
On Unfolding Completeness for
Rewriting Logic Theories

Technical Report
Marı́a Alpuente

DSIC, Universidad Politécnica de Valencia
Camino de Vera s/n, Apdo. 22012,

46071 Valencia, Spain.
Email: alpuente@dsic.upv.es

Michele Baggi, Moreno Falaschi
Dip. di Scienze Matematiche e Informatiche

Pian dei Mantellini 44,
53100 Siena, Italy.

Email: {baggi,moreno.falaschi}@unisi.it

Demis Ballis
Dip. Matematica e Informatica

Via delle Scienze 206,
33100 Udine, Italy.

Email: demis@dimi.uniud.it

Abstract—Many transformation systems for program opti-
mization, program synthesis, and program specialization are
based on fold/unfold transformations. In this paper, we investigate
the semantic properties of a narrowing-based unfolding trans-
formation that is useful to transform rewriting logic theories.
We also present a transformation methodology that is able to
determine whether an unfolding transformation step would cause
incompleteness and avoid this problem by completing the trans-
formed rewrite theory with suitable extra rules. More precisely,
our methodology identifies the sources of incompleteness and
derives a set of rules that are added to the transformed rewrite
theory in order to preserve the semantics of the original theory.

I. INTRODUCTION

Program transformation is a method for deriving correct and
efficient programs. The folding and unfolding transformations,
which were first introduced by Burstall and Darlington [10]
for functional programs, are the most basic and powerful
techniques for a program transformation framework. Unfold-
ing was introduced in logic programming by Komorowski
[22]. The combined effect of unification with rewriting by
means of narrowing was first proposed in [2] and was also
achieved in [13], [14], [29] by means of a superposition
procedure for program synthesis. Unlike the case of pure logic
or pure functional programs, where unfolding is correct w.r.t.
practically all available semantics, unrestricted unfolding using
narrowing does not preserve program meaning, even when we
consider the normalization semantics (i.e., the set of normal
forms) or the evaluation semantics (i.e., the set of values) of
the program. In [2], some conditions were ascertained which
guarantee that an equivalent program w.r.t. the semantics of
computed answers is obtained for functional logic programs.

Unfolding is essentially the replacement of a call by its
body, with appropriate substitutions. Folding is the inverse
transformation, i.e., the replacement of some piece of code
by an equivalent function call. For functional programs,
folding and unfolding steps involve only pattern matching.
The fold/unfold transformation approach was first adapted to
logic programs by Tamaki and Sato [32] by replacing pattern
matching with unification in the transformation rules. A lot

of literature has been devoted to proving the correctness of
fold/unfold systems w.r.t. the various semantics proposed for
functional programs [10], [23], logic programs [21], [28],
[31], [32], functional logic programs [3], and constraint logic
programs [16].

Quite often, however, transformations may have to be
carried out in contexts in which the function symbols
satisfy certain equational axioms. For example, in rule-based
languages such as ASF+SDF [7], Elan [8], OBJ [19],
CafeOBJ [15], and Maude [12], some function symbols
may be declared to obey given algebraic laws (the so-called
equational attributes of OBJ, CafeOBJ and Maude), whose
effect is to compute with equivalence classes modulo such
axioms while avoiding the risk of non-termination. Similarly,
theorem provers, both general first-order logic ones and
inductive theorem provers, routinely support commonly
occurring equational theories (e.g. associative-commutative
theories) for function symbols. Moreover, several of the
afore-mentioned languages and provers have an expressive
order-sorted typed setting with sorts and subsorts (where
subsort inclusions form a partial order and are interpreted
semantically as set-theoretic inclusions of the corresponding
data sets). The unfolding transformation has been scarcely
studied so far for rewriting logic theories that may include
sorts, rules, equational theories, and algebraic laws (such as
commutativity and associativity). Apart from our preliminary
work [1], where we developed a narrowing-based, fold/unfold
transformation framework for optimizing rewriting logic
theories, we are not aware of any other fold/unfold
transformation technique which can deal with such advanced
rewriting logic features.

Our contribution. In this paper, we formalize a powerful
narrowing-based unfolding transformation for rewriting logic
theories that preserves the rewriting logic semantics of the
original theory. Our technique relies on the fact that rewrit-
ing logic also supports the narrowing mechanism [11] that
successfully combines term rewriting and unification [17]

and is efficiently implemented in the functional programming
language Maude [12]. Roughly speaking, unfolding is defined
by applying narrowing steps to the right-hand sides of both
rules and equations of the rewrite theory under examination
in order to obtain the unfolded theory. Narrowing allows us
to empower the unfold operation by implicitly embedding the
instantiation rule (the operation of the Burstall and Darlington
framework [10] that introduces an instance of an existing rule)
into unfolding by means of unification.

This work greatly improves the unfolding operator described
in [1], by relaxing several strong syntactic restrictions which
we had to enforce to guarantee the completeness of the
unfolding transformation. However, we do not consider in
this paper other transformation rules like folding or definition
introduction/elimination, which we did study in [1].

A related but different unfolding technique for transforming
(canonical) conditional term-rewriting systems (TRS), is pro-
posed in [2], where the main goal is to preserve the semantics
of (narrowing) computed answers. Here, a completeness result
is proved for left-linear and L-closed programs, where the
closedness notion compares all calls in the right-hand side
of the program rules w.r.t. the left-hand side of the rules
similarly to the closedness notion used in Partial Evaluation
[4], [5]. Then, a generalized notion of unfolding is provided,
which, in the case of unconditional programs, keeps the
original rule in the transformed program. With this generalized
unfolding operation, completeness holds under less demanding
conditions. In this work, we consider possibly non-confluent
and non-terminating rewriting logic theories, and we study
the unfolding operation w.r.t. the standard rewriting logic
semantics of ground normal forms. Thus, in our setting, no
notion similar to the L-closedness is needed.

However, there are pathological situations where unfolding
may cause incompleteness. Hence, we develop a transforma-
tion methodology that is able to determine whether an unfold-
ing operation would cause incompleteness and overcome this
problem by deriving a set of new rules that are added to the
transformed program in order to preserve the semantics of the
original program.

The paper is organized as follows. In Section II, we recall
some essential notions about rewriting logic, and, in Section
III, we recall the notion of narrowing for rewriting logic
theories. Section IV formalizes the unfolding operation for
order-sorted rewrite theories and identifies the causes of in-
completeness. Then, a methodology is proposed that is able
to recover the semantics of the original program. In Section
V, we demonstrate the correctness and completeness of the
unfolding operation w.r.t. the considered semantics, and we
conclude in Section VI. Proofs of all results are given in
Appendix II.

II. PRELIMINARIES

We consider an order-sorted signature Σ, with a finite poset
of sorts (S,≤). We assume an S-sorted family X = {Xs}s∈S
of disjoint variable sets. TΣ(X)s and TΣs are the sets of terms
and ground terms of sort s, respectively. We write TΣ(X) and

TΣ for the corresponding term algebras. The set of variables
that occur in a term t is denoted by Var(t). We write on for
the list of syntactic objects o1, . . . , on.

A position p in a term t is represented by a sequence
of natural numbers. Λ denotes the empty sequence, and by
root(t) we denote the symbol of t that is rooted at position
Λ. Positions are ordered by the prefix ordering: p ≤ q, if ∃w
such that p.w = q. Two positions q and p are not comparable if
q 6≤ p and p 6≤ q. Given a term t, let Pos(t) and NVPos(t),
respectively, denote the set of positions and the set of non-
variable positions of t (i.e., positions where a variable does
not occur). t|p denotes the subterm of t at position p, and
t[s]p denotes the result of replacing the subterm t|p in t by
the term s.

A substitution σ is a mapping from variables to terms
{x1/t1, . . . , xn/tn} such that xiσ = ti for i = 1, . . . , n (with
xi 6= xj if i 6= j), and xσ = x for all other variables x.
The identity substitution is denoted by id. A substitution σ is
called ground if for each x/t ∈ σ, t is a ground term.

An (order-sorted) equational theory is a pair E = (Σ,∆ ∪
B), where Σ is an order-sorted signature, ∆ is a collection
of equations (l = r, with Var(r) ⊆ Var(l)), and B is a
collection of equational axioms that express associativity (A)
and/or commutativity (C) for some defined symbols of Σ. We
assume Σ is a partition Σ = C] D of symbols c ∈ C, called
constructors, and symbols f ∈ D, called defined symbols, each
of which has a fixed arity, where D = {f | f(t) = r ∈ ∆}
and C = Σ−D.

