack.org/wiki/Heat. Accessed: 2016-11-15
(cit. on p. 15).

[30] Omar Sefraoui, Mohammed Aissaoui, and Mohsine Eleuldj. �OpenStack:
toward an open-source solution for cloud computing�. In: International
Journal of Computer Applications 55.3 (2012) (cit. on p. 15).

[31] Cloud Foundry. Cloud Foundry. 2015 (cit. on p. 16).

[32] Miguel Caballer et al. �Dynamic management of virtual infrastructures�.
In: Journal of Grid Computing 13.1 (2015), pp. 53�70 (cit. on pp. 16,
52).

[33] Jose V Carrión et al. �A generic catalog and repository service for vir-
tual machine images�. In: 2nd International ICST Conference on Cloud
Computing (CloudComp 2010). 2010, pp. 1�15 (cit. on p. 16).

[34] Marek Wieczorek, Radu Prodan, and Thomas Fahringer. �Scheduling
of scienti�c work�ows in the ASKALON grid environment�. In: ACM
SIGMOD Record 34.3 (2005), pp. 56�62 (cit. on p. 18).

[35] Thomas Fahringer, Jun Qin, and Stefan Hainzer. �Speci�cation of grid
work�ow applications with AGWL: an Abstract Grid Work�ow Lan-
guage�. In: CCGrid 2005. IEEE International Symposium on Cluster
Computing and the Grid, 2005. Vol. 2. IEEE. 2005, pp. 676�685 (cit.
on p. 18).

[36] Rizos Sakellariou and Henan Zhao. �A low-cost rescheduling policy for
e�cient mapping of work�ows on grid systems�. In: Scienti�c Program-
ming 12.4 (2004), pp. 253�262 (cit. on pp. 18, 35).

[37] Gabriela Andreea Morar et al. �Meteorological simulations in the cloud
with the ASKALON environment�. In: Lecture Notes in Computer Sci-
ence (including subseries Lecture Notes in Arti�cial Intelligence and
Lecture Notes in Bioinformatics) 7640 LNCS (2013), pp. 68�78. issn:
03029743. doi: 10.1007/978-3-642-36949-0\_9 (cit. on p. 18).

82

http://www.ansible.com/
https://wiki.openstack.org/wiki/Heat
https://doi.org/10.1007/978-3-642-36949-0\_9


Bibliography

[38] Jeremy Goecks, Anton Nekrutenko, and James Taylor. �Galaxy: a com-
prehensive approach for supporting accessible, reproducible, and trans-
parent computational research in the life sciences�. In: Genome biology
11.8 (2010), p. 1 (cit. on pp. 19, 21).

[39] Katherine Wolstencroft et al. �The Taverna work�ow suite: designing
and executing work�ows of Web Services on the desktop, web or in the
cloud�. In: Nucleic acids research (2013), gkt328 (cit. on p. 19).

[40] Tristan Glatard et al. �Flexible and e�cient work�ow deployment of
data-intensive applications on grids with moteur�. In: International Jour-
nal of High Performance Computing Applications 22.3 (2008), pp. 347�
360 (cit. on p. 19).

[41] Ewa Deelman et al. �Pegasus: A framework for mapping complex sci-
enti�c work�ows onto distributed systems�. In: Scienti�c Programming
13.3 (2005), pp. 219�237 (cit. on p. 19).

[42] Ewa Deelman et al. �Pegasus in the Cloud: Science Automation through
Work�ow Technologies�. In: IEEE Internet Computing 20.1 (2016),
pp. 70�76 (cit. on p. 20).

[43] Xiao Liu et al. �SwinDeW-C: a peer-to-peer based cloud work�ow sys-
tem�. In: Handbook of Cloud Computing. Springer, 2010, pp. 309�332
(cit. on p. 20).

[44] Ian Taylor et al. �The triana work�ow environment: Architecture and
applications�. In: Work�ows for e-Science. Springer, 2007, pp. 320�339
(cit. on p. 20).

[45] Lavanya Ramakrishnan et al. �VGrADS: enabling e-Science work�ows
on grids and clouds with fault tolerance�. In: Proceedings of the Confer-
ence on High Performance Computing Networking, Storage and Analysis.
IEEE. 2009, pp. 1�12 (cit. on p. 20).

[46] Peter Kacsuk et al. �WS-PGRADE/gUSE generic DCI gateway frame-
work for a large variety of user communities�. In: Journal of Grid Com-
puting 10.4 (2012), pp. 601�630 (cit. on p. 21).

