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Abstract
Urban transportation systems have received a special interest in the last

few years due to the necessity to reduce congestion, air pollution and acous-
tic contamination in today’s cities. Bike sharing systems have been proposed
as an interesting solution to deal with these problems. Nevertheless, shared
vehicle schemes also arise problems that must be addressed such as the vehi-
cle distribution along time and across space in the city. Differently to classic
approaches, we propose the architecture for a multi-agent system that tries to
improve the efficiency of bike sharing systems by introducing user-driven bal-
ancing in the loop. The rationale is that of persuading users to slightly deviate
from their origins/destinations by providing appropriate arguments and in-
centives, while optimizing the overall balance of the system. In this paper we
present results for one of the system’s modules, which will allow us to predict
bike demand in different stations. The proposed module has been tested in a
realistic scenario, the bike sharing system in the city of Valencia (Spain). Also,
a second module is introduced. This module is in charge of calculating and
offer to the user the best route an user can travel, using the information gen-
erated by the first module, taking into account the balance of the bike-sharing
system.

Key words: multi-agent systems; vehicle sharing systems

Resumen
Los sistemas de transporte urbano han recibido un interés especial en los

últimos años debido a la necesidad de reducir la congestión del tráfico, la con-
taminación atmosférica y la contaminación acústica en las ciudades. Los sis-
temas de bicicletas compartidas han sido propuestos como una interesante
solución a estos problemas. Sin embargo, los esquemas de vehículos compar-
tidos también plantean problemas que deben abordarse como puede ser la
distribución de los vehículos a lo largo del tiempo y en el espacio en la ciu-
dad. Alejándonos de los enfoques clásicos, proponemos la arquitectura de un
sistema multiagente que intenta mejorar la eficiencia de los sistemas de uso
compartido de bicicletas introduciendo un balanceo impulsado por el usua-
rio durante el propio uso del servicio. El planteamiento es persuadir a los
usuarios para que se desvíen ligeramente de sus orígenes y/o destinos pro-
porcionándoles argumentos e incentivos apropiados, al mismo tiempo que se
optimiza el balanceo general del sistema. En este trabajo presentamos los re-
sultados de uno de los módulos del sistema, el cual nos permitirá predecir la
demanda de bicicletas en las diferentes estaciones. Este primer módulo ha si-
do probado en un escenario realista, el servicio de bicicletas compartidas de
la ciudad de Valencia (España). Además introduciremos un segundo modulo
encargado de calcular y presentar la mejor ruta que un usuario puede tomar,

iii



iv

usando la información generada por el primer módulo, teniendo en cuenta el
balanceo del sistema de bicis compartidas.

Palabras clave: sistemas multiagente, sistemas de vehículos compartidos

Resum
Els sistemes de transport urbà han rebut un interés especial en els últims

anys degut a la necessitat de reduir la congestió del trànsit, la contaminació
atmosfèrica i la contaminació acústica en les ciutats. Els sistemes de bicicletes
compartides han sigut proposats com una interessant solució a estos proble-
mes. No obstant això, els esquemes de vehicles compartits també plantegen
problemes que han d’abordar-se com pot ser la distribució dels vehicles al
llarg del temps i en l’espai en la ciutat. Allunyant-nos dels enfocaments clàs-
sics, proposem l’arquitectura d’un sistema multiagent que intenta millorar l’e-
ficiència dels sistemes d’ús compartit de bicicletes introduint un balanceig im-
pulsat per l’usuari durant el propi ús del servici. El plantejament és persuadir
els usuaris perquè es desvien lleugerament dels seus orígens i/o destinacions
proporcionant-los arguments i incentius apropiats, alhora que s’optimitza el
balanceig general del sistema. En aquest treball presentem els resultats d’un
dels mòduls del sistema, el qual ens permetrà predir la demanda de bicicletes
en les diferents estacions. Este primer mòdul ha sigut provat en un escenari
realista, el servici de bicicletes compartides de la ciutat de València (Espanya).
A més introduirem un segon module encarregat de calcular i presentar la mi-
llor ruta que un usuari pot prendre, usant la informació generada pel primer
mòdul, tenint en compte el balanceig del sistema de bicis compartides.

Paraules clau: sistemes multiagent, sistemes de vehícles compartits
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CHAPTER 1

Introduction

Transportation systems have become one of the most important areas of ap-
plication for artificial intelligence paradigms [32, 7, 30, 6]. There are several
reasons behind this trend such as the scale of the problem, the need to opti-
mize a pool of limited resources, or the necessity to include models of human
behavior in the loop. Among all the available transportation systems, urban
transportation systems have received a special interest, boosted by public and
government initiatives. With an increasing population in urban areas comes a
rise for the need of urban transportation [14]. This rise is problematic as it may
lead to problems such as congestion, air pollution, investment into expensive
infrastructures, and so forth [14]. In many cases, the investment is two-sided
as it also potentially involves citizens acquiring new transportation vehicles
for individual use. Hence, optimizing current resources has become an area
of great interest for both the public and the private transportation sector.

Shared vehicle schemes, such as bike or car sharing systems, have been
proposed as a solution to both optimize the number of existing vehicles, traf-
fic, and as a mean of contributing to a cleaner environment. Despite its ad-
vantages, shared vehicle schemes also arise other problems that must be ad-
dressed. For instance, one of the problems with bike sharing systems is the
bike distribution along time, creating some areas that agglutinate most of the
bikes, thus making parking very difficult, and some areas lacking bikes, thus
making it very difficult to borrow a bike from that location. In the specific
case of bike sharing systems, this can lead to potential dissatisfaction of users,
which in the end may result in loss of service subscribers, and an increase
in the use of non-shared vehicles like personal cars. Of course, that is usu-
ally translated into several problems including traffic jams, rise in pollution
problems, or even less healthy citizens due to a more sedentary form of trans-
portation. Moreover, bike sharing providers often need to balance bikes across
stations by using trucks or other types of motorized transportation. This in-
curs in an additional cost for the service provider, as well as more traffic if
balance is not done properly.

The problem of optimizing bike sharing systems’ resources (i.e., bikes, sta-
tions, transportation trucks) has caught the attention of researchers [22, 39,
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2 Introduction

27, 34], who have proposed many architectures and algorithms that allow ser-
vice providers to both predict the incoming/outgoing demand from bike shar-
ing stations, as well as educated balancing strategies that optimize the service
provider’s resources. All of these proposals are pieces of a global strategy that
aims to smartly balance bikes according to future demand. All of the actions
and strategies are applied from a service provider perspective, while taking
the user behavior as granted. This means that resources are optimized by
modeling the user behavior, and accepting that behavior as an external effect
that will change the system. As a result, actions aiming at balancing the state
of the system are solely carried out by the service provider. This work takes a
slightly different point of view to this problem. What if, instead of taking the
user behavior for granted, we attempt to slightly modify the user’s planned
trip for optimizing the overall bike sharing system?

The work defines the architecture of a multi-agent system aimed at im-
proving the efficiency of bike sharing system by introducing user-driven bal-
ancing in the loop. While predicting the future demand and smartly balancing
bikes across stations are seen as important components of the system, we also
envision the inclusion of a negotiation and argumentation [31, 10] module that
aims to slightly modify the behavior of users. Then, the work moves to ana-
lyze and discuss the initial results of one of the core modules of the system:
the prediction module. This component will be the base on which the other
components such as the balancing module, and the persuasion module will
rely on. After, the work presents the efficient bike trip module which main
function is to evaluate the possible origin/destination stations and generate
arguments or incentives in favor of these trips.

1.1 Motivation

Bicycle-sharing systems are a rising trend all over the world. Despite its ex-
istence for several decades they experienced an immense growth in the last
years thanks to the adoption of information technologies which made possi-
ble a functional system for a large infrastructures and a large number of users.
We can find this kind of vehicle-sharing system in over one thousand cities
worldwide, spread in more than fifty countries with an estimated amount of
800.000 bicycles and 37.500 stations, being China and Paris the largest systems
and Spain the country with most systems implemented [3, 4].