The equations in an equational theory E are considered as
simplification rules by using them only in the left to right
direction; therefore, for any term t, by repeatedly applying the
equations as simplification rules, we eventually reach a term
to which no further equations apply. The result is called the
canonical form of t w.r.t. E. This is guaranteed by the fact that
E is required to be terminating and Church-Rosser [9]. The
set of equations in ∆ together with the equational axioms of
B in an equational theory E induce a congruence relation on
the set of terms TΣ(X), which is usually denoted by =E . E is
a presentation or axiomatization of =E . In abuse of notation,
we speak of the equational theory E to denote the theory
axiomatized by E. Given an equational theory E, we say that
a substitution σ is an E-unifier of two terms t and t′ if tσ and
t′σ are both reduced to the same canonical form modulo the
equational theory (in symbols tσ =E t′σ). For substitutions
σ, ρ and a set of variables V , we define σ =E ρ if xσ =E xρ
for all x ∈ V , and we define σ �E ρ if there is a substitution
η such that ρ =E (η ◦ σ). Given two terms t, t′ ∈ TΣ(X), a
set of substitutions CSUE(t, t′) is said to be a complete set
of unifiers w.r.t. t and t′ if (i) each σ ∈ CSUE(t, t′) is an
E-unifier of t and t′, and (ii) for any E-unifier ρ of t and
t′, there is a σ ∈ CSUE(t, t′) such that σ �E ρ. For AC
theories, a finite complete set of unifiers does exist [6].

A (order-sorted) rewrite theory is a triple R = (Σ,∆ ∪
B,R), where R is a set of rewrite rules of the form l →
r, with Var(r) ⊆ Var(l), Σ is the pairwise disjoint union
D1] D2] C such that (D1] C,∆ ∪ B) is an order-sorted

equational theory, and D2 = {f | f(t) → r ∈ R} is the set
of symbols defined by the rules of R. We omit Σ when no
confusion can arise. Throughout the paper, a rewrite theory is
also called a program.

Given a rule (l → r) or an equation (l = r), terms l and r
are called the left-hand side (or lhs) and the right-hand side
(or rhs) of the rule (resp. equation). An equation of the form
t = t′ or a rule of the form t → t′ is said to be left (resp.
right) linear, if t (resp. t′) is linear, i.e., no variable occurs
in the term more than once. The equation t = t′ (resp. the
rule t → t′) is called linear if both t and t′ are linear. A set
of equations/rules is said to be (left or right) linear, if each
equation/rule in it is (left or right) linear.

We define the one-step rewrite relation on TΣ(X) as fol-
lows: t →R t′ if there is a position p ∈ NVPos(t), a rule
l → r in R, and a substitution σ such that t|p = lσ and
t′ = t[rσ]p. The relation →R/E for rewriting modulo E is
defined as =E ◦ →R ◦ =E . Let → ⊆ A × A be a binary
relation on a set A. We denote the transitive closure by →+,
the reflexive and transitive closure by →∗, and rewriting up
to normal forms by →!.

Considering the rewrite relation→R/E , since E-congruence
classes can be infinite, →R/E-reducibility is undecidable in
general. One way to overcome this problem is to implement
R/E-rewriting by a combination of rewriting using oriented
equations (oriented from left to right) and rules [33]. We define
the relation →∆,B on TΣ(X) as follows: t →∆,B t′ if there
is a position p ∈ NVPos(t), l = r in ∆, and a substitution
σ such that t|p =B lσ and t′ = t[rσ]p. The relation →R,B is
similarly defined, and we define →R∪∆,B as →R,B ∪ →∆,B .
The idea is to implement →R/E using →R∪∆,B .

The computability of →R∪∆,B as well as its equivalence
w.r.t. →R/E are assured by enforcing some conditions on the
considered rewrite theories [24], [33]. More specifically, we
ask for coherence between the rules and the equations as well
as the assumption of Church-Rosser and termination properties
of ∆ modulo the equational axioms B. A formal description
of these requirements can be found in Appendix I.

Example II.1 Consider the following rewrite theory (Σ,∆ ∪
B,R) such that C = {b, c, e}, D1 = {a, d}, D2 = {f},
∆ = {a = b, d = e}, and R = {f(b, c) → d} where B
contains the commutativity axiom for f . Then we can R/E-
rewrite term f(c, a) to e by means of the following →R∪∆,B

rewrite sequence f(c, a)→∆ f(c, b) =B f(b, c)→R d =∆ e.

A term t is called a redex, if there exist a rule l → r, or
equation l = r, and a substitution σ such that t =B lσ. A term
t without redexes is called a normal form. A rewrite theory
R is weakly normalizing if every term t has a normal form
in R, though infinite rewrite sequences starting from t may
exist. A rewrite theory is sufficiently complete [20] if enough
rules/equations have been specified so that functions of the
theory are fully defined on all relevant data (that is, defined
symbols do not appear in any ground term in normal form).

III. NARROWING IN REWRITING LOGIC

Narrowing [17] generalizes term rewriting by allowing
free variables in terms (as in logic programming) and by
performing unification (at non-variable positions) instead of
matching in order to (non-deterministically) reduce a term.
The narrowing relation for rewriting logic theories is defined
as follows [27].

Definition III.1 (R ∪∆, B-Narrowing) Let R = (Σ,∆ ∪
B,R) be an order-sorted rewrite theory. The R ∪ ∆, B-
narrowing relation on TΣ(X) is defined as t ;σ,p,R∪∆,B t′ if
there exist p ∈ NVPos(t), a rule l → r or equation l = r
in R ∪ ∆, and σ ∈ CSUB(t|p, l) such that t′ = (t[r]p)σ.
t ;σ,p,R∪∆,B t′ is also called a R ∪∆, B-narrowing step.

Example III.1 Consider the rewrite theory of Example II.1
where we substitute the rule in R with the following
rule f(x, f(y, b)) → d. Then we can perform the nar-
rowing step f(f(w, z), c) ;σ,Λ,R∪∆,B d, with σ =
{x/c, z/b, w/y}, since by the commutativity of f we have that
f(f(w, z), c){z/b, w/y} =B f(x, f(y, b)){x/c}.

When it is clear from the context, we omit (R∪∆, B) from
the narrowing relation. Narrowing derivations are denoted by
t0 ;∗σ tn, which is shorthand for the sequence of narrowing
steps t0 ;σ1,p1 . . . ;σn,pn tn with σ = σn ◦ . . . ◦ σ1 (if
n = 0 then σ = id). Completeness of narrowing for several
meaningful classes of rewriting logic theories (e.g. topmost
theories, linear theories, etc.) has been studied in [27].

In rewriting logic implementation such as Maude, defined
symbols can be given the commutativity axiom or both com-
mutativity and associativity, but not the associativity alone
since unification modulo associativity is infinitary, i.e., in-
finitely many unifiers may exist modulo associativity [6].

In what follows, we always consider weakly normalizing
and sufficiently complete rewrite theories. These conditions are
essential in order to prove the correctness and completeness
of the unfolding operation w.r.t. the considered semantics (i.e.,
Theorem V.1).

IV. INCOMPLETENESS DUE TO UNFOLDING

In [1], we proposed a fold/unfold-based transformation
framework for optimizing rewriting logic theories which is
based on narrowing. Starting from an initial, maybe inefficient,
program we can transform it by using some elementary trans-
formation rules. The essential rules are folding and unfolding,
i.e., contraction and expansion of subexpressions of a program
using the definitions of the program itself (or of a preceding
one). We employ narrowing in order to empower the unfolding
operation by calculating the instance of an existing rule to
embed the unfolding rule automatically via unification. Other
rules that have been considered are, instantiation, definition
introduction/elimination and abstraction. In this paper, we
focus on the unfolding operation, which allows us to expand
a redex in the rhs of an equation or rule as follows.

Definition IV.1 (Unfolding) Let R = (Σ,∆ ∪ B,R) be a
program and F be an equation (resp. rule) of the form l = r
(resp. l → r) in R. We obtain a new program from R by
replacing F with the set of equations (resp. rules)

{lσ = r′ | r ;σ,∆,B r′ is a ∆, B narrowing step}

{lσ → r′ | r ;σ,R∪∆,B r′ is a R ∪∆, B narrowing step}

The following example suggests that right linearity must be
required for completeness. For the sake of simplicity we omit
sort declarations when specifying rewriting logic theories.

Example IV.1 Consider the following rewrite theory R =
(ΣR, ∅, R), where ΣR is the signature containing all the
symbols of R and

1.
2.
3.
4.
5.
6.