83



Bibliography

[47] I Foster et al. OGSA basic execution service version 1.0. 2007 (cit. on
p. 21).

[48] Ravi Madduri et al. �The Globus Galaxies platform: delivering science
gateways as a service�. In: Concurrency and Computation: Practice and
Experience 27.16 (2015), pp. 4344�4360 (cit. on p. 21).

[49] Michael Wilde et al. �Swift: A language for distributed parallel scripting�.
In: Parallel Computing 37.9 (2011), pp. 633�652 (cit. on p. 21).

[50] Daniel de Oliveira et al. �Scicumulus: A lightweight cloud middleware to
explore many task computing paradigm in scienti�c work�ows�. In: 2010
IEEE 3rd International Conference on Cloud Computing. IEEE. 2010,
pp. 378�385 (cit. on p. 21).

[51] Abel Carrión et al. �Design of a Generic Architecture for executing Bioin-
formatics Work�ows on Distributed Infrastructures.� In: IWBBIO. 2014,
pp. 563�574 (cit. on p. 29).

[52] Jia Yu and Rajkumar Buyya. �A taxonomy of work�ow management
systems for grid computing�. In: Journal of Grid Computing 3.3-4 (2005),
pp. 171�200 (cit. on p. 29).

[53] Wil MP van Der Aalst et al. �Work�ow patterns�. In: Distributed and
parallel databases 14.1 (2003), pp. 5�51 (cit. on p. 32).

[54] Wil MP van der Aalst et al. �Advanced work�ow patterns�. In: Interna-
tional Conference on Cooperative Information Systems. Springer. 2000,
pp. 18�29 (cit. on p. 32).

[55] Ewa Deelman et al. �Work�ow management in GriPhyN�. In: Grid Re-
source Management. Springer, 2004, pp. 99�116 (cit. on p. 34).

[56] Ewa Deelman et al. �Pegasus: Mapping scienti�c work�ows onto the
grid�. In: Grid Computing. Springer. 2004, pp. 11�20 (cit. on pp. 34,
48).

[57] Bertram Ludascher, Ilkay Altintas, and Amarnath Gupta. �Compiling
abstract scienti�c work�ows into web service work�ows�. In: Scienti�c

84



Bibliography

and Statistical Database Management, 2003. 15th International Confer-
ence on. IEEE. 2003, pp. 251�254 (cit. on p. 34).

[58] Kaizar Amin et al. �Gridant: A client-controllable grid work�ow system�.
In: System Sciences, 2004. Proceedings of the 37th Annual Hawaii Inter-
national Conference on. IEEE. 2004, 10�pp (cit. on p. 34).

[59] Tim Bray et al. �Extensible markup language (XML)�. In: World Wide
Web Consortium Recommendation REC-xml-19980210. http://www. w3.
org/TR/1998/REC-xml-19980210 16 (1998), p. 16 (cit. on p. 35).

[60] Francisco Hernández et al. �A graphical modeling environment for the
generation of work�ows for the globus toolkit�. In: Component Models
and Systems for Grid Applications. Springer, 2005, pp. 79�96 (cit. on
p. 35).

[61] Tadao Murata. �Temporal uncertainty and fuzzy-timing high-level Petri
nets�. In: International Conference on Application and Theory of Petri
Nets. Springer. 1996, pp. 11�28 (cit. on p. 35).

[62] Grady Booch. The uni�ed modeling language user guide. Pearson Edu-
cation India, 2005 (cit. on p. 35).

[63] JavaScript Object Notation. http://json.org/. Accessed: 2016-11-15
(cit. on p. 36).

[64] Jackson:High-performance JSON processor. http : / / jackson .
codehaus.org/. Accessed: 2016-11-15 (cit. on p. 47).

[65] MongoDB. http://www.mongodb.org/. Accessed: 2016-11-15 (cit. on
p. 57).

[66] Paolo Missier, Khalid Belhajjame, and James Cheney. �The W3C PROV
family of speci�cations for modelling provenance metadata�. In: Proceed-
ings of the 16th International Conference on Extending Database Tech-
nology. ACM. 2013, pp. 773�776 (cit. on p. 59).

85

http://json.org/
http://jackson.codehaus.org/
http://jackson.codehaus.org/
http://www.mongodb.org/


Bibliography

[67] Ross C Hardison. �Comparative genomics.� In: PLoS biology 1.2 (Nov.
2003), E58. issn: 1545-7885. doi: 10.1371/journal.pbio.0000058 (cit.
on p. 61).

