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Introduction and background 
 
 
Scientific collaboration has been defined as “interaction (…) among two or more 
scientists that facilitates the sharing of meaning and completion of tasks with 
respect to a mutually shared, superordinate goal” (Sonnenwald, 2007). From a 
purely scientific perspective, collaboration is necessary to cope with the 
increasingly challenging, ambitious, and demanding objectives of many research 
initiatives (in terms of human knowledge as well as material resources). 
Evidence for growing collaboration comes not only from quantitative data on the 
rising number of individual contributors per paper (Wuchty, Jones and Uzzi 
2007) but also from the increasing presence of collective authors. The ATLAS 
Collaboration in Particle Physics is an extreme example (Cho, 2011). In the 
biomedical research fields, the MONICA Project [cardiovascular health] of the 
WHO, or the EPSILON study on schizophrenia are good examples of the 
collective involvement of different countries, centers, and teams in pursuing 
common research problems.  

Joint research gives competitive advantage to research partners in the form of 
more frequent citations for co-authored papers (Larivière et al. 2015) and 
therefore greater funding opportunities. Beyond the strictly science boundaries, 
collaborative research also has beneficial socioeconomic outcomes and so 
national and supranational public entities are encouraging research partnership in 
the implementation of specific programs or by introducing criteria to foster 
collaborative approaches in funding applications. The cross-national COST 
actions that “fund pan-European, bottom-up networks of scientists and 
researchers across all science and technology fields” 
(http://www.cost.eu/about_cost/how_cost_works), or the Clinical and 
Translational Science Awards program of the US National Center for Advancing 
Translational Sciences (https://www.ctsacentral.org/) are good examples of the 
former; while the principles for funding multi-institutional collaboration in 
innovation and research published by the UK Research Council 
(http://www.rcuk.ac.uk/funding/principles/) is a good example of the latter. 
Fostering agencies need instruments to assess the efficiency of research 
collaborations. In fact, a recent report on so-called “team science” recommends 
that researchers “partner with team science leaders to evaluate and improve 
analytical methods and tools for team assembly” (Cooke and Hilton 2015) and 
network analysis has emerged both as an adequate framework and as a 
convenient analytical tool to understand these processes and evaluate their 
outcomes (Hunt, Whipple and McGowan 2012; Bian et al. 2014). 

Social network analysis of collaboration 
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A network is a representation of a system. It consists of vertices that represent the 
entities of the system. Pairs of vertices are joined by edges that represent a 
particular kind of interconnection between these entities (Estrada 2011). Citation 
relationships between documents are considered the source of a type of 
knowledge network, namely, citation networks (Newman 2003b); while the co-
authorship of articles in learned journals (Newman 2001b; Newman 2001a) 
along with the networks constructed from collaborative research grant 
applications (Bian et al. 2014) have been studied as examples of social networks. 
Throughout this paper, we refer indistinctly to network (net) or graph; likewise, 
we do not differentiate between teams and groups that are connected or linked by 
edges or ties.  

In co-authorship networks, individuals or groups (entities) are connected if they 
have co-authored one or more papers. Such a simple relationship and the 
resulting systems have attracted a considerable number of works from 
Scientometrics, Social Network Analysis (SNA), and other research fields. Co-
authorship networks have been approached either in a longitudinal or a cross-
sectional manner and analyses have been performed at the collective or elemental 
level. We will next review some examples of these approaches and their utility 
for our purposes. 

Mark Newman can be credited for undertaking the first large-scale analysis of 
scientific co-authorship (Newman 2001b; Newman 2001a). Although his main 
aim was to obtain a reliable social network based on the assumption that joint 
authorship reflects genuine professional interaction between scientists, the 
metrics he used for characterizing the networks (we will review these in the 
appropriate section) have remained as a model for analyzing co-authorship 
networks at the collective level. His study, however, is cross sectional, and 
reduced to a five-year period with accumulated figures. María Bordons and 
colleagues, in another example of transversal research, relate the research 
performance and the network position of individual researchers in pharmacology, 
nanoscience, and statistics (Bordons et al. 2015). There are two other evaluative 
papers focused on the participation of research groups in the Clinical and 
Translational Science Awards: the already mentioned article on the University of 
Arkansas for Medical Sciences (Bian et al. 2014) uses SNA for “evaluating the 
impact of resource allocation to different programs”; and an article on the 
Indiana Clinical and Translational Sciences Institute (Hunt et al. 2012) “derives a 
single consented ranking of important or influential nodes in a collaboration 
network”. 

