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1. INTRODUCTION 

 

According to the vast literature on word processing and access, in perception and 

production, an input word may concurrently activate non-target lexical neighbors 

that become available for further processing stages. The growing body of 

psycholinguistic evidence shows how competition based on word similarity 

and lexical redundancy affect speakers’ anticipation of incoming stimuli, 

improving lexical decision and facilitating word recognition. 

In the domain of bilingual performance – in terms of first language (hereafter L1) 

and second language (hereafter L2) interaction - the interference from one 

language to the other may occur with respect to both language structure and 

linguistic processing, and can be noticed at the phonological and the syntactical 

levels, as well as in lexical borrowings (Van Heuven et al., 1998). 

The main goal of this thesis is to model second language acquisition and 

processing with Temporal Self-Organizing Maps (TSOMs, Ferro et al., 2011; 

Marzi et al., 2012, 2014a, 2015, 2016; Pirrelli et al., 2014, 2015) by simulating 

some basic cognitive processes that govern lexical processing in the mental 

lexicon. In particular, I pretend to bridge the gap by extending the application of 

computational modelling of language acquisition in monolingual and bilingual 

contexts to Spanish, which has not yet been treated within the given research 

framework. 

 My specific objectives are the following: 

 Explore the dynamics of lexical organization by means of computational 

modelling in Spanish language in monolingual regime, then contrast the 

results to the already existing Italian and German sets. 

 Explore the dynamics of interplay between the above-mentioned three 

languages in contexts of partial as well as perfect bilingualism. 

 Provide further evidence that type/token frequency, formal redundancy 

and lexical neighborhood affect perception, acquisition, and processing. 
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Since the software for TSOM training is yet neither available for an open-source 

download, nor for a web-service training, the experiments have been run by Dr. 

Marzi at the Institute for Computational Linguistics, ComPhys Lab1 (Italian 

National Research Council, Pisa, Italia).  Dr. Marzi also took over the extraction 

of the data. I myself compiled the Spanish dataset and analyzed the results in 

both L1/L1 and L1/L2 regimes. 

Modelling human lexical processing must take into account adaptive mechanism 

of storage and representation of lexical input, in consideration of the fact that the 

way a speaker stores lexical information reflects the way it is perceived and 

dynamically processed.  

With no information of morpho-syntactic or semantic features, the acquisition of 

language-specific orthotactic constraints2 delineate the propensity to acquire 

novel words, and show how acquisitional strategies are affected by the past 

knowledge of language and the entrenched expectations on incoming stimuli. In 

this perspective, a strong expectation based on L1 influences the way L2 inputs 

are perceived. The entrenchment can be described as a specialization of most 

frequent input stimuli in highly routinized clusters aimed at the optimization of our 

mental resources3. 

This study is based on the work of and has been completed in collaboration with 

my external supervisor, Claudia Marzi, who provided me with some essential 

information to the completion of this dissertation, i.e. both the Italian and German 

datasets, as well as the experimental results that I will analyze in Chapter 5.    

                                                           
1 ComPhys Lab investigates the interplay between language-specific processes and language-
aspecific cognitive functions. Its cooperation with CNR Institute of Clinical Physiology (IFC) aims 
at contributing to the research related to the language and communication disorders in the field 
of biomedical sector. For further information: www.comphyslab.eu  
2 Orthotactic constraints refer to the fact that certain letter sequences are perceived as more 
typical in a given language. The acoustic counterpart of the Orthotactic constraints are the 
Phonotactic constraints, which considers the typicality of sound patterns, rather than letters.  
3 See 2.1 for a SLA perspective of the entrenchment mechanism explained by the Neuronal 
Commitment feature within the MacWhinney’s Competition Model (2001).  

http://www.comphyslab.eu/
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To achieve my goal, a series of TSOM-based experiments will be run, where 

language acquisition is modelled as the storage of “time series of symbolic units 

(words) as routinized patterns of short-term node activation” (Marzi & Pirrelli, 

2015).   

Each input form is represented by a unique time-series of symbols 

(orthographical representations4 in the present work), administered one symbol 

at a time. Since words are permanently coded in our long-term memory as neuron 

activation patterns that sequentially fire, they can be represented as time series 

of symbols, whose receptors are time-bound to one another through associative 

connections. To put it simply, the incoming words are intuitively processed one 

symbol at a time. This kind of sequential processing is mimicked by means of 

computational simulations. 