As mentioned, this kind of transportation systems offer some important
advantages from individual motorized vehicles. To users, they provide a
healthier and more affordable transportation method. To traffic, they help
to control and optimize the number of vehicles, and reduce traffic jams. And
to cities in which they are implemented, reducing the expending in big in-
frastructures (expand roads, parks for cars and large vehicles, etc) and leav-
ing more space in te city to be reused for other purposes. In consequence
shared vehicles, especially bikes, help to lower pollution levels. However, as
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previously stated, these systems also generate certain problems such as poor
vehicle balance in different areas making it difficult to park or borrow bikes
in certain circumstances. From the user perspective, this can generate dissat-
isfaction with the service resulting in a loss of subscribers which may lead
to returning to the use of non-shared vehicles generating again the corrected
disadvantages. On the other hand, from the service providers perspective, it
can generate additional cost. Bikes must be rebalanced manually, involving
additional workforce and fuel expense which also leads to increasing traffic
and pollution levels if re-balancing is not done properly.

For all these reasons it is important to solve the mentioned problems in
an efficient and inexpensive way, trying not to resort to extra work or big
investments in order to offer an appropriate and sustainable service.

1.2 Objectives

The aim of this work is to design a multi-agent system capable of provide the
self-balancing ability for a shared-bike service. To achieve this goal we set the
following objectives:

• Study the state-of-the-art in order to know the current contributions and
to acquire more knowledge about the presented problem.

• Collect data from our case study (Valencia bike sharing system).

• Analyze the collected data to obtain a better understanding of the ser-
vice. Extract the valuable information and prepare it to the system use.

• Design a bikes and parking availability prediction module. This module
must be able to predict the number of available bikes (or the number of
free parking slots) for a station in a time frame.

• Implement the prediction module and test its correct functioning in or-
der to ensure a minimum quality of the forecasting. Module results will
be compared with two benchmarks: naive forecasting and average.

• Design an efficient bike trip module. This module will analyze orig-
in/destination station pairs and select them generating arguments or in-
centives that will be presented to the users in order to try to slightly
modify their behavior in favor of the correct operation of the system.

1.3 Work’s structure

The work is structured as follows: in Chapter 2 we will talk about the related
work. In chapter 3 the proposed architecture to solve the problem is discussed.
Chapter 4 describes our case of study, focused in the Valencia’s bike sharing
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system (Spain). In chapter 5 the prediction module is presented and discussed.
Then the experiments and results for the prediction module are shown and
discussed. In Chapter 6 the efficient bike trip module design is presented.
Finally, in Section 7 we present the conclusions of this paper and in Chapter 8
discuss future work.



CHAPTER 2

Related work

Intelligent transportation systems have captured the attention of the AI re-
search community in the last few years. The scale and complexity of the
problems faced by the transportation system preclude simple and classic so-
lutions from achieving the desired outcomes, hence the necessity to adopt AI
approaches. As a consequence, multiple areas in AI have proposed solutions
to different transportation problems. As example we can find swarm based al-
gorithms for traffic control and travel planning [20, 37, 36, 23], driver behavior
analysis for intelligent transport systems [9], vehicle managing using artificial
intelligence [32], route planning in transport networks [6], etc.

In the specific field of multi-agent systems, the number of papers devoted
to applications in traffic and transportation engineering has grown enormously.
Bazzan and Klugl [7] present a literature review related to the areas of agent-
based traffic modeling and simulation, and agent-based traffic control and
management applied to different problems.

Focusing on the domain of bike-sharing systems we can find a description
and discussion of this type of systems in [13]. In this work the author classi-
fies the systems in four types, analyzes their particularities and discusses its
potential and future possibilities.

Most of the problems that bike sharing systems arise are well studied.
Finding optimal locations for bike sharing systems in order to be used to
its potential needs to consider a huge amounts of circunstances: population
density, employment density, proximity to universities, retail and commercial
activity, access to bicycle infrastructure, proximity to tourist and recreation at-
tractions, and proximity to other available transit options. This problem is dis-
cussed in [21] for the case of Richmond (Virginia), in [12] for the case of Milan,
etc. Knowing some factors such as transport network status may be decisive
in order to better understand certain vehicle sharing system functioning and
establish patterns. Rebollo et al proposed an analysis module for transport
network at [29] prepared to use information from several sources such as ve-
hicle sensors, cities infrastructures, etc. and combine it with information that
can be obtained from social networks, phone call registers and open portals.
This module takes into account information of all the different transport me-
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dia creating a multi-layer network that can model how they can affect each
other.

We find two main problems that have been tackled by the AI research com-
munity: (i) predicting the bike/parking availability, and (ii) optimizing the
transportation routing used to balance the bikes/parking positions across sta-
tions.

The first problem consists of predicting the number of available bikes and
parking positions in the future. The rationale behind this is that, in order to
improve the service given by bike sharing systems, users should be able to
borrow and leave a bike when needed. Otherwise, users may become dissat-
isfied with the service and decide to use other transportation methods. The
data mining community has made several efforts in this regard. Yoon et al.
[39] propose prediction algorithms to predict the number of available bikes at
origin and destination stations in Dublin’s bike sharing system. The authors
propose a modification of the ARIMA model to include information from
neighboring stations along with the classic temporal information. The authors
trained and tested their approach using approximately one month of data per
process. While the authors employ important variables such as the available
data in neighbor stations, they do not include other well-known factors that
impact the usage of bikes such as weather data, nor they account for longer
term seasonality such as seasons (e.g., summer, winter, etc.). Li et al. [24] pro-
posed a multilayer data mining approach to predict bike traffic (i.e., bikes in
transit) in New York City and Washington D.C.. In their approach, bike shar-
ing stations are clustered together according to both geo-location and transit
matrices. The advantage of employing clustering techniques to group stations
is that predicting the traffic demand on the overall system and clusters is more
robust and accurate than on individual stations. The multilayer approach first
predicts overall traffic by using gradient boosted regression trees, and then
distributes the overall traffic across cluster according to similarity between
past and current data. Finally, the traffic between clusters is also predicted ac-
cording to historic data. Differently to us, they possess bike trips information
(i.e, bike id, origin, destination) whereas our dataset is solely composed by the
current state of stations. That preclude us from employing the same approach.

In [28], Raviv and Kolka study the inventory management of a bike-sharing
station analytically, presenting an user dissatisfaction function. In [11], Fer-
nández experiments with bike availability forecasting for the bikes sharing
system in Valencia (Spain), our case study. Fernandez-Vazquez tries lineal re-
gression and compares it to k-nearest neighbors algorithm. In this work the
forecast is hourly aggregated and only shows results for one day, what we
think is not enough to test all the variables involved in the system behavior
such as stationarity, weekday, etc. In [22], present bike/parking availability
data combined with weather data for 27 cities across the globe (including Va-
lencia, Spain). The authors analyze the correlation between weather data and
bike demand, and find correlations between temperature, wind velocity, and
precipitation with the demand of bikes in different cities. The paper does not
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propose any prediction mechanism per se, but it finds interesting effects on
the bike demand, such as the effect of weather conditions, that are present in
Valencia and other cities of the world.

The other main strand in research revolves around the idea of optimiz-
ing the routes and trips of the vehicles that balance bikes across the differ-
ent stations. Given the nature of the problem, many researches have pro-
posed the used of search & optimization techniques for this purpose. For in-
stance, O’Mahony and Shmoys employ integer programming to balance bikes
overnight, preparing them for rush time, and mid-rush balancing in New York
City. In [17] is described the importance of bike repositioning at the stations in
bike sharing systems. Having stations with no available bikes or with no free
parking slots can lead to user dissatisfacition and a loss of service suscribers.
To adress such scenarios Gosh propose an online and robust approach to bet-
ter match the demand that usually does not have a well defined pattern. In the
proposal an algorithm that use historical data modeling scenarios and online
data is used. The algorithm consists in a two player game confrontation. In
each iteration one of the players propose a situation that maximizes the loss
and the other generates solutions minimizing it. When both players objectives
converge an optimal solution is found. This metodology relies in the use of
carrier vehicles from the service provider. In [16] Gosh extends the redistribu-
tion approach including a route planning for the carrier vehicles in order to
reduce costs, environment issues and congestion while redeployment bikes.
Lowalekar [25] provides a Lagrangian decomposition approach (that decou-
ples the global problem into routing and repositioning slaves and employs us-
ing a new dynamic programming approach to efficiently solve routing slave)
and a greedy on-line anticipatory heuristic to solve large scale problems effec-
tively and efficiently.