R :
f(d, d) → a
f(b, c) → b

a → b
a → c

g(x) → f(x, x)

R′ :
f(d, d) → a
f(b, c) → b

a → b
a → c

g(d) → a

We obtain program R′ = (ΣR, ∅, R′) from R by applying
an unfolding step over the rule 5 in R, through the narrowing
step f(x, x) ;x/d a. Let us consider term g(a). In the original
program, g(a) can rewrite to the normal form b by the rewrite
sequence: (i) g(a) →5 f(a, a) →3 f(b, a) →4 f(b, c) →2 b.
In the transformed program, such a rewrite sequence is no
longer possible from term g(a), and, hence, the normal form
b is lost.

We consider the standard semantics of rewrite theories given
by the following definition.

Definition IV.2 (Program Semantics) Given a rewrite the-
ory R = (Σ,∆ ∪ B,R), the semantics of R is the set
S(R) = {(s, t) | s ∈ TΣ, s→∗R∪∆,B t}.

Since we consider rewrite theories where defined symbols
are allowed to be arbitrarily nested in left-hand sides of rules,
rule unfolding may cause a loss of completeness for the trans-
formed program w.r.t. the semantics of the original one. Let us
illustrate this problem by means of some examples. Since the
equational axioms for associativity and commutativity do not
affect the incompleteness problem that we want to describe, for
the sake of simplicity, in the following examples, we consider
defined symbols without any equational axiom. A discussion
on equational axioms and incompleteness is postponed until
Section IV-C.

Example IV.2 Consider the following rewrite theory R =
(ΣR, ∅, R), where ΣR is the signature containing all the

symbols of R and

1.
2.
3.
4.
5.

R :
g1(x) → x
h(x) → 0

h(g1(x)) → 1
f(x) → g1(x)

R′ :
g1(x) → x
h(x) → 0

h(g1(x)) → 1

f(x) → x

We get program R′ = (ΣR, ∅, R′) from R by applying an
unfolding step over rule 4 in R, through the narrowing step
g1(x) ;ε x. Term h(f(0)) can be rewritten inR to the normal
forms 0 or 1 by means of the rewrite sequences h(f(0)) →4

h(g1(0)) →1 h(0) →2 0, and h(f(0)) →4 h(g1(0)) →3 1,
respectively. The only possible rewrite sequences from h(f(0))
in R′ are h(f(0)) →5 h(0) →2 0, and h(f(0)) →2 0, thus
we miss normal form 1. In fact, symbol g1 is needed for rule
3 to be applied, and function f provides that occurrence of
g1 needed to reach the normal form 1. However, the unfolding
of rule 4 forces the occurrence of symbol g1 to be evaluated,
and, hence, that rewrite sequence is no longer available in
R′.

A naı̈ve attempt to identify the rules that are involved in
the loss of completeness might be to look for those rules
whose left-hand sides contain an instance of the right-hand
side of the rule that we want to unfold. In Example IV.2,
the right-hand side of rule 4 is embedded in the left-hand
side of rule 3. Hence, in order to avoid incompleteness, we
could forbid the unfolding operation whenever one such a rule
existed in the program. In [1] we imposed such a syntactic
restriction on the unfolding operation. Unfortunately, as shown
by Example IV.3, in general, incompleteness can be caused
by the interference among several rules, which cannot be
identified by using the naı̈ve criterion proposed in [1].

Example IV.3 Consider the following rewrite theory R =
(ΣR, ∅, R), where ΣR is the signature that contains all the
symbols of R and

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.

R :
g1(x, 0) → x
g1(x, 1) → x

g1(0, g1(x, y)) → 0
g2(x) → x

h(x, y) → x
h(g2(x), y) → p(x, y)

p(x, y) → x
p(g1(x, y), z) → 1

k(x) → x
k(g2(x)) → 1

f(x, y) → g2(g1(x, y))

R′ :
g1(x, 0) → x
g1(x, 1) → x

g1(0, g1(x, y)) → 0
g2(x) → x

h(x, y) → x
h(g2(x), y) → p(x, y)

p(x, y) → x
p(g1(x, y), z) → 1

k(x) → x
k(g2(x)) → 1

f(x,0) → g2(x)
f(x,1) → g2(x)

f(0,g1(x,y)) → g2(0)
f(x,y) → g1(x,y)

We obtain program R′ = (ΣR, ∅, R′) from R by ap-
plying an unfolding step over rule 11 in R, through the
following narrowing steps: (i) g2(g1(x, y)) ;ε g1(x, y), (ii)
g2(g1(x, y)) ;y/0 g2(x), (iii) g2(g1(x, y)) ;y/1 g2(x),
and (iv) g2(g1(x, y)) ;x/0,y/g1(x′,y′) g2(0). The following

rewrite sequence can be proved in R: h(f(0, 1), 0) →11

h(g2(g1(0, 1)), 0) →6 p(g1(0, 1), 0) →8 1. In R′ we cannot
reach the normal form 1 starting from term h(f(0, 1), 0)
because rules 6 or 8 cannot be applied. This is due to the fact
that the occurrences of both symbols g2 and g1 is essential
for rules 6 and 8 to be applied in order to obtain the normal
form 1, while the unfolding step forces these occurrences to be
evaluated. Therefore, in the transformed program, the rewrite
sequence leading to normal form 1 is no longer viable. In
this example, rules 6 and 8 are both involved in the loss of
completeness.

The naı̈ve idea outlined above to solve the case in Example
IV.2 does not apply to Example IV.3 because the right-hand
side of rule 11 does not appear in the left-hand side of any
rule; however, it is distributed between the left-hand sides of
rules 6 and 8.

In the following, we develop a methodology that is able
to identify whether an unfolding operation causes incomplete-
ness, and we overcome this problem by conveniently extending
the transformed program. More precisely, according to the
identified incompleteness sources, the methodology derives a
set of new rules that are added to the transformed program in
order to recover the ground semantics of the original program.

A. Analyzing potential incompleteness

Let R = (Σ, E,R) be a program, let Ru : lhsu →
rhsu ∈ R be the rule that we want to unfold and let R′ be
the program obtained from R by performing the unfolding
operation.

Step 1) Looking for rules that may be involved in incomplete-
ness.
At the beginning, we look for rules in R whose left-hand
side contains a proper subterm rooted by the root symbol
of rhsu. Let {R1, . . . , Rn} be such a set of rules, and for
each lhsi, i ∈ {1, . . . , n}, let p1, . . . , pki

be the positions in
lhsi where an occurrence of the root symbol of rhsu has
been found. Then we construct the following set of terms
L = {lhsi[rhsu]pj

| i ∈ {1, . . . , n}, j ∈ {1, . . . , ki}}, where
we replace the subterm rooted at position pj in each lhsi, with
the right-hand side rhsu. In order to avoid interference among
the variables of rhsu and the context lhsi[]pj

, we consider a
variable renaming of rhsu with fresh variables.

Finally, for each term lhsi[rhsu]pj , we try to perform just
one narrowing step at the root position using the corresponding
rule Ri. In symbols, we try to perform the following narrowing
step: lhsi[rhsu]pj

;σj ,Λ,(Ri∪∆,B) r
′
j . We collect the derived

terms in a set T of triples of the form (lhsi[lhsu]pj
, σj , r

′
j),

where the first component is the lhsi where we replaced the
subterm rooted at position pj with the left-hand side lhsu. We
consistently apply to lhsu the same variable renaming applied
to rhsu.

Roughly speaking, if the considered narrowing step cannot
be done, it follows that no rewrite step can be performed
with rule Ri from any instance of term lhsi[rhsu]pj

, and,

hence, there is no incompleteness. Otherwise, the methodology
proceeds to verify whether term r′j can be reached in R′ from
term lhsi[lhsu]pj

σj .

Example IV.4 Let us again consider the rules of Exam-
ple IV.3. Recall that the rule for unfolding is f(x, y) →
g2(g1(x, y)). We first look for rules whose left-hand sides
contain a proper subterm rooted with symbol g2, and we find
rules 6 and 10. We then construct the set L that contains terms
h(g2(g1(w, z)), y) and k(g2(g1(w, z))), and we try to perform
a narrowing step at the root position from each of these terms
by using rules 6 and 10, respectively.