[68] Eugene V Koonin. �Orthologs, paralogs, and evolutionary genomics.� en.
In: Annual review of genetics 39 (Jan. 2005), pp. 309�38. issn: 0066-4197.
doi: 10.1146/annurev.genet.39.073003.114725 (cit. on pp. 61, 62).

[69] Eugene V Koonin and Michael Y Galperin. Sequence - Evolution - Func-
tion. en. 2003 (cit. on p. 62).

[70] Christophe Dessimoz et al. �Toward community standards in the quest
for orthologs.� In: Bioinformatics (Oxford, England) 28.6 (Mar. 2012),
pp. 900�4. issn: 1367-4811. doi: 10.1093/bioinformatics/bts050 (cit.
on p. 62).

[71] Rafael R C Cuadrat et al. �An orthology-based analysis of pathogenic
protozoa impacting global health: an improved comparative genomics
approach with prokaryotes and model eukaryote orthologs.� en. In: Omics
: a journal of integrative biology 18.8 (Aug. 2014), pp. 524�38. issn: 1557-
8100. doi: 10.1089/omi.2013.0172 (cit. on p. 62).

[72] Debra L Fulton et al. �Improving the speci�city of high-throughput or-
tholog prediction.� In: BMC bioinformatics 7.1 (Jan. 2006), p. 270. issn:
1471-2105. doi: 10.1186/1471-2105-7-270 (cit. on p. 62).

[73] Christophe Dessimoz. �Editorial: Orthology and applications.� In: Brief-
ings in bioinformatics 12.5 (Sept. 2011), pp. 375�6. issn: 1477-4054. doi:
10.1093/bib/bbr057 (cit. on p. 62).

[74] Li Li, Christian J Stoeckert, and David S Roos. �OrthoMCL: identi�ca-
tion of ortholog groups for eukaryotic genomes.� In: Genome research
13.9 (Sept. 2003), pp. 2178�89. issn: 1088-9051. doi: 10 . 1101 / gr .
1224503 (cit. on p. 62).

[75] Sergio Manuel Serra da Cruz et al. �OrthoSearch�. In: Proceedings of the
2008 ACM symposium on Applied computing - SAC '08. New York, New
York, USA: ACM Press, Mar. 2008, p. 1282. isbn: 9781595937537. doi:
10.1145/1363686.1363983 (cit. on p. 62).

86

https://doi.org/10.1371/journal.pbio.0000058
https://doi.org/10.1146/annurev.genet.39.073003.114725
https://doi.org/10.1093/bioinformatics/bts050
https://doi.org/10.1089/omi.2013.0172
https://doi.org/10.1186/1471-2105-7-270
https://doi.org/10.1093/bib/bbr057
https://doi.org/10.1101/gr.1224503
https://doi.org/10.1101/gr.1224503
https://doi.org/10.1145/1363686.1363983


Bibliography

[76] Sérgio Manuel Serra da Cruz et al. �Detecting distant homologies on pro-
tozoans metabolic pathways using scienti�c work�ows.� In: International
journal of data mining and bioinformatics 4.3 (Jan. 2010), pp. 256�80.
issn: 1748-5673 (cit. on p. 62).

[77] Kazutaka Katoh and Daron M Standley. �MAFFT multiple sequence
alignment software version 7: improvements in performance and usabil-
ity.� In: Molecular biology and evolution 30.4 (Apr. 2013), pp. 772�80.
issn: 1537-1719. doi: 10.1093/molbev/mst010 (cit. on p. 62).

[78] Robert D Finn, Jody Clements, and Sean R Eddy. �HMMER web
server: interactive sequence similarity searching.� In: Nucleic acids re-
search 39.Web Server issue (July 2011), W29�37. issn: 1362-4962. doi:
10.1093/nar/gkr367 (cit. on p. 62).

[79] Sean Powell et al. �eggNOG v4.0: nested orthology inference across 3686
organisms.� In: Nucleic acids research 42.Database issue (Jan. 2014),
pp. D231�9. issn: 1362-4962. doi: 10.1093/nar/gkt1253 (cit. on p. 63).

[80] Mitchell S Abrahamsen et al. �Complete genome sequence of the api-
complexan, Cryptosporidium parvum.� In: Science (New York, N.Y.)
304.5669 (Apr. 2004), pp. 441�5. issn: 1095-9203. doi: 10 . 1126 /
science.1094786 (cit. on p. 63).

[81] Ping Xu et al. �The genome of Cryptosporidium hominis.� In: Nature
431.7012 (Oct. 2004), pp. 1107�12. issn: 1476-4687. doi: 10 . 1038 /
nature02977 (cit. on p. 63).