As another example, Schuijbroek et al. [34] present a system that both pre-
dicts station demand and balances bikes attending to expected demand and
desirable service levels. For prediction, authors rely on queues models and
Markov chains using arrival and departure data from Boston and Washing-
ton. Due to the intractable nature of the routing problem when the number of
stations is large, the authors cluster stations together so that service levels are
guaranteed using only within-cluster routing. Then, mixed integer program-
ming is used over the clustered problem. In order to partially-solve the carrier
vehicles problems in [15] Gosh propose an approach for incentive users to ful-
fill redeployment tasks is presented. The rationale of the proposal is to give to
the users that can be interested payment/trip based incentives. This way the
author pretends to make less necessary the use of carrier vehicles. In [35] the
authors present a complete architecture following this idea. While the idea can
reduce the costs that service providers have to face in the bike redeployment
task and make them more environmental friendly, this proposal does not take
advantage of the very displacement that users do while using the service.

All of these system relies on prediction and optimization from the sys-
tem designer perspective. The main difference between these approaches and
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our proposed architecture is that we rely on both a combination of optimiza-
tion from the system designer, but also from the user perspective. In order
to incorporate the users’ actions into the optimization loop, we plan to use
technologies such as incentives, persuasion [10], and negotiation [31].

AI research community also has interest in monitoring and controlling
fleets. In [8] an agent support framework for fleet management is defined.
This framework is specially suitable when working with open fleets. As de-
fined in the article, bike sharing services belong to this category. Because of
this reason we use this framework as a base, using the tools that this frame-
work provides, for our multi-agent system.



CHAPTER 3

A general MAS proposal for bike
sharing

As mentioned in Chapter 1, our aim is that of providing a MAS system for
efficiently managing resources (i.e, bikes, stations, transportation trucks, etc.)
in bike-sharing systems. The problem of optimizing bike-sharing systems is
that of making sure that bikes are available in stations when users decide to
start their trips, and parking positions are available when users reach their
destinations. Due to the nature of cities and their lifestyle, bikes and parking
positions become unequally distributed across stations. In order to cope with
that situation, the service provider needs to redistribute bikes making use of
transportation trucks. However, late distribution of bikes may end up in user
dissatisfaction. Therefore, the real challenge for service providers is predicting
future demand to redistribute bikes accordingly.

Balance operations carried out by the service provider will always be an
integral part of bike sharing system, specially for preparing for rush hour.
However, in some scenarios we may be able to employ users as balancing
agents if individuals are persuaded to slightly deviate1 from their planned
destination/origin. The reasons by which these users may be persuaded vary
and include reasons such as the fact that their destination station may be full
at arrival, the adoption of healthier habits, or the inclusion of small rewards
(e.g., extra rental minutes, badges, lotteries, etc.). Small deviations can act
in benefit of the system by carrying out pre/after rush hour balancing, and
acting as real time balance for unplanned demands.

In order to tackle this scenario, we propose a multi-agent based architec-
ture. The proposed system will run on top of SURF [8], an agent support
framework for open fleet management. The work we are presenting in this
work is part of a broader research project, in which the main goal is to provide
a set of tools and applications that foster the efficient and sustainable manage-
ment of urban fleets. One of such applications is the one presented in [18] for
last mile delivery in urban areas.

1We would never expect drastic deviations
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User_1

Transportation Network Analysis Module

The City and the Bike Sharing Network

Efficient Bike Trip Module

Intelligent Transportation Ontology

Proposal

SURFEvent Proccesing

Trust & 
Reputation

Task 
Allocation Fleet 

Tracker

fleet events

Monitoring

Bikes and Parking Availability 
Prediction Module

Argumentation Module
System

Manager

Preferred 
Bike Station_y

Alternative Bike Station_1, Arguments in favor, Rank
Alternative Bike Station_2, Arguments in favor, Rank

Preferred Bike Station_y, Arguments against, Rank

Preferred 
Bike Station_x

Figure 3.1: General view of the proposed MAS architecture

3.1 SURF framework

SURF is an agent support framework for fleet management. Classifying the
fleets within the three fleet types proposed and discussed on [8] (static fleets,
dynamic fleets and open fleets), SURF is designed and more suitable to use
for the management of open fleets. Open fleets meets the following character-
istics:

• Dynamic service demand: Service tasks may appear dynamically at any
time and at any location.

• Dynamic number of vehicles: The fleet is composed by a dynamic num-
ber of vehicles. Even if the service has a prior fixed number of bikes it
can continue offering service regardless the number of vehicles in any
given moment.

• Autonomy/limited control: The fleet operator capability to control the
behavior of the fleet may be limited since the availability and usage of a
particular fleet’s vehicle may depend also on the user or the owner.

• Size: Fleet functioning is not delimited by the scale being capable to po-
tentially operate in a larger scale (maybe unlimited) than static od dy-
namic fleets.

We can take advantage of this peculiarity since bike sharing services can be
considered a fleet of the open type. SURF framework is composed by a set of
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services and utilities to be used for fleet management. Can be divided in three
different layers that groups functionality. First there is the fleet operator layer,
in charge of fleet control and monitoring. Second the fleet coordination layer
which function is to ensure the coordination. Lastly, the agent layer which
connects with the agents that provides their information to the system.

SURF was designed to support general urban transportation fleets, and
it provides modules for most general and shared functionalities. As a re-
sult, part of the proposed architecture is supported by these general mod-
ules. However, we need to include some extra modules to support some of
the particular functionalities of this bike sharing system. Figure 3.1 shows
the general view of the proposed architecture, the gray components being the
modules specially tailored for the application of bike sharing, and the other
modules being part of the services and utilities provided by SURF for open
fleet management. The two main components that distinguish our approach
to bike sharing are: The Efficient Bike Trip Module and the Bikes and Park-
ing Availability Prediction Module.

The modules already provided by SURF framework that will be used in
our proposal are the following: fleet tracker module, event processing mod-
ule, trust and reputation module, transportation network analysis module and
the intelligent transportation ontology.

The fleet tracker module is in charge of controlling the status and position
of the vehicles. This data can be gathered from diverse sources: GPS location
from user/vehicles, vehicle’s status sensors and stations status information.
Using this information the module will report to the system changes in the
fleet giving to it more knowledge about the bike sharing system and the envi-
ronment in order to make better decisions.

The event processing module receives the events generated by the fleet tracker
module and the new task events generated by an user service demand. Its
function is to analyze these incoming events in order to determine if a recal-
culation of tasks assignment is needed.

The task allocation module recalculates the assignment of all the pending
tasks ensuring that this new generated allocation is the optimal global based
on a set of assignment criteria.

The trust and reputation module has the mission to convert into a model the
behavioral pattern of the agents. The models and information generated by
this module is used in the task allocation module giving it more information
that helps to determine the actions to be carried out. Also, the output of this
module can be used to determine in which way the action taken can influence
the agents. The clearest case in our approach is how the argumentation mod-
ule can use this information in order to persuade or to offer an incentive to an
user depending on his/her expected behavior.

The transportation network analysis module is responsible the analysis of the
transport network. The module uses information from each transport media
infrastructure and usage. In addition the module takes advantage of the data
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obtained from social networks, phone call registers, open data portals, etc.
Building, with all this information, a multilayer network capable of consider
the effects produced form one media to the others.In our approach is used to
calculate the route and duration of the trips. This way the module will be able
to estimate the arrival time to both, preferred origin and preferred destination
stations. To achieve this, the module will use all the available information pro-
vided to the system by the user (GPS location, preferences, etc), city and the
bike sharing network (routes, traffic status, traffic lights, weather, roads con-
ditions, etc). The information will be retrieved from the intelligent transport
ontology.

