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Resum
La traducció de gran qualitat es troba molt demanada en l’actualitat. Tot i

que la traducció automàtica oferix unes prestacions acceptables, en alguns casos
no és suficient i és necessària la supervisió humana. Per a facilitar la tasca de
traducció de l’humà, els sistemes de traducció automàtica prenen part en aquest
procés. Quan una nova oració en el llenguatge origen necessita ser traduïda,
esta s’introduïx en el sistema, el qual obté com a eixida una hipòtesi de traducció.
Llavors, l’humà corregix aquesta hipòtesi (també conegut com a post-editar) per a
obtindre una traducció de major qualitat. Ser capaços de transferir el coneixement
que l’ humà exhibix quan realitza la tasca de post-edició al sistema de traducció
automàtica és una característica desitjable ja que s’ha demostrat que un sistema
de traducció mes precís ajuda a augmentar l‘eficiència del procés de post-edició.

Pel fet que el procés de post-edició requerix un sistema ja entrenat, les tècni-
ques d’aprenentatge en línia són les adequades per aquesta tasca. En este treball,
es proposen tres algoritmes d’aprenentatge en línia aplicats a un traductor au-
tomàtic neuronal en un escenari de post-edició. Estos algoritmes es basen en
l’aproximació en línia Passive-Aggressive en la qual el model s’actualitza després
de cada mostra amb l’objectiu de complir un criteri de correcció al mateix temps
que manté informació prèvia apresa. L’objectiu és adaptar i refinar un sistema ja
entrenat amb noves mostres al vol mentre el procés de post-edició es du a terme
(per tant, el temps d’actualització ha de mantenir-se controlat).

A més, estos algoritmes es comparen amb altres ben conegudes variants en
línia de l’algoritme de descens per gradient estocàstic. Els resultats mostren una
millora en la qualitat de les traduccions després d’aplicar estos algoritmes, re-
duint així l’esforç humà en el procés de post-edició.

Paraules clau: Aprenentatge en línia, Traducció automàtica neuronal, Passive-
Aggresive

Resumen
La traducción de gran calidad está muy demandada en la actualidad. A pesar

de que la traducción automática ofrece unas prestaciones aceptables, en algunos
casos no es suficiente y es necesaria la supervisión humana. Para facilitar la tarea
de traducción del humano, los sistemas de traducción automática toman parte en
este proceso. Cuando una nueva oración en el idioma origen necesita ser tradu-
cida, esta se introduce en el sistema, el cual obtiene como salida una hipótesis de
traducción. El humano entonces, corrige esta hipótesis (también conocido como
post-editar) para obtener una traducción de mayor calidad. Ser capaz de transfe-
rir el conocimiento que el humano exhibe cuando realiza la tarea de post-edición
al sistema de traducción automática es una característica deseable puesto que se
ha demostrado que un sistema de traducción mas preciso ayuda a aumentar la
eficiencia del proceso de post-edición.

Debido a que el proceso de post-edición requiere un sistema ya entrenado, las
técnicas de aprendizaje en línea son las adecuadas para esta tarea. En este traba-
jo, se proponen tres algoritmos de aprendizaje en línea aplicados a un traductor
automático neuronal en un escenario de post-edición. Estos algoritmos se basan
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en la aproximación en línea Passive-Aggressive en la cual el modelo se actualiza
después de cada muestra con el objetivo de cumplir un criterio de corrección a
la vez que manteniendo información previa aprendida. El objetivo es adaptar y
refinar un sistema ya entrenado con nuevas muestras al vuelo mientras el pro-
ceso de post-edición se lleva a cabo (por tanto, el tiempo de actualización debe
mantenerse bajo control).

Además, estos algoritmos se comparan con otras bien conocidas variantes en
línea del algoritmo de descenso por gradiente estocástico. Los resultados mues-
tran una mejora en la calidad de las traducciones después de aplicar estos algo-
ritmos, reduciendo así el esfuerzo humano en el proceso de post-edición.

Palabras clave: Aprendizaje en línea, Traducción automática neuronal, Passive-
Aggresive

Abstract
High quality translations are in high demand these days. Although machine

translation offers acceptable performance, it is not sufficient in some cases and
human supervision is required. In order to ease the translation task of the human,
machine translation systems take part in this process. When a sentence in the
source language needs to be translated, it is fed to the system which outputs a
hypothesis translation. The human then, corrects this hypothesis (also known as
post-editing) in order to obtain a high quality translation. Being able to transfer
the knowledge that a human translator exhibit when post-editing a translation to
the machine translation system is a desirable feature, as it has been proven that a
more accurate machine translation system helps to increase the efficiency of the
post-editing process.

Because the post-editing scenario requires an already trained system, online
learning techniques are suited for this task. In this work, three online learning
algorithms have been proposed and applied to a neural machine translation sys-
tem in a post-editing scenario. They rely on the Passive-Aggressive online learn-
ing approach in which the model is updated after every sample in order to fulfil
a correctness criterion while remembering previously learned information. The
goal is to adapt and refine an already trained system with new samples on-the-
fly as the post-editing process takes place (hence, the update time must be kept
under control).

Moreover, these new algorithms are compared with well-stablished online
learning variants of the stochastic gradient descent algorithm. Results show im-
provements on the translation quality of the system after applying these algo-
rithms, reducing human effort in the post-editing process.

Key words: Online Learning, Neural Machine Translation, Passive-Aggresive
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CHAPTER 1

Motivation

We have seen in modern history how the improvement of transportation and
telecommunications infrastructure has had a big impact in the movement of peo-
ple. Now we are more exposed to other cultures, products and world views than
ever before. As technology improves, the access to any kind of information has
become something we can’t live without. However, different cultures often mean
different languages which implies the appearance of obstacles when the need to
communicate is mandatory. Thus, the need for a tool that helps us to overcome
this obstacle arises. Machine Translation (MT) investigates the use of software to
translate text or speech from one language into another. It aims at providing the
best possible translation without human assistance.

This research field was born in 1947 when Warren Weaver published a memo-
randum stating his beliefs about computer’s capability to translate one language
into another using criptography, logic and linguistic patterns. In the next years
a lot of projects emerged in the United States, the Soviet Union and Western Eu-
rope but the practical results were disappointing (Madsen, 2009; Hutchins, 2005).
This finally led to the publication of a report from a special committee formed
by the United States named ALPAC (Automatic Language Processing Advisory
Committee) where they stated that there was no future for good-quality/cost-
effective MT.

During the 70’s there was a new approach to the MT field that relied on the
premise that a language is based on a set of grammatical and syntactic rules. This
rule-based system needed a robust and carefully designed bilingual dictionary of
linguistic information created by human experts. The big effort that this approach
required was a big issue and it was then replaced by the corpus-based systems.
At the same time, scientists focused on developing tools that would facilitate the
translation process rather than replacing human translators, leading to the de-
velopment of translation memory (TM) and other computer assisted translation
(CAT) (Samson, 2005) tools.

Corpus-based systems rely on a parallel corpus of sentences in a source lan-
guage and its translation in a target language. With enough number of samples,
these systems can be trained to infer the translations of new sentences. For this
purpose, statistical models are applied to the translation process as these are good
at extracting relevant information from a set of (translation) examples.
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2 Motivation

Training these models can take days or weeks with the added constraint that
when new data is available the system needs to be retrained over the whole cor-
pus. Therefore, it is desirable that when new sentences are available we can adapt
or refine an already trained model without training it from scratch. This new
framework is called online learning (OL), where the model is updated sequen-
tially with new samples.

The OL framework becomes even more important in a post-editing scenario,
where high quality translations are required and the translation process is human-
assisted (Martínez-Gómez et al., 2012). In this scenario, translations resulting
from the model are corrected by humans. Once a sentence is post-edited it can be
used as a new training sample to refine our model in order to avoid making the
same mistake next time.

Online learning techniques can also be applied in the recently developed neu-
ral networks (NN) architechtures for MT. In this work we propose several new
algorithms for training neural machine translation (NMT) systems and compare
them with other well-known OL algorithms. This document is structured as fol-
lows: In Chapter 2 we develop the basis of the statistical machine translation
(SMT) framework and review the state-of-the-art systems used before the irrup-
tion of the neural approach in the field. In Chapter 3, the NMT approach is pre-
sented and its components are explained in depth. Chapter 4 explains how the
neural models are trained and the various algorithms to do so. We dive into the
online learning framework in Chapter 5 and we present our approach to tackle
the problem. In Chapter 6 we describe the experiments carried out, we compare
our work with the algorithms that are already stablished describing the results.
Finally, we conclude the document with future work and conclusions in Chapter
7.



CHAPTER 2

Introduction to MT

Before diving into the neural approach to MT we need to first revisit the founda-
tions on which it relies. In this chapter we will cover the basis of the statistical
framework used to model the language and allow us to perform the task at hand.
Next, we will describe the phrase-based models. These were the state-of-the-art
in MT before the irruption of NN in the field. Finally, we will conclude the chap-
ter with metrics used to evaluate the performance of MT models. Knowing the
quality of translation is a key aspect in MT and not a trivial task that needs to take
care of. We will cover the main used metrics in this field.

Statistical machine translation

We start by formulating the translation problem under a statistical point of view.
For a given sentence x, in a source language, we want the best translation ŷ, in a
target language. There are many valid translations of x so we will measure the
validity of each translation with a probability distribution Pr(y|x) over all possi-
ble translations y given the sentence x. Our goal is to find ŷ which maximizes the
conditional probability (Eq. 2.1) (Brown et al., 1993).

