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Abstract

As ever more challenging designs are required in present-day industries, the traditional
trial-and-error procedure frequently used for designing mechanical parts slows down
the design process and yields suboptimal designs, so that new approaches are needed
to obtain a competitive advantage. With the ascent of the Finite Element Method
(FEM) in the engineering community in the 1970s, structural shape optimization
arose as a promising area of application.

However, due to the iterative nature of shape optimization processes, the handling
of large quantities of numerical models along with the approximated character of
numerical methods may even dissuade the use of these techniques (or fail to exploit
their full potential) because the development time of new products is becoming ever
shorter.

This Thesis is concerned with the formulation of a 3D methodology based on the
Cartesian-grid Finite Element Method (cgFEM) as a tool for efficient and robust
numerical analysis. This methodology belongs to the category of embedded (or fic-
titious) domain discretization techniques in which the key concept is to extend the
structural analysis problem to an easy-to-mesh approximation domain that encloses
the physical domain boundary.

The use of Cartesian grids provides a natural platform for structural shape op-
timization because the numerical domain is separated from a physical model, which
can easily be changed during the optimization procedure without altering the back-
ground discretization. Another advantage is the fact that mesh generation becomes
a trivial task since the discretization of the numerical domain and its manipulation,
in combination with an efficient hierarchical data structure, can be exploited to save
computational effort.

However, these advantages are challenged by several numerical issues. Basically,
the computational effort has moved from the use of expensive meshing algorithms
towards the use of, for example, elaborate numerical integration schemes designed to
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capture the mismatch between the geometrical domain boundary and the embedding
finite element mesh. To do this we used a stabilized formulation to impose boundary
conditions and developed novel techniques to be able to capture the exact boundary
representation of the models.

To complete the implementation of a structural shape optimization method an
adjunct formulation is used for the differentiation of the design sensitivities required
for gradient-based algorithms. The derivatives are not only the variables required for
the process, but also compose a powerful tool for projecting information between dif-
ferent designs, or even projecting the information to create h-adapted meshes without
going through a full h-adaptive refinement process.

The proposed improvements are reflected in the numerical examples included in
this Thesis. These analyses clearly show the improved behavior of the cgFEM tech-
nology as regards numerical accuracy and computational efficiency, and consequently
the suitability of the cgFEM approach for shape optimization or contact problems.
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Resumen

La competitividad en la industria actual impone la necesidad de generar nuevos y
mejores diseños. El tradicional procedimiento de prueba y error, usado a menudo
para el diseño de componentes mecánicos, ralentiza el proceso de diseño y produce
diseños subóptimos, por lo que se necesitan nuevos enfoques para obtener una ventaja
competitiva. Con el desarrollo del Método de los Elementos Finitos (MEF) en el
campo de la ingeniería en la década de 1970, la optimización de forma estructural
surgió como un área de aplicación prometedora.

El entorno industrial cada vez más exigente implica ciclos cada vez más cortos de
desarrollo de nuevos productos. Por tanto, la naturaleza iterativa de los procesos de
optimización de forma, que supone el análisis de gran cantidad de geometrías (para
las se han de usar modelos numéricos de gran tamaño a fin de limitar el efecto de los
errores intrínsecamente asociados a las técnicas numéricas), puede incluso disuadir
del uso de estas técnicas.

Esta Tesis se centra en la formulación de una metodología 3D basada en el
Cartesian-grid Finite Element Method (cgFEM) como herramienta para un análisis
numérico eficiente y robusto. Esta metodología pertenece a la categoría de técnicas de
discretización Immersed Boundary donde el concepto clave es extender el problema
de análisis estructural a un dominio de aproximación, que contiene la frontera del
dominio físico, cuya discretización (mallado) resulte sencilla.

El uso de mallados cartesianos proporciona una plataforma natural para la opti-
mización de forma estructural porque el dominio numérico está separado del modelo
físico, que podrá cambiar libremente durante el procedimiento de optimización sin
alterar la discretización subyacente. Otro argumento positivo reside en el hecho de
que la generación de malla se convierte en una tarea trivial. La discretización del
dominio numérico y su manipulación, en coalición con la eficiencia de una estructura
jerárquica de datos, pueden ser explotados para ahorrar coste computacional.
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Sin embargo, estas ventajas pueden ser cuestionadas por varios problemas numéri-
cos. Básicamente, el esfuerzo computacional se ha desplazado. Del uso de costosos
algoritmos de mallado nos movemos hacia el uso de, por ejemplo, esquemas de in-
tegración numérica elaborados para poder capturar la discrepancia entre la frontera
del dominio geométrico y la malla de elementos finitos que lo embebe. Para ello,
utilizamos, por un lado, una formulación de estabilización para imponer condiciones
de contorno y, por otro lado, hemos desarrollado nuevas técnicas para poder captar
la representación exacta de los modelos geométricos.

Para completar la implementación de un método de optimización de forma es-
tructural se usa una formulación adjunta para derivar las sensibilidades de diseño
requeridas por los algoritmos basados en gradiente. Las derivadas no son sólo vari-
ables requeridas para el proceso, sino una poderosa herramienta para poder proyectar
información entre diferentes diseños o, incluso, proyectar la información para crear
mallas h-adaptadas sin pasar por un proceso completo de refinamiento h-adaptativo.

Las mejoras propuestas se reflejan en los ejemplos numéricos presentados en esta
Tesis. Estos análisis muestran claramente el comportamiento superior de la tecnología
cgFEM en cuanto a precisión numérica y eficiencia computacional. En consecuencia,
el enfoque cgFEM se postula como una herramienta adecuada para la optimización
de forma.
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Resum

Actualment, amb la competència existent en la industria, s’imposa la necessitat de
generar nous i millors dissenys . El tradicional procediment de prova i error, que amb
freqüència es fa servir pel disseny de components mecànics, endarrereix el procés de
disseny i produeix dissenys subòptims, pel que es necessiten nous enfocaments per
obtindre avantatge competitiu. Amb el desenvolupament del Mètode dels Elements
Finits (MEF) en el camp de l’enginyeria en la dècada de 1970, l’optimització de forma
estructural va sorgir com un àrea d’aplicació prometedora.

No obstant això, a causa de la natura iterativa dels processos d’optimització de
forma, la manipulació dels models numèrics en grans quantitats, junt amb l’error
de discretització dels mètodes numèrics, pot fins i tot dissuadir de l’ús d’aquestes
tècniques (o d’explotar tot el seu potencial), perquè al mateix temps els cicles de
desenvolupament de nous productes s’estan acurtant.

Esta Tesi se centra en la formulació d’una metodologia 3D basada en el Cartesian-
grid Finite Element Method (cgFEM) com a ferramenta per una anàlisi numèrica
eficient i sòlida. Esta metodologia pertany a la categoria de tècniques de discretització
Immersed Boundary on el concepte clau és expandir el problema d’anàlisi estructural
a un domini d’aproximació fàcil de mallar que conté la frontera del domini físic.

L’utilització de mallats cartesians proporciona una plataforma natural per l’opti-
mització de forma estructural perquè el domini numèric està separat del model físic,
que podria canviar lliurement durant el procediment d’optimització sense alterar la
discretització subjacent. A més, un altre argument positiu el trobem en què la gen-
eració de malla es converteix en una tasca trivial, ja que la discretització del domini
numèric i la seua manipulació, en coalició amb l’eficiència d’una estructura jeràrquica
de dades, poden ser explotats per estalviar cost computacional.

Tot i això, estos avantatges poden ser qüestionats per diversos problemes numèrics.
Bàsicament, l’esforç computacional s’ha desplaçat. De l’ús de costosos algoritmes
de mallat ens movem cap a l’ús de, per exemple, esquemes d’integració numèrica
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elaborats per poder capturar la discrepància entre la frontera del domini geomètric i la
malla d’elements finits que ho embeu. Per això, fem ús, d’una banda, d’una formulació
d’estabilització per imposar condicions de contorn i, d’un altra, desevolupem noves
tècniques per poder captar la representació exacta dels models geomètrics

Per completar la implementació d’un mètode d’optimització de forma estructural
es fa ús d’una formulació adjunta per derivar les sensibilitats de disseny requerides pels
algoritmes basats en gradient. Les derivades no són únicament variables requerides pel
procés, sinó una poderosa ferramenta per poder projectar informació entre diferents
dissenys o, fins i tot, projectar la informació per crear malles h-adaptades sense passar
per un procés complet de refinament h-adaptatiu.

Les millores proposades s’evidencien en els exemples numèrics presentats en esta
Tesi. Estes anàlisis mostren clarament el comportament superior de la tecnologia
cgFEM en tant a precisió numèrica i eficiència computacional. Així, l’enfocament
cgFEM es postula com una ferramenta adient per l’optimització de forma.
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Chapter 1

Introduction

1.1. Motivation

The Finite Element Method (FEM) is a numerical technique for finding approxi-
mate solutions to Boundary Value Problems (BVPs) described by Partial Differential
Equations (PDEs). It originated around the middle of the last century from the need
to solve complex elasticity and structural analysis problems in civil and aeronautical
engineering. But it was in the 1960s and 1970s when the method gained a rigorous
mathematical basis and was adopted by a wide variety of physical and engineering
disciplines. Nowadays, the momentum of the method is still growing and we can find
FEM applied to chemistry, biology, plasma dynamics or weather prediction, to name
just a few examples.

FEM has become predominant over other methods of analysis and simulation for
Computer Aided Engineering (CAE) for the design of structural components. Tra-
ditionally, when a component is being designed for a structure or mechanism, the
geometry is first defined by a Computer Aided Design (CAD) system and then an-
alyzed by CAE software to predict its behavior under certain load situations. After
simulation with the CAE software, should the component not behave as expected, the
user has to modify its geometry, mostly by a manual or poorly automatized process.
This trial-and-error process has been the most widely used in the design of struc-
tural components over the last 50 years. As the final result strongly depends on the
designer’s experience, optimal designs is by no means guaranteed. Another serious
drawback is that it requires many hours of analysis to obtain the final optimized ge-
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1. Introduction

ometry since the user has to keep on checking the results and modifying the geometry
until the final or, at least an acceptable, geometry is obtained. This process can be
very slow and so is little suited to highly competitive industrial environments, such as
the automotive and aerospace industries, where reducing design cycle time is crucial.

Today’s high-tech industries need more efficient design processes able to provide,
not only suitable, but the optimal solutions within a reasonable time, with human
intervention restricted to the initial steps of the optimization and unnecessary dur-
ing the iterative process. In order to achieve this objective, we need to couple the
optimization process with the component design, which means parameterizing the
geometry of the component and then running an optimization algorithm over the
parameters. Theoretically, this will provide the combination of parameters with the
optimal geometry for the application under a set of prescribed constraints.

However, the evaluation of design parameters during an optimization analysis
is not necessarily a trivial step. Although, some phenomena are defined by simple
easily managed functions, most engineering problems are usually defined by PDEs
that can only be solved using numerical tools such as FEM. In this area, however,
there are several practical problems that are not already solved. For instance, a large
number of computationally expensive analyses are required to obtain a component’s
optimal geometry, making the process prohibitive for many practical applications.
Additionally, a robust and efficient meshing method for very complex geometries is
required for the traditional FEM and still has not been fully achieved in commercial
codes. As a result, FE analysts need to check each mesh before running the analysis.
The aim of this work is thus to advance in three main areas: (i) the robustness of FE
models obtained from CAD geometries, (ii) the accuracy of the FE analyses and (iii)
the efficiency of the overall optimization process.

This Thesis proposes FEAVox, a 3D implementation of the methodology based on
the Cartesian-grid Finite Element Method (cgFEM) [1], which has the appropriate
combination of techniques to achieve our objective. The most important feature of
cgFEM is that it does away with the geometry-conforming mesh of traditional FEM,
as the mesh used to solve the FE problem is independent of the component’s geometry.
The cgFEM framework has two domains, the problem domain ΩPhys and the meshing
domain Ω, which is a parallelepiped, trivial to mesh, embedding ΩPhys.

This framework thus makes the tedious meshing process of the traditional FEM
unnecessary, but obviously, does not come free of charge. In fact, we slide the compu-
tational cost from standard mesh generation to the treatment of the elements inter-
sected by the boundary. Basically the task will consist of finding the part of the cut
elements that belong to the problem domain ΩPhys. In this regard, we propose robust
strategies to find the intersections between the Cartesian grid and the model and
techniques that generate the integration subdomains necessary to properly capture
the domain in the intersected region.

Once the robustness issue has been addressed, the next concern is accuracy, which
is the main objection to Immersed Boundary Methods (IBM). The argument is ba-
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1.2. State of the art

sically that: with an immersed boundary we do not necessarily have nodes lying on
the boundary, thus (i) the discretization does not properly capture the geometry, and
(ii) the imposition of boundary conditions needs special treatment. These well-known
drawbacks were in fact the inspiration for the contributions of this work. As will be
explained in detail later, we propose novel techniques to allow our numerical models
to exactly capture the geometry of the components to be analyzed, together with a
formulation to impose essential boundary conditions.

Last but not least, efficiency is the keystone of the cgFEM methodology. In this
Thesis, we extend the ideas for shape optimization proposed in [1] to 3D, adding new
tools to improve the overall performance of the optimization analysis. We will rely
on the Cartesian mesh and on its specifically implemented hierarchical data structure
to reduce the size of the calculations. For instance, the integration of the stiffness
matrices for structural analysis can be easily performed taking into account that the
internal Cartesian elements can be identical in shape but only different in size. In this
scenario, we can evaluate a large proportion of the domain using only one element
and a scaling factor.

Also, when using gradient-based optimization algorithms, information on the
derivatives of objective functions and constraints is needed. In this regard, we propose
a shape sensitivity analysis formulation adapted to the immersed boundary environ-
ment. In addition, the combination of shape sensitivity analysis and the same meshing
domain for all the geometries to be analyzed during an optimization process would
provide the following advantages:

• the possibility of transfering calculations (element stiffness matrices, discretiza-
tion errors, etc.) performed on previously analyzed geometries to other geome-
tries, considerably reducing the computational burden throughout the analysis;

• reduce the resolution time of the system of equations using a Cartesian-based
domain decomposition technique;

• the ability to project information found during the optimization process between
evolving geometries, which will significantly diminish the computational cost
associated with the generation of h-refined meshes.
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1. Introduction

1.2. State of the art

1.2.1. Structural optimization

The optimization of structural components through the use of the FE analysis is
an important and active research field of significant interest in engineering. There are
two common approaches to representing the domain which we seek to optimize:

i. A density function: this approach, common in topology optimization [2, 3], is
very general and computationally convenient, but the boundary representation is
not sharp and thus typically fine grids and low order approximation spaces are
employed.

ii. An implicit or explicit representation of the boundary: given the boundary repre-
sentation we need to generate a discretization of the domain when it is updated.

We will only consider the second case in this Thesis. There are different approaches
and many codes to solve the optimization problem. However, some problems in this
context, identified a long time ago [4, 5], still remain unsolved, like the incorporation of
robust parametrization techniques for the definition of each design and the unwanted
variations in the structural response due to mesh-dependency effects. Also, in many
optimization processes based on the use of finite element analyses, there is no control
of the accuracy of the numerical solution. As a result, when the process comes to an
end there is no guarantee that the final outcome will be practicable; a more accurate
analysis would reveal that the final design is unfeasible if it contravenes one or more
of the constraints imposed. The control of the error associated with FE computation
and its influence on the solution of the optimization problem was analyzed in [6].

Two main concepts have been developed to bypass these drawbacks. On the one
hand, the design update procedure can be assigned to a geometry model [7, 8]. This
avoids manipulating the nodal coordinates within the finite element discretization,
thus removing impracticable patterns that cannot be defined by any combination of
the design variables.

On the other hand, the finite element model could be updated through the op-
timization procedure to improve the accuracy of the numerical simulation results or
to enhance the element quality [9, 10, 11]. This may for instance take the form of
geometric mesh smoothing operations or more elaborate mesh updating procedures,
such as the technique developed in [12] and can also include adaptive mesh refine-
ment based on error estimation in the energy norm [13], goal oriented adaptivity[14]
or error controlled adaptive mesh refinement [6]. However, when it comes to com-
plicated geometries or to large shape changes, these strategies may still necessitate
computationally expensive re-meshing algorithms.

6



1.2. State of the art

One way of removing these frictions between geometrical and numerical models,
would be to integrate CAD representations with FEM. A recent trend in this regard
has been the Isogeometric Analysis (IGA) [15, 16]. The idea is to improve the geo-
metrical accuracy of the models by integrating CAD representations with the FEM
solvers. However, in its finite element form, generating an analysis-suitable solid dis-
cretization is an open topic [17, 18, 19]. Some works on IGA shape optimization can
be found in [20, 21, 22, 23, 24].

1.2.2. Immersed Boundary Method numerical
integration

From this perspective, the so-called Immersed Boundary (IB) discretization tech-
niques seem the most appropriate choice for structural shape optimization. For these
methods, the main idea is to extend the structural analysis problem to an easy-to-
mesh approximation domain that encloses the physical domain boundary. Then, it
suffices to generate a discretization based on the approximation domain subdivision,
rather than a geometry-conforming finite element mesh. Moreover, when the struc-
tural component is allowed to evolve, the physical points move through the fixed
discretization created from the embedding domain where there will be no mesh dis-
tortion. There are plenty of alternatives within the scope of IB. Among many other
names used to describe these FE techniques, where the mesh does not match the
domain’s geometry, we have the Immersed Boundary Method (IBM) [25] and the Im-
mersed Finite Element Method (IFEM) [26]. These methods have been applied to a
wide range of problems including, of course, shape optimization [27, 28, 29, 30, 31].

Nevertheless, the attractive advantages of IBM come together with numerical chal-
lenges. Basically, the computational effort has moved from the use of expensive
meshing algorithms towards the use of, for example, elaborate numerical integration
schemes able to capture the mismatch between the geometrical domain boundary and
the embedding finite element mesh. All the intersected elements have to be integrated
properly in order to account for the volume fractions interior to the physical domain.
Studies on the domain integration for these methods can be found in the literature.

The first idea, is to homogenize the material properties within intersected elements
based on the actual volume fraction of these elements covered by the domain. This
approach is straightforward and could be computationally efficient, but provides low
accuracy for the structural analysis [32, 33].

A more selective approach is employed in the Finite Cell framework [34, 35, 36]
in which a number of integration points are provided for all intersecting elements
employing hierarchical octree data structures [37, 38, 39] for their distribution. Only
the integration points interior to the physical domain are considered in the respective
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1. Introduction

integral contribution, although, regardless of the number of integration points, the
exact representation of the geometry is not possible.

Considering an approximation to the exact boundary involves geometry-modeling
errors. If the convergence rate of these errors is lower than the convergence rate of the
FE discretization error, then the optimal convergence rate of the FE solution will be
lost as it will be dominated by the convergence rate of the geometry modeling errors.
Very recently, several methodologies have emerged to perform high-order integration
in embedded methods, such as the so-called smart octrees tailored for Finite Cell
approaches [40] or those in which the geometry is defined implicitly by level sets [41].
Even in the former, where the isoparamentric reoriented elements only provide an
approximate FE description of the boundary, the exact geometry is not taken into
account in the integration stage.

Considering the exact geometry when integrating would improve accuracy and
retain the optimal convergence rate of the FE solution. In the embedded domain
framework this can be done by using a separate element-wise tetrahedralization for
integration purposes only [42, 43].

1.2.3. Boundary conditions in the Immersed
Boundary Method

Boundary conditions have to be imposed to complete an FE formulation. Since
no degrees of freedom are assigned directly to the boundary, the procedures used
in the standard FEM cannot be used to apply the boundary conditions. The case
of the Neumann boundary conditions can be easily tackled by simply taking into
account that the integration surface can cut the element and does not necessarily
have to coincide with the element faces. However, the case of the Dirichlet boundary
conditions is much more complex. To solve the problem, a common alternative is
to use the Lagrange multipliers technique. It can be difficult to find compatible
discretizations of displacements and multipliers that satisfy the InfSup condition [44]
but 2D [45] and 3D [46] methods of doing this can be found in the bibliography. The
naive choice for the multiplier interpolation based on the element edge intersection
does not satisfy the InfSup condition. The main problem appears because the number
of Lagrange multipliers is too high, which can cause undesired oscillations in the
Lagrange multipliers field. Thus, one of the alternatives is to stabilize the solution
[47, 48].

One of the most popular ways of stabilizing the solution is Nitsche’s method, which
can be derived from the Barbosa-Hughes stabilization [47], see for example [49, 50, 51]
for early implementations of the method in immersed boundaries or [46, 52] for a
comparison with other methods. The stabilizing term in Nitsche’s method has an
algorithmic constant to be defined that affects its stability. As has been pointed
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1.3. Objective

out[46, 53, 54], this constant depends on how the boundary intersects the underlying
mesh and can become unbounded for certain configurations. At the same time very
large values of the penalty constant result in an ill-conditioned system [55]. This
issue has been approached for interface and X-FEM problems by choosing appropriate
values for each intersected element [56, 57, 58, 59]. In these works the stabilizing term
is the finite element stress field, as in the Barbosa-Hughes stabilization, but computed
in a different way. In [56] the stress is computed in the largest element partition. In
the weighted Nitsche’s method [57, 59] the stress fields of both partitions are weighted
from the partition sizes.

1.2.4. Shape sensitivity analysis

In optimal structural design, sensitivity analysis calculates the derivatives of the
structural response (displacements, stresses, etc.) with respect to design variables.
The initial developments in this field focused on size variables of size, such as thick-
ness or cross-sectional areas of structural components. However, in many structural
problems it was necessary to consider shape as a design variable. Currently, we can
distinguish four different approaches: global finite differences, continuum or discrete
derivatives and computational differentiation. Overall finite differences [60, 61, 62, 63]
consist of the use of two FE analyses to obtain the derivatives with respect to a design
parameter. Continuum derivatives [64, 65, 66, 67, 68, 69, 70] are obtained differen-
tiating the governing elasticity equations. This process leads to a set of continuum
sensitivity equations that are then discretized and solved. For discrete derivatives
[71, 72, 73, 74] the derivation-to-discretization procedure is reversed and the com-
ponents of the discretized system of equations are differentiated with respect to the
design variables. Computational differentiation [75, 76] is related to the automatic
differentiation of the routines within the computational code, for which several tools
were developed [77, 78, 79].

The different approaches can be evaluated from the point of view of accuracy,
relation to discretization, computational cost and implementation effort [80, 81, 82,
83, 84].

1.3. Objective

The present Thesis aims to contribute to the research field of Immersed Boundary
Methods applied to shape optimization problems by proposing solutions to the tradi-
tional drawbacks associated with this type of approach, namely: a) the approximation
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1. Introduction

of the boundary on cut elements and b) Dirichlet boundary conditions imposition.
Moreover, new tools have been developed to take advantage of the strong hierar-
chical structure inherent in the cgFEM methodology, applied to shape optimization
problems.

In line with these ideas, the partial objectives are as follow:

1. Generation of robust h-adapted FE 3D models.

It is necessary to define a robust procedure to evaluate the relative position of the
elements with respect to the physical boundary, so specific strategies are required
to find the intersection of the elements with the boundary and to perform the
numerical integration only over the region of the intersected elements lying
inside the computation domain. The intersection algorithms have to be able
to take into consideration not only approximations of the geometry (i.e. linear
tessellations) but parametric surfaces such as NURBS or T-spline. In addition,
the generation of the integration submesh within intersected elements has to
be both efficient and general enough to ensure the flawless discretization of the
models. The numerical model generation has to take into account the need to
allow h-adaptation of the meshes to improve the accuracy of the analyses. The
strategies followed to generate robust models will be described in Section 3.1
and 3.3, and discussed in detail in Paper A and Paper C.

2. Enhancing the quality of the domain integration allowing the exact
consideration of the geometry.

One of the most challenging aspects of IBM is to consider the exact boundary
of the domain in the evaluation of volume integrals. Achieving greater accuracy
and ensuring the optimal convergence rate of the FE solutions involves per-
forming the numerical integration over the true computational domain instead
of simplifying the embedded geometry. As explained in Section 1.2, State of the
art, this topic has attracted the attention of the fictitious-domain community,
who are trying to improve the accuracy along the boundary. Our solution for the
integration problem is highlighted in Section 3.1, and an in-depth explanation
is given in Paper A.

3. Improving the imposition of Dirichlet boundary conditions.

As indicated in the previous section, imposing Dirichlet boundary conditions on
immersed boundary meshes is no trivial task. Although there have been many
contributions in this area in recent years, the quest for a formulation that solves
the ill-conditioning of the matrices and gives stable results for any arbitrary
cutting configuration is still going on. Section 3.2 will be devoted to explaining
a stabilized formulation that tries to improve the behavior of these methods. A
detailed description of the method and its features is given in Paper B.

10



1.4. Thesis layout

4. Developing a shape sensitivity strategy adapted to immersed bound-
ary environments.

Gradient-based optimization processes of mechanical components require infor-
mation on the derivatives of the magnitudes of interest. Writing this Thesis
provided the opportunity to implement an adjoint formulation that meets the
requirements of the Cartesian grid setting, regardless of the geometry. This
formulation is described in Section 3.4 and in detail in Paper D.

5. Merging all the features of our Cartesian-grid methodology to solve
shape optimization problems.

Due to the nature of shape optimization processes there is always room for new
advances, either in the optimization algorithms themselves or in the numerical
solver used to evaluate the different geometries. Regarding the latter, embedded
methods provide a set of features that engage smoothly with the requirements of
optimization procedures. With the goal of saving computational cost always in
mind, several tools based on the Cartesian hierarchical structure are proposed
in Section 3.4 and Paper E.

1.4. Thesis layout

The remainder of this document is divided into two parts: the first is an overview
of the Thesis and includes Chapter 2, with the formal definition of the equations of
structural analysis, including the formulation for non-conforming meshes, and also
states the shape optimization problem. Chapter 3 is an overview of the main con-
tributions of the Thesis and Chapter 4 is devoted to the conclusions and further
research.

In Chapter 3 the overview of the contributions does not strictly follow the order
of the publication or submission of the papers. Even though the chronological and
conceptual order of the papers is correct, in a consistent and non-repetitive overview
similar ideas regarding the same concept must be explained together. In order to
clarify this situation, the author will indicate the origin of the contributions in terms of
publications related to the present work. For instance, the mesh-geometry intersection
is given in Papers A and C, so both papers will be referred to.

The second part of the Thesis consists of five papers in which the scientific contri-
butions of this work are discussed in detail. All the papers will be presented without
journal editing, and the cover of each one will include the citation of the corresponding
journal or information on the submission.
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1. Introduction

Paper A describes a NURBS-enhanced integration technique for an immersed
boundary environment. Paper B discusses a stabilized method of imposing Dirichlet
boundary conditions in non-conforming meshes. Paper C improves the procedures
for creating robust models using h-adapted Cartesian meshes. Paper D introduces a
sensitivity analysis formulation adapted to immersed environments. Finally, Paper E
applies the ’natural’ advantages of Cartesian grids and the previous contributions to
shape optimization problems.
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Chapter 2

Problem description

2.1. Governing equations

Let us consider the linear elastic problem. Let ΩPhys ∈ Rd, with d = 2 or d = 3
be a bounded domain with a sufficiently smooth boundary Γ. The contour can be
divided into two non-overlapping parts, ΓD and ΓN, where Dirichlet and Neumann
conditions are respectively imposed. The aim is to find the displacement field u ∈ U
that fulfills the internal equilibrium equation in the domain and the Dirichlet and
Neumann boundary conditions on the boundary, which can be written as follows:

∇σ (u) + tv = 0 in Ω

σ (u)n = ts on ΓN

u = g on ΓD

ε (u) = Dσ (u)

(2.1)

In the above expression tv ∈ [L2(Ω)]d are the volume forces, ts ∈ [L2(Ω)]d are the
tractions imposed on the Neumann boundary, g are the displacements imposed on
the Dirichlet boundary and n is the unit vector normal to the surface. U ≡ [H1(Ω)]d

is the Hilbert space of functions whose integral of the first derivative over the domain
is bounded. In linear elasticity, the strain tensor is defined from displacement field by

ε (u) =
(
∇u +∇Tu

)
/2 (2.2)
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2. Problem description

The constitutive equation, which relates the strains with the stresses by means of
the tensor D, can be expressed in the case of isotropic behavior using two material-
dependent constants, the Young’s modulus E and the Poisson’s ratio ν. This rela-
tionship can be written as

ε = (σ − ν (tr (σ) I− σ)) /E (2.3)

Figure 2.1: Elastic body and boundary conditions.

It is straightforward to show the following property concerning the constitutive equa-
tion, which will be used below.

Property 1. The scalar product of the tractions can be bounded by the energy per
unit volume with a constant CE, which depends on the material properties, as

‖σ(u)‖2 ≤ CE (σ(u) : ε(u)) with CE =
E

1− 2ν
(2.4)

The weak variational formulation of the elastic problem allows different approaches
to imposing the Dirichlet boundary conditions. The most common procedure is to
impose a constraint in the space of virtual displacement V , i.e. the virtual displace-
ment is zero on the Dirichlet boundary. The virtual work of the elastic forces is in
equilibrium with the virtual work of the external forces applied, as follows:

a (u,v) = c (v) ∀v ∈ V (2.5)

where

a (u,v) =

∫

Ω

σ (u) : ε (v) dΩ

c (v) =

∫

Ω

v · tv dΩ +

∫

ΓN

v · ts dΓ

(2.6)
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2.2. Finite Element approximation using Cartesian grids

This method is simple to implement and effective in the context of the standard
finite element method, in which the boundary of the geometry is properly represented
by the mesh. However, this method is not valid for Cartesian meshes, since it is very
difficult to get a null field on the Dirichlet boundary if the contour of the geometry
does not match with the edges of the elements.

For this reason it seems more appropriate to seek another formulation, which
involves raising the elastic problem to a minimization problem with constraints. This
means finding the displacement field u that minimizes the total potential energy,
subject to the constraints imposed by Dirichlet boundary conditions. The problem
can be expressed as

min
(

1

2
a (v,v)− c (v)

)
with v = g in ΓD (2.7)

One approach to solving this minimization problem is to use the Lagrange multipli-
ers method. In addition to the displacement field, a new field of Lagrange multipliers
λ associated with the reaction forces is added. Formally, the problem is to find the
saddle point [u,λ] ∈ U ×M of the following Lagrangian

L (v,µ) =
1

2
a (v,v) + b (µ,v − g)− c (v) (2.8)

The Lagrange multipliers belong to the Hilbert space M = [H−
1
2 (ΓD)]d and then

the following functional is defined

b (·, ·) : M ×U → R

b (µ,u) =

∫

ΓD

µ · u dΓ
(2.9)

2.2. Finite Element approximation using
Cartesian grids

The domain is subdivided into finite elements by a Cartesian mesh in which the
boundary of the domain does not necessarily coincide with the edges of the elements,
but can pass through them. For the approximate solution of the virtual work state-
ment in Equation (2.8), we consider a collection of ne finite elements Ωe (paral-
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2. Problem description

lelepipeds, cubes in most cases) to establish a discrete domain representation ΩApprox
of ΩPhys

ΩPhys ⊆ ΩApprox =

ne⋃

e=1

Ωe (2.10)

Figure 2.2: Immersed Boundary Finite Element discretiza-
tion of the elastic body.

The spaces of the finite element solution are denoted as U h ⊂ U for displacements
and M h ⊂M for multipliers. Substituting the finite element fields in Equation (2.8)
and optimizing the Lagrangian we obtain the following system of equations:

a
(
uh,vh

)
+ b

(
λh,vh

)
= c

(
vh
)

∀vh ∈ U h

b
(
µh,uh

)
= b

(
µh,g

)
∀µh ∈M h

(2.11)

where vh and µh are the variations of the displacement and multiplier fields and
[uh,λh] is the solution. Standard shape functions[85] are used to interpolate the
displacement as uh = Nue, where ue is the vector of nodal displacements. The
discrete system (2.11) yields a linear system of equations that will give as a result the
displacements at nodes and also the discrete Lagrange multipliers field:

(
ne⋃

e=1

[
ke BeT

Be 0

]){
ue

λe

}
=

ne⋃

e=1

{
fe

ge

}
(2.12)

The stiffness matrix ke and force vector fe in (2.12) are built as in the standard
FE formulation.
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2.3. Structural shape optimization

The stiffness matrix of each element is computed by

ke =

∫

Ωe

BTDB|J|dΩ (2.13)

where

Ωe is the domain in local element coordinates,

B is the nodal strains-displacements matrix,

D is the stiffness matrix that relates stresses with strains. We consider
linear elasticity where, under isotropic behavior, this matrix depends
only on E, the Young’s modulus, and ν, the Poisson’s ratio of the
material,

|J| is the determinant of the matrix J, which represents the Jacobian
matrix of transformation of the global coordinates (x, y, z) to the
local element coordinates (ξ, η, τ).

The vector fq is the standard FE vector due to point forces, volumetric forces,
forces distributed over the Neumann surface of the element, evaluated assembling the
contribution feq of every element e on the domain:

feq =

∫

Γe
N

NT t|J|dΓ +

∫

Ωe

Ntb|J|dΩ + p (2.14)

where vectors t, b and p correspond to the surface, body and point loads, respectively.

Remark 1. The choice of the interpolation of the Lagrange multipliers determines
the optimal convergence of the formulation and allows B and g to be evaluated. In
particular, in order to achieve this convergence the Ladyzhenskaya-Babuška-Breezi
(LBB or InfSup) condition [44] must be fulfilled. Another alternative is the use of
stabilization methods, as in this Thesis.
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2. Problem description

2.3. Structural shape optimization

The structural shape optimization problem can be tackled as the minimization
of a real function f , which depends on some variables and is subjected to several
constraints. The generic form of such problem is:

minimize f(a)

where a = {ai} i = 1, . . . , n

verifying g(a) ≤ 0 j = 1, . . . ,m

and h(a) = 0 k = 1, . . . , l

(2.15)

f being the objective function, ai are the design variables, gj are inequality constraints
and the values hk define equality constraints. The vector a defines a specific structural
shape and the task consists of finding the a values which define the optimum design.

There are plenty large number of optimization algorithms to solve the problem
stated in Equation 2.15. Gradient-based algorithms are based on the next iterative
expression:

aq = aq−1 + αS(a)q (2.16)

where q is the iteration number, S(a)q is the search direction vector and α is a
parameter related to the step size.

The physical interpretation of the last term is that S(a)q is a direction vector
defining the optimal combination of the simultaneous variations of the design variables
a, and α represents the magnitude of the movement along the vector S(a)q. Together,
the terms αS(a)q represent the value of the perturbation δa to be applied to the
design in the present iteration. The difference between the different gradient-based
optimization algorithms lies in the way of choosing the search direction S(a)q, and
how to determine the value of α.

In order to solve the optimization problem, most of the algorithms require the
computation of the objective function, the constraints and their derivatives (sensitiv-
ities) with respect to the design variables for each geometry considered during the
process. The gradient is a vector whose components are the derivatives of f(a) with
respect to the design variables with respect to every one of the design variables:

∇f(a) =

{
δf

δa1
,
δf

δa2
, · · · , δf

δan

}T
(2.17)

Geometrically, the gradient vector of a function defines the direction in which the
function grows most rapidly.
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Chapter 3

Contributions

This section is an overview of the major Thesis contributions, indicating their novel
aspects and key ideas.

3.1. Exact representation of an immersed
boundary

As has been previously mentioned, the most widely used approach in classical FEM
involves unstructured meshes that conform to the boundary of the physical domain.
Mesh generation and especially mesh adaptation techniques such as mesh refinement,
mesh movement or re-meshing are costly and require a substantial amount of human
hours [86, 87]. And a certain amount of experience is required to refine the mesh so
as to accurately represent both the geometry of the physical domain and the local
characteristics of the solution of the problem under consideration.

Given an open bounded domain ΩPhys ⊂ R3 (see Figure 3.1a) with boundary
ΓIB = ∂ΩPhys, the key principle of FEAVox, or any other IBM, consists of defining
an embedding domain Ω such that ΩPhys ⊂ Ω (with a much simpler geometry than
ΩPhys), being Ω extremely easy to mesh compared to the domain of interest ΩPhys. In
FEAVox, we consider Ω to be a cuboid, and use a Cartesian grid to mesh it, as shown
in Figure 3.1b. To represent the geometry of the physical domain in IBM, it is common
to use a linear triangular mesh to discretize the boundary ΓIB. This option allows the
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(a) Geometrical model ΩPhys
within embedding domain, Ω.

(b) Discretization ΩApprox of
the embedding domain.

(c) Integration domain, Ωh
Phys.

Figure 3.1: Typical Immersed Boundary Method environment.

implementation of simple algorithms to find the intersections between the discretized
immersed boundary and the mesh of the embedding domain, but this also means that
the problem is solved not in the physical domain ΩPhys but in an approximation of
ΩPhys, named ΩhPhys (Figure 3.1c). The effect of this approximation can be considerable
if high-order elements are used, or if the accurate representation of the geometry
plays a key role, as in shape optimization or contact problems. This method is often
used to obtain good results from an engineering point of view, although the solution
of the mesh refinement processes will not converge to the solution of the problem
defined in ΩPhys, but instead to the solution of the problem defined in ΩhPhys if the
approximation ΩhPhys is maintained throughout the mesh refinement. Even in the case
in which ΩhPhys is refined together with the mesh, the optimal convergence rate of the
error of the FE solution can be compromised if the convergence rate of the geometry-
modeling errors is lower than the FE discretization error. To overcome this problem
the CAD description of the boundary of the physical domain ΓIB is here considered
during the integration process using numerical integration techniques that account
for the exact geometry defined by NURBS or T-spline. The result of this is that the
volume integrals are as exact as the accuracy of the numerical quadrature used in
their evaluation.

FEAVox is based on the use of a sequence of uniformly refined Cartesian meshes.
The different levels of the Cartesian meshes are connected by predefined hierarchical
relationships. The present implementation is an extrapolation of the 2D data struc-
ture based on the element subdivision shown in [88]. The data structure considers
the hierarchical relationship between the elements of different refinement levels, ob-
tained during the element subdivision process, to accelerate FE computations. In
FEAVox, the element used on the coarsest level of the Cartesian grid pile is called
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3.1. Exact representation of an immersed boundary

the reference element. The data structure has been modified to the particular case
in which all the elements are geometrically identical to the reference element. One
of the main benefits of this data structure is that the mapping between an element
in the Cartesian grid and the reference element is affine and therefore its Jacobian
is constant. This property can be exploited to dramatically speed up the evaluation
of the elemental matrices. For instance, the analysis proposed in [89] shows that the
number of operations required to compute the elemental matrices can be reduced by
a factor of 10 when a mapping with constant Jacobian is considered with low-order
hexahedral elements. The hierarchical relationships considered in the data structure
simplify the mesh refinement and the precomputation of most of the data used during
the analyses and remarkably improves the efficiency of the FE implementation. In
addition, the hierarchical structure allows the algorithmic evaluation of nodal coor-
dinates, mesh topology, hierarchical relationships, and neighborship patterns, among
other geometrical information. Therefore, there is no need to store this information
in the memory, which makes the proposed algorithm more efficient, not only in terms
of computational expense but also in terms of memory requirements.

The first step in the proposed strategy is the creation of the FE analysis mesh
used to solve the boundary value problem, which can be obtained by classifying the
elements of the Cartesian grid as follows:

• Boundary elements: elements cut by the boundary of the physical domain, i.e.,
the elements ΩB such that ΩB ∩ ΓIB 6= ∅.

• Internal elements: elements inside the physical domain, thus, elements ΩI such
that ΩI ⊂ ΩPhys, and

• External elements: outside the physical domain, elements ΩE such that ΩE ⊂
Ω \ ΩPhys,

Figure 3.2 shows these three types of elements for the sphere embedded in a
Cartesian grid represented in Figure 3.1b.

The analysis mesh is formed by the internal and boundary elements intersected
by the geometry. The external elements are not considered in the analysis stage.
Internal elements are treated as standard FE elements and the affinity with respect
to the reference element is exploited in order to reduce the computational cost of the
element matrices.

Since we are working with meshes completely independent of the embedded ge-
ometry, it is necessary to determine the relative position of the elements cut by the
boundary with respect to the physical boundary, so, specific strategies are required
to find the intersection with the boundary and to perform the numerical integration.
Efficient strategies to execute these two operations are proposed in the remainder of
this section.
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(a) Perspective view. (b) 2D section.

Figure 3.2: Section of a three-dimensional Cartesian grid showing the three
different types of elements: (1) In red, external elements, ΩE, not consid-
ered in the analysis, (2) in blue, boundary elements, ΩB, intersected by the
embedded domain and (3) in green, interior elements, ΩI.

3.1.1. Mesh-geometry intersection

As a logical consequence of the independence of the analysis mesh with the geo-
metrical model, the problem of discriminating which part of mesh is inside or outside
the target model arises. The simplest approach is to find the intersections of the
physical boundary with the edges of the Cartesian grid elements. This is usually a
simple problem when using a model with a tessellated boundary, but since we here
use the exact parametric representation of the boundary the solution required needs
to be more sophisticated.

There are several methods available in the literature to evaluate the intersection
between parametric surfaces and arbitrary rays. These are known as ray-tracing
strategies and are widely used by the computer graphics community and the animation
and videogames industries.

If the surface is defined by a tessellation, ray-tracing is performed on the resulting
set of triangular surfaces, which is algebraically trivial. When using parametric sur-
faces, the curve-surface intersection is usually solved by a numerical method. Many
algorithms for ray-tracing parametric surfaces are available in the literature[90, 91,
92, 93, 94].

In this Thesis we propose a robust algorithm for finding the intersections of a
Cartesian grid and parametric surfaces. The algorithm includes the multivariate
Newton’s method and incorporates criteria to minimize the disadvantage of requiring
an initial guess, which must generally be close to the root itself. In this section, since
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3.1. Exact representation of an immersed boundary

we only need a basic version of the well known Newton’s Method, we will only give
details of how to find an accurate initial guess for the intersections.

The process will be illustrated by an example. Figure 3.3a shows an arbitrary
parametric surface and its control points. Since we are using Cartesian grids, we need
to intersect this surface with straight lines following directions X, Y or Z only. Figure
3.3b displays a set of axes defined along Z that intersect the parametric surface.

(a) Parametric surface. (b) Axes along Z direction. (c) Cartesian planes of an
axis.

Figure 3.3: Example of a surface and Cartesian axes.

In addition, we know that each of the Cartesian axes will be defined by two
Cartesian planes, as shown in Figure 3.3c, where we can see that the intersection
between a Y Z-plane, defined by the coordinate x, and a XZ-plane, defined only by
y, yield a Z-axis.

In order to make a good initial guess for every axis in the Cartesian grid we have
to choose points that would be close enough to the actual intersections. To do this in
an efficient way we will generate a triangulation of the surface from a set of points, as
shown in Figures 3.4b and 3.4a, respectively. It is worth noting that the points and
the subsequent triangulation are defined in the parametric space and then projected
onto the physical space in which the intersecting planes are defined.

Once we have the auxiliary triangulation we will evaluate level sets of the inter-
section planes (Figure 3.4c) with respect to the points on the parametric surface. In
this way we will identify the position of the points with respect to the two planes by
evaluating the sign of the distances in the physical space. This represents a trivial
operation as it only requires comparing the global coordinate of each point of the
triangulation with the coordinates that define the Cartesian planes. A view of the
level sets calculated can be seen in Figure 3.4d. The signs of the distances to the
planes XZ and Y Z are in red and green, respectively. Our strategy consists of find-
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(a) Arbitrary discretization of the
surface.

(b) Triangulation generated.

(c) Triangulation and intersection
planes.

(d) 2D view of the level sets.

Figure 3.4: Procedure to find the Newton-Raphson initial guess.

ing triangles that are cut at the same time by the two planes defining the intersecting
axis.

Now, if every triangle Ti of the triangulation is defined by the vertices {P1, P2, P3}
where the coordinates of Pi are given by {P xi , P yi , P zi } (Figure 3.5a), then we say that
the triangle is cut by a plane when we can find vertices on both sides of the plane
at the same time, i.e. there is a change in the sign of the vertices (Figure 3.5b).
Otherwise, the triangle is not intersected when the signs of all vertices are the same
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3.1. Exact representation of an immersed boundary

(Figure 3.5c). As we said, every axis in the mesh is defined by two planes, so if a
triangle is intersected by both planes at the same time we will use it to make the
initial guess of the axis in question. With these criteria we can easily identify the area
where we have to choose the initial guess for the axis for the case in Figure 3.4 (see
Figure 3.4d).

(a) (b) (c) (d)

Figure 3.5: Intersecting the Cartesian planes and the triangulation. (a) Element of
the triangulation. (b) Cutting plane. (c) Not-cutting plane. (d) Case of intersection
not detected.

Although this strategy is very simple to implement we identified three safety pro-
cedures that are necessary to ensure its robustness:

Triangulation size. If the triangulation is too coarse the criteria described above
are not strict enough and will be easily met. This could yield, for instance, a sit-
uation in which a Cartesian axis intersects the same triangle several times, thus
the same initial guess would be considered for the computation of two different
roots and would prevent the convergence of the Newton-Raphson algorithm in
some cases (see Paper A - Section 3.2).

Approximate triangulation. When using a linear triangulation to discretize an
arbitrary parametric surface, it could happen that a plane intersects the trian-
gles that had not been detected by the previous criteria. An example of this can
be seen in Figure 3.5d, where the signs of the vertices indicate that the triangle
is not intersected, but if we had considered the real definition of one edge of
the triangle the intersection would have existed. To identify the intersection we
introduce a new criterion based on the distances of the vertices to the plane of
intersection. This criterion will flag the ambiguous triangles where there could
be intersections. To eliminate this ambiguity we subdivide the triangle and re-
calculate the criteria. This subdivision is recursively applied until the ambiguity
is eliminated (see Paper C - Section 3).
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Coplanar surfaces. It is important to identify the surfaces coplanar to the Cartesian
axes to avoid the theoretical presence of infinite intersections. In order to do
this, it is possible to check if a surface is defined along any Cartesian coordinate
and if so, it is easy to detect any axis contained in it (see Paper C - Section 3).

After following the previous guidelines, we have now identified all the candidate
triangles to be intersected by every axis in the mesh, we will choose their geometrical
center in the parametric coordinates as the initial guess for the intersection. After
obtaining these initial points we will compute the intersections using the Newton-
Raphson method, as previously indicated. With the intersections evaluated, it is
trivial to classify the nodes as internal or external by simply marching along the edges
of the Cartesian grid. Elements are automatically classified as internal, boundary or
external by counting the number of internal and external nodes in each element.

3.1.2. Integration over subdomains

FEM requires the computation of integrals over the domain of interest. When
a body-fitted mesh is employed, the domain integrals are computed by adding the
contribution of the integrals over each element and the boundary integrals are similarly
computed by adding the contribution of the integrals over each element face on the
boundary of the physical domain. The numerical integration in IBM requires special
attention as the mesh is completely independent of the geometry of the physical
domain.

In IBM internal elements are treated as standard finite elements in which the
integration is performed using a tensor product of one-dimensional Gauss quadratures
with the desired number of points in each direction. However, the contribution of the
boundary elements ΩB requires special attention as the integral must be computed
only over the portion of the boundary elements that lies inside the physical domain,
namely ΩPhys

B = ΩB ∩ΩPhys. In fact, the independent generation of the Cartesian grid
with respect to the embedded geometry implies that the region of elements intersected
by the mesh lying inside the computation domain, ΩPhys

B can be extremely complex.
The strategy proposed to perform the integration over ΩPhys

B consists in employing a
tetrahedralization of this region that incorporates the exact boundary representation
of ΩPhys.

The approach proposed in Paper A was inspired by the Marching Cubes (MC)
algorithm [95], which uses a set of templates for the intersection between the surfaces
and edges of cubes. The MC algorithm is widely used in computational graphics to
represent approximations of surfaces, as it is very efficient in sorting out basic inter-
section patterns and creating linear surfaces between them. We have taken the basic
intersection patterns of the MC algorithm to identify the most common intersection
patterns between the embedded geometry and the Cartesian grid, then a parametrized
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3.1. Exact representation of an immersed boundary

tetrahedralization of each one of these patterns is generated and stored. To facilitate
the implementation, and without loss of generality, we assume that the Cartesian ele-
ments are intersected at most once by the boundary of the physical domain. From this
premise, we need only seven out of fourteen templates of the original MC algorithm
(1, 2, 5, 8, 9, 11 and 14, see [95]). It is in fact possible to use the remaining templates
to identify regions of particular geometric complexity where extra mesh refinement
can be introduced to properly capture the geometry. The seven patterns considered
are depicted in Figure 3.6. In the figures we can see the nodal topologies and the
set of tetrahedra used for each pattern. The colors identify internal and external
subdomains (or different materials in the case of multi-material problems).

(a) Configuration 1. (b) Configuration 2.

(c) Configuration 3. (d) Configuration 4. (e) Configuration 5.

(f) Configuration 6. (g) Configuration 7.

Figure 3.6: Intersection patterns inspired by the MC algorithm. Nodal topology (left)
and tetrahedralization (right).

To improve the robustness of the method we extend the previously described
concepts by assuming the existence of intersections on the nodes of the element, or
in other words, boundary nodes. These cases are very likely to appear when dealing
with complicated CAD geometries and h-adaptive mesh generation. Although the
exact intersection on the node is not, in general, very likely, we can have many of
these intersections due to the use of a geometrical tolerance, so intersections of the
surface with element edges within the geometrical tolerance of the element nodes will
be considered as intersections on the nodes.
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For example, if we take Configuration 1, in Figure 3.6a, we can quickly see that we
have as many options as intersections we can move to the nodes, as shown in Figure
3.7, the boundary nodes being the magenta dots.

(a) One boundary node. (b) Two boundary nodes. (c) Three boundary nodes.