3.2 SURF extension

To these modules provided by the SURF framework we need to add two new
modules to support our approach to the system. The bikes and parking avail-
ability module and the efficient trip bike module are crucial in order to include
in the system a re-balancing mechanism based in the user behavior.

The Bikes and Parking Availability Module is in charge of making fore-
casts of the available free bikes or free parking slots in any bike station of the
system. This module generated data will provide the MAS a very valuable
extra information about the probable future status of some agents/elements
of the bike sharing system. Taking advantage of the prediction ability of the
module the system will be able to generate a set of alternative routes. These al-
ternative routes are computed keeping in mind the departure and arrival sta-
tions if the original ones selected by the user are considered, following some
criteria, not optimal for the system general functioning.

The Efficient Bike Trip Module aim is to collect the set of alternative routes
generated by the bikes and parking availability module and analyze them.
The module will score every alternative in order to select the propitious for
the system, order them from the best to the worst and generate argumentation
or incentives in favor of each alternative.

Both the Bikes and Parking Availability Prediction Module and the Ef-
ficient Bike Trip Module support how users’ trips are managed. In order to
understand the logic behind the module, let us focus on an example:

1. User1 agent wants to ride from the station Pre f erredBikeStationx to the
station Pre f erredBikeStationy. The user employs a mobile app to query
the availability of bikes at the origin station, and the availability of slots
in the destination station.

2. The request is received by the System Manager agent, and then it is an-
alyzed to find out the availability by the time User1 agent may arrive to
both preferred origin and destination stations. The expected times are
calculated taking into consideration the current GPS location of User1
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agent, the possible route that leads to the origin station, the possible
route that leads to the destination station, and all the information from
the Intelligent Transportation Ontology from SURF concerning traffic,
traffic lights, weather, and so forth.

3. With this time frame the System Manager agent requests to the Bikes
and Parking Availability Prediction Module an estimation for the num-
ber of free bikes at Pre f erredBikeStationx by the expected departure time.
At the same time, the System Manager agent also requests an estimation
for the number of free parking slots at Pre f erredBikeStationy by the ex-
pected arrival time.

4. The prediction module also computes whether or not the station
Pre f erredBikeStationx or the station Pre f erredBikeStationy are likely to
suffer from bikes/slots shortage in the short/medium term. In that case,
the prediction module retrieves a set of available nearby stations to sta-
tion Pre f erredBikeStationx and a set of available nearby stations to sta-
tion Pre f erredBikeStationy. If they are not likely to suffer from bikes/s-
lots shortage in the short term, then they are also suggested to the System
Manager agent.

5. The System Manager agent collects the suggestions from the Bikes and
Parking Availability Prediction Module and sends those suggestions to
the Efficient Bike Trip Module. Within this module, the alternatives for
both origin and destination are analyzed. The module will select pairs
of origin and destination stations, along with arguments or incentives in
favor of the slight trip change.

6. The System Manager agent receives the offers from the Efficient Bike
Trip Module and presents them to the user, who finally selects the one
that he/she considers more appealing.

In this work, we focus on the Bikes and Parking Availability Prediction
Module and the Efficient Bike Trip Module. More specifically, we focus on
developing and finding prediction models for bike availability at different sta-
tions in Valencia’s bike sharing system, our test scenario. This module is the
cornerstone to the application of Bike Sharing in Urban Areas, as its outputs
are needed to compute the availability of preferred and nearby stations. These
stations are later used as building blocks for building arguments in the Effi-
cient Bike Trip Module. The following sections describe in detail the data
mining modeling carried out and the performance of the proposed predic-
tion approach with a use case from the bike sharing system of Valencia. Also,
our initial approach for the Efficient Bike Trip Module is described and dis-
cussed.





CHAPTER 4

Case study: Valencia’s bike
sharing system

The aforementioned architecture is abstract and general, making it applicable
to a wide range of urban systems and cities. Nevertheless, as part of the verifi-
cation of the architecture, we decided to test the proposed architecture in some
realistic scenarios. The focus of this paper describes the on-going work in one
of those realistic scenarios. More specifically, we focus on the application of
the architecture to Valencia’s bike sharing system. The reasons to focus on this
domain are varied: access to domain expertise, possibility of linking the bike
sharing system with other urban transportation methods, access to data, and
the scale of the proposed system.

Valencia’s population is close to 800,000 inhabitants, and it exceeds the 1.5
million inhabitants when considering its metropolitan area [1]. This makes
Valencia a large/medium-sized city, which makes it appropriate for the ver-
ification of our architecture. On top of that, its flat landscape and availabil-
ity of dedicated bike lanes foster the use of bikes as an urban transportation
method. Valencia’s bike sharing system consists of 276 bike stations whose ca-
pacity varies between 14 and 50 slots, with an average of 20 slots per station.
Therefore, there are 5,500 parking slots for a total of 2,750 bikes available to
users. The operations of the bike sharing system started in 2011, rapidly gain-
ing around 100.000 subscribers in it’s first two years. In the next two years,
as seen in most of these bike sharing systems, the number of user subscrip-
tions dropped and stabilized around 45,000 users [2]. Figure 4.1 shows the
distribution of the bike sharing stations in the city.

We have collected open access data from all the stations in Valencia1, con-
taining information about the number of slots and bikes available at each sta-
tion. This information is collected periodically with a frequency ranging from
one to ten minutes2. In total, we have collected 617 days of activity starting
from 26th September 2014 to 15th February 2017. This results in a total of

1http://gobiernoabierto.valencia.es/en/
2Sometimes technical issues and systems overload preclude from sampling at the same

frequency

15



16 Case study: Valencia’s bike sharing system

Figure 4.1: Bike sharing stations in Valencia, Spain

62,130,711 records containing information about the occupation of a station in
a particular point in time.

As suggested by [22], weather conditions may influence the demand for
bike sharing systems. As a consequence, we collected information about the
weather conditions3 in Valencia, including attributes such as temperature,
rainfall and wind speed. The information is collected with a granularity of
30 minutes and then merged with the station data. In total, we have collected
1141 days of weather data starting from 1st January 2014 to 15th February
2017.

We merged together both data sources, resulting in a single dataset whose
samples contained information about the status of the station and weather
conditions at a certain timestamp. With this dataset, we endeavored to ana-
lyze what variables could help us with the task of predicting bike usage in our
case study.

4.1 Data analysis

Firstly, we attempted to analyze whether or not the day of the week could
influence bike demand. Our initial hypothesis was that the day of the week
would influence how people move around the city. During the week, stations
in popular work areas are most likely to receive incoming and outgoing traffic
than during the weekend. Similarly, leisure areas are more likely to receive
traffic during the weekend. With that goal in mind, we plotted the average
number of available bikes for each day of the week. In Figure 4.2 (a), it can
be appreciated that our reasoning was correct. The figure shows the average
number of available bikes for UPV Informática, one of the most transited bike
stations due to its proximity to one of the largest universities in the city. It
is shown that, during the weekend, barely no bikes are available at the sta-

3https://www.wunderground.com/
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tion, while the rest of the week the station acts like a sink. This behavior
was aligned with common sense, as universities tend to be more active on
the weekdays. Although not shown in the graph, we could observe this and
similar patterns in other stations throughout the city.

(a) Weekday influence (b) Temperature influence

(c) Wind speed influence (d) Rainfall influence

Figure 4.2: Influence of environmental variables

Then we proceeded to analyze the influence of temperature on bike de-
mand. Our initial hypothesis was that colder and extremely warm days are
less propitious for riding bikes, specially in days when environmental condi-
tions are harsher. Those days, individuals are most likely to refrain from using
the bike sharing system and use other transportation methods that are more
sheltered from the outside conditions. With that idea in mind, we plotted the
average number of available bikes at UPV Informática during the daytime. Fig-
ure 4.2 (b) shows our initial hypothesis. Before analyzing the graph, one must
consider that this station usually acts as a sink during the daytime. Therefore,
reduced demand is translated into less bikes arriving to the station. This is
exactly what is shown in the figure. In colder days, demand tends to be min-
imum, and it gradually increases as temperature becomes more comfortable.
There is again another drop in the demand when days become hotter. Despite
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not being shown in the graph, we could observe this behavior in other stations
throughout the city.