We can perform the following narrowing steps:

h(g2(g1(w, z)), y) ;σ,Λ,R6 p(g1(w, z), y)

where the computed unifier is σ = {x/g1(w, z)}, and

k(g2(g1(w, z))) ;ρ,Λ,R10 1

where the computed unifier is ρ = {x/g1(w, z)}.
Finally, we construct the set T which contains the triples

(h(f(w, z), y), {x/g1(w, z)}, p(g1(w, z), y))
(k(f(w, z)), {x/g1(w, z)}, 1)

Step 2) Restoring Completeness.
For each triple (t1, σ, t2) ∈ T , we add rule t1σ → t2 to R′.
This guarantees that the ground semantics of R is preserved
in the new program R′, as stated by Theorem V.1. In our
example, we add rules h(f(w, z), y) → p(g1(w, z), y) and
k(f(w, z))→ 1 to R′.

Figure 1 shows the backbone of the procedure that imple-
ments the methodology above. The restoreCompleteness pro-
cedure takes the initial program R, the transformed program
R′, and the right-hand side of the unfolded rule as arguments,
and it returns R′ extended with some new rules computed as
explained above. The getInvolvedRules call detects the rules in
R that contain a proper term whose root symbol is root(rhsu)
in their lhs. subst rhsu replaces the subterms rooted with the
function symbol root(rhsu) in the lhs of the rules by term
rhsu, and narrowingOneStep tries to perform a narrowing step
from the obtained terms by using the corresponding suspicious
rules, obtaining the set of triples {(t1, σ, t2)}. Finally, for each
one of these triples, the prodRules call returns a new rule of
the form t1σ → t2 to be added to the program R′.

Example IV.5 Consider again the Example IV.3. The call
restoreCompleteness((ΣR, ∅, R), (ΣR, ∅, R′), g2(g1(x, y)))
yields (ΣR, ∅, R′ ∪ {h(f(w, z), y) → p(g1(w, z), y),
k(f(w, z))→ 1}).

B. Methodology optimization

In the methodology above, in order to prevent a possible
incompleteness problem, we add a rule of the form t1σ → t2
to the transformed program R′ for each triple (t1, σ, t2) found
at Step 1, even if the transformed program is actually complete.
Consider again the rules of Example IV.3, and term k(f(x, y)).

By applying to k(f(x, y)) the substitution {y/0} computed by
the unfolding operation, we can rewrite the obtained term in
the transformed program to the normal form 1, by means of the
following rewrite sequence: k(f(x, 0)) →12 k(g2(x)) →10 1.
Hence, the rule k(f(w, z)) → 1 added to the transformed
program by the methodology is redundant because rule 10
does not provoke incompleteness.

To refine the methodology, we can add an intermediate step
that checks whether it is really necessary to add a new rule to
the program. Let Σu denote the set of substitutions computed
by narrowing during the unfolding operation extended with
the empty substitution. Then, for each triple (t1, σ, t2) ∈ T ,
we want to check whether there exists σu ∈ Σu such that t2
is reachable from (t1σ)σu in R′ by rewriting. If that is the
case, there is no reason to add a rule that would be redundant;
otherwise, this is a symptom of incompleteness, and we can
proceed as in Step 2.

Example IV.6 Consider again the
Example IV.3, and the triples
(h(f(w, z), y), {x/g1(w, z), y/y}, p(g1(w, z), y)) and
(k(f(w, z)), {x/g1(w, z)}, 1) computed at Step 1. The
set Σu contains the substitutions {ε}, {y/0}, {y/1}, and
{x/0, y/g1(x′, y′)}. Then, we check whether
there exists σu ∈ Σu such that
h(f(w, z), y)σu →∗R′ p(g1(w, z), y)), and whether there
exists σu ∈ Σu such that k(f(w, z))σu →∗R′ 1. The first
reachability goal is unsatisfiable, while the second is satisfied
by substitutions {y/0}, {y/1}, and {x/0, y/g1(x′, y′)}.

Hence, the optimized solution is to add only the rule
h(f(w, z), y)→ (g1(w, z), y)) to the transformed program.

The reachability problem for rewriting is undecidable in
general, but it has been proved to be decidable for particular
classes of rewrite theories [18], [25]. For example, in [18]
reachability is proved to be decidable for right-linear and right-
shallow TRSs. The right-shallow property asks for variables
that appear in the right-hand side of the rules to occur at
depth 0 or 1. Hence, the proposed refinement has to pay the
cost of the additional syntactic restrictions of right-linearity
and right-shallowness to be effective. An alternative method
to make reachability decidable is presented in [26], where the
original rewrite theory is extended by adding a terminating

restoreCompleteness((Σ, E,R), (Σ, E,R′), rhsu) =
(Σ, E,R′ ∪ {t1σ → t2})
where

{R1, . . . , Rn} ← getInvolvedRules(R, rhsu|Λ)
L← subst rhsu({lhs1, . . . , lhsn}, rhsu)
{(t1, σ, t2)} ← narrowingOneStep(L, {R1, . . . , Rn})
{t1σ → t2} ← prodRules({(t1, σ, t2)})

Fig. 1. Procedure to check and restore completeness of unfolding

and (ground) Church-Rosser set of extra equations powerful
enough to collapse infinite sets of reachable terms into finite
sets. Also in this case, several strong conditions are required on
the extended rewrite theory in order to make such an analysis
effective.

C. Incompleteness and Equational Axioms

Up to now, we have explained the incompleteness prob-
lem that may arise due to the unfolding operation, without
considering equational axioms which can be associated with
defined symbols. Nevertheless, the unfolding operation uses
the R∪∆, B narrowing relation, which takes into account the
equational axioms for associativity and commutativity. How-
ever, the axioms are not an extra source of incompleteness, as
discussed below.

Let us modify the rewrite theory of Example IV.3 by
declaring the symbols h, p and g1 to obey associativity and
commutativity. The transformed program will have a higher
number of unfolded rules due to the increased number of uni-
fiers computed by narrowing modulo the considered axioms,
but exactly the same incompleteness problem arises. The new
rules computed by unfolding are:

12.
13.
14.
15.
16.
17.
18.
19.
20.

f(x, 0) → g2(x)
f(0, x) → g2(x)
f(x, 1) → g2(x)
f(1, x) → g2(x)

f(0, g1(x, y)) → g2(0)
f(g1(x, y), 0) → g2(0)
f(g1(0, x), y) → g2(0)
f(y, g1(0, x)) → g2(0)

f(x, y) → g1(x, y)

and allow us to bring back the original semantics for the
transformed program. Note that rules 13, 15, 17, 18, and 19
are needed because f is not associative neither commutative.

V. COMPLETENESS OF THE TRANSFORMATION

The main result of this paper is Theorem V.1, which states
that the unfolding transformation followed by the restore-
Completeness procedure preserves the ground semantics of
a program. Moreover, the equational unfolding preserves the
canonical forms as stated in Proposition V.1.

Proposition V.1 Let R = (Σ,∆ ∪ B,R) be a program, and
let R′ = (Σ,∆′ ∪B,R) be the program obtained from R by
unfolding an equation Eu ∈ ∆. Then, for each t ∈ TΣ, if s is
its canonical form w.r.t ∆ and s′ is its canonical form w.r.t.
∆′, then s =B s′.

Theorem V.1 Let R = (Σ,∆ ∪B,R) be a program, and let
R′ = (Σ,∆ ∪ B,R′) be the program obtained from R by
the unfolding of a rule Ru ∈ R and the restoreCompleteness
procedure. Then, for each term t ∈ TΣ, we have that:
• t→∗R′ s′ ⇒ t→∗R s and s =∆,B s′;
• t→∗R s⇒ t→∗R′ s′ and ∃s′′ s.t. s→∗R s′′, s′ =∆,B s′′.

Basically Theorem V.1 states that (i) the ground reducts
of the transformed program are exactly the same as in the
original one, and (ii) for each ground reduct s of the original
program, there exists s′ in the transformed one such that s
can still be reduced to a term that is equivalent to s′. This
asymmetry in the result is due to the nature of unfolding. In
fact, the unfolding of a rule in the initial program forces some
symbols that appear in its right-hand side to be reduced by
narrowing, and, hence, a reduct s obtained by an application
of that rule may contain those symbols. Therefore, we need to
consider the possibility of some further reduction steps from
s in the initial program in order to reduce those symbols and
thereby obtain a term that is equivalent to the one reachable
in the transformed program. A detailed proof can be found
in Appendix II. Basically, in order to prove Theorem V.1 we
first prove that the Unfolding operation preserves the semantics
of ground normal forms. The proof uses an induction on the
rewrite sequence and an ad hoc reordering function on the
sequence itself. Then, the result is straightforwardly extended
to infinite sequences.