Xiaoming Liu and co-workers analyzed the structure of collaboration within the 
Digital Libraries research community and provided quantitative metrics for the 
concepts of status and influence of individual authors (Liu et al. 2015). They 
added to the individual prestige metrics some general measures of the whole 
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structure of the network; however, their analysis remains static. A good example 
of a longitudinal study at the elemental level could be the analysis of “social 
inertia” in which Ramasco and Morris (2014) follow 14 research collaboration 
networks (and another derived from the Internet Movie Database) during an 
indefinite time period.  

Shortly after the seminal work by Newman, several other statistical physicists 
studied the evolution of social networks using co-authorship networks as 
examples (Barabási et al. 2002), although to our knowledge Newman’s paper 
was the first example of dynamic analysis of co-authorship, their main interest 
seemed to be the large scale modeling of complex evolving networks. In contrast, 
the work by Katy Börner and others (2005) appears to be the first that combines 
the positional metrics of individuals in the network with several “success” 
indicators of the papers they contribute and, more importantly, a longitudinal 
follow-up of the characteristics of the whole network. In the same line, Luis 
Bettencourt and co-authors follow the emergence and development of a series of 
research specialties tracking several co-authorship network metrics as the 
corresponding fields evolve (Bettencourt, Kaiser and Kaur 2009). More recently, 
Ghosh and collaborators followed several structural measures of evolving co-
authorship networks (Ghosh, Kshitij and Kadyan 2014) however; their treatment 
of network cohesion is quite superficial. 

Several sets of metrics have been applied, in the above mentioned and other 
works, to characterize either the behavior of the whole co-authorship network 
and its evolution, or the role of individual nodes whose topology reveals an 
outstanding position, influence, or importance in the observed research field. 
These network and node metrics have been combined with “efficiency” 
estimates, usually in the form of research outputs and impact indicators that 
attempt to confirm the benefits of collaboration. However, before we move on 
with a detailed review of these measures and state our objectives, it is worthwhile 
describing the context in which our analysis takes place.  

CIBERER as our case of study 

Biomedical Research Networking Centers (CIBER after the Spanish acronym) is 
a Spanish public initiative to support single-topic research on specific broadly-
defined disease or health problems. Following an initial call in 2006, nine 
monographic centers were established on Neurodegenerative Diseases, Hepatic, 
and digestive diseases, Public health and epidemiology, Bio-engineering, 
biomaterials and nanomedicine, Diabetes and associated metabolic disorders, 
Physiopathology of obesity and nutrition, Mental health, Respiratory diseases 
and Rare diseases. This last mentioned center, CIBERER for short, is the object 
of our work. 

The word “center” might be misleading, as every consortium is made up of a 
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number of research teams from various parent organizations. From its beginning 
in 2007, 61 research teams joined CIBERER and, after one was removed in 
2009, the consortium included 60 teams, encompassing 700 people in 2013. The 
last annual report details an annual budget (in 2013) of 6.7 million euros coming 
from the hosting public institutions and research program funding plus 1.5 
million euros from private funding, which comes to a total of 8.2 (or almost USD 
9.4 million at the current exchange rate).  