In this perspective, each input word form is represented by a unique time-series 

of symbols that are vector-coded5 on the input layer and administered to the 

TSOM one at a time.  

With the goal of simulating paradigmatic acquisition and perception of 

morphological relations between fully-inflected word forms, an identical set of 

verb forms have been selected for Spanish, German and Italian, and 

administered in different training regime conditions, namely monolingual (L1), 

bilingual (L1/L1) and incremental first and second language (L1+L2) regimes. 

Within the framework of this study, TSOM training corresponds to the initial 

learning period when a random frequency-arranged words are showed to the 

input layer of the map. In this way, groups of nodes “specialize” in regard to a 

                                                           
4 Phonological vs. Orthographic distinction corresponds to acoustic vs. visual word recognition. 
In terms of input stimuli, words can be perceived in two different ways, that is, phonologically and 
orthographically. By way of example, computational coding of the incoming word drive can be 
administered to the input layer of the map in the following two ways: phonetic transcription /draɪv/, 
transformed in $d,r,a,i,v,#, as opposed to the orthographic $d,r,i,v,e#, respectively. 
5 Geometrically speaking, a vector is essentially an arrow whose dimension is specified by 
coordinates. In the field of neural networks, a vector corresponds to an incoming input. See 
Anderson (2014) for more detail. 
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certain input stimulus as a result of repeated pattern activations. Such 

mechanism roughly corresponds to the early language acquisition in children, 

where morphological structure gradually emerges without the need to resort to 

the explicit rote rehearsal techniques, and explicit rule-based learning, typically 

adopted by adult second language learners.  

The advantage of computational simulations is offered by the possibility of (i) 

gaining a deep understanding of the mutual relationship between representation 

(memory) and processing strategies (e.g. input perception, or word production); 

(ii) verifying, under controlled simulations of word stimuli, that memory structures 

represent the way input stimuli are perceived and coherently processed; (ii) 

analytically studying the developmental processes that govern the acquisition of 

the morphological lexicon in different languages, in different language exposure 

conditions; (iv) monitoring the interplay between input frequency and perception 

of formal redundancy.  

The thesis is organized as follow: in Chapter 2, I will firstly introduce some 

fundamental models for language acquisition, based on psycholinguistic 

approaches. In Chapter 3 I will review and discuss the most influential models for 

lexical processing, and outline some computational architectures based on 

artificial neural networks. Chapter 4 will include a detailed description of the 

experimental method and corpora adopted for computational simulations, which 

will be described in detail in Chapter 5. Finally, a concluding Chapter (6) will 

follow, with some general remarks and considerations on prospective research. 
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2. FIRST AND SECOND LANGUAGE ACQUISITION MODELS 

There is abundant literature concerning both first language (L1) and second 

language (L2) acquisition. Objectives of linguistic and psycholinguistic 

approaches may be focused either on competence or performance. Competence 

refers to the abstract knowledge of language, performance relates to the actual 

process of language use (Bates & MacWhinney, 1989).  

Although several factors — age of acquisition, social environment, and language 

transfer among others — may affect second language acquisition (hereafter SLA) 

in regards to vocabulary extension, pragmatic competence, and so forth, it is 

widely assumed that L1 and L2 acquisition are strongly related processes. 

Learning new word forms in a L2 is an extension of what we use for acquiring 

words in our L1. By paraphrasing MacWhinney, the strong influence and 

interference that L1 has onto L2 supports the position that a model of L2 learning 

must take into account L1 linguistic structures (MacWhinney, 2005: 49). 

In what follows here, I will briefly introduce MacWhinney’s Competition Model and 

Unified Model, as well as Bailey’s work on the effects of wordlikeness on 

language acquisition. 

2.1. The Competition Model (MacWhinney, 2001) 

The Competition Model is a psycholinguistic theory of language acquisition and 

processing, which postulates that language is interpreted on the basis of linguistic 

cues within the input, and that language is acquired relying on competing 

mechanisms in an input rich linguistic environment. 