ŷ = arg max
y

Pr(y|x) (2.1)

The conditional probability Pr(y|x) is unknown because that would require
to compute the joint probability of all possible pairs (x, y). Hence we will rewrite
Pr(y|x) by applying the Bayes’ rule:

Pr(y|x) = Pr(y) · Pr(x|y)
Pr(x)

(2.2)

We can remove the denominator since Pr(x) is fixed and it does not depend
on y. As a result we obtain the Fundamental Equation of Machine Translation
(Brown et al., 1993):

ŷ = arg max
y

Pr(y) · Pr(x|y) (2.3)

3



4 Introduction to MT

Where Pr(y) can be seen as the probability of y being well-formed (it models
the constraints every given language has when it comes to building sentences)
and Pr(x|y) as the probability of a translation y produced from a source sentence
x. The reason why we don’t use Pr(y|x) directly is to avoid the possibility of hav-
ing a translation y that has a high probability but it is ill-formed. By maximizing
the product Pr(y) · Pr(x|y) we force the model to search a translation that is both
a well-formed sentence and high chances of being the correct one.

Then, Eq. 2.3 breaks the MT into three problems:

• Building a language model that correctly estimates Pr(y)

• Building a translation model that correctly estimates Pr(x|y)

• Search for y that maximizes Pr(y) · Pr(x|y)

In the next subsections we will review the models used to build the language
model and the translation model that correctly estimate Pr(y) and Pr(x|y) respec-
tively.

Language model

Let y = y1y2...yI be a sentence made of m words. We can compute the probability
of y as a product of conditional probabilities:

Pr(y) =
I

∏
i=1

Pr(yi|y1...yi−1) (2.4)

We can see that there is a lot of distinct probabilities that need to be estimated
and this number grows as the length of the sentence increases. To tackle this, an
unmanageable amount of data would be required. That is why we must make
some assumptions about the probabilities that need to be estimated to simplify
the problem. A good approximation is the n-gram assumption, which assumes
that the probability of a word is dependent of the n− 1 previous words. With this
mindset, the probability of word yi in sentence y would be approximated as in Eq.
2.5 and the sentence probability woud be the product of all these probabilities (Eq.
2.6).

Pr(yi|y1...yi−1) ≈ Pr(yi|yi−n+1yi−1) (2.5)

Pr(y) ≈
I

∏
i=1

Pr(yi|yi−n+1... yi−1) (2.6)

In order to estimate the conditional probability of Pr(yi|yi−n+1... yi−1) we count
the occurrences of this given n-gram in the corpus and normalize it accordingly:

p(yi|yi−n+1... yi−1) =
#(yi−n+1... yi)

#(yi−n+1... yi−1)
(2.7)
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Where #(yi−n+1... yi) is the number of occurrences of the n-gram in the corpus.
The problem with this procedure is that, even though we have simplified the
problem, there are still a lot of n-grams and not all of them will appear in our
training corpus. With the current approach an n-grams that is not seen during
training will have 0 probability, and the resulting conditional probability of the
whole sentence in which it appears will be 0 as well.

This behaviour causes the model to underestimate the probability of n-grams
that do not appear in the training set and overestimate the probability of those
which do. This feature is not a desirable and numerous smoothing techniques
have been developed to address the issue (Chen and Joshua, 1998; Kneser and
Ney, 1995) by distributing some of the probability mass to unseen n-grams.

Translation model

A first approach to model the probability Pr(x|y) is to assume that the unit of
translation is a word. With this mindset, a given word in the source sentence
correspond to some word(s) in the target sentence. Word-based translation re-
lied in the concept of an alignment (Brown et al., 1990) between two strings. An
alignment is a match between every word of the source sentence with the corre-
sponding word of the target sentence. In Fig. 2.1 we can see an example where
a word in the source sentence can be aligned to zero, one or several words in the
target sentence.

Figure 2.1: Example of a word alignment between a source sentence in english and a
target sentence in french. Borrowed from Brown et al. (1993).

We do not know which is the probability distribution of the alignments. There-
fore, in order to calculate the probability p(x|y) we introduce the alignment a as
a hidden variable, resulting in:

p(x|y) = ∑
a

p(x, a|y) (2.8)

That is, for every possible alignment between x and y we sum the probability
of p(x, a|y). Brown et al. (1993) developed the so-called IBM Models in order to
model p(x, a|y). This resulted in 5 models in each of which different assumptions
were made. As a brief summary: Model 1 and 2 assume different alignment
distributions; Model 3 includes a fertility model which represents the probability
that each word in the target sentence generates a given number of source words,
allowing the model to translate languages with different fertility; finally, Model
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4 and 5 include a distortion model which takes into account the different relative
position of words in the source and target sentence.

This word-level approach has the major disadvantage that it can not deal with
context (Zens et al., 2002). Sometimes a group of words need to be translated into
another group of words and it is not correct if we do it separately. Phrase-based
models emerged with the goal of dealing with local context.

The unit of translations in phrase-based models are not words but phrases. A
phrase is just a sequence of words. Phrase-based models consists of a dictionary
of bilingual phrases that maps each phrase in the source language with its trans-
lation. However, as pointed out in Zens et al. (2002), additional constraints are
taken into account when extracting phrases from a corpus. First, the words must
be consecutive, and second, they must be consistent with the word alignment
matrix, that is, the m source words must be aligned only to the n target words.

So the idea is to segment the given source sentence into phrases, translate
each phrase and finally compose the target sentence from these translations (in
most cases applying some reordering). If we take look at the word-based system,
in order to calculate de probability of p(x|y) we needed to introduce a hidden
variable to know the word alignment and calculate for every possible alignment
its probability. Here we need to do that for the segmentation of the source and
target sentence and also, for the alignment between phrases.

Log-linear model

Current SMT systems are extended with the so-called log-linear model. These
systems try to directly model Pr(y|x) by combining different feature functions
hm(x, y) along with its correspondent weight λm (Eq. 2.9). These weights are
learned by minimizing an error function (normally 1-BLEU) over a validation
set.

p(y|x) = arg max
y

M

∑
m=1

λmhm(x, y) (2.9)

Feature functions commonly found are: the target language model; a phrase-
based model and inverse phrase-based model; a reordering model; a target word
penalty and phrase penalty (Koehn, 2010). The log-linear model can be extended
with as many feature functions as we wish. The goal is to combine different
models with different strengths in order to obtain a more robust system.

Assessment

When it comes to MT, a way to calculate the translation quality of a system is
needed for various reasons. First, we need a way to rank systems and second,
we want to evaluate incremental changes made to those system in order to know
their effect. To do so, we can approach the problem with an automatic tool or
with human evaluation. Although the latter provides a more accurate quality
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measure the evaluation takes time and it is subject to human preference: a correct
translation might be scored differently according to the evaluator. On the other
hand, automatic translation yields reusable and cheap evaluation (but not neces-
sarily reliable). Therefore, a variety of automatic tools that try to emulate human
evaluation have been developed and it is still an open issue. We will cover in this
section the most relevant metrics.

BLEU

The Bilingual Evaluation Understudy or BLEU (Papineni et al., 2002) is a widely
used quality measure in the MT field. The idea behind this metric is to measure
how close a machine translation is from a profesional human translation. The
closer it is, the better. Therefore, a "closeness" metric is developed by using a
weighted average of variable-length phrase matches against the reference trans-
lations.

The primary task for the BLEU evaluator is to compare the number of matches
in terms of the n-grams a given hypothesis has with respects to the reference
translation. This evaluator uses a modified version of precision called modified
n-gram precision to avoid the situation where overgeneration of "reasonable" n-
grams gives a high precision (but improbable) translation. This modified n-gram
precision clips the count of a given n-gram to the number of occurrences in the
reference sentence and then divides them by the number of (unclipped) words in
the hypothesis.

The unit that BLEU uses is the sentence but the score is given for a whole
document. To extend the modified n-gram precision over a set of sentences we
need to first, compute the n-gram matches sentence by sentence and next, add the
clipped n-gram counts for all the hypothesis. This is normalized by the number
of hypothesis n-grams in the test corpus which gives us the modified precision
score (Eq. 2.10) pn for n-grams of size n.

pn =
∑C∈{Candidates} ∑n−gram∈C Countclip(n− gram)

∑C′∈{Candidates} ∑n−gram∈C′ Count(n− gram)
(2.10)

To finalize, a brevity penalty (BP) is introduced to penalize candidates that not
match in length the reference translation. It is computed as:

BP =

{
1 if c > r
e(1−r/c) if c ≤ r

(2.11)

Where c is the length of the candidate translation and r the effective reference
corpus length. Then, to take into account different n-grams lengths we just need
to combine them by means of a weighted mean, which gives us the final BLEU
score:

BLEU = BP · exp(
N

∑
n=1

wn log pn) (2.12)
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According to the experimentation made in (Papineni et al., 2002), N is set to 4,
and wn = 1

N . The BLEU score ranges from 0 to 1 being 1 the closest a candidate
translation can be to the reference (identical in this case). This is the main measure
we will use in the experimentation section.

TER

The translation error rate (TER) (Snover et al., 2006) is another measure used to
assess translations. It measures the minimum number of edits needed to change
a hypothesis so that it exactly matches the reference, normalized by the average
length of the reference (if we have more than one). If we have several references
the TER score will correspond to the minimum number of edits needed to match
the closest reference.

