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Resumen 
Las técnicas acústicas se han convertido en las últimas décadas en las herramientas más 

apropiadas para la estimación de biomasa en el sector pesquero.  Esto es debido a que las 

ondas acústicas son las únicas que pueden utilizarse para teledetección en el medio 

acuático, por su baja atenuación,  comparadas con las ondas electromagnéticas,  que son 

las usadas habitualmente en comunicaciones a larga distancia en la atmósfera. Las 

ecosondas ultrasónicas permiten muestrear la columna de agua y cubrir grandes 

extensiones de océano mediante campañas de muestreo realizadas por buques 

oceanográficos, ofreciendo información de las poblaciones de peces de interés comercial. 

Por otro lado, como consecuencia de la sobreexplotación de los recursos pesqueros  y para 

cubrir la demanda creciente para su consumo, se ha desarrollado como alternativa a la 

captura,  la producción piscícola. Aunque hay diversas especies que se crían en cautividad, 

en España podemos destacar tres en particular, por el alto impacto económico y grado de 

implantación: Dorada (Sparus aurata), lubina (Dicentrarchus labrax) y atún rojo 

(Thunnus thynnus). La aplicación de las técnicas desarrolladas en el campo de la acústica 

de pesquerías para el control y estimación de la biomasa en jaulas flotantes, es una 
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demanda del sector acuicultor. Sin embargo, diferentes problemas relacionados con la 

geometría de la aplicación y las altas densidades de peces con las que se trabaja en 

acuicultura intensiva, han dificultado la aplicación directa de las mismas.  

Los avances en el estudio de la biomasa o en la clasificación de especies han ido en 

paralelo con el desarrollo  de los sistemas sonar y ecosondas usados para este tipo de 

aplicaciones, y particularmente con la evolución de los transductores ultrasónicos 

empleados.  La frecuencia de trabajo, la potencia de emisión, el ancho de banda,  así como 

la directividad son factores clave en los métodos acústicos aplicados a la pesca. 

Además, otras vertientes de investigación están adquiriendo mayor relevancia en este 

sector, como por ejemplo, el estudio de la generación no lineal paramétrica de sonido. 

Esta generación o efecto paramétrico, producido en el medio, se ha enfocado hasta ahora 

especialmente en batimetrías o en la clasificación del subsuelo oceánico, por ofrecer 

frecuencias de trabajo mucho más bajas con la misma directividad que el haz generado a 

alta frecuencia. Actualmente, se estudia su viabilidad para ser aplicado a pesquerías o a 

acuicultura, debido a la posibilidad de  trabajar a varias frecuencias con un mismo 

transductor, presentado éstas las mismas características de radiación, lo que no es posible 

en el régimen lineal. 

 Esta tesis presenta el diseño de un transductor de ultrasonidos para la estimación de 

biomasa con unas características específicas. Demostrando, además, la capacidad de éste 

para poder trabajar en régimen no lineal  con aperturas  adecuadas para su uso en aguas 

poco profundas o en jaulas de acuicultura. 

 En el capítulo 2 se presenta información general sobre las ondas de ultrasonidos y el 

medio por donde se propagan, así como una introducción a la generación no-lineal. 

Conceptos generales sobre la generación de los ultrasonidos y el diseño se presentan en el 

capítulo 3.  
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En el capítulo 4, se muestran los modelos numéricos utilizados para afianzar los resultados 

experimentales presentados durante la tesis. 

El capítulo 5 recoge el diseño del transductor, que englobará todos los procesos, desde la 

caracterización de los materiales, hasta el montaje, puesta en marcha y simulación de los 

prototipos creados. 

Para finalizar el capítulo 6 presenta el comportamiento de los prototipos en régimen no 

lineal y su viabilidad para estimar biomasa de diferentes especies en aguas poco profundas 
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Resum 
Les tècniques acústiques s'han convertit en les últimes dècades en les ferramentes més 

apropiades per a l'estimació de biomassa en el sector pesquer. Això és degut a que les ones 

acústiques són les úniques que poden utilitzar-se per teledetecció en el medi aquàtic, per 

la seva baixa atenuació, comparades amb les ones electromagnètiques, que són les usades 

habitualment en comunicacions a llarga distància en l'atmosfera. Les ecosondes 

ultrasòniques permeten mostrejar la columna d'aigua i cobrir grans extensions d'oceà 

mitjançant campanyes de mostreig realitzades per vaixells oceanogràfics, oferint 

informació de les poblacions de peixos d'interès comercial. 

Per altre costat, com a conseqüència de la sobreexplotació dels recursos pesquers i per 

cobrir la demanda creixent per al seu consum, s'ha desenvolupat com a alternativa a la 

captura, la producció piscícola. Encara que hi ha diverses espècies que es crien en 

captivitat, a Espanya podem destacar tres en particular, per l'alt impacte econòmic i grau 

d'implantació: Daurada (Sparus aurata), llobarro (Dicentrarchus labrax) i tonyina 

vermella (Thunnus thynnus). L'aplicació de les tècniques desenvolupades en el camp de 

l'acústica de pesqueres pel control i estimació de la biomassa en gàbies flotants, és una 
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demanda del sector aqüicultor. No obstant això, diferents problemes relacionats amb la 

geometria de l'aplicació i les altes densitats de peixos amb les que es treballa en 

aqüicultura intensiva, han dificultat l'aplicació directa de les mateixes. 

Els avanços en l'estudi de la biomassa o en la classificació d'espècies han anat en paral·lel 

amb el desenvolupament dels sistemes sonar i ecosondes usats per a aquest tipus 

d'aplicacions, i particularment amb l'evolució dels transductors ultrasònics empleats. La 

freqüència de treball, la potència d'emissió, l'ample de banda, així com la directivitat són 

factors clau en els mètodes acústics aplicats a la pesca. 

A més, altres vessants d'investigació estan adquirint major rellevància en aquest sector, 

com per exemple, l'estudi de la generació no lineal paramètrica de so. Aquesta generació 

o efecte paramètric, produït en el medi, s'ha enfocat fins ara especialment en batimetries 

o en la classificació del subsòl oceànic, per oferir freqüències de treball molt més baixes 

amb la mateixa directivitat que el feix generat a alta freqüència. Actualment, s'estudia la 

seva viabilitat per a ser aplicat a pesqueries o a aqüicultura, a causa de la possibilitat de 

treballar a diverses freqüències amb un mateix transductor, presentat aquestes les mateixes 

característiques de radiació, el que no és possible en el règim lineal. 

Esta tesi presenta el disseny d'un transductor d'ultrasons per a l'estimació de biomassa amb 

unes característiques específiques. Demostrant, a més, la capacitat d'aquest per poder 

treballar en règim no lineal amb obertures adequades per al seu ús en aigües poc profundes 

o en gàbies d'aqüicultura. 

En el capítol 2 es presenta informació general sobre els ultrasons i el mitjà pel qual es 

propaguen, així com una introducció a la generació no-lineal. Conceptes generals sobre la 

generació dels ultrasons i el disseny es presenten en el capítol 3.  

En el capítol 4, es mostren també els models numèrics utilitzats per a refermar els resultats 

experimentals presentats durant la tesi. 
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El capítol 5 recull el disseny del transductor, que englobarà tots els processos, des de la 

caracterització dels materials fins al muntatge, posada en marxa i simulació dels prototips 

creats. 

Finalment, el capítol 6 presenta el comportament dels prototips en règim no lineal i la seua 

viabilitat per a estimar biomassa de diferents espècies en aigües poc profundes. 
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Abstract 
 

 

 

 

In recent decades, acoustic techniques have become the most appropriate tools for biomass 

estimation in the fishing industry. This is because acoustic waves are the only waves that 

can be used for remote sensing in the aquatic environment due to their low attenuation 

compared to electromagnetic waves, which are usually used in long-distance 

communications in the atmosphere. Ultrasonic echo sounders allow sampling of water 

columns and cover large areas of ocean by means of sampling campaigns conducted by 

oceanographic vessels, providing information on fish stocks of commercial interest. 

Furthermore, as a result of the overexploitation of fishery resources and to cover 

increasing demand, fish production has been developed as an alternative to capture. 

Although several species are bred in captivity, in Spain we can highlight three in 

particular, due to the high economic impact and degree of implantation: Gilt-head bream 

(Sparus aurata), sea bass (Dicentrarchus labrax) and Bluefin tuna (Thunnus thynnus). 

There is demand in the aquaculture industry for techniques developed in the field of 

fishery acoustics to control and estimate biomass. However, various problems related to 

the geometry of the application and high fish densities in intensive aquaculture have made 

these techniques difficult to apply directly. 
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The study of biomass and species classification has progressed in parallel with the 

development of sonar and echo sounder systems used for this type of applications, and 

particularly with the evolution of ultrasonic transducers. Operation frequency, 

transmission power, bandwidth and directivity are key factors in the acoustic methods 

applied to fishing. 

In addition, other aspects of research are becoming more relevant in this sector, such as 

the study of nonlinear parametric sound generation. This generation or parametric effect, 

produced in the medium, has focused so far especially on bathymetry or classification of 

the oceanic subsoil, by offering much lower operation frequencies with the same 

directivity as the beam generated at high frequency. Nowadays, their feasibility is studied 

for application to fisheries or aquaculture, due to the possibility of working at several 

frequencies with the same transducer, given the same radiation characteristics, which is 

not possible in the linear regime. 

 This thesis presents the design of an ultrasound transducer for biomass estimation with 

specific characteristics and demonstrates its capacity to work in a non-linear regime with 

optimum apertures for use in shallow water or in aquaculture cages. 

 Chapter 2 presents general information on ultrasound waves, the medium through which 

they are propagated and an introduction to non-linear generation. General concepts in 

ultrasound generation and design are presented in Chapter 3.  

Chapter 4 shows the numerical models used to reinforce the experimental results 

presented during this thesis. 

Chapter 5 covers the design of the transducer, encompassing all the processes, from 

characterization of the materials, to assembly, operation and simulation of designed 

prototypes. To conclude, Chapter 6 presents the behavior of prototypes in a nonlinear 

regime and their feasibility for estimating biomass of different species in shallow water.
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1.1. MOTIVATION AND OBJECTIVES 

This thesis deals with the application of parametric echosounding for fisheries acoustics 

in very shallow waters. It considers the development of an acoustic transducer prototype, 

designing all its constituent parts, and its feasibility for operation in a non-linear regime. 

This work seeks to provide technological tools for sustainable fishing (in the case of wild 

species capture), or proper monitoring of marine aquaculture exploitations (fish farms, 

etc.). 

According to experts from the Food and Agriculture Organization (FAO), a global 

extraction of more than 100 million tonnes per year can generate irreversible ecological 

alterations in marine resources. The growth in human population and changes in dietary 

habits led to the need to exceed 167 million tonnes of catches by 2014 (FAO Statistics 

2014). 

  
Introduction 
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Due to the growing demand for fishery resources, marine aquaculture has considerably 

increased production in recent years. In Spain, for example, this growth is mainly due to 

the cultivation of sea bream (Sparatus aurata) and sea bass (Dicentrarchus labrax) 

(APROMAR 2009) and a catch-based aquaculture industry of Bluefin tuna (Thunnus 

thynnus). 

Application of underwater acoustics techniques offer the chance to study both fish size 

and the amount of total biomass contained in a given volume of the medium. These two 

estimations are of vital importance both in fisheries (helping to make selective catches), 

and in marine farms, optimizing productivity and reducing environmental impacts in both 

cases. Information provided by sonar and echo sounder (the most commonly used 

instruments in aquaculture studies) is an important factor in the efficiency of modern 

fishery operations. 

Thus from the outset in the application of acoustic techniques for fish biomass estimation, 

a considerable number of scientists have been conducting research on acoustic properties 

of marine species. A large amount of data has been accumulated by experiments 

measuring acoustic energy backscattered to an echosounder. This data is known as target 

strength (TS), power target or dispersion cross-section in its linear expression .(Foote 

1989)  

Study of the acoustic properties of marine species has been carried out in parallel to the 

development of transducers for these applications. Transmission power, transducer 

aperture and operation frequency are key factors in the study of fish school characteristics. 

It is of vital importance to develop a specific acoustic transducer for each type of study. 

Furthermore, work has been done on biomass estimation in marine aquaculture (Knudsen, 

F., Fosseidengen, J., Oppedal, F., Karlsen, Ø, Ona, E. 2004) (Moszynski 2002)including  
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TS characterization of Mediterranean species in marine farms (Soliveres 2015). It has 

been found that the distance ranges in floating cages condition the application of the 

echosounding techniques commonly applied in fisheries acoustics. First, the detection of 

single specimen and TS measurements for fish sizing are limited by different problems 

associated to field diffraction effects and by the small acoustical beam diameter compared 

to fish size, as well as by high fish densities. Second, the application of the linear 

superposition principle to estimate fish density has been questioned because of the high 

densities. Backscattered energy per unit volume must be proportional to the density of 

scatterers (fish). High densities can provoke the acoustical extinction of the beam and also 

multi-scattering effects; therefore estimation of energy impinging on each fish is not 

trivial and depends on fish densities, fish size and acoustic frequency (Feuillade and P 

Raveau n.d.; Foote 1990; Foote, Ona, and Toresen 1992). 

The need for sustainable fishing also requires enhanced capabilities to differentiate size 

and species. One of the emerging technologies dedicated to tropical tuna fisheries are 

satellite buoys for fishing aggregating devices (FADs) localisation and monitoring. Earlier 

these devices were mere GPS trackers of FADs (Fonteneau, Chassot, and Bodin 2013), 

but current satellite buoy technology includes a single beam echosounder with one or more 

frequencies capable of performing echo integration and biomass estimations. 

Echosounders associated to drifting devices are proposed as instruments to evaluate 

relative abundances of FAD-associated fish (like tropical tuna species) using catch-

independent data, and. there is a clear need to improve their ability to discriminate species 

and size (Lopez et al. 2014).  

One of the techniques in underwater acoustics that has undergone a remarkable 

development due to its multiple applications is the nonlinear generation of sound. The 

devices based on this principle were specially developed during the Cold War and are 



Ultrasonic Transducer design: Feasibility as parametric echosounder in shallow water 

 

 

22 

known  as parametric acoustic arrays (in the Western literature) or parametric antennae 

(in Soviet references)(Oleg A,G. and Palmer R,D 2008). 

This power effect, originated in the propagation medium allows the generation of lower 

frequencies inside the emitted beam of higher frequencies excited on the acoustic 

transducer, resulting in a beam with lower absorption and  with similar insonified 

volumes.(Hamilton et al. 2008) These insonified volumes have been proposed as a  key 

tool in bathymetries or oceanic floor and sub-bottom classification and, more recently in 

species classification,  (Foote 1989; Godø and Foote 2010) 

Research work developed in the present thesis deals with the design, construction and 

characterization of an acoustic transducer, which is considered part of a parametric echo 

sounder device.  Our aim was to study the application of parametric techniques in the 

range of distances involved in aquaculture, very shallow waters or the upper layer of 

oceans where echosounders associated to drifting devices operate. A compromise between 

beam aperture and the efficiency of parametric generation of sound should be investigated. 

A wider aperture than the one used in scientific or commercial parametric echosounders 

is desirable to improve insonified volumes at short distances, but due to their  power-

dependent character, the gain in parametric generation can be compromised. 

During the design process, simulation studies of piezoelectric ceramics, essential 

constituents of the transducer, have been made, adding all the elements for their 

optimization such as the impedance matching layer, or the backing necessary for their 

correct operation. After building prototypes, a measurement campaign was conducted, 

developing all the necessary software to acquire and analyse the signals. Finally, with the 

experimental results we proceeded to study the range of applicability for the developed 

prototypes. 
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The work contained in this document can be listed schematically according to the 

following items. 

In relation to the acoustic transducer design: 

a) Acoustic transducer design and simulation. 

b) Development and prototyping. 

c) Acoustic transducer characterization (in linear regime). 

d) Simulation of non-linear acoustic field generation by the developed transducer. 

e) Non-linear measurement campaign. 

With the results obtained in section e) the viability of the transducer was studied for use 

in a non-linear regime (parametric acoustic array) : 

a) Sound pressure level from the parametric generation has been considered, 

calculating, depending on expected TS for different species, the viability of the 

transducer under different distance conditions.             
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 This chapter provides a short description of ultrasound physics, to review general 

concepts of ultrasonic wave propagation. A brief introduction to non-linear propagation 

and to the corresponding equations is also provided. Considering that the field of 

application of the present Thesis is the field of fisheries acoustics, ultrasonic propagation 

in water, mainly sea water, has been specifically addressed. 

2.1. ACOUSTIC WAVES 

Sound is a mechanical perturbation. It consists in pressure fluctuations propagating 

through elastic bodies, fluids and gases and it is not produced in a vacuum. In sound 

propagation, particles move with compression and expansion through a material, with no 

displacement of mass.  

Different parameters are required to describe a sound wave. The most important are 

described below. 

  
Ultrasound theory 
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Figure 2.1. Waveform parameters 

 - Frequency: frequency is defined as number of cycles that take place in a second. 

1f
T

=  (2. 1) 

Where f is the frequency in hertz (Hz) and T is the period in seconds (s).   

- Period: the elapsed time between two equivalent points of the wave. The period (T), is a 

reciprocal magnitude of frequency and the unit is seconds (s). 

- Wavelength: Distance between two nodes of the wave. Its international unit is the meter 

(m). In isotropic materials, wavelength is the ratio between propagation velocity and 

frequency. 

LV
f

λ =  (2. 2) 
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Two other important features in the study of acoustic waves are propagation velocity and 

acoustic impedance.  

Propagation velocity is defined as the speed at which acoustic vibrations pass through 

materials. It depends on the elastic properties of the material and the type of vibration. 

Generally, sound travels faster in liquids and solids than in gas. In all materials, 

propagation velocity varies inversely with the square root of the density. Velocity also 

varies proportionally to the square root of elasticity represented by Young’s Modulus (E). 

For example, in water, longitudinal propagation velocity is about 1500 m/s at ordinary 

temperatures, but greatly increases with increasing temperature. In steel, which is more 

elastic, sound travels at about 5000m/s; its spread is very efficient. 

Another factor that also affects propagation velocity is Poisson’s ratio. For example, in an 

ultrasonic transducer, the main component is the active element, explained in the 

following chapter. It is usually a piezoelectric ceramic.  When traction is applied to a 

certain ceramic, elastic elongation occurs and deformation in the direction of the applied 

load (which we arbitrarily call the z direction). As a result of this elongation, constrictions 

will occur in the lateral directions (x and y) perpendicular to the direction of voltage 

application. From these contractions, compression deformations xS  and. yS
can be 

determined. 

The ratio between the lateral and axial deformations is Poisson’s ratio 

yx

z z

SS
S S

ν = − = −
 

(2. 3) 



Ultrasonic Transducer design: Feasibility as parametric echosounder in shallow water 

 

 

28 

The negative sign is included in the expression for which "v" is always positive. For 

longitudinal ultrasound waves, the propagation velocity expression taking into account 

the relationship of these three factors (E, ρ, and v) is as follows: 

1
(1 )(1 2 )L

EV ν
ρ ν ν

−
=

+ −
 (2. 4) 

Where:  

VL= Longitudinal propagation velocity [m/s] 

E= Young’s modulus [Pa] 

ρ = Density [kg/m3] 

ѵ= Poisson’s ratio  

Closely related with this property is acoustic impedance. Acoustic impedance describes 

the propagation conditions of ultrasonic waves through a particular medium. It is 

commonly denominated by the letter Z and its unit is Rayls. In plane waves, it is equal to 

the product of medium propagation density and longitudinal propagation velocity 

0 LZ Vρ=  
(2. 5) 

When a wave travels from one medium to another with different impedance reflection 

occurs. Great differences between two media can reflect almost all the wave, without the 

wave being spread in the second. For that reason, acoustic impedance is important for 

determining acoustic transmission and reflection at the boundary or border between two 

materials with different impedances. In transducer design, it is an important parameter as 

well, to choose the different materials involved in the design and the correct dimensions 

for them. In fisheries acoustics, the echo of the swimbladder is used to estimate the  
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biomass of most species or detect them. The swimbladder is a membranous sac in fish 

under the spine and its capacity to fill with gas is used to improve buoyancy. Due to the 

impedance difference between the sea and the gas, the swimbladder produces the most 

energy reflection back to the transducer for analysis. 

The shape of the acoustic wave depends on the source and is described by the shape of 

the wavefront. Paradigmatic wave shapes are considered plane, spherical or cylindrical 

waves.  When a wave is observed far away from the source, it can be considered a plane 

wave. As an idealization, plane waves propagate in an ideal medium with no loss of energy 

in the direction of wave propagation. Spherical waves, on the other hand, have an energy 

decay in an ideal medium that follows a spherical law : energy decreases with the inverse 

of the distance square (Cheeke, 2002). There may be other local conditions and sound 

waves can also propagate as cylindrical waves, or with other decay factors. 

Material state in which the acoustic wave is transmitted also defines the local motion of 

the perturbation. Longitudinal and transversal waves, known as body waves can exit from 

within material. In longitudinal waves, also called compressional waves, displacement 

and wave propagation direction are parallel. In the case of transversal waves, displacement 

is perpendicular to the wave propagation direction. (Kinsler et al., 1999). . The difference 

between the two is illustrated in Fig 2.1. In solids, both waves are possible as well as other 

surface propagations such as Rayleigh and Love waves. However, in fluids or gases, only 

longitudinal waves are possible. . 
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Figure 2.2. Transversal and longitudinal wave propagation. 

Finally, there is another sound classification into different ranges depending on frequency. 

The audible range defined by human beings hearing goes from 20Hz to 20KHz.Below 

20Hz, the infrasound range is defined. Up to 20 kHz starts the ultrasonic range. 0 to 20Hz 

and above 20 kHz are ultrasounds waves. 

As noted above, ultrasounds are high frequency sounds. Ultrasonic waves are usually 

longitudinal but it is possible to find ultrasonic shear waves in some solids like 

piezoelectric ceramics as explained below in the section on piezoelectric theory. 

This thesis focuses on the generation of ultrasound by a piezoelectric disc transducer and 

ultrasonic propagation in water. Due to the working dimensions and distances spherical 

propagation is considered. As the propagation medium is nonviscous fluid (water), only 

longitudinal waves are present.  
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2.2. LINEAR ACOUSTIC WAVE EQUATION IN FLUIDS 

Acoustic wave propagation through fluids has obviously been a matter of interest in 

underwater acoustics. In the linear regime, with small intensities and perturbations, it is 

defined by the linear acoustic wave equation. 

Section 3.4 describes the ultrasonic transducer properties of acoustic pressure, velocity, 

frequency, intensity and attenuation, among others.. Most of them are obtained from 

solving wave equations. 

Conservation of mass (2.6) and momentum (2.7), from fluid dynamics, provides the basis 

for developing an acoustic wave equation in gases and liquids. (Eckert 2007)  

( )u
t
ρ ρ∂

− =
∂

  
(2. 6) 

( ) 'u u u p
t

ρ ∂ + ⋅∇ = −∇ ∂ 



   (2. 7) 

where u is particle velocity, ρ is density, ∇  is the spatial gradient operator, t  is time and 

'p is the acoustic pressure at any point as defined by 'p =P-P0 where P is the instantaneous 

pressure at any point and P0 the constant equilibrium pressure in the medium. 