The starting point for the CIBER program is “the need to boost research 
excellence through the implementation of stable structures of research 
collaboration” (Ministerio de Sanidad y Consumo 2006). This main goal adds to 
a specific feature of rare diseases that is implicit in its name: this is a very large 
group of diseases (over 7,000 following international criteria) with a low 
prevalence in the population. Most are oncological, neurological, or metabolic 
disorders – usually with genetic origins. So it should come as no surprise that the 
need for networked research on rare diseases had already been stressed (Aymé 
and Schmidtke 2007). Collaboration in rare diseases research comes, then, as a 
twofold necessity. Firstly, as the number of patients is small, it is necessary to 
cooperate to avoid the fragmentation of research and gain shared knowledge. 
Secondly, it is necessary to cooperate to associate the clinical features and, 
eventually, identify new genes or associate gene expression and mutation 
consequences to the clinical features of a given disorder. Hence, the need for 
organizational plus instrumental collaboration adds to the call for “excellence” 
through the foundation and development of institutional collaboration. How 
could we measure both the degree of collaboration and the effects eventually 
resulting from joint research efforts? The next paragraph introduces some 
concepts from network analysis and metrics that may help represent 
collaboration relationships and measure their strength and evolution. For the sake 
of comprehension, the concepts used are loosely-defined.   

Collaboration and co-authorship are far from equivalent concepts (Laudel 2002) 
although Scientometric practice has sanctioned the use of the latter as a proxy for 
the former. Here, we refer to the relationship between two investigators who 
jointly appear on the byline of a research paper as co-authors. When aggregated 
to the institutional or even higher level, as is the case with this article, we refer to 
collaboration as, say, two universities collaborating rather than co-authors 
collaborating in one or more papers. Our network takes teams as the entities of 
analysis (nodes or vertices in the SNA terminology) and establishes connections 
(edges) between pairs of teams if their members have co-authored one or more 
papers. Co-authorship edges show some intensity according to the number of co-
authored papers between teams. The total number of papers co-authored by a 
team is its strength or weighted degree. As an example, let us look at the small 
network on the left side of Figure 1. The vertex labelled ‘b’ connects with three 
other vertices (a, c and d) in the way that vertex d does; but b has more strength 
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despite having the same degree because the weight of the edge b-a is two. Both 
have degree 3 but b has strength 4. Although the strength distribution gives some 
idea about the relationship among entities, a better understanding of the whole 
network can be drawn from group level metrics – especially if these metrics are 
followed along the same period. On the right side, Figure 1 depicts the same net 
but at a more advanced stage and several changes are quite evident. The most 
obvious is that the two components on the left (vertices h and i) have coalesced 
into one component that connects all the vertices. Another less obvious change is 
the appearance of triads: sets of three fully connected vertices from a previous 
situation where they were connected only in couples. This, for example, is the 
case of vertices d-e-f and f-g-d. Finally, it is obvious that a complete subnet has 
been developed among the four vertices d to g, with each connected to the others. 

Network performance is related to network cohesion. Several reviews and meta-
analyses on cohesion-performance relationship have found a positive correlation, 
although this correlation is moderate and highly dependent on intragroup 
processes (Chiocchio and Essiembre 2009). We approach the concept of group 
cohesion in a loose and pragmatic way, as the inclination to forge, maintain, and 
even reinforce social ties in order to achieve common goals and mutual benefits. 
With respect to research performance, we follow common practice and use 
citation impact as a proxy, notwithstanding our awareness of the inherent 
limitations of this approach. 

A network is a network insofar as it connects its members. The main purpose of 
this paper is to follow the collaboration relationships among the research teams 
of a formal research consortium on rare diseases and examine if the collective 
evolution leads to greater cohesion. This will be accomplished by first 
determining the research output of the groups and identifying the journal 
publications that two or more groups co-author. Secondly, we will build the 
collaboration networks and apply network metrics to observe the collective 
evolution of the groups and their interrelationships. We are particularly interested 
in those measures that best reflect the above definition of network cohesion. 
Thirdly, we will obtain some performance measures, namely, normalized citation 
frequencies of the papers, in order to explore some eventual association between 
network cohesiveness and the citation impact of research publications. Finally, 
we will offer some concluding remarks which could orientate future research on 
scientific co-authorship networks. 

 

Dataset and analysis 
 
We studied networks established among CIBERER research teams that co-
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authored papers. Although CIBERER was formally established late in 2006 and 
started activities in 2007, we extended the scope of our study from 2000 because 
it was important to identify some “invisible college” effect, that is, some previous 
interactions already in place among the member groups. In that case, the 
foundation of collaboration could be hardly attributable to the formal network 
activities. 