Figure 3.7: Configuration 1. Different options when considering surface intersections
on boundary nodes.

In Paper C - Section 4 we propose a strategy to handle all these new possibilities
using exactly the same number of stored patterns, i.e. the 7 original patterns. This is
possible because of the relationship between boundary nodes and intersections, and
the latter with the integration patterns.

The basic patterns presented are valid when the elements are intersected by only
one surface, but in most problems there will be elements intersected by several surfaces
at the same time. Sharp features are often found inside an element generated by the
interfaces of connecting surfaces (see Figure 3.8a). The proposed method evaluates
these elements individually and generates specific sets of tetrahedra, using for instance
a Delaunay procedure, as in Figure 3.8b.

Following [96], the integration subdomains with several faces on different surfaces
are split into tetrahedrons with only one face on a parametric boundary. It is worth
noting that these subdivisions are only applied to design a numerical quadrature for
integration. Two examples are given to illustrate the proposed strategy. The first
example considers a tetrahedral element ΩT with two faces on different surfaces (face
{P1 − P2 − P4} on ΓA and face {P2 − P3 − P4} on ΓB), see Figure 3.9a. In this
example, we will use the only edge not lying on the boundary, edge P1−P3, to define
its geometrical center PE and generate two new subdomains with only one face on
the boundary.

The second example considers an element ΩT with three faces on different sur-
faces, as shown in Figure 3.9b. In this case, the subdomain is split into three tetra-
hedrons using the geometric center PF of the only face not lying on a boundary (face
{P1 − P2 − P4}). New subdomains are then defined as a linear convex combination
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3.1. Exact representation of an immersed boundary

(a) Element intersected by several
patches of a trapezoidal prism.

(b) Detail of the resulting tetrahe-
dralization.

Figure 3.8: Exception to the intersection patterns.

of PF and original boundary faces of ΩT , having at most one face on a parametric
boundary.

(a) Two faces on different parametric
boundaries.

(b) Three faces on different parametric
boundaries.

Figure 3.9: Subdivision of tetrahedrons.

The evaluation of these elements has a higher computational cost than elements
with standard patterns, however, the ratio of elements with configurations not repre-
sented by the standard patterns to the number of elements in the mesh is in general
very low.

The numerical integration over the region ΩPhys
B is then accomplished by integrat-

ing over each subdomain of the tetrahedralization by the strategy proposed in the
NEFEM [97]. This methodology was designed to incorporate the exact boundary of
the computational domain into body-fitted FE simulations. The advantages of this
technique with respect to the classical FEM have been demonstrated for a variety of
problems (see [98]).
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A tetrahedral subdomain TFe with a face on the physical boundary is parametrized
using the mapping

Ψ : Λe × [0, 1] −→ TFe

(ξ, η, ζ) 7−→ Ψ(ξ, η, ζ) := (1− ζ)S(ξ, η) + ζx4,

where S(Λe) denotes the curved face of TFe on the boundary of the physical domain
and x4 is the internal vertex of TFe . Analogously, a tetrahedral subdomain TEe with
an edge on the physical boundary is parametrized using the mapping

Φ : [ξ1, ξ2]× [0, 1]2 −→ TEe

(ξ, η, ζ) 7−→ Φ(ξ, η, ζ) := (1− ζ)(1− η)C(ξ) + (1− ζ)ηx3 + ζx4.

where C([ξ1, ξ2]) denotes the curved edge of TEe on the boundary of the physical
domain and x3 and x4 are the two internal vertices of TEe .

The most important property of the NEFEM mappings is the ability to decouple
the directions of the surface definition, Λe and [ξ1, ξ2] in mappings Ψ and Φ respec-
tively, with respect to the interior directions. In addition, the mappings are linear in
the interior directions, guaranteeing that the number of integration points required is
lower than other options, such as transfinite mappings [99].

Given these parametrizations, it is possible to perform the numerical integration
over all the curved tetrahedral subdomains that form ΩPhys

B .
To this end, we consider tensor products of triangle quadratures [100] and one-

dimensional Gaussian quadratures for the tetrahedrons with a face on the boundary
of the physical domain (see Figure 3.10).

Figure 3.10: Integration over a curved tetrahedron with a face over the phys-
ical domain. Extracted from [96].
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3.1. Exact representation of an immersed boundary

Tensor products of one-dimensional Gaussian quadratures are employed for the
tetrahedra with an edge on the boundary of the physical domain.

It is important to note that NEFEM defines the tetrahedral faces of curved tetra-
hedra on the parametric space of the NURBS, usually as straight-sided triangles,
whereas in the current approach the tetrahedral faces are defined as the intersection
of a Cartesian plane and a NURBS in the physical space. This means that the tetra-
hedral faces in the parametric space of the NURBS are usually triangles with curved
edges. It should be noted that the mapping depicted in Figure 3.10 is still valid for
performing the numerical integration, even if the boundary face in the parametric
space is a curved triangle.

Illustrative example. The error associated to the proposed strategy to perform
the numerical integration of polynomial functions over NURBS surfaces is studied.
To do so, we evaluate the accuracy of the proposed approach to perform the integrals
of the weak formulation. In fact, only the boundary integrals are of interest because
the strategy to perform the integrals on the element interiors use a mapping that is
linear in the interior direction and exact integration in this direction is feasible.

Let us consider a sphere of unit radius embedded in a coarse mesh with only eight
Cartesian elements, similar to the one depicted in Figure 3.1. Let S be the surface
integral of a polynomial function f defined as

S =

∫

Γ

f(x, y, z)dΓ (3.1)

where Γ =
{

(x, y, z) | x, y, z ≥ 0, x2 + y2 + z2 = 1
}

represents the surface of the
sphere’s first octant. The numerical result computed with the strategy proposed, Sh(f),
is compared to the analytical result Se(f). The accuracy is evaluated by defining
the relative error in percentage as ηG = 100 × (Se(f)− Sh(f)) /Se(f). To test the
performance of the proposed approach we consider constant, linear and quadratic f
functions. These types of functions are relevant because when a linear approximation
of the solution is considered, the elemental stiffness matrix requires the integration of
constant functions whereas with quadratic approximations the stiffness matrix requires
the integration of constant, linear and quadratic functions. The analytical results are
reported here for completeness

Se(f = 1) =
π

2
, Se(f = x) = Se(f = y) = Se(f = z) =

π

4
,

Se(f = x2) = Se(f = y2) = Se(f = z2) =
π

6
,

Se(f = xy) = Se(f = xz) = Se(f = yz) =
1

3
.

Figure 3.11 shows the error percentage of the numerical integration of the con-
stant, linear and quadratic functions. These results show how increasing the number
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of integration points allows us to reduce the error towards machine accuracy. For the
constant function f(x, y, z) = 1, with 24 integration points in each of the 8 elements
used in the analysis (192 integration points in total), the error due to numerical inte-
gration is less than 1%. The distribution of integration point is shown in Figure 3.12a.
If we increase the number of integration points to 224 in each element (i.e., 1792 inte-
gration points in total) the error due to numerical integration goes down to 9×10−10%.
The distribution of integration points in this case is displayed in Figure 3.12b. It is
worth remarking that for the linear functions f(x, y, z) = x and f(x, y, z) = z a com-
parable accuracy is obtained whereas slightly less accurate results are attained from
the linear function f(x, y, z) = y.
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Figure 3.11: Integration error on the surface integral.

Regarding quadratic functions, it can be observed that with 24 integration points
per element (i.e., 192 integration points in total), all the integrals are computed with
an error of less than 2% and, in some cases, the error is lower than 1%. Increasing
the number of integration points per element the error converges rapidly to machine
accuracy. For instance, with 224 in each element (i.e., 1792 integration points in
total) the error in the numerical integration is of the order of 2× 10−6% or lower.

It is worth emphasizing that the overhead caused by the numerical integration with
the exact geometry is restricted to the elements of the Cartesian grid that are cut by
the boundary of the embedded geometry. The number of integration points for interior
elements is chosen a priori to be the minimum number required to exactly compute
the integrals of the weak formulation.

In addition to this example, the reader can find in Paper A - Section 5.1. sev-
eral numerical test demonstrating the accuracy of the methodology in the immersed
boundary framework.
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3.2. Essential boundary conditions

(a) 8 elements and 192 Gauss
points.

(b) 8 elements and 1792 Gauss
points.

Figure 3.12: Examples of the mesh used to evaluate the integration error
with different number of quadrature points on the surface.

3.2. Essential boundary conditions

In practice, the problem with the Lagrange multipliers formulation (Equation
(2.11)) is that most natural choices of the Lagrange multiplier field do not fulfill
the InfSup condition because they introduce too many constraints. The idea behind
stabilized methods is to impose additional conditions on the Lagrange multipliers
without modifying the problem solution, at least in the limit, when the element size
approaches zero, in order to have more freedom to choose the Lagrange multiplier
field.

The Nitsche method can be derived from the following stabilized Lagrangian:

LN

(
vh,µh

)
= L

(
vh,µh

)
− 1

2

h

k

∫

ΓD

∥∥µh + σ(vh)n
∥∥2
dΓ (3.2)

where L (v,µ) was defined in Equation (2.8), h is the element size and k is a positive
constant having the units of the Young’s modulus. In order to use a dimensionless
algorithmic constant we define k = κCE , using the constant defined in Equation (2.4)
depending on the material properties.
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The saddle point of the Lagrangian (3.2) is to find [uh,λh] ∈ U h×M h such that:

a
(
uh,vh

)
+ b

(
λh,vh

)
− h

k

∫

ΓD

(
λh + σ(uh)n

)
· σ(vh)n dΓ = c

(
vh
)

b
(
µh,uh

)
− h

k

∫

ΓD

µh ·
(
λh + σ(uh)n

)
dΓ = b

(
µh,g

) (3.3)

∀[vh,µh] ∈ U h×M h. Stenberg [101] shows that, for a suitable choice of the multiplier
space in L2, the Lagrange multiplier field can be eliminated element by element from
Equation (3.3) to obtain the classical formulation of Nitsche’s method, which has been
widely used in the context of immersed boundary mesh to solve interface problems
(see for example [51, 52, 58, 59, 102]). However, the original Nitsche’s method has
some limitations when imposing Dirichlet boundary conditions, as has been pointed
out in the bibliography [46, 53, 54, 55]. The optimal convergence rate of the finite
element solution can only be achieved if the norm of the tractions on the contour can
be bounded by the energy norm, i.e.

∥∥σ(vh)n
∥∥
L2,ΓD

≤ CN
he
‖vh‖E (3.4)

with a constant CN independent of the element size. In the case of immersed boundary
meshes, in general, CN cannot be bounded as the mesh is refined. To illustrate this
problem, Figure 3.13 shows an element of a 2D mesh cut by the boundary of the
problem domain. The shaded part indicates the internal area of the element Ωe. If
the boundary comes closer to the element edge as the mesh is refined, the size of
the area Ωe is reduced faster than the size of the boundary ΓeD, and the expression
(3.4) cannot be fulfilled with bounded values of CN . High values of CN increase the
condition number of the system [55] and tend to overweight the boundary terms with
respect to the domain energy, thus resulting in a finite element solution with a large
error [54] (see numerical examples in Paper B - Section 7).

In this Thesis we propose the method derived from the following Lagrangian (see
Paper B):

LS

(
vh,µh

)
= L

(
vh,µh

)
− 1

2

h

k

∫

ΓD

∥∥µh + T (ûh)
∥∥2
dΓ (3.5)

where T (ûh) is the smoothed traction that depends on the finite element solution
computed from a previous iteration (or mesh[103]), ûh. The penalty constant can be
defined again as k = κCE .

In our formulation we use the recovered tractions on ΓD evaluated from the recov-
ered stress field σ∗[104] to stabilize, solving the problem iteratively by updating the
stress field value [103, 105], σ∗(ûh) the FE recovered stress field being calculated for
an FE solution from a previous iteration (or mesh) ûh. The traction on the boundary
is defined as T(ûh) = σ∗(ûh) · n where n is the unit vector normal to the boundary.
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3.2. Essential boundary conditions

Figure 3.13: Cartesian element intersected by the geometry leading to a
small area.

In the Thesis we use the traction computed from a recovered stress field as the
stabilization term. The method follows the ideas of extending the solution from the
internal elements to the boundary elements [53, 106], but using the stress field instead
of the displacement field. The smoothed stress field is obtained from the stresses calcu-
lated by the finite element method in the boundary elements and adjacent elements
using the concept of the Superconvergence Patch Recovery [107]. The aim of this
choice is to avoid the problems arising from the condition of Equation (3.4). This
method allows the optimal convergence rate to be obtained for predefined bounded
values of the penalty constant k, regardless of the boundary cutting pattern.

The proposed formulation can be simplified by eliminating the Lagrange multipli-
ers and obtaining a modified penalty method: Find the displacement field uh ∈ U h

such that

a
(
uh,vh

)
+
k

h

∫

ΓD

uh · vh dΓ =

c
(
vh
)

+
k

h

∫

ΓD

g · vh +

∫

ΓD

T (ûh) · vh dΓ ∀vh ∈ U h

(3.6)

The second term on the left hand side of (3.6) is a penalty term with a constant
k/h. The last term on the right hand side is the virtual work of reaction forces. This
term acts as a correction of the penalty term and is necessary for the finite element
solution to converge to the exact solution of the problem when the mesh is refined.

As the traction field T depends on the finite element solution, an iterative pro-
cedure is proposed to solve the problem. In the first iteration, we solve the problem
assuming that T = 0. Then the smooth stress field is calculated. This stress field is
used to update T in Equation (3.6) in order to solve the next iteration. This process
runs until convergence is achieved.
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The problem (3.6) can be written in matrix form as:

ne⋃

e=1

(ke + keD) {ue} =

ne⋃

e=1

(
feq + feg + fes

)
(3.7)

The advantages of the proposed method are:

• As in Nitsche’s method, the unknowns of the problem in the proposed formula-
tion are the displacement degrees of freedom since the multipliers are condensed.
Thus the size of the problem is not increased.

• Compared to Nitsche’s method, fewer integral terms are needed to compute the
system. The proposed method is stable and convergent, in spite of the absence
of these terms (see Paper B).

• The method is stable for a mesh-independent bounded value of the penalty
constant κ. In Paper B - Section 6 we obtain the value of this constant for
8-node tri-linear and 20-node tri-quadratic elements.

• The proposed method can be directly applied to solve problems with non-linear
constitutive material behavior. In this case, Equation (3.6) is still valid if we
replace the bilinear form a

(
uh,vh

)
by the virtual work of internal forces.

• The proposed method provides the optimal convergence rate of the FE solution.
The convergence of the finite element solution is analyzed in detail in Paper B.

The obvious drawback is that multiple iterations are needed to get the solution.
However, this disadvantage can be minimized taking into account that the matrix to
be solved for each iteration is always the same for linear problems (since it is only
mesh dependent). Therefore it is only necessary to factorize the matrix once and
perform the backward substitution at each iteration.

The global stiffness matrix is obtained by the contribution of the classical stiffness
matrix of each element ke and a stabilization term keD for all the boundary elements
containing the Dirichlet boundary.

The stabilization term is computed as:

keD =

∫

Γe
D

κ∗

h
CTC|J|dΓ (3.8)

where

ΓeD is the portion of the Dirichlet boundary within the element,

κ∗ is the penalty constant, being κ∗ = κ · CE and κ > 0,

h is the element size,
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3.2. Essential boundary conditions

C is the matrix of finite element interpolation if Dirichlet conditions are
applied on the three displacement components x, y and z.

C = N =



N1 0 0 N2 0 0 N3 0 0 . . . Nnnod 0 0

0 N1 0 0 N2 0 0 N3 0 . . . 0 Nnnod 0

0 0 N1 0 0 N2 0 0 N3 . . . 0 0 Nnnod




with nnod as the number of nodes per element. Otherwise C = SN,
where Sii =

∑
d δid would be a diagonal matrix, d is the direction in

which Dirichlet boundary conditions are applied and δ is the Dirac
delta function.

On the other side of the equation, the equivalent force vector f is evaluated by
adding the contribution of the standard FE vector of equivalent forces on nodes fq, the
stabilization term of the Dirichlet boundary fg and the stabilizing stress component
fs.

The vector fg is due to the non-homogeneous Dirichlet condition uh = g on ΓD
and it is evaluated assembling the contribution of every element on the Dirichlet
boundary:

feg =

∫

Γe
D

κ∗

h
CT g|J|dΓ (3.9)

Finally, fs is the stabilizing term which depends on the stress field. As mentioned
above, in our formulation we use the recovered tractions on ΓD evaluated from the
recovered stress field σ∗(ûh)[104] to stabilize, ûh being an FE solution from a previous
iteration (or mesh). The traction on the boundary is defined as T(ûh) = σ∗(ûh) · n
where n is the unit vector normal to the boundary, then

fes =

∫

Γe
D

CTT(ûh)|J|dΓ (3.10)

Illustrative example. In this section we illustrate the capabilities of the proposed
formulation and explore the limitations of the different methods. A numerical example
with exact solution is solved and used to check: a) the convergence rate of the finite
element solution as the mesh is refined and, b) the effect of the stability constant
k on convergence. It was also used to compare the proposed method with Nitsche’s
method showing that, in general, both methods have similar behavior. Linear (L8) and
quadratic (Q20) elements are used in the examples.
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We consider a tilted hexahedron subjected to 4th order polynomial displacements
and plain strain conditions. The Young’s modulus and the Poisson’s ratio are E =
1000 and ν = 0.3 respectively. The exact displacement solution reads as:

ux = − 25

192
+

75

64
x2 − 25

24
x4 − 25

4
y +

25

4
x2y

25

8
y2 +

25

8
x2y2

uy =
20

3
x+

65

12
x3 +

65

12
x3y − 10xy2 − 10

3
xy3

uz = 0

(3.11)

The exact expression of the stress tensor, obtained by using the constitutive rela-
tion can be found in Paper B - Section 7. The known values of the displacements
were imposed as Dirichlet boundary conditions on the entire external surfaces of the
domain.

Figure 3.14 shows the exact geometry of the problem embedded in the Level 3 Carte-
sian grid. The same figure also shows the surface triangulation used to numerically
evaluate the contour integrals.

Figure 3.14: Tilted hexaedron. Left: Geometry embedded in a Level 3 Carte-
sian mesh. Right: Triangulation of the surface in a Level 4 Cartesian mesh.

The problem was solved using a sequence of Cartesian meshes obtained by element
subdivision starting from a Level 2 mesh having 64 hexahedral elements (Level 0 has
a single element and Level 1 has eight elements).

In order to test the influence of the stability constant on the convergence of the
proposed iterative method and on the discretization error, the same mesh was analyzed
with κ ranging from 0.04 to 4 · 106. We also considered Nitsche’s method in the
convergence analysis for comparison purposes.
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Figure 3.15: Tilted hexaedron. Discretization error in energy norm and L2-norm (%)
for different values of the penalty constant κ. Results for Level 2 Cartesian mesh
using linear and quadratic elements. The proposed method is denoted as iRec and
Nitsche’s method as Nit.

The energy norm of the error is plotted in Figure 3.15 for different values of the
penalty constant considering Level 2 meshes (similar behavior was obtained for the
rest of the mesh levels), and compared with the results obtained with Nitche’s method.

It can be seen that the proposed technique gave a wide range of κ values, from 4 to
4 · 103, for which the level of the error remains essentially unaffected for both L8 and
Q20 elements. However, the values of κ for which the error level remains unaffected is
narrower in Nitche’s method, ranging from only κ = 40 to κ = 4 ·103 for L8 elements
and from κ = 400 to κ = 4 · 103 for Q20 elements. It can also be observed that both
techniques provide similar error levels for high levels of κ (κ ≥ 40 for L8 elements
and κ ≥ 400 for Q20 elements).

In Figure 3.16 the energy and the L2 norms of the discretization error are plotted
as a function of the mesh size for L8 and Q20 elements and, for both, the proposed
technique (iRec) and Nitsche’s method (Nit). The triangles in this figure show the
theoretical optimal convergence rate that can be achieved. Three different values of
κ were considered, taking into account the theoretical value κ > CpCr that provides
optimal convergence (Cp = 13 for L8 and Cp = 21 for Q20 elements, assuming that
Cr = 1), κ = 4 and κ = 400.

As κ = 4 is lower than CpCr, the optimal convergence rate is not ensured. Indeed
it is only achieved using the proposed method for L8 elements. The expected behavior
in terms of convergence rate is observed in the numerical results for κ = 400 using the
proposed method both for linear and quadratic elements, whereas Nitsche’s method was
only able to recover the optimum convergence rate for linear elements. A reduction
of the convergence rate for Nitsche’s method can be seen in the last refinement step
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Figure 3.16: Discretization error in energy norm as a function of the mesh size for L8

and Q20 elements. The triangles show the optimal convergence rate.

for Q20 elements. Nitsche’s method would therefore require a κ higher than 400 to be
able to successfully recover the optimum convergence rate during the entire refinement
process for Q20 elements.

This example showed that, if a sufficiently high value of κ is used, the proposed
technique provides results similar to those obtained with Nitsche’s method. However,
it is able to provide accurate results, with the optimal convergence rate, for consider-
ably lower values of the stabilization parameter κ than Nitsche’s method.

In addition to this example, the reader can find in Paper B - Section 7 additional
numerical test demonstrating the accuracy of the methodology. For instance, an
example shows the behavior of the proposed method, without any modifications, when
elasto-plastic behavior of the material is considered. This example is particularly
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interesting as, to our knowledge, Nitsche’s method has not been used to solve these
type of problem because the formulation of the method required for plasticity has not
been derived.

3.3. h-adapted meshing

This Thesis proposes a procedure based on the subdivision of the integration region
into successively smaller nested sub-regions, thus modifying the density of elements
to yield a more precise solution, keeping the element polynomial order constant.

The three main components of the proposed h-adaptive finite element analysis
are:

1. Calculation of the parameters used to drive the subdivision process. They could
be geometrical parameters or we can use parameters obtained from the finite
element solution, for example, the estimated error in energy norm or any other
quantity of interest.

2. Mesh generation. Since we are using Cartesian grids independent of the ge-
ometry we do not need to generate a new mesh from the beginning, instead
we stick to the first mesh and subdivide the elements flagged by the parame-
ters calculated. Note that we will consider the maximum refinement difference
between two elements adjacent by face or edge is limited to one level, and Mul-
tipoint constraints (MPCs)[108, 109] are used to enforce C0 continuity between
adjacent elements of different levels.

3. Projection of variables from the old mesh to the new mesh. In this case, our
hierarchical data structure allows the automatic transference of properties from
old elements to new ones.

The input to this h-refinement procedure is a uniform coarse mesh and a prescribed
limit to the refinement level. Both the initial level of the mesh and the maximum level
of refinement will be parameters chosen by the user. We propose a two-step adaptive
meshing strategy:

1. Geometrical refinement to obtain the first mesh for the FE analysis. The ele-
ments of the initial grid mesh will be refined following geometrical considerations
until a mesh properly adapted to the geometry is obtained. This mesh will be
the first mesh used for the FE analysis.

2. Solution based refinement. After the FE analysis of the first mesh, the mesh
refinement is guided by estimations of the error in the energy norm or in mag-
nitudes of interest evaluated from the FE solution.
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3.3.1. Geometrical refinement

The refinement based on the features of the geometrical model is widely used in
FEA, since the user can easily identify where the mesh should be finer to properly
capture the boundaries of the models. For any kind of geometrical representation,
from tesselations to advanced parametric surfaces, it is possible to define parameters
to evaluate changes of curvature, small features and any other characteristic that could
influence the Finite Element solution if the discretization is not properly defined on the
boundaries of the models. However, as in any other mesh generation task, choosing
the proper element size for different areas and obtaining a good quality mesh of a
complicated model would require a considerable amount of time.

Our idea is to take advantage of the information already obtained during the
boundary-mesh intersection step to evaluate the goodness of the mesh even before the
resolution and to ensure that the requirements imposed by the integration procedure
are fulfilled (such as the need to ensure that each edge of a boundary element cannot
contain more than one intersection with the boundary). We have to clarify that during
the intersection process the geometry is intersected with several levels of refinement
of the Cartesian grid. This parameter is either set by the user or will be the initial
level plus 3. For instance, if the user sets the initial and the maximum levels allowed
to levels 2 and 9, the geometry will be intersected in a preprocess stage with a level 5
mesh, which includes the edges of coarser meshes. This gives useful extra information
about the boundary. The remaining levels of refinement will be intersected locally as
they appear in the discretization.

We will illustrate the criteria implemented using 2D examples for clarity.
The first criterion is the simplest and the most frequently used. Figure 3.17 shows

intersections with the elements of the current mesh as large green squares, internal
nodes of the actual element as red dots and external nodes of the current element
as blue dots. It also shows a virtual subdivision of the element, up to the maximum
level the user would allow, as well as the corresponding intersections of the boundary
with the refined mesh, represented by small green squares.

Figure 3.17a shows the unit normal vectors û calculated during the intersections
process. We know that in a 3D Cartesian system the components of any unit normal
vector (x̂, ŷ, ẑ) are bounded in the interval [−1, 1], so the maximum span of variation
within an element and for any of the Cartesian directions would be 2. Since we
are interested in a relatively smooth representation inside every element cut by the
boundary, we can measure the variability of the unit normal vectors limiting the span
of this variation within an element to a threshold value. From our experience, if
the variation of the components of the unit normal vectors exceeds the value of 1,
then the element cannot be considered valid and will be refined. Figure 3.17b gives
another example, but in this case there is a sharp edge due to the change of curve
(surface in 3D). In this case we only need to measure the change of the unit normal
vector of the union point to evaluate the abruptness of the change of definition. When
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(a) Smooth boundary. (b) Sharp edge.

Figure 3.17: Geometrical features within elements. Variation of unit vectors.

integrating the boundary with NURBS-Enhanced techniques, this criterion is not very
important due to the ability of the proposed methodology to properly capture the
volume, but when dealing with other piecewise approximations it is key to obtaining
good discretization of the mesh along the boundary.

The next criterion completes the previous one and is related to the nature of the
problem. FEAVox was first implemented to solve linear elasticity problems in which
some internal corners could originate singularities and produce large gradients when
evaluating displacements or stresses. These cases require an adequate discretization
around the singularities to obtain a better representation of the singular solution. In
Figure 3.18a we see an example of a corner, where P0 is the intersecting point between
the two curves in the element, PI is the centroid of the intersections and Pε = P0 + ε,
ε being a differential of û1 + û2 (û1 and û2 are unit normal vectors calculated in
both curves intersecting in P0). Then the corner is re-entrant to the geometry, thus
a potential singularity, if |PI − Pε| < |PI − P0|. With this condition we can assume
that the corner is concave with respect to the material and in this case a refinement
around that point will be automatically generated (see Figure 3.18b). In 3D this
evaluation will occur at several points along the intersections curve between surfaces.

The ability to represent all the small features of a geometrical model is very
important for all mesh generators, especially if we aim to develop a mesh generator
in which the mesh is independent of the geometry. Figure 3.19a gives a clear example
in which a small feature, a small ellipse in this case, will not be considered during
the integration due to the element size. Our solution to this problem is to locally
refine the elements of the mesh until the intersections related to all the geometrical
entities of the model are present in the mesh, as shown in Figure 3.19b. To detect
these small entities we have to remember that it is easy to find out if we are using the
intersections of all the geometrical entities in the actual mesh and to locate points in
the Cartesian elements by means of our hierarchical data structure.
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(a) Measure of distances. (b) Example of refinement.

Figure 3.18: Identification of singularities.

(a) Coarse element. (b) First step of refinement. (c) Final step of refinement.

Figure 3.19: Detection of small features.

The last refinement criterion comes naturally with the mesh generation strategy
implemented. As we explained in Section 3.1.2, only 7 of the 14 configurations of
the original Marching Cubes algorithm were taken into account because they refer to
non-ambiguous configurations. In [43] we predicted the use of the ambiguous patterns
to locate areas where refinement was necessary. Obviously there will be cases where
ambiguities will appear, for instance with highly complicated geometries (see Figure
3.20a). In any case, as good discretization will be necessary, we will refine these
elements to obtain simpler intersection patterns, as can be seen in Figure 3.20b.
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(a) 2D projection of the pattern. (b) Solution through refinement.

Figure 3.20: Undefined pattern and elimination through refinement.

3.3.2. Error-based refinement

In FEM, the discretization error is defined as the difference between the exact and
the approximate solutions obtained from the finite element analysis, without taking
into account the round-off and modeling errors. It is commonly measured in terms of
the energy norm, which represents the error as a scalar quantity. In terms of stresses,
the error in the energy norm, ‖e‖, can be written as

‖e‖ =

√∫

Ω

(σh − σ)TD−1(σh − σ)dΩ (3.12)

where D is the material stiffness matrix, σh is the FE stress field and σ is the exact
stress field.

The error at each element can be evaluated by integrating (3.12) on each individual
element of the mesh. Let ‖e(i)‖ be the exact error in energy norm of the element i.
The following equation, in which M is the total number of elements in the mesh,
relates the global and local errors

‖e‖2 =

M∑

i=1

‖e(i)‖2 (3.13)

Several types of error estimators have been proposed in the literature depending on
the obtaining procedure: residual error estimators [110, 111, 112, 113] use the residuals
of the approximate solution to evaluate the error, the Constitutive Relation Error
(CRE) [114] consisting of the comparison of statically admissible stress fields with
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kinematically admissible stress fields, the estimators based on dual analysis [115, 116]
and making use of two solutions of the problems. Finishing the classification, we find
the recovery based error estimators. Proposed by Zienckevick and Zhu [13], these
estimators use a recovered solution, σ∗, instead of the exact solution σ to measure
the error [107, 117].

Assuming it is possible to write the previous convergence rates as a function of
the estimated errors, we could use the Zienkiewicz and Zhu (ZZ) error estimator to
reformulate (3.13), for the ith-element, as

‖e(i)
es ‖ =

√∫

Ω(i)

(σh − σ∗)TD−1(σh − σ∗)dΩ (3.14)

where σ∗ is a smoothed continuous stress field obtained using a 3D version of the
recovery technique presented in [42, 104].

The refinement algorithm makes use of the estimated element errors to define a
new mesh. The algorithm can be based on a type of optimality criterion to obtain new
meshes of the prescribed accuracy level. In this work we propose a 3D generalization
of the strategy presented in [13, 118] in which the optimality criterion is that of
equidistributing the error on the elements of the new mesh. In [118] it was shown
to be equivalent to the criterion of minimization of the number of elements in the
new mesh to reach the prescribed error level with proper convergence rates. Let us
assume that we are in mesh n − 1 (current mesh) and we want to evaluate mesh n
(new mesh), then:

h(i),n−1
n ≈ h(i)

n−1

[
1

Mn−1

]1/2(p+1) [ ‖e‖n
‖e‖n−1

] d
2p2+pd

[ ‖e‖n
‖e(i)‖n−1

] 2
2p+d

(3.15)

where the quantities are:

h
(i)
n−1 is the size of the element i of the mesh n− 1,

h
(i),n−1
n is the new element size of the mesh n obtained by the subdivision

of element i in the mesh n− 1,

Mn−1 is the number of elements in the mesh n− 1,

‖e‖n is the global error in energy norm of the mesh n.

‖e‖n−1 is the global error in energy norm of the mesh n− 1,

‖e(i)‖n−1 is the error of the element i of the mesh n− 1,

p is the polynomial degree of the shape functions used,

d is the dimension of the problem (2 for 2D, 3 for 3D problems).
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Replacing ‖e(i)‖ in (3.15) by the estimation given in (3.14) we obtain the practi-
cal formula to evaluate the new element sizes. After obtaining the element size it is
easy to find the refinement level necessary for the elements. Complete details of the
procedure to reach this expression are given in Paper C - Appendix.

Illustrative example. With this problem our purpose is to show the performance
of the h-adaptive geometrical refinement process in complex geometries. Naturally, in
this type of problems there is no available exact solution, so our objective is to check
whether the criteria proposed here provide a mesh suitably adapted to the geometrical
features of the model.

The model selected represents a perforated screw, as shown in Figure 3.21, with
a topology as used in hydraulic applications. In this case, we restrained the displace-
ments of the surfaces in blue and applied a variable vertical force per unit of area.
The material was steel with Young’s modulus E = 2, 1 · 109Pa and Poisson’s ratio
ν = 0, 333.

(a) CAD model and boundary conditions. (b) Initial coarse mesh.

Figure 3.21: Model of a hydraulic screw.

Figure 3.21b shows the coarse initial mesh used in the process. It can be seen
that this element size is unlikely to properly capture the features of the screw threads.
Figure 3.22a shows a refined mesh using the criteria proposed here. The refinement
properly captures the features of the model and focuses on the re-entrant corners be-
tween surfaces. Figure 3.22b represents the Von Mises stress field, where the stress
concentration can be seen along the singularities produced by the re-entrant corners
of the model.
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(a) Approximation mesh. (b) Von Mises stress field.

(c) Section of the mesh. (d) Detail of the integration subdo-
mains.

Figure 3.22: Hydraulic screw. Geometrical h-refinement.

To make clear how boundary elements are treated, Figure 3.22c shows a section of
the refined mesh, distinguishing between internal elements (green) and the integration
subdomains of the cut elements conforming to the geometry (blue). Figure 3.22d gives
a detailed view of the section.

After the geometrical refinement, we move forward in the simulation with a re-
finement based on the discretization error.

Table 3.1 summarizes the topological features of the meshes used for this analysis.
The first mesh is the geometrically refined mesh shown in Figure 3.22d and the sec-
ond mesh corresponds to the one obtained from the error-based refinement, see Figure
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3.23b. It can be seen that, as in the previous example, the percentage of boundary
elements decreases from a high value in the first mesh (obtained by geometrical re-
finement) to a considerably lower value after the error-based h-adaptive refinement.
Despite of complexity of the model, with a high number of geometrical entities, the
ratio of elements requiring exclusive tetrahedralization with respect to the total number
of elements is only around 10% in the first mesh and further decreases to 2% in the
second mesh.

Mesh Internal Boundary temp. Boundary excl. Tetrahedra
1 9356 (48.4%) 8109 (41.9%) 1851 (9.7%) 73866

2 60223 (73.2%) 21199 (25.7%) 720 (2.1%) 150633

Table 3.1: Topology of the approximation meshes in terms of different types of ele-
ments and subdomains.

The global estimated error in energy norm for the first mesh is 20.86%. Figure
3.23a shows the element-wise relative estimated error in energy norm. For clarity we
have plotted a section of the mesh to observe the distribution of error also in the in-
ternal elements. The error map shows that the error is larger along the singularities
and the area where the Dirichlet conditions where applied. These errors will drive
the h-refinement process that will result in the mesh shown in Figure 3.23b. We can
observe higher density of elements in this mesh compared to the first one analyzed.
Figure 3.23c represent the Von Mises stress field. We can also observe that the highest
stress correspond to this mesh due to the better discretization. The estimated error in
energy norm obtained for this mesh is 13.76%. Due to the presence of singularities in
the problem the convergence rate is suboptimal, as expected.

In Paper C - Section 6 the reader can find the convergence analysis with h-adapted
meshes.

3.4. Shape sensitivities and optimization

The algorithms for the solution of (2.15) are, normally, iterative. We will mainly
focus in this Thesis on the gradient-based optimization algorithms because of their
fast convergence to the optimal solution. As indicated in Section 2.3, these methods
require the computation of the objective function, the constraints and their derivatives
(sensitivities) with respect to the design variables, a, for each geometry considered
during the process.
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(a) Element-wise error estimation.

(b) Approximation mesh. (c) Von Mises stress field.

Figure 3.23: Hydraulic screw. Error-based h-refinement.

We propose to adapt to cgFEM a shape sensitivity analysis methodology, exploit-
ing the features of our embedded methodology, aiming for the efficient calculation
of sensitivities to reduce the computational cost of the optimization process. We
choose a discrete semi-analytical approach. This specification means that some of
the discrete derivatives rely on analytical derivation and some on finite difference ap-
proximations, i.e. to differentiate the nodal locations with respect to design variables

50



3.4. Shape sensitivities and optimization

(velocity fields), which is a challenging issue considering the immersed nature of the
cgFEM.

3.4.1. Design velocity fields

Shape sensitivity analysis requires the evaluation of the so called design velocity
field Vm:

Vm =
∂p

∂am
(3.16)

p = p(a) being the position of an arbitrary point expressed as a function of the
design variables a. While the numerical solution and sensitivity analysis are defined
on the whole domain ΩPhys, the velocity fields are defined only on the boundary of
the domain and there is no closed conformation of this field in the interior.

Theoretically, the velocity field should have the same regularity as the displace-
ments field and depend linearly on the alteration of the design variables. In practical
terms, different applications can also impose certain practical additional requirements
on the velocity field, such as the need to maintain the mesh topology, to provide FE
nodes necessarily located on the boundary of the domain, to produce non-distorted
meshes, to be naturally related with the design parameters of the CAD models or to
be efficient and general.

Magnitudes like the sensitivity of the strain energy are not affected by the values
of the velocity fields in the interior of the domain, provided the velocity fields meet the
theoretical requirements and the exact structural response is used in the evaluation
of this sensitivity. However, in practice, the FE approximation will be used instead
of the exact structural response. As a consequence, the final sensitivity of the strain
energy will be affected by the velocity fields considered in the interior of the domain
[119].

The velocity field is usually defined at the nodes of the FE mesh and then in-
terpolated by the shape functions used to interpolate the displacements, so that the
velocity fields and the displacements field will have equivalent regularity. In the fol-
lowing subsections we describe the procedures used to define the design velocity fields
along the boundary and inside the domain considering cgFEM’s special characteristics
for developing efficient procedures for shape sensitivity analysis.

As the algorithms used in standard FEM for velocity field definition (see com-
parative studies in[120, 121, 122, 123]) cannot be used directly in an IBM context,
we will therefore consider some alternatives to generate adequate velocity fields for a
Cartesian grid framework, in the context of embedded methods.
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3.4.1.1. Generation of boundary velocity fields

NURBS (Non-Uniform Rational B-Spline) curves and surfaces were used in the
present study to describe the boundary of 2D and 3D domains.

NURBS surfaces are obtained from a tensor product through two knot vectors
Ξ = {ξ1, . . . , ξn+p+1} and Γ = {η1, . . . , ηm+q+1} which define the parametric space.
The n × m control points Pi,j form a control net. The NURBS surface S (ξ, η) is
defined on the one-dimensional basis functions N (p)

i and M (q)
i (with i = 1, . . . , n and

j = 1, . . . ,m) of order p and q, respectively, as

S (ξ, η) =

n∑

i=1

m∑

j=1

N
(p)
i (ξ)M

(q)
j (η)wi,jPi,j

∑n
i=1

∑m
j=1N

(p)
i (ξ)M

(q)
j (η)wi,j

(3.17)

Therefore, for a specific design variable am the calculation of the velocity field on
the parametrized boundary S(ξ, η,a), is simple and can be expressed as:

Vm,Γ (x(ξ, η), y(ξ, η), z(ξ, η)) =
∂S(ξ, η,a)

∂am
= f

(
∂P(a)

∂am

)
(3.18)

The boundary velocity field on the discrete model is achieved by the evaluation of
(3.18) using the parametric coordinates (ξ, η) of each surface point. The analytical
evaluation of the derivatives of the NURBS and trimmed NURBS (see Subsection
3.4.1.1.1) can be cumbersome, because of the lack of explicit expressions to evaluate
the control points as a function of a, and will depend on how each CAD system gen-
erates the surfaces as a function of the parameters defined by the user. Therefore, for
the sake of generality, we propose to evaluate these derivatives by the finite differences
approximation contained in the following equation:

Vm,Γ
∼= ∆S(ξ, η,a)

∆am
=

S(ξ, η,a + ∆am)− S(ξ, η,a)

∆am
(3.19)

where ∆am is a perturbation of the design variable am.
Equation (3.19) will be used to obtain the velocity field at the parametric coordi-

nates (ξ, η) of the points on the boundary required by the shape sensitivity analysis.

3.4.1.1.1. Velocity field on trimmed surfaces

NURBS surfaces are four-sided patches that do not allow for the presence of holes
nor the direct creation of irregular shapes. Trimming is a valuable procedure to devise
complex objects. A trimmed NURBS surface consists of: a) a tensor product NURBS
surface and, b) a set of properly arranged trimming curves lying within the parametric
rectangle of the surface. It is useful to represent the trimming curves in NURBS form.
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Assume that nc NURBS curves are defined as:

Ck (λ) = (ξk (λ) , ηk (λ)) k = 1, 2, . . . , nc (3.20)

The Ck (λ) curves are all properly oriented forming loops, which establish the
boundary of the trimmed region such that, when advancing along the piecewise curve
as indicated by its numbering, the real surface material is always on the same side,
see Figure 3.24a. The trimmed surface boundaries are then retrieved by mapping the
2D trimming curves onto the surface. That is,

S (ξk (λ) , ηk (λ)) k = 1, 2, . . . , nc (3.21)

are surface curves bounding the trimmed surface. Figure 3.24b shows the 3D mapping
of the trimming loop.

(a) Trimmed parametric space. (b) Trimmed physical surface.

Figure 3.24: NURBS surface example.

The trimming procedure in general does not allow application of the previously
explained procedure to evaluate the boundary velocity field. The reason for this
is that, when dealing with trimmed entities, in some cases the generation of new
geometries is obtained by modifying the trimming curve in the parametric space
but not the parametric space itself, i.e. without modifying the control points of the
surfaces, leading to Vm,Γ = 0 in (3.18), as in Figure 3.25.

Let us consider a trimmed NURBS surface defined as:

S (Ck (λ,a) ,a) = S (ξk (λ,a) , ηk (λ,a) ,a) k = 1, . . . , nc (3.22)

where C are NURBS curves and (ξk (λ,a) , ηk (λ,a)) are the surface parametric coor-
dinates of the k trimming curve function of the parameter λ and the design variable
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vector, a. In this definition, we assume that a can influence both the surface S and
the trimming curves C.

Now let us assume a change in the design variables such that ã = a + ∆am, where
∆am is a small increment in a single design variable. Figure 3.25c shows an illustration
of this change in the parametric space ΓT , that leads to the new domain ΓT̃ . Figures
3.25b and 3.25d show how a change in the trimming loop yields a different mapping of
the subspace, while keeping the control polygon in place. However, it is still necessary
to evaluate the value of the velocity field for the points in the domain represented in
Figure 3.25a.

(a) Original parametric space. (b) Original physical space.

(c) Perturbed parametric space. (d) Perturbed physical space.

Figure 3.25: Trimmed NURBS surface example. Modifying trimming curves.
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Let A in Figures 3.25a and 3.25b be a point of interest of coordinates (ξ, η)A in the
parametric space and (x, y)A in the physical space. The perturbation of the design
variable am will modify the trimmed surface in the parametric space and hence in
the physical space. This will perturb the position of A to Ã (see Figures 3.25c and
3.25d) of coordinates (ξ, η)Ã in the parametric space and (x, y)Ã in the physical space.
The evaluation of the design velocity field at A will require the evaluation of this
perturbation in the physical space. We therefore need to find how (ξ, η)A is mapped
to (ξ, η)Ã. This can be evaluated on the trimming curves Ck(λ,a) but we also need
this information in the interior of ΓT .

The velocity field on the trimming curve Ck boundary for this particular problem
can be written as:

Vm,C =
∂S (Ck (λ,a))

∂am
(3.23)

Equation (3.23) will evaluate the velocity field only on the trimming curves. This
means that the parametric coordinates of the points (ξ, η) on ΓT will have to be
updated to consider the change of the parametric subspace that leads to ΓT̃ . Figure
3.26 shows a general case in which a number of points of interest on the surface,
defined by their original parametric coordinates {ξa, ηa}), should be updated to new
coordinates {ξã, ηã} to obtain a transformation consistent with the trimming curves.

(a) Parametric space. (b) Physical space.

Figure 3.26: Problem transforming points within a trimmed NURBS surface.

We adapted the idea of the physical approach [124] to obtain this update from
{ξa, ηa} to {ξã, ηã}. Hence, we propose solving an auxiliary elasticity problem with
imposed displacements on the boundary. It is possible to create a 2D finite element
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model in the original parametric space from information that is already at our dis-
posal. In this case the intersections between the surface with the Cartesian axes
would be the nodes and the elements would be defined by the faces of the integration
subdomains on the surface (see Section 3.1). Figure 3.27a shows this proposal. The
discretized system of equations of the auxiliary problem can be written as:

KP = F (3.24)

where K is the stiffness matrix, F is the vector of equivalent nodal forces. In this
case F = 0 as Neumann boundary conditions are not applied, and P contains the
prescribed displacements on the boundary and the unknown values of the field in the
interior of the domain. These ’prescribed displacements’ will correspond to the values
of the change on the trimming curves coordinates such that:

Pm,k = (ξk (λ,a + ∆am) , ηk (λ,a + ∆am))− (ξk (λ,a) , ηk (λ,a)) k = 1, . . . , nc
(3.25)

In this way the displacements imposed are those that change the position of the
trimming curves in the parametric space associated with the design variable under
study.

Solving (3.24) after applying the Dirichlet boundary conditions provides the per-
turbation of the position of all the nodes of the mesh shown in Figure 3.27b, which
can be interpolated into the elements. The result will be the position of the origi-
nal points mapped into the new subspace defined by the perturbed boundary in the
parametric space:

{
ξ̃, η̃
}

= {ξa+∆am , ηa+∆am} = {ξa, ηa}+ Pm (ξa, ηa) (3.26)

The velocity field on these surfaces will be calculated as:

Vm,Γ
∼= ∆S(ξ, η,a)

∆am
=

S(ξ̃, η̃,a + ∆am)− S(ξ, η,a)

∆am
(3.27)

The procedure proposed to evaluate the design velocity field for these surfaces
involves solving a 2D FE problem. However, the associated computational cost is low,
as: a) the FE mesh used for the analysis is that of a previously evaluated triangulation
of the trimmed surface in the parametric space required for intersecting the surface
with the Cartesian mesh, b) the mesh is a relatively coarse 2D mesh, thus involving
a low computational cost and c) the factorization of K obtained during the process
is common to all the design variables.

3.4.1.2. Generation of domain velocity fields

Figure 3.28a uses a 2D case to show that, using fixed Cartesian grids, it is pos-
sible to find nodes external to the domain (green dots) that will be involved in the
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(a) FEM system using the parametric space of a trimmed
NURBS surface.

(b) Solution in the parametric space. (c) Solution in the physical space.

Figure 3.27: NURBS surface example solved using the proposed strategy.

evaluation of the design velocity field. Strategies are needed to assign the velocity
field both to internal and external nodes so that we can interpolate the velocity field
at any point on the elements.

A perturbation of the boundary will not induce a perturbation of the Cartesian
nodes internal to the surface. The velocity field will be zero in the internal elements,
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(a) Existence of external nodes. (b) Perturbation of geometry only
in boundary elements.

Figure 3.28: Embedded methods and velocity fields.

thus reducing the computational cost associated with the evaluation of their volume
integrals for shape sensitivity analysis, e.g. the non-shaded elements in Figure 3.28b.

We propose two different velocity field generators that will represent the geometry
changes only in these elements. Both methods can be classified as boundary element
methods [7], as the velocity fields will be non-zero only on the band of elements
intersected by the parametrized boundary.

Figure 3.29 shows an example of the velocity field for the case shown in Figure
3.28 that would be obtained by the proposed methods using the radius as the design
variable. Figure 3.29a shows the interpolation of the velocity field even on the external
nodes, while Figure 3.29b represents the actual velocity field necessary to evaluate
the integrals of the sensitivity analysis of the internal elements and the integration
subdomains in the interior of the physical domain of the boundary elements.

3.4.1.2.1. Least squares approach

In this first method we use a least squares procedure to extrapolate the values to
the external nodes imposing the velocity field on the boundary and the zero velocities
on the internal nodes of the elements of the boundary of the layer.

An FE nodal interpolation for each component of the design velocity field is fitted
into each element with the velocity field values at the surface integration points of
the elements and to V = 0 at the internal nodes of the boundary elements. By using
a least square approach we obtain the linear system of equations:

MVm,q = Gm,q q = x, y and z (3.28)
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(a) Velocity field including the val-
ues of external nodes.

(b) Effective velocity field.

Figure 3.29: Representation of a velocity field with the proposed strategies.

The system matrix M is obtained by the assembly of the mass matrix-type array
of each element along the boundary. The global mass matrix is given by:

M =

ne∑∫

Γe
D

NTN|J|dΓ (3.29)

where

ΓeD is the portion of the boundary within the element,
N corresponds to the matrix of finite element interpolation functions.

On the other side of the equation, the vector Gm,q is evaluated by adding the
contribution of elements:

Gm,q =

ne∑∫

Γe
D

NTVe
m,q|J|dΓ q = x, y, z (3.30)

with Ve
m,q as the qth component of the velocity field on the boundary related to the

design variablem within each element. This is a low-cost procedure as it only involves
the elements along the boundary, which is of interest for 3D domains.

3.4.1.2.2. Physical approach

This method consists of solving a linear elasticity problem in which the velocity
field on the boundary is considered as the displacements applied on the boundary.
This auxiliary problem will have, for example, the following characteristics:

59



3. Contributions

• The body ΩPhys is characterized with a linear elastic material with Young’s
modulus equal to one and zero Poisson’s ratio;

• The discretization used to evaluate the design velocity field is the discretization
used to evaluate the displacements;

• Every single shape design variable gives a non-zero velocity field on the elements
cut by the boundary and zero velocity on the rest of the domain, which ensures
the equilibrium of each auxiliary problem. The unknowns are the velocities for
all external nodes of the actual FE mesh ΩApprox.