[82] Michael P Barrett and Simon L Croft. �Management of trypanosomiasis
and leishmaniasis.� In: British medical bulletin 104 (Jan. 2012), pp. 175�
96. issn: 1471-8391. doi: 10.1093/bmb/lds031 (cit. on p. 63).

[83] Wangeci Gatei et al. �Cryptosporidiosis: prevalence, genotype analysis,
and symptoms associated with infections in children in Kenya�. In: Am
J Trop Med Hyg 75.1 (July 2006), pp. 78�82 (cit. on p. 63).

87

https://doi.org/10.1093/molbev/mst010
https://doi.org/10.1093/nar/gkr367
https://doi.org/10.1093/nar/gkt1253
https://doi.org/10.1126/science.1094786
https://doi.org/10.1126/science.1094786
https://doi.org/10.1038/nature02977
https://doi.org/10.1038/nature02977
https://doi.org/10.1093/bmb/lds031




List of Figures

Figure 2.1 Infrastructure Manager architecture. . . . . . . . . . . . 17

Figure 4.1 WMS architecture overview. . . . . . . . . . . . . . . . . 30
Figure 4.2 Work�ow structure taxonomy. . . . . . . . . . . . . . . . 33
Figure 4.3 A typical scienti�c application modelled as a DAG. . . . 33
Figure 4.4 Work�ow composition system taxonomy. . . . . . . . . . 36
Figure 4.5 Work�ow diagram example. . . . . . . . . . . . . . . . . 43
Figure 4.6 Planning schema taxonomy. . . . . . . . . . . . . . . . . 48
Figure 4.7 Fusion of sequential stages. . . . . . . . . . . . . . . . . 49
Figure 4.8 Addition of data management tasks. . . . . . . . . . . . 50
Figure 4.9 Task for the dynamic provisioning and release of resources. 50
Figure 4.10 Transformation steps of an abstract work�ow into an

executable work�ow. From left to right: 0 (abstract work�ow
de�ned by the user), 1 (fusion of stages), 2 (addition of data
management stages), 3 (inclusion of stages for cloud computing
support). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

Figure 4.11 Work�ow execution engine algorithm . . . . . . . . . . . 52
Figure 4.12 Execution of a parallel task. . . . . . . . . . . . . . . . . 54
Figure 4.13 Fault tolerance taxonomy. . . . . . . . . . . . . . . . . . 58

Figure 5.1 Orthosearch abstract work�ow. . . . . . . . . . . . . . . 63

Figure 6.1 Orthosearch serial execution using a cluster. . . . . . . . 66
Figure 6.2 Orthosearch serial execution using a Virtual Machine

instance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Figure 6.3 Executable work�ow for Orthosearch. . . . . . . . . . . . 68

89



List of Figures

Figure 6.4 Orthosearch execution using the WMS with pre-fetching
not enabled. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

Figure 6.5 Orthosearch execution using the WMS with pre-fetching
enabled. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

Figure 6.6 Response time comparison for di�erent scenarios. . . . . 72
Figure 6.7 CPU usage comparison for di�erent scenarios. . . . . . . 72
Figure 6.8 Time-line of Orthosearch's critical path for 3 scenarios. . 74

90



List of Tables

Table 2.1 Comparison between state-of-the-art WMSs. . . . . . . . 22

Table 6.1 Con�guration parameters for each Orthosearch stage . . 69

91




	Abstract
	Resumen
	Resum
	Contents
	1 Introduction
	1.1 Motivation
	1.2 Thesis organization

	2 State of the Art
	2.1 Computing platforms survey
	2.2 Challenges of the execution of Workflows in Clouds
	2.3 Virtual infrastructure deployment and orchestration systems
	2.4 Related work

	3 Objectives and Methods
	3.1 Objectives
	3.2 Methods

	4 System architecture
	4.1 Architecture overview
	4.2 Workflow design
	4.3 Workflow planning
	4.4 Workflow execution
	4.5 Performance optimizations
	4.6 Persistence
	4.7 Fault tolerance
	4.8 Provenance

	5 Use case
	5.1 Preliminary concepts
	5.2 Orthosearch
	5.3 Data selection

	6 Experiments
	6.1 Infrastructures used
	6.2 Sequential execution
	6.3 Cloud Computing WMS-aided execution
	6.4 Overall analysis
	6.5 Hybrid platform execution

	7 Conclusions and Future Work
	7.1 Summary and main contributions
	7.2 Future Work

	Bibliography