Using author and affiliation data, we identified and retrieved from the Web of 
Science (WoS) 4710 journal publications contributed by CIBERER teams during 
the period 2000 to 2013. As the resulting bibliographic lists used to be 
incorporated to the web site of CIBERER (www.ciberer.es) on a periodical basis, 
every group had the opportunity to chek for the accuracy and completeness of 
their own bibliographies and to ask eventually for amendments. 

In 987 of these papers we identified two or more co-authoring CIBERER teams, 
meaning that the authors of these papers were affiliated to two or more groups. 
As we were only interested in the collaboration inside this consortium, we 
disregarded any other co-authoring data in our analysis, although the impact 
analysis will take into account the presence of international contributors.  

After processing the bibliographic dataset, we obtained two tabular files for 
every year in the period 2000-2013. The first contained the groups who 
published at least one paper in that year. Along with their identification, this 
vertex file listed every team along with their specific research areas, the 
geographical location of their host institutions, their clinical or basic orientation, 
and the number of papers contributed. Only teams publishing at least one paper 
in a given year were included in the corresponding set. The second file was a 
plain list of the pairs identified in the papers for the same year. Those familiar 
with network analysis would recognize the two components of the standard file 
format used by most applications. We used the R package iGraph (Kolaczyk and 
Csardi 2014) to run the analytical routines on the data, which included some very 
basic distributions, such as the degree distribution, as well as network cohesion 
metrics  as they evolved in the time frame.  

In determining the impact of co-authored papers, Börner chose a fractional 
approach to calculate the impact of every author and distributed the number of 
citations received by a paper among its co-authors (Börner et al. 2005). We 
focused, however, on the papers and made a whole count approach because we 
wanted to observe if co-authored papers have a greater impact than single team 
papers. We also obtained from the WoS, the citation data of every Spanish paper 
published between 2000 and 2011. This data included not just the citation 
frequency but also the chronology of received citations. The impact indicator we 
used is a variant of the so-called item oriented field normalized citation score 
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(Lundberg 2007) which compares the relative number of citations to publications 
from a specific group to the average citations received by the Spanish papers of 
the same document type and subject area that were published in the same year. In 
addition to using national instead of world publications as the reference set, we 
limited the citation window to the year the paper was published plus the two 
following years. Thus, a paper in a journal in the category Neurosciences (say 
PMID 17070050) received no citations in 2007, the year it was published, and 
accumulated 6 +7 = 13 in the following two years. Spanish articles published in 
2007 in the same subject category were cited on average 7.53 times in the same 
period and so the quotient results in 13/7.53 = 1.73, meaning that this particular 
paper had a citation impact 73% above average (which is 1).  

Research performance is affected by the internationalization of research – 
meaning the contribution of foreign research teams to the projects and papers 
(Inzelt, Schubert and Schubert 2008). To control for this effect, we isolated those 
papers with no foreign contribution and compared the scores of papers co-
authored by several groups with those contributed by a single team in search of 
some significant differences using the Mann-Whitney test. We also analyzed the 
distribution of citation scores for the collaborative and single group papers 
during the period. 

Results 
 

Research output 

Before discussing the network analysis, it seems convenient to give some data on 
the research output of CIBERER and its groups. We identified 4710 journal 
publications contributed by the 61 research teams between 2000 and 2013. The 
Web of Science subject categories most frequently attributed to the papers were 
by far Genetics & Heredity and Biochemistry & Molecular Biology, then came 
Endocrinology & Metabolism, Neurosciences, Clinical Neurology, and 
Oncology. This distribution gives some idea of the cross-disciplinary 
composition of the consortium. 