Acoustic wave equation governs the propagation of acoustic waves through a material 

medium. The form of the equation is a second order partial differential equations: 

2
2

2 2

1 ''
( , , )

pp
c x y z t

∂
∇ =

∂
 (2. 8) 

Where c(x, y, z) is the local velocity. 

https://en.wikipedia.org/wiki/Acoustic_wave
https://en.wikipedia.org/wiki/Partial_differential_equation
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This equation is valid for small amplitude perturbations in a homogenous and isotropic 

fluid. 

2.3. NON-LINEAR REGIME: PARAMETRIC SOUND GENERATION 

When sound waves have sufficiently large amplitudes, a non-linear regime should be 

considered. One of the most important non-linear effects is parametric sound generation. 

Nowadays this technique in echosounders, has been used in both open sea and shallow 

water. Shallow water requires certain characteristics in terms of biomass estimation and 

species characterization. These characteristics are the utilization of wider beams to 

insonify full fish schools and the generation of collimated beams with free side-lobe in 

order to avoid reflective interfaces as much as possible. Apart from that, other important 

features to ensure good results are the possibility of taking multifrequency measurements 

in the same insonified area as well as to go through the fish school without screening. 

Therefore parametric echosounders are chosen as a good work tool. Although there are 

parametric commercial echo sounders (Neil 1992; Wunderlich 2003), experiments in the 

field of fisheries acoustics are scanty (Godø and Foote 2010), as their main purpose is 

sub-bottom profile characterization. 

The aim of this section is to provide a general overview of parametric sound generation. 

 HISTORICAL BACKGROUND 

To discuss the parametric effect we must return to non-linear acoustics. Until now, the 

approximations of linear acoustics models largely simplified constitutive equations, 

facilitating the modelling of concrete physical phenomena. However, many other 

processes could not be described linearly such as cavitation and radiation force, among  



2. Ultrasound theory 

 
33 

 

others. (Bjørnø 2017). Based on the work by Euler, for fluid dynamics, and Lagrange 

many models have been proposed to describe non-linear acoustic phenomena. 

 Parametric effect was the first non-linear acoustic effect of interest for practical 

applications. It was suggested by Westervelt in 1963(Westervelt 1963). This effect 

consists in a high power modulated sound beam. The non-linear properties of sound 

propagation in the medium cause such a beam to act like a distribution of sources for 

modulation frequencies, and as a result the sound at these frequencies is radiated as from 

an end-fire directional array. If the primary beam is a compound of two waves of 

frequencies 𝑓𝑓1 and 𝑓𝑓2, respectively, the sound beam generated in the medium will have 

new spectral components like sum frequencies (𝑓𝑓1+𝑓𝑓2), difference frequencies (𝑓𝑓2-𝑓𝑓1) , 

and other higher order harmonics (2𝑓𝑓1, 2𝑓𝑓2, etc.). Sound absorption limits the propagation 

range of primary waves which are proportional to the frequency squared, except for the 

difference frequency sound that will be absorbed at much slower rate than primary sound, 

and will therefore propagate farther than the primary beam. These spectral components 

will acquire primary beam directional properties giving several frequencies with the same 

beam radiation pattern. In addition, unwanted side lobes are considerably reduced in most 

cases.   

A broader and more precise development both theoretically and experimentally was 

published by H. O. Berktay in 1965(Berktay 1965), extending Westervelt’s results by 

generalizing the primary waves to cylindrical and spherical waves. In addition, Berktay 

extends the analysis of two pure tones to the case of the emission of a primary wave 

modulated in amplitude to a low frequency (envelope), producing the effect that the 

medium itself demodulates the original signal and the low frequency (parametric) appears. 

This process is known as self-demodulation of the medium. 
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From that point until now, numerous investigations have been  developed in this field both 

in water and air (Yoneyama 1983), contributing to a better knowledge of the effect, 

observing for example the effects caused by divergence of the Primary beam in the 

radiation pattern of spectral components, (Hobæk and Vestrheim 1977), defining optimal 

ratios between primary and secondary frequencies. 

In underwater acoustics   parametric arrays have been used extensively because of their 

unique features. They are generally used as a wide band sonar system for direct 

measurement of environmental parameters in shallow waters, in fisheries, and in bottom 

area sounding when reverberation is a problem (Woodward et al. 1994).  Having a beam 

pattern with significantly reduced side lobes, as in the case of the parametric array, 

prevents interference due to boundary interactions in shallow waters.  Parametric arrays 

can also be used in sub-bottom and seismic profiling and in hydrophones   because with 

only one single transducer, wide band frequency can be achieved (Radulescu et al. 2003) 

 PARAMETRIC ARRAY: OPERATING REGIMES 

Summarizing the previous section, the main difference between a linear and a nonlinear 

system is the creation of additional harmonics due to the interaction of primary waves. 

Transfer of energy that occurs in the primary harmonics causes frequency combinations 

to appear. (Figure 2.3) 
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Figure 2.3. Harmonic frequency generation in a non-linear acoustic system 

Within the parametric array, which is the non-linear system under study, three operating 

regimes can be defined depending on the factors taken into account in the study. 

In the Westervelt approximation,(Westervelt 1963) it is assumed that primary waves are 

perfectly plane collimated waves and the interaction region is limited by viscous 

absorption whereas non-linear absorption is neglected. The area of the beam is negligible 

compared to the wave length of the ultrasonic frequency(Berktay 1965). Therefore, virtual 

sources created along the axis due to nonlinear interaction do not intervene in the 

directivity pattern of the new spectral components. This case is called Absorption limited 

(Kopp et al. 2000). 

Spreading limited was the model that Berktay developed later on, where beam aperture 

effects were included, as well as absorption effects. In this model, extra attenuation due 

to the formation of shock waves is discarded. 

 Shock waves are produced by the behaviour of the non-linear medium. This non-linear 

conduct causes changes in sound speed as a function of wave amplitude. If, for example, 

a high-amplitude sine wave signal is propagated by a medium, wave peaks would begin 
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to travel faster than wave thoughts, causing the signal to transform into a saw-tooth wave 

(Figure 2.4) 

Figure 2.4. Sine wave transformation in saw-tooth wave 

Thus some energy is converted into high harmonics and is no longer available on the 

primary frequency for longer. This is referred to above as extra attenuation. The model 

named Shock-wave limited was introduced by Mellet and Moffet (Moffet n.d.). 

To define the operating regime in a specific problem, three characteristic distances must 

be defined. These are: 

• Rayleigh distance: As mentioned in section 3.3, an emitter transducer has two types 

of field. The near field and the far field. In the far field, spherical divergence begins 

to act and the wave attenuates progressively. In the near field, however, waves are 

kept contained in a cylinder where interference phenomena can affect their amplitude. 

The length of this cylinder is called the Rayleigh distance( FR ) 
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2

F
p

dR
λ

=  (2. 9) 

    Where d, is the source diameter 

  pλ , is the primary mean frequency (𝑓𝑓1+𝑓𝑓2/2) wavelength. 

• Absorption distance: Also called interaction distance, it depends on the  medium 

absorption for the primary frequencies and how it limits the nonlinear generation of 

new spectral components, as shown in Figure 2.5 

Figure 2.5. Source virtual representation depending on interaction distance 

This distance is inversely proportional to the medium absorption at the mean primary 
frequency (α ) 

1
AR

α
=  (2. 10) 

 

• Shock wave distance: the distance at which the shock waves explained above are 
formed. It is equal to: 
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1
sR

kMβ
=  (2. 11) 

Where M, is the acoustic Match number M = v/ c0 

          β , is the non-linear parameter β = 1+ B/ 2A 

           k, is the wavenumber at the primary mean frequency. 

Depending on the relationship between these three distances we will be in a certain 

operating range that will present its own characteristics. Figure 2.6 shows the different 

combinations. 

 

 

 

 

 

 

 

Figure 2.6. Validity model regions for parametric arrays. ((Kopp et al. 

2000)) 
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 NONLINEAR ACOUSTIC MODELS 

Since the whole process takes place in a fluid medium, the starting point will be the 

fundamental equations of fluid dynamics explained in Section 2.2. The combination of 

these and a particular state equation provide the set of equations necessary to raise the 

acoustic problem that solves non-linear acoustic problems, with different validity ranges.  

2.3.3.1. WESTERVELT EQUATION 

Westervelt equation is the simplest equation to describe the parametric array. It describes 

the evolution of progressive waves in a non-linear medium(Bjørnø 2017). This equation 

does not have to take into account non-linear absorption and beam divergence. 

2 2 2
2

2 2 4 2

1 ' '' p pp
c t c t

β
ρ

∂ ∂
∇ − = −

∂ ∂
 (2. 12) 

 

2.3.3.2. BURGERS EQUATION 

When dissipation effects are not negligible, it is possible to use Burgers equation, which 

describes the evolution of flat progressive waves in a non-linear and viscous medium 

(Landajuela 2011) 

2

2 3 2

' ' ''
2

p p pp
x c c

β θ
ρ τ ρ τ

∂ ∂ ∂
= +

∂ ∂ ∂  
(2. 13) 

θ is the dissipation factor. 

τ, is the spatial coordinate :τ = x – ct 
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2.3.3.3. KZK EQUATION 

One of the most complex expression is the paraxial approach developed by Khokhlov, 

Zabolotskaya and Kuznetsov and is known as the KZK equation (Rozanova-Pierrat 2006), 

which describes focused acoustic beams, considering the nonlinearity effect, dissipation 

and diffraction in parabolic approximation. KZK model can be modified to take into 

account other absorption phenomena such as relaxation processes, or heterogeneities in 

propagation velocity. 

2 2 2 3
2

2 2 3 3

' ' ''
2 2 2

p p p cp p
x c c

β θ
τ ρ τ ρ τ Γ

∂ ∂ ∂
= + + ∇

∂ ∂ ∂ ∂
 (2. 14) 

2
Γ∇  Laplacian operator transversal to propagation direction. 

2 2
2

2 2x yΓ

∂ ∂
∇ = +

∂ ∂
 

2.4. PROPAGATION MEDIUM 

The transmission type of ultrasonic waves depends largely upon on the medium in which 

they propagate. This section describes different acoustic properties defined by the 

transmission medium and the effects that are encountered when ultrasonic waves 

propagate by the sea, as a particular case for this thesis. 

 ACOUSTIC MEDIUM PROPERTIES 

All measurements carried out in this thesis are made in pure water although prototype 

transducers are ultimately designed to work in sea water. In both cases, propagation 

velocity and therefore acoustic impedance, depend on temperature, salinity (sea water) 

and the working depth. The literature contains different equations for obtaining the correct 

values, such as Mackenzie (Mackenzie 1981) 
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2 3

2

3

( , , ) 1448.96 (4.591 ) (5.304 2 ) (2.374 4 )
(1.340( 35)) (1.630 2 ) (1.675 7 )

(1.025 2 ( 35)) (7.139 13 )

V T S D T e T e T
S e D e D

e T S e TD

= + − − + − +

− + − + −

− − − − −

 
(2. 15) 

T = temperature in degrees Celsius  

S = salinity in parts per thousand  

D = depth in meters 

With a range of validity for temperature of 2 to 30 °C, salinity 25 to 40 parts per thousand, 

and depth 0 to 8000 m 

Or Coppens equation(Coppens 1981), orientated for lower salinity values: 

2( , , ) ( (0, , ) (16.23 0.253 ) (0.213 0.1 )
[0.016 0.0002( 35)

V t S D V S t t D t D
S tD

= + + + − +
+ −

 (2. 16) 

2 3 2(0, , ) 1449.05 45.7 5.21 0.23 (1.333 0.126 0.009 )( 35)V S D t t t t t S= + − + + − + −  (2. 17) 

t = T/10 where T = temperature in degrees Celsius 

S = salinity in parts per thousand 

D = depth in kilometres 

With range of validity: temperature 0 to 35 °C, salinity 0 to 45 parts per thousand, depth 

0 to 4000 m. 

In the tests carried out during this work, considering temperature about 18º,  salinity equal 

to 0 and depth equal to 0.5metres, propagation sound velocity acquires a value around 

1475 m/s according to Coppens equation. 
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Another important acoustic medium property to take into account is absorption. This 

characteristic is one of the parts that make up the transmission losses of ultrasonic waves. 

The other part, by which the major part of energy is lost, is geometrical spreading (see the 

following chapter) which depends on the type of acoustic source. 

Absorption, in the particular case of seawater, is considered to be the sum of three 

contributions from pure water, magnesium sulphate, and boric acid (ionic relaxation of 

chemicals)  

The commonly used Francois-Garrison model calculates absorption coefficient α in 

units of dB/km based on depth, salinity, temperature, and frequency (Francois and 

Garrison 1982) 

Total 
absorption = Boric Acid 

Contribution + 
Magnesium 

Sulphate 
Contribution 

+ 
Pure Water 

Contribution 
 

 
2 2

21 1 1 2 2 2
3 32 2 2 2

1 2

A P f f A P f f A P f
f f f f

α = + +
+ +

 (2. 18) 

 

where pressure dependencies are given by P1, P2 and P3, relaxation frequencies 

are f1 and f2 and 𝐴𝐴1, 𝐴𝐴2 and 𝐴𝐴3 are empiric constants related with each chemical process. 

Pure water contribution, 𝐴𝐴3 is an analytical expression function of water viscosity. The 

other two can be obtain from Figure 2.7 

François and Garrison estimate their model to be accurate to within about 5%.  For 

frequencies of 10-500 kHz (where the MgSO4 contribution dominates), the limits of 

reliability are: 
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-2 < T < 22 °C 

30 < S < 35 ppt 

0 < D < 3.5 km 
 

Further analysis by Ainslie and McColm (A&M) was published in 1997, but is based on 

the same data set.(Ainslie and McColm 1998). Figure 2.7 shows attenuation as a function 

of frequency taking into account all these factors. 

 

 

 

 

 

 

 

 

Figure 2.7. Frequency dependent attenuation, for the relaxation processes of oxygen and nitrogen in air, 

and magnesium sulphate and boric acid in seawater. 

 

For the aim of this thesis, studies of relaxation effects in short distances (20m<) have been 

carried out neglecting any modification in the ultrasound acoustic wave. 
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To conclude, other additional losses may occur during the propagation of ultrasonic 

waves. In the sea, ultrasound experiences phenomena of reflection and refraction. These 

effects can provoke extra absorption or reverberation.  

Definition of both effects are: 

- Reflection: Change in direction of a wave at an interface between two different 

media so that the wave returns to the medium from which it originated. 

- Refraction: Change in direction of a wave due to a change in its speed.  

For layered media (layers of ocean water with differing properties), Snell’s Law relates 

the angles of incidence and refraction at a layer boundary. 

Surface and sea bottom, as well as any submerged object of considerable size, provoke 

sound reflection, whereas the layers that form sea water are responsible for changes in 

propagation velocities, diverting wave direction and giving rise to refraction. 

In areas where temperature remains constant with depth, there is no refraction of sound 

waves; when temperature decreases, they refract towards the bottom; and where the 

temperature increases they refract towards the surface. When there is refraction down, the 

sound that eventually reaches the sea bottom will undergo absorption, but will reflect as a 

"bottom echo" towards the surface to refract again. 

Isolated, regular objects of greater size than an ultrasonic wavelength on which a 

ultrasound emission arrives, reflect the strong and well defined sound, which is recognized 

as echo; But objects that are small, irregular and numerous give rise to many weak echoes 

that are repeated successively propagating in all directions and overlapping to cause the 

so-called reverberation of sound. 
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Knowledge of the characteristics and propagation of ultrasonic waves in the sea, has 

helped to further progress in the development of echo sounders for measuring depths and 

distances and more recently, as matter of interest in this thesis, for biomass estimation, 

applied to fisheries acoustics. 

A transducer is a device that converts one form of energy to another. Generally, 

transducers are used to convert a physic quantity, (pressure, vibration, motion…) into an 

electric signal as well as the reverse. There is a transducer classification depending on the 

conversion type that is produced. Ultrasonic transducers are classified as electroacoustic. 

Electroacoustic transducers, working as transmitters or receivers, play a major role in 

underwater communication systems, using a variety of different transduction materials or 

mechanisms to transform electrical energy into sound and vice versa. (Urick 1985). 

The aim of this Thesis is to design an ultrasonic transducer to be used, as a future 

application, in a scientific parametric echosounder for fisheries acoustics applications. 

This transducer, called ultrasound transceiver, is a reciprocal one, that is, it is able to 

perform two functions. First, to convert applied electrical energy into an acoustic pulse 

transmitted to the medium. Second, when an acoustic  pulse is reflected by an obstacle 

back to the transducer, this is responsible for converting received acoustic energy into an 

electrical signal that is sent to the receiver (Simmonds,2007) 
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3.1. HISTORICAL BACKGROUND  

Ultrasound generation began in 20th century. In 1880, piezoelectric effect was discovered 

by Jacques and Pierre Curie. Some piezoelectric minerals such as Quartz, Rochelle salt, 

or Ammonium Dihydrogen Phosphate (ADP) develop an electric charge between two 

surfaces when the crystal was mechanically compressed, and they expanded and 

contracted in size in the presence of an applied electrical field. These early devices, built 

with these crystals, were inherently fragile due to the weak nature of piezoelectric 

materials used in their construction and rudimentary adhesive bonding technology. In the 

1930’s, as there was an effort to utilize ultrasonic energy more extensively, piezoelectric 

technology then available, fell short of the need for reliable, robust ultrasonic devices. 

 
Ultrasound generation: 

Ultrasonic Piezoelectric 

Transducer  
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Introduction of different types of materials, an operation modes develop this technology 

applying nowadays in multitude of applications.  

Currently there are different ways to produce ultrasonic transduction. Among other it can 

be remarked: magnetostriction, capacitance or piezoelectricity. Magnetostrictive and 

piezoelectric transducers are the most common. The former utilize the magnetostrictive 

property of a material to convert the energy in a magnetic field into mechanical energy 

(Massa n.d.). The magnetic field is provided by a coil of wire which is wrapped around 

the magnetostrictive material. Piezoelectric transducers use piezoelectric effect, 

previously explained. 

In the 1930 magnetostrictive technology, eclipsed piezoelectric technology as the “motor” 

for ultrasonic devices including early ultrasonic cleaning systems. Magnetostrictive 

devices of that period were unquestionably more reliable than their piezoelectric partners. 

All of that began to change, however, with the development of new piezoelectric ceramics 

for use in SONAR applications during World War II. New, stronger, man-made ceramics 

replaced naturally occurring “crystals” as the source of vibration. In addition, ways were 

found to pre-stress the new piezoelectric materials These ceramic materials, such as 

Barium Titanate and Lead Zirconate Titanate, are often referred to as piezoelectric 

ceramics and also produce an electric charge when a mechanical stress is applied, and vice 

versa.  However, they must have an internal polarizing electric field established in order 

for transduction to occur.  Their popularity is due to relatively low cost, coupled with the 

ability to be fabricated into a wide variety of shapes and sizes. During the 1950’s other 

improvements were reached, including better coupling with the medium or extra layers in 

order to obtain different qualities. This technology continues to advance to this 

day(Relaño Iborra 2014). 



3. Ultrasound generation: Ultrasonic Piezoelectric Transducer 

 
49 

 

So, although there was a period in time when magnetostrictive transducers ruled the world 

of ultrasonic transducer and its applications, now it is back toward piezoelectricity as the 

preferred ultrasonic source. This effect is used in the transducer design presented in this 

thesis. 

In the next sections a theoretical description of ultrasonic generation and transducer design 

is realized. 

First, the bases of piezoelectricity are presented and the main properties and parameters 

of ultrasonic transducers are described. Secondly, elements that make up a transducer are 

explained and also a basic definition of what an echo sounder is and which parts has. Next, 

a brief summary of the linear wave equation, to solve wave’s propagation in the water, is 

made and the active sonar equation is introduced. Sonar equation is extensively used in 

the targets detection in fisheries acoustics application. 

Finally, we explain non-linear generation (the parametric sound generation), the operating 

principle of future echosounder and the numerical simulation models used both in study 

of transducer behaviour, within the design, as well as in study of parametric generation. 

3.2. ULTRASOUND GENERATION: PIEZOELECTRICITY 

Piezoelectricity, as mentioned in section 3.1, it was discover by Curie brothers in 

1880(Curie and Curie 1880). Interaction between this effect and acoustic wave 

propagation, explained in section 3.5, fully characterized the ultrasonic transducer 

behaviour. This phenomenon has two aspects: 
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- Direct piezo effect 

An electric potential difference (voltage) appears in some crystals when these are 

subjected to a mechanical deformation 

- Inverse piezo effect 

When an electric field is applied to certain crystals’ surfaces, these suffer mechanical 

distortions. (Arnau 2008)  

 

 

 

 

 

 

                                     Figure 3.1. Piezoelectric effect in a piezoelectric ceramic. 

Honda Electronics CO.LTD source 

Piezoelectric effect can only occurs in anisotropic materials, meaning materials that lack 

centre of symmetry at unit cell level. This asymmetry in the material allows the dipoles 

generation and the appearance of the piezoelectric effect (direct and Inverse) (Moten 

2011). 

There are different materials that provide piezoelectric behaviour. The most simples are 

those with natural character piezo (Quartz, tourmaline, salt Rochelle ...). Effect usually  
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occurs in them in a weaker form. In this thesis it is going to use the piezoelectric ceramics, 

but other materials as thermoplastics like PVDF (Polyviylidenefluoride) or copolymer 

have shown, in recent years, strong piezoelectric properties.  

Piezoelectric ceramic materials are those that naturally contain dipoles, consistent in a 

positive charge and other negative at a certain distance. The main feature is that, 

spontaneously, the orientation of the dipoles does not show a particular direction, it is 

random. Therefore, even if an effort is applied it will show no potential difference, that is, 

no piezoelectric effect. A ceramic becomes a piezoelectric ceramic when it is subjected to 

a polarization process. 

The process is performed by an external electric field at high temperature. The direction 

of the applied electric field is equal to the new direction of the dipoles. Once the electric 

field is removed, the orientation remains even when the material is cooled. Ceramic body 

has become, permanently, piezoelectric and it can convert mechanical energy into 

electrical and vice versa. As a precaution, it must not to exceed the Curie temperature of 

each material. If the material rise this temperature, it can lose polarization and dipoles will 

be orientated along random directions again. Once polarized, they have better properties 

than natural crystals. They can adopt more flexible geometries and dimensions. 

Polarization process is shown in figure 3.2 
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Figure 3.2.-Polarization process. (a)Random dipoles orientation. 

Prior polarization. (b) Polarization in DC electric field. (c) 

Remanent polarization after electric field 

The piezoelectric materials mostly used in industry are barium titanate (BaOTiO2), and a 

combination of lead zirconate (PbZrO3) and lead titanate (PbTiO3). In this combination, 

it is called in industry PZT (lead zirconate titanate) and are manufactured by powder 

compression at high temperature, moulded and baked in an oven. 