Bates & MacWhinney (1989) describe their Competition Model in this way: 
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The Competition Model is a framework for the crosslinguistic 
study of language use. It is designed to capture facts about the 
comprehension, production, and acquisition of language by real 
human beings, across a variety of qualitatively and quantitatively 
distinct language types. (Bates & MacWhinney, 1989: 3) 

 

Contrary to what was assumed by Chomsky’s Universal Grammar6 (Chomsky, 

1968), the Competition Model posits that first and second language acquisition 

relies on cognitive universals, rather than linguistic universals (MacWhinney, 

2001: 1). Both theories try to determine the “universal properties of human 

language” (Bates & MacWhinney, 1989), although the two of them adopt sharply 

distinct starting points. The claim that grammar can be explained in cognitive 

terms means that language depends on properties of human mind, which is 

modelled by experience, individual differences and culture, among others. The 

Competition Model can be defined as an emergentist theory of language 

acquisition, assuming simple learning mechanisms, common to other cognitive 

processes, which support language acquisition, with word learning and grammar 

acquisition seen as the final result of these processes (MacWhinney, 1999). 

The Competition Model is compatible with functionalism, where function is 

assimilated to the concept of goal. According to this viewpoint, language is 

viewed as a set of goal-directed activities.  

Three are the pillars that determine interaction within language learning: the input, 

the learner, and the context. First, Input-Driven Learning is one of the three 

commitments of the Competition Model, which contrasts the nativist approach by 

assuming that instead of innate properties, language is learned by means of the 

incoming stimuli acquired through the so-called cues. The strength of the cues 

corresponds to the weight of the connections between units and is determined by 

their own reliability and availability. Cue validity can be defined as follows: “cue 

                                                           
6 The fundamental postulate of Universal Grammar is the genetic component of the language 
faculty, with a set of structural rules that are innate in humans, independent of experience. 



 

 

 

11 
 

validity, that is, the information value of a given linguistic device as a cue to an 

underlying meaning or intention” (MacWhinney & Bates, 1989: 29). 

Cue validity measures the predictability in adult language processing, as well as 

children language acquisition (MacWhinney & Bates, 1989: 34). The higher the 

predictability, the better the cue.  

In addition, four other dimensions contribute to cue strength (MacWhinney, 

1992): 

1. Task Frequency. The basic principle is that the frequency of the task will 

determine the cue’s strength and ultimately enhance the validity of the latter. For 

example, the determination of the agent of a transitive verb is an easier task 

compared to anaphoric reference determination (MacWhinney, 1992:122). 

2. Availability. The availability expresses whether a cue is present or not. For 

example, in Italian, the cue suggesting a preverbal position to the agent of a 

transitive verb has a low availability because the omission of the subject is quite 

frequent. This is not the case in English.  

3. Simple Reliability. A cue is said reliable when it leads to the correct conclusion. 

To get back to the previous example, the cue suggesting a preverbal position to 

the agent of a transitive verb is unreliable in the Italian language, whereas it is 

highly reliable in English. 

4. Conflict Reliability, called Conflict validity in the previous version of this model, 

refers to the situation in which different cues are competing and ultimately one 

particular cue wins over all the other available cues for the same task. Again, this 

can be illustrated with the example provided by MacWhinney (1992): in Dutch, 

case cue of a noun phrase will dominate on its preverbal position of the noun 

phrase.  

The goodness-of-fit criteria to find the winner is determined by all the above-

mentioned variables. In principle, every cue is assessed in comparison to other 

available cues, which means that the final result is obtained through the 

competition process among the existing alternatives. That is to say, the selection 
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of the best possible linguistic unit within any linguistic task is accurately calculated 

on the bases of the above-mentioned set of criteria.  

The second component of the Competition Model listed below is the Learner. It 

addresses the effect of individual differences on language acquisition. The 

human brain is better described as a neural network in which neurons “fire 

information” to each other through axons. This vision of brain relies on the 

assumption that neural activity is performed through associative networks. In 

brief, mental processing is viewed as a highly interactive and competitive net of 

units. Within this dimension of the Competition Model, at least five distinct 

features must be outlined (MacWhinney, 1992, 2001): 

1. Transfer. As already mentioned, within brain structure neurons are arranged 

into layers of connections. Therefore, we can say that the architecture of the 

human brain is intrinsically interactive, allowing the interconnection of its building 

blocks, that is to say, neural units. Some scholars (Chomsky, 1980; Fodor, 1983) 

split language into separate cognitive modules. However, connectionist theories 

in general and the Competition Model, in particular, argue that even if “a certain 

limited form of emergent linguistic modularity is achieved” (MacWhinney, 1992: 