Figure 2 summarizes the research output of the groups in terms of published 
papers per team during the period. The average number of papers per team and 
year grew from 4.46 to 10.1 over the period with standard deviations of 2.97 and 
9.46, respectively; these figures are consistent with the evolution of the median 
of the distribution: in 2000 half of the groups published four papers at least – 
while in 2013 they doubled their output and published eight papers. Dispersion 
grew progressively during the period; the initial interquartile range was four, 
while leaving aside the years 2008 and 2009, the range reached and even 
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exceeded seven by the final year of the series. Another imbalance is revealed by 
the progressive appearance of outliers who, in the two latter years of the period, 
reached a maximum output of more than 50 papers a year. It seems that, 
regarding their publications output, setting up the consortium caused a growing 
inequality among the groups. 

On the other hand, Figure 3 presents the dramatic increase in the number of 
foreign institutions (here expressed on a logarithmic scale) contributing to 
CIBERER papers in the last years of the period. For 2000 to 2002, half of 
CIBERER papers just showed one foreing collaborating institution (log10 = 0). 
The median of the distribution rose to 0.3 (meaning two foreing institutions) 
between 2003 and 2011 while, at the same time, the outliers proliferated. In the 
last two years of the series, half of the papers had three international contributing 
institutions or more and the great number of cases which outlay have displaced 
the arithmetic mean above four foreign institutions per paper. The extreme case 
in 2012 corresponds to a consensus paper (PMID 22966490) with more than 
1,150 contributing institutions.  

Cohesion analysis 

Many co-authorship network analysesis begin by looking over the number of 
connections incident to the nodes. While this approach is reasonable in cross-
sectional studies focusing on individual elements of the net, centrality metrics 
looking to identify outstanding nodes are of little use in studying the collective 
behavior of evolving networks. It makes much more sense to pay attention to 
cohesion metrics because those values reflect the evolution of CIBERER groups 
towards either coalescence or disaggregation. Table 1 gives a summary of the 
activity of the teams and also of their relationships throughout the period.,Three 
series of values are provided for every year. The first one includes global 
measures, the second one relates to the local features of the evolving network; 
finally, a set of organizing patterns is detected in the shape adopted by some 
topological features. The first row in Table 1 contains the number of active teams 
for each year, meaning teams that published at least a one paper in that year. 
Since the formal constitution of the consortium in 2007, almost the 97% of the 
groups are active. The share was much lower in 2000, with less than 86%, and 
rose to a 93.4 % in 2006. By 2007, the year the shared activity took off, all the 
groups where active in publishing research papers and this feature has remained 
stable except for 2011 and 2013.  

Global measures 

Although most studies use the number of co-authoring authors or groups as the 
main indicator of the intensity of collaboration, it is the number of connections 
that best reveals how a network evolves. In fact, the average number of groups 
per paper was 1.13 in 2000, 1.15 in 2007, and 1.18 in 2013 (confidence interval 
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1.13-1.21 for this last year) while the number of connections almost tripled for 
the number of active groups which grew 10 % between the extreme years. 
Indeed, the average number of co-authored papers, denoted by the average 
strength row, grew from less than three in 2007 to more than four in 2013 after 
peaking in 2012 (while the period 2000-2006 presents more modest figures). 
Figure 4 shows the evolution of the distribution of the tie strength among the 
groups. 

The proportion of connections established to the total number of possible 
connections is called the network density and, in our case, this density increased 
2.23 times during the period – however, it multiplied by 1.59 between 2000 and 
2006 and by a mere 1.63 in the formal period. A commonly used quantity in 
network literature is the ratio of the total number of triples that form triangles (as 
with the g-h-i nodes in Figure 1 right) over the total number of connected triples, 
as with a-b-c). This is termed transitivity or clustering coefficient, and the values 
fluctuate during the period with no clear tendency.  