 

 PIEZOELECTRIC CONSTITUTIVE RELATIONS 

 

Piezoelectricity involves interaction between the electric and mechanical behaviour of a 

medium. Constitutive equations of piezoelectric materials combine stresses, strains and 

electrical behaviour and are well defined in the IEEE Standard of Piezoelectricity  

(Standard 1988). 
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Taking into account two electrical variables: electric displacement (D) and electric field 

(E) and two mechanical variables: mechanical stress tensor (T) and strain tensor (S), there 

are four different ways to write the constitutive relations that define piezoelectricity. These 

relationships will always define two independent variables of the elastic part and the 

mechanical part. 

One of the way to express the constitutive relations is described in equations (3. 1) and it 

is the one that is chosen to work in this thesis: 

Stress-Charge Form 

E
ij ijkl kl kij k

S
i ikl kl ik k

T c S e E

D e S Eε

= −

= +  

 

(3. 1) 

Where, 

E
ijklc , elastic stiffness constant tensor at constant electric field [N/m2] 

t
kije , piezoelectric coupling coefficient [C/m2] 

S
ikε , dielectric constant tensor at constant strain [F/m] 

Being i, j, k, l =1, 2, 3 

This variables will present complex values if elastic, piezoelectric and dielectric losses are 
introduced (Kocbach 2000a).As shown in equation (3. 1), the subscripts show that elastic 
and electrical variables are related not only in the direction in which the electric field is 
applied, but also in the perpendicular directions. Symmetry of the stress tensor enables 
nine stress components to be reduced to six independent stress components. This also 
enables the tensor notation to be transformed into pseudo -tensor form. Using this so-
called contract Voigt subscript notation (11)1, (22)2, (33)3, (23), (32) 4, (13), 
(31)5, (12) , (21)6 . Moreover cijkl is reduced to cαβ with (ij) --> α and (kl) --> β. In 
the same way ekij will become ekα. This allows to show an advantage in solving problems 
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piezoelectric first introduced by Barnet and Lothe (Barnet, D.M and Lothe,J 1975). 
Matrices would be written as follows: 

1 111 12 13 14 15 16

2 21 22 23 24 25 26

3 31 32 33 34 35 36

4 41 42 43 44 45 46

5 51 52 53 54 55 56

6 61 62 63 64 65 66

E E E E E E

E E E E E E

E E E E E E

E E E E E E

E E E E E E

E E E E E E

T Sc c c c c c
T Sc c c c c c
T c c c c c c
T c c c c c c
T c c c c c c
T c c c c c c

  
  
  
  

=   
  
  
  

      

11 22 33

2 11 22 33
1

3 11 22 33
2

4 11 22 33
3

5 11 22 33

6 11 22 33

e e e
e e e

E
S e e e

E
S e e e

E
S e e e
S e e e

   
   
          −              
   
      

 (3. 2) 

 

1

2
1 11 12 13 14 15 16 11 12 13 1

3
2 21 22 23 24 25 26 21 22 23 2

4
3 31 32 33 34 35 36 31 32 33 3

5

6

S S S

S S S

S S S

S
S

D e e e e e e E
S

D e e e e e e E
S

D e e e e e e E
S
S

ε ε ε
ε ε ε
ε ε ε

 
 
                = −                       
 
  

 (3. 3) 

 

3.2.1.1. PIEZOELECTRIC CERAMIC CASE 

Poled ceramics are transversely isotropic material. The isotropy plane is defined as the 12 

plane or xy plane. Piezoelectric ceramic therefore exhibits symmetry about 3-axis or (z-

axis) with it is the poling axis of the material.  
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Figure 3.3.-Simmetria axis in piezoelectric ceramic 

Due to this Z symmetry, the stiffness constant matrix followed by piezoelectric coupling 
coefficient matrix and dielectric matrix of equations.(3. 2) and (3. 3) are reduced to: 

 

( )

11 12 13

12 11 13

13 13 33

44

44

66

66 11 12

0 0 0
0 0 0
0 0 0

[ ]
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
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c c c
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=  
 
 
 
  

= −
 

(3. 4) 

 



Ultrasonic Transducer design: Feasibility as parametric echosounder in shallow water 

 

 

56 

15

15

31 31 33

0 0 0 0 0
[ ] 0 0 0 0 0

0 0 0

e
e e

e e e

 
 =  
    

(3. 5) 

 

 

11

11

33

0 0
[ ] 0 0

0 0

S

S S

S

ε
ε ε

ε

 
 =  
    

(3. 6) 

 

 

Specifications of piezoelectric materials are divided into three properties: electrical, 

mechanical and electromechanical. Without going to define all the parameters within each 

of these properties it can be highlight the following described below for their special 

interest. 

 - Coupling factor (k): A measure of the material's ability to transform energy from one 

form to another, it cannot be considered as transducer performance. It does not account 

for losses but shows the efficiency of the material.  

- Loss: Piezoelectric ceramics present losses. They have three loss types: dielectric, 

mechanic and piezoelectric. The way to introduce them in the calculations is through the 

use of complex permittivity, stiffness and piezoelectric matrix. In this thesis only 

mechanical and dielectric losses are going to be use, because there is not reference data 

for piezoelectric losses. Parameters which determine these losses are the following:  
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-Mechanical quality factor (Qm): It determines the material performance and 

bandwidth. For example, if we want to use a particular material for power 

applications, high Q factor is desirable due to its few losses and lower bandwidth. 

However, if what we seek is higher bandwidth it is necessary a small Q factor and 

considerable losses.  

-Dielectrical Dissipation factor, ( tan T
eδ ): quantifies a dielectric material's inherent 

dissipation of electromagnetic energy. 

 

3.3. ULTRASONIC TRANSDUCER AS A TRANSMITTER. 

Ultrasonic beam generation from a piezoelectric disc transducer presents several 

characteristics that will been explained below.  

When an ultrasonic beam is generated there are two regions along the beam propagation 

that should to be considered: Near field or Fresnel zone and the Far field or Fraunhofer 

zone. 

  

 

 

 

Figure 3.4. Ultrasonic sound beam propagation 

 

https://en.wikipedia.org/wiki/Dielectric_material
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According to Huygens principle, a transducer can be considered as a set of separate 

elements each radiating hemispherical waves forward. Ultrasound intensity along the 

beam is affected by constructive and destructive wave interference. This wave 

interference leads to extensive fluctuations in the sound intensity near the source and is 

known as the near field, where maximum and minimum pressure are presented. Because 

of acoustic variations within a near field, it can be extremely difficult to accurately 

evaluate flaws in materials when they are positioned in this region. 

However, in the Far field, the wave interference is minimized, the waves are in phase, and 

pressure decreases inversely with distance from the source, diverging spherically. (Figure 

3.5) 

 

 

Figure 3.5. On-axis SPL from a circular piston 

Fresnel distance is the limit of the near field and is defined as the distance from the source 

beyond which the amplitude do not oscillate anymore. It is related to the diameter of the 

transducer and the wavelength of the ultrasonic beam by the following equation: 
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2

4
DN
λ

=
 

(3. 7) 

 

Where, 

N = length near field  

D = Transducer diameter (mm) 

λ = Transducer wavelength 

 

In the far field region, ultrasound acoustic wave from a transducer diverges spherically, 

so pressure decreases inversely with distance from the source. Moreover, pressure 

amplitude wave also decreases exponentially with distance due to the absorption losses of 

the medium (Section2.4.1). Considering a harmonic source, the sound pressure, p, in a 

point located at a distance R from the source, lying on the far field zone, is given by the 

following expression 

( ) ( ) ( ) ( )0 00
0, , , , R R j k R RRp R p R e e

R
βθ ϕ θ ϕ − − − ⋅ −=  (3. 8) 

where R0 is the reference distance to the source (typically 1 m), k = 2π / f is the 

wavenumber, f is the frequency of the acoustic wave and β is the absorption coefficient 

of the medium usually expressed in Np /m or Np / km. R, θ and φ are the spherical 

coordinates of the point of the field relative to the sound source, which is at the origin of 

the coordinate system (Kinsler et al., 1999). 
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Figure 3.6. Coordinate system used for describing the 

propagation of an acoustic wave, where the source is a 

disc centred at the origin of coordinates. 

  

Acoustic pressure can also be expressed in dB by the sound pressure level LP, which is a 

logarithmic scale of measured pressure at a point relative to a reference pressure, and is 

defined by 

( ) ( ), ,
, , 20log rms

ref

p R
LP R

p
θ ϕ

θ ϕ =  (3. 9) 
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Where effective pressure of the acoustic wave is rmsp  being R.M.S equals to root mean 

square value of pressure and refp  is the reference effective pressure. Underwater acoustic 

applications usually employ refp =1 μPa. 

 

In addition, sound beam carries a certain amount of energy produced by the transducer, 

per unit time, is what is known as acoustic power. The power unit is the watt (W). The 

ratio between the power and the beam surface is the intensity (W / cm²). This latter feature 

is of great importance and it relates the amount of ultrasound energy in every moment into 

an area. 

In far field conditions, ultrasound wave intensity I is proportional to the square of the 

pressure and can be expressed as: 

( ) ( )2

0

, ,
, , rmsp R

I R
c
θ ϕ

θ ϕ
ρ

=
⋅

 (3. 10) 

Where ρ0 is the medium propagation density.  

Like pressure, intensity can be expressed in dB through acoustic intensity level LI, 

logarithmic measurement of the intensity in a point with respect to a reference intensity 

and is define as 

( ) ( ), ,
, , 10log

ref

I R
LI R

I
θ ϕ

θ ϕ =  (3. 11) 
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Being Iref the reference intensity. Relation between LP y el LI comes from 

( ) ( )
2

0

, , , , 10log ref

ref

p
LI R LP R

c I
θ ϕ θ ϕ

ρ
= +

⋅ ⋅
 (3. 12) 

Usually, intensity reference used corresponds to refI =1 µPa effective pressure of the 

acoustic wave. 

Due to the spherical divergence and medium absorption, intensity decreases when 

ultrasound acoustic wave propagates through the medium taking into account the distance 

from the source. Intensity reduction can be obtained from equations 3.8 and 3.10 as 

( )
( )

( )0

2
20

0

, ,
, ,

R RI R R e
I R R

βθ ϕ
θ ϕ

− ⋅ − =  
 

 (3. 13) 

Where β the acoustic absorption coefficient in Np/m and it is equals to 

8.69
α

β =  

If is consider 1m as a reference distance and knowing water absorption is much lower than 

1, can be employ the next approximation.  

( )
( )

2
2

0

, , 1
, ,

RI R
e

I R R
βθ ϕ

θ ϕ
− ⋅ ⋅≈  (3. 14) 
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As it was mentioned, in section 2.4.1, transmission loss of ultrasonic waves is due to 

medium absorption and to geometrical spreading.  In the far field region geometrical 

divergence is defined by intensity decreasing with the distance to the source. In 

homogenous medium, with a small radiating source propagating in all directions, energy 

spreads spherically. As energy is conserved, the intensity will decrease proportionally to 

the inverse of the surface  

 

                           Figure 3.7. Source point propagation with spherical divergence 

Hence intensity decreases in 1/R2 and pressure in 1/R. Amplitude dependence was 

introduced in equation (3.8). The spreading transmission loss can be expressed in dB as 

0

20log RTL dB
R

 
=  

 
 (3. 15) 
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When losses for medium absorption are added the equation describing the transmission 

losses is transformed into  

1

20log( ) 2
m

RTL R
R

α= −  (3. 16) 

 

 CHARACTERIZATION OF ELECTROACOUSTIC PARAMETERS. 

Taking into account the relationship between the electric and acoustic part of a transducer, 

electroacoustic parameters are defined. They allow to know in depth the transducer’s 

operation, as well as they are used as a comparison tool between several designs. 

Moreover they provide a system calibration. This calibration guarantees quality 

measurement. Depending on the transducer type, it is possible to establish general 

procedures to calibrate. There are three different kinds of calibration: 

- Field calibration: 

It is realized in the measurement place using a reference source or calibrated target. 

It is recommended to carry out before and after the measure. It is the easiest way to 

check configuration settings, operation, etc. 

- Laboratory calibration: 

It is not done in free field. It is necessary a stable and controlled environment. It is 

more precise than field calibration due to the smaller temperature, wind and humidity 

variability.  
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- Factory calibration: 

Commercial transducers are supplied with a calibration certificate. It guarantees the 

right behaviour for their application and tolerances proportionated in technical data. 

These measurements are carried out with certified measurement devices and in 

laboratory conditions 

Measurements performed along this thesis are under laboratory conditions. The different 

calibration methods will provide each of the parameters considered essential in the 

characterization of an electroacoustic transducer that will be defined in the following. 

Most relate parameters describe both the electrical and mechanical part of the transducer. 

However, there is an electrical parameter that allows to know quickly, important features 

about our design as resonance frequency of the system, quality factor, etc. This parameter 

is the electrical admittance (Y). It measures the ease current flow through the circuit or 

system. It is defined as the inverse of the electrical impedance (Z). It is measured in 

Siemens (S). 

1Y
Z

=  (3. 17) 

Y is a complex number that can be written in binomic form (real and imaginary parts) as 

Y G jB= +  (3. 18) 

Where, 
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 G is the conductance, B is suspectance and j is the imaginary unit defined by j2=-1 

Conductance is in charged in how easily is the energy flow meanwhile the suspectance 

express how easily the system stores energy.  

Efficiency, η, is another important parameter to be considered in any transducer. It is 

defined as the ratio between the acoustic power radiated by the transducer and the 

electrical power that is given WTx 

Tx

W
W

η =
 

(3. 19) 

In the linear regime, a transducer radiates an acoustic wave with amplitude proportional 

to the transmitter sensitivity. In the opposite direction when a transducer captures acoustic 

waves, the electrical signal is proportional to receiving sensitivity. Transmitter sensitivity, 

STx,v or Transmission voltage response (TVR) is the ratio between the amplitude of the 

sound pressure, extrapolated backwards from the far field, with a reference distance on 

the acoustic axis, usually 1m, and  the voltage amplitude applied to the transducer 

terminals  

( )0
,

,0,0inc
Tx v

Tx

p R
S

V
=  (3. 20) 

where pinc is the pressure generated by the source and VTx is the voltage applied to the 

transducer. Sensitivity can also be expressed in terms of current STx,i as the ratio between 
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pressure generated at the reference distance on the acoustic axis and the current supplied 

to the transducer during the transmission ITx, 

( )0
,

,0,0inc
Tx i

Tx

p R
S

I
=  (3. 21) 

 

Relationship between sensitivity defined in voltage and current is given by 

, ,Tx i Tx v TS S Z= ⋅  (3. 22) 

where ZT is the electric impedance in the transducer terminals. 

In the echoes reception, relation between open circuit voltage V0  and the incident pressure 

in the front face of the transducer pbs  define  transducer receiver sensitivity SRx or open 

circuit voltage (OCV) as, 

0
Rx

bs

VS
p

=  (3. 23) 

In reciprocal transducers with spherical propagation, there is a parameter called 

reciprocity parameter, J. It is the relation between receiver sensitivity and the transmitter 

sensitivity during the radiation (Urick, 1983), it is defined as 

0

, 0

2Rx

Tx i

S RJ j
S c

λ
ρ
⋅ ⋅

= = −
⋅

 (3. 24) 
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where λ is the wavelength. When one sensitivity is known, projector or receiver 

sensitivity, it is possible to obtain the other by the reciprocity parameter. For spherical 

waves, the relationship between sensitivities is given by 

( ),20log 20log 354 20log
1 1

Tx iRx SS f kHz
V Pa Pa Aµ µ

= − −  (3. 25) 

Reference distance here is 1m, water density 1000 kg/m3, and reference pressure, 1 μPa 

(Urick, 1983). 

In some transducers,  as it is the case of transducers used in echo sounders, sensitivity is 

highly dependent on the acoustic wave direction. For a directive source, pressure in one 

point can be expressed in terms of the pressure axis at a reference distance, propagation 

loss and directivity function D (θ, φ) 

( ) ( ) ( ) ( )00
0, , , , ,R R

inc inc
Rp R p R e D
R

βθ ϕ θ ϕ θ ϕ− −=  (3. 26) 

Directivity function, also called radiation pattern, is defined as the square of the ratio 

between the acoustic pressure amplitude generated at a reference distance and the pressure  

 

amplitude on the acoustic axis in a distance under interest, considering the axis as the 

maximum radiation direction 
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( ) ( )
( )

2

0

0

, ,
,

,0,0
inc

inc

p R
D

p R
θ ϕ

θ ϕ =  (3. 27) 

This parameter describes how transducer radiates depending on the direction. For a 

reciprocal transducer, receiver directivity is equal to transmission directivity. When 

transducer operates as a hydrophone, directivity is defined as the ratio to the square of 

terminals voltage VRx in the front face transducer from any direction and the voltage from 

axis transducer direction. 

( ) ( )
( )

2
,

,
0,0

Rx

Rx

V
D

V
θ ϕ

θ ϕ =  (3. 28) 

 

By definition D is equal to 1 in the axis transducer (highest sensitivity) and less than 1 in 

the other directions. Usually Directivity pattern is expressed in logarithmical scale, DdB 

according to 

( ) ( ), 10log ,dBD Dθ ϕ θ ϕ=  (3. 29) 

For a flat circular piston radius r, mounted on an infinite screen and r λ, directivity 

function in far field can be calculated according to the following expression 

( ) ( ) 2
12 sin

,
sin

J k r
D

k r
θ

θ ϕ
θ

⋅ ⋅ ⋅ 
=  ⋅ ⋅ 

 (3. 30) 
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Being J1 Bessel function order 1 (Kinsler et al., 1999; Sherman & Butler, 2007).   

Figure 3.8 represents directivity  

Figure 3.8. Circular piston pattern with 4 cm radius, mounted in an infinite screen, at 200 kHz (kr = 

33.5) radiation of a circular piston with 4 cm radius at 200 kHz. 

.Acoustic pressure level (LP) can also be expressed using the logarithmic expression of 

Equation 3.26, so LP anywhere at far field region of the source can be calculated as 

( ) ( ) ( ), , ,dBLP R SL TL R Dθ ϕ θ ϕ= − +  (3. 31) 
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where SL is the source level, defined as the level of pressure generated by the source on 

the acoustic axis to a reference distance and far field conditions as defined in equation 3.9  

However, sometimes it is more convenient to estimate source level through transmitter 

sensitivity and rms voltage VTx,rms in transducer terminals, according to (Moszyński, 2005) 

, ,20log 20logTx v Tx rmsSL S V= +  (3. 32) 

Another way to express SL is using electrical power supply to the transducer 

10log 10log 170.8Tx máxSL W ID η= + + +  (3. 33) 

where IDmáx is the maximum directivity index (Kinsler et al., 1999; Moszyński, 2005; 

Balk & Lindem, 2011). 

 

Transducer directivity can also be expressed through the directivity factor, Q. It is the ratio 

between the acoustic intensity in that direction and the intensity that would transmit n 

isotropic source Iiso with equal power  

( ) ( ),
,

iso

I
Q

I
θ ϕ

θ ϕ =  (3. 34) 

It can be expressed in logarithmic scale through directivity index ID. It is defined as 

( )10log ,ID Q θ ϕ=  (3. 35) 

In the maximum radiation direction it is satisfied that 
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( )
( )

4

40,0
,

máxQ Q
D d

π

π

θ ϕ
⋅

⋅
= =

⋅ Ω∫
 (3. 36) 

10logmáx máxID Q=  (3. 37) 

where dΩ is the solid angle difference. It can be seen than radiation pattern and directivity 

pattern keep the next relation 

( ) ( ), ,máxQ Q Dθ ϕ θ ϕ= ⋅  (3. 38) 

Similarly, relationship between radiation pattern expressed in dB and directivity index is 

given by 

( ) ( ), ,máx dBID ID Dθ ϕ θ ϕ= +  (3. 39) 

For a flat circular piston radius r, mounted on an infinite screen and r λ,  IDmáx scan be 

approximated by  

( )2
310log 45.5 20logmáx dBID k r θ−≈ ⋅ ≈ −  (3. 40) 

where θ-3dB is -3 dB beam aperture expressed in degrees (Urick, 1983; Kinsler et al., 1999; 

Sherman & Butler, 2007).  
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-3 dB beam aperture is defined as the angle in both directions to the main lobe, where 

pressure level fall off 3 dB respect to the main axis, this means, where D = 1/2 (Simmonds 

& MacLennan, 2005).   

 

For this thesis, it is used a circular transducer and 3dB beam aperture can be expressed as 

3
58
2dB r

λθ−

⋅
=

⋅
 (3. 41) 

where θ-3dB is expressed in degrees (Lurton, 2002; Moszyński, 2005; Sherman & Butler, 

2007). 

 

3.4. TRANSDUCER ELEMENTS 

For the purpose of this thesis, the design of a single-element piston transducer is realized. 

It is the simplest ultrasonic transducer, with only one active element involved. 

These transducers can be designed with two types of configurations: flat configuration 

and focused configuration. The latter is that  whose vibrating surfaces have a certain 

curvature causing the energy to concentrate at a certain focus point, improving the lateral 

resolution and adding gain to the system  (Peña 2014). For fisheries acoustics application, 

it is usual to opt for the first configuration, since it is desirable to insonify an entire area 

equally. However, limitation in the lateral resolution due to the geometric dispersion of 

the beam with distance must be taken into account. 
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Main components of a simple ceramic ultrasonic transducer are: Active element, damping 

block (backing) and a matching layer. The main characteristics and functions of each of 

them are described below: 

-  ACTIVE ELEMENT:  

Piezo or ferroelectric material that converts electrical excitation energy into mechanical 

energy. The most commonly used materials are polarized ceramics. These include the PZT 

(Lead Zirconate Titanate). Due to their relatively high coupling capacities and low 

dielectric loss have been used in widely electromechanical application. For specific 

applications, proper piezoelectric materials are chosen according to a number of factors 

such as their piezoelectric performance, dielectric properties, elastic properties and 

stability. Piezoelectric materials vibrate sinusoidally after their exposure to an electric 

field has ended. The frequency of that oscillation is known as the fundamental resonance 

frequency of the transducer. Depending on which faces of the ceramic electric field has 

been applied, the frequency will be related to one of its dimensions (Kinsler 2000; Silva 

and Santos 2006). For this thesis piezoelectric ceramic disc is going to be used. This 

means, as it was explained in section 3.2.1.1, it has polarization in the Z-axis, exhibiting 

symmetry and null particle displacement at coordinate y=0. Therefore amplitude of 

oscillation must be a maximum at the ends, where y=± TL /2, being TL the thickness of 

the transducer(Arnau 2008). Moreover this condition force that thickness resonance 

frequency is: 

1,2,3
2

L
nr r

T

F nF n n
L
ν

= = → =  (3. 42) 
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Where, rF  is the fundamental resonant frequency in the thickness mode and its multiples 

are called harmonic of the fundamental frequency. 

-  DAMPING BLOCK    

It is usually a non-conductive material that attaches to the element active rear face and it 

is in charge to absorb the "reverse" ultrasound wave that is transmitted to the back of the 

piezoelectric ceramic (Rubio and Marrero n.d.). In order to achieve this function, it is 

played with the acoustic impedances of the materials following the transmission 

coefficient equation: 

2

1 2

2ZT
Z Z

=
+

 (3. 43) 

where T  is the Transmission coefficient, 1Z  and 2Z are the piezoelectric ceramic and 

backing acoustic impedance respectively. 