The possible edits include insertion, deletion and substitution of single words
as well as shifts of word sequences. A shift is just a movement of contiguous
words within the hypothesis. An important thing to note is that all edits, includ-
ing shifts of any number of words and distance have equal cost. In a post-editing
scenario this measure approximates the human effort required to correct a trans-
lation produced by a MT system. Because we want to reduce the human effort
required, we want to achieve a low TER score.

METEOR

METEOR (Banerjee and Lavie, 2005) was designed to address some of the is-
sues that BLEU introduced, such as: the lack of recall, the use of higher order n-
grams to model word order or the lack of explicit word-matching between trans-
lation and reference. It is based on the unigram matching between the machine-
produced translation and the human-produced reference translation.

Given a pair of sentences, METEOR generates an alignment between the two
strings. In this context, an alignment is a matching between unigrams, such that
every unigram in each string maps to zero or one unigram in the other string.
In order to generate that alignment the process is divided in two phases, each of
which has different stages.

In the first phase, based on different criteria, different modules produce uni-
gram mappings between the two strings. The "exact" module produces matches
between two unigrams if they are exactly the same. The "porter stem" module
produces unigram matches if they are the same after being stemmed. The "Word-
Net synonymy" maps two strings if they are synonyms. This modules are ordered
by priority and a given match will be chosen first if it is possible to form an align-
ment and if it also has higher priority than other matches produced by lower
priority modules. For example, an exact match will be always prefered.

In the second phase, the largest subset of unigram mappings is selected such
that the resulting set constitutes an alignment as defined above. If more than one
subset constitutes an alignment, this metric selects the one with fewer mapping
crosses. If both sentences are written one below the other and a line is drawn
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between the matching unigrams, a cross is produced when these lines intersect
with another mapping.

Lastly, in order to obtain the METEOR score, an harmonic mean of precision
and recall is computed over the unigrams and penalized if these unigrams are in
different order compared to the reference. A high score will mean high quality
translations.





CHAPTER 3

Neural machine translation

State-of-the-art MT systems have relied on the phrase-based approach for a long
time. However, a new neural approach has emerged, being the first technology
that has been able to challenge former systems (Luong and Manning, 2015; Jean
et al., 2015). With the use of Graphic Processor Units (GPU), neural machine
translation (NMT) has been able to cope with the high computational cost it re-
quires to compete with state-of-the-art phrase-based systems (Bentivogli et al.,
2016).

This fact teamed with the improvements made to the encoder-decoder archi-
tecture (explained later in this chapter) such as the attention model, or the use of
gated recurrent units to cope with context in long sentences, made NMT technol-
ogy to advance by leaps and bounds. Apart from that, NMT demonstrated its
power at the IWSLT1 2015 evaluation campaign, where one of these systems out-
performed the up-to-then state-of-the-art phrase-based systems on the English-
German task, a pair of languages difficult due to the disparity in morphology
and syntax.

The next year, Google announced that Google Translate made the leap to NMT
because neural networks increase both fluency and accuracy of its translations2.
Microsoft did the same with Microsoft Translator stating that neural networks
better capture the context of full sentences before translating them, providing
much higher quality translations3. However, despite the reasons these big com-
panies have to shift to NMT we still lack a solid formal background that supports
this technology. Things like the activation function choice, the number of units
per layer or how many layers to use, are things that need a thorough study to
understand them. For now, we can only study NMT systems, by looking at the
translations and see what differences them from the ones produced by former
approaches (Bentivogli et al., 2016).

In this chapter we will give an overview of the NMT technology and how it
can be used to perform the task at hand. First we will see how we can model the
language with neural networks. Then we will present the current neural archi-

1International Workshop on Spoken Language Translation.
2 Found in translation: More accurate, fluent sentences in Google Translate.
3 Microsoft Translator launching Neural Network based translations for all its speech lan-

guages.

11
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https://blogs.msdn.microsoft.com/translation/2016/11/15/microsoft-translator-launching-neural-network-based-translations-for-all-its-speech-languages/
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tecture used to translate. Lastly, we will see how we perform the search task to
find the best translation.

Modelling language with neural networks

Being able to represent language with neural networks is not an easy task. First,
we need to solve the issue that comes from the words being represented as sym-
bols rather than numbers. For this task, we need a continuous representation
(a dense, real-valued vector) that both encapsulates relevant information of such
symbols and reduces the impact of the curse of dimensionality. This latter term
refers to the need of huge number of examples when learning complex functions
(such as language). This fact gets worse as the number of variables increases (i.e.
the size of the vocabulary) since the model needs to discriminate between a huge
number of combinations of such values.

Once we have solved the previous issue we face another: we need to manage
the fact that sentences are not of the same length. Not only that, the input and
output sentence can be of different length, so we need a way to process informa-
tion of variable length. Lastly, we need a way to capture contextual information.
All these three problems will be addressed in next subsections.

Continuous word representation: word embedding

A continuous representation of a word is a vector of features which character-
ize the meaning of that word. To understand this, if a human would have to
extract these features, he would choose grammatical features such as gender or
plurality. With neural networks we let the learning algorithm discover this real-
valued features instead. The idea is to map every word in the vocabulary to a
low-dimensional continuous-valued vector with the hope that similar words get
similar representations in the feature space. The main goal behind it is to allow
the model to generalize better to sequences that are not seen during training but
whose features are similar to those who have been seen.

Although distributed word representations were first proposed in the early
1980’s (Hinton, 1986) and 1990’s (Castaño and Casacuberta, 1997), it was not un-
til the 2000’s that first approaches using neural networks appeared to model lan-
guage. These models were studied first in terms of feed-forward networks (Ben-
gio et al., 2003) and later in terms of recurrent neural networks (RNN) (Mikolov
et al., 2010, 2011) and yielded good word representation that condensed linguistic
regularities in the vector representations (Mikolov et al., 2013b).

One of the first approaches that successfully used neural networks to model
language was the one proposed in Bengio et al. (2003). This work projected the
words into a real-valued vector. Then, it used a feed-forward network focusing
on learning both the word feature vector and the probability distribution func-
tion of word sequences in terms of these feature vectors by maximizing the log-
likelihood over a training data. The results obtained with this approach demon-
strated how distributed representation of words could be teamed up with neural
networks to outperform regular n-gram models.
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All this work demonstrated outstanding performance in word-prediction but
also the need for a more computationally efficient model (specially the ones in-
volving RNN). For this purpose, Mikolov et al. (2013a) proposed a model that
could learn word representation much faster with higher quality than previous
approaches. It showed the learned relationship between words with simple al-
gebra by simply adding and subtracting vectors for obtaining other words. For
example, the word Rome could be obtained with: Paris - France + Italy.

Dealing with sequences: recurrent neural networks

When humans read a sentence, they understand each word based on their under-
standing of previous words. As you read, your brain retains information that is
used to understand what is coming. Recurrent neural networks model this sit-
uation naturally. This is a major advantage since a variety of problems depend
on an arbitrary sequence of time-dependent events, such as speech recognition,
translation or language modelling.

They take into account past information by means of a cycle between its units.
This allows them to have an internal state that holds present and past informa-
tion. In addition, depending on how these cycles are routed we find different
architectures in the literature. An example of this is the Elman (Elman, 1990) and
Jordan (Jordan, 1986) networks, also known as "simple recurrent networks" .

The Elman architecture works as follows: given a sequence of vectors x =
x1...xT the network will produce a sequence of outputs y = y1...yT. At each time
step (Eq. 3.1) the hidden state at time t, st gets calculated based on both, the input
at time t, xt and the hidden state of the previous time step, st−1. Then, the output
(Eq. 3.2 ) gets calculated based on st.

st = σs(Wxt + Ust−1) (3.1)

yt = σy(Vst) (3.2)

In these equations, W , U and V are the weight matrices of the input, recurrent
and output connections respectively, σs is an activation function such as sigmoid
and σy is the output activation function, being usually, the softmax function (Eq.
3.18). Alternatively, the Jordan architecture is similar but the recurrent connection
is achieved by taking into account the previous output rather than the previous
hidden state (Eq. 3.3).

st = σs(Wxt + Uyt−1) (3.3)

However, one of the major flaws these networks have is their dependency on
the complete past information. This prevents them from focusing only on recent
information or on long-term dependencies, as depicted in (Bengio et al., 1994).
When training them, they also feature the so-called vanishing gradient problem
(explained in section 4.1) which prevents them from properly learning.

To address this, several new recurrent architectures have been proposed, such
as the long short term memory networks (Hochreiter and Schmidhuber, 1997)
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known as LSTM (Fig. 3.1), or the gated recurrent units (GRU) (Cho et al., 2014)
which have the special trait of mitigating the vanishing gradient problem. Both
of these architectures feature parametrized gates that modulate how much input
information is allowed to affect the hidden state, how much past information is
let through to the next time step and how much information is forgotten. These
are trainable parameters that allow the network to do this conveniently.