Local measures and subgraphs 

A network is connected if there is a path (a sequence of nodes and ties) between 
each pair of nodes. Figure 1 (right) is a connected network while the network on 
the left has two components. It is obvious that the more components, the less 
cohesive is a network. The giant component is the subgraph with the larger 
number of connected groups. The corresponding values for these two metrics are 
shown in Table 1 and although the number of components has remained 
practically unchanged since 2007, it is the size of the giant component that 
reveals how cohesive the CIBERER network has become. In 2007, the first year 
of collective activity, the giant component involved 52.46 % of the active groups; 
in 2013 this share rose to 83.33%. In the early years, only 2006 showed a share 
above 50%. The emergence of a giant component is not the only indicator at the 
local level of a rise in connectivity and, hence, net cohesion. The graph is 
complete when every node is connected to every other node. A complete 
subgraph is called a clique, as is the case with subgraphs d-e-f-g and g-h-i in 
Figure 1 (right). Cliques in Table 1 are classified by the number of 
interconnected teams – from two to six. It becomes apparent that the formal 
period is populated by cliques of three to five groups, with cliques of order six in 
2008 and 2010.    

Communities and mixing 

In addition to the local topology of a network and its subgraphs, there are some 
results related to the patterns of interrelation among the nodes, the so-called 
communities. A community is formed by an internally connected set of nodes for 
which the internal density is significantly larger than the external density 
(Estrada 2011). The last two rows of Table 1 contain data on the evolving 
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community structure of the CIBERER network. The most obvious finding is the 
sharp decline in the number of communities since the consortium’s start and an 
increase in the average number of members. This result is consistent with the 
increase in higher order ( ≥ 3 members) cliques and the average number of 
members of each community. To further investigate this logical organization of 
the net, we examined whether there was a tendency for the groups to connect 
with alike others. This feature is called homophilly (or assortativity) and, like the 
correlation coefficient, its values range from -1 to 1, depending on the degree of 
association of nodes with respect to some nominal or scalar variable (Newman, 
2003a). We have calculated the assortativity coefficient of the networks for 2000, 
2007 and 2013 with respect to the degree of the vertices and several attributes 
such as output (number of papers), location, research field, and basic or clinical 
profile. With regard to this last feature, teams were classified according to their host 
institutions. So, a group pertaining to a research institution (say Spanish High Research 
Council) or to an academic one (Autonomous University of Madrid, for instance) were 
classified as basic gropus while those working in hospitals were considered as clinically 
oriented. 

The values appear in Table 2 and show (both with respect to the number of 
collaborations of every group and the number of published papers) values close 
to zero – meaning a lack of influence on the propensity to collaborate. Most of 
the research groups were concentrated in the three cities included in the table and 
it is worth noticing that the coefficients captured in 2000 decrease in 2007 and 
2013. Geographical proximity does not seem to play a significant role after an 
initial stage in the first period. A similar decline in the coefficients can be seen 
with regard to the clinical or basic orientation of the groups but, in this case, 
negative values might suggest a propensity to collaborate between basic and 
clinical groups, that fits with the objectives of the consortium. Moreover, the 
adscription of some groups to the same research line does not translate into a 
greater connectivity; as the values captured at the extreme years decrease. The 
most conspicuous variation appears in the case of hereditary cancer, a highly 
assortative set of seven groups in 2000 whose thematic relationship seems to 
have vanished as time went by. This is also the case for the pediatric groups; 
however, it started from a lower assortativity coefficient based on its thematic 
profile. 

First dates  

When we observed the year in which two groups first co-authored a paper, we 
found that more than a half (54.67%) of these 300 “first acquaintances” took 
place in 2007 or later, which reveals the influence of the consortium on the 
behavior of the groups.   

The three-part Figure 5 captures three moments of the evolving collaboration 
among CIBERER groups. Research groups are represented as circles whose 
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diameter is proportional to their research output. As only the collaborating 
groups are depicted, it is evident from these layouts the progressive incorporation 
of the units to the commong goal and the growing connectivity from earlier 
stages.  

Citation impact  

Except for 2003, CIBERER papers performed quite well in terms of weighted 
citation frequency as mesaured through the Karolinska indicator (Lundberg 
2007) here calculated for a three-year window. The mean values outperform the 
average of the corresponding subject fields particularly in 2002 (Ki=1.449) and 
in 2008 (Ki=1.424). However, as Figure 6 points out, the median values never 
reach the unit (marked as the horizontal dotted line) meaning that half of the 
papers don’t get the expected citation score. This fact, along with the coincidence 
of heavy ouliers in those succesful years, suggests that, as expected, the citation 
distributions are highly skewed. For example, another consensus document 
contributed by 236 institutions and published in 2008 (PMID 18188003) had 405 
citations in the three-year window after publication. When compared to Figure 3, 
the citation distributions of Figure 6 suggest a finding that several groups 
(Larivière et al. 2015 for example) have confirmed: the relationship between co-
authorship and impact data. 