This method needs the resolution of a system of equations as large as the original
problem, however the associated computational cost is reduced, as: a) the FE mesh
used for the analysis is the same Cartesian mesh as that used for the sensitivity
analysis, b) we can remove the internal nodes from the system since the velocity field
is set to 0 on these nodes, leading to a problem only associated with the domain’s
boundary, which can be seen as a 2D problem, and c) the stiffness matrix K can be
factorized during the process and used for all the design variables.

3.4.2. Calculating shape sensitivities with FEAVox

This section describes the adaptation of the discrete analytical method to evalu-
ate shape sensitivities when using cgFEM. In order to do this we have to take into
consideration that imposing Dirichlet boundary conditions in an immersed boundary
environment requires different strategies from those used in standard FEM, as in the
calculation of the shape sensitivities dealt with in this section.

The derivative of (3.7) with respect to any design variable am provides the sensi-
tivity of the calculation

(
∂K

∂am
+
∂KD

∂am

)
u + (K + KD)

∂u

∂am
=

∂fq
∂am

+
∂fg
∂am

+
∂fs
∂am

(3.31)

then, rearranging, yields

(K + KD)
∂u

∂am
=

(
∂fq
∂am

+
∂fg
∂am

+
∂fs
∂am

)
− ∂K

∂am
u = fpsm (3.32)

The discrete analytical method consists of obtaining analytical expressions of the
sensitivities of the external forces and stiffness matrix. In our case we used the
finite differences approximation of Eqs. (3.19) and (3.27) in the evaluation of the
velocity field that will be used to obtain the derivatives of the previous equation. The
sensitivities of the displacements are obtained from (3.32) and from these sensitivities
other response magnitudes are calculated.
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3.4. Shape sensitivities and optimization

3.4.2.1. Evaluation of derivatives

We derive the components of (3.32) to be able to evaluate the shape sensitivities
in the Cartesian grid framework. First, starting with ke and considering that the
derivative of D with respect to design variables is zero

∂ke

∂am
=

∫

Ωe

[
∂BT

∂am
DB + BTD

∂B

∂am

]
|J|dΩ +

∫

Ωe

[
BTDB

∂|J|
∂am

]
dΩ (3.33)

As shown in [125], this expression depends on known magnitudes and the factors
∂B
∂am

and ∂|J|
∂am

, which are a function of the velocity field evaluated above.
To evaluate ∂ke

D

∂am
it is necessary to take into account that, as the Cartesian grid will

not be modified by the design variables, h and C do not depend on am. Therefore,
the only non-zero partial derivative with respect to am is ∂|J|

∂am
, which leads to:

∂keD
∂am

=

∫

Γe
D

κ∗

h
CTC

∂|J|
∂am

dΓ (3.34)

Considering constant acting forces, the derivatives of f are

∂feg
∂am

=

∫

Γe
D

κ∗

h
CT g

∂|J|
∂am

dΓ (3.35)

where we have assumed that the Dirichlet boundary conditions are not a function of
the design variables,

∂fes
∂am

=

∫

Γe
D

[
CT ∂T(ûh)

∂am
|J|+ CTT(ûh)

∂|J|
∂am

]
dΓ (3.36)

where

∂T(ûh)

∂am
=
∂σ∗

∂am
n + σ∗ ∂n

∂am
(3.37)

To evaluate the stresses in linear elasticity we consider the general expression for
the calculation of the FE stresses σh in continuous isoparametric elements

σh = DBueh (3.38)

ueh being the vector of nodal displacements of element e. Taking the derivative with
respect to the design variable am yields

∂σ

∂am
= DB

∂ueh
∂am

+ D
∂B

∂am
ueh (3.39)
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where all terms on the right can be evaluated. Once we have evaluated both σ
and ∂σ

∂am
we can apply the construction of the smoothing field based on a recovery

technique shown in [104].

To simplify the evaluation of ∂σ∗

∂am
we considered ∂σ∗

∂am
=
(
∂σ
∂am

)∗
. The numerical

results will show that this approximation, previously used in [126], does not influence
the results.

In Paper D - Section 4 the reader can find the convergence analyses of this method-
ology using the proposed velocity fields.

3.4.3. Optimization using Cartesian grids

Structural shape optimization processes will benefit not only from the computa-
tional efficiency and accuracy of cgFEM but also from its data structure, which will
allow information to be shared between the different geometries analyzed during the
process, further improving the optimization process. An adapted mesh can be gener-
ated for each design without the need to perform a full adaptive remeshing procedure.
This is based on using the sensitivity analysis of all magnitudes related with adaptive
remeshing (location of nodes, error estimation, etc.) with respect to the design vari-
ables, and needs to be done only once on a geometry of reference and then the results
can be projected onto other designs for analysis. This procedure is useful for moderate
shape modifications during the whole optimization process, although the sensitivity
analysis can be repeated if required. The projected information allows to generate an
appropriate adapted mesh for each new design in one shot, with a much lower com-
putational cost than the traditional adaptive remeshing operation over each design.
This method was inspired by a similar strategy that was developed and used in the
context of gradient-based[127] and evolutionary[128] optimization methods based on
the standard, body-fitted, Finite Element Method.

3.4.3.1. Data sharing

It should be noted that the hierarchical relationships considered in the data struc-
ture involves the automatic improvement of mesh refinement, thus positively affecting
the efficiency of the FE implementation. Nodal coordinates, mesh topology, hierar-
chical relations, neighborhood patterns, and other geometric information are algorith-
mically evaluated when required.

As shown in [1, 42], cgFEM’s hierarchical data structure provides the ability to
re-use multiple calculations and considerably improve computational efficiency. We
adapted the data sharing procedures presented in these references to the 3D case as
summarized below.

62



3.4. Shape sensitivities and optimization

The basic example of re-use of calculations is in linear elasticity problems with
homogeneous materials, where all internal elements share the same stiffness matrix,
which is only calculated once on a reference element. A scale factor related to the
mesh level is then used to adapt the stiffness to the actual element size. Figure 3.30a
shows a cross section of a model of a quarter of a cylinder, Figure 3.30b shows a
coarse analysis mesh and Figure 3.30c shows the mesh obtained after its h-adaptive
refinement. For both meshes we only have to evaluate one element for the domain
colored in green, which represents all the internal elements.

H -adaptive analysis benefits from the hierarchical data structure by means of the
so-called vertical data sharing. This technique consists of using the hierarchical data
structure to keep the element matrices evaluated for each boundary element so that
this information is already available if they appear again in other meshes of the h-
adaptive analysis. Figure 3.30c represents the resulting mesh of an h-adaptive process
where the blue colored elements have been evaluated in previous meshes. The only
element matrices that need to be evaluated for the analysis of the mesh shown in this
figure are the yellow elements.

(a) Model of a quarter of a
cylinder.

(b) Coarse mesh i. (c) h-adapted mesh i + 1.

Figure 3.30: Vertical data sharing example.

The body-fitted meshes of the traditional FEM hinder the efficient exchange of
information between different geometries. However, cgFEM’s hierarchical data struc-
ture provides a framework that can easily transfer information between different ge-
ometries through the so-called horizontal data sharing, which only requires all the
geometries to be defined within the same embedding domain to ensure that the Carte-
sian grid pile is the same for all geometries, making the inter-geometries data transfer
possible.

The boundary of the domain can be subdivided into three types:

Type 1. Fixed part: Part of the boundary that remains fixed in all the geometries
(such as the internal curve of the cylinder represented in Figure 3.31a). The

63



3. Contributions

matrices of the elements trimmed by a Type 1 boundary will be shared between
different geometries (see dark blue elements in Figure 3.31).

Type 2. Moving part with fixed intersection pattern: These surfaces or curves
can be changed by the optimization algorithm, but this does not affect the in-
tersection with the elements. In Figure 3.31a, we can see two of the models’s
Type 2 planes of symmetry curves. The matrices of the elements fully trimmed
by a Type 2 boundary will also be shared between different geometries (see light
blue elements in Figure 3.31).

Type 3. Free moving part: This part of the geometry can freely change during
the optimization analysis with no predictable pattern, e.g. the outer curve in
Figure 3.31a.

(a) Different types of entities. (b) Individual j + 1.

(c) Individual j, mesh i. (d) Individual j, mesh i + 1.

Figure 3.31: Horizontal data sharing example.

For the geometry shown in Figures 3.31a and 3.31b, the matrices for the green
elements had already been evaluated in a reference element and vertical data shar-
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ing reduced the calculations through the h-adaptive refinement of that particular
geometry. Finally, after considering the vertical data sharing, the number of (yellow)
elements that need integration are considerably fewer than the elements in the mesh.

3.4.3.2. Nested domain reordering

Solving large sparse linear systems is the most time-consuming computation in
shape optimization using FEM.

Matrix reordering plays an important role in the performance of direct solvers. In
fact, it is common to reorder the system matrix before proceeding to its factorization
as it can increase the sparsity of the factorization, making the overall process faster
and reducing the storage cost. Finding the optimal ordering is usually not possible
although heuristic methods can be used to obtain good reorderings at a reasonable
computational cost.

This section aims to show how the hierarchical data structure inherent to Carte-
sian grids, thus directly related to mesh topology, can be used to directly obtain a
reordering of the system matrix that speeds up the Cholesky factorization process.
The Nested Domain Decomposition (NDD) technique is a technique specially tailored
to h-adaptive FE analysis codes with refinement based on element subdivision. The
technique simply consists of recursively subdividing the problem domain using the
hierarchical structure of the mesh. This technique was first described in [88] and ap-
plied in an implementation of a FEM that used geometry-conforming meshes and later
adapted to a Cartesian grid environment in 2D[42]. In this Thesis we use an NDD 3D
generalization. The technique consist of subdividing the problem domain considering
each element of a uniform grid of the lowest levels of the Cartesian grid pile (normally
the Level-1 grid, with 2x2x2 elements). The degrees of freedom of the nodes of the
mesh to be analyzed falling into a subdomain will then be allocated together in the
stiffness matrix. The nodes falling on the interface of the subdomains will not be
reordered and will simply be moved to the end of the matrix, producing the typical
arrowhead-type structure the domain decomposition techniques. This idea is then
recursively applied to each original subdomain, producing a nested arrowhead-type
structure. This reordering considerably reduces the computational cost associated
with the resolution of the system of equations.

Figures 3.32, 3.33 and 3.34 graphically show the process. The embedding do-
main (Figure 3.32a) is subdivided into 8 subdomains or regions as shown in Figure
3.32b. Each subdomain is in a different color. We can easily identify the subdomains
with the elements of the first refinement level, so that nested reordering in cgFEM is
done by grouping the nodes according to the corresponding element in the hierarchi-
cal structure. Figure 3.32c shows an example of an analysis mesh ready for nested
reordering.

For the sake of clarity we use a 2D representation of the process. Figure 3.33a
shows the domain subdivision with a Level-1 grid and the nodes subdivided into 9
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(a) Body within the embed-
ding domain ΩPhys ⊂ Ω.

(b) Level 1 subdivision. (c) Example of 3D mesh to be
reordered.

Figure 3.32: Nested Domain Decomposition environment.

different categories, 5 of which are shown in the 2D representation. The colored
categories indicate the nodes falling into each of the elements in the Level-1 grid and
the black fall on the interface between the Level-1 elements. The stiffness matrix
will be reordered, grouping all the nodes by color, as shown in Figure 3.34b, into
an arrowhead-type structure made up of blocks. The blocks on the diagonal (two
shadowed in blue and red) have a structure similar to that of the original non-reordered
stiffness matrix in Figure 3.34a.

Level-2 reordering (Figure 3.33b) indicates that each of the Level-1 subdomains is
again reordered in the same way. For instance, the red subdomain in Figure 3.33a is
subdivided into 8 subdomains (only 4 are shown in 2D) separated by their interface,
represented in black, as shown in Figure 3.33b.The interfaces of previous levels are
represented by white nodes. The same process is followed for the next levels, using
the elements of the corresponding level of the hierarchical structure.

In the process, each node of the mesh is given a code with as many digits as levels
of the Cartesian grid pile used. The i-th digit of the code contains the subdomain
number (1 to 8) of the node considering the Level-i grid, or 9 if the node is on the
interface between the Level-i subdomains, as in Figures 3.33a to 3.33c for levels 1 to
3. Once the code of each node has been obtained a simple ’alphabetical’ reordering
of the codes provides the NDD reordering of the nodes. The degrees of freedom of
the matrix will then be reordered considering nodal reordering.

The result of the NDD reordering generates the nested arrowhead type structure
of the stiffness matrix represented in Figure 3.34c, which could also be used to define
efficient nested domain decomposition solvers or iterative solvers, as in [129] which
describes their initial implementations. However, we use this technique here to reorder
the system of equations to improve the performance of the Cholesky factorization.
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(a) Level-1 decomposition. (b) Level-2 decomposition. (c) Level-3 decomposition.

Figure 3.33: Nested Domain Decomposition scheme.

(a) Original stiffness matrix. (b) Level 1 decomposition re-
ordering.

(c) Last reordering (Level 4).

Figure 3.34: Nested Domain Decomposition output.

3.4.3.3. Automatic h-adaptive mesh projection

We use a gradient-based algorithm [130] which uses first-order sensitivities of the
objective functions and constraints to evaluate the solution of (2.15). Using this infor-
mation and the values of the design variables for the j-th geometry obtained during
the iterative process (aj), see Figure 3.35a, the algorithm generates the modified
values of aj defining an improved design (aj+1) using

aj+1 = aj + αS(a)j+1 (3.40)

where S(a)j is the search direction vector and α is a parameter related to the step
size.

67



3. Contributions

(a) Reference design (j). (b) Perturbed design (j + 1).

Figure 3.35: Design evolution during optimization.

After the definition of the (j + 1)-th geometry to be analyzed (see Figure 3.35b)
it is necessary to construct the new analysis mesh. Previous developments using
standard body-fitted FE meshes [127, 128], in which the information required to
define a new mesh was projected from one geometry to another, made use of the
following expression:

Mj+1 ≈Mj +
∑(

∂Mj

∂am

)
·∆am (3.41)

where M represents any magnitude that has to be projected from geometry j to
geometry j + 1. The h-adapted mesh used in these references generated from a mesh
optimality criterion that minimized the number of elements in the mesh to be created
that would produce the prescribed estimated error in energy norm. In the following,
we use our 3D generalization of this criterion (see Section 3.3.2).

Let us assume that Ωj,def is mesh n of an h-adaptive analysis that corresponds
to the geometry j + 1 and we want to evaluate mesh n + 1 (the new mesh) of the
h-adaptive sequence, then the size h of each element of the mesh n + 1 is given by
Equation (3.15), reproduced here for convenience:

hn+1
e,n ≈ hne

[
1

Mn

]1/2(p+1) [‖en+1‖
‖en‖

] d
2p2+pd

[‖en+1‖
‖en‖e

] 2
2p+d

To use this expression we have to replace ‖en‖e by a projection from a previous
geometry j, evaluate ‖e‖n as the summation of all the projected errors in elements
and evaluate ‖en+1‖ as

‖en+1‖ =
γ

100
‖uj+1

es ‖ (3.42)
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where γ is the prescribed percentage of relative error in energy norm and ‖uj+1
es ‖ is

the global projected energy norm.
Once a new design has been defined, the projection thus starts with the previous

analysis mesh, defined as Ωj,� in Figure 3.36a, using the previously computed coor-
dinate sensitivities. The projected position rj+1 for each node of the mesh is given
by:

rj+1 = rj +

m∑

i

(
aj+1
i − aji

)(∂rj

∂aji

)
(3.43)

Likewise, the estimated error in energy norm and the estimated energy norm
at each element required in (3.15) can also be estimated by projection using the
expressions

‖ees‖2e,j+1 ≈ ‖ees‖2e,j +

m∑

i

(
aj+1
i − aji

) ∂‖ees‖2e
∂ai

(3.44)

‖ues‖2e,j+1 ≈ ‖ues‖2e,j +

m∑

i

(
aj+1
i − aji

) ∂‖ues‖2e
∂ai

(3.45)

These projections give an approximation of the values of the estimated error in
energy norm and the energy norm that would be obtained if the next design were
computed with the previous Cartesian mesh Ωj,� projected onto the new geometry,
represented as Ωj+1,def in Figure 3.36b.

(a) Cartesian reference analysis
mesh, Ωj,�.

(b) Projected (non-Cartesian)
mesh on geometry j + 1.

Figure 3.36: Mesh projection procedure.
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Without any further computation on geometry j+1, the projected estimated error
and energy norm allow us to estimate the quality of the results that would be obtained
through the FE analysis of geometry j + 1 with a mesh (Figure 3.36b) equivalent to
the one used in the previous design j (Figure 3.36a). If the target error prescribed
for the FE analysis is lower than the projected error of the (j + 1)-th geometry, the
mesh must be h-refined using (3.15).

Up to this point, the mesh projection described is comparable to the strategies used
for standard body-fitted meshes [127, 128]. As we can easily observe in Figure 3.36b,
this kind of projection yields a discretization that is not compatible with cgFEM’s
hierarchical Cartesian structure, thus wasting most of its advantages.

We therefore propose a projection strategy to generate an h-adapted analysis mesh
of the new design j + 1, keeping the Cartesian structure intact.

This strategy simply requires projecting the element size evaluated using (3.15)
for the elements of Ωj+1,def (Figure 3.36b) onto the embedding domain Ω. To do
this we assign this element size to the Gauss points of each element and project all
the integration points of Ωj+1,def to Ω. These projected integration points containing
element size information can be trivially located in the elements of a uniform Cartesian
grid of the prescribed level. These Cartesian elements are then recursively refined until
the size of each element is smaller than the minimum element sizes defined by the
Gauss points contained in the element, leading to an h-adapted Cartesian grid (see
3.37b)

(a) Perturbed integration points. (b) Projected Cartesian mesh,
Ωj+1,�

Figure 3.37: Mesh projection procedure.

From this projection perspective, sensitivity analysis can transform a posteriori
error estimation into a preprocess tool able to generate an h-adapted mesh for the
new design, recycling the calculations obtained in previous stages of the optimization
process.
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Illustrative example. The objective of this problem is to minimize the volume
of a connecting rod without violating the given maximum Von Mises stress. Because
of the symmetry, only a fourth of the component is modeled. The geometry of the
initial design and the boundary conditions are shown in Figure 3.38. The geometry
parameters are AB = 11, C = 4, AD = 20, DE = 4, F = 1.5, DG = 7, HG = 5.5.
The Young’s modulus is E = 105, and Poisson’s ratio ν = 0.333. The pressure is
P = 100 in the normal direction of the half arc as shown in Figure 3.38.

The design boundary is the surface HG. The end point H is fixed while eight points
are used to interpolate HG. The vertical positions of the eight interpolation points
on the design surface are set as design variables (see Figure 3.39). The allowable von
Mises stress is σVM = 900.

Figure 3.38: Front view of the connecting rod problem with boundary conditions.

Figure 3.39: 3D model representation showing the 8 design variables.

The initial values of the design variables and their allowed data range are shown
in Table 3.2.
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Design variable Initial value Data range
a1, a5 7 [1 − 7]

a2, a6 7 [1 − 7]

a3, a7 7 [1.2 − 7]

a4, a8 7 [2 − 7]

Table 3.2: Connecting rod defined by 8 design variable. Design variables data.

Table 3.3 shows the average discretization estimated error in energy norm per
individual and the computational cost per individual. We observe for this problem
how the optimization procedure based in the mesh projection presented above saves
slightly more of the 20% of the time per individual.

Type of mesh Computational cost (s) Estimated discretization error
hAdapMeshing 607.84 2.83%
ProjMeshing 471.02 2.62%

Table 3.3: Connecting rod defined by 8 design variable. Computational results for
h-adapted and projected meshes.

Figure 3.40 shows the Von Mises stress fields for the initial configuration of the
model opposed to the field obtained for the optimal solution provided by the shape
optimization algorithm.

Figure 3.40: Von Mises stress fields: (left) initial configuration results and (right)
configuration obtained using projected meshes.
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Chapter 4

Closure

The main contributions of the Thesis and the open lines of research are summarized
in the following subsections.

4.1. Summary

In this Thesis we introduce a cgFEM-based 3D methodology for solving linear
elasticity and optimization problems and demonstrate its performance in a variety
of numerical examples. The key points of the improved cgFEM operations can be
summarized as follows:

• The use of Cartesian grids, which make the mesh independent of the geometry
and embed the problem domain in a simpler domain to facilitate the process of
creating FE meshes. This independence requires a robust intersection process
that defines the relative position of the elements with respect to the geometry.
The intersected elements also require the creation of integration subdomains to
capture the region of the cut elements internal to the physical domain.

• Novel NURBS-Enhanced integration techniques to remove the geometric errors
associated with standard Immersed Boundary Methods due to inexact approx-
imations of the embedded geometry. Even though our methodology can con-
sider piece-wise polynomial approximations, i.e. linear or quadratic facets, the
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proposed integration scheme is based on the latest CAD technologies, namely
NURBS or T-spline.

• Since IBM mesh nodes do not lie on the boundary of the physical domain it is
not possible to strongly impose essential boundary conditions, so the technique
adopted here consists of using stabilized Lagrange multipliers to impose Dirichlet
boundary conditions. Our approach takes advantage of recovered stress fields
to improve the quality of the solution along the boundary and to define the
stabilization term.

• Two strategies are proposed to generate h-adapted meshes: the first is in the
pre-analysis step and allows meshes to be geometrically adapted. The second
strategy allows the refinement to be driven by the level of error present in the
FE solution.

• A shape sensitivity calculation module has been adapted to the non-conforming
Cartesian grids. Due to the immersed boundary features, standard FEM sensi-
tivity calculations need to be adapted to provide the parameters necessary for
gradient-based optimization algorithms.

• The hierarchical data structure, easily built on the Cartesian grid mesh struc-
ture, means easy-to-implement instruments can be used to save computational
cost during shape optimization procedures. In addition, the solver benefits from
the Cartesian structure thanks to Nested Domain Decomposition reordering.

4.2. Open research lines

This work has opened up several lines of research on cgFEM technology as follows:

• Improvement of integration along the boundary
Despite the fact that the special treatment of intersected elements during in-
tegration is limited to a small proportion of the mesh, creating subdomains
in elements in which several surfaces intersect arbitrarily could be further im-
proved. In the present implementation we use pre-calculated patterns only in
the elements intersected by one surface when the other elements need specific
tetrahedralization, although a few topological situations may appear. One pos-
sible solution would be to create patterns for the most frequent intersection
situations. Another possibility is to eliminate the tetrahedrons as integration
subdomains and substitute them by specifically designed integration quadra-
tures for each of the intersection patterns.
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• To enrich the FE basis functions
It would be interesting to represent weak discontinuities, such as internal mate-
rial interfaces or even strong discontinuities such as cracks. This task could be
addressed by implementing XFEM in the cgFEM code, which would facilitate
dealing with crack propagation and provide FEAVox with interesting capabili-
ties.

• Implementation of high-order basis functions for nodal interpolation.
Many physical problems need a high-order polynomial interpolation to properly
capture the numerical solution. In this regard, there are several options, in-
cluding the degree elevation of standard FE, but since we are using structured
grids, it would be more reliable to use the Cartesian mesh as a control net for
high-order B-spline embedding volume.

• Fully implementation of recovery-based techniques including goal-
oriented error estimation
In this work error estimators are a fundamental part in the development of the
contributions. Several extensions for recovery-based error estimators are de-
scribed in [1], including error estimation in quantities of interest. These strate-
gies have been shown to be a reliable option in estimating errors in 2D cgFEM.
A natural solution would be to extrapolate the knowledge acquired in the 2D
developments to the 3D implementation described here.

• Stabilization methods
Work is in progress on improving the ill-conditioning of the system of equations
when using non-conforming meshes. The main reason for this behavior is the
fact that the energy contribution of external nodes can be very small and the
global energy of the problem is hardly affected by their solution. In addition to
the Dirichlet formulation terms, additional terms could be designed to stabilize
the solution along the Neumann boundaries. These improvements in the condi-
tion of the matrices could also affect the behavior of the iterative solvers used
for large problems and at the same time preserve the accuracy of the results.

• Developing new strategies for shape optimization
Although the developments described here are oriented towards gradient-based
optimization algorithms, gradientless algorithms could also be used. However,
the main drawback of gradientless optimization is its slow convergence due to
the lack of a proper search direction. Most of the strategies described here
could be applied to such cases and would reduce the computational cost, e.g.
the sensitivity analysis for mesh projection. Also, recent techniques based on
the creation of surrogate models, with the appropriate training, can be used to
obtain good approximations to FE results at a fraction of the cost.
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• Testing the methodology with different problems and formulations

Contact problems or Finite Element simulations of medical images are some of
the current Cartesian grid study areas in the Department of Mechanical and
Materials Engineering. These problems are the subject of a project on the
design of patient-specific implants by means of FEM models obtained from 3D
images. This Thesis provides the basis to include contact algorithms to properly
model movements between the bone and the implant and between the different
implant parts, and the shape optimization tools described here will allow to
obtain optimal implants, specially tailored to the patients’ needs extracted from
their medical data.
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Abstract

This paper proposes a novel Immersed Boundary Method where the embedded
domain is exactly described by using its CAD boundary representation with NURBS
or T-splines. The common feature with other immersed methods is that the current
approach substantially reduces the burden of mesh generation. In contrast, the ex-
act boundary representation of the embedded domain allows to overcome the major
drawback of existing immersed methods that is the inaccurate representation of the
physical domain. A novel approach to perform the numerical integration in the re-
gion of the cut elements that is internal to the physical domain is presented and its
accuracy and performance evaluated using numerical tests. The applicability, per-
formance and optimal convergence of the proposed methodology is assessed by using
numerical examples in three dimensions. It is also shown that the accuracy of the
proposed methodology is independent on the CAD technology used to describe the
geometry of the embedded domain.

Key words

Immersed Boundary Methods; Cartesian grids; NURBS; T-spline; Bézier extraction;
NEFEM
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1. Introduction

1. Introduction

In the Finite Element Method (FEM) the domain, usually defined by a Computer-
Aided Design (CAD) model, where the problem is actually solved, is partitioned in
subdomains, or elements, of simple geometries (e.g., triangles or quadrilaterals in 2D
and tetrahedra, hexahedra, prisms or pyramids in 3D). Despite mesh generation us-
ing simplexes (i.e., triangles and tetrahedra) is considered a mature technology, the
generation of a fitted mesh for complex geometries with good-quality elements to
avoid numerical errors, due to the presence of highly distorted elements, still requires
a substantial effort. In addition, the computational mesh must be adapted to prop-
erly capture the local features of the solution such as stress concentrations in solid
mechanics or boundary layers in fluid mechanics.

According to some studies, the process of creating an analysis-suitable geometry
and the appropriate meshing of that geometry for Finite Element Analysis (FEA)
takes 80% of the total time required to perform a finite element simulation. The
bibliography about this subject shows several ways to decrease this 80%. Among
them we can cite the Isogeometric Analysis (IGA) [1] and the techniques where the
mesh is made independent of the geometry of the domain to be analyzed.

NURBS (Non-Uniform Rational B-Splines) are ubiquitous in CAD and have been
successfully used as a basis for IGA where, instead of polynomials, the FE interpo-
lation functions are those used to define the geometry. This new concept seeks to
reduce errors by focusing on only one geometric model, which can be utilized di-
rectly as the analysis model. A newer CAD representation tool, the T-splines [2],
which allows for the use of the so called T-junctions, ensures the possibility to create
water-tight models (this was not always possible with a NURBS representation of
the surface) and has helped to overcome the difficulties of the IGA to produce local
refinements. IGA does not only require the NURBS discretization of the surface given
by the CAD modeler but also a NURBS/T-spline analysis-suitable discretization of
the volume. Progresses towards the automatic generation of this discretization can
be found in [3, 4, 5, 6, 7, 8].

The second option analyzed in this paper to decrease the above mentioned analysis
time, while maintaining the overall FEA environment, is to use a computational
mesh that is completely independent of the geometry of the domain. This option is
particularly attractive, for example, in an optimization framework, when the analysis
requires continuous mesh adaptations and re-meshings.

The eXtended FEM (XFEM) [9] and the Generalized FEM (GFEM) [10] are two
variations of the traditional FEM that reduce the burden of mesh generation. The
main motivation of the XFEM was to deal with cracks without the need of re-meshing
even if the cracks grow. Making use of the Partition of Unity Method (PUM) [11], this
approach enriches the numerical solution to represent singular stress fields near the
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crack tip and discontinuities on the crack faces. The GFEM uses a similar rationale
also considering the PUM to incorporate enrichment functions that characterize the
known behavior of the solution at specific locations. In both methods the mesh can
be independent of the geometry, although, for integration purposes only, a boundary-
fitted mesh, obtained by additional subdivision of elements cut by the boundary, has
to be created so that the numerical integration considers the region of the element
that actually lies within the domain.

Other variations of the FEM that were developed to reduce the burden of mesh
generation are based on the idea of defining an auxiliary and easy to mesh domain
Ω which embeds the problem domain ΩPhys. All these method were classified under
the term of Finite Elements in Ambient Space in [12]. Examples of these analysis
techniques are the Immersed Boundary Method (IBM) and the Immersed Finite El-
ement Method (IFEM). The IBM was introduced by Peskin [13] to alleviate the cost
associated with remeshing in body-fitted techniques when simulating the flow around
heart valves. Later developments including the IFEM [14] were proposed in order to
avoid the limitations associated to the assumption of the fiber (i.e., one-dimensional)
nature of the immersed structure. Immersed boundary methods, often referred to
as embedded methods, have been object of intensive research within the fluid me-
chanics community and several alternatives and modifications to the original method
have been proposed, see [15] for a review. These methods have become very pop-
ular in the last decade within the computational bio-mechanics community, see for
instance [16, 17, 18]. As in the case of XFEM and GFEM, to numerically compute
the integrals appearing in the weak formulation, these techniques rely on a submesh
of the elements cut by the boundary that is used to perform the integration in the
interior to the physical domain, ΩPhys. Therefore these elements require a specific
treatment.

As previously indicated, the geometry of the domain to be analyzed is usually
defined by a CAD model. The accuracy of the geometric representation in FE com-
putation is another issue to take into account which in the late 1990s motivated
the incorporation of powerful CAD techniques into FE computations [19]. The sci-
entific community has realized about the need to integrate CAD systems with the
numerical analysis tools and any attempt towards this integration will require from
numerical analysis tools to be able to use the most modern techniques used in the
CAD industry. Because of this, methods able to incorporate the most extended CAD
technology, namely NURBS and more recently T-Splines, into the FE analysis stage
such as IGA methods [20, 21] or the NURBS-Enhanced Finite Element Method (NE-
FEM) [22, 23, 24] have become very popular.

When the IBM-type methods are applied to complex geometries, it is common
to substitute the exact geometry of the embedded domain by an approximated de-
scription using a faceted representation in three dimensions. The errors introduced
by an approximated geometry representation can be termed as geometrical model-
ing errors that will translate into numerical integration errors that will negatively
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influence the accuracy of the numerical analysis because the submesh employed for
integration purposes is directly constructed using the approximated embedded geom-
etry. The importance of the geometrical model in body-fitted FE simulations has
been pointed out by several authors, see [22] and references therein, but it has been
rarely accounted for in immersed techniques until very recently [25, 26]. In this work,
the CAD description of the boundary of the physical domain is considered.

In addition, new strategies for treating boundaries and interfaces have been devel-
oped recently. Within the scope of the IGA, a two dimensional NURBS-based IGA
with trimming technique [27] in which the auxiliary domain Ω is defined as a NURBS
parametric space has been proposed. Another interesting approach is the Finite Cell
Method (FCM) [28] which uses the p-version of the FEM to perform adaptive analysis
over a mesh of regular quadrilaterals (2D) or cubes (3D). One of the main features of
the FCM is that, for integration purposes, it uses a highly refined integration mesh
into each of the elements cut by the boundary to appropriately capture the limits of
the domain, hence, the resolution of the boundary is related to the refined integration
mesh. In exchange, our approach will consist of using high-order quadratures over the
integration subdomains of the coarse mesh to capture the boundary of the problem.

The Cartesian grid Finite Element Method (cgFEM) presented by Nadal et al. [29,
30] is a computationally efficient FE methodology for the resolution of 2D linear elas-
ticity problems that makes use of a Cartesian grid in which the problem domain is
embedded. A hierarchical data structure relates the different refinement levels of the
Cartesian grid allowing for the definition of h-refined meshes for h-adaptive analy-
sis and for the simple data transfer and re-utilization between elements of different
refinement levels. The Superconvergent Patch Recovery technique for displacements
(SPR-CD) uses constrain equations to obtain accurate recovered displacement and
stress fields that locally satisfies the equilibrium equations and the Dirichlet bound-
ary conditions. These fields are used as the standard output of cgFEM instead of
the raw FE solution and as part of the information required by the Zienkiewick-Zhu
error estimator [31] that drives the h-adaptive refinement process. Dirichlet boundary
conditions are imposed using a stabilized Lagrange multipliers approach [32], where
the stabilization term is provided by the FE tractions along the Dirichlet boundaries
evaluated in a previous mesh. In cgFEM, a procedure, only valid for the 2D case,
based on the use of transifinite mapping functions can be used in the elements cut by
the boundary in order to consider the exact geometry of the domain in the evaluation
of the required volume integrals. This avoids integration errors due to an inaccurate
representation of the domain that could even lead to an error convergence rate of the
FE solution smaller than the expected theoretical optimum.

An extension of cgFEM to 3D, called FEAVox, is under development. One of
the most challenging aspects of the development of FEAVox is to consider the exact
boundary of the domain in the evaluation of volume integrals. Therefore, this paper
presents a methodology that incorporates the exact boundary representation of the
3D computational domain ΩPhys embedded in the domain Ω meshed with a Cartesian
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grid composed of regular hexahedra. Instead of simplifying the embedded geometry
to perform the numerical integration, we propose efficient techniques to perform the
numerical integration over the true computational domain ΩPhys. The proposed tech-
nique follows the NEFEM rationale although new developments are needed in order
to find the intersections between the Cartesian grid and the boundary of the physical
domain. In addition, this paper considers not only NURBS but also T-Splines.

The paper is organized as follows: A brief review of NURBS and T-spline rep-
resentations will be shown in Section 2, then Section 3 will be devoted to explain
how to capture exact geometries within a Cartesian grid framework. Section 4 will
present the formulation of the problem and the procedure used to impose Dirichlet
boundary conditions considering meshes not conforming to the geometry. Numerical
results showing the behavior of the proposed technique will be presented in Section
5. This contribution ends with the conclusions in Section 6.

2. Geometrical representation: from NURBS
to T-spline

Different options are available for representing surfaces in CAD such as B-splines [33],
NURBS [34, 35], subdivision surfaces [36] or T-splines [2]. In this paper, we consider
NURBS and T-splines for the geometrical representation of three-dimensional models.
This section covers succinctly the main features of these two technologies.

2.1. NURBS fundamentals

NURBS are a generalization of B-splines, which in turn are piecewise polynomial
curves composed of B-spline basis functions defined in parametric space on a so-called
knot vector, Ξ. This is a set of non-decreasing real numbers in the parametric space
representing coordinates (knots):

Ξ = {ξ1, . . . , ξn+p+1} , (1)

where p is the order of the B-spline and n the number of basis functions. The interval
[ξ1, ξn+p+1] is called a patch, whereas the interval [ξ1, ξi+1) is called a knot span. A
knot vector is known as uniform if its knots are uniformly spaced and non-uniform
otherwise. A knot vector is open if its first and last knots are repeated p+ 1 times.
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The B-spline basis functions N (p)
i (ξ) of order p ≥ 0 are defined recursively on the

knot vector as follows:

N
(0)
i (ξ) =

{
1 ξi ≤ ξ ≤ ξi+1

0 otherwise
(2)

N
(q)
i (ξ) =

(ξ − ξi)N (q−1)
i (ξ)

ξi+q − ξi
+

(ξi+q+1 − ξ)N (q−1)
ξ+1 (ξ)

ξi+q+1 − ξi+1
(3)

for q = 1, . . . , p and with i = 1, . . . , n + p + 1. They are Cp−1-continuous when
the internal knots are not repeated. If a knot has multiplicity k, the basis is Cp−k-
continuous at that knot. Other properties of the basis functions are

• B-spline basis functions formed from open knot vectors are a partition of unity,
that is,∑n
i=1N

(p)
i (ξ) = 1 ∀ ξ.

• The support of eachN (p)
i (ξ) is compact and contained in the interval [ξ1, ξi+p+1).

• B-spline basis functions are non-negative: N (p)
i (ξ) ≥ 0 ∀ ξ.

B-spline curves of order p are linear combinations of B-spline basis functions of
order p, N (p)

i , and of points Pi. These points, Pi, referred to as control points,
are given in d-dimensional space Rd. E.g. in three dimensions this means Pi =
(xi, yi, zi)

T . Hence B-splines are given as:

C (ξ) =
n∑

i=1

N
(p)
i (ξ) Pi (4)

The control points define the control polygon. B-spline curves interpolate the
control points just at their start and end points. In between, interpolation can be
achieved by a certain multiplicity of control points or knots, respectively.

NURBS are rational B-spline curves which are the projection of a non-rational
B-spline curve Cw (ξ), defined in (d+ 1)-dimensional homogeneous coordinate space,
back onto the d-dimensional physical space Rd. Homogeneous (weighted) (d + 1)-
dimensional control points are

Pw
i = (wixi, wiyi, wizi, wi)

T (5)

The non-rational (d+ 1)-dimensional B-spline curve Cw then reads

Cw (ξ) =
n∑

i=1

N
(p)
i (ξ) Pw

i (6)
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Projecting onto Rd by dividing through the additional coordinate yields the ra-
tional B-spline curve

C (ξ) =

∑n
i=1N

(p)
i (ξ)wiPi∑n

i=1 wiN
(p)
i (ξ)

=
n∑

i=1

R
(p)
i (ξ) Pi (7)

Here Pi are the control points in Rd , R(p)
i are rational B-spline basis functions and

wi is referred to as the i -th weight, typically wi ≥ 0 ∀ i. This projection allows the
exact representation of all common shapes, in particular conic sections like ellipses.

Finally, NURBS surfaces are constructed from a tensor product through two knot
vectors Ξ = {ξ1, . . . , ξn+p+1} and Γ = {η1, . . . , ηm+q+1}. The n ×m control points
Pi,j form a control net. For the geometric description of NURBS surfaces the typical
arrangement is a (n×m)-dimensional matrix with elements (i, j). The NURBS surface
S (ξ, η) is defined on the one-dimensional basis functions N (p)

i and M
(q)
i (with i =

1, . . . , n and j = 1, . . . ,m) of order p and q, respectively, as

S (ξ, η) =
n∑

i=1

m∑

j=1

N
(p)
i (ξ)M

(q)
j (η)wi,j

∑n
i=1

∑m
j=1N

(p)
i (ξ)M

(q)
j (η)wi,j

Pi,j (8)

In the case of surfaces, we refer to the [ξ1, ξn+p+1] × [η1, ηm+q+1] as patch and
[ξi, ξi+1)× [ηj , ηj+1) as knot span. NURBS surfaces examples are shown in Figure 1a
and Figure 1b, where in blue we can see the control points and in red the projections
of the knot vectors onto the surface. These models will be analyzed in the section
devoted to numerical comparisons.

NURBS have been used as a basis for IGA where the interpolation functions are
those used to define the geometry. This approach revealed some drawbacks of NURBS
surfaces due to its tensor product nature. For instance, to model complicated designs
requires multiple NURBS patches, which are often discontinuous across patch bound-
aries. Even achieving C0 continuity across patches requires special techniques. The
union of two patches separately created may require the insertion of many knots and
nonlinear reparameterization of one or both patches. Furthermore, all NURBS refine-
ment operations are global, so the knot lines extend throughout the entire domain
when refining by inserting knots into the knot vectors of a surface, . Global refine-
ment introduces an unnecessary cost when NURBS as used as basis for the analysis.
Finally, to add features, such as holes, it is common to use trimming curves. The
application of trimming curves destroys the tensor product nature of the geometry
thus the geometric basis no longer describes the geometry and cannot be used directly
in FE analysis.
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2.2. T-spline fundamentals

A tight integration of design and analysis requires a technology built on the smooth
B-spline basis functions which can be locally refined and are capable of representing
domains of arbitrary topological complexity as a single watertight geometry. All of
these capabilities are present in a generalization of NURBS called T-spline. In this
work we are not interested in the characteristics of this technology from the IGA point
of view but in its representation power as a state-of-the-art technology.

T-spline basis functions are defined on local knot vectors, and its control net allow
T-junctions which are introduced during local refinement. T-splines does not have the
superfluous control points present in NURBS models to satisfy topological constrains.
A T-spline surface is defined as

S(ξ, η) =

∑n
i=0Bi(ξ, η)wiTi∑n
i=0 wiBi(ξ, η)

, (ξ, η) ∈ Ω, (9)

where
Bi(ξ, η) = Nξ

i (ξ)Nη
i (η) (10)

and Ti are the T-spline control points, wi are the respective weights, Nξ
i (ξ) and

Nη
i (η) are B-spline basis functions defined by two local knot vectors ξi and ηi. If the

degree is 3, we have ξi = [ξi0 , ξi1 , ξi2 , ξi3 , ξi4 ] and ηi = [ηi0 , ηi1 , ηi2 , ηi3 , ηi4 ] [2, 4]. The
algorithm used to infer knot vectors from a T-mesh is introduced in [37].

Neither NURBS nor T-spline can be directly used for analysis, since they are
defined to represent the whole domain. To obtain the discretized finite element rep-
resentation of a NURBS or T-spline, we can use Bézier extraction to decompose the
domain into Bézier elements. The Bézier extraction operator maps a piecewise Bern-
stein polynominal basis onto a B-spline basis [38]. A Bézier extraction operator E is
a linear operator such that

N(s) = EB(s) (11)

where N(s) is a B-spline basis function and B(s) is a set of Bézier basis functions.
The operator E is constructed from the repeated knot insertion of knot vector which
defines N(s) and it is independent from the control points and the basis functions.
A similar extraction operator M can be defined to transform T-spline basis functions
to Bézier basis functions [39]. In a T-spline framework, for each parametric domain
which can extract one Bézier element, we can first find all the control points with
nonzero basis functions. Then we have

Bet = MeBeb (12)

where vector Bet is generated all the T-spline basis functions with nonzero function
values, and Beb is the vector of the Bézier basis functions. For each Bézier element,
Me can be calculated using the Oslo knot insertion algorithm [40]. This algorithm
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can obtain the extraction operator from all the related T-spline basis functions to the
Bézier basis functions in a single step. In this work we will use this by-product to be
able to represent T-spline geometries, see Figure 1c.

(a) NURBS sphere model. (b) NURBS torus model. (c) T-spline torus model.

Figure 1: Geometrical models used in this contribution.

3. Cartesian grids with exact representation
of the immersed geometry

As previously mentioned, in the classical FEM, the most extended approach is to
employ unstructured meshes that conform to the boundary of the physical domain.
Mesh generation and, especially, mesh adaptation techniques such as mesh refine-
ment, mesh movement or remeshing are costly and require a substantial amount of
human hours [41, 42]. Know-how is required in order to refine the mesh appropri-
ately to accurately represent both the geometry of the physical domain and the local
characteristics of the solution of the problem under consideration.

Given an open bounded domain ΩPhys ⊂ R3, see Figure 2a, with boundary ΓIB =
∂ΩPhys, the key principle of FEAVox, or any other IBM, consists in defining an em-
bedding domain Ω such that ΩPhys ⊂ Ω and with a much more simpler geometry than
the physical domain. Therefore, Ω is extremely easy to mesh compared to the domain
of interest ΩPhys. In FEAVox, we consider Ω to be a cuboid, and a Cartesian grid is
used to mesh the domain Ω as represented in Figure 2b. In order to represent the
geometry of the physical domain in IBM, it is common to use a linear triangular mesh
to discretize the boundary ΓIB. This option allows for the implementation of simple
algorithms to find the intersections between the discretized immersed boundary and
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(a) Geometrical model of an
sphere, ΩPhys.

(b) Cartesian grid, Ω. (c) Approximation of ΩPhys,
Ωh
Phys.

Figure 2: Typical Immersed Boundary Method environment.

the mesh of the embedding domain, but this also means that the problem is solved not
in the physical domain ΩPhys but in an approximation of ΩPhys, namely ΩhPhys, Figure
2c. The effect of this approximation can be very important if high order elements
are used. This method can be used to obtain good results from an engineering point
of view in many problems. However, the optimal convergence rate of the FEM can
be compromised because of the rate of convergence of the integration error when the
mesh is refined. To overcome this problem, in this work, the CAD description of the
boundary of the physical domain ΓIB is considered using high-order quadratures over
the integration subdomains to capture the boundary of the problem.

The conversion of arbitrary geometrical CAD models into valid conforming FE
discretizations is computationally expensive and difficult to fully automate depend-
ing on most cases of the user meshing skills. Immersed boundary methods do not
need boundary-fitted meshes, but embed the domain into a Cartesian grid, which is
generated independently of the geometric features of the physical domain. In this
work, we present an strategy that exploits the advantages of Cartesian grids and uses
specific strategies for the numerical integration over the exact physical domain, with
a CAD boundary representation.

3.1. Generation of the analysis mesh

FEAVox is based on the use of a sequence of uniformly refined Cartesian meshes.
The different level of the Cartesian meshes are connected by predefined hierarchical
relations. Regarding the initial mesh level, the user should choose that level based on
the geometrical features of the model to avoid losing any information, such as small
features or holes.
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The term Cartesian grid pile, denoted by {Qih}i=1,...,m, is used to define the se-
quence of m meshes utilized to discretize the embedding 3D domain Ω. For each level
of refinement, the embedding domain Ω is partitioned in niel disjoint cubes of uniform
size, where ni+1

el = 8niel. The present implementation is an extrapolation of the 2D
data structure based on element subdivision shown in [43]. The data structure con-
siders the hierarchical relations between the elements of different refinement levels,
obtained during the element subdivision process, to accelerate FE computations. In
FEAVox, the element used in the coarsest level of the Cartesian grid pile is called
reference element and the data structure has been modified to the particular case of
the Cartesian grid pile, where all elements are geometrically identical to the reference
element. One important benefit of this data structure is that the mapping between
an element in the Cartesian grid and the reference element is affine and, therefore,
its Jacobian is constant. This property can be exploited to dramatically speed up
the evaluation of the elemental matrices. For instance, the analysis presented in [44]
shows that the number of operations required to compute the elemental matrices can
be reduced by a factor of 10 when a mapping with constant Jacobian is considered
with low-order hexahedral elements. The hierarchical relationships considered in the
data structure simplify the mesh refinement and the precomputation of most of the
data used during the analyses, outstandingly improving the efficiency of the FE im-
plementation. The code uses subroutines whose outputs are nodal coordinates, mesh
topology, hierarchical relations, neighborship patterns, and other geometric informa-
tion when required. Therefore, this information is not stored in memory, making the
proposed algorithm more efficient, not only in terms of computational expense but
also in terms of memory requirements.

3.2. Element classification and geometry-mesh
intersection

The first step of the proposed strategy is the creation of the FE analysis mesh
used to solve the boundary value problem. In order to obtain the analysis mesh, the
elements of the Cartesian grid are classified as:

• Boundary elements: elements cut by the boundary of the physical domain, this
is, elements ΩB such that ΩB ∩ ΓIB 6= ∅.

• Internal elements: elements inside the physical domain, thus, elements ΩI such
that ΩI ⊂ ΩPhys, and

• External elements: elements outside the physical domain, elements ΩE such that
ΩE ⊂ Ω \ ΩPhys,

as illustrated in Figure 3 where a sphere is embedded in a Cartesian grid, Figure 2b.
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(a) Perspective view. (b) 2D section.

Figure 3: Section of a three-dimensional Cartesian grid showing the three
different types of elements: (1) In red, external elements, ΩE, not consid-
ered in the analysis, (2) in blue, boundary elements, ΩB, intersected by the
embedded domain and (3) in green interior elements, ΩI.

The analysis mesh is formed by the internal and the boundary elements intersected
by the geometry. The external elements are not considered in the analysis stage.
Internal elements are treated as standard FE elements and the affinity with respect
to the reference element is exploited in order to speed up the computational cost of the
element matrices. For those elements cut by the boundary of the physical domain, and
since we are working with meshes completely independent of the embedded geometry,
it is necessary to determine the relative position of the elements with respect to the
physical boundary, so specific strategies are required to find the intersection with the
boundary and to perform the numerical integration. Efficient strategies to execute
these two operations are proposed in the remaining of this section.

The strategy considered in this work to classify the elements consists of three
steps:

1. Find the intersections of the physical boundary with the edges of the Cartesian
grid elements,

2. Classify the grid nodes as internal or external, relative to the physical domain,
and

3. Classify the elements as internal, boundary or external.

We employ a Newton-Raphson algorithm to find the intersections between the
edges of the elements of the analysis mesh and the parametric surfaces describing
the boundary of the physical domain. Efficiency is guaranteed by using, as initial
approximation, the intersection of the edges of the Cartesian grid elements with an
auxiliary triangular surface mesh of the boundary of the physical domain. We have
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to remark that this triangular mesh is only an approximation of the exact CAD
description of the physical boundary. However, this approximation is only used in
our case to compute a good initial guess for the Newton-Raphson algorithm.