In LSTM units, the memory cell mt (Eq. 3.4) depends on the previous memory
cell mt−1 and the new information m̃t (Eq. 3.5) coming from the input of the
unit. The amount of information used to update mt from both mt−1 and m̃t is
modulated by gt (Eq. 3.6) and it (Eq. 3.7) which are the vector outputs of the
forget gate and input gate whose values range from 0 to 1. By doing an element-
wise multiplication� they modulate the amount of information that will be used
in the update, being 1 completely retain and 0 completely forget. The output of
the unit st is modulated by the output gate (Eq. 3.8) getting Eq. 3.9.

mt = gt �mt−1 + it � m̃t (3.4)

m̃t = tanh(WM
Y st−1 + WM

X xt) (3.5)

gt = σ(WF
Yst−1 + WF

Xxt) (3.6)

it = σ(WI
Yst−1 + WI

Xxt) (3.7)

ot = σ(WO
Y st−1 + WO

Xxt) (3.8)

st = ot � tanh(mt) (3.9)

In these equations, WO
Y , WI

Y, WF
Y and WM

Y are the output gate, input gate, for-
get gate, and memory cell recurrent weight matrices and WO

X, WI
X, WF

X, WM
X are

the output gate, input gate, forget gate, and memory cell input weight matrices.
σ(·) and tanh(·) are the sigma and hyperbolic tangent activation functions.
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Figure 3.1: LSTM unit
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Dealing with context: bidirectional recurrent neural networks

When processing sequences, there are times when future events are useful and
provide more information to the network in order to better perform the task
at hand. Regular RNN have the limitation that future information can not be
reached from the current state.

Bidirectional recurrent neural networks (BRNN) (Schuster and Paliwal, 1997)
address this issue allowing future information to be reachable from the current
state. They do this by connecting two hidden layers of opposite direction to the
same output layer, having then, information of past and future events.

With this architecture we call forward layer the one that processes the sequence
in the positive time direction (left to right) and backward layer the one that pro-
cesses the sequence in the negative time direction (right to left). At each time
step, the output of both layers are combined (e.g. adding them up) before apply-
ing the output activation function.

Forward
states

Backward
states

t-1 t t+1

Output neuron
group

Hidden (state)
neuron group

Inputs

Group of
weights with
information

flow

Figure 3.2: Structure of a bidirectional recurrent neural network shown unfolded in time
for three time steps. Example borrowed from Schuster and Paliwal (1997).

.

End-to-end translation: encoder-decoder

We have seen that when a RNN processes a sequence of length T it produces an
output sequence of the same length. In translation however, source and target
sentence can (and usually are) of different lengths. To overcome this, two similar
models were proposed by Sutskever et al. (2014) and Cho et al. (2014) which relied
on the encoder-decoder approach. This work constitutes a common framework
on which later work aims to improve it in different ways.

The encoder-decoder approach consist in a two step process that first, maps
the source sentence into a fixed length vector, and second, this vector is decoded
to produce the target sentence (possibly of different size). It aims to directly
model the conditional translation probability (Eq. 2.1).

The input of the system is a sequence of words x = x1...xJ present in the
vocabulary of the source language Vx in a one-hot representation. This means that
we have for each word xj a vocabulary-sized vector x̄j ∈ N|Vx| with all elements
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set to zero except for the one located at the position of xj in Vx which is set to one.
Each word is projected to a fixed-length real-valued vector:

xj = Esx̄j (3.10)

where xj ∈ Rd is the embedding of word xj, Es ∈ Rd×|Vx| is the source languaje
projection matrix and d the embedding size.

c

NULL

x1 x2 xT

y1 y2 yT ′

y1 yT ′−1

Encoder

Decoder

Figure 3.3: Ilustration of the encoder-decoder approach.

The encoder is an RNN that reads each element of the sequence of word em-
beddings. After reading each element in the positive direction, the hidden state
h f

j of the RNN is updated (Eq. 3.11). Once the end-of-sentence symbol is reached,
the hidden state of the RNN c (Eq. 3.12), can be seen as a fixed-length summary
of the whole input sequence.

h f
j = f (xj, h f

j−1) (3.11)

c = h f
J (3.12)

where f is a non-linear function.

The decoder is another RNN which is trained to generate the output sequence
by predicting the next word yi given the hidden state si, the previous generated
word yi−1 and c. The hidden state of the decoder at time i is computed as:

si = f (si−1, yi−1, c) (3.13)

where f is a non-linear activation function (LSTM or GRU) that produce the hid-
den state vector si. The conditional probability for the next word yi is approxi-
mated (Eq. 3.14) assuming that it depends on the previous word (and all previous
words that are in si to some extent). In this case, g(·) ∈ R|Vy| is the softmax func-
tion (Eq. 3.18) that produces a vector of probabilities of size |Vy|, which is the size
of the vocabulary of the target language. ȳi ∈ N|Vy| is the one-hot representation
of the word yi. V ∈ R|Vy|×L is the weight matrix and ϕ(·) is the L-sized output
layer of a RNN.

Pr(yi|y1...yi−1, c) ≈ ȳ′i g(V ϕ(si, yi−1, c)) (3.14)

It is important to note that, during training, we want the decoder to learn to
output the reference sentence. In order to help the model, we use the teacher forc-
ing (Pascanu et al., 2013) technique. This technique consist of feeding the model



3.2 End-to-end translation: encoder-decoder 17

with the corresponding word in the reference sentence at time step i− 1 instead
of the previously generated word.

Attention model

One of the flaws that encoder-decoder models exhibit is that they have to con-
dense an arbitrary length sentence into a fixed-length vector c. This is a bottleneck
when dealing with long sentences, as noticed by Cho et al. (2014), and causes the
system to perform poorly in these situations.

In order to solve this, Bahdanau et al. (2014) proposed the so-called attention
model. The basic idea is to use a different context vector depending on the current
decoding stage. With this idea, Equation 3.14 is rewritten as:

Pr(yi|y1...yi−1, c) ≈ ȳ′i g(V ϕ(si, yi−1, ci)) (3.15)

where si is the RNN hidden state at time i:

si = f (si−1, yi−1, ci) (3.16)

We can see that at each time step, we use a different context vector ci. This
vector is calculated based on a sequence of annotations (h1, ..., hJ) extracted from
the source sentence. These annotations have information that strongly describe
the i-th word and surroundings. They are calculated by concatenating the for-
ward and backward hidden states of a BRNN. The annotation hj = [h f

j ; hb
j ] ∈ R2S

where h f
j and hb

j are the hidden states of the forward and backward layers of the
BRNN and S is the size of the hidden state (we assume that they are of the same
size). Therefore, ci is calculated as the weighted sum of the annotations:

ci =
J

∑
j=1

αijhj (3.17)

where αij is computed by the softmax function:

αij =
exp(eij)

∑J
k=1 exp(eik)

(3.18)

being eij = a(si−1, hj) an alignment model which scores how related the inputs at
position j and the output at position i are. The alignment model is parametrized
with a feed-forward neural network which is trained jointly with the whole sys-
tem.

Decoding translations: beam search

When decoding the translation, the neural system provides, at each time step, a
set of probabilities (with the softmax function) for each word in the vocabulary.
Because we are maximizing equation 2.1 and the output probabilities of a given
time step depend over the previous chosen word, we cannot just choose the one
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with higher probability at each time step because we would be loosing a lot of
the (possible better) options. Moreover, we cannot take into account all possible
words because that would be extremely costly.

Instead, we use the beam search (Sutskever et al., 2014) algorithm to keep, at
each time step, a set of the η partial hypothesis with higher probability, being
a partial hypothesis the prefix of the given translation. At each time step, all
possible new words are added to the prefix but only the η hypothesis with higher
probability are kept to face the next time step. This algorithm generates a kind of
n-best sentence hypothesis (Chow and Schwartz, 1989).



CHAPTER 4

Training neural networks

We have seen so far how the neural networks perform the task of translation
but we have left aside how these networks are trained in order to achieve better
translations. The task of training recurrent neural networks or any kind of neural
network is reduced to the correct estimation of the weights that connect each
neuron to its neighbours (i.e. the weight matrices). In the case of NMT, the word
embedding matrices also need to be estimated.

When training supervised neural networks (that is, when we know the ex-
pected value of a sample data in advance), the system is fed with samples and
produces as output a set of probabilities, one for each class (in the case of a classi-
fication task). In translation, each word in the vocabulary is a different class and
the network will output a score (probability) associated to each word at each time
step.

The goal of the training process is that the class of the sample should have
the highest probability. Applied to translation, this means that the hypothesis
produced with higher probability (that is, the set of classes or words produced)
must match as much as possible as the reference sentence provided as the correct
translation.

However, this is unlikely to happen unless we modify the weights accord-
ingly. The backpropagation algorithm address this problem by automatically
modifying the parameters in order to learn to correctly estimate the proper classes.
In the next section we will explain how the backpropagation algorithm works and
how it is applied to correctly update the parameters through gradient descent.

The backpropagation algorithm

The backpropagation (BP) algorithm was successfully applied to neural networks
during the 1980s (Rumelhart et al., 1988), although the basis of the algorithm were
explored during the 1960s. It aims at minimizing an objective function (known as
loss function) that measures the error produced between the output of the network
and the desired scores (in classification, the classes). The algorithm must modify
the parameters of the network to properly reduce the error.

In order to know how these weights must be modified, the algorithm must
compute a partial derivative, known as gradient ∂`

∂w of the loss function ` with

19
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respect to any weight of the network. These partial derivatives indicates the
amount of increased or decreased error obtained when a slight modification to
a parameter is performed. Hence, the problem can be seen as the search of the
minimum value for the loss function in a high-dimensional space defined by the
weights.