Following this equation, when acoustic material impedance used as backing is more 

similar to the active element, more energy will be transmitted towards the first, resulting 

a strongly damped transducer. It will therefore have lower sensitivity and higher 

bandwidth. In contrast, if the impedance of both differs, more energy will be reflected 

forward and there will be a low damping, which will improve the transducer sensitivity 

reducing the bandwidth. In this design, it is sought to obtain a bandwidth, as long as there 

is a trade-off between maximizing bandwidth with maintaining an acceptable device 

sensitivity to work over the distance that is needed. 
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-  MATCHING LAYER:  

It is a material layer that is inserted between the piezoelectric element and the medium 

load through which the ultrasonic wave is transmitted. This intermediate layer allows a 

more effective energy transmission. Piezoelectric ceramics usually have very high 

acoustic impedances, of the order of ~ 30MRayls, whereas the load medium by which 

they transmit the waves may be much smaller. For example, the water which is the 

transmission medium for this work consists of an acoustic impedance of 1.5MRayls. This 

difference causes that the acoustic energy does not propagate properly and a coupling 

layer is needed. 

In terms of selecting the proper acoustic impedance, several studies have been done. The 

most extended gives the next expression introduced by  (Al-Budairi 2012; Moten 2011): 

1/2( )m c LZ Z Z=  (3. 44) 

Where mZ  is the matching acoustic impedance, cZ and LZ  are the piezoelectric ceramic 

and load medium acoustic impedance respectively. 

There are other equations that introduce an improvement in the band signal like: 

2 1/3( )m c LZ Z Z=  (3. 45) 
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For thickness-mode operation transducer, the optimum thickness for this layer is one-

quarter wave length of resonance frequency following λ/4 transmission line sections in 

microwave applications. Basically by using this size, a phase reversal occurs, which 

increases signal performance and strengthens the wave front entering the medium. 

Passive elements described are able to provide certain characteristics to the transducer. 

These characteristics do not only depend on the relationship of impedances but also on 

the elements thickness. For this reason when designing a piezoelectric transducer, with all 

its components, we can make use of various tools to know how the global response will 

be. By one hand these include numerical models described above and by another hand, 

analytical models, based on piezoelectricity equations, which relate mechanical and the 

electrical parts of the transducer. 

 However, it is usually more convenient to use a one-dimensional equivalent electrical 

circuit, using the fundamental electromechanical analogies. In these analogies, 

mechanical forces are equivalent to the voltage applied at the transducer terminals and the 

particle velocity at the electric current. 

From them,  there were several contributions, the most outstanding being those produced 

between 1948 and 70, by Mason (Mason 1948) Redwood (Redwood 1961)and Krimholtz, 

Leedom and Matthaei (Krimholtz, Leedom, and Matthaei 1970). 

All of them have been widely used for design and optimization, but the latest (KLM) is 

consolidated as the most used circuit nowadays. Figure 3.9 shows KLM scheme:  
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Figure 3.9. KLM equivalent circuit of a thickness extensional piezoelectric transducer(Arnau 2008) 

Where  

FB, is the force on the back face 

t is  the thickness of the piezoelectric plate 

uB, is the  particle velocity at the front face 

Z0, is the characteristic impedance 

A, is the area of the electrode 

UL, is the particle velocity at the front face 

FL, is the force on the front face (radiating surface) 
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X, Reactance 

β =ω / (c33
D /ρ) 1/ 2 the propagation constant. 

C0, is a capacitance 

Φ, Transformer ratio 

Electrical impedance at the transducer terminals Zin (w), in the most general case, when 

the mechanical ports are terminated by back block (ZB) and load medium (ZL) can be 

derived as: 

 
(3. 46) 

Apart from these models there are other forms of representation as the two-port networks, 

for example, based on Transfer matrix coefficients (Arnau 2008) 

3.5. SCIENTIFIC ECHOSOUNDER 

Transducer, once designed, can be integrated into a larger system. In this work, its design 

is proposed for its later use within a scientific echo sounder, which is a particular type of 

SONAR. 

SONAR (Sound Navigation and Ranging) system is one of the largest applications in 

underwater acoustics. It is the general term used to refer to any device that uses sound for 

detection or remote observation of objects immersed in water. Sonar can be classified into 

two main groups: passive sonar and active sonar. Passive sonar uses the sound radiated 
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by the target itself to detect and locate it. However, active sonar detects and processes the 

echoes received from the acoustic signal that it has radiated itself. 

An echosounder is a particular type of active sonar. Basically it is conformed for several 

components: A transmitter, a transducer, a receiver, and a representation system of 

detected echoes(Simmonds John 2007). 

Transmitter, formed by an electric signal generator and an amplifier, is responsible for 

generating sinusoidal electric short pulse duration at a given frequency and amplifying its 

level. Typical frequencies oscillate in a range from 38 to 400 kHz. Low frequencies can 

detect targets at greater distances, since the absorption of sound in water increases rapidly 

with frequency, but high frequencies present more resolution. Application definition will 

give the optimal value for this parameter  

Transducer transforms the electric pulse generated by the transmitter into an acoustic 

pulse, radiating sound in a directional beam. This beam is characterized mainly by the 

beamwidth and its operation frequency. When acoustic pulse propagating through the 

water encounters a target it is scattered or reflected, and some of the energy goes back in 

the transducer direction forming what is called an echo. Transducer detects this echo and 

converts it into an electrical signal. Time elapsed between pulse emission and echo 

reception gives information about the distance to which the target is located. 

Receiver is in charge to receive the signal by the transducer and displayed on an echogram. 

After a certain time the transmitter emits another pulse and repeats the entire process, 

resulting in a two-dimensional representation by connected echo-traces. The echogram is 

a representation of the target. The horizontal trace position shows the depth to which the 

echo is. The vertical position shows variations in time if echosounder is in a fixed position,  
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or variations in space if echosounder is mounted on a moving vessel. Echo amplitude is 

represented by a colour scale. (Sanchez Carnero 2012; Simmonds 2005) 

The simplest echo sounders are primarily used to locate fish schools or determine the sea 

floor depth. They provide little information on the number of detected target. This 

problem had now been overcome with the advent of scientific echosounders. They are 

more sophisticated instruments, built with the same basic components. However, its 

electronics have been designed with amplitude stability and with some additional features 

such as filtering and an accurate time-varying gain (TVG) amplifier on the receiver. A 

signal filtering from the transducer is performed to decrease the noise level present in the 

signal. The TVG provides compensation due to the losses suffered by the acoustic wave 

in the expansion beam and the medium absorption, obtaining an echo amplitude 

independent of the distance to the target. (Marek and Tel n.d.) 

 As a result, a sufficiently accurate signal is obtained to evaluate different material layers 

in sub bottom profile application or count individual fish and measure school fish density 

in fisheries acoustic application. Moreover, for this last application, some echosounder 

can incorporate an eco-integrator, which provides a signal proportional to the density of 

fish. As explained below, some transducers are sensitive to target direction and provide a 

direct measure of target strength (Section 2) when they detect individual fish. 

In an echo sounder the beam is directed vertically downwards in most of the devices used 

for fishing and bathymetry. Nevertheless, it can also be oriented upwards, to take ventral 

measures for example, or even laterally. It is used mainly in the distances estimation and 

incidence angles, and in the targets identification and characterization. 

Depending on the beam radiation pattern, the following transducers types, standing the 

echosounders name, are considered: 
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• Single-beam transducer: The signal provided depends on the direction of the target 

with respect to the acoustic axis and the target cross-section. It does not provide 

information on the target direction, so the target power estimation is performed 

indirectly using statistical methods (Craig and Forbes 1969). 

 

• Dual-Beam transducer: Facilitates direct target power measurement. Transducer 

ceramic elements are arranged in concentric circles around a central element. If a 

narrow beam is required, signal is applied to all elements, if the required beam is wide 

signal is applied only to the central elements. Received signal for the wide and narrow 

beam is processed separately. The intensities ratio, between wide beam and the 

narrow beam, provides information with some ambiguities regarding direction. These 

deviations can be minimized by applying thresholds to the intensities. (Balk and 

Linderm 2008)  

• Split-beam transducer: Performs direct target power measurement, compensating for 

the transducer radiation pattern. Transducer is divided into four quadrants, 

determining the target direction, precisely, by comparing phase differences between 

quadrants (Rudstam et al. 1999). Pulse is emitted by the entire transducer, but the 

signals received by each quadrant are processed separately. 

Prototypes designed are single-beam in this dissertation. Instead of radiation pattern 

correction, the main mater of interest will be the transducer capacity to operate as a 

multiple transducer, it indicates, the simultaneous transmission of two frequencies. This 

transmission, at high power levels, will cause the parametric effect in the medium, which 

has been explained in more detail in Section 2.3, and thus the obtainment of a parametric 

echosounder.  

 



3. Ultrasound generation: Ultrasonic Piezoelectric Transducer 

 
83 

 

3.6.  ACTIVE SONAR EQUATION 

Thus far, there has been talked about beam properties generated by a transducer, 

electroacoustic transducer properties, and wave equation that help us to solve the 

propagation of acoustic waves in a given medium. However, with regard to echo sounder 

operation, where transducer operates as transceiver, (Section 3.5) another equation has 

relevance in underwater acoustic field, the sonar equation. 

A sonar equation is the equation of energy conservation that relates several parameters 

described in the previous section, and new ones such as TS that will be explained below. 

It was originally developed to describe sonar performance and consists in a sum of 

decibellic magnitudes. 

For the particular case of the echo sounder where two paths are considered, it would be 

like: 

2SL TL TS NL DT− + − >  (3. 47) 

           ECHO LEVEL 

Where: 

SL, is the source level. It is defined as the pressure level at particular distance (Equation 

3.32). 

TL, is the transmission loss (spreading divergence and medium absorption) 



Ultrasonic Transducer design: Feasibility as parametric echosounder in shallow water 

 

 

84 

TS, is the target strength. This new concept introduced in brief in chapter one is a 

logarithmic measure of backscattering and can be defined as the proportion of incident 

energy that disperses back to the transducer.  

, 1

10log bs

inc r m

ITS
I =

=  (3. 48) 

Depends on shape, orientation and size of target 

NL, is the noise level present in the medium 

DT, is the detection threshold. 

Threshold detection, DT, is the value by which the echo level must exceed the detected 

noise level in order to discriminate target. 

This equation is used in fisheries acoustics to obtain the echo level produce by a target, 

e.g. single fish or fish aggregations (fish schools).
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Numerical Simulation 

Methods 
 

Numerical models have become, nowadays, powerful design tools at engineering level. 

Through them, you can simulate systems under study and know the behaviour of these a 

priori. 

This chapter presents the different numerical models used, both for design and 

characterization of the selected prototypes, as well as to study the nonlinear generation 

that occurs with parametric effect 

4.1. TRANSDUCER DESIGN AND WAVE PROPAGATION 

The first numerical method for describing transducer behaviour is the finite element model 

(FEM). FEM is a extensively used numerical technic to approximate solutions of partial 
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differential equations. Due to these equations, it is possible to solve engineering and 

mathematical physic problems. 

When these problems involve complicate geometries, loadings, material properties, etc. 

mathematical analysis to clear the unknown variables is sometimes impossible. The basic 

concept about FEM is to approximate the unknown variables’ solutions only in a discrete 

number of elements. These elements cover the entire continuum and are interconnected 

between them for a serial points called nodes. The equations governing the behaviour of 

continuum governing also the elements behaviour (Nikishkov 2004). 

 Based on this, it is derived from a complex system with infinite degrees of freedom 

(DOF), governed by a differential equation or system of differential equations, a system 

with a finite degrees of freedom whose behaviour is modelled by a system equations. 

 

 BRIEF HISTORICAL BACKGROUND 

 

This section provides a brief overview of the most important events done in the history of 

FEM. Although it is a fairly current method, it can be said that the first progress in this 

area were by Isaac Newton and Leibniz in the XVII century, laying the foundations of 

infinitesimal calculation. With it is possible to analyse, precisely, functions with 

continuous domains. 

 Later, in 1909 a theoretical physicist, Walter Ritz (Leissa 2005) developed an effective 

method to approximate solutions for mechanical deformations in solids.  
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However, was not until 1940s, when this technic, following specifically the mechanic 

field, acquire an important developing due to Hrennikoff (Hrennikoff 1941) and McHenry 

works.. 

That same year,1943, the mathematician Courant propose an especial method distinct 

from that submitted by Ritz. He used polynomic functions for the formulation of elastic 

problem in triangular subregions. 

In 1947, Levry (Levy,1947.), gave his contribution developing a strength and flexibility 

method. Due to its effort to solve the problems by hand,it was not popular until the advent 

of digitize computers. 

Not until 1960, the term “finite element” is introduced formally. People who introduced 

the method as it is known at present were Turner, Clough, Martin and Trom (Clough 

1960). They implemented stiffness matrix, triangular and rectangular elements for stress 

analysis etc. 

Over the years, this technic get an extension in three-dimensional problems by Gallagher 

et al and Zienkiewicz (Zienkiewicz, Watson, and King 1968).  

From 1963 until nowadays, new formulations have been registered to apply them in 

several applications as Aerospace, Civil and Automotive engineering, Structural/Stress 

Analysis, Fluid flow, Heat transfer, Acoustics, etc. Within the latter, we can found authors 

that have been simulating through the years, ultrasonic transducer, (Abboud 

1998),(Hossack and Hayward 1991). Some of them focus in the internal behaviour 

(piezoelectricity theory) and others about all the concern to ultrasonic transducer 

propagating in the acoustic medium. 

http://www.wordreference.com/es/translation.asp?tranword=specifically


Ultrasonic Transducer design: Feasibility as parametric echosounder in shallow water 

 

 

88 

 MAIN CONCEPTS AND PROCEDURE 

As mentioned above, the idea of FEM method is to discretize a continuum in a series of 

elements connected each other, via points called nodes. At each node, a set of unknown 

variables are established for later resolution. These unknown variables are called degrees 

of freedom (DOF). DOF, therefore, are variables that determine the node status and / or 

node position. The infinite system is now a finite system to work with. 

In any system to be analysed must be differentiated the following: 

 

Figure 4.1.-Subestructural division by Finite element method 

Domain: Geometrical space where system is analysed (material properties) 

Element: Substructures that divide the domain. They could be either points (one-
dimensional case), lines in the bi-dimensional case or surface in the three-dimensional 
case. 
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Node: Connecting point between different elements. In each one, the system’ unknown 
variables are solved.  

Boundary conditions: Known variables. They determine the system behaviour. (Loads, 
displacements, stress…) 

Once this is clear the way to face a problem can be separated in four different stages. 
These are: 

1. Knowledge of the problem: Describe the problem with all the available tools 

(Engineering drawings, conceptual design, unknown variables definition…) In 

this stage should be able to simplify the problem into a problem that can be solve 

by FEM. 

 

 

2. FEM model: Defined the domain to apply the analysis. Discretize (mesh the 

solid, define material properties and apply boundary conditions. 

 

3. Analysis specifications: Select type of analysis and solve the problem. 

 

 
4. Results: Obtain, visualize and interpret the results (graphical representation, 

movies…) 

 

 

 MATHEMATICAL DESCRIPTION 

The mathematics behind Finite element method is an extensive topic, and will not be 

presented in detail here but there is a plenty of literature in this topic (Qi 2006)(Tura and 

PRE-

PROCESSING 

PROCESSING 

POST-

PROCESSING 
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Dong 2012). However a brief outline in the analytical mechanics and the matrix 

formulation will be given. 

Once the domain is discretized and degrees of freedom for each node are defined, they 

can be collected in a column vector called u. This vector is called state vector. For each 

degree, using analytical mechanics, there is the corresponding conjugate. These 

conjugates represent the system boundary conditions. They determine if the system 

changes in one way or in the other and they are known variables. All of them are called 

forces and they are collected in other column vector called f . 

Relationship between these two variables is assumed to be linear and homogenous, but 

not always happens and system can present inhomogeneity. 

Through this expression both of them are related:  

Ku f=  

 

(4. 1) 

 

 Where K is called stiffness matrix, even in other applications that not involve structural 

physics. 

On the other hand, physical significance of these vectors depends on the application 

problem. For example, in solid mechanics application u represent displacement and f

mechanical force but in electrostatics u is the electric potential whereas f  represents 

charge density. 
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Another mathematical concept to take into account working with FEM is the shape 

function. The shape function is used to interpolate the solution between the discrete values 

obtained at the mesh nodes. 

In general terms, a finite element, e, is defined by several nodes, i, j, k, etc. and boundary 

lines. Degrees of freedom collected for each node are represented in the state vector, u. 

This state vector at any point within the element can be approximate in a column vector 

ũ, by the following expression:  

[ , ...]
i

e e
m m i j j

m

q
u u N q N N q Nq

 
 = = = = 
  

∑



 (4. 2) 

Ni is the shape functions of node i and qe represents the nodal solutions for a particular 

element. 

 

 CONSIDERATIONS 

When a problem is modelled by finite element various factors should be taken into account 

to ensure accurate and consistent results with the physics of the problem. 

Ultrasonic transducers modelling involves equations in piezoelectric theory and in 

acoustic wave propagation through a medium described in sections 3.2 and 2.2. 

To obtain an accurate approximation of the real problem that involves characteristics such 

as damping, surrounding medium etc. certain considerations must be established. 

(Kocbach 2000a)  
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4.1.4.1. LIMITATIONS IN THE SPATIAL DISCRETIZATION 

Model resolution is defined by the mesh size. Simulation of an ultrasonic transducer 

transmitting in a particular frequency bandwidth must ensure the correct discretization of 

the highest frequency to obtain a good result. It corresponds to the smaller wavelength. In 

the literature, it is recommended that at least two degrees of freedom per wavelength but 

experience over the years, positions this value to at least 12. (Medina et al. 2003). This 

spatial discretization is closely linked with the convergence model that will be explained 

below. 

 

4.1.4.2. MODEL CONVERGENCE 

Models often have complex geometries or artificial boundary conditions which can 

destabilize the model. When mesh size is reduced, number of element increase. A 

convergence tendency should be obtained to ensure the model is stable. 

 

 

 

 

 

 

                        Figure 4.2.-Model convergence tendency 
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4.1.4.3. MODEL SIMPLIFICATION 

 

The translation from the physical problem to the mathematical model can be complicated 

in some cases. However, conditions of symmetry in the structure under study can reduce 

the degrees of freedom of the system and therefore save a lot of computational resources. 

This is the case of the prototypes built in this thesis. Its cylindrical geometry allows the 

use of an axial symmetry as shown in the following figure: 

 

Figure 4.3.-Model geometry with axial symmetry 
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Figure 4.3, is represents a piezoelectric disc transducer geometry with axial symmetry. In 

it, all transducer elements are represented: Matching, backing, active element… They 

were explained deeply in section 3.4 

4.1.4.4. ARTIFICIAL BOUNDARY CONDITION 

On some models, it is necessary to know the behaviour of a system or find the system 

solution at a given point a fair distance from him 

In ultrasonic transducer simulations, there are two important matters. On the one hand, to 

understand and to have knowledge of the internal behaviour gives important information 

about vibrational modes of ceramics, resonant frequency, etc. This behaviour changes 

depending on the surrounding medium. It must be ensured by artificial boundary 

conditions that reduction or dimensions adaptation not influence the system causing 

unwanted reflections. There are several types PML (Perfect Matching layer), Infinite 

elements, Radiation condition, etc. 

On the other, to model scattered wave from a system into elastic media can be important 

to the observation of the acoustic wave in far-field (section 3.2.2). For this purpose it is 

used Kirchhoff Helmholtz integral theorem (Schleicher et al. 2001)  

 

 FINITE ELEMENT SOFTWARE 

In this part, a brief description of the software used for simulation during the ultrasonic 

transducer design is made. These programs are used to obtain some parameters in the 

materials characterization section and also approach the model with the current system 

behaviour to validate them. Once they are validated, they can be applied for improvements 

in the design. 
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The two programs based on the finite element method are COMSOL Multiphysics 

software V.4.4 and 5.1 FEMP software. 

The first, COMSOL, is commercial software that provides an easy user interface. It has 

predefined physics models where you just have to enter the data, while math problem are 

already scheduled. Its application range is wide. Disciplines go from acoustic propagation 

to electromagnetics for example (Comsol 2010). Furthermore it allows the coupling of 

different physical problems, in the same model, approaching interactions that occur in real 

life. 

On the other hand, FEMP (Finite element modelling of Piezoelectric structures) is a free 

program created by Jan Kocback in 2000 during his Masters and PHD Thesis  (Kocbach 

2000a) at the University of Bergen (Norway). Thanks to a collaboration of three months, 

different works with version 5.1 were developed. This version includes enhancements of 

other contributors as Magne Aanes (Aanes 2013).  

The working platform is MATLAB program based on C ++. Its scope is the modelling of 

piezoelectric transducers exclusively. There is No pre-processor like COMSOL and the 

user is responsible for programming the structure under study, as well as the parameters 

to be solved, nodes, elements, etc. Through pre-programmed .mat files (MATLAB files) 

, system is solved and the results are stored in  files .TXT for later post-processing (FEMP 

version 3.5 - Documentation n.d.) 

The main difference between both (COMSOL and FEMP)is the computational cost. Both 

are based in the same equations, but FEMP due to work in MATLAB platform reduce 

considerably the computational time to solve the models, particularly in water. In figure 

3.12 is represent a full piezoelectric transducer in water (axial symmetric model) for both 

programs. 



Ultrasonic Transducer design: Feasibility as parametric echosounder in shallow water 

 

 

96 

 

Figure 4.4.-Example of model geometry from COMSOL and FEMP respectively. 

4.2. K-SPACE PSEUDO SPECTRAL METHOD  

In this point the numerical model to simulate parametric array behaviour used in this thesis 

is described. 

K-space pseudo spectral method is the numerical method used for K-wave MATLAB 

toolbox. This toolbox solves time domain simulation of acoustic wave fields in 1D, 2D or 

3D. It works for both linear and nonlinear wave propagation system. It has been developed 

since 2009 by Bradley Treeby and Ben Cox (University college of London). There is a  
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C++ version driven by Jiri Jaros (Brno University of Technology). (Treeby, Cox, and 

Jaros 2016) 

The equations governing the K-wave method are the first-order differential equations 

based on the conservation equations of mass, momentum and pressure density. As 

mentioned previously, in acoustics, the relation between these allows arriving at a 

particular second-order equation called the wave equation (section). The K-wave does not 

solve this second order equation but the first order differential equations. This is due to 

different reasons: 

1. Introduction of fonts in a simpler way 

2. Use of special anisotropic layers PML 

On the other hand in the acoustic medium, heterogeneous absorption losses are 

introduced. 

To model parametric acoustic array, the nonlinear parameter should be introduced by 

modifying the three main equations. Adding this parameter, together with the absorption 

and dispersion of the medium, gives a generalized form of Westervelt equation. 

K-space pseudo spectral method combines spectral analysis of special derivatives (using 

Fourier method) with a temporal propagator expressed in the spatial frequency domain k-

space. 

Advantages are: 

• Fourier amplitude component can be calculated efficiently using fast Fourier 

Transform (FFT). 
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• Theoretically grid required, for a sinusoidal wave, is reduce to two nodes rather than 

6 or 10 for other methods. 