If the embedded domain is represented by trimmed surfaces, we need to create the
auxiliary triangulation, used during the Newton-Raphson procedure, only over the
trimmed surface of the NURBS. To illustrate this situation we consider the example
depicted in Figure 4. Figure 4a shows the parametric space of a NURBS surface
ΓS. The immersed body ΓT is assumed to be the image of the trimmed space where
NURBS will be used to define the boundary curves (trimming curves). We will define
a triangulation of ΓT as shown in Figure 4d. To generate this triangulation we will use
a set of arbitrary points distributed over the parametric space of the NURBS surface
(red squares in Figure 4b) but we will also add points located over the boundary
curves defining ΓT, (blue squares in Figure 4b). We have to ensure that the inter-
sections between the Cartesian grid edges and the NURBS are correctly identified as
intersections in ΓT or outside ΓT. Obviously, for an appropriate representation, the
points located over the boundary curves of ΓT must include the extremes of these
curves, but additional points must also be included to properly define the boundary.
The additional points will correspond to the intersections of the trimming curves with
all the Cartesian planes that define the faces of the elements of the Cartesian grid.
The evaluation of these intersections only introduces a marginal extra computational
cost because, although NURBS are rational curves, their homogeneous description,
see Section 2.1, is employed in the intersection process. A triangulation of the NURBS
surface will be created using this cloud of points and the efficient 2D Delaunay tri-
angulation procedure, see Figure 4c. The triangles lying outside ΓT will be discarded
to obtain the final auxiliary triangulation shown in Figure 4d. This figure also shows
the point of intersection between the NURBS and the edges of the elements of the
Cartesian grid, correctly classified as internal (red dots) or external (blue dots) with
respect to ΓT.

The above procedure requires the definition of an auxiliary triangulation in the
parametric space of the NURBS surfaces defining the embedded domain. In order to
guarantee convergence of the Newton-Raphson algorithm to the desired intersection
point, it is advantageous to define a triangulation with a triangle size related to the
size of the elements of the analysis mesh. If the auxiliary triangulation is too coarse,
the axis of the Cartesian grid can intersect the same triangle several times. This sit-
uation will prevent the convergence of the Newton-Raphson algorithm in some cases
as the same initial guess will be considered for the computation of two different roots.
This situation is illustrated in Figure 5. In Figure 5a a NURBS surface is represented
together with two planes corresponding to sections of the Cartesian grid. Figure 5b
shows the parametric space of the NURBS surface with a coarse auxiliary triangula-
tion. The two curves correspond to the intersections of the planes in Figure 5a with
the NURBS surface in the parametric space. It can be observed that, for this coarse
auxiliary triangulation, the axis of the Cartesian grid can intersect several times the
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(a) Parametric space of a NURBS
surface, ΓS, and subspace to define
a trimmed NURBS, ΓT.

(b) Points used to define an arbi-
trary auxiliary triangulation on the
parametric space.

(c) Triangulation over the paramet-
ric space.

(d) Final auxiliary triangulation
that ensures the correct classifica-
tion of all intersection points.

Figure 4: Identification of intersections between a trimmed NURBS surface
and the edges of the Cartesian grid.

triangle highlighted in light blue. Figure 5c shows a finer triangulation that fixes this
issue. To avoid the problem the size of the triangles has to be selected depending on
the refinement of the Cartesian grid. In addition, we have to take into consideration
special situations where the refinement of the elements will not be enough to choose
the triangle size, for instance when some axes of the mesh are almost tangent to the
surface. In the general case, we will subdivide the triangles where we can find more
than one intersection until we reach the simple case with only one intersection per
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triangle. If we need to keep subdividing, the stopping criterion will be to reach a
triangle size small enough to assume the axis is tangent to the geometry.

(a) NURBS surface in grey
and two planes corresponding
to sections of the Cartesian
grid.

(b) Parametric space of the
NURBS with a coarse auxil-
iary triangulation and the pro-
jection of the two planes in
Figure 5a.

(c) Parametric space of the
NURBS with a refined auxil-
iary triangulation and the pro-
jection of the two planes in
Figure 5a.

Figure 5: Automatic definition of the size of the auxiliary triangulation to avoid
multiple intersections of a single triangle with the planes of the Cartesian grid.

Assuming that the intersections of the physical boundary with the edges of the
Cartesian grid elements are computed, it is easy to classify the element nodes as
internal or external just marching along the edges of the Cartesian grid. Once the
grid nodes are classified, it is straight forward to classify the elements as internal,
boundary or external, just by counting the number of internal and external nodes in
each element.

3.3. Integration over subdomains

The FEM requires the computation of integrals over the domain of interest. When
a body-fitted mesh is employed, the integrals on the internal domain are computed
by adding the contribution of the integrals over each element and, analogously, the
boundary integrals are computed by adding the contribution of the integrals over each
element face on the boundary of the physical domain. The numerical integration in
IBM require special attention as the mesh is completely independent of the geometry
of the physical domain.

Internal elements are treated as standard finite elements and the integration is
performed using a tensor product of one-dimensional Gauss quadratures with the de-
sired number of points in each direction. However, the contribution from the bound-
ary element ΩB requires special attention as the integral must be computed only over
the portion of the boundary elements that lies inside the physical domain, namely
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3.3 Integration over subdomains

ΩPhys
B = ΩB ∩ ΩPhys. In fact, the independent generation of the Cartesian grid with

respect to the embedded geometry implies that the region of elements intersected
by the mesh lying inside the computation domain, ΩPhys

B can be extremely complex.
The strategy proposed to perform the integration over ΩPhys

B consists in employing a
tetrahedralization of this region that incorporates the exact boundary representation
of ΩPhys.

The proposed approach is inspired on the Marching Cubes (MC) algorithm [45],
which uses a set of templates for the intersection between surfaces and the edges of
cubes. The MC algorithm is widely used in computational graphics to represent ap-
proximations of surfaces as it is very efficient sorting out basic intersection patterns
and creating linear surfaces between them. We have taken the basic intersection pat-
terns of the MC algorithm to identify the most common intersection patterns between
the embedded geometry and the Cartesian grid, then a parametrized tetrahedraliza-
tion of each one of these patterns is generated and stored. To facilitate the imple-
mentation, and without loss of generality, we assume that the Cartesian elements are
intersected, at most, once by the boundary of the physical domain. This condition
can be easily relaxed and it is employed here only to simplify the presentation and to
facilitate the implementation. From this premise, we need only seven out of fourteen
templates of the original MC algorithm (1, 2, 5, 8, 9, 11 and 14, see [45]). It is in fact
possible to use the remaining templates to identify regions of particular geometric
complexity where extra mesh refinement can be introduced to properly capture them.
The seven patterns considered are depicted in Figure 6. In the figures we can see
the nodal topologies and the set of tetrahedra used for each pattern. Colors identify
internal and external subdomains (or different materials if the case of multi-material
problems).

Since the mesh is independent of the geometry, in most problems there will be
elements intersected by several surfaces at the same time. To integrate properly the
weak form in these elements, we have to ensure that the tetrahedralization will be
consistent with the different parametric spaces of the NURBS. For these cases, the
precomputed patterns based shown previously are not enough. A clear and common
example of this situation is the existence of sharp features inside an element generated
by the interfaces of connecting surfaces, see Figure 7a. The proposed method is to
evaluate individually these elements generating specific sets of tetrahedra using a
Delaunay procedure as in Figure 7b. We have to note that the ratio between the
amount of elements with configurations not represented by the standard patterns and
the number of elements in the mesh is very low, in general.

As we explained in the previous section, devoted to intersection, handling trimmed
surfaces is not an issue because we can retrieve all the trimming information (surface
and trimming curves) from the CAD models. Then, when we have elements with
several surfaces whose interfaces are given by trimming curves we can always perform
an specific tetrahedralization using a Delaunay procedure creating subdomains only
in the domain delimited by the trimmed surfaces.
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(a) Configuration 1. (b) Configuration 2.

(c) Configuration 3. (d) Configuration 4.

(e) Configuration 5. (f) Configuration 6.

(g) Configuration 7.

Figure 6: Intersection patterns inspired on the MC algorithm. Nodal topology (left)
and tetrahedralization (right).

Numerical integration over the region Ωphys
B is then accomplished by integrating

over each subdomain of the tetrahedralization. In order to perform the integration
over the subdomains, the strategy proposed within the NEFEM [23] is adopted. This
methodology was designed to incorporate the exact boundary of the computational do-
main into body-fitted FE simulations and the advantages with respect to the classical
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3.3 Integration over subdomains

(a) Element intersected by several
patches of the model.

(b) Detail of the resulting tetrahe-
dralization.

Figure 7: Tetrahedralization of an element intersecting a model of a trape-
zoidal prism.

FEM were demonstrated for a variety of problems, see [46]. A tetrahedral subdomain
TFe with a face on the physical boundary is parametrized using the mapping

Ψ : Λe × [0, 1] −→ TFe

(ξ, η, ζ) 7−→ Ψ(ξ, η, ζ) := (1− ζ)S(ξ, η) + ζx4,

where S(Λe) denotes the curved face of TFe on the boundary of the physical domain
and x4 is the internal vertex of TFe . Analogously, a tetrahedral subdomain TEe with
an edge on the physical boundary is parametrized using the mapping

Φ : [ξ1, ξ2]× [0, 1]2 −→ TEe

(ξ, η, ζ) 7−→ Φ(ξ, η, ζ) := (1− ζ)(1− η)C(ξ) + (1− ζ)ηx3 + ζx4.

where C([ξ1, ξ2]) denotes the curved edge of TEe on the boundary of the physical
domain and x3 and x4 are the two internal vertices of TEe .

The most salient properties of the mappings used by NEFEM is the ability to
decouple the directions of the surface definition, Λe and [ξ1, ξ2] in the mappings Ψ and
Φ respectively, with respect to the interior directions. In addition, the mappings are
linear in the interior directions, guaranteeing that the required number of integration
points is minimum, compared to other options such as the transfinite mappings [47].

Given these parametrizations, it is possible to perform the numerical integration
over all the curved tetrahedral subdomains that form Ωphys

B . To this end, we consider
tensor products of triangle quadratures [48] and one-dimensional Gaussian quadra-
tures for the tetrahedrons with a face on the boundary of the physical domain, see
Figure 8.

111



Paper A

Figure 8: Integration over a curved tetrahedron with a face over the
physical domain.

For the tetrahedra with an edge on the boundary of the physical domain, ten-
sor products of one-dimensional Gaussian quadratures are employed. The number
of integration points required in the parametric space of the parametric boundary
representation depends on the CAD technology employed. In [49], the number of
integration points required to integrate polynomial functions over domains with a
NURBS or B-spline boundary description is studied numerically. The conclusions
show that, compared to traditional FE, NEFEM requires the same, or just one inte-
gration point more, in order to ensure that the numerical error due to the numerical
integration is lower than the interpolation error. In addition, the ideas supporting
this approach are valid not only when the boundary of the domain is parametrized
by NURBS, but for any piecewise boundary parametrization.

Remark 1. It is important to note that NEFEM defines the tetrahedral faces of
curved tetrahedra on the parametric space of the NURBS, usually as straight-sided
triangles, whereas in the current approach the tetrahedral faces are defined as the
intersection of a Cartesian plane and a NURBS in the physical space. This means
that, in the parametric space of the NURBS, tetrahedral faces are usually triangles with
curved edges. It is worth noting that the mapping depicted in Figure 8 is still valid to
perform the numerical integration, even if the boundary face is a curved triangle in
the parametric space.
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4. Problem formulation and numerical solution

4. Problem formulation and numerical
solution

Let us consider an open bounded domain ΩPhys ⊂ R3 with closed boundary ΓIB =
∂ΩPhys. The boundary of the domain is partitioned into the Neumann boundary ΓN
and the Dirichlet boundary ΓD, with ΓIB = ΓN ∪ ΓD and ΓN ∩ ΓD = ∅. The strong
form of the equilibrium equations and the boundary conditions are

−∇ · σ (u) = b in ΩPhys

σ (u) · n = t on ΓN

u = ũ on ΓD

(13)

where u is the displacement field, σ(u) is the Cauchy stress tensor, b is the body
force vector, n is the outward unit normal vector to ΓN , t is the imposed traction on
ΓN and ũ is the forced displacement on ΓD.

The weak variational formulation associated to the strong form of the equilibrium
equations can be expressed as: find u ∈

[
H1(ΩPhys)

]3 such that

a (u,v) = l (v) ∀v ∈
[
H1(ΩPhys)

]3 (14)

where

a (u,v) =

∫

ΩPhys

σ (u) : ε (v) dΩ

l (v) =

∫

ΩPhys

b · vdΩ +

∫

ΓN

t · vdΓ

(15)

In the above expressions ε is the strain tensor that satisfies

σ = Dε, (16)

where D is the Hooke’s tensor.

4.1. Boundary conditions

One major difficulty associated to the use of IBM with Cartesian grids is the
fact that, in general, the mesh nodes are not placed on the boundary of the domain.
This increases the difficulty to apply Dirichlet boundary conditions in strong form.
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In this paper, Dirichlet boundary conditions are imposed using stabilized Lagrange
multipliers. More precisely, the procedure chosen to impose the constraints (i.e.,
Dirichlet boundary conditions) follows the technique proposed by [32]. This method
is suitable for h-refinement in the context of hierarchical Cartesian grids, where the
problem is stabilized by a functional added to the initial formulation. The stabilization
term uses the FE stress field from a previous mesh [50] or a recovered stress field from
a previous mesh or the current one [32]. In the second case, an iterative method is
defined to solve the problem. In both cases, the definition of the Lagrange multipliers
field allows for a direct condensation of the degrees of freedom of the multipliers at
an element level. For the model problem of Equation (13), the weak formulation with
Lagrange multipliers reads: find

(
u,λ

)
∈
[
H1(ΩPhys)

]3 ×
[
H−1/2(ΓD)

]3
such that

a (u,v) + b(λ,v) = l (v) ∀v ∈
[
H1(ΩPhys)

]3

b(µ,u) = b(µ, ū) ∀µ ∈
[
H−1/2(ΓD)

]3 (17)

where
b(λ,v) =

∫

ΓD

λ · vdΓ

The stabilized formulation can be obtained from a constrained minimization prob-
lem solved using the Lagrange multipliers method. Applying the FE discretization
and considering the discrete subspaces U h ⊂

[
H1(ΩPhys)

]3 and L h ⊂
[
H−1/2(ΓD)

]3
,

the problem consist of finding the saddle point of the following functional:

Ls

(
vh,µh

)
=

1

2
a
(
vh,vh

)
− c

(
vh
)

+ b
(
µh,vh

)
− 1

2
s
(
µh −T,µh −T

)

with s
(
φh,θh

)
= κ

∑

e

he

∫

Γe
D

φh · θhdΓ
(18)

where he is the size of the Dirichlet boundary faces and κ is a positive penalty param-
eter that is selected to accurately impose the boundary conditions without affecting
the convergence rate of the method. The different stabilization methods are ob-
tained by selecting different terms T in the modified Lagrangian. T∗ can be defined
as the traction obtained from the FE stress field σ∗ of a previous mesh [50], i.e.
T∗ = −σ∗ (uhi−1

)
· n, where n is the vector normal to the Dirichlet boundary, and

uhi−1 are the displacements evaluated in mesh i− 1. The alternative implemented in
this work is to use the recovered solution of the current mesh, and define an iterative
process to update the solution [32]. In both cases, the excessive oscillations of the
Lagrange multipliers solution are prevented by the stabilization form and κ can be
chosen to maintain the optimal convergence rate of the method.
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5. Numerical examples

5. Numerical examples

This section presents a series of examples to demonstrate the applicability and
the performance of the proposed methodology for three-dimensional problems when
the boundary of the domain is described by NURBS or T-spline. The models where
previously presented in the section devoted to the geometrical aspects, see Figure 1.
First, the error associated to the proposed strategy to perform the numerical inte-
gration of polynomial functions over NURBS surfaces is studied. Then, the proposed
strategy is applied for the numerical solution of linear elastic problems.

5.1. Numerical integration

We first evaluate the accuracy of the proposed approach to perform the integrals
of the weak formulation. In fact, only the boundary integrals are of interest because
the strategy to perform the integrals on the element interiors use a mapping that is
linear in the interior direction and exact integration in this direction is feasible, see
Section 3.3.

Let us consider a sphere of unit radius embedded in a coarse mesh with only
eight Cartesian elements, as depicted in Figure 1. Let S be the surface integral of a
polynomial function f defined as

S =

∫

Γ

f(x, y, z)dΓ (19)

where Γ =
{

(x, y, z) | x, y, z ≥ 0, x2 + y2 + z2 = 1
}

represents the surface of the
sphere. The numerical result computed with the strategy proposed in this paper,
Sh(f), is compared to the analytical result Se(f). The accuracy is evaluated by
defining the relative error in percentage as 100 × (Se(f)− Sh(f)) /Se(f). To test
the performance of the proposed approach we consider constant, linear and quadratic
functions. It is worth noting that when a linear approximation of the solution is con-
sidered, the elemental stiffness matrix requires the integration of constant functions
whereas with quadratic approximations the stiffness matrix requires the integration
of constant, linear and quadratic functions. The analytical results are reported here
for completeness

Se(f = 1) =
π

2
, Se(f = x) = Se(f = y) = Se(f = z) =

π

4
,

Se(f = x2) = Se(f = y2) = Se(f = z2) =
π

6
,
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Se(f = xy) = Se(f = xz) = Se(f = yz) =
1

3
.

Tables 1 and 2 show the result of the numerical integration of the constant function
f(x, y, z) = 1 and the linear functions f(x, y, z) = x, f(x, y, z) = y and f(x, y, z) =
z. The percentage error is also reported. These results show how increasing the
number of integration points allows us to reduce the error towards machine accuracy.
For the constant function f(x, y, z) = 1, with 24 integration points in each of the
8 elements used in the analysis (192 integration points in total), the error due to
numerical integration is less than 1%. The distribution of integration point is shown
in Figure 9a. If we increase the number of integration points to 224 in each element
(i.e., 1792 integration points in total) the error due to numerical integration goes
down to 9 × 10−10%. The distribution of integration points in this case is displayed
in Figure 9b. It is worth remarking that for the linear functions f(x, y, z) = x and
f(x, y, z) = z a comparable accuracy is obtained whereas slightly less accurate results
are attained from the linear function f(x, y, z) = y.

Gauss points f = 1 Error (%) f = x Error (%)
32 1, 7847357662 13, 6198 0, 8923678831 13, 6198

64 1, 6538967700 5, 2903 0, 8269483850 5, 2903

192 1, 5672909334 0, 2231 0, 7836454667 0, 2231

384 1, 5708636716 0, 0042 0, 7854318358 0, 0042

640 1, 5707956384 4, 38 · 10−5 0, 7853978192 4, 38 · 10−5

1344 1, 5707963271 2, 03 · 10−8 0, 7853981636 2, 03 · 10−8

1792 1, 5707963268 9, 45 · 10−10 0, 7853981634 9, 445 · 10−10

Table 1: Sphere defined by NURBS: Integration error on the surface integral for
constant and linear function f = x.

Gauss points f = y Error (%) f = z Error (%)
32 1, 1085106556 41, 1399 0, 8923678831 13, 6198

64 0, 9164009972 16, 6797 0, 8269483850 5, 2903

192 0, 7754902482 1, 2615 0, 7836454667 0, 2231

384 0, 7855902456 0, 0244 0, 7854318358 0, 0042

640 0, 7853963976 2, 25 · 10−4 0, 7853978192 4, 38 · 10−5

1344 0, 7853981668 4, 29 · 10−7 0, 7853981636 2, 03 · 10−8

1792 0, 7853981632 2, 04 · 10−8 0, 7853981634 9, 45 · 10−10

Table 2: Sphere defined by NURBS: Integration error on the surface integral for linear
functions f = y and f = z.

Tables 3, 4 and 5show the result of the numerical integration of quadratic functions
and the associated percentage error. Again, it can be observed that with 24 integration
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5.1 Numerical integration

(a) 8 elements and 192 Gauss points. (b) 8 elements and 1792 Gauss points.

Figure 9: Sphere defined by NURBS: Examples of the mesh used to evalu-
ate the integration error with different number of quadrature points on the
surface.

points per element (i.e., 192 integration points in total), all the integrals are computed
with an error of less than 2% and, in some cases, the error is lower than 1%. Increasing
the number of integration points per element the error converges rapidly to machine
accuracy. For instance, with 224 in each element (i.e., 1792 integration points in total)
the error due to numerical integration is of the order of 2× 10−6% or lower.

Gauss points f = x2 Error (%) f = y2 Error (%)
32 0, 5135503309 1, 9191 0, 7576351044 44, 6976

64 0, 5137816653 1, 8749 0, 6263334393 19, 6208

192 0, 5275430006 0, 7532 0, 5122049323 2, 1760

384 0, 5235375836 0, 0116 0, 5237885044 0, 0362

640 0, 5235986049 3, 25 · 10−5 0, 5235984286 6, 62 · 10−5

1344 0, 5235987699 1, 08 · 10−6 0, 5235987873 2, 23 · 10−6

1792 0, 5235987759 5, 56 · 10−8 0, 5235987750 1, 142 · 10−7

Table 3: Sphere defined by NURBS: Integration error on the surface integral for
quadratic functions.

It is worth emphasizing that the overhead caused by the numerical integration
with the exact geometry is restricted to the elements of the Cartesian grid that are
cut by the boundary of the embedded geometry. For interior elements the number of
integration points is chosen a priori to be the minimum number required to exactly
compute the integrals of the weak formulation. For instance, if linear elements are
considered, a quadrature with only one integration point guarantees exact integration
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Gauss points f = z2 Error (%) f = xy Error (%)
32 0, 5135503309 1, 9191 0, 5086633254 52, 5989

64 0, 5137816653 1, 8749 0, 3946299371 18, 3889

192 0, 5275430006 0, 7532 0, 3269680495 1, 9095

384 0, 5235375836 0, 0116 0, 3335154896 0, 0546

640 0, 5235986049 3, 25 · 10−5 0, 3333318950 4, 31 · 10−4

1344 0, 5235987699 1, 08 · 10−6 0, 3333333403 2, 09 · 10−6

1792 0, 5235987759 5, 56 · 10−8 0, 3333333330 1, 01 · 10−7

Table 4: Sphere defined by NURBS: Integration error on the surface integral for
quadratic functions.

Gauss points f = xz Error (%) f = yz Error (%)
32 0, 4401458247 32, 0437 0, 5086633254 52, 5989

64 0, 3901829374 17, 0548 0, 3946299371 18, 3889

192 0, 3293966424 1, 1810 0, 3269680495 1, 9095

384 0, 3333287772 0, 0013 0, 3335154896 0, 0546

640 0, 3333329888 1, 03 · 10−4 0, 3333318950 4, 31 · 10−4

1344 0, 3333333304 8, 88 · 10−7 0, 3333333403 2, 09 · 10−6

1792 0, 3333333334 2, 02 · 10−8 0, 3333333330 1, 01 · 10−7

Table 5: Sphere defined by NURBS: Integration error on the surface integral for
quadratic functions.

of the elemental stiffness matrix terms. Analogously, with a quadratic approximation
of the solution a tensor product of one-dimensional Gauss quadratures with two points
in each direction (i.e., eight integration points per hexahedral element) guarantees
exact integration of the elemental stiffness matrix terms.

5.2. Discretization error

In this section, a linear elastic analysis is performed on two domains given by a
CAD boundary representation with NURBS and T-spline. The computation is per-
formed with the proposed approach by embedding the CAD geometry in a Cartesian
grid and a refinement study is performed in order to evaluate the accuracy of the
proposed approach.
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5.2 Discretization error

In all the examples the Young’s modulus and the Poisson ratio are E = 1000 and
ν = 0.3 respectively. The analytical solution of the problem is the cubic displacement
field u = (ux, uy, uz) with

ux = x+ x2 − 2xy + x3 − 3xy2 + x2y

uy = −y − 2xy + y2 − 3x2y + y3 − xy2

uz = 0

(20)

Dirichlet boundary conditions, corresponding to the analytical displacement field are
considered in the whole boundary.

The exact expression of the stress tensor, obtained by using the constitutive rela-
tion is

σx =
E

1 + ν

(
1 + 2x− 2y + 3x2 − 3y2 + 2xy

)

σy =
−E

1 + ν

(
1 + 2x− 2y + 3x2 − 3y2 + 2xy

)

σz = ν (σx + σy)

τxy =
E

1 + ν
(−x− y +

x2

2
− y2

2
− 6xy)

τxz = τyz = 0

and the volumetric forces required to satisfy the internal equilibrium equation are
given by b = (bx, by, bz) with

bx =
−E

1 + ν
(1 + y) , by =

−E
1 + ν

(1− x) , bz = 0 (21)

The quality of the results will be assessed by evaluating the relative error in the
displacement field in energy norm, defined as

ηe =




∫

Ω

(σh − σe) D−1 (σh − σe) dΩ
∫

Ω

σeD
−1σedΩ




1/2

(22)

where σh and σe are the FE (approximated) stress tensor and the analytical stress
tensor respectively. In all the numerical examples we select the number of integration
points to be enough in order to guarantee that the error due to numerical integration
is lower than the spatial discretization error.
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5.2.1. Sphere defined by NURBS

The first example considers a sphere of unit radius. A set of four meshes is
employed, where uniform refinement is considered. Table 6 summarizes the main
properties of the computational meshes used. In particular, this table shows the
number of active elements in each mesh, the number of elements that are interior
to the embedded domain and the number of elements intersecting the boundary of
the embedded domain is also detailed, together with the number of tetrahedra used
to perform the numerical integration. Finally, this table shows the number of de-
grees of freedom used in the numerical simulation when 8-noded (L8) or 20-noded
(Q20) isoparametric hexahedral elements are considered, corresponding to a linear or
quadratic approximation of the solution respectively.

Mesh Internal elems. Boundary elems. Tetrahedra DOFs L8 DOFs Q20
1 0(0%) 8(100%) 8 81 243

2 8(12.5%) 56(87.5%) 224 375 1275

3 136(33.3%) 272(66.7%) 1392 1839 6663

4 1472(55.9%) 1160(44.1%) 6432 10059 37923

Table 6: Sphere defined by NURBS: Information about the calculation meshes.

Table 7 shows the relative error in the displacement field in energy norm when
linear and quadratic elements are used in the four meshes detailed in Table 6. The
theoretical optimal convergence rate of the error in energy norm of the FE solution
is 1 for the case of linear elements and 2 if quadratic elements are used. The values
of the convergence rate of the error in energy norm also displayed in the table show
the optimal rate for both linear and quadratic approximations.

The rate of convergence is also displayed, showing the optimal rate for both linear
and quadratic approximations.

Mesh ηe (%) L8 Rate L8 ηe (%) Q20 Rate Q20
1 52, 2879 – 9, 1053 –
2 28, 7238 0.9 2, 9562 1.6
3 15, 1344 0.9 0, 8055 1.9
4 7, 7817 1.0 0, 2046 2.0

Table 7: Sphere defined by NURBS: discretization errors and con-
vergence rates using linear (L8) and quadratic (Q20) elements.

The results shown in Table 7 can be seen in Figure 10 as a function of the total
number of degrees of freedom. The superiority of quadratic elements is clearly ob-
served, as expected for problems with smooth analytical solution, see for instance [51].
In particular, the comparison in Figure 10 shows that the error attained with linear
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Figure 10: Sphere defined by NURBS: discretization error vs. de-
grees of freedom for linear and quadratic elements.

elements in the finest mesh (with 2632 elements) is almost the same as the error
attained by using quadratic elements in the coarsest mesh (with only 8 elements).

The displacement field represented over the surface of the sphere is displayed in
Figure 11. The result corresponds to a computation using the mesh number 4 with
linear elements. The displacement in the z direction is represented to illustrate the
error due to the imposition of the Dirichlet boundary condition in weak form by
using the technique described in Section 4 because the analytical displacement in this
direction is exactly zero, as detailed in 20.

(a) x displacements. (b) y displacements. (c) z displacements.

Figure 11: Sphere defined by NURBS: Computed displacement field.
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It is worth remarking that the geometry of the sphere has been exactly repre-
sented using one quadratic NURBS surface with 27 control points, as represented in
Figure 1a. As mentioned earlier in the introduction one of the main advantages of
NURBS is the ability to exactly represent conics, which is not possible if a polynomial
representation of the geometry is considered.

5.2.2. Torus defined by NURBS

The second example considers a torus exactly defined by a NURBS surface, see
Figure 1b. A set of four meshes is employed, where uniform refinement is considered.
Table 8 summarizes the main features of these four computational meshes.

Mesh Internal elems. Boundary elems. Tetrahedra DOFs L8 DOFs Q20
1 0(0%) 32(100%) 110 225 735

2 16(7.4%) 200(92.6%) 992 1101 3891

3 384(34%) 744(66%) 4016 4860 17844

4 3968(55.6%) 3168(44.4%) 18072 26892 101832

Table 8: Torus defined by NURBS: Information about the calculation meshes.

Table 9 shows the relative error in the displacement field in energy norm when
linear and quadratic elements are used in the four meshes detailed in Table 8. The
convergence rate of the error in energy norm is also displayed, showing the optimal
rate for both linear and quadratic approximations.

Mesh ηe (%) L8 Rate L8 ηe (%) Q20 Rate Q20
1 37, 3394 – 4, 1987 –
2 21, 9811 0.8 1, 4862 1.5
3 11, 3050 1.0 0, 3904 1.9
4 5, 7553 1.0 0, 0986 2.0

Table 9: Torus defined by NURBS: discretization errors and conver-
gence rates using linear (L8) and quadratic (Q20) elements.

Figure 12 represents the relative error in the displacement field in energy norm as
a function of the total number of degrees of freedom, both for linear and quadratic
elements. The conclusions are similar to the ones obtained in the previous example,
showing that the performance of the proposed methodology does not depend on the
geometry considered. The superiority of quadratic elements is again clearly observed.
both in terms of accuracy and error convergence rate.

The displacement field represented over the surface of the torus is displayed in
Figure 13. The result corresponds to a computation using the mesh number 4 with
linear elements. Again, the displacement in the z direction is represented to illustrate
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Figure 12: Torus defined by NURBS: discretization error vs degrees
of freedom.

the error due to the imposition of the Dirichlet boundary condition in weak form by
using the technique described in Section 4.

(a) x displacements. (b) y displacements. (c) z displacements.

Figure 13: Torus defined by NURBS: computed displacement field.

5.2.3. Torus defined by T-spline

The last example considers a torus defined by T-spline, see Figure 1c. The same
meshes used in the previous computations are employed, see Table 8. Table 10 shows
the relative error in the displacement field in energy norm when linear and quadratic
elements are used in the four meshes detailed in Table 8. The convergence rate of the

123



Paper A

103 104 105

10−1

100

101

Degrees of freedom

R
el
at
iv
e
er
ro
r
in

en
er
gy

no
rm

(%
)

Linear elements
Quadratic elements

Figure 14: Torus defined by T-spline: discretization error vs degrees
of freedom.

error in energy norm is also displayed, showing, once more, the optimal rate for both
linear and quadratic approximations.

Mesh ηe (%) L8 Rate L8 ηe (%) Q20 Rate Q20
1 39, 2256 – 5, 1908 –
2 22, 7172 0.8 1, 5881 1.7
3 11, 7909 0.9 0, 4172 1.9
4 5, 9671 1.0 0, 1056 2.0

Table 10: Torus defined by T-spline: discretization errors and con-
vergence rate using linear (L8) and quadratic (Q20) elements.

Figure 14 represents the relative error in the displacement field in energy norm as
a function of the total number of degrees of freedom, both for linear and quadratic
elements. The conclusions are identical to the ones discussed before, when the torus
was represented with NURBS. This illustrates, once more, that the performance of the
proposed methodology is independent on the CAD technology employed to represent
the geometry of the embedded domain.
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6. Conclusions

This paper proposes a novel methodology to consider the exact 3D boundary
representation of the domain in a immerse boundary framework where a Cartesian
grid is used to mesh the embedding domain. The method is capable of employing
any boundary representation of the embedded domain but the presentation is focused
in the most extended CAD technology, namely NURBS, and a novel approach with
T-Splines. The proposed technique removes the geometric errors that are associated
to standard IBM due to the approximation of the embedded geometry by a faceted
representation.

The strategy to compute the intersections between the Cartesian grid and the
exact geometry of the boundary of the embedded domain is detailed. A novel ap-
proach to perform the numerical integration in the region of the cut elements that is
internal to the physical domain is developed. The strategy consists in defining, for
integration purposes only, a tetrahedral submesh in each of the elements cut by the
boundary where the tetrahedral have at most one face or one edge in contact with
the boundary of the embedded domain. Then, specifically designed numerical quadra-
tures are defined in the tetrahedra by following the rationale of the NURBS-Enhanced
Finite Element Method. The performance and accuracy of the proposed technique
to compute the integrals appearing in the weak formulation has been analyzed using
numerical examples.

One crucial aspect in IBM is the imposition of essential boundary conditions. As
mesh nodes do not lie on the boundary of the physical domain it is not possible
to strongly impose such conditions. The technique adopted here consists in using
stabilized Lagrange multipliers to impose Dirichlet boundary conditions.

Three numerical examples have been considered in order to show the potential
and applicability of the proposed methodology. The optimality of the approximation
in terms of error convergence rate, for both linear and quadratic elements, has been
corroborated. The method shows the same performance on problems where the em-
bedded geometry is represented using NURBS or T-Splines, showing independence
on the CAD technology utilized. Finally, all the numerical examples have shown the
potential of the proposed approach when quadratic elements are considered.

The present method has been presented using linear elasticity problems but it
could be adapted to solve any problem where immersed boundaries show advantages
with respect to standard methods. In addition, a refinement strategy to generate an
optimal h-adapted mesh from the geometrical point of view just taking into account
the data contained in the CAD file is under development. This technique will be fully
integrated with the techniques proposed in this paper.

125



Paper A

Acknowledgments

With the support of the European Union Framework Program (FP7) under grant
No. 289361 INSIST, Ministerio de Economía y Competitividad of Spain (DPI2010-
20542)(DPI2013-46317-R), FPI program (BES-2011-044080) and Generalitat Valen-
ciana (PROMETEO/2012/023). R. Sevilla gratefully acknowledges the financial sup-
port provided by the Sêr Cymru National Research Network in Advanced Engineering
and Materials. Y. Zhang was supported in part by the PECASE Award N00014-14-
1-0234 and NSF CAREER Award OCI-1149591.

References

[1] Hughes TJR, Cottrell JA, Bazilevs Y. Isogeometric Analysis: CAD, Finite Ele-
ments, NURBS, Exact Geometry, and Mesh Refinement. Computer Methods in
Applied Mechanics and Engineering 2005; 194:4135–4195. 1

[2] Sederberg TW, Zheng J, Bakenov A, Nasri A. T-splines and T-NURCCs. ACM
Transactions on Graphics (TOG) 2003; 22(3):477–484. 1, 2, 2.2

[3] Escobar JM, Cascon JM, Rodriguez E, Montenegro R. A New Approach to
Solid Modeling with Trivariate T-splines Based on Mesh Optimization. Com-
puter Methods In Applied Mechanics And Engineering 2011; 200:3210–3222. 1

[4] Wang W, Zhang Y, Scott MA, Hughes TJR. Converting an Unstructured Quadri-
lateral Mesh to a Standard T-spline Surface. Computational Mechanics 2011;
4(48):477–498. 1, 2.2

[5] Zhang Y, Wang W, Hughes TJR. Solid T-spline Construction from Boundary
Representations for Genus-Zero Geometry. Computer Methods in Applied Me-
chanics and Engineering 2012; 249–252:185–197. 1

[6] Zhang Y, Wang W, Hughes TJR. Conformal Solid T-spline Construction from
Boundary T-spline Representations. Computational Mechanics 2013; 6(51):1051–
1059. 1

[7] Liu L, Zhang Y, Hughes TJR, Scott MA, Sederberg TW. Volumetric T-spline
Construction using Boolean Operations. Engineering with Computers 2014;
30(4):425–439. 1

[8] Liu L, Zhang Y, Liu Y, Wang W. Feature-Preserving T-mesh Construction using
Skeleton-Based Polycubes. Computer-Aided Design 2014; 58:162–172. 1

126



References

[9] Dolbow J, Moës N, Belytschko T. Discontinuous Enrichment in Finite Elements
with a Partition of Unity Method. Finite Elements in Analysis and Design 2000;
36(3-4):235–260. 1

[10] Strouboulis T, Babuška I, Copps K. The Design and Analysis of the Generalized
Finite Element Method. Computer Methods in Applied Mechanics and Engineer-
ing 2000; 181(1-3):43–69. 1

[11] Melenk JM, Babuška I. The Partition of Unity Finite Element Method: Basic
Theory and Applications. Computer Methods in Applied Mechanics and Engi-
neering 1996; 139(1-4):289–314. 1

[12] Bordas SPA, Rabczuk T, Ródenas JJ, Kerfriden P, Moumnassi M, Belouettar
S. Recent Advances Towards Reducing the Meshing and Re-meshing Burden in
Computational Sciences. Computational Technology Reviews 2010; 2:51–82. 1

[13] Peskin CS. Numerical Analysis of Blood Flow in the Heart. Journal of Compu-
tational Physics 1977; 25:220–252. 1

[14] Zhang L, Gerstenberger A, Wang X, Liu WK. Immersed Finite Element Method.
Computer Methods in Applied Mechanics and Engineering 2004; 293(21):2051–
2067. 1

[15] Mittal R, Iaccarino G. Immersed Boundary Methods. Annual Review of Fluid
Mechanics 2005; 37:239–261. 1

[16] Liu WK, Liu Y, Darell D, Zhang L, Wang XS, Fukui Y, Patankar N, Zhang Y,
Bajaj C, Lee J, et al.. Immersed Finite Element Method and its Applications to
Biological Systems. Computer Methods in Applied Mechanics and Engineering
2006; 195(13):1722–1749. 1

[17] Liu WK, Tang S. Mathematical Foundations of the Immersed Finite Element
Method. Computational Mechanics 2007; 39(3):211–222. 1

[18] Gil AJ, Arranz-Carreño A, Bonet J, Hassan O. The Immersed Structural Poten-
tial Method for Haemodynamic Applications. Journal of Computational Physics
2010; 229(22):8613–8641. 1
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Abstract

This paper proposes a new formulation to impose Dirichlet boundary conditions on
immersed boundary Cartesian Finite Element meshes. The method uses a recovered
stress field calculated by Superconvergent Patch Recovery to stabilize the Lagrange
multiplier formulation of the problem. The optimal convergence of the method and
the convergence of the proposed iterative procedure are demonstrated. The proposed
method is also suitable for problems with non-linear material behavior. Some numer-
ical examples are included to confirm the theoretical results.
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Dirichlet boundary conditions; Lagrange multipliers; Stabilization; Immersed bound-
ary method; Cartesian grid
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1. Introduction

1. Introduction

The Finite Element Method (FEM) makes use of a mesh of elements to perform the
analysis that will provide the numerical solution to the problem under consideration.
In the standard version of the FEM the mesh must conform to the geometry of the
domain to be analyzed. At the same time, the distortion of each of the elements with
respect to the reference elements in the normalized space must be kept sufficiently
low, as high element distortion leads to inaccurate results. As a result, it is no simple
task to create an appropriate mesh for Finite Element Analysis (FEA). According to
[1], a study at Sandia National Laboratories (USA) revealed that the generation of the
Finite Element (FE) numerical model, including the process of creating a geometry
suitable for analysis by the FEM and the subsequent geometry meshing, takes 80%
of the total analysis time, whereas only 20% is devoted to the numerical analysis
itself, which provides the solution to the problem. Under the umbrella term of finite
elements in ambient space [2] we can classify a number of variants of the standard
FEM which have recently gained in popularity because they reduce the computational
cost to generate the FE model by making the mesh independent of the geometry
of the problem. These techniques have been given several names in the literature,
such as Fictitious Domain, Implicit Meshing, Immersed FEM, Immersed Boundary
Method, Fixed grid FEM and Cartesian grid FEM (cgFEM). In these techniques an
auxiliary domain ΩE with a simple geometry that embeds the problem domain Ω is
used for the FE discretization. Because of the simple geometry used to define ΩE
(normally a square in 2D or a cube for the 3D case) its subdivision into elements
is very simple, thus reducing the meshing burden. There are two main issues that
clearly distinguish these methods from the standard FEM: integration and imposition
of boundary conditions, in particular the Dirichlet boundary conditions.

Integration: As the mesh does not conform to the geometry of the domain it is
necessary to use special procedures to evaluate integrals. Different approaches have
been considered in the bibliography to ensure that the integration in each element is
only extended to the exact part of the volume (area in 2D), see for example references
[3, 4, 5]. In general terms the solution to this problem consists of using two different
meshes, one for interpolation and another for integration. In order to maintain the
optimal convergence rate of the FE solution, the degree of approximation to the
boundary must be at least of the same order as the degree of the FE interpolation
[6]. Transfinite mapping techniques commonly used in the p-version of the FEM, or
the integration techniques described in [7] to consider the exact geometry given by
a NURBS representation of the boundary, can be used in the elements cut by the
boundary to obtain an exact representation of the domain.

Boundary conditions: as the FE nodes do not generally lie on the boundary, the
procedures used in the standard FEM to apply the boundary conditions cannot be
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used. The case of the Neumann boundary conditions can be easily tackled by simply
taking into account that the integration surface can cut the element and does not
necessarily have to coincide with the element faces. However, the case of the Dirichlet
boundary conditions is much more complex. To solve the problem, a common alterna-
tive is to use the Lagrange multiplier technique. It can be difficult to find compatible
discretizations of displacements and multipliers that satisfy the InfSup condition [8]
but 2D [9] and 3D [10] methods of doing so can be found in the bibliography. However,
the naive choice for the multiplier interpolation based on the element edge intersec-
tion does not satisfy the InfSup condition. The main problem appears because the
number of Lagrange multipliers is too high, which can cause undesired oscillations in
the Lagrange multiplier field. One of the alternatives is thus to stabilize the solution
[11, 12].

One of the most popular methods to stabilize the solution is by Nitche’s method,
which can be derived from the Barbosa-Hughes stabilization [11]. For early imple-
mentations of the method in immersed boundaries see for example [13, 14, 15], or
for a comparison with other methods see [10, 16]. The stabilizing term in Nitsche’s
method has an algorithmic constant to be defined that affects the stability of the
method. As pointed out in the bibliography [10, 17, 18], this constant depends on
how the boundary intersects the underlying mesh and it can become unbounded for
certain configurations. At the same time very large values of the penalty constant
result in an ill-conditioned system [19]. This issue has been treated for interface
and X-FEM problems by choosing appropriate values for each intersected element
[20, 21, 22, 23]. In these works the stabilizing term is the finite element stress field,
like in the Barbosa-Hughes stabilization, but computed in a different way. In [20] the
stress is computed in the element partition with larger size. In the weighted Nitsche’s
method [21, 23] the stress field of both partitions are weighted using the partition
sizes.

Some variations of Nitsche’s method have been proposed in recent years to over-
come this problem for imposing Dirichlet constraints. In [17] the solution of the in-
ternal elements is extended to the boundary elements with a very small volume/area
ratio. The same idea was exploited in [24]. In [18] and [25] the flux jump across
the boundary element edges is used to modify the stabilized problem. In [26] the
solution of a coarser mesh was used as stabilizing stress. Other stabilizing techniques
not directly derived from the Nitsche’s method have also been proposed. In [27]
the discontinuous-Galerkin method was used. In [28] a polynomial stabilization first
proposed in [29] was applied for solving contact problems. Similar ideas where used
in [30] where the stabilizing term is a suitable projection of the Lagrange multiplier
field. In the method proposed in [31] the Lagrange multipliers field is defined in all
the domain of the boundary elements and an optimal value of the penalty parameter
is proposed regardless of mesh size.

The aim of this work is to propose a stabilized formulation using a recovered
stress field (SPR-type recovered solution, Superconvergent Patch Recovery [32]) iter-
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atively obtained from the finite element solution. We present theoretical values for the
stabilizing constant, for linear and quadratic discretizations, that ensure optimal con-
vergence rate. The theoretical analyses are done for the linear elastic case, although it
will be also shown that the proposed method can be used to impose Dirichlet bound-
ary conditions in problems with non-linear material behavior, such as plasticity. The
paper is organized as follows. Section 2 presents the linear elasticity problem and its
mixed finite element implementation. Section 3 presents the stabilized formulation in
the context of Cartesian grids. Section 4 describes the finite element interpolation.
Section 5 describes the adaptation of the SPR technique required by the proposed
method and the evaluation of the stabilization term. Section 6 demonstrates the con-
vergence and stability of the method. The numerical results are given in Section 7,
followed by the main conclusions of this work.

2. Statement of the problem

Let us consider the linear elastic problem. Let Ω ∈ Rd, with d = 2 or d = 3 be a
bounded domain with a sufficiently smooth boundary Γ. The contour can be divided
into two non-overlapping parts, ΓD and ΓN, where Dirichlet and Neumann conditions
are respectively imposed. The aim is to find the displacement field u ∈ U that
fulfills internal equilibrium equations in the domain and the Dirichlet and Neumann
boundary conditions on the boundary, which can be written as follows:

∇σ (u) + tv = 0 in Ω

σ (u)n = ts on ΓN

u = g on ΓD

ε (u) = D σ (u)

(1)

In the above expression tv ∈ [L2(Ω)]d are the volume forces, ts ∈ [L2(Ω)]d the
tractions imposed on the Neumann boundary, g the displacements imposed on the
Dirichlet boundary and n the unit normal vector. U ≡ [H1(Ω)]d is the Hilbert space
of functions whose integral of the first derivative over the domain is bounded. In
linear elasticity, strain tensor is defined from displacement field by

ε (u) =
(
∇u +∇Tu

)
/2 (2)

The constitutive equation, which relates the strains with the stresses by means of
the tensor D , can be expressed using two material dependent constants, the Young’s
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modulus E and the Poisson ratio ν, in the case of isotropic behavior. This relationship
can be written as

ε = (σ − ν (tr (σ) I− σ)) /E (3)

It is straightforward to show the following property concerning the constitutive
equation, which will be used below.

Property 1. The scalar product of the tractions can be bounded by the energy per
unit volume with a constant CE, which depends on the material properties, as

‖σ(u)‖2 ≤ CE (σ(u) : ε(u)) with CE =
E

1− 2ν
(4)

The weak variational formulation of the elastic problem allows two approaches
to imposing the Dirichlet boundary conditions. The most common procedure is to
impose a constraint in the space of virtual displacement V , i.e. the virtual displace-
ment is zero on the Dirichlet boundary. The virtual work of the elastic forces is in
equilibrium with the virtual work of the external forces applied, as follow

a (u,v) = c (v) ∀v ∈ V

where a (u,v) =

∫

Ω

σ (u) : ε (v) dΩ

c (v) =

∫

Ω

v · tv dΩ +

∫

ΓN

v · ts dΓ

(5)

This method is simple to implement and effective in the context of the standard
finite element method in which the geometry boundary is properly represented by the
mesh. However, for Cartesian meshes this method is not valid, since it is very difficult
to get a null field on the Dirichlet boundary if the contour of the geometry does not
match with the edge of the elements.

For this reason it seems more appropriate to seek another formulation, which
involves raising the elastic problem as a minimization with constraints. This means
finding the displacement field u that minimizes the total potential energy, subject to
the constraints imposed by Dirichlet conditions. The problem can be expressed as

min
1

2
a (v,v)− c (v)

with v = g in ΓD

(6)

One approach to solving this minimization problem is to use the Lagrange multi-
plier method. In addition to the displacement field, a new field of Lagrange multipliers
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2.1 Finite element formulation

λ associated with the reaction forces is added. Formally, the problem is to find the
saddle point [u,λ] ∈ U ×M of the following Lagrangian

L (v,µ) =
1

2
a (v,v) + b (µ,v − g)− c (v) (7)

where the Lagrange multipliers belong to the Hilbert space M = [H−
1
2 (ΓD)]d and

the following functional is defined

b (·, ·) : M ×U → R b (µ,u) =

∫

ΓD

µ · u dΓ (8)

2.1. Finite element formulation

The domain is subdivided into finite elements by a Cartesian mesh in which the
boundary of the domain does not necessarily coincide with the edge of an element,
but can pass through it. The spaces of the finite element solution are denoted as
U h ⊂ U for displacements and M h ⊂ M for multipliers. Substituting the finite
element fields in Equation (7) and optimizing the Lagrangian we find the following
system:

a
(
uh,vh

)
+ b

(
λh,vh

)
= c

(
vh
)

∀vh ∈ U h

b
(
µh,uh

)
= b

(
µh,g

)
∀µh ∈M h

(9)

where vh and µh are the variations of the displacement and multiplier fields and
[uh,λh] is the solution.

It is well-known [8, 33] that the finite element field of displacements and Lagrange
multipliers must fulfill two conditions (ElKer and InfSup) to obtain an optimal con-
vergence rate of the solution as the mesh is refined. The first of these, ellipticity of
a (·, ·) in the kernel of b (·, ·), is easy to fulfill and ensures that there are enough multi-
pliers to prevent rigid body motions. The second prevents too many multipliers being
introduced and it is more difficult to fulfill in practice. There are examples in the
bibliography that satisfy the InfSup condition, such as the ’vital vertex’ method in 2D
[9] and 3D [10] for linear discretizations. However, this method has the drawback of
increasing the number of unknowns of the problem. In addition, the coefficient matrix
of the system is indefinite, which can increase the computational cost as compared to
semi-definite positive systems.
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The following norms that will be used throughout the text can be defined: the L2-
norm, the energy norm and a mesh dependent norm whose approximation properties
can be found in [34, 35]:

‖uh‖2L2,Ω =

∫

Ωh

uh · uh dΩ

‖uh‖2E =

∫

Ωh

σ(uh) : ε(uh) dΩ

‖uh‖2U h =
∣∣uh
∣∣2
H1,Ω

+
∑

e

h−1
e ‖uh‖2L2,Γe

D

‖λh‖2Mh =
∑

e

he‖λh‖2L2,Γe
D

(10)

Note that the L2-norm can also be defined for the boundary ‖ · ‖2L2,Γ replacing the
integration domain. In the last norms, the summation extends to all elements of the
mesh that are intersected by ΓD and he is the size of the element intersected by the
contour.