The algorithm has two main phases. In the first phase, called the forward step,
the input data passes through the network, computing the input value of each
neuron in every layer and then applying the activation function. Once we have
obtained the output value, denoted as y we can calculate the error produced with
respect to the true value, denoted with t. In Fig. 4.1 we can see an example of
the backpropagation algorithm in a feed-forward network when optimizing the
squared error E = 0.5(y− t)2 in a regression task A common way of measuring
the error in a classification task is by means of the cross-entropy (Golik et al., 2013)
loss function:

H(t, p) = −∑
x

t(x) log(p(x)) (4.1)

This function measures the cross-entropy between two distributions, the true
distribution t (the target class) and a predicted distribution p (outputted by the
network) giving us an idea of how different they are. In the case of NMT, both
t(x) and p(x) are a vector where, t(x) is the one-hot encoding of the class and
p(x) is the vector of probabilities that comes from the softmax function.

Once the error is calculated, the second phase of the algorithm starts, called
the backward step. This phase consists on (back) propagating the error through
the network (starting from the last layer to the first one) computing the error
derivatives with respect to the weights. To achieve this, the chain rule must be
used in order to compute the derivative of a composed function.

For years, NN and deep NN have been left out because it was not possible
to train them due to the vanishing gradient problem (Hochreiter et al., 2001), which
basically is the progressive shrinking of the gradient that arrives to superficial
layers. If the gradient disappears, the network is unable to modify its weights and
then, unable to learn. Fortunately, the use of new architectures, together with a
great computational power available and the availability of huge amounts of data
are the main reasons for which nowadays we are able to train deep networks.

Backpropagation through time

In the case of training RNN, the BP algorithm is extended with the so-called back-
propagation through time (BPTT) algorithm. When computing the gradient of a
weight in a feed forward network, a weight only contributes once to the error
produced. In RNN however, the recurrent weights are applied several times at
different time steps. Therefore, in order to calculate the gradient of recurrent
weights we must unfold the RNN by duplicating the weights spatially for an ar-
bitrary number of time steps. Once unfolded, we calculate the error update of
each weight as if it were a feed forward network. After all error updates have
been obtained, weights are folded back adding up to one big change for each un-
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Figure 4.1: Ilustration of the backpropagation algorithm. Forward and backward pass.
Example extracted from LeCun et al. (2015)

folded weights. A complete description of this algorithm can be found in (Guo,
2013).

Stochastic gradient descent

With the BP algorithm we are able to know the direction in which the error in-
creases or decreases with a small variation of each parameter. In order to update
the parameters of the network to a new state where the error is minimized the
stochastic gradient descent (SGD) procedure is used (Bottou, 1991). This method
computes the average gradient of a small set of samples from the training data
and updates the weights accordingly. The term batch is used when referring to
this small portion of samples. Also, the epoch term is used when all the samples
of the training set are seen once. It is common that the network is trained for
several epochs until reaching a convergence criterion.

In order to train the network with SGD we need to iteratively update the pa-
rameters of the network with the gradient of the loss function with regard to the
weights. We do this by updating them in the opposite direction of the gradients
in order to minimize the error function. A learning rate ρ is used to determine the
step size of the update to reach a (local) minimum. In practice, its value is usually
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ρ < 1 and it has to be adjusted manually. Expressed mathematically, the update
of a weight vector Θ ∈ Rd is performed as:

Θt+1 = Θt − ρ · ∇`(Θt; x(i:i+n); y(i:i+n)) (4.2)

where∇`(Θt; x(i:i+n); y(i:i+n)) is the gradient of the loss function ` with respect to
the parameters Θ and the batch (of size n) formed by the samples ranging from
(xi, yi) to (xi+n, yi+n). By updating the parameters in batches, the algorithm leads
to a smooth convergence because it reduces the high variance of the gradients of
a single sample (Bishop, 2006).

However, the vanilla SGD presented above introduce a series of challenges
that new variations of the algorithm aim to address. First, choosing a proper
learning rate can be difficult. A too small one will mean a really slow conver-
gence and a too large one will lead the algorithm to oscillate. Also, the use of
the same learning rate for all parameter might no be desirable when features
have different frequencies. In that case, we might want to make larger update for
infrequent features. Lastly, techniques such as the learning rate annealing that re-
duce the learning rate when the algorithm starts to converge need to be planned
in advance and are not self-adaptive.

All these challenges are what motivate the emergence of new variations of
the vanilla SGD that try to tackle them. In next subsections we will describe the
most common ones. For the sake of clarity, we will omit x(i:i+n); y(i:i+n) from the
formulas. Another aspect to note is that all operations involving vectors produce
vectors as result (for example the square root or the power operation).

SGD with momentum

This variation sees the iterative minimization from a physic point of view. In this
case, the minimization is like a ball rolling down the slope of the error function’s
surface. To prevent the ball from oscillating around surfaces more steeply in one
dimension than another (as noticed in Qian (1999)) it follows the relevant direc-
tion by remembering the main direction it was following previously. The use of
momentum helps the ball to accelerate the minimization in the relevant direction
and attenuates the oscillations.

To achieve this, it adds a fraction γ of the update vector of the past time step
to the current one. The update rule is:

vt = γ · vt−1 + ρ · ∇`(Θt) (4.3)

Θt+1 = Θt − vt (4.4)

where, in practice, the momentum term γ is set close to 1 (e.g. 0.9 or similar).

Adagrad

Adagrad (Duchi et al., 2011) is a gradient-based algorithm that adapts the learn-
ing rate to every parameter, performing larger updates for infrequent parameters



4.2 Stochastic gradient descent 23

and smaller updates for very frequent parameters. Pennington et al. (2014) found
it useful when training word embeddings as infrequent words required larger
updates that those seen numerous times. The Adagrad update rule is:

Θt+1 = Θt −
ρ√

Gt + ε
�∇`(Θt) (4.5)

where Gt is a vector Rd whose element i is the sum of the squares of the gradi-
ents with regards to Θi up to time step t and ε is a small number (1e-8) placed
for numerical stability (i.e. avoid dividing by zero). The � symbol denotes an
element-wise vector multiplication.

The main benefit of Adagrad is that it smooths the influence of the learning
rate. The main weakness, however, is the accumulator G, which grows during
training (as all the terms added are positive) and it eventually makes the learning
rate become so small that the algorithm stops learning.

Adadelta

Adadelta (Zeiler, 2012) aims to address the main issue of Adagrad in which the
learning rate decreases monotonically. It achieves this by limiting the number
of past squared gradients accounted in G to a fixed size w by defining G′ as
a recursive decaying average of all past gradients. G′ at time t is defined as a
fraction γ of the previous G′ and the current gradient:

G′
t = γ ·G′

t−1 + (1− γ) · ∇`(Θt) (4.6)

Now, we replace G′
t in the update rule of the Adagrad algorithm, being:

Θt+1 = Θt − ρ
1√

G′
t + ε

�∇`(Θt) (4.7)

then, they adjust the updates so they have the same units as the parameters by
defining an exponentially decaying average of the squared parameter updates:

µt = γ · µt−1 + (1− γ) · ∆Θ2
t (4.8)

where ∆Θt is defined as:

∆Θt =

√
µt−1 + ε

√
G′

t + ε
�∇`(Θt) (4.9)

leaving the update rule of Adadelta as:

Θt+1 = Θt − ρ∆Θt (4.10)

Adam

Adam (Kingma and Ba, 2014) is another adaptive method that computes different
learning rates for each parameters. As Adadelta, Adam stores an exponentially
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decaying average of past squared gradients vt and an exponentially decaying
average of past gradients mt:

mt = β1 ·mt−1 + (1− β1) · ∇`(Θt) (4.11)

vt = β2 · vt−1 + (1− β2) · ∇`(Θt)
2 (4.12)

The authors noticed that at early stages, the algorithm is biased towards zero.
To counteract this they correct the above expressions as follows:

m̂t =
mt

1− βt
1

(4.13)

v̂t =
vt

1− βt
2

(4.14)

leaving the update rule as:

Θt+1 = Θt −
ρ√

v̂t + ε
� m̂t (4.15)

The default values the authors propose are 0.9 for β1 and 0.999 for β2.



CHAPTER 5

Online learning

Although computational resources have evolved to the point where it is relatively
cheap to train a Pattern Recognition (PR) system, it is still a time-consuming pro-
cess that takes days or even weeks to complete. As more and more data is avail-
able this problem is aggravated, specially on systems that interact with changing
environments or that require a quick response at the same time they learn. In
these cases, being able to adapt our system without training it from scratch be-
comes mandatory.

In this chapter we will present the online learning framework which will serve
to introduce our work, emphasizing its application to a post-editing scenario in
MT. Next we will explain the Passive-Aggressive (PA) online learning algorithm.
It has the main goal of avoiding the catastrophic interference (McCloskey and
Cohen, 1989) problem that threatens neural network systems in which they tend
to forget previously learned information upon learning new information. Finally,
we will propose three new PA-based algorithms for the task of NMT.

Online learning framework

PR systems have achieved an acceptable performance in very complex tasks that
involves structured output and ambiguity such as machine translation or image
description. Although these systems can reach a high performance on data simi-
lar to the one used to train them, their performance rapidly drops when the task is
slightly different. In addition, getting enough manually annotated data of a spe-
cific domain in order to train a whole system might not be possible. Therefore,
it is useful to train with generic out-of-domain data and then tune the system
with domain-specific data. Because a complete retraining of the system might be
infeasible, online learning techniques (Blum, 1998) are chosen for this task.