 

 
Figure 4.5. Schematic showing the computational steps in the solution of the coupled first-order 

equations using a staggered spatial and temporal grid in 2D. Here ∂p/∂x and ux are evaluated at grid 

points staggered in the x-direction (crosses), while ∂p/∂y and uy evaluated at grid points staggered in 

the y-direction (triangles)(Treeby, Cox, and Jaros 2016). 

K-space pseudo spectral method will be used first to carry out a previous study with which 

to fix working range of certain experimental set-up parameters like input pressure required 

for parametric generation and optimum measurement distance between Transducer and 

hydrophone. Secondly it will be a comparative model between the experimental results 

obtained from the transducers under study and those obtained by an ideal simulation 

model of a flat piston with dimensions equal to experimental one. 
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5.1. INTRODUCTION 

Demand for ultrasonic transducers has grown in the last decades due to the increase of its 

use in diverse applications. As mentioned in section 3.1, it was, from World War I, that 

ultrasound began to take hold after the French physicist, Pau Langevin, invented Sonar. It 

was used in both the marine and aviation areas (Kino GS 1987; López 2014). However, it 

was not until the end of the Second World War that its development began in other fields, 

such as medicine, mainly to ultrasonic diagnosis, which now extends to numerous 

  
Ultrasonic  

Transducer Design 
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applications such as non-destructive analysis (NTD) of materials, positioning systems, 

ultrasonic cleaning, sonochemestry, etc.  

Traditionally, ultrasonic transducer design has always been done through “rules of thumb” 

and fundamental theoretical understanding (Moten 2010). Design, is the process whereby 

the optimal solutions for the execution of a system, oriented to a particular application, 

are found. This includes obtaining optimal values for variables that determine materials 

and dimensions of mechanical and piezoelectric elements, which minimize or maximize 

different objectives, such as system sensitivity, electric power, resonance frequency etc. 

Transducers were originally designed by the use of one-dimensional analytical models 

and the prototype manufacturing. This procedure, although it is still used at the present 

time, display a number of disadvantages(Al-Budairi 2012). 

- In certain situations, the analytical resolution form can be complex. 

- Experimental method of making prototypes may require too much time and money 

With the technological developments occurred in recent years, application of numerical 

methods, in engineering, has allowed the development of prediction models to 

approximate systems’ behaviour. These allow to make a feasible and more efficient design 

with lower cost for a particular application. (Acosta Aparicio et al. 2010). 

These models are equations systems whose unknown’s variables represent key 

magnitudes that allow to discover the system behaviour. These magnitudes, in terms of 

the ultrasonic transducers design, can form a broad list. Among the most important we 

highlight the following: 
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1. Operating range 

2. Sensitivity 

3. Frequency response and Resonance frequency  

4. Beamwidth  

5. Use and robustness 

6. Materials and its parameters 

The most relevant aspects that will be taken into account in the ultrasonic transducer 

design considerations presented in this chapter will be the following: 

- Central operation frequency and bandwidth that will determine the system resolution 

for echo-impulse applications. 

- Beam-width, the one in charge of giving information about the insonified area by the 

transducer and consequently by the acoustic wave. 

- Projector and receiver sensitivity. These characteristics will give information on the 

source levels that the transducer is able to transmit and to discern. 

This chapter presents several sections: First, we introduce the active element 

characterization (piezoelectric ceramic), as well as, the passive materials characterization 

that conform mechanical parts of the transducer. Once characterized, the optimum 

materials were chosen and a full transducer finite element modelling is described. Steps 

of transducer set-up are shown and experimental measurements were carried out in terms 

to characterize the full transducer behaviour. Last stage is the comparison between 

experimental data and simulations, to validate finite element modelling for future design 

improvements 



Ultrasonic Transducer design: Feasibility as parametric echosounder in shallow water 

 

 

104 

5.2. ACTIVE MATERIALS CHARACTERIZATION 

Next two sections describe how characterization of various materials has been carried out 

to use them, in the different elements that make up the ultrasonic transducer, and which 

have been explained above. (Section 3.4 ) 

This characterization is divided into two blocks: Active element characterization and 

Passive materials characterization. This is due to the fact that the parameters under study, 

in each of them, are different and therefore the whole experimental process is different 

and needs to be covered separately.  

Part of the work carried out in this thesis, is part of a collaboration agreement with Zunibal 

S.L., a Spanish company that develops technological tools for the marine sector. Its 

technology is oriented to fisheries and more specifically to the use of acoustics for 

achieving more efficient and sustainable fishing. The quantification of fish schools and 

the classification of species in the first 100 m of the water column are the main objectives. 

Due to this, certain design premises were established a priori: 

- Resonance frequency was established in 120 kHz. This particular frequency have 

been used for several years in fisheries research to analyse different pelagic 

fisheries resources. (González 2015; Skaret et al. 2015) 

-  Materials available were selected only for the company providers. 

- Transducer geometry and final dimensions had to be adapted for the possibility 

of future incorporation in a bigger system. 

- Projector sensitivity should be at least 150dB (ref 1uPa/V) to obtain proper SNR 

(Signal to noise ratio) over short and long distances. 

- Beamwidth (-3 dB) must be between 15º and 20º. 
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 PARAMETERS UNDER TEST 

As described in Chapter 3 and more specifically in Section 3.4, the used active elements 

are ceramic materials that present the piezoelectric effect. Characteristics of this energy 

conversion are given by the constitutive relations of the interplay between piezoelectric 

and elastic phenomena, and piezoelectric coupling factors and dielectric constants matrix 

are derived from them. Together with them, there are losses, which are intrinsic to each 

material, they allow to describe completely the active element behaviour and how it will 

affect the total system. 

In piezoelectric ceramic processing there are four important steps: powder preparation, 

machining, electroding and poling. The latter being responsible for orienting dipoles 

inside the material and induce piezoelectricity along one axis. In the case of PZT (Lead 

Zirconate Titanium), piezoelectric ceramic under interest, the powder is a mix between 

lead oxide, titanium oxide and zirconium oxide as the main compounds. Nevertheless it 

is common to use dopant materials to modify its characteristics. (Jordan and Langley 

2001). 

Although in the material type reside the main properties, once the powder is done, this can 

be matching in different shapes and sizes. After cutting, electrodes are applied and start 

the polarization process. Depending on which direction exhibits the polarization, 

symmetry can be obtained in one particular axis and, as it was explained in the theoretical 

introduction, a constant matrix reduction is derived. For our design purposes, ceramics 

with polarization along the Z-axis were chosen, and the resultant coefficients are shown 

in table 5.1 
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Table 5.1. Material properties under characterization for a piezoelectric ceramic with 

polarization along Z axis 

To determine these fundamental constants, direct measurements have to be done through 

different methods (resonant method, capacitance measurement etc.) (Brissaud 

1991)(Standard 1988). Moreover, to obtain all of them a series of measurements on 

samples of various shapes and poling orientations are required. Processes to measure or 

calculate one parameter from the coupling of other parameters is fully described in IEE 

Standards of Piezoelectricity(Standard 1988) and it is not going to be a matter of interest 

in this thesis. 

The present study on piezoelectric ceramics is based on the parameters provided by the 

manufacturer of each material. These data contain both, the coefficients collected in Table 

5.1 as well as the mechanical losses (and the dielectric losses (). The first of them are 

accompanying the elasticity matrix and the last one to the dielectric matrix. Both are 

independent for each coefficient and may have different values(Aanes 2013; Kocbach 

2000b). Piezoelectric losses are neglected on this work due to the fact that there are not 

reference data to start with. In order, to properly characterize the ceramic behaviour, we 

used a finite element simulation tool. The objective is, by means of the comparison with 

Elastic Constants 11
Ec , 12

Ec , 13
Ec , 33

Ec , 44
Ec  

Piezoelectric Coupling Coefficient 31e , 33e , 15e  

Dielectric Constants 11
Sε , 33

Sε  



5. Ultrasonic Transducer design 

 
107 

real electric measurements, to adjust coefficients and their losses provided to the 

simulation tool; the selected ceramics being completely and accurately described. 

Once the parameters have been adjusted, a resonance study as a function of ceramic 

dimensions is carried out, with the purpose to observe the most predominant vibratory 

modes in each material. On the other hand, within the materials characterization, acoustic 

impedance values are obtained. This will be, in the design, a key factor to select the rest 

of materials involved in the setup of the transducer. 

 MATERIALS AND METHODS 

Two piezoelectric ceramics are selected to study their characteristics as active element. 

Both of them present a circular disc geometry with a 38mm outer diameter due to the 

company conditions. In Table 5.2 is shown a short summarize description. 

Table 5.2. Piezoelectric ceramic general description 

 

Manufacturer Description Dimensions (mm) 

 

 

Resonant Frequency (kHz) 

 Meggit

 

PZ37 38 X 12.25 120 

PI ceramics

 

PIC255 38 X 15.06 125 
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The first piezoelectric ceramic is Pz37 from Meggit PLC, British engineering company. 

PZ37 is a new PZT ceramic generation. It is a porous ceramic that allows to decrease 

acoustical impedance, thus improving transfer of acoustic energy to the load medium. Its 

low mechanical quality factor makes it present a greater bandwidth and that is optimal for 

transducers used in both transmission and reception (Ferroperm n.d.).  

Alternatively PIC255 is a modified soft PZT material with high coupling factor, high 

permittivity and extremely high Curie temperature. This material have been optimized for 

actuator applications under dynamic conditions and high ambient. As the same as its 

partner, PIC255 is suitable for broad-band systems (PI Ceramic GmbH n.d.). Table 5.3 

collect the piezoelectric properties available from manufacturer for both ceramics. 
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Table 5.3. Manufacturer piezoelectric ceramic properties for Pz37 and PIC255 respectively 

 

Manufacturer data Meggit (PZ37) PI ceramics (PIC255) 

cE 11 [1011N/m2] 7.23 1.23 

cE 12 [1010N/m2] 4.17 2.226 

cE 13 [1010N/m2] 3.34 7.67 

cE 33 [1010N/m2] 4.63 9.71 

cE 44 [1010N/m2] 1.53 7.025 

e31 [C/m2 ] 1.11 -7.15 

e33 [C/m2 ] 11 13.70 

e15 [C/m2 ]  11.90 

ɛ11[10-9F/m]  930 

ɛ33[10-9F/m] 689 857 

ρ [kg/m3] 6470 7800 

QM 127 80 

tanδ 0,015 

 

0.020 
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5.2.2.1. ACOUSTIC IMPEDANCE 

In ultrasonic transducer design, acoustic materials impedance play a very important role, 

since through them, it can be adjust the transmission and reception characteristics suitable 

for our application scope. Although it is necessary a trade-off between theory and design 

premises, it is important to obtain the acoustic impedance values for each element involve 

in the design. 

Acoustic impedance defined in equation(2. 5) is directly related to the propagation 

velocity and material density. In circular disc piezoelectric ceramics working in thickness 

mode, propagation velocity will correspond to the longitudinal velocity along the Z axis 

as shown in figure 5.1: 

 

 

 

 

 

 

 

Figure 5.1. - Piezoelectric ceramic scheme 

This propagation velocity can be obtained theoretically or experimentally. For the active 

element case, and in particular piezoelectric ceramics, theoretical calculation is obtained 
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through the Christoffel's equation which relates the stiffness constant along Z-axis to the 

density of the material.  

33
D

l
cV
ρ

=  

 

(5. 1) 

where 33
Dc , in the thickness stiffness constant under constant Displacement. 

For the experimental calculation the eco-impulse ultrasonic testing technic (Hellier 2012; 

Valencia Ilarregui 2009) is used which will be described next  

 

Figure 5.2.-Longitudinal sound speed measurement. 

Experimental set-up (left side) and blocks diagram (right side) 

Experimental measurement configuration is shown is figure 4.2. The equipment involve 
in the measurement is:  

- PANAMETRIC Model 500PR Ultrasonic pulse-receiver 

- TECKTRONIC oscilloscope TDS 220 
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- PANAMETRIC V392 0.5MHz ultrasonic transducer 

- Test sample 

In the pulse-echo method, an ultrasound transducer generates an ultrasonic pulse and 

receives its echo. The ultrasonic transducer functions as both transmitter and receiver in 

one unit. An electronic pulse is generated using the piezoelectric effect. A short, high 

voltage electric pulse (less than 20 Ns in duration, 100-200 V in amplitude) excites a 

piezoelectric crystal, to generate an ultrasound pulse. Transducer broadcasts the ultrasonic 

pulse at the surface of the specimen. The ultrasonic pulse travels through the test sample 

and reflects off the opposite face. The transducer then listen to the reflected echoes. 

Ultrasound pulse keeps bouncing off the opposite faces of the specimen, attenuating with 

time. The time between any two echoes is the length of time required for the pulse to travel 

through the sample and back to the transducer. The attenuation (amplitude decay) is 

exponentially with time.  

 

 

 

 

 

 

Figure 5.3.-Oscilloscope signal detail. Receive transducer signal from 
piezoelectric ceramic eco-impulse test 
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The speed of sound in the solid can be calculated from the observed difference time, ∆t, 

and the test thickness, t: 

2
l

tV
t

=
∆

 

 

(5. 2) 

To obtain this value, 5 measurements have been made with the echo impulse, giving as an 

optimal result the arithmetic mean of them plus its associated error. Obtaining the 

propagation velocity is an indirect measure through two magnitudes (sample thickness 

and the time difference between echoes when measuring with the echo impulse). For both, 

instrumental error, 1e-3m and 1e-6s respectively, is less than the aleatory error produced 

in the measurement. Therefore, following the Gauss theory, we take as the best estimate 

of the error, the so-called quadratic error defined by: 

2

1
( )

( 1)

n

ix x
x

n n

− < >
∆ =

−

∑
 

 

(5. 3) 

Where n, number of measurement 

xi the value for each measurement and <x>, the arithmetic mean defined by: 

1 2 1...

n

i
n

x
x x xx

n n
+ + +

< >= =
∑

 

 

(5. 4) 

Therefore the result of the experiment will be expressed as: 
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x x< > ±∆  

 

(5. 5) 

x∆  is an absolute error, the relative error will be as follows: 

xe
x
∆

=
< >

 

 

(5. 6) 

Once propagation velocity is calculated, density values are taken from the manufacturer 

data and acoustic impedance is obtained. 

5.2.2.2. PIEZOELECTRIC PROPERTIES ADJUSTMENT  

In order to adjust the piezoelectric coefficients a FEM simulation model is used and also 

an electrical measurement. The process followed is described below. 

Electrical admittance is the reference measure to adjust the properties under interest. This 

variable show, in the piezoelectric ceramic case, the resonant frequencies present due to 

specimen dimensions and geometry. It is divided in real and imaginary part. Both are 

called conductance and suspectance respectively and their unit is Siemens (S)  

Experimental set-up is shown in figure 5.4. Impedance analyser (WAYNE KER 6500PR) 

is connected to the piezoelectric ceramic applying and electric potential, around 1V, in 
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test sample terminals. Through LabVIEW system, impedance analyser is controlled and 

electrical admittance and impedance are obtained as an output data with .txt format 

 

Figure 5.4.-Electrical admittance measurement set up. 
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Once electrical admittance is measured, next step is to create the finite element model. 2D 

axisymmetric model is carried out in two different Finite Element software, COMSOL 

and FEMP, described in section 4.1 

 

Figure 5.5. - Piezoelectric ceramic FE modelling detail. 

The goal of this simulation is to obtain in a theoretical manner, the value of electrical 

admittance measured experimentally. Once the model has been designed and the analysis 

performed, it serves as a tool to approximate coefficients until theoretical result 

approaches to real one. Several simplifications are produced in the finite element model 

so that the analysis execution time is reduced to the maximum without interfering with 

the physical characteristics of the problem under study. Steps to follow in both software 

are the same with small discrepancies that will be discussed below. 
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- Model definition: 

When FE modelling was introduced to simulate piezoelectric ceramics. 1D modelling was 

the most used. This simplification treats the piezoelectric ceramic disc as if it were a flat 

piston radiating the same way across the surface (Acosta Aparicio et al. 2010). Later 

studies showed that it was only valid for piezoelectric ceramics where their radiant 

surface, corresponding to the largest dimension (ceramic diameter), was much larger than 

the remaining dimension (ceramic thickness). For piezoelectric ceramics, with finite 

dimensions it is necessary to make use of 2D or 3D models. In the present work, due to 

the cylindrical geometry of the sample under test, axial symmetry can be introduced along 

the polarization axis. In this case, piezoelectric ceramics are polarized in the Z-axis. 

Although 3D model have been discarded due to computational cost, a 3D piezoelectric 

ceramic disc have been realized to check the axisymmetric model results validity. 

On the other hand, experimental measurement have been done in air while for the FE 

simulation, vacuum is chosen. By not using air it is avoided to define an external medium 

where the ultrasonic waves propagate, avoiding an increase of meshing and therefore 

computational cost. The physics of the problem is also simplified. In the vacuum model, 

only material piezoelectric properties and its behaviour due to the boundary conditions 

are taken into account. Instead, when we introduce a propagation medium apart from 

properties mentioned, it must include the piezo-acoustic interaction that occurs due to the 

propagation of the ultrasonic waves by a medium with different physical properties. 

- Analysis type selection 

Direct harmonic analysis is selected for this model. Piezoelectric ceramic is evaluated 

over a range of frequencies from 40 kHz up to 160 kHz in 100Hz steps. 
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- Geometry design 

COMSOL and FEMP have different procedure in this point. In COMSOL it is possible to 

import an AutoCAD design or to use the drawing tools available in the program. For this 

model, thanks to the axial symmetry, a simple rectangular is drawn. In contrast, in FEMP, 

the user is in charge of define all the geometry manually. Firstable it is defined the vertex 

points and after that, all the areas involves in the geometry 

Dimensions selected are those corresponding to the thickness of each ceramic: 

 Thickness (mm) 

PZ37 12.25 

PIC 255 15.02 

Table 5.4. Thickness ceramics values 

 And half of the ceramic diameter disc due to axial symmetry (19mm). 

- Materials properties 

Elastic, piezoelectric coupling coefficient and electrical permittivity matrix are manually 

introduced for each material. These properties are introduced in a complex way adding 

the mechanical and dielectric losses independently for each coefficient. Along with 

density, all properties are stored in a materials library present in each simulation software. 

From the model, this library is accessed and associated with the geometry designed. 

- Boundary conditions 

Four boundary conditions are established following the outline of Figure 5.6. 
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Figure 5.6. – Boundary conditions scheme for a piezoelectric ceramic disc 

Electric potential: Apply 1V on the radiant surface of the ceramic (surface perpendicular 

to the polarization axis) 

Ground: Imposes 0V on the back side where the electrical potential is defined. Thereby 

establishing a potential difference and thus achieving the piezoelectric effect. 

Axial symmetry: Condition available only on the axis of rotation of 2D axis-symmetric 

models (r=0). Solution is revolved about the axis. Symmetry boundary will act like rigid 

wall. The pressure derivate will be zero on the symmetry boundary.  

Free: This boundary condition implies free movement without any constraint 
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- Mesh 

Mesh is defined in both programs in a rectangular shape. The element size is established 

by the relation between the wavelength of the maximum frequency under study and the 

number of divisions (N) that are made following equation  

maxfElementsize
N
λ

=  

 

(5. 7) 

 

If the model is well defined but does not have an appropriate mesh, solution obtained 

is not valid. In this thesis, convergence studies has been made for the different models. 

The process is to increase the elements number until the solution remains stable. 

Size element for this models are shown in next section, when convergence results are 

presented. 

- Output variable 

Electrical admittance is the variable under interest. For FEMP simulations, 

admittance is an output variable already programmed that can be used by the user. 

Here the voltage is set to 1V. Then the frequency range for the admittance is collected 

from the model file (inn-file), if no frequency vector is given, the frequency range for 

the direct harmonic analysis is used. (FEMP version 3.5 - Documentation n.d.) 

However in COMSOL, admittance should be define in the variables section through 

the following equation: 
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(int ( . / 1[ ]))Y op pzd nJ V=  

 

(5. 8) 

 

Where pzd.nJ is the current density. 

Admittance is the ratio between an integration along the surface where electric 

potential is applied and the voltage value. 

Furthermore to establish an optimal number of divisions per wavelength, and therefore 

the mesh element size, that finite element simulation model must have, it is necessary to 

perform a convergence study. 

The convergence study is carried out using the simulation models of piezoelectric 

ceramics in the vacuum, for each material. Study is performed in the FEMP software and 

results are applied to the two software used in order to have the same parameters to be 

able to compare both models. 

With this study, it is intended to achieve a solution that remains stable regardless of the 

mesh element size. 

Each model is executed seven times by changing only the number of divisions per 

wavelength. Variable used as reference is the conductance value at the thickness 

resonance frequency in the piezoelectric ceramics. 124 kHz for PIC255 and 120 kHz for 

PZ37.  

This variable is chosen, since it is the only available experimental data to characterize the 

materials. Measurements made for both, active element and passive materials explained 

in the next section, are performed in air. The modelling in the vacuum is due to the fact 
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that only piezoelectric behaviour is interesting and not the acoustic interaction with the 

medium. Simplification is done by reducing computational cost 

Table collect the results by defining the following parameters: Number of divisions per 

wavelength (N), model run time and conductance amplitude in the resonance frequency. 
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PIC 255 

Number of 
divisions (N) 

Conductance 
Amplitude Model run time 

5 0.003522 21s 

7 0.003640 28s 

9 0.003702 42s 

12 0.003715 76s 

15 0.003718 89s 

18 0.003719 139s 

21 0.003720 190s 

 

 

  

 

 

 

 

 

 

 

 

Table 5.5. Convergence study results 

 

PZ 37 

Number of 
divisions (N) 

Conductance 
Amplitude Model run time 

5 0.006217 34s 
7 0.006172 39s 
9 0.006150 45s 

12 0.006138 53s 
15 0.006135 82s 
18 0.006134 109s 
21 0.006134 140s 
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Figure 5.7 show graphically the convergence results, where the stability is shown 
more clearly. 

 

Figure 5.7. – Convergence graphic results for PIC255 and PZ37 ceramic respectively 
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From results it is observed that in both cases, from 16 elements, solution remains stable. 
Therefore the value selected be 16 divisions obtaining a mesh element size for each 
piezoelectric ceramic of: 

Table 5.6. Mesh element size for each piezoelectric ceramic depending on simulations parameters 

Figure 5.8. –Detail geometry PIC255 ceramic, in FEMP model, with 16 elements wavelength 

 

 PZ37 PIC255 

maxfλ (160kHz) 0.021625 0.02803125 

N 16 16 

Element size 0.001352 0.001751 
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5.2.2.3. RESONANCE FREQUENCY STUDY AS FUNCTION OF DIAMETER/THICKNESS RATIO 

Resonant frequency study has been realized based on the work carried out in the Jan 

Kocback thesis with title: "Finite Element Modelling of Ultrasonic Piezoelectric 

Transducer" (Aanes 2013; Kocbach 2000a). 

His work pointed out the importance of resonance frequency spectra of circular 

piezoelectric ceramic disc to evaluate their behaviour taken into account different 

parameters: Poisson ratio, geometry etc. (Kocbach, Lunde, and Vestrheim 2001)  

Kocback focus in particular on observing the vibrational modes according to the ratio 

between the diameter and the thickness of the ceramic. From their study, it was concluded 

that for ratios > 10, the vibrational modes are more independent of each other and as this 

value ratio decreases, they increase their dependence provoking strong perturbations that 

can affect the final design. 