Our rationale for the wind speed was similar. Stronger winds make it dif-
ficult to handle bikes, with even the risk of falling off in case of a very strong
gust of wind. Hence, users may be more hesitant to use the bike sharing sys-
tem in those particular days. We plotted a similar graphic to describe the re-
lation between the bike demand and the wind speed. Figure 4.2 (c) shows the
relationship between the average number of bikes at UPV Informática during
the daytime for different ranges of wind speed. As we expected, bike demand
in the station is reduced as the wind speed increases, supporting our initial
guess. Again, we found a similar pattern in other stations.

Following our thoughts regarding the effect of wind speed on bike de-
mand, we made a similar conjecture with regards to rainfall precipitation.
When rain is absent, users should employ the system as usual. However,
as rain becomes more prominent, demand should decrease since users will
feel less comfortable riding a bike. In extreme conditions, rain may make the
ground slippery, thus making bike riding a dangerous activity. In Figure 4.2
(d) the average number of available bikes at UPV Informática during daytime
is shown for different levels of precipitation. Our rationale was again sup-
ported by data. For no rain or light rain the station’s demand is unaffected,
but less bikes tend to arrive (thus, reducing demand) when the rain becomes
heavier.

We analyzed season influence on bike demand. The hypothesis was that
seasons with more extreme weather conditions should have a notable minor
average use than the seasons with a more cozy conditions. Besides, the season
with more significant dates such as holiday (specially longest ones as summer
holiday, Christmas...) should have a remarkable impact on the demand. In
Figure 4.3 can be observed that spring and autumn have a higher demand
than winter and summer probably due, as said before, to the less favorable
weather conditions and to being the two seasons with more number of non-
working days.
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Figure 4.3: Influence of season

Lastly, we had the hypothesis that it would be very likely that social events
influence on bike demand. Out thoughts were that the fact that social events
attract many people was enough to increase bike-sharing usage. Added to
this, the elevated number of people attending makes it very difficult to arrive
because of the jams produced by the traffic increase or park due to the large
increment of people in the same place. This conditions make public shared
bikes a perfect alternative to attend some kind of events. To prove our guess,
we analyzed the surrounding stations of Mestalla’s football stadium, more con-
cretely the seven closest stations. In the plots 4.4, 4.5, 4.6, 4.7, 4.8, 4.9 and 4.10
is represented the number of available bikes during a match day and during
a non-match day 4. The vertical lines represent the time of start and finish of
the match. Is clear that moments before a match a peak in the number of bikes
starts to form. The peak starts to vanishing when the match arrives to its end.
In the day with no football match this peak is non-existent, confirming our
hypotheses.

4The non-match (24/4/2016) day was chosen to be the same weekday than the match day
but a week before (1/5/2016) in order to avoid variable interference in the data
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Figure 4.4: Football match influence in Aragón - Ernesto Ferrer station

Figure 4.5: Football match influence in Amadeo de Saboya station
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Figure 4.6: Football match influence in Micer Mascó - Rodriguez Fornos station

Figure 4.7: Football match influence in Blasco Ibañez, 28 (F. Geografía e Historia)
station
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Figure 4.8: Football match influence in Blasco Ibañez, 23 (F. Filosofía y Psicología)
station

Figure 4.9: Football match influence in Blasco Ibañez, 32 (F. Filología) station
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Figure 4.10: Football match influence in Blasco Ibañez - Aragón station

All of these insights were taken into consideration when deciding what
variables should be part of the final dataset used for training our prediction
module. More specifically, the records in the resulting dataset consisted of
a station id, a timestamp decomposed into year, month , day, hour, minute,
second, and weekday of the measurement, temperature, rainfall precipitation,
wind speed, and the number of free parking slots and bikes available in the
station. We discarded as variables the season and the events. The season,
although being influential on the case, can be inferred by the date. In the case
of the events information the decision of excluding them was caused because
the very small amount of data that we were able to acquire. This data is also
limited for a very small number of stations.

The next Chapter describes how we trained different machine learning
models for obtaining accurate predictions in different stations across the city.





CHAPTER 5

Bikes and parking availability
prediction module

The bikes and parking availability module has the function of forecasting the
number of available bikes (or the number of the free parking slots) for every
station in a time frame. This module is crucial for the system and to obtain an
improvement in public bicycle rental services. Since the module main function
is to predict the future status of the stations and, if needed, a set of alternative
routes it will contribute to the system with a very valuable data. This data
will be very helpful to other modules, specially the efficient trip module. It
will allow to the mentioned module to compute which alternative routes are
better for the system having in mind the user guided balancing of the bike
shared service, score them and generate arguments in its favor.

Trying to predict the state of the stations, either the number of available
bicycles or the number of free parking slots, we are facing a regression prob-
lem. Regression techniques attempt to approximate an unknown function that
would represent the "truth" of the situation to be studied. Since the real func-
tion is not knowable, this approximation is made trying to model the rela-
tionship between a set of explanatory variables with the dependent variable.
In our case study, the explanatory variables are the selected in the analysis
carried out in Chapter 4 (year, month, day, hour, minute, second, weekday,
temperature, rainfall precipitation and wind speed) and the dependent vari-
able is the number of free parking slots available at the bike station. In this
work we have opted for the use of machine learning algorithms to design and
implement the regression model for the module.

Once determined which variables may be useful for our prediction mod-
ule, an experimental setup is prepared to test the accuracy of different machine
learning models. First, we describe the general settings for the experiments.
Then we describe and analyze how hyper-parameters are optimized for the
machine learning algorithms. Finally, we analyze the performance of the best
models on the test data.

25
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5.1 Machine learning algorithms

5.1.1. Support Vector Regression (SVR)

Support Vector Machine is a supervised machine learning technique that can
be used both for regression tasks and classification tasks. When used for
classification problems it is commonly known as Support Vector Regression
(SVR)[5].The SVR algorithm is a nonlinear generalization of the Generalized
Portrait algorithm. The main idea of the SVR is to select the regressor hy-
perplane that better fits to the training dataset to achieve generalized perfor-
mance. To accomplish this, SVR tries to minimize the general error bound
using a loss function that is capable to quantify the error between the target
value from the data and the approximation generated by the model. The loss
function ignores the errors associated with the points that are between the re-
gression function and a determined margin distance. The support vectors are
the instances across the margin. In order for the model to solve non-linear
problems it can be expanded using kernels.

5.1.2. Artificial Neural Network (ANN)

Artificial Neural Networks (ANN)[33] are computational models capable of
learning relations between the input data and the output data in a supervised
way. ANN’s are composed by a collection of simple units, also called artificial
neurons, connected together in a specific pattern. Every connection has an as-
sociated weight that determines how important is the output from the neuron
at the beginning of the connection for the neuron at the end. Each of the ar-
tificial neurons have an associated transfer function that determines how that
unit’s value is updated (Figure 5.1). The transfer unit is composed of a net
input function, and an activation function.

Figure 5.1: Neuron representation

The net input function determines how the net input is combined, usu-
ally adding all the inputs. The activation function determines how the neuron
value is converted after its transferred to the next neuron. There are diverse
activation functions that can be classified in two groups: linear functions and
non-linear functions. Linear functions are commonly used in the input layer
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in order to feed the network with the data or in the output layer in regression
tasks. Non-linear functions are used in the hidden layers in order to provide
the network the capability of recognize non-linear behaviors or in the output
layer in tasks such as classification using the softmax function. The unit re-
ceives one or more inputs from connections (directly from the data or from
another unit). The connections weights are the parameters that the Neural
Networks must learn.

Figure 5.2: ANN topology example: Multi Layer Perceptron

There are different types of networks depending on their topology. Some
of them are:

• Feedforward networks (FFN): in this type of network the information
moves only forward. In other words, the connections between the ar-
tificial neurons exists only between the ones from a layer and the ones
from the next layer without creating loops. Some examples are MLP
or Multi Layer Perceptron (Figure 5.2), Autoencoders or Convolutional
Networks.