These techniques are particularly useful in the computer assisted translation
(CAT) and interactive machine translation (IMT) paradigms, where human trans-
lators work jointly with machine translators in order to efficiently obtain high
quality translations. In a post-editing scenario, the MT system translates a sen-
tence and propose this as a hypothesis to a human translator which then corrects
the sentence (if needed). Once a sentence is corrected what we have is a new
pair of sentences that can be used to train the system. By using these new train-
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ing samples to train our model, we progressively make the post-editing process
more efficient. First, by making the system learn from its own errors and second,
by easing the work of the human translator as it will have to correct less errors.
Prior work in this area has also shown that human translators become more pro-
ductive as the MT quality improves (Tatsumi, 2009).

The application of such techniques has been studied thoroughly (Martínez-
Gómez et al., 2012; Lavie, 2014; Martínez-Gómez et al., 2011) in classical phrase-
based SMT systems. Results show that significant improvements can be achieved
by adapting the system by means of online learning in terms of the effort the
human would need to correct the hypothesis provided. However, there has been
no published work (to the best of our knowledge) related to the application of
these techniques in NMT systems. This works aims at providing new algorithms
to apply online learning to these systems.

Passive-Aggressive online learning

A variety of online learning methods have been proposed in literature (Lu et al.,
2016). A classical OL method is the Perceptron algorithm (Rosenblatt, 1958) which
updates the model by adding a misclassified example (parametrized with a fac-
tor) to the current parameters. From this work, a lot of new online learning algo-
rithms have been developed based on the maximum margin criterion (Crammer
and Singer, 2003; Gentile, 2001; Kivinen et al., 2004; Li and Long, 2000) which tries
to separate the classes as much as possible. One important technique that falls in
this category is the Passive-Aggressive (PA) online learning method (Crammer
et al., 2006). This has been proved as a very successful and popular online learn-
ing technique for solving many real-world applications.

The idea behind the PA algorithm is very simple. When a new sample arrives
it is classified and a loss is obtained, measuring the degree to which the prediction
is wrong. The idea now is to find a new set of parameters (weights) that make
the classifier to correctly classify the sample (aggressiveness) but by remaining
relatively close to the previous set of parameters (passiveness). We will outline
the PA approach in a binary classification problem as explained in Crammer et al.
(2006).

In a binary classification problem, each sample xt ∈ Rd has a unique label
yt ∈ {+1,−1} associated. We assume that the classification function is based on
a vector of weights Θ ∈ Rd which take the form of sign(Θ · x). The magnitude
|Θ · x| is interpreted as the degree of confidence in the prediction. We refer to
the term yt(Θt · xt) as the margin calculated at time t. Whenever the margin is
positive, the sample has been classified correctly. However, we want the classifier
to achieve a correct classification with some margin (in Crammer et al. (2006) this
margin is set to 1). Then we define the loss ` that suffers the classifier whenever
the samples is classified incorrectly:

`(Θ; (x, y)) =

{
0 if y(Θ · x) ≤ 1
1− y(Θ · x) otherwise

(5.1)
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In order to progressively learn the weight vector Θ, the algorithm must up-
date it after every sample. At time t, the new weight vector Θt+1 is calculated by
solving this constrained optimization:

Θt+1 = arg min
Θ∈Rd

1
2
‖Θ−Θt‖2 s.t. `(Θ; (xt, yt)) = 0 (5.2)

In this algorithm, if the loss is 0, the optimal solution is Θt+1 = Θt. On the
other hand, when the loss is greater than 0, the algorithm forces Θt+1 to satisfy
the constraint `(Θt+1; (xt, yt)) = 0 while being as close as possible to the previous
weight vector to preserve knowledge of previous samples. If we derive Eq. 5.2,
the update rule for the weight vector is:

Θt+1 = Θt + τtytxt where τt =
`(Θt; (xt, yt))

‖xt‖2 (5.3)

However, this update rule is too aggressive and it might result in updating the
model in such a way that in order to meet the constraint, it produces a lot of errors
in later samples because the model was changed drastically. Therefore, a gentler
update strategy is required. To do this, the authors introduce a non-negative slack
ξ variable into the optimization problem defined in Eq. 5.2:

Θt+1 = arg min
Θ∈Rd

1
2
‖Θ−Θt‖2 + Cξ s.t. `(Θ; xt, yt)) ≤ ξ and ξ ≥ 0 (5.4)

The parameter C controls the influence of the slack variable ξ. The authors
coin the C variable as the aggressiveness parameter of the algorithm. The update
rule in this case is the same Θt+1 = Θt + τtytxt but τt changes to:

τt = min{C,
`(Θt; (xt, yt))

‖xt‖2 } (5.5)

PA online learning applied to NMT

In this section we propose a new version of PA-based SGD. The development
of this works is inspired by the application of the MIRA (a PA-based) algorithm
(Crammer and Singer, 2003) used in traditional SMT to tune the weights of the
log-linear model. Also, the work develop in Martínez-Gómez et al. (2012) to the
task of online adaptation gives us a feel of what can be achieved when adapting
a MT system with OL. As any other PA technique, our algorithm aims to perform
the minimum modification to the model parameters while fulfilling a correctness
criterion. In our case, we use the loss function of the neural model for efficiency
reasons (but we could have used another loss function such as BLEU).
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Let ht be the hypothesis generated by the NMT system (using the parameters
Θt at time t) of the source sentence xt. We consider that Θt is incorrect if the
model assigns a lower probability to the target reference sentence yt than to ht:

pΘt(yt|xt) < pΘt(ht|xt) (5.6)

When that happens, we want to search for a Θ̂ such that Θ̂ is close to Θt and
pΘt(yt|xt) > pΘt(ht|xt). This is expressed with the loss function `:

`(Θ̂, xt, yt, ht) = log p
Θ̂
(ht|xt)− log p

Θ̂
(ht|xt) (5.7)

With this loss function we are measuring how large is the gap between the
probability given to the hypothesis and the probability given to the reference. By
optimizing this function we reduce this gap with the idea that progressively, the
hypothesis will be closer (i.e. similar) to the reference sentence. With the goal of
optimizing this function, three variations of PA-based algorithms are developed.

Passive-Aggressive via subgradient techniques

In order to find Θ̂, the problem can be formulated as:

Θ̂ = arg min
Θ

1
2
‖Θ−Θt‖2 + Cξ s.t. `(Θ̂, xt, yt, ht) ≤ ξ and ξ ≥ 0 (5.8)

being C the parameter that controls the aggressiveness of the algorithm and ξ
a slack variable (as discussed in Section 5.2). From this equation we have ξ ≥
max(0, `(Θ̂, xt, yt, ht)) and then, we define Ft as the function to optimize:

Ft(Θ, xt, yt, ht) =
1
2
‖Θ−Θt‖2 + C max(0, `(Θ̂, xt, yt, ht)) (5.9)

aiming to find the set of parameters that minimize this function, i.e.:

Θ̂ = arg min
Θ

Ft(Θ, xt, yt, ht) (5.10)

Because we are optimizing a function (Ft) with discontinuity points (because
the max(·) function has no derivative at 0) we have to use a subgradient method
(Shor et al., 2003). This results in the derivative ∂ΘFt(Θ, xt, yt, ht) being:

∂ΘFt(Θ, xt, yt, ht) =





Θ−Θt − C∇`(Θ, xt, yt, ht) `(Θ, xt, yt, ht) < 0
Θ−Θt `(Θ, xt, yt, ht) > 0
[Θ−Θt, Θ−Θt − C∇`(Θ, xt, yt, ht)] `(Θ, xt, yt, ht) = 0

(5.11)
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where, on the discontinuity point (`(Θ, xt, yt, ht) = 0), we choose a value in the in-
terval [Θ−Θt, Θ−Θt−C∇`(Θ, xt, yt, ht)]. We assume Θ−Θt when `(Θ, xt, yt, ht) =
0. Finally, we perform the update as:

Θk+1 = Θk − ρ · ∂ΘFt(Θ, xt, yt, ht)|Θk (5.12)

where ρ is the learning rate, ∂ΘFt is the subgradient of Ft with respect to Θ. We
initialize Θk=0 = Θt and the update is performed k times per sample. We denote
this PA via subgradient technique update rule as PAS.

Because we may want to achieve a higher probability of the reference sentence
but with some margin m: pΘ(yt|xt) + m > pΘ(ht|xt) we can rewrite the subgra-
dient ∂ΘFt with the discontinuity point being m rather than zero (as defined in
Eq. 5.11).