The ceramics present in this thesis present ratios below 5. Therefore it is considered an 

extra tool to understand the behaviour of these ceramics and possible perturbing problems. 

The study is carried out with the FEMP simulation tool, perform a modal analysis in which 

resonance frequencies up to 200 kHz are extracted. Resonance and Eigen modes are 

calculated with complex losses. 

Due to the polarization apply, only symmetric vibrational modes are studied. They have 

been classified for different authors, and 7 different types of vibrational model have been 

identified: R, L, E, A, T, TS, TE (Aanes 2013; Kocbach 2000a) 

In Jan Kocback thesis there is a definition for each of them but this thesis is focused in 

only two: 
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- Radial mode (R): Resonance at the lowest frequency that corresponds to motion 

in the largest dimension of the ceramic, which in this case is in the radial 

direction. Often, several harmonics will also be seen at higher frequencies. Radial 

mode will be study in the next chapter for parametric application along with the 

extensional thickness mode 

- Thickness Extensional mode (TE): Oscillation is across disc faces so will be 

higher in frequency. Is the most used in transducer applications and it is the 

frequency under interest in the present transducer design. 

 

 ACTIVE MATERIALS CHARACTERIZATION RESULTS 

This point collects all the results obtained within the active element characterization. It is 

divided in three parts: Acoustic impedance characterization, results of the piezoelectric 

coefficients adjustment and the study of resonance frequency spectra due to the ratio 

between diameter and thickness for each material. 

5.2.3.1. ACOUSTIC IMPEDANCE 

Table 5.7 shows the values of propagation velocity measurements for both ceramics. 

Table also shows the mean value, absolute error and relative error associated with the 

measurement. 

Table 5.8 shows the acoustic impedance values for both piezoelectric ceramics. In the 

table are collected both the theoretical and experimental results. There are small 

differences between them. In both materials the values of the experimental results are 

greater than those theoretically calculated 
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Table 5.7. Propagation velocities experimental results and associated error  

 PZ37 PIC255 

x1 (m/s) 3462 4487 

x2 (m/s) 3454 4484 

x3 (m/s) 3458 4479 

x4 (m/s) 3461 4491 

x5 (m/s) 3466 4486 

<xi> 3460 4485 

Δx 2.38 2.01 

e 6.9e-4 4.5e-4 
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Table 5.8. Acoustic Impedance Theoretical values & Experimental results 

5.2.3.2. PIEZOELECTRIC COEFFICIENTS ADJUSTMENT 

The adjustment of piezoelectric coefficients was done following the work of  Rune Fardal 

(Fardal 2002). In this work, a relation was established, taking into account the dependence 

between the amplitude of the most outstanding vibrational modes, R1 and its second 

harmonic R2 and TE1, with the real and imaginary part of some piezoelectric coefficients. 

These include elasticity matrix, piezoelectric coupling factor and dielectric permittivity. 

Material PZ37 PIC255 

THEORY EXPERIMENT THEORY EXPERIMENT 

Densidad 

(kg/m3) 
6470 6470 7800 7800 

cL(m/s) 3198 3460 ± 2.4 3954 4485 ± 2 

Z(Mrayls) 20 22 30 35 
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 Figures 5.9 and 5.10 graphically represent the final fit obtained for both materials. Table 

5.9 and 5.10  shown  the modification of the piezoelectric coefficients offered by the 

manufacturer 

Figure 5.9. – Electrical admittance for Pic255 Piezoelectric ceramic: FE modelling & 

Experimental measurement 
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Figure 5.10. - Electrical admittance for Pz37 Piezoelectric ceramic: FE modelling & Experimental 

measurement 
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                            Table 5.9. Manufacturer piezoelectric ceramic properties for Pz37 

PZ37 Meggit Adjusted (FE simulation) 

cE 11 [1010N/m2] 7.23 7.23(1+i/187) 

cE 12 [1010N/m2] 4.17 4.17(1+i/187) 

cE 13 [1010N/m2] 3.34 3.34(1+i/127) 

cE 33 [1010N/m2] 4.63 4.55(1+i/67) 

cE 44 [1010N/m2] 1.53 2.20(1+i/187) 

e31 [C/m2 ] 1.11 1.11 

e33 [C/m2 ] 11 11 

e15 [C/m2 ]  9 

ɛ11[10-9F/m]  889(1-i/67) 

ɛ33[10-9F/m] 689 689(1-i/67) 

ρ [kg/m3] 6470 6470 

QM 127 Not used 

tanδ 0,015 

 

Not used 
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Table 5.10. Manufacturer piezoelectric ceramic properties for PIC255 

 

PIC255 PI ceramics Adjusted (FE simulation) 

cE 11 [1011N/m2] 1.23 1.229(1+i/58.6) 

cE 12 [1010N/m2] 2.226 7.66089(1+i/58.6) 

cE 13 [1010N/m2] 7.67 7.1178 (1+i/80) 

cE 33 [1010N/m2] 9.71 9.7056 (1+i/145) 

cE 44 [1010N/m2] 7.025 2.35 (1+i/120) 

e31 [C/m2 ] -7.15 -7.8417 

e33 [C/m2 ] 13.70 13.5583 

e15 [C/m2 ] 11.90 11.244 

ɛ11[10-9F/m] 930 930(1-i/50) 

ɛ33[10-9F/m] 857 857(1-i/50) 

ρ [kg/m3] 7800 7800 

QM 80 Not used 
tanδ 0.020 Not used 



Ultrasonic Transducer design: Feasibility as parametric echosounder in shallow water 

 

 

134 

PZ37 ceramic presents more variations than PIC255. The adjustment of R1 and TE1 mode 

has been given greater importance, since they are in which the design is focused. 

Coefficients modification has always been done respecting the dependence relations in 

the matrix that define piezoelectric behaviour. 

5.2.3.3. RESONANCE FREQUENCY STUDY AS FUNCTION OF DIAMETER/THICKNESS RATIO 

Both ceramics have a low ratio, 2.52 for PIC255 and 3.15 for PZ37. Results are shown in 

Figure 5.11 and 5.12 

 

Figure 5.11. – PZ37 Resonant Frequencies depending on the ratio between its diameter and 

thickness 
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Figure 5.12. – PIC255 Resonant Frequencies depending on the ratio between its 

diameter and thickness 

Due to this low ratio, vibrational modes are more dependent between them. Comparing 

both graphics, Thickness Extensional mode (TE1) which is the frequency of interest (120 

kHz-125 kHz) is less strong in PIC255 than in PZ37. This can affect in the transducer 

sensitivity, therefore it is important to take it into account in the transducer design. 
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5.3. PASSIVE MATERIALS CHARACTERIZATION 

Once active element materials are characterized, next step is to characterize materials that 

compound the different elements within the ultrasonic design. These materials are called 

non-piezoelectric materials or passive materials. 

As described, in section 3.4, each element of the transducer has a function and according 

to the dimensions and physical material properties will behave in one way or another. 

Although these thumb rules must always be taken into account in order to select the right 

material, sometimes the economic or manufacturing limitations provide to have a 

compromise between the desired ultrasonic transducer performance and the materials 

available for its manufacture. 

Materials under study have been provided by the Spanish company suppliers with which 

the collaboration is maintained. From different materials provided, have been only 

selected two. They are the best adapted for the design and that greater ease of manufacture 

and better cost. 

 

 PARAMETERS UNDER TEST 

In section 3.4, it was mentioned that the most important characteristics for materials used 

for both Backing and Matching are the following: Acoustic Impedance, attenuation and 

dimensions material. 

Characterization is divided in two parts: Acoustic Impedance Characterization and 

adjustment, through FEM simulation, of transversal propagation velocity and mechanical 

loss factor. 



5. Ultrasonic Transducer design

137 

The former is done through longitudinal velocity experimental measurement and density. 

With longitudinal velocity value  it is  also going to establish Matching dimensions 

(Section 3.4)  trying to increase the energy transference between piezoelectric ceramic 

and load medium when its thickness is equal to quarter-wavelength (thickness mode). 

Second characterization allows to obtain, through simulation, approximate values of 

transversal propagation velocity and mechanical loss factor by means of the adjustment 

with experimental measurement that will explain in the following point. 

When introducing the physical properties of passive materials in the simulation model can 

be introduced in two different ways: 

-First option: Direct input of velocity values (longitudinal and transversal), 

density and mechanical loss factor 

-Second option: Introducing the Young and Poisson ratio coefficients, density 

and mechanical loss factor 

Young modulus and Poisson ratio values can be more easily achieved through the 

manufacturer. However, in this case only the density is the known parameter and the rest 

of them must be obtained experimentally. 

Nevertheless, prior to these measures a theoretical estimation of these values is made 

thanks to material database of various sources in order to obtain a certain range of values 

with which to validate the experimental results. 
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  MATERIALS AND METHODS 

Two materials, have been electrically and acoustically characterized. Table 5.11 give an 

overview of them, differentiating by materials for matching and backing  

Table 5.11. Matching and Backing materials investigated. 

Material Manufacturer Type 

Matching material 

(EL217C) 

ROBNORRESINS 
Polyurethane resin 

Backing (CORK TD1049) 

Amorim T&D Cork composites 
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EL217C from ROBNOR Company (Robnor ResinLab Ltd.), is the material selected to be 

used as matching layer. It is an epoxy, usually for electronic and electrical application, 

requiring a highest protection against toughest environment such as sea water for example. 

It allows enhanced adhesion and its density is 1100kg/m3. It is chosen to give high 

protection to the ceramic and improve the energy transfer 

Cork TD1049, it is a porous material supply by AMORIM T&D Company(AMORIM 

Cork Composites). It is going to be the back block element in the transducer design. This 

porous material has intercommunicated channels that will penetrate the ultrasonic wave 

reflected by the piezoelectric ceramic rear face and by dispersion will cause its attenuation 

(Andersen et al. 2000). This material will allow to reduce back propagation and increase 

bandwidth.  

5.3.2.1. ACOUSTIC IMPEDANCE 

In this section another method to measure longitudinal propagation velocity is described. 

During the course of this thesis has been held a collaboration in the physics department of 

the University of Bergen (Norway). 

In this period, passive materials characterization is carried out by means of the contact 

method (Ramadas, Leary, and Gachagan 2009). The advantages of this method over the 

eco-impulse method are as follows: 

-Transmitted signal can be controlled. (Number of cycles, amplitude, shape) 

- Transducers available are Panametrics of 0.5MHz with a bandwidth large enough to be 

able to perform measurements around 120 kHz and characterize the materials at the final 

work frequency of the system. 
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- As the working frequency decreases, the wavelength is larger, so it will penetrate further 

into the samples under test, reducing possible attenuation problems 

In Fig.5.13 the experimental setup is shown and the equipment used 

Figure 5.13. – Contact method experimental set-up 
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Figure 5.14. – Contact method diagram block 

Experimental measurement configuration is shown is figure 4.14. Equipment involve in 
the measurement is: 

• Oscilloscope: Tektronix       DPO30129
• Ultrasonic pre-amplifier: Panametrics
• Function generator: HP AGILENT 331250A
• Filter: KROAN-HITE 3202 Filter
• Transducers : Panametrics V304 0.5MHz/1” 654055
• PVC buffer
• Samples
• RF amplifier : EN240L

Process is as follows: A 10 cycles burst at 125 kHz is transmitted. The voltage used in the 

transmission was different depending on test sample attenuation. This varied from 

100mVpp for EL217C material up to 2Vpp for cork TD1049. A first measurement is 

performed transmitting the signal through the PVC buffer. The received signal, at the 

transducer receiver is recorded on the oscilloscope. Then, a second measurement is made, 
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repeating the process but this time by introducing the sample under test between PVC 

buffers. Delay time differences between the two received signals and the samples 

thicknesses give the longitudinal propagation velocity values. MATLAB program is used 

to obtain that values by zero-crossing method. The zero-crossing is the instantaneous 

point at which there is no voltage present. In a sine wave or other simple waveform, this 

normally occurs twice during each cycle. In zero-crossing method, this points are compare 

in the two received signals giving a number of delay time differences. From them, an 

average is performed and the mean value is obtained which with the sample thickness will 

give us the material propagation velocity 

Highlight that the samples and the PVC buffer are attached to the transducer structure by 

means of a screw. The force exerted by him is recorded and applied to all measures so that 

there are no repeatability errors. 

Bluescan ultrasound gel is used as a link between transducer and test sample. It facilities 

the ultrasonic transmission. 

This measurements as it was in the active element characterization have their associated 

error. 

5.3.2.2. TRANSVERSAL SOUND SPEED AND ATTENUATION COEFFICIENT EXPERIMENTAL 

ADJUSTMENT 

Electrical measurement are realized as in section 5.2.3.1 . Due to passive materials are 

non-conductive materials. They have to be attached to piezoelectric ceramics and observe 

their behaviour through them. 

https://en.wikipedia.org/wiki/Voltage
https://en.wikipedia.org/wiki/Sine_wave
https://en.wikipedia.org/wiki/Waveform
https://en.wikipedia.org/wiki/Interval_(time)
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PIC255 ceramic is chosen due to its closer piezoelectric coefficients adjustment with the 

experimental results. Sample dimensions adhered to the ceramic are listed in the table 

below: 

Table 5.12. Materials samples dimensions for electrical admittance measurement 

Simulation models performed to characterize passive materials have the same 

methodology as those made for the active element. 

They are 2D-axymmetric models in the vacuum. A harmonic frequency analysis is 

performed between a range of 40 kHz and 160 kHz. 

Test Sample Description Dimensions (mm) 

EL217C 38 X 3 

CORK TD1049 38 X 8.5 
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Models have two domains. One domain is the piezoelectric ceramic and the other the 

material under study. The first one presents the same boundary and meshing conditions as 

in section 5.2.2.2. The latter has free boundary conditions and its mesh element is shown 

in Table 5.13 

EL217C CORK TD1049 

maxfλ (160kHz) 0.0091875 0.0040625 

N 16 16 

Element size 0.000574 0.000254 

Table 5.13. Mesh element size for each material under test 

 PASSIVE MATERIALS CHARACTERIZATION RESULTS 

5.3.3.1. ACOUSTIC IMPEDANCE 

Like for active material characterization, five measurements of longitudinal propagation 

velocity has been made. Results obtained for each material are shown in table 5.14. In 

table 5.15 final experimental values for acoustic impedance are collected with also density 

values.  
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Table 5.14. Materials acoustic properties measurements 

 Table 5.15. Materials acoustic properties measurements 

EL217C CORK TD1049 

x1 (m/s) 1464 657 

x2 (m/s) 1482 643 

x3 (m/s) 1465 650 

x4 (m/s) 1472 662 

x5 (m/s) 1468 640 

<xi> 1470.2 650.4 

Δx 3.26 4.13 

e 0.0022 0.0064 

Material EL217C CORK TD1049 

Densidad (kg/m3) 1100 950 

vL(m/s) 1470±3.26 650±4.13 

Z(Mrayls) 1.61 0.598 
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5.3.3.2. TRANSVERSAL SOUND SPEED AND ATTENUATION COEFFICIENT ADJUSTMENT 

Figure 5.15. – Conductance comparison between simulation and measurement. PIC255 piezoelectric 

ceramic + 6.5 mm of TD1049 backing material 

Figure 5.16. – Conductance comparison between simulation and measurement. PIC255 piezoelectric 

ceramic + 3mm of EL217C front layer material 
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Figures 5.15 and 5.16 graphically represent the final fit obtained for both materials. 

Theoretical estimations data for matching and backing material are collected in Table 5.16 

and experimental results in  

Table 5.17 

Material EL217C CORK TD1049 

Densidad [kg/m3] 1100 950 

E[Pa] 2e8 8.4e7 

Ѵ 0,44 0,4 

vL[m/s] 1248 513 

vS[m/s] 255 178 

Z[Mrayls] 1.4 0.487 

Table 5.16. Materials acoustic properties Theoretical estimation 

Table 5.17. Acoustic material properties adjusted 

Experimental and theoretical estimation present a low deviation, having bigger values the 

experimental results. 

Material EL217C CORK TD1049 

Densidad [kg/m3] 1100 950 

vL[m/s] 1470±3.26 650±4.13 

vS[m/s] 485 265 

Z[Mrayls] 1.61 0.598 

Q 45.61 39.7 
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El217C selected as a matching material have an acoustic impedance of 1.61MRayls. This 

value is below the recommended to maximize the energy transfer. Following equation (3. 

44), Front layer acoustic impedance value, should be for a proper energy transmission in 

water (1.5Mrayls), around 5.74 MRayls for PZ37 and 7.24 MRayls for PIC255. 

5.4. PROTOTYPE MODELLING AND IMPLEMENTATION 

Characterized the materials wrapped in the design, next is to proceed to the realization of 

a simulation model that includes the full transducer in water. Several models have been 

realized and two have been selected, one for each prototype. The prototypes present the 

same material configuration except for the piezoelectric ceramics. Both of them, operates 

around 120 kHz and its general description is as follows: 

 Prototype 1: 

PIEZOELECTRIC CERAMIC: PIC255 (PI CERAMICS) 

CASING: ABS 

MATCHING: EL217C (3mm) 

BACKING:  TD1049 (6.5mm) 

Prototype 2: 

PIEZOELECTRIC CERAMIC: PZ37 (FERROPERM) 

CASING: ABS 

MATCHING: EL217C (3mm) 

BACKING:  TD1049 (6.5mm) 
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This section describes the simulation model carried out with its main characteristics. On 

the other hand, prototypes once constructed and characterized are compared with 

simulation results in order to verify that the estimated behaviour approaches or not as 

measured experimentally. 

This model simulation is carried out only by FEMP software due to the bigger resources 

and computer cost required by COMSOL when a surrounding medium, around transducer, 

is introduced with the technical capabilities available. 

The main features are: 

- 2D axisymmetric model with a harmonic analysis is realized. Electrical 

admittance, directivity pattern and projector sensitivity (TVR) at 1m are the direct 

output variables obtain from simulation. 

- Receive sensitivity (OCV) is extrapolated from projector sensitivity by using 

reciprocity equation. 

- Geometry elements are defined trough points, areas command from FEMP. Due 

to circular disc geometry and axial symmetry, elements are described as a simple 

rectangles with origin in the revolution axis. 

- 3 mm is stablish as EL217c matching layer thickness to achieve the λ/4 

wavelength. 

- Electric potential is define in ceramic boundaries. Its value is setup in 1V. 

- Casing material is added. It is ABS plastic material(www.ndt.net n.d.). It has not 

been characterized but its acoustic properties have been taken out from a material 

library. The properties values are collected in   Table 5.18 
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  Table 5.18. ABS acoustic properties 

- A water medium is introduce with a radial geometry. Radius is defined to 

0.1meter, 10 times bigger than the maximum frequency wavelength. The 

properties are listed below 

Table 5.19. Water acoustic properties 

- The impossibility to model an infinite surrounding medium or bigger enough to 

obtain values in far field provoke the introduction of an INFINITE ELEMENT 

layer(Comsol 2010; Kocbach 2000a). It avoids undesirable boundary reflections 

Material ABS 

Densidad [kg/m3] 1050 
vL[m/s] 2250 

vS[m/s] 1120 

Z[Mrayls] 2.36 

Q 72.52 

Material WATER 

Densidad [kg/m3] 1000 
vL[m/s] 1485 

α[dB/m] 0 
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and the possibility to obtain results from far field regime. Infinite element 

thickness layer is set to 100 mm 

Figure 5.17. – FEMP simulation model: Full transducer in water 

Elements per wavelength is setup at 20 after a convergence study for each material except 
in the infinite element that is set to 1 as a FEMP recommendation. Plot diagram with 
geometry dimensions in mm is shown in figure 5.18  

Figure 5.18. – Geometry dimension 
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The construction process for the two prototypes is graphically described in figure 5.19. 

Figure 5.19. – Transducer construction steps. (a) Backing adhesion, (b) Piezoelectric ceramic 

wired (c) Housing introduction, (d) Matching filling, (e) Elements encapsulation and (f) 

Transducer finalized 

(a) (b) 

(c) (d) 

(e) (f) 
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The steps are the following: 

1. Backing adhesion

Cork TD1049 disc with 6.5mm thickness is added to piezoelectric ceramic through 

a transparent epoxy glue. 

2. Piezoelectric ceramic wired

Two wires are soldier to the front and rear piezoelectric ceramic faces. These faces 

are pre-metallized with the silver oxide varnish. In the piezo ceramic rear face where 

backing is attached, small slot is done to facilitate the process. 

3. Housing introduction

ABS Housing presents an internal grate. Block compound by ceramic plus backing 

is fix to the grate leaving 3 mm space at the top. This space will be filled with 

EL217C as a matching layer. 

4. Matching filling

Top housing face is collocated towards the table and EL217C mix is verted until the 

3 mm are filled.  

5. Elements encapsulation

At the same time matching layer is obtained, all the elements transducer are also 

covered with EL217C mix until achieve a proper encapsulation. 

6. Final Transducer
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The full transducer set-up is drying for two days and final results is obtained. 

5.5. TRANSDUCER CHARACTERIZATION 

In this section, we proceed to the two prototypes characterization. In this characterization, 

the four parameters obtained in the simulation are measured: Electrical admittance, 

projector and receiver sensitivity, TVR and OCV respectively, and directivity at frequency 

of interest. 

Following sections describe the experimental set-up and the methodology used to obtain 

each parameter. 

Finally, results obtained for each transducer will be presented. These results will be used 

in section 4.8 for the complete transducer simulation model validation in water. 

 MATERIALS AND METHODS 

Methodology of measurement is divided into two blocks. The method used for the 

electrical measurement and the method used for the acoustic characterization. Both are 

described in detail below. 

5.5.1.1. ELECTRICAL ADMITTANCE MEASUREMENT. 

Measurement procedure for obtaining the electric admittance is the same as described in 

the active element and passive materials characterization. 
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In this case, measurements have been made in both air and water. Measuring equipment 

and configuration remain the same. Unique variation is the transmission medium. Figure 

4.20 shows the transducer arrangement detail according to the loading medium. 

Figure 5.20. – Transducer prototypes placement for electrical admittance 

measurements. Air and water measurements respectively. 

5.5.1.2. SENSITIVITY AND DIRECTIVITY MEASUREMENTS 

Directivity and Sensitivity measurements for single nude transducers have been 

performed in a calibration tank (10 X 5 X 1.5 m³) at the UPV facilities at the Gandia 

Harbour. A picture of the positioning system is shown in figure 5.21. 



Ultrasonic Transducer design: Feasibility as parametric echosounder in shallow water 

156 

Figure 5.21. – 3D AutoCAD diagram for UPV positioning system. 

Six axis are available with three movement directions (X, Y and Z). Another motor is 

available with PAN movement with 360° rotation.  

The tank was filled with fresh water at temperature of approximately 18 Celsius degree 

yielding a sound speed of c=1475m·s-1 calculated from Coopens equation (2. 16).  