VI. CONCLUSIONS

In this paper, we have considered the completeness of
the unfolding transformation w.r.t. the standard semantics of
rewriting logic theories. We have taken on the systematic
study of program transformations for unrestricted narrowing
because it brings to light some common problems caused by
the basic mechanism that are not tied to the intricacies of
any particular strategy. We have ascertained and exemplified
general conditions that guarantee that the meaning of the
program is not modified by the transformation. These con-
ditions, which are quite natural in practical rewriting logic
specifications, cover many common cases and are easy to
check since they are mostly syntactical and do not depend
on the final program, but only on the initial one. Actually,
they can be checked by using the Maude Church-Rosser,
Termination, Sufficient Completeness, and Coherence tools
[12]. The Unfolding operation discussed in this paper can be
employed together with other program transformation oper-
ators (e.g. folding and definition introduction/elimination) to
synthesize new optimized, and semantically equivalent rewrite
theories from naı̈ve specifications. In particular, the synthesis
of rewrite theories based on Fold/Unfold transformations has
been used in [1] to implement Code Carrying Theory (CCT) —
a methodology for securing delivery of code from a producer
to a consumer where only a certificate (usually in the form
of assertions and proofs) is transmitted from a producer to
a consumer who can check its validity and then synthesize
executable code from it.

As future work it would be interesting to investigate whether
the presented results remain valid if we consider an arbitrary
equational theory with finitary unification instead of C- and
AC-theories only.

REFERENCES

[1] M. Alpuente, M. Baggi, D. Ballis, and M. Falaschi. A Fold/Unfold
Transformation Framework for Rewrite Theories extended to CCT. In

ACM, editor, In Proc. of ACM SIGPLAN 2010 Workshop on Partial
Evaluation and Program Manipulation (PEPM’10), pages 43–52, New
York, NY, USA, 2010.

[2] M. Alpuente, M. Falaschi, G. Moreno, and G. Vidal. Safe fold-
ing/unfolding with conditional narrowing. In 6th International Joint
Conference on Algebraic and Logic Programming, pages 1–15. Springer-
Verlag, 1997.

[3] M. Alpuente, M. Falaschi, G. Moreno, and G. Vidal. Rules + strategies
for transforming lazy functional logic programs. Theoretical Computer
Science, 311(1-3):479–525, 2004.

[4] M. Alpuente, M. Falaschi, and G. Vidal. Partial Evaluation of Functional
Logic Programs. ACM Transactions on Programming Languages and
Systems (TOPLAS ’98), 20(4):768–844, 1998.

[5] M. Alpuente, M. Falaschi, and G. Vidal. A Unifying View of Functional
and Logic Program Specialization. ACM Computing Surveys, 30(3es):9–
es, September 1998.

[6] F. Baader and W. Snyder. Handbook of Automated Reasoning, chapter
Unification Theory. Elsevier and MIT Press, 2001.

[7] J.A. Bergstra, J Heering, and P. Klint. Algebraic Specification. ACM
Press, 1989.

[8] P. Borovanský, C. Kirchner, H. Kirchner, and P. E. Moreau. ELAN
from a rewriting logic point of view. Theoretical Computer Science,
285:155–185, 2002.

[9] A. Bouhoula, J.P. Jouannaud, and J. Meseguer. Specification and Proof
in Membership Equational Logic. Theoretical Computer Science, 236(1-
2):35–132, 2000.

[10] R.M. Burstall and J. Darlington. A Transformation System for Devel-
oping Recursive Programs. Journal of ACM, 24(1):44–67, 1977.

[11] M. Clavel, F. Durán, S. Eker, S. Escobar, P. Lincoln, N. Martı́-Oliet,
J. Meseguer, and C. Talcott. Unification and Narrowing in Maude
2.4. In Ralf Treinen, editor, Procs. of 20th International Conference
on Rewriting Techniques and Applications, (RTA ’09), Brası́lia, Brazil,
volume 5595 of Lecture Notes in Computer Science, pages 380–390.
Springer-Verlag, 2009.

[12] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martı́-Oliet, J. Meseguer, and
C. Talcott. All About Maude - A High-Performance Logical Framework.
Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2007.

[13] N. Dershowitz. Computing with Rewrite Systems. Information and
Control, 64(2-3):122–157, 1985.

[14] N. Dershowitz and U. Reddy. Deductive and Inductive Synthesis of
Equational Programs. Journal of Symbolic Computation, 15:467–494,
1993.

[15] R. Diaconescu and K. Futatsugi. CafeOBJ Report, volume 6 of AMAST
Series in Computing. World Scientific, AMAST Series, 1998.

[16] S. Etalle and M. Gabbrielli. Modular Transformations of CLP Pro-
grams. In L. Sterling, editor, 26th International Conference on Logic
Programming. MIT Press, 1995.

[17] M. Fay. First Order Unification in an Equational Theory. In Procs. of
4th International Conference on Automated Deduction, pages 161–167,
1979.

[18] G. Feuillade, T. Genet, and V. Viet Triem Tong. Reachability Analysis
over Term Rewriting Systems. Research Report RR-4970, INRIA, 2003.

[19] J. Goguen, T. Winkler, J. Meseguer, K. Futatsugi, and J.P. Jouannaud.
Introducing OBJ. In Software Engineering with OBJ: Algebraic Speci-
fication in Action, pages 3–167. Kluwer, 2000.

[20] J. Hendrix, J. Meseguer, and H. Ohsaki. A sufficient completeness
checker for linear order-sorted specifications modulo axioms. In U. Fur-
bach and N. Shankar, editors, Third International Joint Conference
on Automated Reasoning, volume 4130 of Lecture Notes in Computer
Science, pages 151–155. Springer, 2006.

[21] T. Kawamura and T. Kanamori. Preservation of Stronger Equivalence in
Unfold/Fold Logic Programming Transformation. In Future Generation
Computer Systems, pages 413–422. ICOT, 1988.

[22] H.J. Komorowski. Partial Evaluation as a Means for Inferencing Data
Structures in an Applicative Language: A Theory and Implementation
in the Case of Prolog. In Proc. of 9th ACM Symposium on Principles
of Programming Languages, pages 255–267, 1982.

[23] L. Kott. Unfold/fold program transformation. In M. Nivat and J.C.
Reynolds, editors, Algebraic methods in semantics, chapter 12, pages
411–434. Cambridge University Press, 1985.

[24] N. Martı́-Oliet and J. Meseguer. Rewriting Logic: Roadmap and
Bibliography. Theoretical Computer Science, 285(2):121–154, 2002.

[25] R. Mayr and M. Rusinowitch. Reachability is Decidible for Ground AC
Rewrite Systems. In Proc. of the 3rd INFINITY Workshop, pages 53–64,
1998.

[26] J. Meseguer, M. Palomino, and N. Martı́-Oliet. Equational Abstractions.
Theoretical Computer Science, 403(2-3):239–264, 2008.

[27] J. Meseguer and P. Thati. Symbolic reachability analysis using narrowing
and its application to verification of cryptographic protocols. Higher
Order Symbolic Computation, 20(1-2):123–160, 2007.

[28] A. Pettorossi and M. Proietti. Transformation of Logic Programs: Foun-
dations and Techniques. Journal of Logic Programming, 19,20:261–320,
1994.

[29] U. S. Reddy. Rewriting Techniques for Program Synthesis. In Proc.
of Rewriting Techniques and Applications, (RTA’89), volume 355 of
Lecture Notes in Computer Science, pages 388–403. Springer, 1989.

[30] P. Réty. Improving Basic Narrowing Techniques and Commutation
Properties. In Rewriting Techniques and Applications, volume 256 of
LNCS, pages 228–241, 1987.

[31] H. Seki. Unfold/fold Transformation of General Logic Programs for the
Well-Founded Semantics. Journal of Logic Programming, 16(1&2):5–
23, 1993.

[32] H. Tamaki and T. Sato. Unfold/Fold Transformations of Logic Programs.
In Procs. of the 2nd International Conference on Logic Programming,
(ICLP ’84), pages 127–139, 1984.

[33] P. Viry. Rewriting: An Effective Model of Concurrency. In Procs. of the
6th International Conference on Parallel Architectures and Languages
Europe, (PARLE ’94), pages 648–660, London, UK, 1994. Springer-
Verlag.

VII. APPENDIX I

Let R = (Σ, E,R) with E = ∆ ∪ B be an order-sorted
rewrite theory. An equation of the form t = t′ or a a rule of
the form t→ t′ are said to be:
(1) Non-erasing, if Var(t) = Var(t′).
(2) Sort preserving, if for each substitution σ, we have tσ ∈
TΣ(X)s if and only if t′σ ∈ TΣ(X)s.