To further investigate this matter and control for the effect of international 
collaboration on citation impact, we focused our citation analysis on the papers 
published by CIBERER groups between 2000 and 2011 and not co-authored by 
foreign institutions. Out of the 2,340 papers which met these conditions, 328 
were contributed by more than one CIBERER group while 2,012 were authored 
by a single team. Let us call these collaborative and singleton papers 
respectively. Rather than using the mere citation frequency, we drew again on the 
field normalized citation impact of each paper (Karolinska indicator or Ki for 
short) as formulated in the methods section (Lundberg 2007). 

The top left density plot in Figure 7 depicts the frequency distribution of Ki for 
the 2,340 papers. Three years after publication, 325 papers (approximately 14%) 
remained uncited while a similar proportion (13.77%) were cited just once. Nine 
papers were cited 50 or more times in the three-year period that followed their 
publication. This data comes as no surprise as citation distributions are usually 
skewed. For the sake of comparison, the overall proportion of uncited Spanish 
biomedical papers (those attributed to any of the 74 Web of Science biomedical 
subject categories) in the same period was 19.79%. 

To compare the citation impact of both collaborative and singleton sets, our first 
approach was to observe the proportion of uncited papers over those published 
every year in each of the two groups (Figure 7, top right). On average, the 
proportion of single group papers uncited in the three-year term was 10.41 % for 
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those published in 2007 and onwards – while the share rises to 13% if we take 
the whole period from 2000. The percentages for the collaborative group of 
papers were 1.29 and 1.15 respectively. Therefore, the share of uncited papers 
was approximately ten times lower among the collaborative papers.  

The Wilcoxon test for the two independent groups (the Mann-Whitney test) 
revealed significant differences between the Ki distributions for the collaborative 
and singleton sets of papers (W = 330680, at p-value = 0.01108) with an index 
(mean ± standard deviation) of 1.3 ± 1.4 and 1.2 ± 1.51 respectively. The 
collaborative group exceeded the singles by 1.51 to 1.21 in the first period. In the 
latter period, the two groups showed similar values (1.2 to 1.18 for the 
collaborative papers). 

A closer view of the citation distributions is given in the two boxplots at the 
bottom of Figure 7, which show how the Ki of the papers is distributed 
throughout the initial and formal periods of CIBERER. The bottom left plot 
corresponds to the singleton papers and the bottom right to the collaborative 
group. The dotted horizontal line through both plots marks the unit value, or the 
level where Ki equals the average citation rate of the subject categories attributed 
to the papers. The first difference among the two distributions is the reduced 
number of outliers for the collaborative papers. There seems to be a tendency 
towards coalescence and homogeneity in this group while the singleton shows a 
greater spread of Ki values. With regard to the singleton distributions between 
the two periods, 39.2 % of the papers published in the initial (2000-2006) period 
had a Ki greater or equal to the unit. The share was similar (40.55 %) in the latter 
period. By contrast 54.42 % of the collaborative papers published in the initial 
period had a Ki larger than one and this falls to 40.88% in the formal period of 
the consortium.  

These last results do not suggest that collaboration among CIBERER research 
groups does not translate into greater impact. It must be taken into account that 
the papers with no foreign contribution represent barely half of the research 
output. Indeed, collaboration is just one of the factors that determine citation 
impact. Moreover, the initial call for groups already required a certain impact 
from previous publications. Finally, the taxonomy of network or group 
performance is much richer than a pure measure of academic influence could 
reflect (Chiocchio and Essiembre 2009) and so, the citation impact might be 
related just to the contextual performance while not influencing the task and 
outcome performances (which are closer to the final goals of the network). 