120), the resulting emergent modules are far from being encapsulated. As a 

result, the transfer of information takes place when, let’s say, a second language 

is being acquired. The transfer component can be resumed as follows: “[…] 

whatever can transfer will.” (MacWhinney, 2004: 18). The general assumption in 

the field of second language acquisition is that L2 is parasitic on L1 in a number 

of ways. Accordingly, L2 relies on transfer mechanisms to build its own linguistic 

structure to the detriment of L1. MacWhinney (2004) lists at least four classes of 

transfer, as follows: Sentence Comprehension, Transfer in Pragmatics, Transfer 

in Morphology, and Transfer in Sentence Production. For example, in Sentence 

Production L2 learner will use L1 articulatory patterns to pronounce L2 sentences, 

which is quite logical if we think that the learner’s phonetic inventory completely 

depends on his/her native language. Zhao & Li (2007) establish a relation 

between parasitism and decreasing plasticity under late learning, the latter being 
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likely to decrease as a separate system of L2 linguistic representations is 

gradually built up. Besides, the evidence mentioned in the same study shows that 

early L2 learning leads to a lesser degree of L2 parasitism on L1, as the plasticity 

of the brain allows L2 to occupy more space. 

2. Neuronal Commitment. To say that a neural area is committed means that it 

has attained a defined structure by establishing a set of weights that will govern 

the processing. Such weights configuration points at the gradual loss of brain 

plasticity. In a L2 learner, such a pre-existing neural arrangement will cause 

“catastrophic” interference of L1 onto L2, which can only be avoided with the 

intercession of functional neural circuits and transfer.  

3. Automaticity. The basic principle underlying automaticity is that highly recurrent 

tasks will lead to a certain level of automaticity in lexical and syntactic access. 

The automaticity of linguistic retrieval is apparently slower in bilinguals compared 

to monolinguals, when both languages are involved in the lexical decision tasks 

(Segalowitz & Hulstijn, 2005). 

4. Functional Circuits. Within the framework of the Competition Model, Functional 

Neural Circuits account for the hindering of L2 parasitism and negative transfer 

on L1. Phonological loop7 and mental imagery8 are two of the mechanisms 

embedded in the working principles of the Functional Circuits. Such mechanisms 

boost the reinforcement of language acquisition and processing (MacWhinney, 

2001: 16). In other words: 

                                                           
7 Phonological loop is a Working Memory (WM) component that both retains phonological 
information and provides a rehearsal process (as theorized by Baddeley, 1986). WM is 
characterized by its temporary retention capacity, and the phonological loop may neutralize the 
decay of verbal information retained in it (Christoffels & De Groot, 2004; De Groot & Van Hell, 
2005).  
8 The concept of Mental Imagery refers to the “quasi perceptual experience” of mental 
representations that take place without any external stimuli (Thomas, 2017). 
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Theories of the neural basis of verbal memory view this storage 
as involving a functional neural circuit that coordinates inputs 
from Broca’s area, lexical storage in the temporal lobe, and 
additional structures that support phonological memory. Unlike 
local lexical maps, which are neurologically stable, this functional 
circuit is easily disrupted and relies heavily on access to a variety 
of cognitive resources. (MacWhinney, 2004: 13) 

 

5. Perspective-taking, which is the last point of the Competition Model from the 

learner’s perspective, assumes that the interpretation of a clause begins from a 

certain starting point, that is, from a perspective that goes beyond the positional 

relation of the words and ultimately achieves the conceptual representation 

(MacWhinney, 2001: 17). 

The third point in this tripartite explanation of the Competition Model is the 

Context. The interactional context is seen as an essential component of the 

language acquisition process, both in L1 as well as in L2.  

2.2. The Unified Model (MacWhinney, 2004) 

 

The Unified Model is an extended formulation of the Competition Model, which 

incorporates an additional subset of components accounting for multilingual 

acquisition, transfer promotion or inhibition among others. The main difference is 

that the original Competition Model did not account for learning processes, 

whereas the Unified Model does. Learning is intended “[…] as a resonant process 

that relies on storage, chunking, and support to acquire new mappings.” 

(MacWhinney, 2004: 1). 