(3) Sort decreasing, if for each substitution σ, t′σ ∈ TΣ(X)s
implies tσ ∈ TΣ(X)s.

A set of equations/rules is said to be non-erasing, or sort
decreasing, or sort preserving, if each equation/rule in it is.

When implementing the R/E-rewriting by means of the
relation R ∪ ∆, B, we want the following equivalence to be
satisfied: t1 →R/E t2 if and only if t1 →∗∆,B→R,B t3 for
some t3 =E t2.
This implies that t1 →∗R/E t2 if and only if t1 →∗R∪∆,B t3
for some t3 =E t2. In order to assure this equivalence, we
enforce the following properties on E.
(i) B is non-erasing and sort preserving.

(ii) B has a finitary and complete unification algorithm,
which implies that B-matching is decidable; and ∆ ∪B
has a complete (but not necessarily finite) unification
algorithm.

(iii) ∆ is sort decreasing, Church-Rosser, and terminating
modulo B.

(iv) →∆,B is coherent with B, i.e., ∀t1, t2, t3, we have that
t1 →+

∆,B t2 and that t1 =B t3 implies ∃t4, t5 such that
t2 →∗∆,B t4, t3 →+

∆,B t5, and t4 =E t5.
(v) →R,B is E-consistent with B, i.e., ∀t1, t2, t3, we have

that t1 →R,B t2 and that t1 =B t3 implies ∃t4 such that
t3 →R,B t4, and t2 =E t4.

(vi) →R,B is E-consistent with→∆,B , i.e., ∀t1, t2, t3, we have
that t1 →R,B t2 and that t1 →∗∆,B t3 implies ∃t4, t5 such

that t3 →∗∆,B t4, t4 →R,B t5, and t5 =E t2
1.

VIII. APPENDIX II

The main result of this paper is Theorem V.1, which states
that the unfolding transformation followed by the restoreCom-
pleteness procedure preserves the ground semantics of a pro-
gram. This result is obtained as a corollary of Theorem VIII.1,
which states that the ground normal forms are preserved. The
following definitions, propositions and lemmas are auxiliary.

Definition VIII.1 (B-Matching) Let R = (Σ,∆ ∪ B,R) be
a rewrite theory. Given two terms t and s (not just variables),
we say that t B-matches s at position p ∈ NVPos(s), if there
exists a substitution σ such that tσ =B s|p.

Definition VIII.2 The restriction of a substitution σ to a set
of variables V is defined as

σ|V (x) =
{
σ(x) if x ∈ V
x otherwise

Proposition VIII.1 Let R = (Σ,∆ ∪ B,R) be a rewrite
theory, let t1, t2 be two terms such that Var(t1)∩Var(t2) = ∅,
and let CSUB(t1, t2) be the complete set of B-unifiers of t1
and t2. Let also θ be a ground substitution such that t2 B-
matches t1θ at position Λ. Then, there exists a substitution
σ ∈ CSUB(t1, t2), such that the restriction of σ to the
variables of t1 is more general than θ.

Proof: From the hypothesis it follows that there exists a
substitution ρ such that t2ρ =B t1θ. Since t1 and t2 do not
have shared variables, we can define a substitution η as the
union of θ and ρ, such that η|Var(t1) = θ and η|Var(t2) = ρ.
Therefore, η is a B-unifier of t1 and t2, that is, t1η =B t2η.
From the definition of CSUB , we know that there exists a
substitution σ ∈ CSUB(t1, t2) such that σ �B η. Hence,
σ|Var(t1) �B η|Var(t1) = θ.

Proposition VIII.2 LetR = (Σ,∆∪B,R) be a program, and
let R′ = (Σ,∆ ∪B,R′) be the program obtained from R by
the unfolding of a rule Ru : lhsu → rhsu ∈ R and the restore-
Completeness procedure. Then for each term lhsi[rhsu]pj

in L, we have that if lhsi[rhsu]pj
;σ,Λ,(Ri∪∆,B) t, then

lhsi[lhsu]pj
σ → t in R′.

Proof: The proof follows immediately from the described
methodology; indeed, if lhsi[rhsu]pj

;σ,Λ,(Ri∪∆,B) t, then
the triple (lhsi[lhsu]pj

, σ, t) belongs to set T . Thus, at Step
2 we add the rule lhsi[lhsu]pj

σ → t to program R′, which
implies the thesis.

Lemma VIII.1 Let R = (Σ,∆ ∪ B,R) be a program, and
let R′ = (Σ,∆ ∪ B,R′) be the program obtained from R

1Properties (iv) and (v) can be achieved by a simple preprocessing of rewrite
rules, while property (vi) is guaranteed by a discipline that prevents the defined
symbols of ∆ to appear within the lhs’s of the rules in R. For more details
see [1].

by the unfolding of a rule Ru : lhsu → rhsu ∈ R and the
restoreCompleteness procedure. Let Ri : lhsi → rhsi, i ∈
{1, . . . , n} be the rules returned by the getInvolvedRules
call of the restoreCompleteness procedure. Let t be a ground
term such that t→Ru,∆∪B,p t

′ →Ri,∆∪B,p′ t′′ such that p′ <
p, and the occurrence of root(rhsu) at some position pj in
lhsi matches the occurrence of root(rhsu) at position p in t′.
Then, t→∗ t′′′ =∆∪B t′′ in R′.

Proof: From the hypothesis, it follows that t|p =B

lhsuθ for some ground substitution θ, and t|p′ =B

lhsi[lhsu]pjθ. It follows that t′ must be of the form
t[lhsi[rhsu]pj

]p′θ. Moreover, lhsi[rhsu]pj
θ B-matches lhsi.

From the methodology described in Section IV-A, we know
that narrowing computes the complete set of B-unifiers
CSUB(lhsi[rhsu]pj

, lhsi). By Proposition VIII.1, it follows
that there exists σ ∈ CSUB(lhsi[rhsu]pj

, lhsi) such that σ is
more general than θ (by renaming lhsi[rhsu]pj

with t1 and
lhsi with t2). Then, there exists a substitution ρ such that
θ =B σρ. It follows that t[lhsi[rhsu]pj

]p′ ;σ,p′,(Ri∪∆,B)

t∗ and t∗ρ =B t′′. By Proposition VIII.2 it fol-
lows that t[lhsi[lhsu]pj]p′σ →∗ t∗ in R′. Hence,
t = t[lhsi[lhsu]pj]p′θ =B (t[lhsi[lhsu]pj]p′σ)ρ →∗R′,∆∪B
t∗ρ =B t′′.

Since we ask for ∆ to be Church-Rosser and terminating
modulo B, the equational unfolding preserves the canonical
forms, as stated in the Proposition V.1.

Proof of Proposition V.1: Let Eu be an equation of
the form (lhsu = rhsu), and let E0, . . . , Ek be the set
of equations used to unfold Eu, each one of the form
(li = ri) for i = 0, . . . , k. Let f1, . . . , fn with n ≤ k be
the set of symbols defined by equations E1, . . . , Ek. Also let
rhsu ;σj ,∆,B r′j (j ∈ {1, . . . , n}) be the ∆, B-narrowing
step such that the result of unfolding Eu using Ej is the
equation Euj : (lhsuσj = r′j). From the definition and the
correctness of narrowing, we recall that:
(1) ∀j . rhsuσj →Ej r′j
(2) ∀j there exists position pj ∈ NVPos(rhsu) such that

rhsu|pjσj =B ljσj
(3) ∀j . r′j = (rhsu[rj]pj)σj

(⇒) We want to prove that, given any ground term t, if
t→!

∆,B s, then t→!
∆′,B s′ and s =B s′. From t→!