• Recurrent networks (RNN): this kind of networks can propagate the
information forward and also backwards creating loops. Examples of
RNN’s are Bi-directional Networks and Long Short-Term Memory

With the purpose of making ANN’s learn, the network parameters must
be learned automatically while feeding the network with data. In order to ac-
complish this ANN’s use an algorithm named backpropagation. This method
calculates the gradient of a loss function (which determines the performance
of the model) with respect to the network parameters. Optimizers use the
backpropagation algorithm to adjust the parameters optimizing this way the
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network performance. The optimization algorithm repeats a two phase cy-
cle for every training sample presented to the network. First, in the forward
phase, the input vector is propagated forward layer by layer until the informa-
tion reaches the last layer generating the networks output. In the backpropa-
gation phase the output is compared with the target output through the use of
a loss function calculating the error for each neuron in the output layer. The
error values are propagated backwards until the first layer. The back propa-
gation algorithm uses this error to calculate the gradient of the loss function.
This gradient is used by the optimization to update the parameters of the net-
work trying to minimize the loss function. During the training process, the
units of the hidden layers organize themselves becoming capable of identify
different characteristics of the input space.

After the training the network will react to each presented input generating
an output making use of the learned relation between the input data and the
output data.

5.2 Experiment design

In order to achieve an appropriate performance in the proposed system, we
need to obtain an accurate model that allows us to estimate the number of
empty parking slots 1 for a station in a future time. Since we can use historical
data to model users behavior, we are facing a regression problem. Machine
learning algorithms have consistently proven to provide accurate regressions
for a wide variety of domains [38, 26, 19]. Hence, we decided to approach
this problem by considering two of the most successful machine learning re-
gression algorithms: support vector regression, and artificial neural networks.
Given the restriction of 30 minutes per trip that is established by the service
provider, we decided to formulate a regression problem where, given the cur-
rent state of a station and associated weather variables at that instant, we at-
tempt to predict the number of bikes in the station in the next 30 minutes.

The dataset was divided into two parts: the training and the test dataset.
The training dataset was exclusively used as a testbed for hyper-parameter
tuning. Then, the performance of the best hyper-parameters was tested against
the test set to assess the performance of the models in a realistic setting. Since
the quality of the resulting model depends on the quantity and quality of the
training dataset, 80% of the total data was employed as training, while the
remaining 20% was left for testing purposes. This means that the final per-
formance of the models was tested with approximately three months of data,
amount that should be sufficient enough to ensure meaningful results. The
test set consisted of the last three months of available data. As for measuring
the performance of the model, we employed the average mean squared error
(MSE).

1Equivalent to predicting the number of available bikes, as it can be obtained by subtract-
ing the empty parking slots from the total number of slots
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5.3 Hyper-parameter optimization

Hyper-parameters are the parameters of the model which value cannot be
derived at the training process. Instead, this kind of parameter must be set
before the commencement of the experimentation or the learning process. The
choice of hyper-parameters is an important task due that depending on their
values the machine learning algorithms can lead to undesired situations in the
training step which can end into performance problems of the model.

Due to computational limitations, the fine tuning process was exclusively
carried out in a single bike station: UPV Informática. The methodology em-
ployed for finding the best model hyper-parameters was a grid search over the
space of possible values. Following, we describe the hyper-parameter space
for each of the selected machine learning algorithms.

• Support Vector Regression: We decided to employ a radial basis func-
tion kernel in order to model non-linear relationships between the input
variables. For the penalty error parameter (C), we tested values in the
range of 10−5 and 104 with increases in powers of base 10. γ was set
between the range of 10−5 and 104, again increasing exponentially with
base 10.

• Artificial Neural Networks: A 3 hidden-layer topology with ReLU acti-
vation functions was chosen for study, the last layer being the only one
with a linear activation function. The neurons in each hidden layer var-
ied exponentially from 8 to 2048 with a base of 2. On the other hand, the
learning rate of the network also exponentially varied between 10−7 and
0.1, but this time the base being 10. Either stochastic gradient descent or
RMSProp were employed to optimize the weights of the network.

The best artificial neural network was found to be a 3 hidden layers net-
work with 64 nodes per hidden layer. The best learning rate was found to

neurons/lr 1.0E-01 1.0E-02 1.0E-03 1.0E-04 1.0E-05 1.0E-06 1.0E-07
8 79.26 11.97 5.15 5.25 5.45 74.21 705.14

16 74.99 9.52 5.01 5.01 5.42 72.13 675.10
32 76.71 8.70 4.20 5.70 4.96 42.26 499.00
64 78.26 14.05 3.54 3.81 4.99 6.01 75.64

128 76.43 76.13 5.69 4.69 4.95 5.38 74.18
256 79.36 13.63 5.28 3.71 4.80 5.04 72.64
512 77.31 11.54 5.17 4.33 5.29 5.04 28.38

1024 77.29 11.57 4.40 5.86 4.55 5.28 6.86
2048 75.74 11.54 4.32 4.23 3.99 6.55 5.31

Tabla 5.1: Results for the grid search carried out for RMSProp optimized neural net-
works. The best result is highlighted in bold font
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be 0.01, with smaller learning rates providing almost constant predictions for
any input (i.e., a sign that the network does not learn any pattern due to a
slow convergence) and larger learning rates providing totally inaccurate pre-
dictions. The best network optimizer was found to be RMSProp.

With respect to the support vector regression, we found that the optimal
value for the penalty error was 104, while the best value for γ was found to be
10−5. In general, we found that artificial neural networks tended to produce
more accurate predictions than support vector regressions. Detailed results
for the grid search can be found in Tables 5.1 and 5.2.

5.4 Test results

Once we had two candidate models, we employed the test set to realistically
assess the performance of the models in a deployed application. This time,
instead of focusing on a sole station, we trained several stations coming from
different city districts. This way, we can better study the accuracy of the mod-
els in a realistic setting. In addition to these models, we also introduced two
benchmarks for comparability purposes. One of the benchmarks outputs the
average number of bikes available in that station throughout history, whereas
the other benchmark always outputs the current state of the station as a pre-
diction. If trained correctly, both our models should outperform the bench-
marks.

Table 5.3 shows the results obtained by the four prediction models using
the test set. Those results that are statistically better according to a Mann-
Whitney test with α = 0.05 are highlighted with bold font. As it can be ob-
served, the artificial neural network tends to outperform the rest of the models
in almost every station tested. More specifically, the artificial neural network
was the best choice for 16 out of the 19 stations (approx. 84% of the stations).
The support vector regression was one of the best choices for only 8 of the sta-
tions, accounting for 42% of the scenarios. In none of the scenarios the bench-
marks produced better predictions than the two machine learning models.
This information is also represented in Table 5.4, where the relative improve-
ment of the machine learning models versus the benchmarks are compared.
As it is observed, the ANN model improves the predictions of the benchmark
that predicts the current status by 16.51%, the benchmark that predicts the av-
erage bike availability by 63%, and the SVR model by 10.05%. Overall, it is the
best performing model in these scenarios.

However, it should be noted that in some cases the prediction of the ma-
chine learning models and the benchmark that outputs the current state of the
station are close. This suggests that some stations may require different hyper-
parameters to distance their outputs from benchmarks. As another sidenote,
we observed that, in some stations, there is very little activity throughout the
day. This means that a benchmark that outputs the current state of the sta-
tions, is also likely to produce accurate results many times. It will only pro-
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duce inaccurate predictions in the few instants when a bike arrives or leaves
the station.