3. Stabilized methods

In practice, the problem with the Lagrange multiplier formulation (Equation (9))
is that most natural choices of the Lagrange multiplier field do not fulfill the InfSup
condition because they introduce too many constraints. The idea behind stabilized
methods is to impose additional conditions on Lagrange multipliers without modifying
the problem solution, at least at the limit when the element size approaches zero, in
order to have more freedom to choose the Lagrange multiplier field.

3.1. Nitsche’s method

Nitsche’s method is one of the most widely used of the stabilization methods.
It is related to the stabilized formulation proposed by Barbosa and Hughes [11, 12]
to circumvent the Babuska-Brezzi condition. Its formulation is based on using the
tractions on the boundary as a stabilization term of the multipliers. The original

140



3.1 Nitsche’s method

formulation using Lagrange multipliers can be obtained from the following stabilized
Lagrangian:

LN

(
vh,µh

)
= L

(
vh,µh

)
− 1

2

h

k

∫

ΓD

∥∥µh + σ(vh)n
∥∥2
dΓ (11)

where L (v,µ) was defined in Equation (7), h is the element size and k is a positive
constant having the same units as the Young modulus. In order to use a dimensionless
algorithmic constant we define k = κCE , using the constant defined in Equation (4)
depending on the material properties.

The saddle point of the Lagrangian (11) is [uh,λh] ∈ U h ×M h such that:

a
(
uh,vh

)
+ b

(
λh,vh

)
− h

k

∫

ΓD

(
λh + σ(uh)n

)
· σ(vh)n dΓ = c

(
vh
)

b
(
µh,uh

)
− h

k

∫

ΓD

µh ·
(
λh + σ(uh)n

)
dΓ = b

(
µh,g

) (12)

∀[vh,µh] ∈ U h×M h. Stenberg [35] shows that, for a suitable choice of the multiplier
space in L2, the Lagrange multiplier field can be eliminated element by element from
Equation (12) to obtain the classical formulation of the Nitsche’s method:

Find uh ∈ U h such that:

a
(
uh,vh

)
− b

(
σ(uh)n,vh

)
− b

(
σ(vh)n,uh

)
+
k

h

∫

ΓD

uh · vh dΓ =

c
(
vh
)

+
k

h

∫

ΓD

g · vh dΓ− b
(
σ(vh)n,g

)
∀vh ∈ U h

(13)

Nitsche’s method has been widely used in the context of immersed boundary mesh
to solve interface problems (see for example [15, 16, 22, 23, 36]). However, the original
Nitsche’s method has some limitations when imposing Dirichlet boundary conditions,
as has been pointed out in the bibliography [10, 17, 18, 19]. The optimal convergence
rate of the finite element solution can only be achieved if the norm of the tractions
on the contour can be bounded by the energy norm, i.e.

∥∥σ(vh)n
∥∥
L2,ΓD

≤ CN
he
‖vh‖E (14)

with a constant CN independent of element size. In the case of immersed boundary
meshes, in general, CN cannot be bounded as the mesh is refined. To illustrate
this problem, Figure 1 shows an element of a 2D mesh cut by the boundary of the
problem domain. The shaded part indicates the internal area of the element Ωe. If
the boundary comes closer to the element edge as the mesh is refined, the size of the
area Ωe is reduced faster than the size of the boundary ΓeD, and the expression (14)
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is fulfilled with unbounded values of CN . High values of CN increase the condition
number of the system [19] and tend to overweight the boundary terms with respect
to the domain energy, thus resulting in a finite element solution with a large error
[18] (see numerical examples).

Figure 1: Cartesian element intersected by the geometry with small area.

Remark 1. In practice, the number of elements with very small internal volume
randomly changes between consecutive meshes or in different parts of the boundary,
so the effect of this problem is limited. Furthermore, this problem can be minimized by
the use of geometric tolerances that avoid the presence of elements with small internal
volume, and acceptable results can be obtained from the engineering point of view [10].

3.2. Proposed method

In this paper we propose the traction computed from a recovered stress field
as the stabilization term. The method follows the ideas of extending the solution
from the internal elements to the boundary elements [17, 24], but using the stress
field instead of the displacement field. The smoothed stress field is obtained from
the stresses calculated by the finite element method in the boundary elements and
adjacent elements using the concept of the Superconvergence Patch Recovery [32]
(see following section). The aim of this choice is to avoid the problems arising from
the condition of Equation (14). As we shall see, this method allows the optimal
convergence rate to be obtained for predefined bounded values of the penalty constant
k, regardless of the boundary cutting pattern.

The proposed method is derived from the following Lagrangian:

LS

(
vh,µh

)
= L

(
vh,µh

)
− 1

2

h

k

∫

ΓD

∥∥µh + T (ûh)
∥∥2
dΓ (15)
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where T (ûh) is the smoothed traction that depends on the finite element solution
computed from a previous iteration, ûh. Again the penalty constant can be defined
as k = κCE .

The resulting saddle point problem reads as: Find [uh,λh] ∈ U h×M h such that:

a
(
uh,vh

)
+ b

(
λh,vh

)
= c

(
vh
)

b
(
µh,uh

)
− h

k

∫

ΓD

µh · λh dΓ = b
(
µh,g

)
+
h

k

∫

ΓD

µh · T (ûh) dΓ
(16)

To obtain Equation (16) from the Lagrangian (15) we considered that T (ûh) is a
predefined field, so that its variation is zero. As in Nitsche’s method, the proposed
formulation can be simplified by eliminating the Lagrange multipliers. Assuming that
the multiplier field is in L2 and following a method proposed in [35] we can solve the
second equation in (16) for each element, to obtain the value of the multiplier λhe as:

λhe =
k

h

(
uh − g

)
− T (ûh) (17)

Substituting (17) in the first equation of (16) we obtain a modified penalty method:
Find the displacement field uh ∈ U h such that

a
(
uh,vh

)
+
k

h

∫

ΓD

uh · vh dΓ =

c
(
vh
)

+
k

h

∫

ΓD

g · vh +

∫

ΓD

T (ûh) · vh dΓ ∀vh ∈ U h

(18)

The second term on the left hand side of (18) is a penalty term with a constant
k/h. The last term on the right hand side is the virtual work of reaction forces. It
acts as a correction of the penalty term and is necessary for the finite element solution
to converge to the exact solution of the problem as the mesh is refined.

As the traction field T depends on the finite element solution, an iterative pro-
cedure is proposed to solve the problem. In the first iteration, we solve the problem
assuming that T = 0. Then the smooth stress field is calculated. This stress field is
used to update T in Equation (18) in order to solve the next iteration. This process
runs until convergence is achieved.

The advantages of the proposed method are:

• As in Nitsche’s method, the unknowns of the problem in the proposed formula-
tion are the displacement degrees of freedom as the multipliers are condensed.
Thus the size of the problem is not increased.

• Compared to Nitsche’s method (Equation (13)), fewer integral terms are needed
to compute the system. As we will see in the following section, the proposed
method is stable and convergent in spite of the lacking of these terms.
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• The method is stable for a mesh independent bounded value of the penalty
constant κ. In the following section we obtain the value of this constant for
8-node linear and 20-node quadratic elements.

• The proposed method can be directly applied to solve problems with non-linear
constitutive material behavior (see section 3.4).

The obvious drawback is that multiple iterations are needed to get the solution.
However, this disadvantage can be minimized taking into account that the matrix to
solve for each iteration is always the same for linear problems (since it is only mesh
dependent). Therefore it is only necessary to factorize the matrix once and perform
backward substitution every iteration.

3.3. Iterative Nitsche’s method

The proposed method can also be used to define another formulation, by replac-
ing the stabilizing smooth stress field T by the traction computed from the finite
element solution of a previous iteration σ(ûh)n instead of the recovered tractions.
This formulation is also compared in the numerical results.

3.4. Plasticity

Although the equations and all theoretical analysis in this paper are done for the
linear elastic case, the proposed method can be used to solve problems with elasto-
plastic material behavior. In this case, Equation (18) is still valid if we replace the
bilinear form a

(
uh,vh

)
by the virtual work of internal forces. In the context of

immersed boundaries, this term is computed in exactly the same way as is done for
the standard finite element method, provided that the quadrature points are properly
defined in the internal part of the elements.

The stabilizing terms depend on the displacement field and the stabilizing stress
T . As we shall see, the stress T is directly computed from the quadrature points of
the domain (not the boundary) thus there is no need to change anything with respect
to the linear elastic case. The method runs in two loops, one to update the stabilizing
stress T and another, with T remaining constant, to solve the non-linear plasticity
problem. In the numerical examples a plasticity problem is included to show the
performance of the method.

144



4. Interpolation and numerical integration

4. Interpolation and numerical integration

In this work we use Cartesian meshes formed by 3D hexahedral elements whose
contours are parallel to the Cartesian planes and consider linear 8-node L8 and
quadratic 20-node Q20 hexahedral elements. For displacements uh the usual finite
element interpolation shape functions are defined using degree p = 1 for L8 elements
and degree p = 2 for Q20 elements.

Figure 2: Examples of intersected linear elements in 2D. Segmentation of
the boundary ΓD based on the intersection of the boundary with the ele-
ment edges (squares). The ’×’ symbols denote the quadrature points where
the Lagrange multipliers are used to define a piecewise discontinuous linear
interpolation.

The boundary integrals in the proposed formulation (Equation (18)) are numer-
ically evaluated using Gaussian quadrature. This is equivalent to implicitly define a
multiplier unknown at each quadrature point in the saddle point formulation (Equa-
tion (16)) and to eliminate it from the system of equations at element level. This
implicit definition was proposed in [37] and used in [26]. A schematic representation
of the interpolation is depicted in Figure 2, which shows three 2D elements of the
boundary. The quadrature points at the boundary are used to define a polynomial in
each boundary segment. A piecewise discontinuous interpolation is then obtained. In
practice there is no need to explicitly define this polynomial, because we only need
to evaluate it by numerical integration at the quadrature points, where the value is
precisely that of the Lagrange multiplier.

In 2D problems, such as the one depicted in Figure 2, ng is the number of quadra-
ture points at each element. To exactly integrate the product of displacements (degree
p) and multipliers (degree ng − 1), if Gaussian quadrature is used, we need to fulfill
that 2 · ng − 1 > p+ ng − 1, so ng > p. In 3D problems the part of the real boundary
in each element is triangulated, and a piecewise discontinuous polynomial interpo-
lation is defined in each triangle (see Figure 3). We use ng = 7 quadrature points,
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which means that a polynomial of degree 5 can be exactly integrated. The implicit
interpolation of the multiplier has a complete degree q = 2.

Figure 3: Triangulation of the boundary used to perform the numerical
integration. The dots are located at the quadrature points (7 each facet).
Complete domain and zoom at a vertex.

The best approximation error of the finite element spaces measured in mesh-
dependent norms is discussed in [34, 35]. If the exact solution is smooth enough,
namely, if u ∈ Hp+1(Ω) and λ ∈ Hq+1(Γ) and the degree of displacement and multi-
plier interpolation are at least p and q respectively, it can be proved that the chosen
finite element fields fulfill

inf
vh∈U h

‖u− vh‖U h ≤ Chp‖u‖p+1

inf
µh∈Mh

‖λ− µh‖Mh ≤ Chq+3/2‖λ‖q+1,Γ

(19)

5. Recovered stress field

As mentioned above, the term T used to stabilize the Lagrange multipliers is a
recovered stress field obtained from the finite element solution. The construction of
the smoothing field is based on the SPR technique [32]. The computation is performed
as follows:
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5. Recovered stress field

1. For each vertex node i of the boundary elements (those intersected by the ge-
ometry), including the vertex nodes located outside the domain, we construct
a patch with all the elements that contain this node. For illustration purposes,
Figure 4 shows part of a 2D mesh close to a boundary of the domain. The
elements of the patch are used to calculate the recovered stress at node i. In
this case, two elements of the patch are internal and two are divided by the
boundary. The shaded region is the part of the domain corresponding to the
patch and is denoted as Ωpatch.

Figure 4: Elements used to compute the smooth stress field
for node i.

2. Each component of the recovered stress field for node i is defined as a complete
polynomial of degree p (being p the degree of the displacement interpolation)
Sic = x ·wic, where x = {1, x, y, z, xy, . . .} is the polynomial basis and wic is
the coefficient vector. Subindex c is introduced to indicate the stress component
c = xx, yy, zz, xy, yz, zx. These coefficients are calculated by minimizing the L2-
norm of the difference between the polynomial and the finite element solution
in the patch, i.e. solving the following minimization problem:

wic = arg min
w

∫

Ωpatch

(σhc − Sic) · (σhc − Sic) dΩ ≈

arg min
w

∑

∀g∈Ωpatch

HgJg(σ
h
g − Sg) · (σhg − Sg)

(20)

The integral is evaluated numerically with the same quadrature points used to
calculate the stiffness matrix. The subscript g indicates that the variable is
calculated at the quadrature point. Hg is the weight and Jg the Jacobian of the
element subtriangulation performed to compute the volume integrals.
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3. The recovered stress field in the domain Sc is an interpolation of the nodal
polynomials obtained in step 2, Sc =

∑
∀iNiSic, by using the linear shape

functions of the vertex nodes, Ni.

4. The stabilizing stress is the traction computed from the recovered stress tensor:
T = Sn, where n is the normal vector and S is the tensor whose components
are the Sc polynomials defined above .

The recovered stress polynomial Si at each patch depends on the solution evalu-
ated at both, boundary elements and internal elements. The integral used to calculate
the field Si gives weight to the integration points as a function of the volume asso-
ciated to each of them. Therefore, the smaller the volume of the cut elements, the
lower the weight and the smaller the influence on the smooth stress field.

The above definition of the recovered field fulfills three properties that will be used
in the paper:

Property 2. The L2-norm of the recovered stress field, can be bounded by the L2-
norm of the finite element stress field in the solid domain Ω:

‖S‖2L2,Ω ≤ Cr
∥∥σ(uh)

∥∥2

L2,Ω
(21)

with Cr = 8. Assuming a smooth enough exact solution Cr → 1 as the mesh is refined.

Proof: Taking the derivative in Equation (20) we obtain the following system to
evaluate the coefficient vector wi

(∫

Ωpatch

xT x dΩ

)
wic =

∫

Ωpatch

xT σhc dΩ

Multiplying the previous expression by the solution wT
ic we have:

‖Sic‖2L2,Ωpatch
=

∫

Ωpatch

Sic · σhc dΩ

Taking into account the last expression and Equation (20) we obtain:
∫

Ωpatch

(σhc − Sic) · (σhc − Sic) dΩ ≥ 0

∥∥σhc
∥∥2

L2,Ωpatch
+ ‖Sic‖2L2,Ωpatch

− 2

∫

Ωpatch

σhc · Sic dΩ =

∥∥σhc
∥∥2

L2,Ωpatch
− ‖Sic‖2L2,Ωpatch

≥ 0

As each nodal component Sic can be bounded by the stress norm in every patch, the
norm of the tensor is also bounded. On the other hand, the recovered stress field (step
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3) is the interpolation of the nodal polynomials using the linear shape functions, whose
value is between 0 and 1. Then, using the Cauchy-Schwartz inequality and taking
into account that the number of nodes per elements is eight and that the patches
contain at most eight elements, we obtain that Cr = 8 from:

‖S‖2L2,Ω =
∑

∀e

∫

Ωe

(
8∑

i=1

NiSi

)2

dΩ ≤
∑

∀e

∫

Ωe

8∑

i=1

(Ni)
2

8∑

i=1

(Si)
2
dΩ ≤

∑

∀e

∫

Ωe

8∑

i=1

(Si)
2
dΩ =

∑

∀patch
‖Si‖2L2,Ωpatch

≤
∑

∀patch

∥∥σh
∥∥2

L2,Ωpatch
= 8

∥∥σ(uh)
∥∥2

L2,Ω

The value of Cr = 8 could be improved by taking into account the definition of the
linear shape functions. Considering that the exact solution is smooth enough, we can
assume that the recovered stress field tends to be uniform in each patch (each Si is
constant) as the element size becomes smaller. Under that assumption it follows that:

‖S‖2L2,Ω =
∑

∀e

∫

Ωe

(
8∑

i=1

NiSi

)2

dΩ ≤ 1

8

∑

∀e

∫

Ωe

8∑

i=1

(Si)
2
dΩ =

∥∥σ(uh)
∥∥2

L2,Ω

and the constant Cr = 1.
�

Property 3. Assuming that every boundary element is connected to at least one
internal element, the L2-norm of T in the boundary can be bounded by the energy
norm of the finite element solution with a constant Cp independent of the mesh

‖T ‖2L2,ΓD
≤ CE Cr Cp

h

∥∥uh
∥∥2

E
(22)

where h is the uniform element size, CE is a material dependent constant defined in
(4) and Cr is defined in property 2. The value of the constant is Cp = 13 for L8

elements and Cp = 21 for Q20 elements.

Proof: First we want to bound the L2-norm of S on the boundary with its norm
in the domain. For a given boundary element (e), there exists at least one internal
element (ie) that shares an element face. We assume that the worst case to bound
Equation (22) occurs when the boundary of the domain practically coincides with an
element face. This is schematically depicted in Figure 1 in 2D. Then we have to find
the best value of Cp such that the following inequality holds:

‖S‖2L2,Γe =

∫

Γie

S2 dΓ ≤ hCp ‖S‖2L2,Ωie = hCp

∫

Ωie

S2 dΩ.

S is the product of two polynomials: the smooth field of degree p and the linear shape
functions having terms of at most degree 1 in each direction. Thus S2 has terms of
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degree 2(p+1). The above integrals can be evaluated in the reference [−1, 1] element:

h2

∫

�,Γ
S2 dΓ ≤ Cp h3

∫

�,Ω
S2 dΩ

where the symbol �,Γ denotes the reference element face and �,Ω its volume. We
can use the Newton-Cotes quadrature with positive weights to exactly evaluate the
above integrals. The volume integral can be bounded as

∫

�,Ω
S2 dΩ = H1

nq∑

j=1

nq∑

k=1

HjHkS
2

︸ ︷︷ ︸∫
�,Γ

S2 dΓ

+

nq∑

i=2

Hi

nq∑

j=1

nq∑

k=1

HjHkS
2

︸ ︷︷ ︸
positive

≤ H1

∫

�,Γ
S2 dΓ

where H1 is the weight of the first quadrature point and nq the number of quadrature
points. For linear elements, T 2 is a polynomial of degree 4 and it results that nq = 5
and Cp = 13. For quadratic elements the degree of the polynomial is 6, nq = 7 and
Cp = 21.
Now, it holds that ‖T ‖2L2,Γe ≤ ‖S‖2L2,Γe . Adding the contribution of all boundary
elements, using Property 2 (Equation (21)) and taking into account the relationship
between the L2 norm of the stresses and the energy norm (Equation (4)) the result
follows.
�

Property 4. Let u be the exact solution of the problem. If u is assumed to be
regular enough, the recovered traction evaluated for the exact solution T (u) fulfills the
following property:

‖σ(u)n− T (u)‖2L2,ΓD
≈ O(hp+1) (23)

where h is the element size.

Proof: Let T (u) be the boundary tractions evaluated from (20) by replacing σh by
the exact stress. Therefore, T (u) is a polynomial approximation to the exact traction
in each patch. The result follows assuming that u can be expanded in its Taylor
series.
�

Remark 2. The SPR technique can be modified to fulfill certain equations, such
as equilibrium of stresses, compatibility equations, imposed boundary conditions, etc.
This modification improves the approximation of the recovered stress field [6, 38].

Remark 3. Although we have chosen the SPR technique, any recovered stress field
that satisfies Properties 2, 3 and 4 could be used as the stabilizing term and the results
of the following section would hold.
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6. Convergence of the finite element solution

In this section the convergence of the finite element solution is analyzed. We
proceed in four steps: First we show that the bilinear form defining the problem
is coercive. Then we will analyze the conditions under which the iterative method
converges. Finally we will show the stability and convergence to the exact solution of
the problem.

6.1. Coercivity

As pointed out above, problem (18) is iteratively solved with an initial value of
the stabilization field T = 0. The system can be expressed in matrix form as

Adi = c + Bdi−1 (24)

where di is the vector of nodal displacements at iteration i, A is the matrix on the
left side of the Equation (18), B is the matrix obtained from the last term on the
right side of (18) which depends on the method used to calculate the recovered stress
field, and c is the vector derived from the other terms of the right hand side in (18).

In order to check the convergence of the iterative method, we define the residual
of the equation as:

ri = Adi −Bdi−1 − c (25)

Convergence is achieved when the norm of the residual ‖ri‖ as well as the norm of
the difference between two consecutive solutions ‖di−di−1‖ are lower than the given
tolerances.

Remark 4. Problem (24) can be solved without explicitly defining matrix B by directly
computing the product Bdi−1, which is easily computed as a surface integral. This
term corresponds to the equivalent nodal forces imposed by the stabilization traction.

The bilinear form defined in Equation (18) from which the matrix A is obtained
is:

a
(
uh,vh

)
+
h

k

∫

ΓD

uh · vh dΓ

For any k > 0 the bilinear form is coercive since a (·, ·) is symmetric and positive
semi-definite, with a (v,v) = 0 only for rigid-body motions. The penalty term ensures
that rigid-body motions are not allowed. As a consequence, matrix A is invertible.
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6.2. Convergence of the iterative method

The procedure set out to solve the problem can be considered as a Richardson’s
iterative method of solving linear systems of equations. This method is known to
converge [39] if the spectral radius of the matrix A−1B is lower than 1. We obtain
the following result:

Proposition 1. The iterative procedure defined in (24) converges for a large enough
but bounded value of the penalty constant k > CECpCr/4 (or κ > CpCr/4).

Proof: The spectral radius of the matrix A−1B is defined as the maximum of its
eigenvalue modulus. Any eigenvalue λ of this matrix fulfills

A−1Bd = λd → Bd = λAd

Premultiplying by dT on both sides of the equation it follows

dTBd = λdTAd

To prove that the modulus of λ is less than 1, we can see that the left side of the
equation corresponds to the stabilization term for a given vh, so that

dTBd =

∫

ΓD

vh · T (vh) dΓ (26)

Analogously, we can write:

dTAd = a
(
vh,vh

)
+
k

h

∫

ΓD

vh · vh dΓ (27)

Applying the Cauchy-Schwarz inequality to Equation (26), using Equation (22) and
considering that for two positive numbers x and y it holds that 2xy ≤ x2 + y2, we
obtain:

λdTAd = dTBd ≤ ‖vh‖L2,ΓD‖T ‖L2,ΓD ≤ ‖vh‖L2,ΓD

(
CE Cp Cr

h

)1/2 ∥∥vh
∥∥
E

≤
∥∥vh

∥∥2

E
+
CE Cp Cr

4h
‖vh‖2L2,ΓD

(28)

Comparing (27) with (28), it follows that if k >
CE Cp Cr

4
, the modulus of any

eigenvalue λ must be less than 1.
�
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6.3. Stability of the formulation

We define the following bilinear form associated to our problem (18):

Q(wh,vh) = a
(
wh,vh

)
+
k

h

∫

ΓD

wh · vh dΓ−
∫

ΓD

T (wh) · vh dΓ (29)

Here we prove the weak coercivity of the functional Q that will be used to demon-
strate the optimal convergence of the proposed method. Considering first the last
term of Q, we apply the Cauchy-Schwartz inequality and Equation (22) to obtain:

−
∣∣∣∣
∫

ΓD

T (vh) · vh dΓ

∣∣∣∣ ≥ −‖vh‖L2,ΓD‖T (vh)‖L2,ΓD ≥

− ‖vh‖L2,ΓD

(
CE Cp Cr

he

)1/2 ∥∥vh
∥∥
E
≥ −1

2

∥∥vh
∥∥2

E
− CE Cp Cr

2he
‖vh‖2L2,ΓD

(30)

Proposition 2. The bilinear form Q is weakly coercive if the penalty parameter is
chosen as k > CE Cp Cr, that is:

sup
vh∈U h

Q(wh,vh)

‖vh‖U h

≥ β‖wh‖U h ∀wh ∈ U h (31)

with β =
1

2
(k − CE Cp Cr).

Proof: It suffices to show that the inequality holds for a certain value of vh =
wh. Using (30) and the definition of Q (Equation (36) ), and considering the mesh
dependent norm defined in (10), we have:

Q(vh,vh) = a
(
vh,vh

)
+
k

h

∫

ΓD

vh · vh dΓ−
∫

ΓD

T (vh) · vh dΓ ≥

a
(
vh,vh

)
+
k

h

∫

ΓD

vh · vh dΓ− 1

2

∥∥vh
∥∥2

E
− CE Cp Cr

2he
‖vh‖2L2,ΓD

≥

1

2
(k − CE Cp Cr) ‖vh‖2U h

(32)

�

153



Paper B

6.4. Optimal convergence

Let [u,λ] be the exact solution of the problem (7) and [uh,λh] the solution of the
discretized problem (16). Taking variations in (7), a system is obtained that must be
fulfilled ∀[v,µ] ∈ U ×M . In particular, it will also be true for vh ∈ U h ⊂ U and
µh ∈M h ⊂M , and we can write:

a
(
u,vh

)
+ b

(
λ,vh

)
= c

(
vh
)

b
(
µh,u

)
= b

(
µh,g

) (33)

Adding the stabilization term
h

k

∫
ΓD
µh · (σ(u)n + λ) dΓ, (which is zero since

for the exact solution λ = −σ(u)n), to the second equation and subtracting (16) it
follows that:

a
(
u− uh,vh

)
+ b

(
λ− λh,vh

)
= 0

b
(
µh,u− uh

)
− h

k

∫

ΓD

µh ·
(
λ− λh

)
dΓ =

h

k

∫

ΓD

µh ·
(
σ(u)n− T (uh)

)
dΓ

(34)

In (16) the solution upon completion of the iterative procedure has been consid-
ered, so that the traction T is calculated for the same uh as the energy.

Operating as in the previous section, the multipliers can be eliminated to obtain
the following orthogonality property of our formulation:

a
(
u− uh,vh

)
+
k

h

∫

ΓD

(
u− uh

)
· vh dΓ−

∫

ΓD

(
σ(u)n− T (uh)

)
· vh dΓ = 0 (35)

Adding and subtracting the polynomial approximation of the traction in the
Dirichlet boundary T (u) into the last integral of Equation 35 we obtain:

Q(u− uh,vh)−
∫

ΓD

(σ(u)n− T (u)) · vh dΓ = 0 (36)

Taking into account the stability of functional Q (Equation (31)) and using Equa-
tion (36) it follows that for any wh ∈ U h:

‖uh −wh‖U h ≤ 1

β

Q(uh −wh,vh)

‖vh‖U h

=
1

β

Q(uh − u,vh) +Q(u−wh,vh)

‖vh‖U h

≤

1

β

∣∣∣
∫

ΓD
(σ(u)n− T (u)) · vh dΓ

∣∣∣+Q(u−wh,vh)

‖vh‖U h
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Now we use the Cauchy-Schwartz inequality and the continuity of functional Q with
constant C to obtain:

‖uh −wh‖U h ≤C
β
‖u−wh‖U h +

1

β
‖σ(u)n− T (u)‖L2

‖vh‖L2

‖vh‖U h

≤

C

β
‖u−wh‖U h +

h1/2

β
‖σ(u)n− T (u)‖L2

(37)

Finally we obtain the optimal convergence result:

Proposition 3. Let uh be the solution of problem (18) with k > CECpCr (κ > CpCr)
and u the exact solution. Then it holds that

‖u− uh‖U h ≤ O(hp) (38)

p being the degree of the polynomial interpolation.

Proof: Let wh be any function in the finite element space U h. We can write

‖u− uh‖U h = ‖u−wh − uh + wh‖U h ≤ ‖u−wh‖U h + ‖uh −wh‖U h

Now we use Equation (37), the best approximation property of the finite element
space (Equation 19) and property 4 of the smooth stress field T (Equation (23))

‖u− uh‖U h ≤ ‖u−wh‖U h +
h1/2

β
‖σ(u)n− T (u)‖L2 ≤ O(hp) +O(hp+3/2)

�

7. Numerical examples

In this section we illustrate the capabilities of the proposed formulation and explore
the limitations of the methods. Three numerical examples with exact solution were
solved and used to check the convergence of the Richardson iterations, the convergence
rate of the finite element solution as the mesh is refined and the effect of the stability
constant k on convergence. They were also used to compare the proposed method
with Nitsche’s method showing that, in general, both methods have similar behavior.
The third example highlights the robustness of the proposed method in cases where
Nitsche’s method fails to provide the desired accuracy, i.e., when the boundary of the
domain comes close to the element faces. An additional example shows the behavior
of the proposed method, without any modifications, when elasto-plastic behavior of
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the material is considered. This example is particularly interesting as, to the authors’
knowledge, Nitsche’s method has not been used to solve these type of problem because
the formulation of the method required for plasticity has not been derived. Linear
(L8) and quadratic (Q20) elements are used in the examples.

7.1. Example 1: Tilted hexahedron

In the first example we consider an infinite domain subjected to 4th order polyno-
mial displacements and plain strain conditions. The exact solution reads as:

E = 1000, ν = 0.3

ux = − 25

192
+

75

64
x

2 − 25

24
x

4 − 25

4
y+

25

4
x

2
y − 25

8
y

2
+
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8
x

2
y

2

uy =
20

3
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65

12
x

3
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12
x

3
y − 10xy

2 − 10

3
xy

3

uz = 0

tvx =
−E

1 + ν
(1 + y)

tvy =
−E

1 + ν
(1− x)

tvz = 0

σxx =
5

2
x− 3x

3
+ 8xy + 4xy

2

σyy =
5

8
x+

14

3
x

3 − 18xy − 9xy
2

σxy =
1

6
+ 9x

2 − 5

2
y + 9x

2
y − 4y

2 − 4

3
y

3

σzz = −0.3 (σxx + σyy)

σyz = σzx = 0

A finite portion of the infinite domain defined by a tilted hexahedron was con-
sidered for the analysis. The known values of the displacements were imposed as
Dirichlet boundary conditions on the entire external surfaces of the domain. Figure
5 shows the exact geometry of the problem embedded in the Level 3 Cartesian grid.
The same figure also shows the surface triangulation used to evaluate numerically the
contour integrals.

The problem was solved using a sequence of Cartesian meshes obtained by element
subdivision starting from a Level 2 mesh having 64 hexahedral elements (Level 0 has
a single element and Level 1 has eight elements).

In order to test the influence of the stability constant on the convergence of the
proposed iterative method and on the discretization error, the same mesh was ana-
lyzed with κ ranging from 0.04 to 4 · 106. We also considered Nitsche’s method in the
convergence analysis for comparison purposes.

The convergence of the normalized residual (Equation (25)) is plotted in Figure 6
for different values of κ using linear and quadratic elements of the Level 2 Cartesian
mesh. As predicted, small values of the penalty constant can cause very slow conver-
gence or even loss of convergence in the iterative method. The greater the value of κ
the faster the convergence, but very large values of the penalty constant can increase
the discretization error of the finite element solution. To illustrate this the energy
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7.1 Example 1: Tilted hexahedron

Figure 5: Example 1. Left: Geometry embedded in a Level 3 Cartesian
mesh. Right: Triangulation of the surface in a Level 4 Cartesian mesh.

norm of the error is plotted in Figure 7 for different values of the penalty constant
considering the Level 2 and 3 meshes (similar behavior was obtained for the rest of
the mesh levels), and compared with the results obtained with Nitche’s method. It
can be seen that the proposed technique gave a wide range of κ values, from 4 to
4 · 103, for which the level of the error remains essentially unaffected for both L8 and
Q20 elements. However, the values of κ for which the error level remains unaffected is
narrower in Nitche’s method, ranging from only κ = 40 to κ = 4 · 103 for L8 elements
and from κ = 400 to κ = 4 · 103 for Q20 elements. It can also be observed that both
techniques provide similar error levels for high levels of κ (κ ≥ 40 for L8 elements and
κ ≥ 400 for Q20 elements).

In Figure 8 the energy and the L2 norms of the discretization error are plotted
as a function of the mesh size for L8 and Q20 elements, and for both the proposed
technique (iRec) and Nitsche’s method (Nit). The triangles in this figure show the
theoretical optimal convergence rate that can be achieved. Three different values of
κ were considered, taking into account the theoretical value κ > CpCr that provides
optimal convergence (Cp = 13 for L8 and Cp = 21 for Q20 elements, assuming that
Cr = 1), κ = 4, κ = 40 and κ = 400.

As κ = 4 is lower than CpCr, the optimal convergence rate is not ensured. In-
deed it is only achieved using the proposed method for L8 elements. The expected
behavior in terms of convergence rate is observed in the numerical results for κ = 40
using the proposed method both for linear and quadratic elements, whereas Nitsche’s
method was only able to recover the optimum convergence rate for κ = 400 and linear
elements. A reduction of the convergence rate for Nitsche’s method can be seen in
the last refinement step for Q20 elements. Nitsche’s method would therefore require
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Figure 6: Example 1. Convergence of the residual in the Richardson iterations for
the Level 2 mesh and different values of κ using linear and quadratic elements.
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Figure 7: Example 1. Discretization error in energy norm and L2-norm (%) for
different values of the penalty constant κ. Results for Level 2 Cartesian mesh using
linear and quadratic elements. The proposed method is denoted as iRec and Nitsche’s
method as Nit.
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7.2 Example 2: Spherical domain

a κ higher than 400 to be able to successfully recover the optimum convergence rate
during the entire refinement process for Q20 elements.

This example showed that, if a sufficiently high value of κ is used, the proposed
technique provides results similar to those obtained with Nitsche’s method. How-
ever, it is able to provide accurate results, with the optimal convergence rate, for
considerably lower values of the stabilization parameter κ than Nitsche’s method.

7.2. Example 2: Spherical domain

The second example uses a sphere as the exact geometry of the problem. Figure 9
shows the Level 3 and Level 4 meshes. The exact solution of the problem considered
in this domain is a fourth-order polynomial defined in an infinite domain, which is
imposed as a Dirichlet boundary condition on the surface of the sphere. The exact
solution of the problem reads as:

E = 1000, ν = 0.3
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In this example we use a technique that considers the exact geometry of the prob-
lem in the evaluation of volume and surface integrals. These integrals will be exactly
evaluated up to the numerical integration errors [40]. Whatever the method used to
impose Dirichlet boundary conditions in immersed boundary methods, considering
the exact geometry of the domain in the evaluation of volume and surface integrals
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Figure 8: Example 1. Discretization error in energy norm as a function of the mesh
size for L8 and Q20 elements. The triangles show the optimal convergence rate.
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7.3 Example 3: Cubic domain parallel to the Cartesian grid

Figure 9: Spherical geometry embedded in a Cartesian mesh. Level 3 and
Level 4 meshes.

is necessary to achieve the optimal convergence rate for both linear and quadratic
elements. This is because approximations to the actual geometry, for example by a
faceted representation of the surface, could lead to geometrical modeling errors that
could spoil the convergence rate of the numerical method. Figure 10 shows the dis-
cretization error in energy and L2 norms. The optimal values of the error convergence
rates, represented by the triangles shown in the graphs, are obtained in all cases. We
recall that the theoretical rate of convergence for linear elements is 1 in energy norm
and 2 in L2-norm. For quadratic elements it is 2 in energy norm and 3 in L2-norm.
The exact slopes of the finite element solution for L8 elements are 0.69, 0.97 and 0.97
in energy norm and 1.13, 1.79 and 1.96 in L2-norm, whilst for Q20 elements the values
are 1.89, 1.78 and 1.96 in energy norm and 2.67, 2.77 and 2.95 in L2-norm. The value
of the penalty constant was κ = 40.

7.3. Example 3: Cubic domain parallel to the
Cartesian grid

Let us consider the exact solution of the fourth-order polynomial given in the sec-
ond example, in a hexahedral domain with faces parallel and equidistant to the faces
of the embedding mesh. This solution was used to impose the Dirichlet boundary con-
dition on the surface. Figure 11 shows two Cartesian meshes of Level 3 corresponding
to two different bounding boxes that could be used to analyze this geometry. Let η
represent the ratio of the volume of domain contained in the boundary elements to
the total volume of these elements (η = 10% in Figure 11 left and η = 90% in Figure
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Figure 10: Example 2. Discretization error in energy norm for L8 and Q20 elements
using κ = 40. The triangles show the optimal convergence rate.

11 right). We will use η to represent the different relative positions of the surface in
the intersected boundary elements.

Figure 11: Example 3. Cartesian meshes with different values of the parameter η.

In order to test the influence of η on the error of the solution, sequences of uni-
formly refined meshes of L8 and Q20 elements were generated by adjusting the bound-
ing box and the mesh level to keep the parameter η constant. The values of η selected
for the analyses were 50%, 25%, 10%, 5%, 1%, 0.5%, 0.1% and 0.05%. This is a
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7.4 Example 4: Plasticity

challenging problem for Nitsche’s method, as the constant that provides stability CN
(Equation (14)) increases as η is reduced and cannot be bounded for η → 0.

With the numerical analyses of this problem we try to show that the proposed
method is able to provide accurate solutions even when Nitsche’s method fails to
do so, i.e. for small values of η, but is numerically equivalent to Nitsche’s method
for larger values of η. In fact we compared three techniques, denoted as iRec - the
iterative method proposed in this paper, iNit - the iterative method described in
Section 3.3 and Nit - the Nitsche’s method.

The magnitude used to compare the results obtained from these techniques is the
exact L2-norm error of tractions on the Dirichlet boundaries

∥∥σ(u)n− σ(uh)n
∥∥
L2,ΓD

.
Figure 12 shows in logarithmic scale the evolution of this magnitude for meshes of
Level 3 and Level 4. The graphs for this example show that, in general terms, reducing
η has a negative effect on the results obtained by all three techniques, but especially in
the case of Nitsche’s method. For η = 0.05%, the best results obtained with Nitsche’s
method, which were for the highest value of the stabilization parameter (κ = 4 · 103),
are unacceptable (

∥∥σ(u)n− σ(uh)n
∥∥
L2,ΓD

= 46258.6% for the Level 3 mesh and∥∥σ(u)n− σ(uh)n
∥∥
L2,ΓD

= 7786.7% for Level 4). Reducing η leads to increasingly
higher required values of κ. On the one hand the use of these high κ values gives
a high weight to the satisfaction of the Dirichlet boundary conditions and leads to
an improvement of the magnitude considered in the comparisons in this example.
However, on the other hand it increases the condition number of the system matrix,
and might overweight the imposition of the Dirichlet BC on the surface at the expense
of reducing the weight of the terms that account for the energy in the volume (similar
ideas have already been put fordward by [18]). This implies high error levels in the
results obtained in the elements cut by the Dirichlet boundary. This problem would
be critical if the results obtained in these elements were magnitudes of interest to the
analyst.

The iNit curves show a slightly better performance than the Nit curves for κ =
4 · 103, and more significantly for κ = 400. However, further reducing the value
of κ prevents the convergence of the iterative process in the full range of values of
the volume ratio η (convergence was only obtained when κ = 4 for η ≥ 10% and,
when κ = 40, for η ≥ 1% for the Level 3 mesh and for η ≥ 0.5% in the case of
Level 4). The results given in figure show that the best results are obtained with
the proposed method (iRec curves). These curves are similar to the Nit and iNit
curves for κ = 4 · 103, but show a considerable improvement when κ is reduced. The
optimum performance shown in the graphs for the iRec curves is at κ = 4 with the
highest error levels around 30% and 26% (only obtained for η ≤ 0.1%) respectively
for the Level 3 and Level 4 meshes, i.e. several orders of magnitude smaller than with
the other two methods.
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Figure 12: Example 3. Fourth-order polynomial in a cube. L2-error of the traction
field on the Dirichlet boundary for Level 2 and Level 3 meshes.

7.4. Example 4: Plasticity

In this last example we check the performance of the proposed technique when
used to analyze a mechanical component considering elasto-plastic behavior of the
material. The component analyzed is a rectangular plate with a central hole subjected
to uniaxial monotonic traction, as represented in Figure 13. The highlighted 1/8 of the
plate with the appropriate symmetry boundary conditions was used in the analyses.
The material behavior is a von Mises plasticity bilinear model with yield stress Sy = 24
units of pressure and slope of the plastic zone H = 225 units of pressure. The Young
modulus is E = 1000 units of pressure and the Poisson’s ratio ν = 0.3. The maximum
traction applied is σmax = 0.9·Sy. We use the proposed method to apply the Dirichlet
boundary conditions on the symmetry boundaries. Although the theoretical analysis
done in the paper to obtain the value of k is only valid for linear elasticity, we use
the same values for non-linear problems, such as, the present example. Therefore,
the value of the stabilizing constant is κ = 40 (k = 100 using the elastic material
properties).

The reference solution was evaluated using ANSYS R©[41]. We compared the dis-
placement of Point I (shown in Figure 13) as a function of the load and the final
distribution of the plastic zone, using the reference and the Cartesian grid methods.
A sequence of analyses using mesh levels 2, 3, 4 and 5, with element faces not coplanar
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8. Conclusions

Figure 13: Example 4. Plate under traction. Geometrical model and fi-
nite element models. Centre: mesh of the reference model. Right: Level 5
Cartesian grid mesh.

to the symmetry surfaces, was run to test the convergence of the solutions obtained by
the Cartesian grid method to the reference. The size of the elements in the reference
model was similar to that of the Level 5 mesh, although the Ansys model gave smaller
element sizes around the hole. The number of degrees of freedom of the Cartesian
grid models was 396, 1935, 10392 and 65058, whereas the reference model had 92904
degrees of freedom. A comparison between the reference mesh and the Cartesian grid
for Level 5 is shown in Figure 13.

Figure 14 compares, on the right, the zone of the models that underwent plasticity
(shown in gray) evaluated by Ansys and by our Cartesian grid implementation. It can
be observed that both zones are similar, even though different graphical representation
techniques are used by each of the codes.

Figure 14 shows on the left plot the load-displacement curves obtained from the
different analyses. It can be clearly observed that the curves obtained with the Carte-
sian grid smoothly converge to the reference curve, thus showing that the technique of
imposing Dirichlet boundary conditions proposed in this paper can be used to provide
similar results to those obtained with standard finite element implementations.
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Figure 14: Example 4. Comparison of the FE models. Left: mesh of the reference
model (Ansys). Right: Level 5 Cartesian grid mesh.

8. Conclusions

This paper describes a novel method of imposing Dirichlet boundary conditions
suitable for immersed boundary Cartesian meshes in an approach based on the sta-
bilized Lagrange multipliers method. This approach allows the Lagrange multipliers
to be condensed element-by-element during the assembly process. The stabilization
term is evaluated by using a smoothed stress field obtained from the Superconvergent
Patch Recovery technique. An iterative procedure is defined to update the stabilizing
term and the global convergence of the procedure is proved for a sufficiently large
value of the stabilizing parameter κ. The numerical examples show the influence of κ
both on the finite element error and on the convergence of the Richardson iterations.
In the examples given, the finite element solution remains unchanged for a wide range
of values of κ (κ ∈ [40 − 4 · 103]) and the convergence of the Richardson iteration is
verified for κ > 4.

The numerical results show that the optimal convergence rate of the finite ele-
ment solution is obtained for both linear and quadratic elements, provided that the
geometry of the problem is accurate enough. In particular, if the geometry is approxi-
mated using a linear subtriangulation the solution using linear element has an optimal
convergence rate whilst the convergence using quadratic elements is suboptimal.
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The numerical comparisons with Nitsche’s method showed that in the general case,
and especially for high values of the penalty parameter of the stabilization term κ,
both techniques provide similar results. However, the proposed technique proved to
be robust in providing accurate results even when the boundary of the domain comes
very close to the element faces, where Nitsche’s method is not robust. Moreover, the
results obtained with the proposed technique improve as κ is reduced consequently
with less likelihood of obtaining high condition numbers.

The proposed technique with no modifications was successfully applied to analyz-
ing a problem with non-linear material behavior. Despite the fact that the plastic-
ity covered a large area of the Dirichlet boundary, applying the proposed technique
provided similar results to those obtained by the standard finite element method.
Although further improvements could be gained by adapting the recovery technique
to account for plastic deformations, the preliminary results of this work open up the
possibility of obtaining the benefits of embedded domain methods in this type of
non-linear problem.
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Abstract

This paper proposes a novel algorithm to generate 3D h-adaptive meshes for an
Immersed Boundary Method based on the use of Cartesian Finite Element meshes
and the integration techniques of the so-called NEFEM (NURBS-Enhanced Finite
Element Method). In order to increase the accuracy of the results at a minimum
computational cost, with this work we seek to keep the efficient Cartesian structure
of the mesh and the associated data structure, during the whole analysis process,
while considering the exact boundary representation of the domain given by CAD
(NURBS or T-spline) surfaces. Within the framework of Cartesian Finite Element
meshes, two important contributions of this paper are a) the methodology used for
the intersection between mesh and geometry, which represents a relevant challenge
due to their independence; and b) a robust procedure to generate the integration
subdomains that exactly represent the domain given by a CAD model which is of
major importance in problems like contact analysis and shape optimization. The
contributions of this paper show that the Immersed Boundary Methods based on
Cartesian grids can be considered as a robust and reliable tool in terms of accuracy
and computational efficiency. Numerical examples will show proper convergence of
the method and the capability of meshing complex 3D geometries.

Key words

Cartesian grids; h-refinement; NURBS; NEFEM
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1. Introduction

1. Introduction

It has recently become clear that a major drawback to the rapid structural anal-
ysis of geometrically elaborated 3D domains using Finite Element Analysis (FEA)
is the time allotted to creating an appropriate finite element mesh. Even after the
appearance of sophisticated mesh generators, a significant amount of skilled human
resources is required to create good quality finite element meshes for the geometrically
complex models necessary for the resolution of common industrial problems.

The aim of adaptive mesh generation and automatic error control in FEA is to
eliminate the need for manual re-meshing and re-running design simulations to check
the numerical accuracy. In ideal circumstances, the user should only input the compo-
nent model and a coarse finite element mesh. The software should then autonomously
and adaptively reduce the element size where required, reducing the error in the so-
lution fields to a predetermined value.

Adaptive methods of finite element simulations were first proposed in the late
70’s[1, 2]. The most common criterion in general engineering use is that of prescribing
a limit for a global magnitude, such as the error computed in the energy norm, though
it is possible to define magnitudes of interest to evaluate the goodness of the evaluated
meshes[3, 4, 5].

The procedures for the refinement of finite element meshes fall mostly into two
categories:

1. The h-refinement, in which the element type is maintained but the elements
are changed in size. In some locations of the mesh the element sizes are made
smaller, or larger (not very common), where needed to provide maximum com-
putational economy in reaching the desired solution.

2. The p-refinement, in which the element size is kept constant and the order of
the polynomial, used in its definition is increased where necessary, generally by
using hierarchical shape functions[6, 7].

There exists a third category, the hp-refinement [8, 9], which consists of simulta-
neously adapting the size of the elements and their approximation degree.

In this contribution we will present an h-adaptive refinement strategy based only
on the size of the element keeping the polynomial order of the interpolation constant.

Decades after the development of meshing techniques, mesh generation still has to
evolve in order to minimize the design cycle time because real industrial applications
are, in general, geometrically complex and traditionally require a skilled workforce to
generate an analysis-suitable finite element mesh.

One alternative to reduce the meshing burden, related to the proposals in this
paper, is to use mesh generators based on simple discretizations such as octrees [10,
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11, 12]. In octree-based mesh generators [13, 14, 15] an embedding cube-shaped
domain is created and meshed following a Cartesian hierarchy through the mesh
generation process for efficiency. After adapting the octree mesh to the geometry and
splitting the cut cells into tetrahedrons to capture the boundary of the model, the
octree is broken up into a valid body-fitted mesh and then smoothing techniques are
used achieve good quality finite elements.

It is apparent that mesh generation could be greatly simplified by using implicit
meshing approaches in which (as in octree techniques) the geometrically complex
domain is embedded into a geometrically simpler domain whose meshing is simple
if not trivial. As opposed to octree techniques, in the approach described here the
non-conforming FE mesh is not modified to fit the boundary. Instead, the matching
between geometry and mesh is done during the evaluation of element integrals, which
are defined only by the part of the elements cut by the boundary that lies within the
domain. Many methods are described in the literature in which the geometrically
complex domain is embedded into a geometrically simpler domain. Among many
other names used to describe these FE techniques in which the mesh does not match
the domain’s geometry, there is the Immersed Boundary Method (IBM) [16], the
Immersed Finite Element Method (IFEM) [17] or the Finite Cell Method (FCM)[18,
19, 20]. Immersed boundary methods, often referred to as embedded methods, have
been studied by a number of authors for very different problems such as, for example,
shape optimization [21, 22] or bio-mechanics [23, 24, 25]. Most of these techniques
rely on an integration submesh in the elements cut by the boundary to perform the
body-fitted numerical integration appearing in the weak formulation.

Implementing the Finite Element Method in combination with the embedded-
domain concept offers a powerful alternative due to the potential benefits: virtual
automatic domain discretization, suitable for creating hierarchical data structures
for simple data transfer and re-use of calculations, ability to easily create adapted
domain discretizations, a natural platform for efficient structural shape optimization
processes, multigrid and multiscale analyses, etc. However, there are also tradeoffs
with this approach related to the fact that the boundary of the domain does not
necessarily coincide with the element faces. For example, there are difficulties in
accurately integrating the weak form of the governing equations over the elements
intersected by the boundary. There are also difficulties in imposing essential boundary
conditions as the nodes do not necessarily lie on the Dirichlet boundary and the direct
enforcement of the essential boundary conditions is in general not possible.