Passive-Aggressive via projected subgradient techniques

An extension of the PAS method is the projected PA subgradient method (PPAS)
in which the optimization problem is reformulated (Boyd et al., 2003). We define
Gt(Θ, xt, yt, ht) as max(0, `(Θ̂, xt, yt, ht)). Then, Eq. 5.8 can be rewritten as:

Θ̂ = arg min
Θ

Gt(Θ, xt, yt, ht) s.t. ‖Θ−Θt‖2 ≤ C (5.13)

In this case, ∂ΘGt(Θ, xt, yt, ht) is defined as:

∂ΘGt(Θ, xt, yt, ht) =





∇`(Θ, xt, yt, ht) `(Θ, xt, yt, ht) < 0
0 `(Θ, xt, yt, ht) > 0
[0,∇`(Θ, xt, yt, ht)] `(Θ, xt, yt, ht) = 0

(5.14)

and the update rule is performed in a two step process. First, we calculate the
intermediate weight update Θ̄

k+1 as:

Θ̄
k+1

= Θk − ρ∂ΘGt(Θ, xt, yt, ht)|Θk (5.15)

and second, we apply the projection operator, being Θk+1:

Θk+1 =
Θ̄

k+1 −Θt

‖Θ̄k+1 −Θt‖
C + Θt (5.16)

As in the previous case, we initialize Θk=0 = Θt.

Passive-Aggressive via SGD with regularization

We can also optimize `(Θ, xt, yt, ht) by means of SGD but with a regularization
term, inspired by the PA principle of updating the model with new parameters
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that are close to the current ones. We will refer to this algorithm as PAR. With this
in mind, we can define the minimization problem as:

Θ̂ = arg min
Θ

(`(Θ, xt, yt, ht) +
C
2
‖Θ−Θt‖2) (5.17)

Because the minimization has no discontinuity points we don’t need to apply
a subgradient method. The update rule then, results in:

Θk+1 = Θk − ρ · (∇`(Θ, xt, yt, ht)|Θk + C(Θk −Θt)) (5.18)

As usual, Θk=0 = Θt. We observe that when k = 1 the update rule is plain
SGD with no regularization term:

Θk+1 = Θk − ρ · (∇`(Θ, xt, yt, ht)|Θk +���
���

�:0
C(Θk −Θt) ) (5.19)

in that case, we introduce a small Gaussian noise ν to the model parameters in
order to avoid reaching local minima:

Θk+1 = Θk − ρ · (∇`(Θ, xt, yt, ht)|Θk + Cν) (5.20)



CHAPTER 6

Experiments and results

After the proposal of three PA-based algorithms in Section 5.3, we will proceed
to its testing and comparison with other well-known algorithms (those described
in Section 4.2). In this section we will describe the experimental setup used to
conduct the experimentation. First, we will describe the task in which we want
to evaluate our algorithms. Then we will describe the NMT system used and the
tools needed to work with it. After describing the corpora used, we will compare
and discuss the results obtained.

Experimental framework

Before presenting the results, we will present the task at hand and describe the
tools used to develop the mentioned algorithms and the corpora used to assess
them.

Task description

In order to test these algorithms we will simulate (otherwise it would be too
costly) a post-editing scenario. We will simulate this scenario in three different
corpus or tasks (detailed in next subsections). First, we will train three neural
models using for each one the training partition of its corresponding dataset.
Once trained, these models will constitute the baseline models for each task.

Then, we will refine these models with their respective test or development
set of the corpus in which they were trained. For a given source sentence, the sys-
tem produces its translation (the system’s hypothesis). This translation is stored
for later evaluation. Then we take the post-edited sentence (in this case, the refer-
ence sentence) and update the system with it. This is repeated until the full set of
sentences are translated. We evaluate the stored hypotheses and compare them
with the ones produced by the baseline system. Our hope is to see an improve-
ment in the quality of these translation. With this procedure we want to see up to
what extent the OL algorithm can refine the baseline system.

In order to measure the impact of each algorithm in the post-editing effort
reduction we use the TER metric. In order to assess the quality of translations we
will use the BLEU and METEOR metrics.
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Software

We have developed our work using the NMT-Keras toolkit1 (Peris, 2017). This
(still in progress) software provides tools for the NMT task, such as: beam search
decoding, support for GRU and LSTM networks, unknown word replacement,
use of pretrained word embedding vectors an more.

This software is based on a Python library called Keras2 (Chollet et al., 2015).
Keras offers an abstraction layer on top of Theano3 (Theano Development Team,
2016) (a library for defining and evaluating mathematical expressions involving
multi-dimensional arrays) and eases the task of building and training different
neural network architectures. It has implemented utilities to save and load neural
network models, monitor the training process and use predefined NN architec-
tures.

All the algorithms listed in Section 5.3 have been implemented in Keras and
integrated in the NMT-Keras toolkit.

Corpora

In this work, we test all the algorithm in three different corpus: Xerox, Emea and
TED. We use the standard partitions and the English-French language pair for all
experiments. The text is kept true case and it is tokenized using the script from
Moses 4. In the next subsections we will describe these corpus.

Xerox

The Xerox corpus (Barrachina et al., 2009) consists in translations of user manuals
for Xerox printers. Table 6.1 shows all information regarding the partitions for
the English-French language pair.

Training Development Test
Sentences 52k 984 994

Vocabulary size English 14k 1.8k 1.7k
French 15.5k 1.9k 1.8k

Words English 615k 10.9k 11.1k
French 676k 11.7k 11.8k

Table 6.1: Statistics of the Xerox corpus. In the table are collected the number of sentences
and vocabulary size of each partition and language. k stands for thousands

1https://github.com/lvapeab/nmt-keras/
2https://keras.io/
3http://deeplearning.net/software/theano/
4http://www.statmt.org/moses/
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Emea

The Emea parallel corpus (Tiedemann, 2009) is made out of documents from the
European Medicine Agency. Table 6.2 shows all information regarding the parti-
tions for the English-French language pair.

Training Development Test
Sentences 319k 500 1k

Vocabulary size English 52k 2.8k 4.5k
French 59.3k 2.9k 4.5k

Words English 4.2M 10.3k 21.4k
French 4.8M 12.3k 25.7k

Table 6.2: Statistics of the Emea corpus. In the table are collected the number of sentences
and vocabulary size of each partition and language. k stands for thousands and M for

millions

TED

The TED corpus (Federico et al., 2011) gathers transcribed TED talks. Table 6.3
shows all information regarding the partitions for the English-French language
pair.

Training Development Test
Sentences 159k 887 1.7k

Vocabulary size English 46.7k 3.4k 4.9k
French 58.2k 3.9k 4.9k

Words English 2.17M 21.3k 33.5k
French 2.3M 21.8k 35.7k

Table 6.3: Statistics of the TED corpus. In the table are collected the number of sentences
and vocabulary size of each partition and language. k stands for thousands

NMT system

For each corpus, we train a neural model over the training partition. Such model
(similar to the one depicted in Bahdanau et al. (2014)) consists in an encoder-
decoder LSTM network equipped with the attention mechanism. We made use
of single-layered LSTM due to time limitations. The size of the hidden state of
each LSTM, the word embedding size and the attention mechanism layer is 512
(our choice is based on the experimentations carried out in Britz et al. (2017)).
The baseline systems have been trained with the Adadelta algorithm with the
default parameters. During training, Gaussian noise (Graves, 2011) and layer
normalization (Ba et al., 2016) are applied as regularization methods. We also
early stopped the training if the BLEU on the development set did not improve
in 100,000 updates. The size of the beam is 6 in all experiments.
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Due to the high number of hyperparameters all the proposed online learning
algorithms have, a wide grid search has been carried out in one of the corpus
(Emea). After discarding values that ruin the system, a narrower grid search
with promising values has been carried out in the rest of the corpus to find the
best configuration. These hyperparameters include the C constant, the margin m,
the number of iterations per sample k and the learning rate ρ.

Results

Because these are new algorithms, it is interesting to see how tuning different
hyperparameters can affect their performance. After finding the best configura-
tion for each algorithm, a comparison between these algorithms and SGD-based
algorithms will be carried out.

Hyperparameter configuration

In order to find the best possible configuration, a grid search for each algorithm
has been performed. Although this grid search has been done in all the corpus
for all algorithms in order to avoid any corpus-dependent side-effect, a first wider
grid search has been carried out on the Emea corpus by using the development
set. With this grid search we have spotted ill configurations that ruin the system
and we have narrowed the search for later corpus. For completeness purposes,
we have provided this values of the grid search (Table 6.4) along with the best
configuration for each algorithm (Table 6.5). This is to give a brief overview about
in which range each parameter fits each algorithm.

One of our findings with this search is that, for example, the optimum value
of C, the aggressiveness parameter, is greatly separated from one algorithm to
another. While the PAS algorithm find its best value around 0.5, the PPAS al-
gorithm find its best value around 0.01, both with the same learning rate. This
suggests that the PPAS update rule is more aggressive than the one found in the
PAS algorithm, as it needs a much lower value of C.

Another behaviour observed is that the correct performance of these algo-
rithms is tightly related to the correct choice of both ρ and C. This is illustrated
in Fig. 6.1 where, if we fix both the k and m parameter the model performance in
terms of BLEU greatly decreases when ρ and C are not chosen adequately. On the
other hand, if we fix ρ and C and we vary k and m, the performance is roughly
the same.

ρ {10−1, 10−2, 10−3}
C {1.5, 1, 0.5, 10−1, 10−2, 10−3}
m {0, 0.1, 0.3, 0.5, 1, 1.5}
k {1, 2, 3}

Table 6.4: Grid search values on the
Emea development set

PAS PPAS PAR
ρ 10−2 10−2 10−2

C 0.5 10−2 10−1

m 10−1 0.5 -
k 2 3 1

Table 6.5: Best configuration for each al-
gorithm on the Emea development set
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Figure 6.1: Performance (in terms of BLEU) obtained by the PPAS algorithm on the Emea
development set when pair-evaluating the influence of ρ-C and k-m parameters. Figure a)
shows great influence on the performance when varying ρ and C while Figure b) shows

little variance when changing k and m.