Station ANN SVR Current Average
City hall - Cotanda 6.01 8.07 7.80 19.22

Colon station 5.50 5.49 6.60 13.86
Porta de la Mar 5.80 6.75 6.79 17.39

Plaza de los Fueros 8.08 7.15 8.50 18.54
Peris y Valero - Luis Santangel 4.05 5.01 4.67 9.33

Av. Puerto - Dr. Manuel Candela 4.83 4.81 5.44 7.35
Av. Puerto - Jose Aguilar 2.89 2.96 3.16 5.28

Molinell - Calderon de la Barca 2.34 3.16 2.59 10.63
Blasco Ibañez - Poeta Duran Tortajada 6.05 5.72 9.11 10.67

Blasco Ibañez, 121 4.39 4.34 5.42 8.29
UPV Caminos 11.59 15.03 13.74 31.46

UPV Informática 3.82 5.10 5.52 25.46
Benimaclet station 5.49 6.73 6.82 7.31

Turia station 1.34 1.43 1.41 21.76
Manuel Candela - Rodriguez de Cepeda 4.53 4.60 5.45 10.82

Reig Genovés - Ramón Contreras Mongrell 1.70 2.11 1.96 11.76
Hospital Nueva Fe 3.16 4.70 5.94 32.63

Giorgeta, 64 1.29 1.28 1.39 6.92
Veles e Vents 3.57 3.53 3.73 8.76

Tabla 5.3: Mean squared error for the four prediction models across different stations
in the city

Table 5.3 shows the MSE for different stations distributed across the city.
Despite the fact that lower MSEs indicate more accurate predictions, they are
not very informative of the practical quality of the best predictive model per
se. Therefore, we decided to plot the prediction of our ANN model against
the target value for a given day. Figures 5.3 and 5.4 shows this comparison for
the City Hall - Cotanda station and the UPV - Informática station respectively.

The figure suggests that, in both cases, the ANN model is capable of closely
matching the real bike demand. This happens for most of the day, even match-
ing some of the peaks in the bike demand. However, there are some sudden
peaks that are not as closely matched as the rest. This suggests that some of
the peaks may be accounted by other variables not necessarily included in our
dataset. For instance, transportation trucks balance bikes across stations, in-

VS. Current Average SVR
ANN 16.51% 63.05% 10.05
SVR 6.09% 59.47% N/A

Tabla 5.4: Relative improvement of model (rows) versus benchmark (columns)
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Figure 5.3: Prediction of the ANN model versus the target value for the City hall -
Cotanda station

formation that is not included in open access datasets. This problem is also
documented in other similar works [39, 22]. We are currently working on in-
cluding more data sources to attempt to better predict some of these sudden
outbursts of activity. For instance, we are including data about sport and mu-
sic events, national, regional, and local holidays, and nearby transportation
methods.

Figure 5.4: Prediction of the ANN model versus the target value for the UPV - Infor-
mática station
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Overall, the experiments suggest that ANN is the best current candidate
for predicting the bike demand in Valencia, Spain. The predictions also closely
match the real demand. This is of crucial importance for our multi-agent sys-
tem, since, as we described in Section 3, the prediction module is the base for
the argumentation & negotiation module. We expect that this module will al-
low us to incentivize users and make them balancing agents that optimize the
overall performance of the system.



CHAPTER 6

Efficient bike trip module

The efficient bike trip module is the second module designed as a extension
for the SURF framework. It is also an essential module for our proposal due
to its functions: score the alternative paths from the set proposed by the Bikes
and Parking Prediction Module and generate arguments or incentives that
will be presented to the user trying to slightly modify his/her route and be-
havior. Using these functions our system proposal acquires de capability of
re-balancing the bike sharing service with a better redistribution of the bikes.
Alternative routes are scored following a criteria which gives a higher score to
those routes that are considered better for the service functioning. In this case
the best alternative routes are those that ensure that the stations in the sur-
roundings of user’s preferred station maintain a balance between free bikes
and free parking slots. This balance is crucial to the good functioning of the
bike sharing service since tries to insure the availability of the resources. The
re-balancing is user-driven since it is carried out by the users themselves at
the moment they accept an alternative route. If a user agrees or accepts with
the argumentation or incentives that this module has generated for any of the
alternative departure/arrival station pair, then the user is moving the bikes
according to our system rationale and helping to maintain a good distribution
of the service resources. With this auto-balancing technique we can prevent
user dissatisfaction that can be generated if the users are not able to find free
bikes or free parking slots when they need one. This dissatisfaction can lead
to a loss of service subscribers, which is a problem that bike sharing services
tries to prevent, such as rise on the number of vehicles of individual and mo-
torized vehicles. This increase arises other related problems among which we
can find rise of the pollution levels, increase of the traffic congestion, etc.

6.1 Scoring

With the purpose of distinguishing the quality of the different proposals of
alternative routes calculated by the the Bikes and Parking Prediction Module
the system faces the need of being capable of scoring every alternative. Since
each alternative route is composed of two stations (the departure station and
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the arrival station), first we need to score every station individually. Once the
stations are evaluated, the next step is combining the score of both stations in
a way that in the alternative route punctuations the balance of both stations
is considered. The alternative route score will help to order the alternative
routes by its optimality.

6.1.1. Station scoring

In order to evaluate every proposal, scoring the optimality of the stations is
our first step. For this, we need to score each station individually disregarding
if it is a departure station or an arrival. This restriction is needed due to the
necessity of comparing or using the score obtained for both stations when
scoring the alternative path as a whole. We use the next formulation for each
station of the proposed pair:

score = ∑N
i=1 wioi

C

∑ i = 1Nwi = 1

t(o1) < t(o2) < ... < t(on)

Being:

• oi the predicted station occupation on time i.

• wi weights that controls the importance of the given occupation of the
station the time instant i.

• C the maximum capacity of the station

• t(o) a function that returns the date for a given occupation o.

This score measures the number of bikes that will be in the station weighted
for the different time instants i. The higher the score the higher will be the es-
timated number of bikes in the station along the considered time frame. Since
stations have different number of parking slots, the scores are normalized,
being their possible values in the range [0,1]. Otherwise the stations with a
higher number of parking slots will normally have higher score.This normal-
ization allows us to compare the status between two stations independently
of the number of parking slots they have.

The weights must be defined for each station at different times taking into
account their behavior. Using them the algorithm can give more importance
to the occupation at the estimated time when the user is going to make use of
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the resource (bikes or slots), to the occupation in a short term or to the occupa-
tion in a medium term. Hence, the weights contribute to better modeling the
stations behavior or they simply can be used to modify the stations behavior
and the user options if needed in specific cases.

Attending the case for departure stations, the optimal situation is given
at the highest score. The stations with more available bikes are better scored
propitiating that the user chooses a bike from those stations. This way we
want to ensure that stations with bicycle shortage are more likely not to be
completely empty, leading to the situation that they are not capable to offer
this kind of resource. On the other hand, the stations with higher number
of available bikes are more likely to be proposed as an alternative due to its
higher score. This way we are preventing these stations from running out of
free parking slots or, in the case of already full stations, freeing these resources
in order to being able to continue offering them to the users. Concluding,
working with departure stations the score should be maximized.

Dealing with the arrival stations case, we face an opposite situation that the
given with the departure stations. A lower score means that the station holds
more free parking slots. By suggesting first the stations with lower scores we
ensure that empty or near empty stations will receive user’s bike first. This
way these stations will be able to offer bikes in the case they are being used as
departure stations. Also, this prevents more occupied stations from receiving
more bikes and keep the balance between available bikes and free parking
slots.

In addition the formulations can be modified with some parameters that
can represent the user preferences. As an example, the scores can be modified
with a factor that represents the extra distance the user needs to travel with
the alternative proposals. The same can be done with the time needed, the
number of traffic lights, etc.

6.1.2. Alternative route scoring

Once the module has computed both scores (departure station score and ar-
rival station score) it must combine them in order to score the alternative route
as a whole. As already discussed, the departure station score should be maxi-
mized and the arrival station score should be minimized, our proposal for the
alternative scoring is the following:

alternative score = wd departure score − wa arrival score

Where wd and wa are weights that determines the importance of the station
in the given time frame. There are many several options when choosing the
criterion to establish the weights: models of the users behavior or the stations
states, the function of the station (departure station or arrival station) the sys-
tem need to use an specific station, etc. Also, a combination of criteria can be
done.
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Once all the alternatives are scored the system can sort them from the best,
which will contribute more to keep the bike sharing system balanced, to the
worst. After sorting the alternatives the argumentation module has more in-
formation on which to base the arguments and incentives. Besides the score,
the argumentation module uses information about the user such as prefer-
ences, history, etc. When the module finishes with all the alternatives it passes
them including the arguments/incentives to the system manager in order to
present them to the user.