As an efficient solution for these drawbacks, we used a methodology based on the
use of Cartesian grids independent of the geometry. This methodology, known as
cgFEM[26, 27], was implemented in a computer code for the structural analysis of
3D components considering uniform meshes. The first 3D version of this method-
ology, known as FEAVox[28] was described in a previous paper. The aspect that
distinguishes FEAVox from other immersed boundary approaches is that it is able
to consider the exact CAD representation of the boundary of the domain, given by
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NURBS[29, 30] or T-Splines[31], in the evaluation of volume integrals. To perform
the numerical integration, instead of simplifying the embedded geometry, for instance
using triangular facets for its definition, FEAVox includes novel techniques to per-
form the exact integration (up to the accuracy of the quadrature rule) over the true
computational domain. In particular, these integration techniques are the techniques
considered by the NURBS-Enhanced Finite Element Method (NEFEM) [32, 33].

The accurate evaluation of integrals in elements cut by the boundary, it is neces-
sary to maintain the optimal convergence rate of the error of the FE solution. This
is, therefore, an active area of research. In fact, several methodologies have recently
emerged to perform high-order integration in embedded methods, such as the so-called
’smart octrees’ tailored to Finite Cell approaches[34] or techniques in which the geom-
etry is defined implicitly by level sets[35]. We used the NURBS-Enhanced integration
techniques because their consistency considering the exact geometric description[36]
is of major importance when dealing with CAD models in applications such as shape
optimization or contact between bodies.

This contribution will show how the capabilities of the cgFEM methodology have
been improved by developing h-adaptive analysis techniques. These techniques have
been successfully implemented in FEAVox in order to handle complicated CAD mod-
els without renouncing the traditional properties of embedded methods as well as
developing a robust enhanced procedure for geometry-mesh intersection.

The paper is organized as follows: a brief review of the basic features of the
cgFEM methodology is given in Section 2. Section 3 explains how the mesh-geometry
intersection problem is solved. Section 4 describes an extended scheme to efficiently
integrate elements intersected by the boundary. Section 5 gives details of the refine-
ment strategies. Section 6 contains numerical results showing the behavior of the
proposed technique. Finally, the conclusions are given in Section 7. The derivation
of the h-adaptive refinement criterion for 3D meshes is given in A.

2. Cartesian grids with exact representation
of the geometry: FEAVox

The present work is the logical continuation of [28], which introduced the new
cgFEM methodology implemented in an FE code, called FEAVox, for the analysis
of structural 3D components. Its main novelty was its ability to perform accurate
numerical integration in non-conforming meshes independent of the geometry. A
brief review of cgFEM and its features is given here as a background to the present
paper.
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The foundations of mesh generation in cgFEM consists of defining an embedding
domain Ω such that a bounded domain ΩPhys fulfills ΩPhys ⊂ Ω. Let us assume that the
embedding domain is a cube, although rectangular cuboids could also be considered.
This means Ω is much easier to mesh than the domain of interest ΩPhys. Figure 1
gives an example of the different domains defined. Figure 1b only gives the elements
of the embedding domain interacting with ΩPhys denoted by ΩApprox and Figure 1c
shows a representation of the submesh used only for integration purposes.

(a) Torus geometry, ΩPhys. (b) Approximation mesh,
ΩApprox.

(c) Integration mesh, Ωh
Phys.

Figure 1: Immersed Boundary Method environment.

The original version of FEAVox considered a sequence of uniformly refined Carte-
sian meshes to mesh the Ω, where the different levels of the Cartesian meshes were
connected by predefined hierarchical relationships. The term Cartesian grid set, de-
noted by {Qih}i=1,...,m, is used to define the sequence ofmmeshes utilized to discretize
the embedding 3D domain Ω. For each level i of refinement, the embedding domain
Ω is partitioned into niel disjoint cubes of uniform size, where ni+1

el = 8niel. While in
a uniform refinement process this operation was carried out for every element in the
mesh, in our h-adaptive approach, the subdivision step will be guided either by local
geometrical parameters or a discretization error-based criterion, so we could end up
with elements of different sizes in the same mesh.

It is worth noting that the hierarchical relationships considered in the data struc-
ture provide automatisms for mesh refinement, thus positively affecting the efficiency
of the FE implementation. Nodal coordinates, mesh topology, hierarchical relation-
ships, neighborhood patterns, and other geometric or topological information can be
obtained algorithmically. This information is therefore not stored in the memory,
making the proposed algorithm more efficient, not only in terms of computational
expense but also in terms of memory requirements.

During the creation of the FE analysis mesh used to solve the boundary value
problem we can classify the elements of the Cartesian grid into three groups: bound-
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ary, internal and external elements. Let Γ be the boundary of ΩPhys and Ωe the
domain of every element conforming the embedding domain Ω.

We define ΩI as a set of elements fully contained in the model domain, Ωe ⊂ ΩPhys
(green elements in Figure 2). We also define ΩB as the set of elements such that
Ωe ∩ Γ 6= ∅. Within these elements we will use a submesh to take into account
that only a portion of these elements needs to be integrated, i.e. the portion of
these elements that lies inside the physical domain, namely ΩPhys

B = ΩB ∩ ΩPhys (blue
triangles in Figure 2).

Figure 2: Section of a 3D Cartesian grid showing the different types of ele-
ments and nodes.

The internal elements are standard FE elements and the affinity with respect
to the reference element is exploited in order to avoid the computational cost of
creating their element matrices. For the elements cut by the boundary, due to the
independence between the embedded geometry and the mesh, as it is necessary to
determine the relative position of the elements with respect to the physical boundary,
specific strategies are proposed to find the intersections with the boundary and to
perform the numerical integration. Since the intersection process is a key step in
our algorithm, Section 3 will be devoted to giving a detailed explanation of its main
aspects.

Regarding the integration of intersected elements in cgFEM, we proposed a strat-
egy to perform the integration over ΩPhys

B employing a tetrahedralization of this re-
gion in each boundary element that incorporates the exact boundary representation
of ΩPhys. Numerical integration over the region Ωphys

B is then accomplished by in-
tegrating over each subdomain of the tetrahedralization. The strategy proposed in
the NURBS-Enhanced Finite Element Method (NEFEM)[32, 33] is adopted to per-
form the integration over the subdomains. As has been demonstrated in the previous
work, this approach can be successfully used in a Cartesian grid environment, giving
it the ability to integrate the curved subdomains of domains parametrized by NURBS,
T-Spline or other parametric representations.
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In cgFEM, Dirichlet boundary conditions are imposed using stabilized Lagrange
multipliers, or more precisely, the procedure chosen to impose the constraints follows
the technique proposed in [37]. This method is suitable for h-refinement in the context
of hierarchical Cartesian grids, where the problem is stabilized by a functional added
to the initial formulation.

3. Geometry-mesh intersection

As a logical consequence of the independence between the analysis mesh and the
geometrical model, the problem arises of discriminating the parts of the mesh in-
side and outside the model. The simplest approach is to find the intersections of
the physical boundary with the edges of the Cartesian grid elements. This is usu-
ally a simple problem when using a model described by a tessellated boundary or
a linear interpolation from implicit boundary representations, as for example level-
set functions. However, when dealing with exact explicit representations, as in the
present work, or high-order implicit boundary representations[35], more sophisticated
boundary-tracking procedures are needed.

There are several methods available in the literature to evaluate the intersection
between parametric surfaces and arbitrary rays. These are known as ray-tracing
strategies and are widely used by the computer graphics community and the animation
and videogames industries, whose need for better representation technologies involved
the rapid proliferation of these techniques.

The ray-surface intersection is generally calculated in one of two ways, according
to the nature of the surface. If the surface is defined by a tessellation, the ray-tracing
is performed on the resulting set of triangular surfaces, which is algebraically trivial.
When using parametric surfaces, the curve-surface intersection is solved directly, usu-
ally by a numerical method. There are plenty of algorithms for ray-tracing parametric
surfaces available in the literature[38, 39, 40, 41, 42].

Here we propose a robust algorithm for finding the intersections of a Cartesian grid
and parametric surfaces. The algorithm includes the multivariate Newton method and
incorporates criteria to minimize the disadvantage of requiring an initial guess, which
must generally be close to the root itself. In this section, since we only need a basic
version of the well known Newton’s Method, we will focus on the details of how to
make an accurate initial guess for the intersections.

The process will be illustrated with an example. Figure 3a contains an arbitrary
parametric surface and its control points. Since we are using Cartesian grids, we
need to intersect this surface with straight lines following directions X, Y or Z only.
In Figure 3b a set of axes defined along Z are plotted that intersect the parametric
surface.
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(a) Parametric surface. (b) Axes in direction Z. (c) Cartesian planes of an
axis.

Figure 3: Example of surface and Cartesian axes.

In addition, we know that each one of the Cartesian axes will be defined by two
Cartesian planes, as shown in Figure 3c, where it can be seen that the intersection
between a Y Z-plane, defined by the coordinate x, and a XZ-plane, defined only by
y, yields a Z-axis.

In order to make a good initial guess for every axis in the Cartesian grid we have
to choose points that would be close enough to the actual intersections. To do this
in an efficient way we will generate a triangulation of the surface by evaluating a
properly defined set of points, Figures 4b and 4a respectively. The points and the
subsequent triangulation are defined in the parametric space and then projected onto
the physical space in which the intersecting planes are defined.

It is worth noting that if the triangulation is too coarse a Cartesian axis could
intersect the same triangle several times (illustrated in [28]). If the triangle is defined
in an area of the surface with curvature changes, considering the same initial guess for
different roots will prevent the convergence of the Newton-Raphson algorithm to all
the different roots. To avoid this situation, we recommend that the distance between
the set of points evaluated on the surface be related to the distance between the
Cartesian planes of the mesh, and thus related to the element size.

In order to do this, we first evaluate the physical bounding box of each surface.
With this information, the bounding box of the embedding domain and the maximum
refinement level allowed by the user, we estimate how many axes will be intersecting
the surfaces. We set the number of points that define the uniform grid, with the
vertices of the auxiliary triangulation, such as NP = 3 ·max {Nx

A, N
y
A, N

z
A}, where NA

is the number of axis that intersect the bounding box of the surface in each Cartesian
direction. This criterion has been successfully applied to different examples. In any
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case, the user, to be able to capture any kind of curvature changes, could tune the
factor that multiplies NA.

(a) Arbitrary discretization of the
surface.

(b) Triangulation generated.

(c) Triangulation and intersection
planes.

(d) 2D view of the level sets.

Figure 4: Procedure for the initial Newton-Raphson guess.

After obtaining the auxiliary triangulation we evaluate the level sets of the inter-
section planes (Figure 4c) with respect to the points on the parametric surface. In
this way we will identify the position of the points with respect to the two planes by
evaluating the sign of the distances in the physical space. This represents a trivial
operation as it only requires comparing the global coordinate of each point of the
triangulation with the coordinates that define the Cartesian planes. Figure 4d shows
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a view of the level sets calculated in the parametric space. The signs of the distances
to the planes XZ and Y Z are in red and green, respectively. Our strategy consists
of finding triangles that are cut at the same time by the two planes defining the
intersecting axis.

Now, if every triangle Ti of the triangulation is defined by the vertices {P1, P2, P3}
where the coordinates of Pi are given by {P xi , P yi , P zi } (Figure 5a), then we say that
the triangle is cut by a plane when we can find vertices on both sides of the plane at
the same time, i.e., there is a change in the sign of the vertices (Figure 5b). Otherwise,
the triangle is not intersected when the signs of all vertices are the same (Figure 5c).
As we have said, every axis in the mesh is defined by two planes, so if a triangle is
intersected by both planes at the same time we will use it to make the initial guess of
the axis in question. Using these criteria, the area where we have to make the initial
guess for the axis for the case in Figure 4 can easily be identified (see Figure 5d).

It should be noted that the fact of meeting the criteria does not necessarily mean
the intersection exists. Indeed, if we use a linear triangulation to discretize an arbi-
trary parametric surface, it could happen that a plane intersects the triangles that
had not been detected by the previous criteria. An example of this can be seen in
Figure 6a, where the sign of the vertices indicate that the triangle is not intersected,
but if we had considered the real definition of one edge of the triangle the intersection
would have existed.

To identify the intersection we introduce a new criterion based on the distances of
the vertices to the plane of intersection. Let Ci be the maximum length of the bound-
ing volume defined by the vertices of the triangle Ti such that Ci = max {Cxi , Cyi , Czi }
where Cxi = max {P xi }−min {P xi } and Cyi and Czi are defined in the same way. Then,
d1, d2 and d3 being the distances from the vertices to a plane (Figure 6b), we say
that if {|d1| , |d2| , |d3|} < Ci, the triangle is ambiguous because we cannot ensure
the existence or non-existence of the intersection. To eliminate this ambiguity we
subdivide the triangle and recalculate the criteria. This subdivision is recursively
applied until the ambiguity is eliminated. An extreme case will be the existence of
tangent points as shown in Figure 7a. In this scenario, the subdivision will continue
and the procedure will stop when the triangle size is small enough to assume the axis
is tangent to the surface, Figure 7b. When a surface itself is coplanar to Cartesian
axes, see Figure 7c, the intersection of those axes have to be circumvented to avoid
the excessive subdivision due to the theoretical presence of infinite intersections. In
order to do this, it is possible to check if a surface is defined along any Cartesian
coordinate and if so, detecting any axis contained in it is simple. The intersections
evaluated on these surfaces will come from the axes normal to the tangent plane, as
pictured in Figure 7d.

Once we have identified all the candidate triangles to be intersected by every axis in
the mesh, we will choose their geometrical center in the parametric coordinates as the
initial guess to evaluate the intersection. After obtaining these initial points we will
compute the intersections using the Newton-Raphson method, as mentioned above.
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(a) Element of the tri-
angulation.

(b) Cutting plane. (c) Non-cutting plane.

(d) Target triangles for intersection.

Figure 5: Intersecting the Cartesian planes and the triangulation.

Regarding this iterative process, when dealing with badly parametrized surfaces, the
derivatives could present rapid changes. The parametric space of a surface is defined,
if normalized, as a quadrilateral with dimensions [0, 1]× [0, 1]. Rapid changes in the
derivatives during the Newton-Raphson procedure could yield in iteration parameters,
{ξi, ηi}, outside the definition of the parametric space. To avoid this situation we force
the parameters to be 0 ≤ {ξi, ηi} ≤ 1, allowing to keep points that would be discarded
in an intermediate stage of the process.

With the intersections evaluated, it is trivial to classify the nodes as internal or ex-
ternal by simply marching along the edges of the Cartesian grid and the classification
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(a) Case of intersection not
detected.

(b) Distances of points to
plane.

Figure 6: Ambiguous intersection between triangles and planes.

of elements as internal, boundary or external, is automatically achieved by counting
the number of internal and external nodes in each element.

It is important to understand that this intersection step is the keystone to achieve
overall robustness of the methodology. Both the generation of subdomains (see Section
4) and the geometrical refinement (see Section 5.1), rely in the assumption of the
quality of the information obtained during this intersection step.

4. Integration patterns

The FEM requires the computation of integrals over the domain, ΩPhys, and over
its surface, Γ. The numerical integration in the IBM requires special attention as the
mesh is usually independent of the geometry of the physical domain.

As explained in [28], internal elements, ΩI, are standard finite elements in which
the integration is performed using a tensor product of one-dimensional Gauss quadra-
tures with the specified number of points in each direction. Nevertheless, the con-
tribution of the boundary elements, ΩB, requires special attention as the integrals in
these elements must be computed only over the portion of the element that lies inside
the physical domain, namely ΩPhys

B = ΩB ∩ΩPhys (see Figure 1c). In fact, the indepen-
dent generation of the Cartesian grid with respect to the embedded geometry implies
that the region of each element intersected by the mesh lying inside the computation
domain, ΩPhys

B can be extremely complex.
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(a) Axis tangent to a surface. (b) Resulting subdivided triangulation.

(c) Plane tangent to a surface. (d) Intersection of normal axes only.

Figure 7: Treatment of tangent situations.

The approach proposed in [28] to perform the integration over ΩPhys
B consists of

employing a tetrahedralization of this region that incorporates the exact boundary
representation of ΩPhys. This strategy was inspired on the Marching Cubes (MC)
algorithm [43], which uses a set of templates for the intersection between surfaces and
the edges of cubes to define a surface triangulation. Since a cube has 8 corners and
each corner can have two states, there are 28 = 256 possible types of intersection. By
symmetry considerations, this can be reduced to 15 basic cases (14 if we remove the
case with no intersections).

The idea is very simple; we start with the reference hexahedral element in Figure
8a, in which we have identified the 8 nodes and the 12 edges where the intersections
can appear. The algorithm will only allow one intersection point with an edge, so the
edge numbers in Figure 8a can also be considered as possible intersection points. We
extended the idea behind the MC algorithm to create templates that define tetrahe-
dralizations of the domain contained in each boundary element. To represent these
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templates we will consider that the CAD surface intersects the element edges at their
midside point, as shown in 8a. Flat surface tetrahedrons will be considered to define
the templates.

Figure 8b shows an example of an integration pattern with an internal node (red
dot), 3 intersections (green squares) and 7 external nodes (blue dots). With this set
of nodes and intersections we can generate a tetrahedralization, for example using the
Delaunay tetrahedralization, to discretize the element into subdomains (Figure 8c).
We can deduce that all the elements that present the same configuration could share
the same pattern of tetrahedrons, so we only need to keep in the computers memory
one set of tetrahedrons for every configuration and use it multiple times.

(a) Numbering of nodes
and edges in a reference el-
ement.

(b) Nodal and edge inter-
section topology.

(c) Tetrahedralization.

Figure 8: Integration pattern example.

In the previous study [28], it was assumed that the edges of the elements are
intersected, at most, once by the boundary of the physical domain. From this premise,
we need only 7 out of 14 templates of the original MC algorithm (1, 2, 5, 8, 9, 11 and
14, see [43]). The seven patterns considered are depicted in Figure 10. In the figures
we can see the set of tetrahedra used for each pattern and the corresponding nodal
topologies. Colors identify internal and external subdomains (or different materials
in the case of multi-material interfaces). The actual location of the intersections
on the edges and curved-face tetrahedrons exactly defining the CAD surface will
be considered during the integration process once the integration pattern has been
determined. Since we have found the intersections between the geometrical model
and the mesh, and thus the nodes that are internal or external to the body, we can
identify the intersection pattern for every boundary element in our reference element.

These patterns are valid when the elements are intersected by only one surface,
but in problems defined by arbitrary geometries there will be elements intersected
by several surfaces at the same time. A common situation is the existence of sharp
features inside an element generated by the interfaces of connecting surfaces, see Fig-
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(a) Configuration 1. (b) Configuration 2.

(c) Configuration 3. (d) Configuration 4. (e) Configuration 5.

(f) Configuration 6. (g) Configuration 7.

Figure 9: Intersection patterns inspired on the MC algorithm. Nodal topology (left)
and tetrahedralization (right).

ure 10a. The proposed method is to evaluate these elements individually, generating
specific sets of tetrahedra, using for instance a Delaunay procedure, as in Figure 10b.

(a) Element intersected by several
patches of a trapezoidal prism.

(b) Detail of the resulting tetrahe-
dralization.

Figure 10: Exception to the intersection patterns.
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Following [32], integration subdomains with several faces on different surfaces are
split into tetrahedrons with only one face on a parametric boundary. It is worth
noting that subdivisions are only applied to design a numerical quadrature. Two
examples are presented to illustrate the proposed strategy. The first example considers
a tetrahedral element ΩT with two faces on different surfaces (P1−P2−P4 on ΓA and
P2 − P3 − P4 on ΓB) (see Figure 11). In this example, we will use the only edge not
lying on the boundary, edge P1−P3, to define its geometrical center PE and generate
two new subdomains with only one face on the boundary.

Figure 11: Subdivision of tetrahedrons with two faces on different
parametric boundaries.

The second example considers an element ΩT with three faces on different surfaces,
as represented in Figure 12. In this case, the subdomain is split into three tetrahedrons
using the geometric center PF of the only face not lying on any boundary (face
P1 − P2 − P4). New subdomains are then defined as a linear convex combination
of PF and original boundary faces of ΩT , having at most one face on a parametric
boundary.

Figure 12: Subdivision of tetrahedrons with three faces on different
parametric boundaries.
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The evaluation of these elements has a higher computational cost than that of
elements with standard patterns, however, the ratio of the amount of elements with
configurations not represented by the standard patterns to the number of elements in
the mesh is very low, in general. In addition, the strategy presented allows both the
consideration of sharp features and a proper discretization, to integrate parametric
boundaries through NURBS-Enhanced rationale in an immersed boundary environ-
ment.

Remark 1. It is worth mentioning, that for other piecewise boundary definitions
(surface triangulations for instance) FEAVox uses the linear version of the subdo-
mains generated to approximate the boundary, as depicted in Figure 13a. In these
cases, a proper h-adaptive strategy of the boundary would be necessary to improve ge-
ometrical accuracy. In addition, when it is important to properly capture the piecewise
boundary representation, then it is possible to apply the procedure proposed in this con-
tribution,treat all the different components of these surfaces as individual parametric
surfaces, and generate a submesh, as shown in Figure 13b. Lastly, if the model is
defined with high-order piecewise polynomials we could always use the NEFEM inte-
gration (Figure 13c). The last two options would yield excessive mesh refinements
and a higher computational cost due to the large number of unions between surfaces,
which implies the exclusive tetrahedralizations of more elements.

(a) Subdomains template. (b) Exclusive subdomain
creation.

(c) Exclusive subdomain
creation and NURBS-
Enhanced integration.

Figure 13: Treatment of a linear piecewise boundary within an element.

In order to improve the robustness of the method we extend the previously de-
scribed concepts by assuming the existence of intersections on the nodes of the el-
ement, or in other words, boundary nodes. These possibilities were not considered
in the first development and are very likely to exist when dealing with complicated
CAD geometries and h-adaptive mesh generation. Although the exact intersection
on the node is not, in general, very likely, we can have many of these intersections
due to the use of a geometrical tolerance, so intersections of the surface with element
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edges within the geometrical tolerance of the element nodes will be considered as
intersections on the nodes.

For example, if we take Configuration 1 in Figure 9a, we can quickly see that we
have as many options as intersections we can move to the nodes (see Figure 14) the
boundary nodes being the magenta dots.

(a) One boundary node. (b) Two boundary nodes. (c) Three boundary nodes.

Figure 14: Configuration 1. Different options when considering surface intersections
on boundary nodes.

In this contribution we propose a strategy to handle all these new possibilities
using exactly the same number of stored patterns, i.e. the original 7 patterns. This is
possible because of the relationship between boundary nodes and intersections, and
the latter with the integration patterns.

To explain the procedure we will use the Configuration 1 shown in Figure 8, which
yields the cases seen in Figure 14. The numbering used is that of the one defined in
Figure 8a.

Starting with the case shown in Figure 14a, the strategy follows the next steps:

1. Position of nodes. We have to analyze the in/out topologies of the element
nodes. Assuming the red nodes are the internal ones, in Figure 14a we can
observe that only node 1 is internal. With the position of the nodes defined we
can then identify the intersection pattern, in this case Configuration 1 in Figure
9a.

2. Intersection topology. The intersection topology comes automatically with the
intersection pattern. In our example, Configuration 1 needs intersection 1, 4
and 5 to be able to generate the tetrahedralization.

3. Boundary node connectivity. Each node is related to 3 intersections on the
edges shown in Table 1. In the example, the node on the boundary is no 2,
which is related to edges 1, 2 and 6.
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Node Related intersections on edges
1 1− 4− 5

2 1− 2− 6

3 2− 3− 7

4 3− 4− 8

5 5− 9− 12

6 6− 9− 10

7 7− 10− 11

8 8− 11− 12

Table 1: Relations between nodes and intersections.

4. Boundary node to intersection. Figure 14a shows that we only count intersec-
tions 4 and 5, but Configuration 1 needs intersections 1, 4 and 5. Then, knowing
that node 2 is related to intersections 1, 2 and 6, in which 2 and 6 are not used
in this pattern, we can assume that intersection 1 is equivalent to node 2 when
generating the pattern.

5. Tetrahedra generation. If we generate this reference tetrahedralization with
the coordinates of the boundary node 2 as intersection 1 included, then the
result will be similar to Figure 14a, but obviously if we use the original set of
tetrahedrons some of them will be collapsed (volume zero) as the location of
intersection 1 will coincide with node 2. These zero-volume tetrahedrons will
be removed because they will not add anything to the integration step.

The cases represented in Figures 14b and 14c, in which each boundary node will be
related to a determined intersection, are further cases in which the procedure could
be used. This strategy will also work for all configurations and not only for these
simple cases.

Remark 2. It is important to note that some patterns can yield the same degener-
ated tetrahedralization. For example, in Figure 15a we have the original intersection
pattern of Configuration 2. If intersections 2 and 6 were on node 2, the latter would
become a boundary node, as in Figure 15b. The final tetrahedralization will be equiva-
lent to the one shown in Figure 14a, which is topologically identical to the one obtained
from Configuration 1 (Figure 14a), therefore leading to ambiguity. Although the tetra-
hedrons of both configurations do not coincide, the result after the integration will be
the same. However, this case will not appear during the execution of the algorithm
because if we compare Figures 15a and 15b we can observe how node 2 is transformed
from an internal (red dot) to a boundary node (magenta dot). This violates the re-

194



5. Mesh refinement

quirement of conserving the original in/out node topology, so even though the result
were correct, we do not allow it to avoid ambiguity during the process.

(a) Intersection pattern. (b) One boundary node. (c) Resulting tetrahedral-
ization.

Figure 15: Configuration 2. Degeneration equivalent to Configuration 1.

To summarize; the strategy proposed will yield 3 different options, depending on
the case under study:

1. If the topology of the nodes and the intersected edges coincide with any of the
precomputed patterns and there are no boundary nodes, then we directly use
the standard pattern assigned.

2. If there is a match between the nodal in/out topology and the stored patterns,
and there is at least one boundary node present, we will proceed as explained
above to obtain the proper tetrahedralization from an original pattern without
adding computational cost.

3. When the intersection pattern of an element is not stored or there are several
surfaces intersecting the element, we will proceed with a Delaunay tetrahedral-
ization of the element.

5. Mesh refinement

As mentioned in Section 1, there are several strategies to tackle the mesh refine-
ment. In this contribution we propose a procedure based on the subdivision of the
integration region into successively smaller nested sub-regions, thus modifying the
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density of elements to yield a more precise solution, keeping the element polynomial
order constant.

The three main components of the h-adaptive finite element analysis we propose
are:

1. Calculation of the parameters used to drive the subdivision process. They could
be geometrical parameters or we can use parameters obtained from the finite
element solution, for example, the estimated error in energy norm or any other
quantity of interest.

2. Mesh generation. Since we are using Cartesian grids independent of the geom-
etry we do not need to generate a new mesh from the beginning, instead we
stick to the first mesh and subdivide the elements flagged by the parameters
calculated. Note that we will consider mesh conformity, i.e. the maximum re-
finement difference between two elements adjacent by face or edge is limited
to one level, and Multipoint constraints (MPCs)[44, 45] are used to enforce C0

continuity between adjacent elements of different levels.

3. Projection of variables from the old mesh to the new mesh. In this case, our
hierarchical data structure allows the automatic transference of properties from
old elements to new ones.

Then, the input to this h-refinement procedure is a uniform coarse mesh and a
prescribed limit to the refinement level. Both the initial level of the mesh and the
maximum level of refinement will be chosen by the user. We propose a two-step
adaptive meshing strategy:

1. Geometrical refinement to obtain the first mesh for the FE analysis. The ele-
ments of the initial grid mesh will be refined following geometrical considerations
until a mesh properly adapted to the geometry is obtained. This mesh will be
the first mesh used for the FE analysis.

2. Solution based refinement. After the FE analysis of the first mesh, the mesh
refinement is guided by estimations of the error in the energy norm or in mag-
nitudes of interest evaluated from the FE solution.

5.1. Geometrical refinement

The refinement based on the features of the geometrical model is widely used in
FEA, since the user can easily identify where the mesh should be finer to properly
capture the boundaries of the models. For any kind of geometrical representation,
from tesselations to advanced parametric surfaces, it is possible to define parameters
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5.1 Geometrical refinement

to evaluate changes of curvature, small features and any other characteristic that could
influence the Finite Element solution if the discretization is not properly defined on the
boundaries of the models. However, as in any other mesh generation task, choosing
the proper element size for different areas and obtaining a good quality mesh of a
complicated model would require a considerable amount of time.

Our idea is to take advantage of the information already obtained during the
boundary-mesh intersection step to evaluate the goodness of the mesh even before the
resolution and to ensure that the requirements imposed by the integration procedure
are fulfilled (such as the need to ensure that each edge of a boundary element cannot
contain more than one intersection with the boundary). We have to clarify that during
the intersection process the geometry is intersected with several levels of refinement
of the Cartesian grid. For instance, if the user sets the initial and the maximum levels
allowed to levels 2 and 9, the geometry will be intersected in a preprocess stage with
a level 5 mesh, which includes the edges of coarser meshes. This is done using the
Newton-Raphson algorithm (see Section 3) and gives useful extra information about
the boundary. The remaining levels of refinement will be intersected locally as they
appear in the discretization.

We will illustrate the criteria implemented using 2D examples for clarity.
The first criterion is the simplest and the most frequently used. Figure 16 shows

intersections with the elements of the current mesh as large green squares, internal
nodes of the actual element as red dots and external nodes of the current element
as blue dots. It also shows a virtual subdivision of the element, up to the maximum
level the user would allow, as well as the corresponding intersections of the boundary
with the refined mesh, represented by small green squares.

(a) Smooth boundary. (b) Sharp edge.

Figure 16: Geometrical features within elements. Variation of unit vectors.

Figure 16a shows the unit normal vectors û calculated during the intersections
process. We know that in a 3D Cartesian system the components of any unit normal
vector (x̂, ŷ, ẑ) are bounded in the interval [−1, 1], so the maximum span of variation
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within an element and for any of the Cartesian directions would be 2. Since we
are interested in a relatively smooth representation inside every element cut by the
boundary, we can measure the variability of the unit normal vectors limiting the span,
of this variation within an element, to a threshold value. From our experience, if the
variation of the components of the unit normal vectors exceeds the value of 1, then
the element cannot be considered valid and will be refined. Figure 16b gives another
example, but in this case there is a sharp edge due to the change of curve (surface in
3D). In this case we only need to measure the change of the unit normal vector of the
union point to evaluate the abruptness of the change of definition. When integrating
the boundary with NURBS-Enhanced techniques, this criterion is not very important
due to the ability of the proposed methodology to properly capture the volume, but
when dealing with other piecewise approximations this criterion is key to obtaining
good discretization of the mesh along the boundary, as mentioned in Remark 1.

The next criterion completes the previous one and is related to the nature of the
problem. FEAVox was first implemented to solve linear elasticity problems in which
some internal corners could originate singularities and produce large gradients when
evaluating displacements or stresses. These cases require an adequate discretization
around the singularities to obtain a better representation of the singular solution. In
Figure 17a we see an example of a corner, where P0 is the intersecting point between
the two curves in the element, PI is the centroid of the intersections and Pε = P0 + ε
being ε a differential of û1 + û2 (û1 and û2 are unit normal vectors calculated in
both curves intersecting in P0). Then the corner is re-entrant to the geometry, thus a
potential singularity, if |PI − Pε| < |PI − P0|. With this condition we can assume that
the corner is concave with respect to the material and in this case a refinement around
that point will be automatically generated, see Figure 17b. In 3D this evaluation will
occur at several points along the intersections curve between surfaces.

(a) Measure of distances. (b) Example of refinement.

Figure 17: Identification of singularities.
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The ability to represent all the small features of a geometrical model is very
important for all mesh generators, especially if we aim to develop a mesh generator
in which the mesh is independent of the geometry. Figure 18a gives a clear example
in which a small feature, a small ellipse in this case, will not be considered during
the integration due to the element size. Our solution to this problem is to locally
refine the elements of the mesh until the intersections related to all the geometrical
entities of the model are present in the mesh, as shown in Figure 18b. To detect these
small entities we have to take into account that it is very easy to know if we are using
intersections of all the geometrical entities in the actual mesh and the ease of locating
points in the Cartesian elements using our hierarchical data structure.

(a) Coarse element. (b) First step of refinement. (c) Final step of refinement.

Figure 18: Detection of small features.

The last refinement criterion comes naturally with the mesh generation strategy
implemented. As we explained in Section 4, only 7 out of the 14 configurations of
the original Marching Cubes algorithm were taken into account because they refer
to non-ambiguous configurations. In [28] we predicted the use of the ambiguous
patterns to locate areas where refinement was necessary. Obviously there will be
cases where ambiguities will appear, for instance with highly complicated geometries
(see Figure 19a). In any case, as good discretization will be necessary, we will refine
these elements to obtain simpler intersection patterns, as can be seen in Figure 19b.
As explained in Section 4, in a multi-body environment where we will need to generate
the integration subdomains exclusively for each body to ensure consistency with the
parametric spaces, the ambiguous patterns can be handled as combinations of simple
ones.
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(a) 2D projection of the pattern. (b) Solution through refinement.

Figure 19: Undefined pattern and elimination through refinement.

5.2. Error-based refinement

In FEM, the discretization error is defined as the difference between the exact and
the approximate solutions obtained from the finite element analysis, without taking
into account the round-off and modeling errors. It is commonly measured in terms of
the energy norm, which represents the error as a scalar quantity. In terms of stresses,
the error in the energy norm, ‖e‖, can be written as

‖e‖ =

√∫

Ω

(σh − σ)TD−1(σh − σ)dΩ (1)

where D is the material stiffness matrix, σh is the FE stress field and σ is the exact
stress field.

The error at each element can be evaluated by integrating (1) on each individual
element of the mesh. Let ‖e(i)‖ be the exact error in energy norm of the element i.
The following equation, where M is the total number of elements in the mesh, relates
the global and local errors

‖e‖2 =

M∑

i=1

‖e(i)‖2 (2)

Several types of error estimators have been proposed in the literature depending
on the obtaining procedure: residual error estimators [1, 5, 46, 47] use the residuals
of the approximate solution to evaluate the error, the Constitutive Relation Error
(CRE) [48] consisting in the comparison of statically admissible stress fields with
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kinematically admissible stress fields, the estimators based on dual analysis [49, 50]
and making use of two solutions of the problems. Finishing the classification, we find
the recovery based error estimators. Proposed by Zienckevick and Zhu [51], these
estimators use a recovered solution, σ∗, instead of the exact solution σ to measure
the error [52, 53].

Assuming it is possible to write the previous convergence rates as a function of
the estimated errors, we could use the Zienkiewicz and Zhu (ZZ) error estimator to
reformulate (2), for the ith-element, as

‖e(i)
es ‖ =

√∫

Ω(i)

(σh − σ∗)TD−1(σh − σ∗)dΩ (3)

where σ∗ is a smoothed continuous stress field obtained using a 3D version of the
recovery technique presented in [26, 54].

The refinement algorithm makes use of the estimated element errors to define a
new mesh. The algorithm can be based on a type of optimality criterion to obtain
new meshes of the prescribed accuracy level. In this work we propose a 3D general-
ization of the strategy presented in [51, 55] in which the optimality criterion is that
of equidistributing the error on the elements of the new mesh. In [55] it was shown
to be equivalent to the criterion of minimization of the number of elements in the
new mesh to reach the prescribed error level with proper convergence rates. Let us
assume that we are in mesh n − 1 (current mesh) and we want to evaluate mesh n
(new mesh), then:

h(i),n−1
n ≈ h(i)

n−1

[
1

Mn−1

]1/2(p+1) [ ‖e‖n
‖e‖n−1

] d
2p2+pd

[ ‖e‖n
‖e(i)‖n−1

] 2
2p+d

(4)

where the quantities are:

h
(i)
n−1 is the size of the element i of the mesh n− 1,

h
(i),n−1
n is the new element size of the mesh n obtained by the subdivision

of element i in the mesh n− 1,
Mn−1 is the number of elements in the mesh n− 1,
‖e‖n is the global error in energy norm of the mesh n.
‖e‖n−1 is the global error in energy norm of the mesh n− 1,
‖e(i)‖n−1 is the error of the element i of the mesh n− 1,
p is the polynomial degree of the shape functions used,
d is the dimension of the problem (2 for 2D, 3 for 3D problems).

Replacing ‖e(i)‖ in (4) by the estimation given in (3) we obtain the practical
formula to evaluate the new element sizes. After obtaining the element size it is
easy to find the refinement level necessary for the elements. Complete details of the
procedure to reach this expression are given in A.
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6. Numerical examples

This section gives a series of examples to demonstrate the applicability and the
performance of the proposed methodology for 3D problems when the boundary of the
domain is described by parametric surfaces. First, the proposed strategy is applied
for the numerical solution of a linear-elastic problem, with an analytical solution and
a simple geometry, to evaluate the convergence of the method. Then an example of
a mechanical component will be described to show the applicability of the meshing
procedure to more complex geometries given by CAD models, including trimmed
surfaces.

6.1. Convergence analysis

For this study we consider a thick-wall cylinder loaded with internal pressure.
The geometrical model for this problem is represented in Figure 20. A linear-elastic
analysis is performed on a domain given by a CAD model that uses NURBS to repre-
sent the boundary. Only 1/4 of the section is modeled together with the appropriate
symmetry and plain strain boundary conditions. The internal and external surfaces
are of radius a and b with a = 5, b = 20. Young’s modulus is E = 1000, Poisson’s
ratio is ν = 0.3 and the applied load P = 1.

(a) (b) (c)

Figure 20: Model of a cylinder under internal pressure. (a) Front view with boundary
conditions. (b) 3D model representation. (c) Example of analysis mesh.
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6.1 Convergence analysis

The exact solution in cylindrical coordinates for displacements and stresses is given
by:

ur =
P (1 + ν)

E(k2 − 1)

(
r (1− 2ν) +

b2

r

)
, ul = 0 (5)

σr =
P

k2 − 1

(
1− b2

r2

)
, σφ =

P

k2 − 1

(
1 +

b2

r2

)
, σl = ν (σr + σφ) (6)

where k = b/a, r =
√
x2 + z2. Defining φ = arctan(z/x) we transform to Cartesian

coordinates:

ux = ur cos(φ), uy = 0, uz = ur sin(φ) (7)

σx = σr cos(φ)2 + σφ sin(φ)2, σz = σr sin(φ)2 + σφ cos(φ)2,

σy = ν (σx + σz) , τxz = (σr − σφ) sin(φ) cos(φ), τxz = τyz = 0

The quality of the results will be assessed by evaluating the relative error in the
displacement field in energy norm, defined as

ηe =




∫

Ω

(σh − σ)D−1 (σh − σ) dΩ
∫

Ω

σD−1σdΩ




1/2

(8)

where σh and σ are the FE (approximated) and the analytical stresses respectively.
In the first analysis we will study the convergence for both tri-linear (L8) and

tri-quadratic (Q20) elements in a set of uniformly refined meshes. For the linear anal-
ysis, we will compare the NURBS-enhanced (NeApprox) geometry approximation
with a linear approximation (LinApprox) of the geometry. The linear approxima-
tion considers that the faces of the tetrahedrons, used to integrate the boundary
elements, are represented by flat facets. On the other hand, for the analysis with
tri-quadratic elements, we will compare NURBS-enhanced and quadratic approxima-
tions (QuadApprox) of the geometry. In this case, the facets lying on the boundary
will be approximated with quadratic triangles.

Front views of the 3D meshes used in this simulation can be seen in Figure 21.
Table 2 summarizes the main features of the five computational meshes. In particular,
this table shows the number of elements that are interior to the embedded domain
(A) and the number of elements intersecting the boundary of the embedded domain.
Boundary elements can be separated into elements integrated by templates (B) and
elements for which an exclusive tetrahedralization was necessary (C). In columns A
to C we can find the proportion of those elements with respect to the total number
of elements in the mesh. The last column shows the number of tetrahedra used to
perform the numerical integration (D).

203



Paper C

Figure 21: Front view of the first four meshes of the uniform refinement process (L8
and Q20).

Mesh Internal (A) Boundary temp. (B) Boundary excl. (C) Tetrahedra (D)
1 6 (10%) 22 (36.7%) 32 (53.3%) 569

2 162 (36.9%) 198 (45%) 80 (18.1%) 2225

3 2016 (61.7%) 1072 (32.9%) 176 (5.4%) 8369

4 19440 (78.7%) 4896 (19.9%) 368 (1.4%) 33393

5 171368 (88.8%) 20904 (10.1%) 752 (1.1%) 133603

Table 2: Topology of the approximation meshes in terms of different types of elements
and subdomains.

Figure 22 shows the convergence of the relative error in energy norm for both
tri-linear and tri-quadratic elements with the different geometry approximations. On
the right plot in Figure 23 we show the convergence rate of the exact error in energy
norm of the FE solution as a function of the number of degrees of freedom.

For problems with non-singular solution the theoretical predicted convergence rate
in energy norm is O(hp). Therefore, following the rationale of [56], taking into account
that the number of degrees of freedom (N) in 3D is approximately inversely propor-
tional to h3 the convergence rate can be written as O(N−p/3). Hence, expressed in
terms of the number of degrees of freedom, the convergence rate of the error in energy
norm is O(N−1/3) for tri-linear elements and O(N−2/3) for tri-quadratic elements.

The values of the convergence show almost optimal rates for both tri-linear and
tri-quadratic elements, and both isoparametric (linear/quadratic) interpolation of the
geometry and the NURBS-Enhanced approach.

Table 3 shows the computational cost of the different modules of the FEA of the
five meshes solved above with tri-linear elements (L8) and linear approximation to
the geometry. In particular, this table shows the computational cost of the geometry-
mesh intersection, the integration of elements (including the generation of mappings)
and the solver step which gathers the assembly and the resolution of the system of
equations.

We can observe how the intersection stage reduces its weight while refining. In
addition, the proportion of local mesh generation reduces because it is related only to
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6.1 Convergence analysis
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Figure 22: Cylinder convergence study. (Left) Relative error in energy norm. (Right)
Convergence rate.

Mesh Intersection
Integration

Solver
Internal Boundary Temp. Boundary Excl.

1 0.157 (22.1%) 0.023 (3.2%) 0.076 (10.7%) 0.329 (46.3%) 0.125 (17.7%)
2 0.188 (13.1%) 0.016 (1.1%) 0.411 (28.7%) 0.644 (45.0%) 0.172 (12.1%)
3 0.281 (6.4%) 0.035 (0.8%) 1.909 (42.9%) 1.499 (33.7%) 0.718 (16.2%)
4 0.797 (3.4%) 0.063 (0.3%) 9.147 (39.1%) 3.364 (14.3%) 10.056 (42.9%)
5 3.641 (0.8%) 0.512 (0.2%) 60.844 (14.8%) 9.228 (2.3%) 336.261 (81.9%)

Table 3: Computational cost breakdown. Meshes of tri-linear elements (L8) and linear
approximation of the geometry. Time measured in seconds.

the interfaces between surfaces. Last, the computational cost related to the resolution
of the system of equations increases until it becomes the most expensive part of the
process.

It is interesting to note that both the isoparametric approach of the boundary and
the NURBS-Enhanced integration of the domain yield the proper rates of convergence.
Despite these similarities, in Figure 23 the geometrical errors obtained in the first
four meshes can be compared. The geometrical error has been calculated as ηV (%) =
|Vh−V |
V · 100, where Vh is the volume integrated with the finite element mesh and V

is the exact volume of the model shown in Figure 20. The global convergence of the
geometrical error for linear and quadratic approximations agrees with the convergence
rates expected. The oscillations observed during the analyses can be related to the fact
that the discretization of the external cylindrical surface underestimates the volume
and, in parallel, the discretization of the internal cylindrical surface overestimates
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Figure 23: Cylinder volume convergence study.

volume. Since the mesh is fixed, the refinement does not occur in the same uniform
way in both surfaces thus making more pronounced this effect in coarse meshes.
NURBS-Enhanced volume integration shows a very low almost constant error during
the process, several orders of magnitude lower than approximating curved domains
with low degree approximations. These results show that the proposed approach
provides accurate integration of the domain, regardless of the refinement level of the
models.

Table 4 shows a comparison in terms of accuracy and computational cost of dif-
ferent integration schemes for a given mesh. We use the mesh number 3 represented
in Figure 21. We can observe that using the NEFEM approximation allows to reduce
dramatically the geometrical error when increasing the number of Gauss points used
to integrate the model. In exchange, the computational cost is increased by a factor
close to 4 and it does not vary much independently of the number of Gauss points
used for the NEFEM approach. This can be explained because most cost related to
NEFEM is devoted to ensure the proper collocation of points while their number is
almost irrelevant.

Approx. Type Num. Gauss points Error ηV (%) Integration time (s)
Linear 35524 0.0052 3.440
NEFEM 69226 1.4968e-5 14.746
NEFEM 76187 5.5125e-7 14.871
NEFEM 81754 4.2966e-9 15.549
NEFEM 94282 1.2212e-11 16.025

Table 4: Computational cost and accuracy of different integration schemes.
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6.2 Geometrical refinement sample

We also performed an h-adaptive refinement process guided by the local error es-
timation in energy norm, as explained in Section 5.2. Figure 24 shows the first four h-
adapted meshes for tri-linear and tri-quadratic elements. In Figure 25 we compare the
results of uniform meshes and h-adapted meshes, considering the NURBS-Enhanced
approach. The figure shows the convergence of the relative error in energy norm for
both tri-linear and tri-quadratic elements.

(a) h-adaptive meshes for tri-linear elements (L8).

(b) h-adaptive meshes for tri-quadratic elements (Q20).

Figure 24: Front view of the first four meshes of the h-refinement process.

In the graphs it can be seen how the convergence for the h-adapted meshes in the
first stages of the refinement processes (in the pre-assymptotical range) are above the
optimal rate. This leads to reaching an specified error level using fewer degrees of
freedom and, hence, to a lower computational cost.

6.2. Geometrical refinement sample

With this problem our purpose is to show the performance of the h-adaptive
geometrical refinement process in more complex geometries. Naturally, in this type of
problem there is no available exact solution, so our objective is to check whether the
criteria proposed here provide a mesh suitably adapted to the geometrical features of
the model.

We used a complex model to test the proposed strategy. The model selected
represents a perforated screw, as shown in Figure 26, with a topology as used in
hydraulic applications. In this case, we restrained the displacements of the surfaces

207



Paper C

103 104 105 106

100

101

Degrees of freedom

E
rr
or
η e
(%

)

L8-Uniform L8-Adapted
Q20-Uniform Q20-Adapted

103 104 105 106
0.2

0.4

0.6

0.8

1

Degrees of freedom

C
on

ve
rg
en
ce

ra
te

L8-Uniform L8-Adapted
Q20-Uniform Q20-Adapted

Figure 25: Cylinder convergence study. h-adaptive case. (Left) Relative error in
energy norm. (Right) Convergence rate.

in blue and applied a variable vertical force per unit of area. The material was steel
with Young’s modulus E = 2, 1 · 109Pa and Poisson’s ratio ν = 0, 333.

(a) CAD model and boundary conditions. (b) Initial coarse mesh.

Figure 26: Model of an hydraulic screw.
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6.2 Geometrical refinement sample

Figure 26b shows the coarse initial mesh used in the process. It can be seen that
this element size is unlikely to properly capture the features of the screw threads.
Figure 27a shows a refined mesh using the criteria proposed here. The refinement
properly captures the features of the model and focuses on the re-entrant corners
between surfaces. Figure 27b represent the Von Mises stress field, where the stress
concentration can be seen along the singularities produced by the re-entrant corners
of the model.

(a) Approximation mesh. (b) Von Mises stress field.

(c) Section of the mesh. (d) Detail of the integration subdomains.

Figure 27: Geometrical h-refinement.

To make clear how boundary elements are treated, Figure 27c shows a section of
the refined mesh, distinguishing between internal elements (green) and the integration
subdomains of the cut elements conforming to the geometry (blue). Figure 27d gives
a detailed view of the section.
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After the geometrical refinement, we move forward in the simulation with a re-
finement based on the discretization error.

Table 5 summarizes the topological features of the meshes used for this analysis.
The first mesh is the geometrically refined mesh shown in Figure 27d and the second
mesh corresponds to the one obtained from the error-based refinement, see Figure 28b.
It can be seen that, as in the previous example, the percentage of boundary elements
decreases from a high value in the first mesh (obtained by geometrical refinement)
to a considerably lower value after the error-based h-adaptive refinement. Despite
of complexity of the model, with a high number of geometrical entities, the ratio of
elements requiring exclusive tetrahedralization with respect to the total number of
elements is only around 10% in the first mesh and further decreases to 2% in the
second mesh.

Mesh Internal Boundary temp. Boundary excl. Tetrahedra
1 9356 (48.4%) 8109 (41.9%) 1851 (9.7%) 73866

2 60223 (73.2%) 21199 (25.7%) 720 (2.1%) 150633

Table 5: Topology of the approximation meshes in terms of different types of elements
and subdomains.

The global estimated error in energy norm for the first mesh is 20.86%. Figure
28a shows the element-wise relative estimated error in energy norm. For clarity we
have plotted a section of the mesh to observe the distribution of error also in the
internal elements. The error map shows that the error is larger along the singularities
and the area where the Dirichlet conditions where applied. These errors will drive
the h-refinement process that will result in the mesh shown in Figure 28b. We can
observe higher density of elements in this mesh compared to the first one analyzed.
Figure 28c represent the Von Mises stress field. We can also observe that the highest
stress correspond to this mesh due to the better discretization. The estimated error
in energy norm obtained for this mesh is 13.76%. Due to the presence of singularities
in the problem the convergence rate is suboptimal, as expected.

7. Conclusions

This paper proposes a novel method of generating h-adapted meshes, considering
the exact 3D CAD boundary representation of the domain in an immersed boundary
framework in which a Cartesian grid is used to mesh the embedding domain.

Details are included of the strategy used to compute the intersections between
the Cartesian grid and the exact geometry of the boundary of the embedded domain.
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7. Conclusions

(a) Element-wise error estimation.

(b) Approximation mesh. (c) Von Mises stress field.

Figure 28: Error-based h-refinement.