∆,B s,
the Church-Rosser property, and the termination of ∆∪B,
there exists a rewrite sequence from t to s where the left-
most inner-most redex is reduced at each step. We will
prove the result by induction on the length of this rewrite
sequence.
(n = 0.) This case is immediate since t =B s.
(n > 0.) Let us decompose the rewriting sequence from t
to s as follows: t→ t1 →! s. On the rewriting sequence
from t1 to s, we can apply the induction hypothesis,
and we now concentrate on the first rewriting step. If
t rewrites to t1 without using equation Eu, the same step
can be performed in ∆′ and the claim holds. Otherwise,
there exists a position p ∈ NVPos(t) and a substitution
θ such that (i) lhsuθ =B t|p, (ii) t|p is the left-most inner-

most redex, and (iii) t1 = t[rhsuθ]p. Note that from (ii)
and the sufficient completeness of ∆, it follows that (iv)
θ is a constructor substitution, that is, for each x/t ∈ θ,
t is a constructor term. From (ii) and (iv), it follows that
if rhsuθ contains a redex, it is the left-most inner-most
redex in t1 and its position p′ belongs to NVPos(rhsu).
Since rhsu contains at least one occurrence of the sym-
bols f1, . . . , fn, and ∆ is sufficiently complete, rhsuθ
contains at least one redex. Let p′ be the position of
the left-most inner-most redex inside t1. Now, consider
the following rewrite step rhsuθ →p′,Ej

rhsu[rj]p′θ,
j ∈ {1, . . . , k}, which rewrites the redex in position p′.
The obtained term t2 is t[rhsu[rj]p′θ]p. Since during the
unfold operation, we perform narrowing at each possible
position in rhsu, the narrowing step rhsu ;p′,σj ,Ej∪B
r′j can be proven in ∆∪B. By (iv) and the completeness
of narrowing, the substitution computed by narrowing is
more general then θ, which amounts to saying that there
exists a substitution ρ such that (v) θ =B σjρ. By the
definition of unfolding, the equation lhsuσj = r′j is one
Euj belonging to ∆′. Finally, from (i) and (v), we can
apply the equation Euj to term t, thus obtaining t[r′jρ]p =
t[((rhsu[rj]p′)σj)ρ]p =B t[rhsu[rj]p′θ]p = t2, and the
claim follows by applying the inductive hypothesis to the
rewrite sequence from t2 to s.

(⇐) We want to prove that, given any ground term t, if
t →!

∆′,B s′, then t →!
∆,B s and s =B s′. We will prove

it by induction on the length of the rewriting sequence in
∆′.
(n = 0.) This case is immediate since t =B s′.
(n > 0.) Let us decompose the rewriting sequence from
t to s′ as follows: t → t1 →! s′. On the rewrit-
ing sequence from t1 to s, we can apply the induc-
tion hypothesis, and we now concentrate on the first
rewriting step. If t rewrites to t1 without using one
of the equations Euj , the same step can be performed
in ∆ and the claim holds. Otherwise, if one of the
equations Euj is used for the last rewriting step, there
exists a substitution θ such that (lhsuσj)θ =B t|p,
and t1 = t[r′jθ]p. By rhsuσj →Ej

r′j and the sta-
bility of rewriting, we have that (rhsuσj)θ →Ej r′jθ.
Therefore, t =B t[lhsu(σjθ)]p →Eu t[rhsu(σjθ)]p =
t[(rhsuσj)θ]p →Ej

t[r′jθ]p = t1, which is a rewrite
sequence leading to t1 in ∆.

Before stating and proving Theorem VIII.1 let us recall the
necessary definition of the antecedent of a position in a term.

Definition VIII.3 Let R : l → r be a rule in a given rewrite
theory and let t→R t

′ be a rewrite step that reduces a redex at
position p ∈ Pos(t). According to [30], we say that a position
p′ ∈ Pos(t) is an antecedent of a position q ∈ Pos(t′) iff
(i) q is not comparable with p and q = p′, or

(ii) there exists a position o of a variable x in r such that
q = p.o.w and p′ = p.u.w where u is a position of x in
l.

Now we are ready to establish that the unfolding transforma-
tion followed by the restoreCompleteness procedure preserve
the semantics of ground normal forms.

Theorem VIII.1 Let R = (Σ,∆ ∪B,R) be a program, and
let R′ = (Σ,∆ ∪ B,R′) be the program obtained from R
by unfolding a rule Ru ∈ R and the restoreCompleteness
procedure. Then for each term t ∈ TΣ, t →!

R s iff t →!
R′ s′

and s =∆∪B s′.

Proof: Let Ru be a rule of the form (lhsu → rhsu), and
R1, . . . , Rk be the set of rules used to unfold rule Ru, each
one of the form (li → ri) for i = 1, . . . , k. Let f1, . . . , fn with
n ≤ k the set of symbols defined by rules R1, . . . , Rk. Also
let rhsu ;σj ,R∪∆,B r′j , j ∈ {1, . . . , n}, be the R ∪ ∆, B-
narrowing step such that the result of unfolding Ru using Rj
is the rule Ruj : (lhsuσj → r′j). From the definition and the
correctness of narrowing, we recall that:

(1) ∀ j . rhsuσj →Rj r′j
(2) ∀ j there exists position pj ∈ NVPos(rhsu) such that

rhsu|pj
σj =B ljσj

(3) ∀ j . r′j = (rhsu[rj]pj
)σj

(⇒) We want to prove that, given any ground term t, if t→!
R

s, then t →!
R′ s′ and s =∆∪B s′. We will prove it by

induction on the length of the rewrite sequence in R.
(n = 0.) This case is immediate since t = s.
(n > 0.) Let us decompose the rewrite sequence from t to
s as follows: t→ t1 →! s. On the rewrite sequence from
t1 to s, we can apply the induction hypothesis, and we
now concentrate on the first rewrite step. If t rewrites to
t1 without using rule Ru, the same step can be performed
inR′ and the claim holds. Otherwise, we want to describe
a procedure to reorder an initial fragment of the rewrite
sequence from t to s in such a way it is then trivial to
simulate it in R′ and then use the induction hypothesis
on the rest of the sequence.
Consider a ground term w and a subsequent application of
rules Ru and Rj inR as follows. If w|p =B lhsuθ, by ap-
plying ({Ru},∆∪B), we obtain a ∆∪B-equivalent term
to w[rhsuθ]p, which embeds a ground instance of rhsu.
Therefore, this term contains some occurrences of the
symbols f1, . . . , fn. Then, if we can apply ({Rj},∆∪B)
(for some j ∈ {1, . . . , k}) to reduce the redex having
one such symbol as its root, we obtain a ∆ ∪ B-
equivalent term to w[rhsu[rj]pj

θ]p. The key point is to
note that this subsequent application of rules Ru and Rj
in R can be simulated in R′ by an application of rule
Ruj . In fact, since the rewrite step using Rj occurs at
position pj ∈ NVPos(rhsu), it follows that the left hand
side lj of rule Rj unifies with the subterm rhsu|pj

by
substitution σj , which subsumes θ by Proposition VIII.1,
taking rhsu|pj

as t1 and lj as t2. Therefore, the narrowing
step rhsu ;σj ,pj ,(Rj∪∆,B) r

′
j can be proved in R,∆∪B.

By the definition of unfolding, the rule lhsuσj → r′j is
one Ruj belonging to R′. Finally, by applying (Ruj ,∆) to

term w we obtain a ∆∪B-equivalent term to w[r′jρ]p =
w[((rhsu[rj]pj)σj)ρ]p = w[rhsu[rj]pjθ]p.
The basic aim of the sequence reordering procedure
reorderSeq, whose pseudo-code is shown in Figure 2,
is to change the rule application order, thus obtaining an
equivalent sequence (in the sense that the same normal
form s is reached) where the application of rule Ru is
immediately followed by an application of a rule Rj .
In the procedure, a rewrite sequence is represented as
a list of rewrite steps (R, p) where R is the applied rule
and p the position of the reduced redex. Each rewrite
step is intended to be followed by a ∆, B normalization.
The procedure takes the rewrite sequence starting from
the rewrite step using rule Ru as input and returns the
reordered rewrite sequence. List s1 contains the reordered
portion of the sequence, which can be easily simulated
in R′, while s2 contains the rest of the sequence (if any).
The auxiliary procedure reorder uses two auxiliary lists
ns and vs. The former contains the sequence of steps
that are moved before (Ru, p), while the latter contains
the skipped steps during the reordering that will keep
the same position in the final rewrite sequence. The final
sequence is made up of the ns list, the consecutive steps
(Ru, p), (Rj , pj), the skipped steps in vs, and the rest
of the sequence in ts. There is only one particular case
in which the reordering procedure deletes some rewrite
steps including the one using rule Ru, which will be
discussed later. Let us explain the eight different cases
of the ordering procedure in the reorder function.
Case (1) is the easiest one because the applied rule
is one Rj , which is used to reduce a redex in rhsuθ
having one symbol fi at its root. In this case, the
procedure terminates, returning the reordered sequence
ns, (Ru, p), (Rj , pj), vs, ts. In case (3), a rule that is
different from Ru is used to reduce a redex in the
substitution θ. Since the redex belongs to the substitution,
this rewrite step is possible before the application of rule
Ru at a position q′, which is the antecedent of q. Hence,
the rewrite step (R, q′) is moved at the end of the ns list
and the procedure follows with the rest of the sequence.
Case (8) is analogous because a rule that is different from
Ru is used to reduce a redex that contains the subterm
rhsuθ in the substitution without erasing it. This rewrite
step can also be moved before the application of rule
Ru, and, hence, it is put at the end of the ns list. Note
that in this case, the antecedent of q is q itself because
q < p. Case (4) considers a rule that reduces a redex
whose root is not in rhsuθ nor in a path from p to the
term root. This is the case of a skippable rewrite step that
is moved at the end of the vs list. Case (6) considers a
rewrite step where the reduced redex contains term rhsuθ
in the substitution but erases it from the term (i.e., the
variable that matches the subterm containing rhsuθ does
not occur in the rhs of the rule). This rule application
makes all the rewrite steps stored in ns and the one using
Ru useless, so they can be deleted from the sequence