6.2 Example scenario

Figure 6.1: Example scenario

The example situation is represented in Figure 6.1. The user selects the
stationPre f erredBikeStationx which is the departure station, and the station
Pre f erredBikeStationy which is the arrival station. Following, the Bikes and
Parking Availability Module predicts the occupation in some future time in-
stants (one prediction minimum at 30 minutes from the estimated time in
which the user arrives at the departure station). With the predictions, the
Bikes and Parking Availability Module considers if the stations are suitable to
be used without creating an undesired situation in the system or to the user
i.e.: the departure station will be empty or the arrival station will be full. If
is decided that the original stations can be used with no problems the pro-
cess ends. If is decided that at least one of the stations can be problematic for
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an optimal use of the bike sharing service then the Bikes and Parking Avail-
ability Module will predict again for the time instants but this time for every
pair in the Cartesian product of the group station 1 and the group station 2.
Each group is formed applying some criteria to the preferred bike stations, for
example the nearest stations.

Station o1 o2 w1 w2 Score
1 19 18 0,3 0,7 0,915
2 10 19 0,3 0,7 0,815
3 19 10 0,3 0,7 0,635
4 15 15 0,3 0,7 0,75
5 0 0 0,3 0,7 0
6 20 20 0,3 0,7 1

Tabla 6.1: Station scoring example

Alternative w1 w2 score
1-4 0,5 0,5 0,0825
1-5 0,5 0,5 0,4575
1-6 0,5 0,5 -0,0425
2-4 0,5 0,5 0,0325
2-5 0,5 0,5 0,4075
2-6 0,5 0,5 -0,0925
3-4 0,5 0,5 -0,0575
3-5 0,5 0,5 0,3175
3-6 0,5 0,5 -0,1825

Tabla 6.2: Alternative route scoring example 1

The resulting set of pair stations are the alternative routes. This set is sent
to the efficient bike trip module that will evaluate each station as described
on Algorithm 6.2 in order to evaluate every alternative route as indicated on
Algorithm 6.3. To simplify the explanation we limit the occupation measure-
ments to two time instants. In the case of the departure stations the occupa-
tions are selected from the moment the user makes the query and from the
expected time the user will arrive to the station. In the arrival station the oc-
cupations are selected from the time the user starts it’s travel and from the
expected arrival time. In our example the weights occupation and results of
the scoring the stations can be found at Table 6.1. The weights and results of
scoring the alternative paths when the user wants to go from a station in the
station group 1 to a station in the station group 2 are represented at Table 6.2.
When the situation is the opposite, i.e. the departure station belongs to the
station group 2 and the arrival station is in the station group 1, we obtain the
scores represented at at Table 6.3.

As can be seen the re-balancing idea in which the algorithm is based works
as expected. When the user needs to grab a bike from a station the system
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Alternative w1 w2 score
4-1 0,5 0,5 -0,0825
4-2 0,5 0,5 -0,0325
4-3 0,5 0,5 0,0575
5-1 0,5 0,5 -0,4575
5-2 0,5 0,5 -0,4075
5-3 0,5 0,5 -0,3175
6-1 0,5 0,5 0,0425
6-2 0,5 0,5 0,0925
6-3 0,5 0,5 0,1825

Tabla 6.3: Alternative route scoring example 2

tries to recommend the station pair that better balances the idea of trying to
not empty or let at full capacity the stations. Because of this at the departure
stations with more estimated bikes are obtaining a highest score meanwhile
the situation in the arrival station is the opposite. If we compare the result that
occur in both situations (when the departure station is in the group station 1
or in the group station 2), we can confirm that the higher a station score is in
one situation the lower will be in the opposite. In the examples, as the weights
are maintained the same for both situations, the scores are identical but with
changed sign. This is due to the idea that a station that meets better conditions
for being acceptable for the system in order to offer to the user a free bike is
inherently bad when offering a free parking slot and vice versa.
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6.3 Algorithms

Figure 6.2: Station scoring algorithm

Figure 6.3: Alternative route scoring algorithm





CHAPTER 7

Conclusions

This work has presented a multi-agent system architecture to improve the effi-
ciency of bike sharing systems. The main novelty of the approach comes from
the introduction of user-driven balancing in the loop: attempting to persuade
users to slightly deviate from their origin/destination stations, and balancing
the system in the process. We expect that this architecture will help to provide
a better service, increase user satisfaction, and optimize the management of
the bike network by reducing the number of balancing operations carried out
by the service providers’ trucks.

We studied the state-of-the-art and the related work for the bike availabil-
ity forecasting for shared bike systems and for the station balancing. Through
this process we have acquired the necessary knowledge to understand the
problem and to be able to propose solutions.

Collecting data was a crucial component of this work. We managed to
obtain data from the bike sharing system of Valencia and we also collected
weather conditions that can influence the system usage. The collected data is
from a period of time long enough to have sufficient information about our
use case when designing and implementing the necessary modules for the
multi-agent system.

This collected data was analyzed in order to obtain a better understanding
of the bike shared system. We were able to determine which data influence
in the usage of the system for its later use in the Bikes and Availability Pre-
diction Module. The records in the resulting dataset consisted of a station
id, a timestamp decomposed into year, month , day, hour, minute, second,
and weekday of the measurement, temperature, rainfall precipitation, wind
speed, and the number of free parking slots and bikes available in the station.
As mentioned in Chapter 4, we discarded two parameters from the dataset:
season and events. Season data was discarded because the models can infer it
from the date. Data from events was discarded due to the limited amount we
were able to acquire.

The proposed architecture has two main components: an efficient bike trip
module and a bikes and parking availability prediction module. The bikes and park-
ing availability prediction module was designed with the aim of forecasting the
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occupation of the stations in the next 30 minutes due to the time restriction
that the bike shared service imposes to the users. After designing the module
we proceeded to its implementation. The prediction module uses a machine
learning approach to estimate the foreseen bike station status based on real
historic data of a given bike sharing service. The output of this module will be
used by the efficient bike trip module to persuade the user to use the most appro-
priate stations according to the user preferences and the system balancing. In
order to ensure the quality of the predictions we used two different machine
learning algorithm for comparing reasons: Support Vector Regression (SVR)
and Artificial Neural Networks (ANN). Results have shown that a ANN re-
turned the best results for this predictor as was showcased in the experimental
section of this work. Moreover the experiments have shown that this approach
is feasible and accurate. The efficient bike trip module was designed with the aim
of provide the multi-agent system the ability of self-balancing the number of
parked bicycles in the stations in order to avoid unwanted situations such as
empty stations or totally full stations. To achieve this the module uses the fore-
cast realized by the the bikes and parking availability module. This information
is processed by a set of algorithms that, with an heuristic approach, scores the
stations and the alternative routes differencing which ones are better for the
module objective: auto-balancing the stations.



CHAPTER 8

Future Work

There still exists some ideas that can be used in order to expand the proposed
multi-agent system. The system can be improved including more informa-
tion to the process. In our case study we only use information about the cur-
rent status of the stations since is the only one provided. If we could reach
an agreement with the service provider, it could be possible to obtain extra
information such as travel information. With this new data we will be able
to know where a bicycle is taken and where is left, obtaining usage patterns
among other information.

Another possible expansion is to adapt the system to perform chain trav-
els. Due to the time restriction imposed by the Valencia sharing-bike service
provider, users are allowed to use bikes without extra charge only by 30 min-
utes. Since for some routes it may be necessary more time to complete the
travel, users usually park the bike that are using and demand another to con-
tinue the travel. Considering this situation in the multi-agent system it will be
capable of offering optimal routes in chain travels.

Regarding that the MAS is designed to be used by the bike-sharing system
the natural reasoning is that they will be using it from a portable device such
as a smartphone, table, etc. Building an application will let the user selecting
stations, routes, receive notifications on status changes, etc. As smartphones
and similar devices are equipped with GPS locators the use of the system will
be easier for the user and the system will be able to collect geolocation data to
keep improving its performance by generating models, user profiles, etc.
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