Conclusions 

Two main conclusions arise from this study. Firstly, the analysis of Spanish 
research network on rare diseases reveals a growing cohesion. Secondly, this 
greater cohesion does not translate into a greater impact, as measured by the 
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citation analysis of the papers.  

We have detected some level of interaction among the groups before the net was 
formally founded. However, and despite the apparent steadiness that some global 
measures indicate, there is a clear tendency towards coalescence as revealed by 
the progressive reduction of the number of separate components along with the 
emergence of a giant component. Indeed, the appearance of fully connected 
subgroups (cliques) of higher order and the reduction of the number of separate 
communities combined with the increase in the average number of members are 
additional indicators of greater network cohesion. In the end, a network is made 
up of connected elements, otherwise it is not a network. 

The normalized citation score of the papers reveals a larger citation impact of 
CIBERER groups over the rest of contemporary Spanish publications in the same 
fields. This advantage was present before the formal foundation of the net and is 
not affected by the participation of more than one group when the contribution of 
international teams is disregarded. 

Finally, let us quote the team science report that says “As teams and groups 
develop and move through their phases of scientific problem-solving, their 
interactions will change, and the field must identify how to measure these team 
processes”. Bibliometrics and co-authorship network analyses are explicitly 
mentioned, along with other qualitative methods such as the techniques whose 
combination is needed to ascertain how team processes are related to the multiple 
goals of transdisciplinary team science (Cooke and Hilton 2015 p. 52) Our 
ultimate goal has been to contribute with our results to this emerging field of 
research. 
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Table 2. Assortativity coefficient with regard to geography, subject 

field and profile of the CIBERER research groups 

    

 

2000 2007 2013 

    assortativity (degree) 0.035 0.034 -0,029 

research output -0.093 -0.008 0.066 

    geographical location 

   Barcelona 0.32 0.41 0.291 

Madrid 0.354 0.366 0.181 

Valencia 0.347 0.232 0.155 

    clinical or basic profile -0.408 0.175 -0.031 

    subject field 

   
    Mitochondrial medicine -0.071 0.388 0.166 

Genetic medicine 0.077 0.112 0.175 

Hereditary Metabolic Medicine 0.262 0.51 0.101 

Neurosensory pathology 0.139 0.232 0.051 

Pediatric and Developmental 

medicine 0.466 0.25 0.078 

Hereditary cancer 0.65 0.19 0.27 

Endocrine medicine NA -0.29 -0.06 
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Figures’ captions 
 
Figure 1. Successive stages of an ideal network evolving (from left to right) 
towards a greater cohesion. 
Figure 2. The research output of CIBERER in terms of the distribution of 
papers per group for each year of the period. Full data is available from the 
authors. 
Figure 3. The frequency distribution of the number of foreign institutions 
per paper on a logarithmic scale shows its dramatic increase, particularly in 
the two last years. As always, full data is available upon request. 
Figure 4. The evolution of vertex strength (weighted degree) of the groups 
along the period. Full distribution is available from the authors. 
Figure 5. Three snapshots of the CIBERER co-authorship network. 
Clockwise from top left, the nets from 2000, 2007 and 2013. In these dual 
circle layouts (drawn with Gephi) nodes represent teams and have been 
sized following the research output of every group. Isolated (non 
collaborating) teams have been removed. Thickness of edges denotes 
intensity of collaboration. Nodes can be identified by their labels. 
Figure 6. Evolving impact metrics of CIBERER papers from 2000 to 2011. 
The scores have been calculated following Karolinska indicator (Lundberg 
2007) and the doted horizontal line marks the average impact of the 
Spanish papers in the corresponding subjects fields.  
Figure 7. A summary of the citation impact analysis of CIBERER. 
Clockwise from top left the density plot of the citation frequency of the 
papers; the share of uncited papers among the singleton (dark bars) and the 
collaborative papers; the distribution of the Karolinska index (Ki) from 
2000 to 2012 of singeton papers (bottom left) and that of the collaborative 
papers (bottom right). Full data are available from the authors. 
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