Comparison between OL algorithms

Once we know how our algorithms behave, we need to test them against SGD-
based algorithms. In order to perform a fair comparison, all the PA-based algo-
rithms will iterate once (i.e. k = 1) per sample. The margin m is set to 0 as it has
been shown in the previous section to have little impact in terms of performance.
The Gaussian noise used in the PAR algorithm has 0.01 standard deviation. In Ta-
ble 6.6 we provide the different parameter values used in the different algorithms.
The rest of hyperparameters have been left to its default value.

Now we will pass on to compare the different OL algorithms. First we will
compare them by just looking at the end result (after the whole training) in terms
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SGD Adagrad Adadelta Adam PAS PPAS PAR
ρ 10−3 10−4 10−1 10−4 10−2 10−2 10−2

C – – – – 10−1 10−2 10−1

Table 6.6: Algorithm hyperparameters. ρ refers to the learning rate and C to the aggres-
siveness of PA algorithms.

of BLEU and TER and then we will see how the system performance evolves (in
terms of BLEU) as the training process takes place.

In Fig. 6.2 is depicted the improvement of the quality of translations (in terms
of BLEU) accomplished after the OL training process takes place. Generally, we
obtain better results with adaptive algorithms such as Adam or Adadelta. Plain
SGD also achieves a comparable performance (albeit not being adaptive). In the
case of the PA-based algorithm their performance is not as high as its competi-
tors, but we can see that they also increase the translation quality of the system.
Although in all three tasks we improve the baseline system by several points, the
results in the TED task of all algorithms are not as high. Moreover, we have had
to reduce (by a factor of 10) the learning rate of several algorithms and the ag-
gressiveness of the PA algorithms in this task because they worsened the baseline
system. We can see a taste of this in the PPAS algorithm whose aggressiveness
makes it score below the baseline.
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Figure 6.2: Effect of tuning NMT systems (in terms of BLEU) trained on different cor-
pus with their respective test set. The higher the BLEU score, the better. We show 95%

confidence intervals, obtained by means of bootstrap resampling (Koehn, 2004)
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In terms of human effort reduction, we also observe an improvement (reduc-
tion of TER) but only in two of the tasks (Fig. 6.3). In TED we find that, al-
though the quality of translation has slightly improved, in terms of TER we ob-
tain a slightly different picture. This might be due to the fact that first, BLEU and
TER are not completely correlated, and second, the improvement accomplished
in terms of BLEU is sufficiently small so that the variations in terms of TER can
fluctuate.
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Figure 6.3: Effect of tuning NMT systems (in terms of TER) trained on different corpus
with their respective test set. The lower the TER score, the better. We show 95% confi-

dence intervals, obtained by means of bootstrap resampling (Koehn, 2004)

After looking at the end picture it is interesting to see the evolution of the
different learning algorithms. Fig. 6.4 shows the BLEU difference between the
baseline and online system. We show the average BLEU up to the n-th sentence.
As we can see, all algorithm suffer an erratic behaviour at early stages but they
stabilize later on. In the case of adaptive algorithms this might be due to the fact
that they rely on an accumulator of the past gradients in order to perform the
weight update. Thus, at early stages, the accumulated gradients of a few samples
can have undesired results. Nevertheless, at mid to latter stages all algorithms
stabilize, offering a consistent improvement over the baseline system.

For completeness purposes, we have provided all the results obtained in our
experimentation in Table 6.7 in terms of BLEU, METEOR and TER of all three
tasks.
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Figure 6.4: Evolution of a system trained on Emea, TED and Xerox and tuned with their
respective test set. We show the BLEU difference (averaged up to the n-th sentence) with

respect to the baseline system.
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Algorithm Adam Adadelta SGD Adagrad PAS PPAS PAR Baseline

BLEU 32.6± 1.2 31.6± 1.3 32.8± 1.3 31.1± 1.2 32.1± 1.2 31.5± 1.2 31.7± 1.2 30.7± 1.2
METEOR 45.9± 1.1 45.6± 1.1 46.6± 1.2 45.3± 1.1 46.6± 1.1 46.0± 1.1 46.4± 1.0 45.2± 1.1
TER 55.7± 1.1 57.3± 1.1 55.7± 1.2 58.4± 1.1 56.7± 1.1 58.4± 1.1 57.8± 1.1 59.9± 1.1

Em
ea

Algorithm Adam Adadelta SGD Adagrad PAS PPAS PAR Baseline

BLEU 21.5± 0.5 22.8± 0.5 22.7± 0.5 21.7± 0.5 19.3± 0.5 19.0± 0.5 19.1± 0.5 17.1± 0.4
METEOR 38.3± 0.5 40.2± 0.5 40.0± 0.5 39.2± 0.5 38.0± 0.5 37.9± 0.5 37.7± 0.5 35.5± 0.5
TER 65.6± 0.9 62.4± 0.6 63.7± 0.8 64.7± 0.7 70.8± 0.8 71.0± 0.7 70.6± 0.8 74.5± 0.9

TE
D

Algorithm Adam Adadelta SGD Adagrad PAS PPAS PAR Baseline

BLEU 27.0± 0.5 27.5± 0.5 27.5± 0.5 27.0± 0.5 26.8± 0.5 25.5± 0.5 26.8± 0.5 26.2± 0.5
METEOR 47.2± 0.4 48.0± 0.5 47.7± 0.4 47.0± 0.4 46.7± 0.4 45.6± 0.4 46.7± 0.4 47.2± 0.5
TER 58.4± 0.6 57.9± 0.6 57.7± 0.6 58.7± 0.6 58.6± 0.6 60.2± 0.6 58.7± 0.6 57.9± 0.6

Table 6.7: Results of the experimentation in all tasks. Bold results indicate a significant
improvement over the baseline system.



CHAPTER 7

Future work and conclusions

Before ending this document, we add some lines of research this work could fol-
low in the future. In addition, we will expose our conclusions after the work
developed in this document as well as some final notes.

Future work

We have shown how OL strategies can be applied to NMT in order to refine or
adapt the system to changing environments. They provide a way of training dy-
namic systems as soon as the data is available, which in many situations, is very
beneficial to keep a competitive performance. We have approached the online
learning scenario from a post-editing view point by relying on the PA strategy.
This opens two main lines of research in which this approach could be extended
or applied to a different domain:

Using other loss functions

One of the main issues with NMT is the independence of the function to optimize
with respect to the evaluation metric. An NMT system tries to optimize a loss
function but when it is evaluated, another function (such as BLEU or TER) is
used. This creates a gap between training and evaluation which in some cases
might affect translation quality (Shen et al., 2016). In classical SMT, as well as in
NMT, this issue has been addressed by optimizing directly the metric function
by means of the minimum risk training method (Och, 2003; Chiang, 2012; Shen
et al., 2016).

With this work, we set the basis for using BLEU or other non-differentiable
loss functions, since some of the algorithms developed such as PAS and PPAS
deal with non-differentiable functions. A natural next step to take is to directly
optimize the evaluation metric, integrating it into the online learning framework
while keeping the update time at a reasonable level.
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Inclusion of OL strategies in IMT

The IMT scenario is tightly related with the post-editing scenario. IMT tries to
collaborate with the human on the translation task with the goal of minimizing
human effort. Often, the user only needs to point out the position in the sentence
in which it is wrongly translated and the system will output an alternative suf-
fix starting from that point. IMT is an active field and recent work has studied
its application on NMT systems (Knowles and Koehn, 2016; Peris et al., 2017b).
As in the post-editing scenario, being able to apply OL techniques into an IMT
framework might be beneficial in order to develop more adaptive and productive
MT systems.

Conclusions

In this work, three OL algorithms have been proposed and applied to an NMT
system. They rely on the Passive-Aggressive OL approach in which the MT
model is updated after every sample in order to fulfil a correctness criterion while
remembering previously learned information. Because these algorithms have a
high number of hyperparameters to tune, an extensive grid search has been car-
ried out in order to find the best combination. In addition, a study has been made
to see how the different parameters affect each algorithm’s performance. Results
show that, although they depend on several hyperparameters, those critical to
the well behaviour of the algorithms are, in every case, the aggressiveness hy-
perparameter and the learning rate. Other parameters such as the margin or the
number of iterations per sample offer minor improvements in the overall perfor-
mance of the algorithm.

These algorithms have been tested in a post-editing scenario where an already
trained NMT system has to be refined as soon as new samples are available. Each
new sample that arrives to the system is translated and corrected (we use the
reference sentence instead). A loss function is computed in order to measure
the distance between both sentences. Once we have this, we use it to adapt the
system, aiming to avoid the committed mistakes. In order to evaluate how well
these new algorithms behave, a comparison between these algorithms and well-
known OL gradient descent variants has been carried out. Results show that OL
techniques help to refine and adapt the system on-the-fly, increasing the quality
of translations and reducing the human effort in a post-editing scenario. We have
found that the proposed PA-based algorithms offer a competitive performance:
they improve the quality of translations in all tasks. Nevertheless, adaptive SGD-
based algorithms performed generally better.

Finally, part of the work developed in this thesis has been submitted to the
2017 Conference on Empirical Methods in Natural Language Processing (Peris
et al., 2017a). Moreover, we plan to submit an article to a journal (yet to be deter-
mined).
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