To perform the numerical integration in the region of the cut elements internal to
the physical domain, we propose the creation of a submesh of tetrahedra in each of
the elements cut by the boundary. For this, we developed a system to obtain all
possible configurations from only seven basic patterns of tetrahedra. The algorithms
used to refine the finite element mesh are also described. First, in a preprocess step,
the geometrical criteria were chosen to obtain the proper refined mesh. Secondly,
as a postprocess tool, an error based algorithm was adapted to obtain a new mesh
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considering a prescribed error reduction and the error in the elements of the previous
mesh.

Two examples were given to demonstrate the potential and applicability of the
proposed methodology. The optimality of the approximation in terms of error con-
vergence rate, for both linear and quadratic elements, was corroborated by the prob-
lem of a cylinder under internal pressure. The geometrical error of different boundary
approximations was also compared, showing the accuracy and consistency of NURBS-
Enhanced techniques and a model of a hydraulic screw showed its ability to obtain
refined meshes from geometrical parameters.
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A. h-refinement criteria based on error
estimation

This appendix contains further details on the process of finding the h-refinement
criterion based on error estimation. This algorithm originally designed for 2D prob-
lems [55] has been adapted to 3D. The equations resulting from the asymptotic rates
of convergence of the FEM must first be explained. During h-refinement, for a uni-
formly refined succession of meshes, the exact error, ‖e‖, is bounded as follows:

‖e‖ ≤ C1h
min(p,λ) ≈ C2N

− 1
dmin(p,λ) (9)

where N is the number of degrees of freedom; h is the characteristic element size;
p is the polynomial degree of the interpolation functions being used; C1 and C2 are
positive independent constants; and λ represents the intensity of the singularities. The
exponent of N is known as the asymptotic rate of convergence and for a sequence of
h-adapted meshes the bound of the exact error takes the form[57]:

‖e‖ ≤ C2N
− 1

d c (10)
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A. h-refinement criteria based on error estimation

yielding the theoretical optimal convergence rate of the h-version of the FEM.
At the global level the ratio of the error in the new mesh to be created (n) to

the error in the current mesh (n − 1) is, considering (9), almost equal to the ratio
of the size of the elements to the power of c. In our study we consider c = p but,
theoretically, assuming c as a constant in the presence of stress singularities is not
appropriate. However, we allow that these results are approximately valid, and use
them in an adaptive refinement. That is,

‖e‖n
‖e‖n−1

≈
[
hn
hn−1

]p
(11)

In the following we assume that the convergence shown in (11) is also valid at
the element level. We have assumed that the uniform refinement of element i of the
current mesh, whose size is h(i)

n−1, producesM
(i),n−1
n elements of size h(i),n−1

n and that
the following expression holds:

‖e(i),n−1‖n
‖e(i)‖n−1

≈
[
h

(i),n−1
n

h
(i)
n−1

]p
(12)

where ‖e(i)‖n−1 represents the error in the element i of the previous mesh, and
‖e(i),n−1‖n represents the error in each of the new elements included in the element i
of the previous mesh. Therefore, if ‖e(i)‖n represents the error in the new elements,
the following relation is correct:

‖e(i),n−1‖2n =

M(i),n−1
n∑

i=1

‖e(i)‖2n (13)

We use (12) to predict size of elements of mesh n created in each of the elements
of mesh n− 1 required to obtain the preset error in energy norm at each of the new
elements.

h(i),n−1
n ≈ h(i)

n−1

[‖e(i),n−1‖n
‖e(i)‖n−1

]1/p

(14)

To use this expression, we need the error of all the elements of the new mesh
contained in the space defined by element i in mesh n− 1, ‖e(i),n−1‖n.

Besides the equations resulting from the asymptotic rates of convergence, we also
need to estimate the number of elements in the new mesh during adaptive mesh
refinement.
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At the element level, if we consider a uniform refinement, the number of elements
M

(i),n−1
n of size h(i),n−1

n in the new mesh n that are contained in the element i of size
h

(i)
n−1 of mesh n− 1 can be estimated as

M (i),n−1
n ≈

(
h

(i)
n

h
(i),n−1
n

)d
(15)

Hence, the total number of elements in the new mesh, Mn, will be

Mn =

Mn−1∑

i=1

M (i),n−1
n ≈

Mn−1∑

i=1

[
h

(i)
n−1

h
(i),n−1
n

]d
(16)

where Mn−1 is the number of elements in mesh n− 1.
As assumed in (9), at the global level and considering a uniform refinement, the

number of elements in the meshes is inversely proportional to the sizes of the elements
to the power of d. That is

Mn−1h
d
n−1 ≈Mnh

d
n (17)

Taking into account (11), we can estimate the number of elements in the new mesh
as a function of the number of elements in the previous mesh:

Mn ≈Mn−1

[‖e‖n−1

‖e‖n

]d/p
(18)

As previously mentioned, the strategy follows the idea of a nearly optimal mesh in
which the estimated error must be equidistributed on each element. Instead of using
the previous mesh, the error distribution is made on the new mesh using Equation
(18). This procedure seeks the definition of the element sizes of the new mesh in such
a way that we have the same absolute error in each of its elements.

Using ‖e(i)‖n as the exact error in each of the new elements, the global absolute
error of the new mesh can be written as

‖e‖2n =

Mn∑

i=1

‖e(i)‖2n = Mn‖e(i)‖2n (19)

whereMn is the number of elements in the new mesh. Since on the new mesh, ‖e(i)‖n
is the same for each new element, we obtain ‖e(i)‖2n by the following expression:

‖e(i)‖n =

[
1

Mn

]1/2

‖e‖n (20)
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A. h-refinement criteria based on error estimation

Moreover, since we have Equation (18) to estimate the number of elements in the
new mesh, we estimate the error in each element of the new mesh as:

‖e(i)‖n =

[
1

Mn−1

]1/2 ‖e‖(d/2p)+1
n

‖e‖d/2pn−1

(21)

However, we need ‖e(i),n−1‖2n. Taking into account that we must have the same
absolute error in each element of the new mesh, we can express ‖e(i),n−1‖2n in the
following manner:

‖e(i),n−1‖2n =

M(i),n−1
n∑

i=1

‖e(i)‖2n = M (i),n−1
n ‖e(i)‖2n (22)

whereM (i),n−1
n is the number of new elements contained in the subdomain defined

by element i of the mesh n− 1.
Next, taking into account that we can estimate M (i),n−1

n with Equation (15), we
obtain the estimated error ‖e(i),n−1‖n as

‖e(i),n−1‖2n ≈
[
h

(i)
n−1

hi,n−1
n

]d
‖e(i)‖2n (23)

Therefore, using Equation (21) we obtain ‖e(i),n−1‖n by the following expression:

‖e(i),n−1‖n ≈
[
h

(i)
n−1

h
(i),n−1
n

]d/2 [
1

Mn−1

]1/2 ‖e‖(d/2p)+1
n

‖e‖d/2pn−1

(24)

Finally using Equation (14) we obtain the new element size for each of the elements
of the previous mesh as

h(i),n−1
n ≈ h(i)

n−1

[
1

Mn−1

]1/2(p+1) [ ‖e‖n
‖e‖n−1

] d
2p2+pd

[ ‖e‖n
‖e(i)‖n−1

] 2
2p+d

(25)

where all quantities are well defined.
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Abstract

Gradient-based shape optimization processes of mechanical components require
that the information of the gradients (sensitivity) of the magnitudes of interest be
calculated with sufficient accuracy. Given the potential benefits on computational
efficiency provided by the Finite Element Method (FEM) based on the use of Cartesian
grids, the aim of this study was to develop algorithms for the calculation of shape
sensitivities considering geometric representation by parametric surfaces (i.e. NURBS
or T-splines) using 3D Cartesian h-adapted meshes independent of geometry.

A formulation of shape sensitivities was developed for an environment based on
Cartesian meshes independent of geometry, which implies, for instance, the need
to take into account the special treatment of boundary conditions imposed in non
body-fitted meshes. The immersed boundary framework required to implement new
methods of velocity field generation, which have a primary role in the integration of
both the theoretical concepts and the discretization tools in shape design optimization.

Examples of elastic problems with three-dimensional components are given to
demonstrate the efficiency of the algorithms.

Key words

Cartesian Grid-FEM; sensitivity analysis; velocity field; NURBS
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1. Introduction

1. Introduction

In optimal structural design, sensitivity analysis is the calculation of the derivatives
of structural response (displacements, stresses, natural frequencies, etc.) with respect
to design variables. The initial development of sensitivity analysis focused on the size
design variables, i.e. thickness or cross-sectional areas of structural components, etc.
In many structural problems it is necessary to consider shape as a design variable.
This is particularly important in the optimal design of structural components. This
paper will focus on the analysis of the sensitivities of the design variables that describe
the geometry of the component to be optimized.

A large number of references have been published in the field of sensitivity analysis
in shape design, especially during the 90s. Currently, the research efforts in the
topic are focused on new implementations of the well-known approaches and their
application to new problems. In a brief overview, four different approaches can be
distinguished:

1. Global finite differences [1, 2, 3, 4]: finite difference expressions are used to
obtain the derivatives from the output of repeated Finite Element Analysis
(FEA) when small perturbations of the design variables are introduced.

2. Continuum approach. [5, 6, 7, 8, 9, 10, 11]. Derivatives are obtained differen-
tiating the governing elasticity equations. For shape design variables, the two
main approaches are the material derivative and the control volume approach.
These relate changes in the geometrical shape with the structural characteristics
leading to a set of continuum sensitivity equations that are then discretized and
solved.

3. Discrete approach [12, 13, 14, 15]. The procedure derivation-to-discretization is
reversed and the components of the discretized system of equations are differ-
entiated with respect to the design variables.

4. Computational differentiation [16, 17] is related to the automatic differentiation
of the routines within the computational code[18, 19, 20].

The different approaches can be evaluated from the point of view of accuracy,
their relation to discretization and cost in computational and implementation terms.
Their relationships and comparisons can be found in [21, 22, 23, 24, 25].

Gradient-based optimization requires the evaluation of the sensitivities to drive
the optimization process. In shape optimization, this involves adapting or regenerat-
ing the Finite Element (FE) mesh for the different geometries to run the numerical
simulation of each of these geometries. Reference [26] showed that the behavior of
the optimization algorithm is strongly influenced by the accuracy of the results used

225



Paper D

to drive the process (objective function, constraints and their derivatives). Any in-
accuracy in these results can pollute the behavior of the optimization algorithm and
reduce the convergence rate to the optimal solution, induce the convergence to a non-
optimal or unfeasible solution or even prevent convergence. This requires high-quality
FE analyses that can involve a considerable computational cost for each geometry and
hence of the overall optimization process. The analysis cost of each geometry can be
partially alleviated by the use of adaptive analysis techniques, which are intended
to provide the optimal cost-effective FE models to obtain numerical results of the
prescribed accuracy. Numerous methods of alleviating the mesh burden are reviewed
in [27].

One of the options is the immersed boundary approach[28, 29, 30], which is a nat-
ural platform for structural shape optimization processes because its properties are
suited to simplifying the mesh generation stage. Immersed Boundary Methods (IBM)
have been studied by a number of authors for a wide range of problems such as shape
optimization[31, 32] or bio-mechanics, see for instance[33, 34]. An example of this
type of approach can be seen in Figure 1. The geometrically complex domain, ΩPhys,
is embedded into a geometrically simpler domain, Ω, see Figure 1a. The embedding
domain is often simply a cube (or a rectangular cuboid in general) that can be effort-
lessly discretized using a Cartesian mesh made out of hexahedra to create what we
call an approximation mesh, ΩApprox, see Figure 1b. During the integration step, only
the internal elements and the internal part of the elements cut by the boundary will
be considered (Figure 1c).

Another approach is to improve the geometrical accuracy of the models by inte-
grating CAD representations with the FEM codes. Isogeometric Analysis (IGA)[35,
36] is a recent trend in this direction. The main idea is that the meshing procedure
is circumvented since an existing CAD geometry is directly used for analysis, all the
while keeping the exact geometry. However, in its finite element form, generating an
analysis-suitable solid discretization is an open topic[37, 38, 39]. In order to bypass
the internal domain parametrization, Boundary Element Methods have also been used
in shape optimization [40, 41]. Studies on IGA sensitivity analysis can be found in
[42, 43, 44].

The NURBS-enhanced Finite Element Method (NEFEM) [45, 46] employs NURBS
for the geometric representation of the boundary, whilst maintaining the flexibility of
FEM by using polynomial interpolation. NEFEM conveniently merges the accurate
representation of the geometry alleviating the difficulty of generating interior isoge-
ometric elements. However, mesh generation in NEFEM presents a difficulty similar
to that found in FEM.

In [47, 48] we introduced cgFEM (Cartesian Grid FEM) as an alternative to solve
these drawbacks. The 3D version of this methodology, based on the use of Cartesian
grids independent of the geometry, was implemented in a computer code, named
FEAVox [49], for the structural analysis of components. cgFEM is distinguished
from other immersed approaches by considering the exact CAD representation of the

226



1. Introduction

(a) Model ΩPhys within
the embedding domain, Ω.

(b) Discretization ΩApprox
of the embedding domain.

(c) Integration domain,
ΩhApprox.

(d) Detail of a section.

Figure 1: Typical Immersed Boundary Method environment.

boundary of the domain by means of the use of the NURBS-enhanced integration
techniques [46] to perform the numerical integration over the true computational
domain.

In the approach proposed here, the properties related to all the immersed methods
(automatic domain discretization, creation of hierarchical data structures for simple
data transfer and re-use of calculations, etc.) are merged with the ability to consider
the exact geometrical representation, instead of simplifying the embedded boundary
(for instance using triangular facets for its definition).

From this point of view, we propose the implementation of sensitivity analysis in
cgFEM, exploiting the features of our embedded methodology, aiming for the efficient
calculation of sensitivities to reduce the computational cost of the optimization pro-
cess. The strategy proposed in this paper belongs to the group of techniques denoted
as discrete semi-analytical. This specification, in our case, means that some of the
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discrete derivatives rely on analytical derivation and some on finite difference approx-
imations. We use finite differences in order to differentiate the nodal locations with
respect to design variables, the so-called velocity field, which is a challenging issue
considering the immersed nature of the cgFEM.

The paper is organized as follows: the generation of velocity fields, both on the
boundary and inside the domain, is addressed in Section 2. The formulation of shape
sensitivity analysis using an immersed boundary approach is described in Section 3.
The numerical results showing the performance of the proposed technique are given
in Section 4 and the conclusions are reported in Section 5.

2. Design velocity fields

Sensitivity analysis is intended to find the change in the magnitude of response
(displacements, stresses, etc.) with respect to design variables. In the case of shape
design problems, the position of the material points depends on the design variables.
Defining a as the vector of design variables, the position of an arbitrary point of the
domain will be a function of the form p = p(a).

In a previous step, the evaluation of shape sensitivities defines how to vary the
position of material points of the domain in relation to the design variables, i.e. the
sensitivity of the coordinates of the material points, usually called velocity fields,
which for an arbitrary design variable am is defined as:

Vm =
∂p

∂am
(1)

The quality of the velocity field influences the accuracy of the numerical solution,
which determines the effective convergence rate of the gradient-based optimization
algorithms. Nevertheless, while the numerical solution and sensitivity analysis are
defined on the whole domain ΩPhys, the velocity fields are defined only on the bound-
ary of the domain and there is no closed conformation of this field in the interior.

The determination of the velocity fields is based on the theoretical features of the
sensitivity expressions and practical requirements obtained from the features of the
FE solution [50, 51]. Theoretically, the velocity field should have the same regularity
as the displacements field and depend linearly on the alteration of the design variables.
In practical terms, different applications can also impose certain practical additional
requirements on the velocity field, such as the need to maintain the mesh topology,
to provide FE nodes necessarily located on the boundary of the domain, to produce
non-distorted meshes, to be naturally related with the design parameters of the CAD
models or to be efficient and general.
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Magnitudes like the sensitivity of the strain energy are not affected by the values
of the velocity fields in the interior of the domain, provided the velocity fields meet the
theoretical requirements and the exact structural response is used in the evaluation
of this sensitivity. However, in practice, the FE approximation will be used instead
of the exact structural response. As a consequence of this, the final sensitivity of the
strain energy will be affected by the velocity fields considered in the interior of the
domain [52]. In fact, the stability of the sensitivity of the strain energy can be used
to assess the quality of the different techniques that can be used to define the design
velocity field.

As mentioned above, the design velocity fields must be defined in the whole do-
main. To do this, the velocity field is usually defined at the nodes of the FE mesh and
then interpolated using the shape functions used to interpolate the displacements,
so that the velocity fields and the displacements field will have equivalent regularity.
In the following subsections we will first describe a procedure to define the design
velocity fields along the boundary of the domain, followed by the procedure to define
it inside the domain. During the definition of the design velocity fields we will con-
sider the special characteristics of cgFEM aimed at the development of an efficient
procedure for shape sensitivity analysis.

Some of the methods found in the literature for velocity field definition are follow-
ing:

• Finite Difference (FD) method[53]. This method defines the parametric nodal
positions on the boundary and evaluates the change of the position due to
a perturbation of the design variables using an FD scheme. After that, an
interpolation technique has to be used to give the values of the velocity field to
the internal nodes.

• Structured meshes[54]. These methods are based on the rules to generate struc-
tured meshes that provide a formulation for the position of internal nodes as a
function of the boundary nodes.

• Boundary elements method[55]. This strategy considers a null velocity field on
the domain except in the subdomain defined by the boundary elements. This
reduces the shape sensitivity calculations to a small fraction of the domain.

• Physical approach[56]. This approach defines the evaluation of the velocity field
as an equivalent linear elasticity problem where the velocity field evaluated on
the boundary is considered as displacements applied on the boundary. Solv-
ing the elasticity problem will provide the displacements in the interior of the
domain that will be interpreted as velocity field.

• Laplacian method[57]. As in the previous case, the velocity field is considered
analogous to a displacement field. The velocity field on the boundary is consid-
ered as a perturbation (displacement) of the boundary. Laplacian smoothing is
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then used to improve the nodal positions. The final displacements of the nodes
will be considered as the velocity field at each node.

• Domain triangulation method[52]. This method uses an initial step of the De-
launay triangulation procedure, where the nodes of the triangulation are only
placed on the boundary, to interpolate the velocity field through the domain.

Comparative studies of some of these methods can be found in [50, 51, 58, 59].
Due to the nature of IBM, the above-described algorithms cannot be used directly

in an IBM context. In this paper we will therefore discuss some alternatives that can
be used to generate adequate velocity fields for a Cartesian grid framework, taking
into account the features of embedded methods.

2.1. Generation of boundary velocity fields

NURBS (Non-Uniform Rational B-Spline) curves and surfaces [60, 61] were used
in the present study to describe the boundary of 2D and 3D domains. Existing works
in the literature show the use of NURBS for sensitivity analysis have been used both
as an analysis tool, i.e. Isogeometric Analysis[42, 62] and for the geometric description
of the models[63, 64, 65].

A rational B-spline curve is given by

C (λ) =

∑n
i=1N

(p)
i (λ)wiPi∑n

i=1 wiN
(p)
i (λ)

(2)

Here Pi are the n control points given in d-dimensional space Rd, wi is referred
to as the i -th weight, typically wi ≥ 0 ∀ i and N (p)

i (λ) are normalized B-spline basis
functions of order p, which are defined recursively as

N
(0)
i (λ) =

{
1 λi ≤ λ ≤ λi+1

0 otherwise
(3)

N
(q)
i (λ) =

(λ− λi)N (q−1)
i (λ)

λi+q − λi
+

(λi+q+1 − λ)N
(q−1)
λ+1 (λ)

λi+q+1 − λi+1
(4)

for q = 1, . . . , p and i = 1, . . . , n, where λ are the knots, which are assumed ordered
0 ≤ λi ≤ λi+1 ≤ 1, forming the so-called knot vector

Λ = {λ1, . . . , λn+p+1} , (5)

which uniquely describes the B-spline basis functions. The multiplicity of a knot, i.e.
the number of times it is repeated in the knot vector, determines the decrease in the

230



2.1 Generation of boundary velocity fields

number of continuous derivatives, so they are Cp−1-continuous where the knots are
not repeated. If a knot has multiplicity k, the basis is Cp−k-continuous at that knot.
Other properties of the basis functions can be found in [60, 61].

NURBS surfaces are obtained from a tensor product through two knot vectors
Ξ = {ξ1, . . . , ξn+p+1} and Γ = {η1, . . . , ηm+q+1}. The n × m control points Pi,j
form a control net. The NURBS surface S (ξ, η) is defined on the one-dimensional
basis functions N (p)

i and M (q)
i (with i = 1, . . . , n and j = 1, . . . ,m) of order p and q,

respectively, as

S (ξ, η) =

n∑

i=1

m∑

j=1

N
(p)
i (ξ)M

(q)
j (η)wi,jPi,j

∑n
i=1

∑m
j=1N

(p)
i (ξ)M

(q)
j (η)wi,j

(6)

An example of a NURBS surface is represented in Figure 2 with the corresponding
control net.

(a) Parametric space. (b) Surface and control net.

Figure 2: NURBS surface example.

In our approach, we define the design variables a that modify the control points
P (a). Therefore, for a specific design variable am the calculation of the velocity field
on the parametrized boundary S(ξ, η,a), is simple and can be expressed as:

Vm,Γ (x(ξ, η), y(ξ, η), z(ξ, η)) =
∂S(ξ, η,a)

∂am
= f

(
∂P(a)

∂am

)
(7)

The boundary velocity field on the discrete model is achieved by the evaluation
of (7) using the parametric coordinates (ξ, η) of each surface point. The analytical
evaluation of the derivatives of the NURBS and trimmed NURBS (see Subsection
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2.1.1) can be cumbersome and will depend on how each CAD system generates the
surfaces as a function of the parameters defined by the user. Therefore, for the sake
of generality, we propose to approximate the analytical evaluation of these derivatives
by a finite differences approximation as shown in the following equation:

Vm,Γ
∼= ∆S(ξ, η,a)

∆am
=

S(ξ, η,a + ∆am)− S(ξ, η,a)

∆am
(8)

where ∆am is a perturbation of the design variable am.
In practical terms, the evaluation of the shape sensitivities will require the infor-

mation of the design velocity field at certain points on the boundary. These points
are: a) the points used for the numerical integration of boundary integrals, and b)
the points of intersection of the NURBS with the edges of the elements, i.e. with the
Cartesian axes that define the mesh. Equation (8) will be used to obtain the velocity
field at the parametric coordinates (ξ, η) of these points.

2.1.1. Velocity field on trimmed surfaces

NURBS surfaces are inherently four-sided patches that do not allow for the pres-
ence of holes nor the direct creation of irregular shapes. Due to the limitation of a
strict rectangular topology, trimming is a valuable procedure to devise complex ob-
jects. A trimmed NURBS surface consists of: a) a tensor product NURBS surface
and, b) a set of properly arranged trimming curves lying within the parametric rect-
angle of the surface. The trimming curves can be of any form but, when dealing with
NURBS entities, it is useful to represent them in NURBS form.

Assume that nc NURBS curves are given defined as:

Ck (λ) = (ξk (λ) , ηk (λ)) k = 1, 2, . . . , nc (9)

The curves Ck (λ) are all properly oriented forming loops. A loop establishes the
boundary of the trimmed region such that, when advancing along the piecewise curve
as indicated by its numbering, the real surface material is always on the same side,
see Figure 3a. The trimmed surface boundaries are then retrieved by mapping the
2D trimming curves onto the surface. That is,

S (ξk (λ) , ηk (λ)) k = 1, 2, . . . , nc (10)

are surface curves bounding the trimmed surface. Figure 3b shows the 3D mapping
of the trimming loop.

Regarding the evaluation of velocity fields in geometries including trimmed NURBS,
the trimming procedure in general does not allow application of the previously ex-
plained procedure to evaluate the boundary velocity field. The reason for this is that,
when dealing with trimmed entities, in some cases the generation of new geometries
is obtained by modifying the trimming curve into the parametric space but not the
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(a) Trimmed parametric space. (b) Trimmed physical surface.

Figure 3: NURBS surface example.

parametric space itself, i.e. without modifying the control points of the surfaces,
leading to Vm,Γ = 0 in (7).

Let us consider a trimmed NURBS surface defined as:

S (Ck (λ,a) ,a) = S (ξk (λ,a) , ηk (λ,a) ,a) k = 1, . . . , nc (11)

where C are NURBS curves and (ξk (λ,a) , ηk (λ,a)) are the surface parametric coor-
dinates of the k trimming curve function of the parameter λ and the design variable
vector, a. In this definition, we assume that a can influence both the surface S and
the trimming curves C.

Figure 4a contains the representation of a surface as defined in (11) with the
trimmed curves and the parametric subspace ΓT bounded by them. In Figure 4b, the
mapping of the parametric subspace to the physical space is shown along with the
diamond-shaped control point polygon.

Now let us assume a change in the design variables such that ã = a+ ∆am, where
∆am is a small increment in a single design variable. Figure 4c shows an illustration
of this change in the parametric space ΓT , that leads to the new domain ΓT̃ . Figure
4d confirms how a change in the trimming loop yields a different mapping of the
subspace, while keeping the control polygon in place. However, it is still necessary
to evaluate the value of the velocity field for the points in the domain represented in
Figure 4a.

Let A in Figures 4a and 4b be a point of interest of coordinates (ξ, η)A in the
parametric space and (x, y)A in the physical space. The perturbation of the design
variable am will modify the trimmed surface in the parametric space and hence in
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(a) Original parametric space. (b) Original physical space.

(c) Perturbed parametric space. (d) Perturbed physical space.

Figure 4: Trimmed NURBS surface example. Modifying trimming curves.

the physical space. This will perturb the position of A to Ã (see Figures 4c and
4d) of coordinates (ξ, η)Ã in the parametric space and (x, y)Ã in the physical space.
The evaluation of the design velocity field at A will require the evaluation of this
perturbation in the physical space. We therefore need to find how (ξ, η)A is mapped
to (ξ, η)Ã. This can be evaluated on the trimming curves Ck(λ,a) but we also need
this information in the interior of ΓT .
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The velocity field on the trimming curve Ck boundary for this particular problem
can be written as:

Vm,C =
∂S (Ck (λ,a))

∂am
(12)

Equation (12) will evaluate the velocity field only on the trimming curves. This
means that the parametric coordinates of the points (ξ, η) on ΓT will have to be
updated to consider the change of the parametric subspace that leads to ΓT̃ . Figure 5
shows a general case in which a number of points of interest on the surface, defined by
their original parametric coordinates {ξa, ηa}), should be updated to new coordinates
{ξã, ηã} to obtain a transformation consistent with the trimming curves.

(a) Parametric space. (b) Physical space.

Figure 5: Problem transforming points within a trimmed NURBS surface.

We adapted the idea of the physical approach [56] to obtain this update from
{ξa, ηa} to {ξã, ηã}. Hence, we propose solving an auxiliary elasticity problem with
imposed displacements on the boundary. It is possible to create a 2D finite element
system in the original parametric space from information that is already at our dis-
posal. In this case the intersections between the surface with the Cartesian axes
would be the nodes and the elements would be defined by the faces of the integration
subdomains on the surface (see [49]). Figure 6a shows this proposal. The discretized
system of equations of the auxiliary problem can be written as:

KP = F (13)

where K is the stiffness matrix, F is the vector of equivalent nodal forces. In this
case F = 0 as Neumann boundary conditions are not applied, and P contains the
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prescribed displacements on the boundary and the unknown values of the field in the
interior of the domain. These ’prescribed displacements’ will correspond to the values
of the change on the trimming curves coordinates such that:

Pm,k = (ξk (λ,a + ∆am) , ηk (λ,a + ∆am))− (ξk (λ,a) , ηk (λ,a)) k = 1, . . . , nc
(14)

In this way the displacements imposed are those that change the position of the
trimming curves in the parametric space associated with the design variable under
study.

Solving (13) after applying the Dirichlet boundary conditions provides the pertur-
bation of the position of all the nodes of the mesh shown in Figure 6b, which can be
interpolated into the elements. The result will be the position of the original points
mapped into the new subspace defined by the perturbed boundary in the parametric
space:

{
ξ̃, η̃
}

= {ξa+∆am , ηa+∆am} = {ξa, ηa}+ Pm (ξa, ηa) (15)

The velocity field on these surfaces will be calculated as:

Vm,Γ
∼= ∆S(ξ, η,a)

∆am
=

S(ξ̃, η̃,a + ∆am)− S(ξ, η,a)

∆am
(16)

To our knowledge, none of the previous works in the bibliography are related
to the evaluation of the design velocity field for trimmed surfaces. The procedure
proposed to evaluate the design velocity field for these surfaces involves solving a 2D
FE problem. However, the associated computational cost is low, as: a) the FE mesh
used for the analysis is that of a previously evaluated triangulation of the trimmed
surface in the parametric space required for intersecting the surface with the Cartesian
mesh, b) the mesh is a relatively coarse 2D mesh, thus involving a low computational
cost and c) the factorization of K obtained during the process is common to all the
design variables.

2.2. Generation of domain velocity fields

After describing the method of evaluating the design velocity field at any point on
the boundary of the domain, this section deals with the methods used to obtain the
velocity fields in the domain of the models from the boundary values. As explained
above, due to the fixed Cartesian configuration of the meshes used in FEAVox, stan-
dard velocity field generation techniques cannot be used directly. Figure 7a uses a 2D
case to show that, using fixed Cartesian grids, it is possible to find nodes external to
the domain (green dots) that will be involved in the evaluation of the design velocity

236



2.2 Generation of domain velocity fields

(a) FEM system using the parametric space of a trimmed
NURBS surface.

(b) Solution in the parametric space. (c) Solution in the physical space.

Figure 6: NURBS surface example solved using the proposed strategy.

field. Strategies are needed to assign the velocity field both to internal and external
nodes so that we can interpolate the velocity field at any point on the elements.

237



Paper D

(a) Existence of external nodes. (b) Perturbation of geometry only
in boundary elements.

Figure 7: Embedded methods and velocity fields.

It should be noted that a perturbation of the boundary will not induce a pertur-
bation of the Cartesian nodes internal to the surface. This is an important feature
imposed by the use of Cartesian grids, since the velocity field will be zero in the inter-
nal elements, thus reducing the computational cost associated with the evaluation of
their volume integrals for shape sensitivity analysis, e.g. the non-shaded elements in
Figure 7b. However, we still have to evaluate the velocity field on the external nodes
to produce an interpolated velocity field on the surface of the domain that cuts the
boundary elements (shaded elements in Figure 7b) equal to the prescribed one.

We propose two different velocity field generators that will represent the geometry
changes only in these elements. Both methods can be classified as boundary element
methods [55], as the velocity fields will be non-zero only on the band of elements
intersected by the parametrized boundary. At these elements, the velocity field on the
boundary will be extended to the internal and external nodes on this layer, considering
an FE nodal interpolation with the regularity of the displacements field. In the first
method we propose the use of a least squares approach for this extension, whereas the
second method will be based on the physical approach [56] used in standard FEM.

Figure 8 shows an example of the velocity field for the example in Figure 7 that
would be obtained by the proposed methods using the radius as design variable.
Figure 8a shows the interpolation of the velocity field even in the external nodes,
while Figure 8b represents the actual velocity field necessary to evaluate the integrals
of the sensitivity analysis only of the internal elements and the integration subdomains
of the boundary elements.
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2.2 Generation of domain velocity fields

(a) Velocity field including the val-
ues of external nodes.

(b) Effective velocity field.

Figure 8: Representation of a velocity field with the proposed strategies.

2.2.1. Least squares approach

In this first method we use a least squares procedure to extrapolate the values to
the external nodes imposing the velocity field on the boundary and the zero velocities
on the internal nodes of the elements of the boundary of the layer.

An FE nodal interpolation for each component of the design velocity field is fitted
into each element with the velocity field values at the surface integration points of
the elements and to V = 0 at the internal nodes of the boundary elements. By using
a least square approach we obtain the linear system of equations:

MVm,q = Gm,q q = x, y and z (17)

The system matrix M is obtained by the assembly of the mass matrix-type array
of each element along the boundary. The global mass matrix is given by:

M =

ne∑∫

Γe
D

NTN|J|dΓ (18)

where

ΓeD is the portion of the boundary within the element,

N corresponds to the matrix of finite element interpolation functions.
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On the other side of the equation, the vector Gm,q is evaluated by adding the
contribution of elements:

Gm,q =

ne∑∫

Γe
D

NTVe
m,q|J|dΓ q = x, y, z (19)

with Ve
m,q as the qth component of the velocity field on the boundary related to the

design variable m within each element. Note that this is a low-cost procedure as it
only involves the elements along the boundary, which is of interest for 3D domains.

2.2.2. Physical approach

This method consists of solving a linear elasticity problem in which the velocity
field on the boundary is considered as the displacements applied on the boundary.
This auxiliary problem will have, for example, the following characteristics:

• The body ΩPhys is characterized with a linear elastic material with Young mod-
ulus equal to one and zero Poisson ratio;

• The discretization used to evaluate the design velocity field is the discretization
used to evaluate the displacements;

• Every single shape design variable gives a non-zero velocity field on the elements
cut by the boundary and zero velocity on the rest of the domain, which ensures
the equilibrium of each auxiliary problem. The unknowns are the velocities for
all external nodes of the actual FE mesh ΩApprox.

Even though this method needs the resolution of a system of equations as large
as the original problem, the associated computational cost is reduced, as: a) the FE
mesh used for the analysis is the same Cartesian mesh used for the sensitivity analysis,
b) we can remove the internal nodes from the system since the velocity field is set to
0 on these nodes, leading to a problem only associated with the domain’s boundary,
which can be seen as a 2D problem, and c) the stiffness matrix K can be factorized
during the process and used for all the design variables.
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3. Calculating shape sensitivities with FEAVox

3. Calculating shape sensitivities with
FEAVox

This section describes the adaptation of the discrete analytical method to evaluate
shape sensitivities when using the cgFEM methodology. In order to do this we have to
take into consideration that imposing Dirichlet boundary conditions in an immersed
boundary environment requires different strategies from those used in standard FEM.
This also has to be considered for the calculation of the shape sensitivities dealt with
in this section.

Imposing Dirichlet boundary conditions in Cartesian grids is not a trivial issue, as
the degrees of freedom do not necessarily lie on the Dirichlet boundary, so the direct
enforcement of the this type of boundary conditions is in general not feasible.

The case of the Neumann boundary conditions can be easily undertaken by simply
considering that the integration surface can cut the element and does not necessarily
has to correspond with the element faces. In cgFEM we use a stabilized method [66]
similar to Nitche’s method that modifies the classical structure of the FE linear elastic
stiffness matrix and force vector.

The global stiffness matrix is obtained by the contribution of the classical stiffness
matrix of each element ke and a stabilization term keD for all the boundary elements
containing the Dirichlet boundary.

The stiffness matrix of each element is computed by

ke =

∫

Ωe

BTDB|J|dΩ (20)

where

Ωe is the domain in local element coordinates,
B is the nodal strains-displacements matrix,
D is the stiffness matrix that relates stresses with strains. In this work we

consider linear elasticity where, under isotropic behavior, this matrix
depends only on E, the Young modulus, and ν, the Poisson ratio of
the material,

|J| is the determinant of the matrix J, representing J the Jacobian ma-
trix of transformation of the global coordinates (x, y, z) to the local
element coordinates (ξ, η, τ).

and the stabilization term:

keD =

∫

Γe
D

κ∗

h
CTC|J|dΓ (21)
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where

ΓeD is the portion of the Dirichlet boundary within the element,
κ∗ is the penalty constant, being κ∗ = κ · E,
h is the element size,
C is the matrix of finite element interpolation if Dirichlet conditions are

applied on the three displacement components x, y and z.

C = N =



N1 0 0 N2 0 0 N3 0 0 . . . Nnnod 0 0

0 N1 0 0 N2 0 0 N3 0 . . . 0 Nnnod 0

0 0 N1 0 0 N2 0 0 N3 . . . 0 0 Nnnod




with nnod as the number of nodes per element. Otherwise C = SN,
where Sii =

∑
d δi,d would be a diagonal matrix and d is the direction

where Dirichlet boundary conditions are applied.

On the other side of the equation, the equivalent force vector f is evaluated by
adding the contribution of the standard FE vector of equivalent forces on nodes fq,
the point loads applied on nodes, the stabilization term of the Dirichlet boundary fg
and the stabilizing component fs.

The vector fq is the standard FE vector due to point forces, volumetric forces,
forces distributed over the Neumann surface of the element, evaluated assembling the
contribution feq of every element e on the domain:

feq =

∫

Γe
N

NT t|J|dΓ +

∫

Ωe

Ntb|J|dΩ + p (22)

where vectors t, b and p correspond to the surface, body and point loads, respectively.
The vector fg is due to the non-homogeneous Dirichlet condition uh = g on ΓD

and it is evaluated assembling the contribution of every element on the Dirichlet
boundary:

feg =

∫

Γe
D

κ∗

h
CT g|J|dΓ (23)

Finally, fs is the stabilizing term which depends on the stress field. In our for-
mulation we use the recovered tractions on ΓD evaluated from the recovered stress
field σ∗[67] to stabilize, solving the problem iteratively updating the stress field value
[66, 68], σ∗(ûh) being the FE recovered stress field calculated for an FE solution
from a previous iteration (or mesh) ûh. The traction on the boundary is defined as
T(ûh) = σ∗(ûh) · n where n is the unit vector normal to the boundary, then

fes =

∫

Γe
D

CTT(ûh)|J|dΓ (24)
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which modifies the global system such that:

(K + KD)u = fq + fg + fs (25)

The derivative of (25) with respect to any design variable am provides the sensi-
tivity of the calculation

(
∂K

∂am
+
∂KD

∂am

)
u + (K + KD)

∂u

∂am
=

∂fq
∂am

+
∂fg
∂am

+
∂fs
∂am

(26)

then, rearranging, yields

(K + KD)
∂u

∂am
=

(
∂fN
∂am

+
∂fg
∂am

+
∂fs
∂am

)
− ∂K

∂am
u = fpsm (27)

The discrete analytical method consists of obtaining analytical expressions of the
sensitivities of the external forces and stiffness matrix. In our case we used the finite
differences approximation of Eqs. (8) and (16) in the evaluation of the velocity field
that will be used to obtain the derivatives of the previous equation. Therefore the
method used to evaluate the shape sensitivities can be classified as a discrete semi-
analytical method. Then using (27) the sensitivities of the displacements are obtained.
From these sensitivities other response magnitudes are calculated.

3.1. Evaluation of derivatives

In this section we derive the components of (27) to be able to evaluate the shape
sensitivities in the Cartesian grid framework. First, starting with ke and considering
that the derivative of D with respect to design variables is zero

∂ke

∂am
=

∫

Ωe

[
∂BT

∂am
DB + BTD

∂B

∂am

]
|J|dΩ +

∫

Ωe

[
BTDB

∂|J|
∂am

]
dΩ (28)

As can be found in [69], this expression depends on known magnitudes and the
factors ∂B

∂am
and ∂|J|

∂am
, which are a function of the velocity field evaluated above.

To evaluate ∂ke
D

∂am
it is necessary to take into account that, as the Cartesian grid

will not be modified by the design variables, i.e. h and C do not depend on am.
Therefore, the only non-zero partial derivative with respect to am is ∂|J|

∂am
, which leads

to:

∂keD
∂am

=

∫

Γe
D

κ∗

h
CTC

∂|J|
∂am

dΓ (29)

In general, the sensitivity with respect to design variables of the nodal equivalent
forces fq will have two terms, one dependent on the variation of the forces (punctual,
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volumetric, etc.), with respect to design variables, and the second depending on the
velocity field. In the first case the expression defining the dependence of the acting
forces with respect to the design variables must be available but in this work we con-
sidered constant acting forces. In the second case the derivatives had to be calculated
by the same procedure as for the stiffness matrix components.

The remaining components of f have to be derived as

∂feg
∂am

=

∫

Γe
D

κ∗

h
CT g

∂|J|
∂am

dΓ (30)

where we have assumed that the Dirichlet boundary conditions are not a function of
the design variables,

∂fes
∂am

=

∫

Γe
D

[
CT ∂T(ûh)

∂am
|J|+ CTT(ûh)

∂|J|
∂am

]
dΓ (31)

where

∂T(ûh)

∂am
=
∂σ∗

∂am
n + σ∗ ∂n

∂am
(32)

As mentioned above, the term T used to stabilize the Lagrange multipliers is a
recovered stress field obtained from the FE solution. To evaluate the stresses in linear
elasticity we consider the general expression for the calculation of the FE stresses σh
in continuous isoparametric elements

σh = DBueh (33)

ueh being the vector of nodal displacements of element e. Taking the derivative with
respect to the design variable am yields

∂σ

∂am
= DB

∂ueh
∂am

+ D
∂B

∂am
ueh (34)

where all terms on the right can be evaluated using the development of the preceding
sections. Once we have evaluated both σ and ∂σ

∂am
we can apply the construction of

the smoothing field based on a recovery technique shown in [67].

Remark 1. To simplify the evaluation of ∂σ∗

∂am
we considered ∂σ∗

∂am
=
(
∂σ
∂am

)∗
. The

numerical results will show that this approximation, previously used in [70], does not
influence the results.
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4. Numerical examples

From the premise of the approximate nature of the FEM, the error of the so-
lution associated with the size of the elements of the FE mesh can be termed FE
discretization error. Usually this error is quantified in terms of the energy norm ‖·‖
as:

‖e(u)ex‖2 =

∫

Ω

(σh − σ)
T
D−1 (σh − σ) dΩ (35)

where σh and σ are the FE (approximate) and the exact stresses respectively.
The sensitivity analysis results evaluated by the FEM are also influenced by the

discretization error associated with the FE model. Therefore, a way must be defined
to evaluate the discretization error in the evaluation of the sensitivities. Following
[70] we use the sensitivity of the squared energy norm with respect to each design
variable, i.e.

χm =
∂‖u‖2
∂am

=
∂

∂am

∫
σTD−1σdΩ (36)

and following a similar procedure to that used to derivate the expression (28) we
obtain:

e(χm)ex =

ne∑∫

Ωe

(σh − σ)TD−1

(
2

(
∂(σh − σ)

∂am

)
+

(σh − σ)

|J|
∂ |J|
∂am

)
|J|dΩe (37)

The following definition of relative error in sensitivities can be used to make the
error in sensitivities comparable with the error in energy norm in relative terms:

η(χm)ex =

√∣∣∣∣
e(χm)ex
χmex

∣∣∣∣ (38)

In the absence of singularities, with this definition, the optimal convergence rate of
the relative error in sensitivities with respect to the number of degrees of freedom will
have the convergence rate of the relative error in energy norm, i.e. −p/d, being p the
interpolation order of the FE solution and d the problem dimensionality. Therefore,
the convergence rate of η(χ) as defined in (38) will be −1/3 for linear elements and
−2/3 for quadratic elements in 3D problems

In addition, we know from [52] that there is a relationship between the discretiza-
tion error in energy norm and the so-called sensitivity discretization error, such that:

e(χm)ex
‖e(u)ex‖2

≈ Rm (39)
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This expression shows that, only with the presence of the discretization error, the
discretization error in the sensitivity of the squared energy norm and the squared
discretization error in energy norm will both be related by a constant Rm. This
relationship between the two types of errors can be adopted as an indicator to measure
the quality of the procedure to generate the velocity field.

4.1. Thick wall infinite cylinder under internal
pressure

The geometrical model for this test is represented in Figure 9. A linear-elastic anal-
ysis is performed on a domain whose boundary representation is defined by NURBS.
Appropriate symmetry boundary conditions allow only 1/4 of the section to be mod-
eled. The internal and external surfaces are of radius a and b, with a = 5 and b = 20.
Young’s modulus is E = 1000, Poisson’s ratio is ν = 0.3 and the applied load is
P = 1. The shape sensitivity analysis of this example considers only one design
variable corresponding to the outer radius of the cylinder, thus taking am = b.

(a) Front view with boundary conditions. (b) 3D representation.

Figure 9: Model of a cylinder under internal pressure.

The exact solution in radial coordinates for displacements and stresses is given by:

ur =
P (1 + ν)

E(k2 − 1)

(
r (1− 2ν) +

b2

r

)
(40)

σr =
P

c2 − 1

(
1− b2

r2

)
σφ =

P

c2 − 1

(
1 +

b2

r2

)
(41)
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4.2 Sequence of collinear cracks in an infinite plate

where k = b/a, r =
√
x2 + z2. Defining φ = arctan(z/x) we can transform to Carte-

sian coordinates:

ux = ur cos(φ), uy = 0, uz = ur sin(φ) (42)

σx = σr cos(φ)2 + σφ sin(φ)2, σz = σr sin(φ)2 + σφ cos(φ)2,

σy = ν (σx + σz) , τxz = (σr − σφ) sin(φ) cos(φ), τxz = τyz = 0

The analytical sensitivity of the squared energy norm (1/4 of cylinder) is:

χ =
∂‖uex‖2
∂am

= 2
∂Π

∂am
= 2π

p2(1 + ν)

E
+
a4b(ν − 1)

(a2 − b2)
2 (43)

For the data used in the model we will have:

‖uex‖2 = 0.055815629478779

χ = −5.082398781807488 · 10−4
(44)

For this problem we will analyze the behavior of the methods used to generate the
velocity field, i.e. the proposed least squares approach (LS) and the physical approach
(PA), in various FE analyses. In the first analysis we will study the convergence for
tri-linear elements (L8) with meshes uniformly refined and h-adapted meshes. The
meshes used in this simulation can be seen in Figures 10a and 10b.

Figure 11a shows the relative error of the sensitivity analysis η(χ) and Figure 11b
shows its convergence rate as a function of the number of degrees of freedom. The
theoretical convergence rate for tri-linear elements (−1/3) is indicated in the plot with
a black horizontal line.

The convergence plots show almost optimal rates for tri-linear elements using
the two velocity fields proposed in this contribution, although the physical approach
provides more stable results. Regarding the quality of the velocity fields, estimated
using Rm (see Figure 11c) we can conclude that all the analyses show good behavior,
but the velocity field calculated using the physical approach shows slightly better
stability.

In Figure 12 we compare the results for tri-quadratic elements (Q20). Repeating
strategy, we analyze uniform meshes (Fig. 10a) and h-adapted meshes (Fig. 10c).
Figure 12a shows similar behavior in the convergence of the relative error in sensitiv-
ities for the two methods proposed to construct the velocity field. For 3D problems
with a non-singular solution, the theoretical convergence rate is −2/3 if tri-quadratic
elements are used. Figure 12b shows that both velocity fields provide optimal con-
vergence rates. In addition, h-adapted meshes present convergence above the optimal
rate, which could indicate that the analysis is still in the pre-asymptotic range.

Finally, the quality of the velocity fields quantified byRm (see Figure 12c) show less
stability than that obtained for tri-linear elements, although the interval of oscillation
is narrow enough to consider the proposed velocity fields acceptable.
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(a) First four meshes of the uniform refinement analysis (L8 and Q20).

(b) h-adaptive meshes with tri-linear elements (L8).

(c) h-adapted meshes with tri-quadratic elements (Q20).

Figure 10: 2D view of the first four meshes of the h-refinement analyses.

4.2. Sequence of collinear cracks in an infinite plate

In problems of Linear Elastic Fracture Mechanics (LEFM), the Stress Intensity
Factor (SIF) is the parameter that characterizes the stress field near a crack tip. This
parameter is vital to assess the maximum allowable stress, critical crack size, fatigue
life of a component with cracks, etc.

The evaluation of the SIF represents an interesting challenge for shape sensitivity
analysis, given the singular nature of the problem[71, 72, 73, 74]. In fact, the quantity
called energy release rate G is the variation of the total potential energy of a component
as a function of the crack size growth.

The energy release rate G for a two-dimensional LEFM problem under mode I
loads can be defined as:

G = −dΠp

da
=

dΠ

da
(45)
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Figure 11: Thick wall infinite cylinder. Analysis with tri-linear elements (L8)

where

Πp is the total potential energy. In the case where the load remains con-
stant. Πp = −Π, where Π is the strain energy and

a is the length of the crack.

Since the energy norm squared is equal to twice the strain energy (‖u‖2 = 2Π) it
follows:

G =
1

2

d ‖u‖2
da

(46)
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Figure 12: Thick wall infinite cylinder. Analysis with tri-quadratic elements (Q20)

We can therefore evaluate G using shape sensitivity analysis, assuming that a, the
crack length, is the design variable. From (46) and from the definition of χm in (36)
we have:

G =
1

2
χ (47)

On the other hand, the energy release rate G and the SIF KI are related by the
following expression:

KI =
√
E′G (48)
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where E′ = E in plane stress and E′ = E/
(
1− ν2

)
for plane strain, E is the elasticity

modulus and ν is the Poisson’s ratio.
To evaluate the effectiveness of the sensitivity calculation module in singular prob-

lems we are going to use the problem of a sequence of collinear cracks in an infinite
plate (see Figure 13).

(a) Plate with a crack of infinite length. (b) 3D representation of the
mode I crack model.

Figure 13: Infintie plate with a sequence of collinear cracks.

Considering the symmetries of the problem in Figure 13a, the FE model involves
taking into account the strip bounded by the center of the crack and the equidis-
tant point between the ends of two consecutive cracks, together with the appropriate
boundary conditions, as shown in Figure 13b. On the blue surfaces the normal dis-
placements have been blocked to simulate the symmetry and plain strain conditions.
The red surface is free and the constant stress σ is applied on the top surface. A
considerable height was used in the analysis to make certain that the effect of the
finite height on the SIF was insignificant.