A low-cost but reliable system is implemented for transducer calibration. This calibration 

system is based in a Red Pitaya device (redpitaya n.d.), an open-source project based in a 

FPGA card that includes 2x 125MS/s RF input and 2x 125MS/s RF outputs, with 50MHz 

analogue bandwidth. The default software of the FPGA of the Red Pitaya includes 

oscilloscope, spectrum analyser, signal generator, LCR meter, and 50MHz 2x2 MIMO 

PID controller. It can be re-programmed to become other devices, as all the IO ports are  
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connected to a common FPGA. There are also auxiliary ADC (250kS/s) and digital IO. It 

has three USB 2.0 ports, Wi-Fi, Ethernet connector. Internally, it uses Linux as operating 

system. Before measurement its emission and acquisition properties have been calibrated. 

A computer controlled a Transmitter/Receiver USB TCP/IP card generate a 1V peak (20 

cycles) sine burst. The necessary high voltage for nude transducer excitation will be 

provided by a linear 55dB (gain) RF AMPLIFIER ENI 1040L.With him 12 Vpeak are 

transmitted.  At a distance of 1m, a TC4034 RESON hydrophone is used to detect the 

signal. The recoding the signal and it is digitized using the Transmitter/Receiver USB 

TCP/IP card input channel. Measurements were made over the frequency range 40 kHz 

to 160 kHz. Figure 5.22 shown the configuration. 

 

Figure 5.22. – Transducer and hydrophone measurement disposition. 3D AutoCAD 

representation and real image respectively. 
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Methodology for sensitivity measurements setup have been performance following the 

next configuration. On-axis transducer measurements have been taken with distance 

between the hydrophone and the device active face of 1m.  

Frequency range is set up as in the electrical admittance: From 40 kHz to 160 kHz. 

Both receiving and projector sensitivity have been calculated using own-implemented 

scripts in MATLAB following the equation (2.5) 

To apply such relationship the sensitivities as projector or as receiver of the reference 

hydrophone should be well known. 

In case of Projector Sensitivity, TVR, (µPa/V), a sinusoidal pulse with a particular 

amplitude (12 Vpeak) is sent by the transducer and the signal received by the hydrophone 

is recorded and analysed (Figure 5.23). Based on the hydrophone receiving sensitivity and 

the recorded signal, the received pressure at the active face of the reference hydrophone 

is obtained. Thus, applying the inverse of equation (3.20) with range compensation 𝑝𝑝0 is 

calculated and the sensitivity could be then obtain with the knowledge of the applied 

Voltage. 
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Figure 5.23. – Procedure for the Projector Sensitivity measurement 

For the Receiving Sensitivity, OCV, (V/µPa), the reference hydrophone works as 

transmitter and the voltage at the terminals of the transducer (which is now the receiver) 

is recorded (Figure 5.24). The equation 3.20 is applied directly with the correct range 

compensation and the receiving sensitivity is finally calculated.  

 

 

 

 

 

 

 

Figure 5.24. – Procedure for the Receiving Sensitivity measurement 

Directivity measurements present the following configuration. For transducer sensitivity, 

on-axis transducer measurements have been taken with distance between the hydrophone 
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and the device active face of 1m. In this case, transducer is fix to a rotation motor. Only 

one frequency is measured at time. Transducer move for 0° to 180° in steps of 1.8°. Signal 

is detected for the hydrophone and by MATLAB post-processing signal amplitude for 

each degree is saved. The result is a diagram plot for this frequency depending on the 

angle. 

 

 

 

 

 

 

Figure 5.25. – Procedure for the Directivity measurements
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 RESULTS 

Results obtained for the two prototypes are compared. Figure 5.26 shows the electric 

admittance. As shown for Prototype 1, with PIC255 ceramic, it presents a radial mode 

stronger than prototype 2 while the frequency corresponding to the thickness mode 

appears to little bit shifted. The value in prototype 1 is 124 kHz while the 2 is 119 kHz.  

On the other hand quality factor (Q) for both prototypes are 23.52 and 17.39 respectively. 

This agrees with the higher bandwidth show for prototype 2. 

Figure 5.26. – Admittance measurement comparison between prototype 1 and 

prototype 2. 
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As for the projector and receiver sensitivity, it is observed that the prototype 2 presents 

greater sensitivity in the resonance frequency as well as bandwidth. On the other hand, 

prototype 1 has a higher sensitivity at lower frequency (radial mode), than can be useful 

for parametric applications, as will be discussed in chapter five.(Figure 4.27 and 4.28) 

Figure 5.27. – TVR measurement comparison between prototype 1 and prototype 2. 

 

Figure 5.28. – OCV measurement comparison between prototype 1 and prototype 2 
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TVR and OCV values for both prototypes are collected in Table 5.20 at the frequency of 

interest, 120 kHz 

Table 5.20. TVR and OCV values at 120 kHz for both prototypes. 

Results shown that prototype 2 with PZ37 arrives to the projector sensitivity requirements 

(150dB) while prototype 1 with Pic255 ceramic presents -3dB less than the desirable 

value. In terms of receiver sensitivity this difference increase up to almost 6dB. 

Figure 5.29. –Directivity measurement comparison between prototype 1 and prototype 2 at resonance 

frequency. 

Finally, it is noteworthy, in terms of directivity (Figure 5.29), both transducers have a 

similar beam aperture, 17º for prototype 1 and 19º for prototype 2. However side lobe 

 TVR (dB re 1uPa/V) OCV (dB re 1V/uPa) 

FREQUENCY 

(kHz) 

PROTOTYPE 1:  

PIC255 

PROTOTYPE 2:  

PZ37 

PROTOTYPE 1: 

PIC255 

PROTOTYPE 

2: PZ37 

120 146.7 152.1 -193.9 -186.6 
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values, reach higher values in prototype 1, with about -10dB, compared to the -18dB of 

prototype 2 with pz37. 

5.6. FEM MODELLING VALIDATION AND DESIGN OPTIONS 

Results obtained experimentally in the two prototypes characterization and FEM 

simulation model for the full transducer in water are compared. 

The objective is to verify if the behaviour estimation of numerical model approaches the 

real behaviour. 

 On the other hand, once validated, it is used as a design tool without the need to 

manufacture more prototypes. Various modifications and their comparison, with the 

current model, will be presented. 

 

 FEM MODELLING VALIDATION 

Numerical models are nowadays a very active tool in transducer design. The reliability of   

the results extracted from them depends on many factors (correct description of the 

materials, meshing, etc.) 

In this case, due to the approximation of the acoustic properties of some materials, 

idealizations in the assembly and model simplifications, a comparison is made with 

experimental measurements to proceed to the validation of the method. 

The comparisons of the two prototypes are shown below. 
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5.6.1.1. PROTOTYPE 1: PIC255 

Four parameters obtained from the simulation are compared with their corresponding 
measurements 

Figure 5.30. –Prototype 1: Electrical admittance comparison between FEM simulation model and 
measurement 

Figure 5.31. – Prototype 1: Projector sensitivity comparison between FEM simulation model and 
measurement 
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Figure 5.32. – Prototype 1: Receiver sensitivity comparison between FEM simulation model 

and measurement. 

Figure 5.33. – Prototype 1: Directivity comparison between measurement and FEM simulation 

model respectively. 
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Simulation model behaviour follows the trend of experimental measurements with 

deviation at 120 kHz, not larger than 0.8%. 

The vibration modes are clearly represented although the simulated values always 

overestimate the real value. 
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5.6.1.2. PROTOTYPE 2: PZ37 

Same procedure is performed like with prototype 1. 

Figure 5.34. – Prototype 2: Electrical admittance comparison between FEM simulation model and 
measurement. 

 
 

 
 

 

 

 

 

 

 

Figure 5.35. – Prototype 2: Projector sensitivity comparison between FEM simulation model and 

measurement 
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Figure 5.36. – Prototype 2: Receiver sensitivity comparison between FEM simulation model and 

measurement 

Figure 5.37. – Prototype 2: Directivity comparison between measurement and FEM simulation 

model respectively. 

Like in prototype 1, simulation trend follows the experimental results although deviation 

reach 3% in the TVR results and 6% in OCV results. 
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The conclusions drawn from the results are that the simulation models performed are valid 

to be used as a design tool. 

Although variables values under study are overestimated the behaviour trend is reliable 

and they contribute to give information of great interest. 

 

 DESIGN IMPROVEMENT 

Two new design are presented in order to improve the parameters of interest. These 

alternative configurations involve matching and backing modification. In the former, is 

introduced Eccosorb MF114 as a matching layer (Aanes 2013). This material has an 

acoustic impedance closer to the ideal, for proper energy transfer, and bigger attenuation 

than the current material (EL217C). 

On the other hand, the latter introduce a backing modification by changing Cork TD1049 

for Insulcast 501 (Mansoura et al. 2012; Pedro Acevedo and Israel Sánchez Domínguez 

2015). The main different characteristics are: 

- Insulcast 501 is an elastic material instead of porous with an acoustic impedance 

higher than TD1049 and closer to the piezoelectric ceramic acoustic impedance. 

- Material attenuation is almost three times lower than cork 

Table 5.21 collect the materials acoustic properties. 
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Table 5.21. Insulcast 501 and Eccosorb MF114 acoustic material properties 

TVR and OCV results from simulation model are represented graphically in Figures 5.38 

and 5.39.Frequency operation values are summarized in table 5.22 and 5.23 

 

Figure 5.38. –Projector sensitivity comparison between three FEM simulation models with different 

design parameters modification 

Material Insulcast 501 Eccosorb MF114 

Densidad [kg/m3] 3860 2850 

vL[m/s] 1975 2250 

VS[m/s] 1055 1000 

Z[MRayls] 7.26 6.4 

Q 127.3 20 

α[dB/m] 0.0138 72.76 
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Table 5.22. TVR values at 120 kHz for the four FEM simulation models. 

 

Figure 5.39. –Receiver sensitivity comparison between three FEM simulation models 

with different design parameters modification 

 

 

 

 

 

 

 

TVR (dB re 1uPa/V)  

FREQ(kHz) NORMAL 

 

MACTHING 

 

 

BACKING 

 120 147.4 149.4 146.8 
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Table 5.23. TVR values at 120 kHz for the four FEM simulation models. 

From these it is observed that by modifying the matching layer, at the operation frequency, 

sensitivity increase in 2dB in both, emission and reception and presents a higher 

bandwidth, obtaining a stable value range from 120 kHz to 150 kHz. 

On the other hand, when modifying the backing, it is observed that although a greater 

transfer of energy reflected in greater bandwidth is achieved, transmission and reception 

efficiency are lower 

5.7. CONCLUSIONS  

This chapter presents an ultrasonic transducer design for fisheries acoustics application, 

especially for fish biomass estimation and species characterization, with certain acoustic 

properties establish. These are: 120 kHz operation frequency, between 15° and 20° 

Beamwidth and a Projector sensitivity value, at operation frequency, not lower than 150 

dB re 1uPa /V. 

For its development, is proceeded to the acoustic characterization of all the materials 

involved in the design. Simultaneously, a finite element simulation model is created to 

serve as a future design tool, with which to estimate full transducer behaviour in water. 

 

 

OCV (dB re 1V/uPa)  

FREQ(kHz) NORMAL 

 

MATCHING 

 

BACKING 

 120 -193 -191 -193.7 
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Once materials properties are extracted, two prototypes are built with the most optimal 

configuration for each element. Both prototypes have the same characteristics except for 

the active element. Piezoelectric ceramics, PIC255 and PZ37, are the active elements 

used. Prototypes characterization shows that prototype nº2, with PZ37 piezoelectric 

ceramic, meets the specified requirements in its entirety, while prototype nº1, with PIC255 

ceramic, presents in terms of projector sensitivity -3dB less than the set value. 

As far as the simulation model is concerned, it is validated with the comparison made with 

the experimental measurements. In the adjustment of both prototypes, it is observed that 

prototype nº1 has better agreement due to the lower dispersion of the piezoelectric 

coefficients (PIC255). 

Therefore, this numerical model is chosen to introduce various improvement design 

options. From this study, it is observed that materials selection with acoustic properties 

more adequate to the general design rules, offers transducers with greater bandwidth and 

more stable sensibilities all over the frequency range 
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Throughout this thesis has been introduced different concepts necessary for ultrasonic 

transducer design and its use in underwater acoustics. In this chapter, will be studied the 

capability of the designed prototypes as part of a parametric scientific echosounder for 

shallow water measurements. In this section, a previous study, based in numerical 

simulation, is presented as a tool to establish some measurements parameters. In next 

point, materials and methods are described in detail. Finally, results and simulation 

comparison are presented and in finally, feasibility of their use in different applications 

(aquaculture, fisheries, etc.) is presented. 

 
Parametric echosounding in 

shallow water 
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6.1. PARAMETRIC ARRAY: PRELIMINARY STUDY 

Before proceeding with experimental measurements, a 2D simulation has been performed 

with K-Wave Toolbox, to observe in which range of input pressures starts the parametric 

generation. In addition, field obtained at different distances is also evaluated in order to 

effectively see that parametric effect is a power effect that occurs in the medium. 

For this purpose, a 19 mm radius  flat piston is simulated, same radius than designed 

prototypes. First a linear simulation, at 120kHz, is realized in order to compare with the 

prototypes characterizatión and validate the simulation. Figure 6.1 presents the directivity 

comparison between simulation and experimental measurements for both prototypes  at 

120kHz.    

Figure 6.1. Directivity comparison between K-wave simulation and experimental 

measurements at 120 kHz 
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Through the results, it is observed that both, simulation and experimental measurements 

have good agreement. Slightly discrepancy is presented in prototype 1, while prototype 2 

fits perfectly until 20º. Sidelobe level in simulation overestimate the real value.  

 

Once model is validated, input signal is changed to generate parametric effect. A 

Byfrequency signal,of 90 and 150 kHz that will generate a difference harmonic of 60 kHz 

and 240kHz sum harmonic is choosen following the experimental setup. This signal is 

evaluated at different pressure ranges, from 50000 Pa to 1MPa, and power spectral density 

(PSD) is obtained for different distances (1cm, 40cm ... up to 1.61m). 

In Figure 6.2, results are presented for each simulation. Through PSD, it is obtained the 

energy contained in each spectral component. In the graphics it is observed, that in all 

pressure levels there is parametric generation. On the other hand, higher harmonics are 

clearly observed in each level, however, difference harmonic for a pressure of 50000 Pa 

presents very little level being seen clearly around the 250000Pa. 
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Figure 6.2. Byfrequency K-Wave simulation for 19mm radius transducer at 

different distances. a) Field generated with an input pressure of 50000 Pa. b) 

Field generated with an input pressure of 100000 Pa. c) Field generated with 

an input pressure of 250000 Pa. d) Field generated with an input pressure of 

1MPa. 

c) 

a) b) 

d) 
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In figure 6.3 this harmonic generation is observed in detail at a certain distance (1.61m). 

As pressure amplitude increases, primary frequencies energy is transferred to the different 

harmonics. From  100,000 Pa, is when it is possible to discriminate difference and sum 

harmonic, that are those that interest in this study. 

Finally, if return to Figure 6.2 , it can be seen  that this phenomenon, is an effect that 

occurs in the medium since, at 1 cm from the source, for all cases there is no parametric 

generation and begins to observe from the 40 cm. 

 

Figure 6.3. Byfrequency K-Wave simulation for a 19mm radius 

transducer with different input pressure level at distance of 

1.61m. 
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6.2. MATERIALS AND METHODS 

In this section, we explain the used materials and experimental measurements carried out 

to characterize the non-linear behaviour of the two designed prototypes. For the study of 

parametric efficiency generation, three different measurement procedures are proposed. 

In addition, one more commercial transducers is evaluated, in order to investigate the 

influence of higher central frequency and side lobe relevance. 

 

 TRANSDUCER UNDER STUDY 

Transducers under study are the two designed prototypes in Chapter 5. Both prototypes, 

work at 120 kHz and the only difference between them is the active element material. 

Prototype 1 has a PIC255 ceramic (PI Ceramic GmbH n.d.) With dimensions of 38X15.02 

mm, while prototype 2 has a PZ37 ceramic, dimensions 38X12.25mm (Ferroperm n.d.). 

From characterization obtained in section 5.5.2 , it is established that the beam aperture at 

-3dB is 17º and 19º respectively, with side lobes of -10dB respect to the main lobe for 

prototype 1 and -17dB for prototype 2.  In addition to these transducers, in this chapter, 

as mentioned earlier, one more transducers from AIRMAR (AIRMAR technolgy) will be 

evaluated. This is: 
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• AIRMAR P19:  

It works with an operation frequency greater than the 

prototypes, 200kHZ.Beam aperture is similar, around 

15º, and it presents a side level lobe of -12dB. With this 

transducer characterization, it is tried to evaluate if for a 

similar aperture, with primary frequencies greater, we 

improve parametric generation efficiency. 

 

From transmitting voltage response graphic of each transducer (Figure 6.3) and table (6.1) 

different guidelines can be obtained to take into account when selecting parametric 

frequencies.  

 

 

Tabla 6.1.TVR values  at thickness and radial frequency for each Transducer. 

 

 

 

 

 

 PROTOTYPE 1 PROTOTYPE 2 

  

AIRMAR P19 

TVR ( 120kHz/200kHz) 146,2 152,1 156,9 
TVR (50kHz) 142,1 136,6 119,3 

120/200kHz vs 50kHz ( dB ) 4,1 15,5 37,6 
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Figure 6.4. Transmitting Voltage Response as function of frequency for each transducer. Prototype 1, 

prototype 2 and Airmar P19 respectively. 

a) 

b

c) 
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If vibrational modes are observed, two prototypes have their radial resonance frequency 

around 50 kHz. However, relationship between the resonance frequency in the thickness 

mode and the radial mode is quite different. The first prototype (PIC255) presents a 

difference level of only 4dB, while in the second, difference arose to 15dB. In both cases, 

the frequency in the thickness mode presents greater amplitude.  

 EXPERIMENTAL SET-UP 

Experimental set-up is the same as that introduced in transducer characterization (Section 

5.5) inside of sensibility and directivity measurements (5.5.1.2). Methodology employed 

is different and it will be explain following. 

 METHODOLOGY 

Three measurement procedures are used to characterize parametric generation in each 

transducer. The explanation is below. 

6.2.3.1. AMPLITUDE IN FUNCTION OF VOLTAGE MEASUREMENT 

Parametric effect is a non-linear phenomenon that occurs in the medium. As it was shown 

in Section 5.3, with K-wave simulations, from certain input pressure level in the 

transmitter transducer is when the harmonic generation appear. To check measurements 

and theory agree, amplitude as function of voltage measurements are done.  

On-axis transducer measurements are taken with distance between hydrophone and the 

device active face of 1.5m. A Byfrequency modulated signal is measured for 5 different 

voltage values and for each of them, pressure value for each spectral component is 

obtained. (Figure 6.5). 
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Figure 6.5. Amplitude as function of voltage measurement esqueme 

It must be ensured that all transducers under study transmit the same pressure in the 

medium for each voltage. How impedance differences exists between them, voltage 

applied will be different, to make sure measurements are comparable, the next approach 

is made. 

Measurements are first realized with Prototype 2. Arbitrary voltage is chosen. Once 

receive pressure is record by the hydrophone, pressure is linearly backward retro-

propagated using Piston equation. A pressure approximation in the front face transducer 

(P0) is obtain and then, it is scaled for the rest of amplitude levels.  

Transmitting voltage response, at the interest frequencies and the calculated pressure, will 

give the necessary voltage for the rest of transducers to obtain similar pressure in the 

medium, making measurements comparable.  

Analysis methodology to obtain amplitude pressure for each spectral component in this 

measurement is applied to all procedures explain in this section. It is made with MATLAB 

software and steps in the post processing are the next: 
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1. Cut the signal (To avoid undesirable reflections) 

2. Signal filtering in every interest frequency band. Filter used is an infinite impulse 

response (IIR), particularly, a Butterworth. These filters are made with the 

minimum order possible. Analysis have been done with three different  band 

frequencies: 2kHz,4kHz and 10kHz, 

3. Amplitude for each signal obtained from filtering is calculated. This amplitude 

is obtain through the mean value of the absolute Hilbert envelope. 

4. Amplitude obtained and Hydrophone receiver sensitivity are used to give the 

pressure at each spectral component. 

 

6.2.3.2. DIRECTIVITY MEASUREMENT 

To verify that harmonics generated by the parametric array have a similar radiation pattern 

than primary frequencies, directivity measurements are realized. On-axis transducer 

measurements have been taken with distance between the hydrophone and the device 

active face of 1.5m. In this case, transducer is fix to a rotation motor. A Byfrequency 

signal is transmitted. Transducer move for -81° to 81° in steps of 1.8°. Signal is detected 

for the hydrophone and by the post-processing explain in the last point, signal amplitude 
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for each spectral component and degree is obtained. The result is a diagram plot for this 

frequency depending on the angle. 

Figure 6.6. Directivity measurement esqueme. 

 

6.2.3.3. AMPLITUDE IN FUNCTION OF DISTANCE MEASUREMENT 

Finally, amplitude decay of the primary and secondary waves is measured. A Byfrequency 

signal is transmitted with a constant amplitude and signal is recorded by the hydrophone 

in different distances. (Figure 6.7) 
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Figure 6.7. Amplitude as function of distance measurement esqueme. 

 MEASUREMENT PARAMETERS 

6.2.4.1. PARAMETRIC FREQUENCIES SELECTION 

Parametric difference frequencies chosen are 50 and 60 kHz. The first of them has been 

chosen to place us in the radial mode present in both prototypes (Figure 6.4) and to observe 

the effects that causes. 

The second one, 60 kHz, has been chosen to avoid the radial mode but remain in a 

frequency range separate from the resonance frequency in thickness mode. 

Byfrequency signals are generated to obtain these frequencies. These signals have 

frequencies equidistant from transducer operation frequency. For the two prototypes 

signals will be composed by: 
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- 95 kHz and 145 kHz to 50 kHz 

- 90 kHz and 150 kHz for 60 kHz 

In the case of Airmar P19, with operation frequency of 200 kHz, to obtain the same 

parametric signals, combination of frequencies will be as follows: 

- 175 kHz and 225 kHz for 50kHz 

- 170 kHz and 230 kHz for 60 kHz. 

 

In table (6.2) ratio between primary beam and 60 kHz frequency has been added in terms 

of sensitivity. 

Tabla 6.2.TVR values  and difference levels relation for each transducer. 

In both cases, sum frequency corresponds to 240 kHz. This frequency is going to be also 

evaluated in the results. 

 

 

 

 PROTOTYPE 1 PROTOTYPE 2 

  

AIRMAR 

 TVR ( 120kHz/200kHz) 146,2 152,1 156,9 
TVR (50kHz) 142,1 136,6 119,3 

TVR (60kHz) 134,9 131,7 123,8 

120/200kHz vs 50kHz ( dB ) 4,1 15,5 37,6 

120/200kHz vs 60kHz( dB) 11,3 20,4 33,1 
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6.2.4.2. AMPLITUDE SIGNAL 

All transducers have been measured emitting the same pressure in the medium. Pressures 

chosen are as follows: 

 

 

 

 

 

Tabla 6.3.Medium pressure amplitude selected. 

 

6.2.4.3. SIGNAL LENGTH 

Before starting to measure, a linear study of the signal optimal length is performed. 

Three measurements are made at different lengths until the transfer of energy to other 

vibrational modes than the transducer operation frequency is minimized. 