reorderSeq((Ru, p) : seq) =

let (s1, s2) = reorder((Ru, p), [], [], seq) in merge(s1, s2)

reorder((Ru, p), ns, vs, (R, q) : ts) =

case :
q = pj ∈ NVPos(rhsu) and R = Rj ⇒

return ([ns, (Ru, p), (Rj , pj)], [vs, ts]) (1)
q /∈ NVPos(rhsu) > p and R = Ru ⇒

let (ns1, ts1) = reorder((Ru, q), [], [], ts)

in reorder((Ru, p), [ns, ns1], vs, ts1) (2)
q /∈ NVPos(rhsu) > p ⇒

reorder((Ru, p), [ns, (R, q′)], vs, ts) (3)
q � p and q ≯ p ⇒ reorder((Ru, p), ns, [vs, (R, q)], ts) (4)
q < p and rhsu|Λ occurs in the lhs of R at non root position ⇒

return ([ns, (Ru, p), (R, q)], [vs, ts]) (5)
q < p and f1, . . . , fn do not appear in the resulting term ⇒

return ([(R, q)], [vs, ts]) (6)
q < p and R = Ru ⇒

let (ns1, ts1) = reorder((Ru, p), ns, vs, ts)

in reorder((Ru, q), [ns, ns1], vs, ts1) (7)
q < p ⇒ reorder((Ru, p), [ns, (R, q)], vs, ts) (8)

where q′ = antecedent of q

Fig. 2. Rewrite sequence reordering procedure.

and the procedure terminates returning the step (R, q),
the skipped steps, and the rest of the sequence. Case (5)
considers a rewrite step where the left-hand side of the
applied rule R matches the root symbol of rhsu at some
position p. This means that rhsuθ is not contained in
the matching substitution. We are then in the hypothesis
of Lemma VIII.1, which states that the two subsequent
rewrite steps (Ru, p) and (R, q) can be simulated in R′.
Hence, the procedure terminates returning the reordered
sequence ns, (Ru, p), (R, q), vs, ts. Cases (2) and (7)
consider a rewrite step where the same rule Ru is used
to reduce a redex that is inside θ or that contains the
subterm rhsuθ, respectively. The basic idea is that when
another application of Ru is found, we first terminate the
reordering w.r.t. the deeper application of Ru and then
we recursively call the reorder function to reorder the
sequence w.r.t. the Ru application that is not as deep. In
fact, in case (2), we suspend the reordering procedure
w.r.t. the considered application of rule Ru, and we
recursively call the function to reorder a fragment of the
rewrite sequence w.r.t. the deeper Ru application. When
the recursive call terminates, we resume the previous call
putting the computed list ns1 at the end of the ns list
and following with the computed rest of the sequence
ts1. Case (7) does the reverse, by terminating the current
reordering and then recursively calling the function w.r.t.
the Ru application that is not as deep.

Termination. Since we consider programs to be suf-
ficiently complete and the considered rewrite sequence
ends with the normal form s, the occurrences of symbols
f1, . . . , fn have to be reduced before reaching s by using
either a rule Rj as considered in case (1), or a rule that
makes them disappear as considered in case (6). In both
cases the reorder procedure terminates.
Correctness. We want to show that all the rewrite steps
contained in list s1 (which is then merged with the rest of
the sequence s2 in function reorderSeq) can be trivially
simulated in R′. List s1 is the first component of the pair
of lists returned by the reorder function. Considering
the termination cases, the first component can contain
either the step (R, q) (case (6)) where R is different from
Ru, or the list ns, (Ru, p), (Rj , pj) (case (1)), or the list
ns, (Ru, p), (R, q) (case (5)). When we apply a rule that
is different from Ru it can be trivially simulated in R′ by
applying the same rule. Moreover, recall that a subsequent
application of rules Ru and Rj can be simulated in R′ by
an application of rule Ruj . Finally, the subsequent steps
(Ru, p), (R, q) considered by case (5) can be simulated
in R′ by Lemma VIII.1. Hence, the correctness holds.
Reduction of the sequence. It is easy to see that s1 is
never empty and the rest of the sequence s2 is strictly
shorter that the sequence from t1 to s. Hence, we can
use the inductive hypothesis on s2.

(⇐) We want to prove that, given any ground term t, if
t →!

R′ s′, then t →!
R s, and s =∆∪B s′. We will prove

it by induction on the length of the rewriting sequence in
R′.
(n = 0.) This case is immediate since t = s′.
(n > 0.) Let us decompose the rewriting sequence form t
to s′ as follows: t→ t1 →! s′. On the rewriting sequence
from t1 to s, we can apply the induction hypothesis,
and we now concentrate on the first rewriting step. If t
rewrites to t1 without using one of the rules Ruj , the same
step can be performed in R and the claim holds. Other-
wise, if one of the rules Ruj is used for the last rewriting
step, there exists a substitution θ such that (lhsuσj)θ =B

t|p, and t1 = t[r′jθ]p. By rhsuσj →Rj r′j and the
stability of rewriting, we have that (rhsuσj)θ →Rj r′jθ.
Therefore, t =B t[lhsu(σjθ)]p →R t[rhsu(σjθ)]p =
t1[(rhsuσj)θ]p →Rj t[r′jθ]p = t1, which is a rewriting
sequence leading to t1 in R.

Finally, the main result of the paper immediately follows
from the previous Theorem.

Proof of Theorem V.1: The (Corr.) part of the proof
is perfectly equivalent to the (⇐) part of the proof of the
Theorem VIII.1. For the (Comp.) part, note that since the
program is weakly normalizing, if t →∗R s, there exists at
least a normal form s′′ such that s→∗R s′′, and for Theorem
VIII.1 t→∗R′ s′ with s′ =∆∪B s′′.

Remark. In order to prove Theorem V.1, stating that the
unfolding operation and the restoreCompleteness procedure

preserve the semantics of ground reducts of the original
program, we had to prove that they preserve the semantics of
ground normal forms (Theorem VIII.1). The reader may think
that Theorem V.1 is just a trivial extension to the semantics
of ground reducts, which is mainly based on Theorem VIII.1
and that we actually preserve only the semantics of ground
normal forms. The fact is that there are cases of rewrite
sequences starting from a ground term t where an unfolded
symbol is not reduced until a normal form is reached, and since
in the transformed program that symbol has been evaluated
in advance in the unfolded rules, a rewrite sequence in the
transformed program starting from t cannot reach a reduct
equivalent to one in the rewrite sequence in the original
program until the normal form. However, this is not the general
case, as shown in the following example.

Example VIII.1 Let us consider the rules of Example
IV.3, and let us recall that the restoreCompleteness
procedure has extended the set of rules R′ with
rules 16. h(f(w, z), y) → p(g1(w, z), y) and
17. k(f(w, z)) → 1. Consider the following
rewrite sequence in R: h(f(g2(0), g1(1, 0)), 1) →11

h(g2(g1(g2(0), g1(1, 0))), 1) →6 p(g1(g2(0), g1(1, 0)), 1).
The same ground reduct can be reached in R′ by a
rewrite step using rule 16.: h(f(g2(0), g1(1, 0)), 1) →16

p(g1(g2(0), g1(1, 0)), 1). Consider also the following
rewrite sequence in R: f(g2(0), g1(1, 0)) →11

g2(g1(g2(0), g1(1, 0))) →4 g1(g2(0), g1(1, 0)). The
same ground reduct can be reached in the transformed
program by a rewrite step using the unfolded rule 15.:
f(g2(0), g1(1, 0))→15 g1(g2(0), g1(1, 0)).

In other words, we do not lose generality by considering
rewriting up to normal form in our proof.