In an infinite sequence of collinear cracks subjected to constant stress σ, the exact
value of Stress Intensity Factor KI is given by equation (Kanninen and Popelar [75]):

KI = σ
√
πa

√
2b

πa
tan

(πa
2b

)
(49)

For the data used in the model it yields:

KI = 200

χ = 2G = 0.007112888
(50)

Since the crack has a top and a bottom, the value of χ in the upper part would
be obtained when modeling both sides. However, the model used in the numerical
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analysis uses only the top of the crack, so that the value of χ obtained directly through
the shape sensitivity analysis approximates to half the value displayed. Thus the value
of χ to be compared with the numerical results is:

χ = 0.003556444 (51)

In order to evaluate the behavior of the velocity fields, as in the previous problem,
we consider using the ratio Rm defined previously. However there is no expression
to evaluate the exact energy norm for this problem. To determine the error in strain
energy we have taken, as a reference, the solution obtained from a very refined 2D h-
adapted mesh (23811 degrees of freedom, 12059 nodes, 5918 elements) with quadratic
triangular elements, with an estimated error of 0.0753%, evaluated using the ZZ error
estimator [76] i.e. using (35) but substituting the exact stress field σ by a recovered
stress field σ∗ obtained by the recovery technique described in [67]. In this mesh, the
value of ‖u‖2, which will be considered as exact in the analyses, is:

‖u∗ex‖2 = 0.009582263 (52)

The J integral [77] is commonly used to characterize the singularity at the crack
tip in LEFM problems. The behavior of this contour integral can be considerably
improved by means of the Equivalent Domain Integral (EDI) method[78, 79]. The
transformation of the J contour integral into a domain integral leads to the appearance
of an auxiliary function, usually denoted as q, which must be defined by the analyst.
This function used in the EDI method is equivalent to the velocity field used to
characterize the singularity through the use of shape sensitivity analysis. Therefore,
in this problem, we will compare the behavior of the velocity field based on the
physical approach (PA) with the behavior of an auxiliary function q commonly used
in the EDI method, a Plateau function. Hence, as in the case of the auxiliary function
q, the Plateau velocity field will be defined as a vector field in the direction of the
crack propagation, with a maximum constant value within the volume defined by a
radius Rin around the crack tip and a linear decrease to 0 within Rin and an outer
radius Rout. Figure 14 shows the appearance of these velocity fields.

As in the previous test problem, a sequence of uniformly refined meshes has been
used with both tri-linear (L8) and tri-quadratic (Q20) elements, Figure 15a, and two
sequences of h-adapted meshes, one for linear elements, Figure 15b, and another for
quadratic elements, presented in Figure 15c.

Figure 16a shows the variation of the relative error in sensitivities η(χ) obtained
for each velocity field, while Figure 16c represents the evolution of KI in terms of
the number of degrees of freedom. Tri-linear elements and both uniform and h-
adaptive refinement have been used in the analysis represented. Figure 16b shows
the convergence rate of η(χ) with respect to the number of degrees of freedom for the
different meshes. We can see how only the h-adaptive simulations reach the optimal
theoretical convergence rate of −1/3, for 3D tri-linear elements. The convergence
rate for singular problems and uniform refinement is dominated by the intensity of
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Figure 14: Velocity fields for the crack model. (a) Physical approach and (b) Plateau
function.

the singularity λ and not by the degree of the interpolation of the solution. In this
case λ = 0.5, thus, the convergence rate in terms of the number of degrees of freedom
will be −λ/d, d being the dimensionality of the problem. Thus, for λ = 0.5 and d = 3,
the theoretical convergence rate with respect to the number of degrees of freedom for
uniform refinement is −1/6. The convergence rate for uniform refinements is close
to this value. Regarding the quality of the velocity fields evaluated using Rm, we
observe in Figure 16d how the velocity field defined using the physical approach is
more stable for both uniform meshes and for h-adapted meshes but especially for
uniform refinement processes.

The same analyses were carried out with tri-quadratic elements. Figure 17b shows
the convergence rate for the different meshes. We can observe that only the h-
adaptive simulations reach the optimal theoretical convergence rate of −2/3, for 3D
tri-quadratic elements. The uniformly refined meshes have a convergence rate close
to the convergence rate for tri-linear elements with uniform refinement, i.e. close to
the theoretical convergence rate for this type of mesh, −1/6, as expected. Figure 17c
represents the evolution of KI with respect to the number of degrees of freedom. The
evolution of the quality constant for tri-quadratic elements shown in Figure 17d is
similar to that of tri-linear elements. The results obtained by the physical approach
are clearly more stable than with the plateau velocity, which produces oscillatory
behavior, especially in h-adapted meshes.
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(a) First five meshes of the uniform refinement analysis (L8 and Q20).

(b) h-adaptive meshes with tri-linear elements (L8).

(c) h-adaptive meshes with tri-quadratic elements (Q20).

Figure 15: Infinite sequence of cracks. First five meshes of the h-refinement process.

5. Conclusions

This paper proposes an extension of a methodology for the calculation of shape
sensitivities, together with the definition of two methodologies that define the design
velocity field for an immersed boundary method where an h-adapted Cartesian grid
is used to mesh the embedding domain. This includes adapting the formulation of
shape sensitivities, taking into account the special treatment of boundary conditions
required by the use of non body-fitted meshes.
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Figure 16: Infinite sequence of cracks. Analysis with tri-linear elements (L8)

Two problems with known analytical solutions, one with a smooth and another
with a singular solution, were used in the section devoted to numerical examples.
These examples were used to compare the performance of the proposed methodologies
in defining the design velocity field and to demonstrate their appropriate behavior in
shape sensitivity analysis, within the framework of immersed boundary techniques
based on Cartesian grids.

The proposed physical approach for the definition of the design velocity field pro-
vided the best behavior. Furthermore, this approach outperforms the behavior of
an analytical velocity field commonly used in the context of fracture mechanics to
evaluate the Stress Intensity Factor.
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Abstract

We present a novel approach to 3D structural shape optimization that leans on
an Immersed Boundary Method. A boundary tracking strategy based on evaluating
the intersections between a fixed Cartesian grid and the evolving geometry sorts el-
ements as internal, external and intersected. The integration procedure used by the
NURBS-Enhanced Finite Element Method accurately accounts for the nonconformity
between the fixed embedding discretization and the evolving structural shape, avoid-
ing the creation of a boundary fitted mesh for each design iteration, yielding in very
efficient mesh generation process. A Cartesian hierarchical data structure improves
the efficiency of the analyses, allowing for trivial data sharing between similar entities
or for an optimal reordering of the matrices for the solution of the system of equa-
tions, among other benefits. Shape optimization requires the sufficiently accurate
structural analysis of a large number of different designs, presenting the computa-
tional cost for each design as a critical issue. The information required to create 3D
Cartesian h-adapted mesh for new geometries is projected from previously analyzed
geometries using shape sensitivity results. Then, the refinement criterion permits one
to directly build h-adapted mesh on the new designs with a specified and controlled
error level. Several examples are presented to show how the techniques here proposed
considerably improve the computational efficiency of the optimization process.

Key words

Cartesian grids; h-refinement; Shape optimization; NEFEM
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1. Introduction

1. Introduction

The structural shape optimization problem can be tackled as the minimization
of a real function f , which depends on some variables and is subjected to several
constraints. The generic form of such problem is:

minimize f(a)

where a = {ai} i = 1, . . . , n

verifying g(a) ≤ 0 j = 1, . . . ,m

and h(a) = 0 k = 1, . . . , l

(1)

being f the objective function, ai are the design variables, gj are inequality constraints
and the values hk define equality constraints. The vector a defines a specific structural
shape and the task consists in finding the a values which define the optimum design.

The algorithms for the solution of (1) are, normally, iterative. Among the op-
timization algorithms we will mainly focus in this paper on the gradient-based al-
gorithms because of their fast convergence to the optimal solution. These methods
require the computation of the objective function, the constraints and their deriva-
tives (sensitivities) with respect to the design variables for each geometry considered
during the process. In addition, in every step of that process, it is necessary to eval-
uate the values, and their sensitivities, for f and g. In this work, these calculations
are done through Finite Element Analysis.

There are different approaches and many codes to solve the optimization problem.
However, some problems in this context, identified long time ago[1, 2], still remain
unsolved, like the incorporation of robust parametrization techniques for the definition
of each design and the unwanted variations in the structural response due to mesh-
dependency effects. Also, in many optimization processes based on the use of finite
element analyses, there is no control on the accuracy of the numerical solution. As a
result, when the process comes to an end there is no guarantee on the practicability of
the final outcome; sometimes analyses with higher accuracy levels would expose that
the final design is unfeasible, contravening one or more of the constraints imposed.
The control of the error related with the finite element computation and its impact
on the solution of the optimization problem was analyzed in [3].

Two main concepts evolved to bypass these drawbacks. On the one hand, the
design update procedure can be assigned to geometry model[4, 5]. In this case, the
nodal coordinates manipulation within the finite element discretization is avoided,
thus removing impracticable patterns that cannot be defined by any combination of
design variables. Another idea would be to improve the geometrical accuracy of the
models by integrating CAD representations with the FEM solvers, as in the case
of Isogeometric Analysis [6, 7]. However, in its finite element form, generating an
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analysis-suitable solid discretization is an open topic[8, 9, 10]. Some works on IGA
shape optimization can be found in [11, 12, 13, 14, 15].

On the other hand, the finite element model could be updated through the opti-
mization procedure to improve the accuracy of the numerical simulation results or to
enhance the element quality[16, 17, 18]. This may, for instance, take the form of adap-
tive mesh refinement based on error estimation in energy norm[19] or goal oriented
adaptivity[20]. However, when it comes to complicated geometries or to large shape
changes, these strategies may still necessitate computationally expensive re-meshing
algorithms.

From this perspective, so-called Immersed Boundary discretization techniques
seem the most appropriate choice for structural shape optimization. The main notion
behind these methods is to extend the structural analysis problem to a easy-to-mesh
approximation domain that encloses the physical domain boundary. Then, it suffices
to generate a discretization based on the approximation domain subdivision, rather
than a geometry-conforming finite element mesh. Moreover, when the structural com-
ponent is allowed to evolve, the physical points move through the fixed discretization
created from the embedding domain where there will be no mesh distortion. There
are plenty of alternatives within the IBM scope. Among many other names used to
describe these FE techniques where the mesh does not match the domain’s geometry,
we have the Immersed Boundary Method (IBM) [21] and the Immersed Finite Ele-
ment Method (IFEM) [22]. These methods have been studied by a number of authors
for very different problems including, of course, shape optimization [23, 24, 25, 26, 27].

Nevertheless, the attractive advantages of IBM come together with numerical chal-
lenges. Basically, the computational effort has moved from the use of expensive
meshing algorithms towards the use of, for example, elaborated numerical integra-
tion schemes to be able to capture the mismatch between the geometrical domain
boundary and the embedding finite element mesh. All intersected elements have to
be integrated properly in order to account for the volume fractions interior to the
physical domain. The domain integration for these methods have been investigated
in the literature.

The first intuition, is to homogenize the material properties within intersected
elements based on the actual volume fraction of these elements covered by the do-
main. This approach is straight forward and could be computationally efficient but
it provides low accuracy for the structural analysis[28, 29].

A more selective approach is employed in the finite cell framework[30, 31, 32].
Therein, for all intersected elements, a number of integration points are provided
employing hierarchical octree data structures[33, 34, 35] for their distribution. Then,
only the integration points interior to the physical domain are considered in the
respective integral contribution. However, regardless of the number of integration
points, the exact representation of the geometry is not possible.

Still, the highest level of accuracy and optimal convergence rate, for the embedding
domain structural analysis, is obtained only when proper integration schemes are used
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along the intersected elements. Very recently, several methodologies to perform high-
order integration in embedded methods have emerged, such as the so-called ’smart
octrees’ tailored for Finite Cell approaches[36] or techniques used where the geometry
is defined implicitly by level sets[37]. Even in the first of these approaches, where the
isoparamentric reoriented elements only provide an approximated FE description of
the boundary, the exact geometry is not taken into account at the integration stage.

A step further to improve accuracy and retain the optimal convergence rate of the
FE solution is to consider the exact geometry when integrating. In the embedded
domain framework this can be realized by the use of a separate element-wise tetra-
hedralization that is used for integration purposes only. The present contribution
is concerned with the formulation and implementation of this last approach. The
methodology is based in the Cartesian grid FEM (cgFEM) succesfully implemented
in 2D [38, 39] and 3D [40, 41] problems. The Cartesian grid FEM relies on an explicit
geometry description using parametric surfaces (i.e. NURBS or T-spline) and includes
NURBS-enhanced integration techniques [40, 42, 43] in order to consider exactly the
boundary description of the embedded domain. Stabilization terms are added at the
elements cut by the Dirichlet and Neumann boundaries to ensure the appropriate
satisfaction of these boundary conditions to maintain the optimal convergence rate of
the FE solution and to provide control of the variation of the solution in the vicinity
of the boundary [44].

In order to calculate the sensitivities of the magnitudes that take part in the shape
optimization analysis, a formulation for the derivation of design sensitivities in the
discrete setting is used[45]. This formulation takes into account the derivatives of the
stabilized formulation implemented for the imposition of boundary conditions[44].

In this paper we propose a structural shape optimization method that will benefit
from the accuracy of cgFEM but also from the computational efficiency due to the
a data structure that allows sharing information between the different geometries
analyzed during the procedure. Last, this work presents a strategy that provides an
h-adapted mesh for every design without performing a complete adaptive procedure.
It is based on the calculation of the sensitivities of the magnitudes present during the
refinement step with respect to the design variables. This sensitivity analysis can be
performed only once on a reference geometry, and then utilized to project the results
of the analysis to other designs just before being analyzed. This procedure is useful for
moderate shape modifications during the whole optimization process. Alternatively,
the shape sensitivity analysis can be performed also for other geometries obtained
during the optimization process if required. The projection of information allows to
generate appropriate h-adapted meshes in one preprocess step which, compared to
standard re-meshing operations, significantly reduces the computational cost of mesh
generation. This method is inspired by a similar strategy that was developed and
used in the context of gradient-based[46] and evolutionary[47] optimization methods,
based on the standard, body-fitted, Finite Element Method.
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The paper is organized as follows: A brief review of basic features of the cgFEM
methodology will be shown in Section 2, including how to take advantage of them
in shape optimization. Section 3 will present the formulation used for the structural
and for the sensitivity analysis. Section 4 will be devoted to explain our strategy for
h-adaptive mesh projection. Numerical results showing the behavior of the proposed
technique will be presented in Section 5. This contribution ends with the conclusions
in Section 6.

2. Cartesian grids for optimization

This work has been developed as a logical continuation of [40] where a new FEA
methodology called cgFEM was presented. This methodology was implemented in a
FE code for the analysis of structural 3D components called FEAVox, where the main
novelty was the ability to perform accurate numerical integration in non-conforming
meshes independent of the geometry.

The foundations of mesh generation in cgFEM consists in defining an embedding
domain Ω such that an open bounded domain ΩPhys fulfills ΩPhys ⊂ Ω. Let us assume
that the embedding domain is a cube, although rectangular cuboids could also be
considered. In Figure 1 we can appreciate the embedding domain Ω interacting with
ΩPhys.

Figure 1: Immersed Boundary Method environment. Domain ΩPhys within the em-
bedding domain Ω.

The discretization of the embedding domain is based on a sequence of uniformly
refined Cartesian meshes to mesh the domain Ω where the different levels of the
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Cartesian meshes are connected by predefined hierarchical relations. There are plenty
of techniques that follow these principles, all of them based, in one way or another,
on the octree concept [33, 34, 35].

The first step of the analysis consists of creating the analysis mesh taking a set
of non-overlapped elements of different sizes from the different levels of the Cartesian
grid pile (see Figure 2). In order to enforce C0 continuity between adjacent elements
of different levels multipoint constraints (MPCs)[48, 49] are used.

During the creation of the FE analysis mesh used to solve the boundary value
problem we have to classify the elements of the Cartesian grid in three groups:
boundary, internal and external elements. In order to do that, we need to know
the relative position of the domain of interest with respect to the embedding do-
main. In [40] we proposed a robust procedure to find intersections, between the sur-
faces of the boundary and the axes of the Cartesian grids, based on the ray-tracing
techniques[50, 51, 52, 53, 54].

Figure 2: Components of an immersed boundary environment.

Internal elements are standard FE elements whose affinity with respect to the
embedding domain Ω is exploited in order to save the computational cost. Regarding
the integration of intersected elements in cgFEM, we proposed a strategy in [40] to
perform the integration over the internal part of these elements. In order to achieve
this, we generate a tetrahedralization into each boundary element. This submesh of
tetrahedrons will be used only during the integration step. Numerical integration over
the intersected elements is then accomplished by integrating over each subdomain of
the tetrahedralization. In order to perform the integration over the subdomains, we
proposed a NURBS-Enhanced integration strategy [42, 43] that takes into account
the exact geometry defined by the CAD model.
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In cgFEM, Dirichlet boundary conditions are imposed using stabilized Lagrange
multipliers. More precisely, the procedure chosen to impose the constraints follows the
technique proposed by [44]. This method is suitable for h-refinement in the context
of hierarchical Cartesian grids.

2.1. Data sharing

It is worth noting that the hierarchical relationships considered in the data struc-
ture suggest an automatic improvement of the mesh refinement thus positively af-
fecting the efficiency of the FE implementation. Nodal coordinates, mesh topology,
hierarchical relations, neighborhood patterns, and other geometric information are
algorithmically evaluated when required.

In addition, all internal elements share the same stiffness matrix, for constant
material properties and linear elasticity problems, which is only calculated once on a
reference element. Then, a scale factor related to the mesh level is used to adapt the
stiffness to the actual element size. As we can imagine, this implies a major increase
in efficiency of the generation of the numerical model. Figure 3a shows a cross section
of a model of a quarter of a cylinder, Figure 3b presents a coarse analysis mesh and
Figure 3c shows the mesh obtained after its h-adaptive refinement. For both meshes
we only have to evaluate one element for the domain colored in green, which represents
all the internal elements.

(a) Model of a quarter of a cylin-
der.

(b) Coarse mesh i. (c) h-adapted mesh i + 1.

Figure 3: Vertical data sharing example.

On the other hand, each boundary element is trimmed differently, so each of these
elements will require a particular evaluation of the element matrices. Contrasting with
many h-adaptive FE codes, where the previous meshes are discarded and new ones
are created, the use of Cartesian grids together with the hierarchical data structure
allows recycling calculations performed in previous meshes.
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In this context, the so-called vertical data sharing by means of which the matrices
of elements present in different meshes of the same h-adaptive process will not be
re-evaluated. Figure 3c represents the resulting mesh of a h-adaptive process where
the blue colored elements represent elements evaluated in previous meshes that do
not require to be re-evaluated. Hence, the only element matrices to be evaluated for
the analysis of the mesh shown in Figure 3c correspond to the yellow elements.

Within the context of the traditional FEM, each geometry requires a different
body-fitted mesh, therefore, the elements of different geometries are, generally, com-
pletely different and unrelated. This situation makes very difficult to enable an effi-
cient exchange of information between different geometries. However, cgFEM provides
a framework to define an operation, called horizontal data sharing, to further improve
the computational efficiency of the optimization process by allowing the transfer of
information between elements of different geometries. This data sharing just requires
all geometries to be defined using the same embedding domain to ensure that the
Cartesian grid pile is the same for all geometries, making the inter-geometries data
transfer possible.

The different components of a parametric definition of the boundary of the models
to be analyzed can be subdivided into three types:

1. Fixed part. This is the part of the boundary that remains fixed in all the
geometries (such as the internal curve of the cylinder represented in Figure 4a).

2. Moving part with fixed intersection pattern. This surfaces or curves can be
changed by the optimization algorithm, but those changes do not affect the
intersection with the surrounding elements in the same manner. In Figure 4a
we can see two curves type 2 corresponding with planes of symmetry of the
model.

3. Free moving part. This part of the geometry could freely change during the
optimization analysis without a predictable pattern. The outer curve in Figure
4a is a good example of this kind of entity.

The horizontal data sharing consists of reusing, on the one hand, the computations
attached to the elements intersected by the fixed part of the boundary in the different
geometries analyzed during the optimization process. For instance, in Figure 4b we
can see a h-adapted mesh of a geometry, j + 1, that represents a perturbation of
the original model, j, shown in Figure 3a. In Figures 4c and 4d we can verify how
the blue elements used in the mesh in Figure 4b are inherited from separated meshes
of a different individual evaluated previously. Dark blue represents the elements
intersected by entities type 1 and light blue the elements intersected by type 2 entities.
As in the vertical sharing, the green elements will be evaluated as explained before and
the yellow elements will be the only elements evaluated for this individual. Observe
that the horizontal data sharing implies a significant reduction of calculations. For
example, the number of elements that need integration (yellow elements) for the mesh
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shown in Figure 4b is considerably lower than the total number of elements in the
mesh.

(a) Different type of entities. (b) Individual j + 1.

(c) Individual j, mesh i. (d) Individual j, mesh i + 1.

Figure 4: Horizontal data sharing example.

2.2. Nested domain reordering

Solving large sparse linear systems is the most time-consuming computation in
shape optimization using FEM.

In this contribution we are interested in direct solvers. Matrix reordering plays an
important role on the performance of these solvers. In fact, it is common to reorder
the system matrix before proceeding to its factorization as it can increase the sparsity
of the factorization, making the overall process faster and reducing the storage cost.
Finding the optimal ordering is usually not possible although heuristic methods can
be used to obtain good reorderings at a reasonable computational cost.
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This section is intended to show how the hierarchical data structure inherent to
the Cartesian grids, thus directly related to the mesh topology, can be used to directly
obtain a reordering of the system matrix that speeds up the Cholesky factorization
process. The Nested Domain Decomposition (NDD) technique is a domain decom-
position technique specially tailored to h-adaptive FE analysis codes with refinement
based on element subdivision. The technique simply consists in recursively subdi-
viding the domain of the problem using the hierarchical structure of the mesh. This
technique was first described in [55] and applied in an implementation of a FEM
that used geometry-conforming meshes. Later, NDD was adapted to a Cartesian grid
environment in 2D[38]. In this paper, we will use a 3D generalization of NDD. The
technique consist in subdividing the domain of the problem considering that each
element of a uniform grid of the lowest levels of the Cartesian grid pile (normally the
Level-1 grid, with 2x2x2 elements). Then, the degrees of freedom of the nodes of the
mesh to be analyzed falling into a subdomain will be allocated together in the stiffness
matrix. The nodes falling on the interface of the subdomains will not be reordered
and will simply be moved to the end of the matrix producing the typical arrowhead
type structure of the domain decomposition techniques. This idea is then recursively
applied into each original subdomain producing a nested arrowhead type structure.
This reordering will provide a considerable reduction of the computational cost asso-
ciated to the resolution of the system of equations with a minimum computational
cost.

Figures 5, 6 and 7 graphically show the process. The embedding domain, Figure
5a, is subdivides into 8 subdomains or regions as shown in Figure 5b. Each subdomain
is represented in a different color. We can easily identify those subdomains with the
elements of the first refinement level. Thus, the nested reordering in cgFEM will
be made up by grouping the nodes according to the corresponding element in the
hierarchical structure. Figure 5c shows an example of an analysis mesh where we are
going to apply the nested reordering.

For the sake of clarity we will use a 2D representation of the process. Figure 6a
shows the domain subdivision considering the Level-1 grid. The nodes are subdivided
into 9 different categories. Only 5 of theses categories are shown in the 2D represen-
tation of Figure 6. The colored ones indicate the nodes falling into each one of the
elements of the Level-1 grid. Black nodes are those falling on the interface between
the Level-1 elements. The stiffness matrix will be reordered, grouping all nodes of the
same color, as shown in Figure 7b. This grouping creates an arrowhead-type structure
made up of blocks. It can be noticed that the blocks on the diagonal (two of them
clearly shown shadowed in blue and red) show an structure similar to the structure
of the original non-reordered stiffness matrix shown in Figure 7a.

Level-2 reordering, Figure 6b, indicates that each of the Level-1 subdomains is
again reordered in the same way. For instance, the red subdomain in Figure 6a is
subdivided into 8 subdomains (only 4 are shown in 2D) separated by their interface,
represented in black, as shown in Figure 6b. Interfaces of previous levels are repre-
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(a) Body within the embed-
ding domain ΩPhys ⊂ Ω.

(b) Level 1 subdivision. (c) Example of 3D mesh to be
reordered.

Figure 5: Nested Domain Decomposition environment.

sented by white nodes. The same process is followed for the next levels, using the
elements of the corresponding level of the hierarchical structure.

(a) Level-1 decomposition. (b) Level-2 decomposition. (c) Level-3 decomposition.

Figure 6: Nested Domain Decomposition scheme.

In the process, each node of the mesh is given a code with as many digits as levels
of the Cartesian grid pile used. The i-th digit of the code contains the subdomain
number (1 to 8) of the node considering the Level-i grid, or 9 if the node is on the
interface between the Level-i subdomains, as in Figure 6a to Figure 6c for levels 1 to
3. Once the code of each node has been obtained a simple ’alphabetical’ reordering
of the codes provides the NDD reordering of the nodes. The degrees of freedom of
the matrix will then be reordered considering nodal reordering.

The result of the NDD reordering generates the nested arrowhead type structure
of the stiffness matrix represented in Figure 7c. This nested arrowhead type structure
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obtained could also be used to define efficient nested domain decomposition solvers
or iterative solvers, as in [56] where we showed initial implementations of these types
of solvers. However, in this contribution we have just used this technique to reorder
the system of equations to improve the performance of the Cholesky factorization.

(a) Original stiffness matrix. (b) Level-1 decomposition re-
ordering.

(c) Last reordering (Level-4).

Figure 7: Nested Domain Decomposition output.

In the section devoted to numerical examples we will show the performance of this
method in comparison with other common procedures.

3. Structural and shape sensitivity analysis

In this paper we use a method to compute the shape sensitivities that was pre-
sented in [45]. Here we recall the main features for clarity of the presentation. We
will only consider the solution of structural problems governed by the standard elliptic
equations (see, for instance [57]), where introducing appropriate boundary conditions
and discretizating using FEM we obtain the standard linear system of equations:

Ku = f (2)

This formulation, valid for standard FEM, will need to be adapted to our immersed
boundary framework of our approach. Imposing Dirichlet boundary conditions in
Cartesian grids is difficult as the nodes do not necessarily lie on the Dirichlet boundary,
thus making the direct enforcement of the essential boundary conditions, in general,
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not possible. In cgFEM we use an stabilized method[44] similar to Nitche’s method,
that modifies K and f leading to a new system of equations:

(K + KD)︸ ︷︷ ︸
Stiffness matrix

u = fq + fg + fs︸ ︷︷ ︸
Equivalent force vector

(3)

where the global stiffness matrix is obtained by the contribution of the classical stiff-
ness matrix K and a stabilization term KD for all the boundary elements containing
the Dirichlet boundary. On the other side of the equation, the equivalent force vector
is evaluated by adding the contribution of the standard FE vector of equivalent forces
on nodes fq, the point loads applied on nodes, the stabilization term of the Dirichlet
boundary fg and the stabilizing component fs. For details on these components check
[44].

Regarding the structural sensitivity analysis, the differentiation of the previous
system of equations is needed, including the components due to the imposition bound-
ary conditions. In this work we use a formulation presented in [45] that is based on
the analytical discrete method[58, 59, 60, 61] consisting in obtaining analytical ex-
pressions of the sensitivities of the external forces and stiffness matrix. A detailed
review and comparison of the different sensitivity analysis approaches can be found
in[62].

The derivative of (3) with respect to any design variable am allows to obtain the
sensitivity of the calculation

(
∂K

∂am
+
∂KD

∂am

)
u + (K + KD)

∂u

∂am
=

∂fq
∂am

+
∂fg
∂am

+
∂fs
∂am

(4)

First, starting with K and considering that the derivative of material properties
matrix, D, with respect to design variables is zero

∂K

∂am
=

∫

Ω

[
∂BT

∂am
DB + BTD

∂B

∂am

]
|J|dΩ +

∫

Ω

[
BTDB

∂|J|
∂am

]
dΩ (5)

where

B is the nodal strains-displacements matrix,

D is the stiffness matrix that relates stresses with strains. In this work we
consider linear elasticity where, under isotropic behavior, this matrix
depends only on E, the Young modulus, and ν, the Poisson ratio of
the material,

|J| is the determinant of the matrix J, representing J the Jacobian ma-
trix of transformation of the global coordinates (x, y, z) to the local
element coordinates (ξ, η, τ).
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∂|J|
∂am

, ∂B∂am are the sensitivities of |J| and B with respect to the design
variable am, which are functions of the velocity field, Vm, that rep-
resents the partial derivatives of the location of material points, P,
with respect to the design variables: Vm = ∂P

∂am
(see [45]).

The derivatives of the terms introduced by the stabilization method will be

∂KD

∂am
=

∫

ΓD

κ∗

h
CTC

∂|J|
∂am

dΓ

∂fg
∂am

=

∫

ΓD

κ∗

h
CT g

∂|J|
∂am

dΓ

∂fs
∂am

=

∫

ΓD

[
CT ∂T(ûh)

∂am
|J|+ CTT(ûh)

∂|J|
∂am

]
dΓ

(6)

where

ΓD is the portion of the boundary where Dirichlet conditions are imposed,

κ∗ is the penalty constant, being κ∗ = κ · E,

h is the element size,

C is the matrix of finite element interpolation if Dirichlet conditions are
applied on the three displacement components x, y and z.

C = N =



N1 0 0 N2 0 0 N3 0 0 . . . Nnnod 0 0

0 N1 0 0 N2 0 0 N3 0 . . . 0 Nnnod 0

0 0 N1 0 0 N2 0 0 N3 . . . 0 0 Nnnod




with nnod being the number of nodes per element. Otherwise C =
SN, where Sii =

∑
d δid would be a diagonal matrix and d is the

direction where Dirichlet boundary conditions are applied.

In our approach we use the recovered tractions on ΓD evaluated from the recovered
stress field σ∗[63] to stabilize, solving the problem iteratively updating the stress field
value [44, 64], σ∗(ûh) being the FE recovered stress field calculated for an FE solution
from a previous iteration (or mesh) ûh. The traction on the boundary is defined as
T(ûh) = σ∗(ûh) · n where n is the unit vector normal to the boundary, then its
derivative can be written as

∂T(ûh)

∂am
=
∂σ∗

∂am
n + σ∗ ∂n

∂am
(7)
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3.1. Objective function and constraints

Although we will consider that the objective function is the volume, other mag-
nitudes could also be considered. This volume can be obtained adding the volume of
each finite element present in the mesh, computed as:

V =
∑

e

Ve =
∑

e

∫

Ωe

dΩe =
∑

e

∫

Ωe

|J|dξdηdτ (8)

The techniques discussed above to differentiate the components of the system of
equation can be applied to evaluate the sensitivity of equation 8.

In our study, the constraints are expressed in terms stresses. To evaluate the
stresses we consider the general expression for the calculation of stresses in continuous
isoparametric elements

σ = DBueh (9)

ueh being the vector of nodal displacements of element e. Taking the derivative with
respect to the design variable am, it yields

∂σ

∂am
= DB

∂ue

∂am
+ D

∂B

∂am
ue (10)

where all terms on the right can be evaluated using the development of the preceding
sections. Once we have evaluated both σ and ∂σ

∂am
we can apply the construction of

the smoothing field based on a recovery technique shown in [63].

3.2. Error estimator

The error associated with the finite element discretization is evaluated in this work
using the Zienkiewicz and Zhu[19] error estimator as:

‖ees‖2 =

∫

Ω

(σh − σ∗)TD−1(σh − σ∗)dΩ (11)

where σ∗ is a smoothed continuous stress field obtained by the Recovery technique[38,
63]. The resulting expression for the sensitivity analysis of the error estimator already
presented in [46]:

∂‖ees‖2
∂am

=
∑

e

∫

Ωe

(σh − σ∗)TD−1

(
2

(
∂(σh − σ∗)

∂am

)
+

(σh − σ∗)
|J|

∂ |J|
∂am

)
|J|dΩe

(12)
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where ∂(σh−σ∗)
∂am

will be approximated as follows:

∂(σh − σ∗)
∂am

=
∂σh
∂am

−
(
∂σ

∂am

)∗
(13)

being
(
∂σ
∂am

)∗
obtained through the same recovery procedure applied previously to

σ∗.
Equation (12) was also derived in [65] for the definition of an estimator for the

discretization error in shape sensitivity analysis. In order to use an h-refinement
strategy, it will also be necessary to compute the energy norm and its sensitivity with
respect to each design variable. This can be evaluated considering::

‖ues‖2 ≈ uTKu + ‖ees‖2 (14)

∂‖ues‖2
∂am

≈ ∂uT

∂am
Ku + uT

∂K

∂am
u + uTK

∂u

∂am
+
∂‖ees‖2
∂am

(15)

4. Automatic h-adaptive mesh projection

In this contribution we use a gradient-based algorithm[66] which uses first-order
sensitivities of the objective functions and constraints to evaluate the solution of (1).
Using this information and the values of the design variables for the j-th geometry
obtained during the iterative process (aj), see Figure 8a, the algorithm generates the
modified values of aj defining an improved design (aj+1) using

aj+1 = aj + αS(a)j (16)

where S(a)j is the search direction vector and α is a parameter related to the step
size.

After the definition of the (j + 1)-th geometry to be analyzed, see Figure 8b, it is
necessary to construct the new analysis mesh. There have been previous developments
about this using standard body-fitted FE meshes [46, 47]. In these references the
information required to define a new mesh was projected from one geometry to another
making use of the following expression:

Mj+1 ≈Mj +
∑(

∂Mj

∂am

)
·∆am (17)

where M represents any magnitude that has to be projected from geometry j to
geometry j + 1. The generation of an h-adapted mesh used in these references was
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(a) Reference design (j). (b) Perturbed design (j + 1).

Figure 8: Design evolution during optimization.

based on the use of a mesh optimality criterion, in these cases the criterion used
was the minimization of the number of elements in the mesh to be created that would
produce the prescribed estimated error in energy norm. This criterion is equivalent to
the equidistribution of the error in energy norm on the elements of the new mesh[67].
In the following, we use a 3D generalization of this criterion presented [41].

Let’s assume that Ωj,def is mesh n of an h-adaptive analysis that corresponds
to the geometry j + 1 and we want to evaluate mesh n + 1 (the new mesh) of the
h-adaptive sequence, then:

hn+1
e,n ≈ hne

[
1

Mn

]1/2(p+1) [‖en+1‖
‖en‖

] d
2p2+pd

[‖en+1‖
‖en‖e

] 2
2p+d

(18)

where

hne is the size of the element e of the mesh n,

hn+1
e,n is the new element size of the mesh n+1 obtained by the subdivision

of element e in the mesh n,

Mn is the number of elements in the mesh n,

‖en+1‖ is the global error in energy norm of the mesh n+ 1,

‖en‖ is the global error in energy norm of the mesh n,

‖en‖e is the error of the element e of the mesh n,

p is the polynomial degree of the shape functions used,

d is the dimension of the problem (2 for 2D, 3 for 3D problems).
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To use this expression we have to replace ‖en‖e in (18) by the projection given in
Equation (21), evaluate ‖e‖n as the summation of all the projected errors in elements
from Equation (21), and evaluate ‖en+1‖ as

‖en+1‖ =
γ

100
‖uj+1

es ‖ (19)

where γ is the prescribed percentage of relative error in energy norm and ‖uj+1
es ‖ is

the global projected energy norm.
Hence, once a new design has been defined, the projection starts with the previous

analysis mesh, defined as Ωj,� in Figure 9a, using the previously computed coordinate
sensitivities. The projected position rj+1 for each node of the mesh is given by:

rj+1 = rj +
m∑

i

(
aj+1
i − aji

)(∂rj
∂aji

)
(20)

Likewise, the estimated error in energy norm and the estimated energy norm at
each element required in (18) can also be estimated by projection using the expressions

‖ees‖2e,j+1 ≈ ‖ees‖2e,j +
m∑

i

(
aj+1
i − aji

) ∂‖ees‖2e
∂ai

(21)

‖ues‖2e,j+1 ≈ ‖ues‖2e,j +
m∑

i

(
aj+1
i − aji

) ∂‖ues‖2e
∂ai

(22)

These projections give an approximation to the values of the estimated error in
energy norm and the energy norm that would be obtained if the next design were
computed with the previous Cartesian mesh Ωj,� projected to the new geometry,
represented as Ωj+1,def in Figure 9b.

As in a standard remeshing procedure, we have an h-adapted mesh for geometry
j + 1 and, thanks to the extrapolation procedure, the values of energy norm and its
estimated error at each element. Hence, without any further computation on geometry
j+ 1, the projected estimated error and energy norm allow us to estimate the quality
of the results that would be obtained through the FE analysis of geometry j+ 1 with
a mesh (Figure 9b) equivalent to the one used in the previous design j (Figure 9a).
If the target error prescribed for the FE analysis is lower than the projected error of
the (j + 1)-th geometry, the mesh must be h-refined using (18).

Up to this point, the mesh projection presented is comparable to the strategies
used for standard body-fitted meshes[46, 47]. As we can easily observe in Figure
9b, this kind of projection yields in a discretization that is not compatible with the
hierarchical Cartesian structure of cgFEM, thus losing most of the advantages related
to its use.

In this paper we propose a projection strategy that will allow to generate an h-
adapted analysis mesh of the new design j+ 1 keeping the Cartesian structure intact.
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(a) Cartesian reference analysis
mesh, Ωj,�.

(b) Projected (non-Cartesian)
mesh on geometry j + 1.

Figure 9: Mesh projection procedure.

This strategy simply requires to project the element size evaluated using (18) for
the elements of Ωj+1,def (Figure 9b) to the embedding domain Ω. To do this we assign
this element size to the Gauss points of each element and project all the integration
points of Ωj+1,def to Ω. These projected integration points containing element size
information can be trivially located into the elements of a uniform Cartesian grid of
the prescribed level. Then these Cartesian elements are recursively refined until the
size of each element is smaller than the minimum element sizes defined by the Gausss
points contained in the element, leading to an h-adapted Cartesian grid (see 10b)

From this perspective, projection, through sensitivity analysis, can transform a
posteriori error estimation into a preprocess tool able to generate an h-adapted mesh
for the new design, recycling calculations obtained on previous stages of the optimiza-
tion process.

5. Numerical examples

In this Section we will show three numerical analyses. The first one will be used
to show the performance of the direct solver used to evaluate solution of the systems
of equations when applying different reordinations to the matrices. The remaining
two problems will be devoted to asses the optimization methodology presented in
this contribution. The last two optimization analyses will test the accuracy of the
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5.1 Performance of the direct solver

(a) Perturbed integration points. (b) Projected Cartesian mesh,
Ωj+1,�.

Figure 10: Mesh projection procedure.

cgFEM implementation coupled with the optimization algorithm using an academical
problem with different number of design variables.

The model proposed for this study is a thick-wall infinite cylinder loaded with
internal pressure. The geometrical model for this problem is represented in Figure
11. A linear-elasticity analysis is performed on a domain given by a CAD model that
uses NURBS to represent the boundary. Only 1/4 of the section is modeled together
with the appropriate symmetries. The internal and external surfaces are of radius r
and R, with Rint = 5 and Rext = 20. Young’s modulus is E = 1000, Poisson’s ratio
is ν = 0.3 and the applied load is P = 1.

The exact solution for displacements and stresses is given by:

ur =
P (1 + ν)

E(k2 − 1)

(
r (1− 2ν) +

R2
ext

r

)
, uy = 0 (23)

σr =
P

k2 − 1

(
1− R2

ext

r2

)
, σφ =

P

k2 − 1

(
1 +

R2
ext

r2

)
, σy = ν (σr + σφ) (24)

where k = Rext/Rint, r =
√
x2 + z2.

For the optimization analyses we will substitute the constant Rext for a unique
design variable or we will define a set of design variables to define arbitrary external
surfaces.
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(a) Front view with boundary
conditions.

(b) 3D model representation. (c) Example of analysis mesh.

Figure 11: Model of a cylinder under internal pressure.

5.1. Performance of the direct solver

As explained in Section 2.2, the resolution of the system of equations with direct
solvers is a time consuming task that can be lighten using a proper reordering of
the matrices involved. To solve the linear system of equations in (3), we have run
the tests in MATLAB R© 2014a, using the standard backslash solver provided in this
compilation. In this example, we will compare four different reordering strategies:

• Nested Domain Decomposition (NDD): in this case, we use the NDD reordering
presented in Section 2.2.

• Reference: this strategy consists in solving the system without any previous
reordering.

• Approximate Minimum Degree (AMD) permutation: if the degree of a node
in a graph is the number of connections to that node, the AMD algorithm[68]
generates an ordering based on how these degrees are altered during Cholesky
factorization.

• Symmetric AMD permutation (SYM-AMD)[69] : this algorithm performs an
AMD reordination taking into account the symmetry of the matrix.

• Column AMD permutation (COL-AMD)[70] : this algorithm returns the column
approximate minimum degree permutation vector of the matrix. This is the
default algorithm used by MATLAB R©.
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5.1 Performance of the direct solver

Figure 12: 2D view of 3D uniform meshes with different element size.
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Figure 13: Behavior of different reordering techniques. Left: reordering times. Right:
speed-up in the resolution of the system of equations with respect to the reference
(no reordering).

For the analysis we will study a set of uniformly refined meshes of 20-node tri-
quadratic elements. The meshes used in this simulation can be seen in Figure 12.

On the left plot of Figure 13, we can observe the computational cost related with
the reordering function of the degrees of freedom present in the meshes. This compu-
tational cost takes into account both, finding the reordered indexes and the reordering
process. The right plot shows the computational cost related to the resolution of the
system of equations in terms of the speed-up achieved with respect to the reference,
i.e., with no reordering. This means that a value larger than 1 represents the reduction
of cost with respect with the reference calculation with no reordering.

From Figure 13 we can extract the several conclusions. We can notice how, for
small problems (two first meshes), the differences in computational cost between the
different alternatives are not significant. However, for larger problems we can clearly
observe how the computational cost related to NDD reordering is clearly superior to
the alternatives studied.
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So, when using NDD, the time devoted to reorder the system of equations and
to solve it is reduced, allowing for the resolution of larger systems of equations with
the same resources. The reason behind this positive performance of the proposed
reordering technique can be that the NDD reordering could represent an optimal
reordering, as it takes into account the topology of the mesh.

5.2. Thick-wall infinite cylinder loaded with internal
pressure defined by 1 design variable

Let us consider Rext as the design variable that defines the cylinder presented in
Figure 11. Our objective in this problem is to minimize the volume of the model under
internal pressure P applied on the circular internal surface, with unknown external
surface, where the Von Mises stresses must be below the yield stress Sy. For the
parameters defined above and for Sy = 2, the optimal analytical solution corresponds
to b = 13.681300358237177 and the corresponding volume is V = 2547.485744735241.

Design variable Initial value Data range
Rext 17 [9 − 20]

Table 1: Thick-wall infinite cylinder defined by 1 design variable. Design variable
data.

The first analysis consist of using sets of uniform meshes of 20-node tri-quadratic
elements with different element size. We will use meshes of levels 3, 4 and 5 that
correspond with the three last levels of refinement represented in Figure 12. By doing
this, we will evaluate how varying the discretization affects the accuracy and the
computational cost.

In Figure 14 we can observe the evolution of the relative error in volume evaluated
as ηV (%) = |Vh−V |

V · 100 where Vh is the volume integrated with the finite element
mesh and V is the exact volume of the model. The plot shows the convergence of the
optimization process to a clearly suboptimal solution when using coarse meshes. In
order to get closer to the theoretical optimal solution finer meshes have to be used,
however this decision will involve an increase of the computational cost.

In Table 2 we can see the average discretization estimated error in energy norm
per individual and the average computational cost per individual. We observe how,
in order to reduce the discretization error, the computational cost of each individual
increases significantly. This conclusion justifies the use of h-adaptive meshes.

We repeat the analysis but using h-adapted meshes and the projection technique
presented in Section 4. In Figure 15 we can observe the behavior of h-adapted meshes
with tri-quadratic elements (hAdapMeshing) and projected h-adapted meshes with
the same elements (ProjMeshing).
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Figure 14: Evolution of the error in the objective function (volume) with respect to
the analytical solution. Uniform meshes.

Type of mesh Computational cost (s) Estimated discretization error
Unif_Level3 9.05 7.99%
Unif_Level4 25.13 2.41%
Unif_Level5 229.81 0.67%

Table 2: Computational results for uniform meshes. Average values of computational
cost and estimated discretization error in energy norm.

Table 3 shows the details of the analyses in terms of average computational cost
and estimated discretization error of the meshes. In this case, the h-adapted meshes
achieve a level of accuracy similar to the accuracy obtained with the level 5 uni-
form mesh, but in a fraction of the time. In addition, the projected meshes cut the
computational cost of the h-adaptive process in around 25%.

Type of mesh Computational cost (s) Estimated discretization error
hAdapMeshing 52.23 0.87%
ProjMeshing 39.53 0.99%

Table 3: Thick-wall cylinder defined by 1 design variables. Computational results for
h-adapted and projected meshes.
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Figure 15: Evolution of the error in the objective function (volume) with respect to
the analytical solution. h-adapted and projected meshes.

5.3. Thick-wall infinite cylinder loaded with internal
pressure defined by 4 design variables

In this example we modify the previous model introducing several design variables.
The initial shape is shown in Figure 16. The shape optimization problem consists of
finding the best shape for the external boundary defined by four design variables,
corresponding to coordinates of the points used to define the external boundary.

The mechanical properties for this problem correspond to those exposed at the
beginning of the section. The initial values of the design variables and their allowed
data range and constraints are shown in Table 4.

Design variable Initial value Data range Constraints on the design variables
a1 17 [10 − 20] None
a2 16 [8 − 17] a2 ≤ a4 − 1

a3 16 [8 − 17] a3 ≤ a1 − 1

a4 17 [10 − 20] None

Table 4: Thick-wall infinite cylinder defined by 4 design variable. Design variables
data.

Figure 17 shows the evolution of the relative error in volume for an optimization
process performed using standard h-refined meshes and another carried out using
projected meshes. We can observe a common convergence path regardless of the
different discretizations used.
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5.4 Connecting rod defined by 8 design variables

(a) Front view with boundary conditions. (b) 3D model representation.

Figure 16: Model of a cylinder under internal pressure defined by 4 design variables.

In Table 5 we can see the average discretization estimated error in energy norm
per individual and the computational cost per individual. The computational costs
include the simulations performed to evaluate the sensitivities. We observe that for a
comparable level of discretization error we save close to 20% of time when using mesh
projection.

Type of mesh Computational cost (s) Estimated discretization error
hAdapMeshing 151.81 1.22%
ProjMeshing 124.90 1.46%

Table 5: Thick-wall cylinder defined by 4 design variables. Computational results for
h-adapted and projected meshes.

Figure 18 shows several of the individuals analyzed during the process including
the first and the last one (51). In addition, the theoretical optimal solution has been
drawn to clarify the evolution of the procedure.

5.4. Connecting rod defined by 8 design variables

The objective of this problem is to minimize the volume of a connecting rod
without violating the given maximum Von Mises stress. Because of the symmetry,
only a fourth of the component is modeled. The geometry of the initial design and the
boundary conditions are shown in Figure 19. The geometry parameters are AB = 11,
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Figure 17: Evolution of the error in the objective function (volume) with respect to
the analytical solution. h-adapted and projected meshes.

Figure 18: Samples of individuals from the optimization procedure. The index indi-
cate the number of model during the process.

C = 4, AD = 20, DE = 4, F = 1.5, DG = 7, HG = 5.5. The Young’s modulus
is E = 105, and Poisson’s ratio ν = 0.333. The pressure is P = 100 in the normal
direction of the half arc as shown in Figure 19.

The design boundary is the surface HG. The end point H is fixed while eight
points are used to interpolate HG. The vertical positions of the eight interpolation
points on the design surface are set as design variables (see Figure 20). The allowable
von Mises stress is σVM = 900.

The initial values of the design variables and their allowed data range are shown
in Table 4.

Table 7 shows the average discretization estimated error in energy norm per indi-
vidual and the computational cost per individual. We observe for this problem how
the optimization procedure based in mesh projection cuts slightly more of a 20% of
the time per individual.
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6. Conclusions

Figure 19: Front view of the connecting rod problem with boundary conditions.

Figure 20: 3D model representation showing the 8 design variables.

Design variable Initial value Data range
a1, a5 7 [1 − 7]

a2, a6 7 [1 − 7]

a3, a7 7 [1.2 − 7]

a4, a8 7 [2 − 7]

Table 6: Connecting rod defined by 8 design variable. Design variables data.

Figure 21 shows the Von Mises stress fields for the initial configuration of the
model opposed to the field obtained for the optimal solution provided by the shape
optimization algorithm.
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Type of mesh Computational cost (s) Estimated discretization error
hAdapMeshing 607.84 2.83%
ProjMeshing 471.02 2.62%

Table 7: Connecting rod defined by 8 design variable. Computational results for
h-adapted and projected meshes.

Figure 21: Von Mises stress fields: (left) initial configuration results and (right)
configuration obtained using projected meshes.

6. Conclusions

Several tools to make gradient-based optimization procedures have been proposed.
First, information sharing procedures that can be easily applied reducing the number
of calculations needed. Also, the Nested Domain Decomposition reordering tech-
nique has been developed for a 3D code and tested. The NDD provides an optimal
reordering of the global system of equations with minimum computational cost in
comparison with other techniques. In addition, the speed-up shown during the res-
olution of the systems of equations is significant, allowing the efficient usage of the
computational resources. Finally, an h-adaptive mesh projection strategy has been
adapted to the immersed boundary environment. The projection avoids the need to
generate a suitable discretization after following a full refinement process. The dis-
cretizations generated with this procedure has been demostrated as effective, in terms
of convergence, than the standard h-refined meshes, but with an important reduction
of the computational cost per individual.
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