 Medium Pressure (Pa) 

P1 14960 
P2 29920 

P3 74800 

P4 149600 

P5 224400 

P6 374000 
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Below is a graphic of power spectral density as a function of frequency for three signal 

lengths (20, 60 and 80 cycles). 

 

Figure 6.8. Power spectral density as function of frequency depending on signal length 

From these results, an 80 cycle’s signal length is chosen to carry out the parametric 

measurements. 60 cycles is dismiss to show some noise around 400 kHz. 

6.3. RESULTS 

In this section is presented the most significant results obtained from experimental 

measurements. These are divided into three points that correspond to the different 

measurement methodologies carried out. In addition, an extra point is added to compare 

experimental measurements and results obtained in the numerical simulation model. 
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 PARAMETRIC AMPLITUDE IN FUNCTION OF VOLTAGE  

As mentioned in the amplitude signal section (6.2.4.2), all transducers are measured at the 

same pressure level. However, differences in sensitivity between them, make the voltage 

required for each pressure different on each transducer. Table 6.4 below presents the peak 

voltage values required to obtain the selected input pressures for each transducer. 

Table 6.4. Peak voltage transducer required as function of input pressure 

 

Next figures show primary beam behaviour, which includes both primary frequencies, and 

the beams that correspond to difference and sum harmonics as a function of the voltage 

for each transducers. 

Byfrequency signal of 95 and 145 kHz is represented for both prototypes and 175 and 225 

kHz signal for Airmar P19. Results are the following: 

Input 

Pressure (Pa) 

PROTOTYPE 1 

(Vpeak) 

PROTOTYPE 2 

(Vpeak) 

AIRMAR P19 

(Vpeak) 

14960 21 24 11 
29920 43 28 23 

74800 107 70 57 

149600 215 140 114 

224400 322 210 171 

374000 538 350 286 
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Figure 6.9.Normalized pressure of primary and parametric beam as function of voltage in prototype 1 

Prototype 1 presents a linear behaviour in all frequencies in the studied voltage range   as 

it can be observed in the realized fits.  Sum frequency at 240 kHz shows the same 

tendency. 

Figure 6.10. .Normalized pressure of primary and parametric beam as function of voltage in prototype2 
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Prototype 2 is closer to theory(Hamilton et al. 2008) obtaining a nonlinear adjustment for 

both parametric harmonics, presenting a linear behaviour in the primary frequency. 

Figure 6.11. .Normalized pressure of primary and parametric beam as function of voltage in transducer 

Airmar P19 and Airmar nºX respectively 

It can be pointed out that for Airmar P19, with a primary frequency greater than 

prototypes, harmonic beams fit perfectly to the behaviour predicted by theory(Hamilton 

et al. 2008).   

 DIRECTIVITY MEASUREMENTS RESULTS 

In this section each transducer is evaluated for the two byfrequency signals measured. 

Figure 6.11 shows results for prototype 1. It can be observed that for signal (90-150 kHz) 

directivity results for difference harmonic (60 kHz) and sum harmonic (240 kHz), both 

spectral components, are very close compared with the transducer operation frequency 

(120 kHz). However, as is suspected in the amplitude study, for 95 145 kHz byfrequency 

signal, which has as difference frequency of 50 kHz and 240 kHz of sum harmonic, 
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parametric generation is not achieved. If we look the admittance for prototype 1 (Figure 

5.20) Radial mode is stronger than thickness mode, this  

causes the parametric generation to be masked by the linear behaviour of transducer. 

Figure 6.12. Directivity beam pattern for 90-150 kHz Byfrequency signal and 95-145 kHz Byfrequency 

signal respectively for prototype 1. Linear resonance frequency, difference frequency and sum frequency 

are represented 



 6. Parametric echosounding in shallow water

 
195 

As for prototype 2 in both cases, parametric generation is observed although harmonics 

tend to widen, not observing a reduction of the side lobes in relation to the main lobe. This 

can be due to the transducer aperture and the piezoelectric ceramic efficiency mentioned 

in Chapter 5.  These ceramics presents a dependency between the vibrational modes. 

Although result is optimal for main lobe you have to take this into account. 

Figure 6.13. Directivity beam pattern for 90-150 kHz Byfrequency signal and 95-145 kHz Byfrequency 

signal respectively for prototype 2. Linear resonance frequency, difference frequency and sum frequency 

are represented. 
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Figure 6.14. Directivity beam pattern for 175-225 kHz Byfrequency signal for Airmar P19. Linear 
resonance frequency, difference frequency and sum frequency are represented. 

Figure 6.14 shows results for Airmar P19. Radiation pattern for the sum and difference 

harmonic present a reduction of side lobe level with respect to the main lobe, widening a 

little more in the difference harmonic. 

The second one, difference frequency obtained (50 KHz) improves behaviour regarding 

prototype 1 and 2. Table 6.5 collects the -3dB beam width comparison between 

frequencies for each transducer 
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Table 6.5. -3dB beamwidth at each interesting frequency for each transducer 

Finally, Figure 6.15 shows an example, for all transducers, the representation for primary 

frequencies and difference frequency in the case of 90-150 kHz byfrequency signal 

(prototypes) or 175-225 kHz byfrequency signal (Airmar P19). In the two first cases 

difference beam is formed between the regions of the two primary beam, otherwise, in 

Airmar P19, the difference beam is narrower than both primary beams  

 

 

-3dB Beamwidth (°) PROTOTYPE 1 PROTOTYPE 2 ARMAR P19 

f120kHz/200khz 17 19 15 

f60kHz 19 18 17 

f240kHz/400kHz 18 21 13 
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a) 

b) 
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Figure 6.15. Directivity beam pattern for 90-150 kHz Byfrequency signal for all transducers. Primaries 

and difference frequency are represented. a) Prototype1: Pic255; b) Prototype 2:Pz37; c) Airmar P19. 

If we look at the beamwidth of the parametric signals, we observe that for 60 kHz signals, 

in both prototypes, parametric beam tends to resemble more to the lower primary 

frequency. However, for AIRMAR P19, this tends to be reduced even more than the 

higher range frequency. In order to analyse if the weight of each frequency influences the 

parametric directivity, a simulation with different weights in the amplitude of modulation 

and the effect that they produce in the directivities is introduced in section 6.3.4. 

 AMPLITUDE AS FUNCTION OF DISTANCE RESULTS 

In this section, beam propagation as function of distance is shown. Normalized pressure 

as function of distance is represented for Primary and difference beam. Prototype 2 and 

Airmar P19 have been selected to represent the results (Figure 6.16 and 6.17).  It is 

observed that, in both cases, difference parametric beam is g taking longer to be attenuated 

compared to primary beam. This is due to the fact that this frequency is generated in the 

medium and moreover it has a lower frequency than the primary beam being the 

c)
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absorption also lower. Comparing both transducer, Airmar P19 has a stronger parametric 

component than prototype 2 for the same parametric difference frequency. This difference 

can be for the primary frequency range, due to Airmar P19 works at higher frequencies or 

just to the mechanical active element efficiency. 

Figure 6.16. Prototype 2: Normalized pressure as function of distance for a Byfrequency signal of 95-
145 kHz, having a parametric difference frequency of 50 kHzFigure 6.17. Airmar P19: Normalized 
pressure as function of distance for a Byfrequency signal of 175-225 kHz, having a parametric difference 
frequency of 50 kHz 



 6. Parametric echosounding in shallow water

 
201 

 

 

 EXPERIMENTAL MEASUREMENTS VS NUMERICAL SIMULATION 

In order to perform the comparison between experimental measurements and simulation, 

as well as, to study the feasibility of the transducers, explained in the following section, 

pressure levels  of primary frequencies, and both harmonics, sum and difference, are 

obtained until reaching the maximum voltage allowed by the measuring system. This 

maximum voltage equals a maximum pressure on the transducer face of approximately 1 

MPa. Table 6.6 collects the sound pressure level obtained at 1.5m from the source at 

maximum pressure. 

           

  Table 6.6. Sound Pressure Level at each interesting frequency for each transducer. 

 

With this data we proceed to simulate 60 kHz parametric beam, for 1.9cm transducer 

radius, obtaining the results shown in Figure 6.18 and 6.19. Figure 6.18 shows the 

difference-beam and the primary frequencies directivity. As shown in Figure 6.15, in the 

prototypes measurements, the 60 kHz parametric beam fits between the two primary 

beams. 

LPreceived (dB) PROTOTYPE 

  

PROTOTYPE 2  AIRMAR P19  

F90-150kHz/170-230khz 173.3 173,8 178.8 

f60kHz 141.4 141 152 

f240kHz/400kHz 143.3 137.4 151.7 
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Figure 6.18.K-wave: Directivity for primary and difference frequency at 1MPa as input pressure. 

Figure 6.19 shows the difference frequency beam comparison between simulation and 

prototype measurements. 

Figure 6.19. Difference frequency directivity comparison. Prototypes experimental measurement Vs K-

wave simulation 



 6. Parametric echosounding in shallow water

 
203 

 

With the same input pressure (1MPa), a pressure level study, of difference frequency, has 

been performed for different transducer apertures. Figure 6.20 shows the pressure levels 

obtained for the harmonic difference as a function of the radius. At higher apertures, more 

directional beams, pressure level increases considerably. This is due to the energy is more 

concentrated along the axis of the transducer and there is less beam divergence. 

Figure 6.20. Source pressure level at 1.5m for different transducer radius with 1MPa as input pressure 

 

Table 6.7 shows the experimental values of each prototype and simulation. It is observed 

that the simulation tends to overestimate experimental results, more especially in the 

primary beam. 

 

 

 



Ultrasonic Transducer design: Feasibility as parametric echosounder in shallow water 

 

 

204 

 

 

 

Table 6.7. Sound Pressure Level at each interesting frequency for each prototype VS 

simulation. 

Finally, a directivity study has been performed, depending on the weight of each primary 

frequency in the parametric generation (Figure 6.21). It is observed that a change in the 

amplitudes in the modulation can affect the beam width. When working at frequencies too 

far apart from the resonant frequency of the transducer, each can have different 

efficiencies that can modify the final parametric beam obtained. In this case, comparing 

experimental and simulated results, it can be observed that the parametric frequencies, in 

the case of prototypes, tend to be more influenced by the lower frequency corresponding 

to 90 kHz. 

LPreceived (dB) PROTOTYPE 

  

PROTOTYPE 2  SIMULATION  

F90-150kHz/170-230khz 173.3 173,8 179.5 

f60kHz 141.4 141 142.4 

f240kHz/400kHz 143.3 137.4 ---- 
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Figure 6.21. Difference frequency beam aperture in function of weighing primaries frequencies 

6.4. TRANSDUCER VIABILITY 

After carrying out the entire measurement campaign and analysing the results obtained, it 

is necessary to define a range of applicability for the transducers and, therefore, for the 

parametric echo sounder of which they would be part. 

 

During the development of this thesis, has been defined fisheries acoustics as the main 

application. However, within it, different characteristics must be established to 

contextualize the specific work to be devoted. These characteristics are for example the 

definition of marine species under study, measurement medium conditions, distance to the 

target, and so on. 

 

As mentioned in the introduction, aquaculture industry has increased its production in 

recent years due to the need to provide sustainable fisheries cages. The use of several 

frequencies, giving information of TS frequency dependence different (2.1.1), for the 

same species, which allows the classification of these, being one more tool for a 

sustainable fishing development. 



Ultrasonic Transducer design: Feasibility as parametric echosounder in shallow water 

 

 

206 

 

Multifrequency transducers can be control tools within fish farms where more than one 

species can be present in the same cage to investigate beam extinction due to high 

densities, or research tools to extrapolate methods in the open sea. 

 

In the Mediterranean Sea, three species are the main protagonists within the marine farms. 

These are: sea bream (Sparatus aurata), seabrass (Dicentrarchus labrax) and more recently 

Bluefin tuna (Thunnus Thynnus). 

 

Several studies have been carried out to define Target Strength (TS) of these species(Puig 

et al. 2012; Soliveres 2009). In them, operation frequencies oscillate between 120 kHz 

and 200 kHz, at distances no higher than 30 meters in depth, which would be called 

shallow water. This section presents a practical case, defining the minimum detection 

threshold (DT) that can discern our device electronically.  In this case, it should be at least 

12 dB over the noise level. Using sonar equation (3.6) the process is as follows: From a 

determined Source Level (SL), in this case, pressure level of the chosen parametric 

frequency, is calculated, for different TS (different species) and for different distances, 

the minimum echo level that would arrive at  the echo sounder with a given noise level 

(NL).  

This process is carried out with the two prototypes designed taking into account that the 

environmental conditions are those of the Mediterranean Sea and are as follows: 
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Table 6.8. Mediterranean Sea environmental conditions. 

In addition to these conditions, we must also know the receiver sensitivities (OCV) for 

the selected frequencies (f2-f1 and f1 + f2) and the medium absorption for each one of them 

(table 6.9) 

 

 

  

Table 6.9. Medium absorption and receiver sensitivity for each prototype at 

different frequencies 

On the other hand, according to the literature, sea bream (Soliveres 2015) usually has a 

TS value that varies between -50 to -40 dB according to weight and size. In the case of sea 

bass, the values are slightly higher, remaining between -40 and -30 dB. For  Bluefin tuna 

can rise to -28, in large targets (Puig et al. 2012). 

To cover the full range of values explained above, TS has been defined, from -50 to -25 

dB in steps of 5 dB. All of them, are analysed in 5 different distances (1.5, 5, 10, 15 and 

30 meters). Source Level values are split in two for each transducer: 141 dB for 60 kHz  

 Mediterranean Sea 

 S(ppt) 35  

Tª (°) 18 

ph 8 

NL(dB) 40 

 PROTOTYPE 1 PROTOTYPE 2 

 60 kHz 240kHz 60kHz 240kHz 

α(Np/m) 0.0016 0.0092 0.0016 0.0092 

OCV (dB re 1V/uP) -188.5 -195 -195.5 -195 
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and 137.8dB for 240 kHz dB in prototype 1 and 141.4dB for 60 kHz and 143.2dB for 240 

kHz dB in prototype 2. Tables 6.10 and 6.11shown the results. The boxes marked with an 

X, are those that comply, that for these conditions, transducers would give a minimum 

reception voltage. 

Prototype 

1 60kHz 240kHz 

Distance (m)             

TS (dB) 1.5 5 10 15 20 30 1.5 5 10 15 20 30 

-50 X X     X X     

-45 X X X    X X X    

-40 X X X X   X X X    

-35 X X X X X  X X X X   

-30 X X X X X X X X X X X  

-25 X X X X X X X X X X X X 

 

Table 6.10. Prototype 1: Application range viability table as function of TS and 

distance 
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Prototype 

2 60kHz 240kHz 

Distance (m)             

TS (dB) 1.5 5 10 15 20 30 1.5 5 10 15 20 30 

-50 X X X    X X X    

-45 X X X    X X X X   

-40 X X X X   X X X X X  

-35 X X X X X  X X X X X  

-30 X X X X X X X X X X X  

-25 X X X X X X X X X X X X 

 

Table 6.11. Prototype 2: Application range viability table as function of TS and distance 
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It can be observed that for both prototypes at 60 kHz for TS, between -30 and -25dB, 

range is up to 30 meters. For lowest TS values range is reduce to 10 meters in prototype 

2 and 5 meters in prototype 1. In the case of 240 kHz, prototype 1 presents the same  

behaviour than in 60 kHz. However, prototype 2 improves for TS values from -45 to         -

35dB being able to measure up to 20 meters.  

It is an optimal result to estimate biomass at distances between 1o and 30 meters. These 

transducers can be used in fish farms of seabream and seabass, or to discriminate among 

species, in the first 30 meters, in the open sea. In the fish farms, the seabreams and sea 

bass, tend to form quite dense volumes at depths from 7m to 20m. To obtain reliable data 

of biomass it is necessary to know, between other parameters, the TS value from only one 

individual. It can be found in the first 7 meters where fish swim more disperse and traces 

can be analysed separately. On the other hand, in the open sea, for example through the 

use of satellite buoys, it is necessary to classify different species existing to fish only those 

that are under interest. A study in the first few meters (always taking into account the 

transducer's near field) would lead to a more sustainable fishing and a costs reduction. 

This study is limited to power transmission used, which corresponds to the parametric 

generation tests. To increase the applicability range of the transducers, two studies are 

carried out using the K-wave simulation program. In them, attention is focused on the 

difference frequency of 60 kHz, and t is intended is to increase the level obtained with the 

current measurements (Table 6.7).  

The first one, is based on maintaining the prototypes’ aperture radius, but increase the 

input pressure in order to observe at what level should be excited to get to reach greater 

distances. Figure 6.22 shows the pressure level of the parametric frequency as a function 
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of the input pressure. For lower values, experimental values have been superimposed to 

validate that both results follow the same trend. 

.  

Figure 6.22. SPL in function of input pressure. Simulation data compare with experimental results 

If, for example, 3MPa was chosen as input    pressure, a parametric level of 160dB would 

be obtained. The modified applicability range for prototype 2 is shown in Table 6.12 
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Prototype 

2 60kHz 240kHz 

Distance (m)             

TS (dB) 1.5 5 10 15 20 30 1.5 5 10 15 20 30 

-50 X X X X X  X X X X X  

-45 X X X X X X X X X X X X 

-40 X X X X X X X X X X X X 

-35 X X X X X X X X X X X X 

-30 X X X X X X X X X X X X 

-25 X X X X X X X X X X X X 

Table  6.12. Prototype 2: Application range viability table as function of TS and 

distance. Table in the left hand side corresponds to values with 1MPa as an input 

pressure. Table in the right hand side, corresponds to values for 3MPa as an input 

pressure. 

 

This solution will always be linked to the electronics of the entire system. Considering the 

ability to supply high voltages without distorting the signal or provoking another class of  
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nonlinearities. To avoid or to complement use of such high voltages, the second studio is 

introduced. It works at primary frequencies greater, 170 kHz and 230 kHz, to obtain the 

same difference frequency: 60 kHz. From there, pressure level of this parametric is 

simulated as a function of the transducer aperture. The increase of the primary frequencies 

aims to increase the efficiency of the parametric generation. Also at higher frequency, 

beams are more directional and a higher concentration of energy is achieved along the 

axis causing a conversion of parametric generation, as in the AIRMAR P19 transducer. 

Figure 6.23 shows that for the same radius as the prototypes there is an increase of about 

10dB with respect to the values obtained in Figure 6.20. 

 

Figure 6.23.SPL of difference parametric beam as function of transducer radius for a Byfrequency 

signal of 170-230 kHz, having a parametric difference frequency of 60 kHz 

Finally, it should be noted that other types of applications outside of fisheries acoustics 

have been considered, such as sub-bottom profile. Sub-bottom profilers based on 

parametric acoustics offer many advantages. Usually high resolution is needed, therefore 

narrow beams are selected with parametric frequencies around 4-15 kHz. For this reason, 
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due to prototypes have wide aperture and its frequencies are not in this range, they are not 

considered the best suitable for this kind of application, not being of interest to this thesis. 

6.5. CONCLUSIONS 

This chapter has covered in one hand the study of a nonlinear phenomenon, such as 

parametric generation and on the other hand the ability presented by the designed 

prototypes in the previous chapter, to operate optimally in a nonlinear regime so that they 

can be used as multi-frequency transducers within a parametric echo sounder. 

An experimental campaign has been carried out in which through measures of amplitude 

as function of voltage or distance, and directivity measurements, it is shown that 

prototypes are able to obtain parametric spectral components. The study has focused on 

the difference and sum beam harmonic for all the signal considered.  Results show that 

radiation pattern of the parametric frequencies approaches the primary mean frequency 

directivity (around 120 kHz). 

Amplitude as a function of voltage increases exponentially and not linearly as the primary 

mean frequency. In terms of distance, it is verified that experiment coincides with theory, 

confirming that is an effect that occurs in the medium. Frequencies generated through it, 

are attenuated less than the primary frequencies due to the transfer of energy from these 

to the parametric spectral components. 

It has also been found that operate at parametric difference frequencies close to the radial 

mode influence negatively by imposing the linear behaviour to the nonlinear regime, not 

achieving the desired result. This can be minimized reducing the bandwidth of the 

excitation signal. 
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 Increase of primary frequencies, as well as, reduction of transducer aperture generates a 

parametric acoustic array more efficient, in both, obtained pressure levels and radiation 

pattern due to side lobe level reduction. 

On the other hand, a simulation tool have been developed that is in agreement with 

experimental measurements and with which it is possible to establish operating ranges as 

minimum and maximum pressures for the parametric generation, distances in which the 

phenomenon begins to be observed, and their directivity characteristics. 

Finally through the pressure level obtained and TS data of different species found in the 

literature, it is demonstrated that both prototypes can be multifrequency transducers (from 

2 to 3 frequencies) being able to realize measurements in sea cages at distances between 

1meters and 30 meters, of the main aquaculture of  species in Spain. Parametric efficiency 

shows a dependence with transducer aperture and primary frequencies. This dependency 

allows to improve the design characteristics and bring more capabilities to the transducers 

performance. 
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In this thesis it has been possible to design and to implement two piezoelectric transducers 

for their subsequent application in biomass estimation. Both have achieved the established 

design premises obtaining two prototypes with an operating frequency of 120 kHz, beam 

aperture between 17º and 19º and a projector sensitivity around 150 dB re 1uPa / V at the 

resonance frequency.  

In order to characterize all the transducer’s constituent elements, experimental 

measurements and numerical simulation models based on finite elements have been used. 

The validity of these models, for parameters and coefficients adjustment, both in the active 

and passive elements characterization have been demonstrated. 

 
Conclusions 
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In addition, a numerical model has been developed that collects both, piezoelectric 

behaviour and the acoustic interaction with the medium. Turning numerical simulation 

into a powerful design tool with which to introduce improvements, for example in 

sensitivity and bandwidth, without developing new prototypes. 

On the other hand, this thesis presents the capacity of the prototypes to operate in nonlinear 

regime. A campaign of measurements is carried out that demonstrates the parametric 

harmonic generation produced in the medium. The study focuses on three frequencies of 

interest: 50 kHz and 60 kHz, corresponding to the difference frequency, and 240 kHz 

corresponding to the sum frequency. Results show that, for prototype 2, the three 

frequencies acquire similar characteristics in radiation as 120 kHz in linear emission, 

while for prototype 1 only 60 kHz and 240 kHz are valid. 

From the study it is also extracted that for a transducer with a strong radial mode, if the 

parametric frequency is located in that vibrational mode, the parametric generation is not 

efficient, predominating linear behaviour. 

Moreover, due to the control measurements performed by another transducer, with a 

similar beam aperture but with a higher operation frequency (200 kHz), it is concluded 

that working at higher primary frequencies favours parametric generation, obtaining 

narrower beams than the primary beams and with greater reduction of side lobes. 

At a practical level, point out that for parametric generation a byfrequency emission is 

performed in all measurements, in which parametric beam, sum or difference, is defined 

between the low frequency beam and the high beam, not forming in another region 

Finally, a feasibility study is presented for the highest pressure measured during 

campaign, in which all factors involved in the sonar equation show that both prototypes 
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can perform multifrequency measurements in sea cages at distances between 1 and 30 

meters. Simulation studies show than   this range can improve   by three changes:    

increasing transducer radius, with higher input pressures or increasing the range of 

primary frequencies.  
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