In a simplistic way, SLA consists in applying to the L2 the acquisition patterns we 

assimilated while acquiring our L1. In this way, L2 “borrows” the mechanisms 

developed during L1 acquisition. The main distinctions between the first language 

and the following languages acquisition lie in the fact that L1 is learned at the 

same time as the infant discovers the world (MacWhinney, 2004: 2), when the 

brain has not yet lost its original plasticity as a result of the neuronal commitment, 
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and when learning is supported by an intense interaction provided by the 

caregivers (Snow, 1999).  

While some researchers maintain two different and separate processes 

accounting for first and second language acquisition, MacWhinney (2004) claims 

that some phenomena, such as transfer, suggest otherwise. For this reason, he 

considers more reasonable to develop a unified model of first and second 

language acquisition.  

In Figure 1 the seven building blocks of the Unified Model are sketched, where 

chunking, codes, and resonance are the newly added aspects. 

 

 

Figure 1. The Unified Competition Model general architecture (from MacWhinney, 2004). 

 

The load-bearing component of both the earlier version of the Competition Model 

and the Unified Competition Model is, intuitively, competition. In the earlier model, 

competition was solely accounted for by the cue summation and interactive 

activation. Whereas, in the Unified Model competition is also based on 

resonance.  
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In summary, competitive processes take place within and between the 

competitive arenas, as well as between the available codes. This will be 

explained in some more detail in what follows. 

The concept of arenas, or competitive arenas, refers to the four linguistic 

processing domains, namely phonology, lexicon, morphosyntax, and 

conceptualization. Each of them has a double representation, corresponding to 

the two levels of production and comprehension (e.g. phonology corresponds to 

the message formulation in production and to the auditory processing in 

comprehension). Besides, as it is to be expected, older learners develop one 

more competitive arena: the orthographic competition. 

Cues are the other pillar of the two above-mentioned models. If we consider 

words as form-function mappings, cues are what allows us to establish the very 

connection between form and function of the linguistic sign. To put it simply, on 

the comprehension level, forms are cues that lead to the underlying 

intentions/functions; on the production level, functions are cues that lead to 

surface forms (forms compete to express functions).  

Concerning storage, two distinct types of processing involve two distinct types of 

memory: offline processing mainly relies on long-term memory, with online 

processing mainly involving short-term memory. As emphasized by MacWhinney 

himself (2004), decision tasks that have no time restriction better show the validity 

of cue-based mechanism, since sufficient time is provided to ponder and select 

the best possible cue. The online processing, instead, relies on working memory 

and cue cost procedure supplants the cue validity mechanism. Cue cost (Bates 

& MacWhinney, 1987: 178) relates to the perceivability (or detectability) and 

assignability of the cue, the former relating to the difficulty that a listener may face 

in detecting cues, the latter referring to the facility to assign a role to a given cue. 

The assignability is then strictly interconnected with memory. In other words, cue 

cost increases when more processing is needed to pick up the correct cue. 
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One of the additional component of the Unified Model is Chunking, which 

operates on combinations of frequently co-occurring items to build up syllables, 

words, sentences. They may be found at different levels, starting from the 

phonology and ending with syntax. Adult learners often fail to assimilate larger 

inflectional patterns as a result of the tendency to pick shorter units, which are 

easier to analyze (MacWhinney, 2012: 15). Linguistic units are then learned on 

their own, instead of being learned within frequently occurring combinatorial 

patterns. In fact, not only chunking helps to foster fluency in language acquisition, 

but it can also boost the emergence of grammar by means of analogic relations.  

Another additional component to the previous Competition Model is the theory of 

code interaction, which includes transfer theory as well. Such theory provides an 

explanation for how codes interact between them, that is, how the code selection 

happens, and what implies code switching and code mixing processes. Transfer, 

for its part, can be positive or negative, the former resulting from successful 

alignment of L2 forms with correspondent L1 forms, the latter reflecting a situation 

in which the alignment produces unwanted mismatches (MacWhinney, 2012: 18).  

The final additional component, resonance, is central to the Unified Model in that 

it accounts for the code separation and learning process, among others. 

Structurally, resonance represents the repeated co-activation of neural 

connections, occurring when overt verbalizations evolve into covert, that is, inner 

speech that positively affects syntax reinforcement. Simply put, resonance allows 

the reconfiguration of oldest neural patterns. Technically speaking, resonance 

has to do with the co-activation of two cortical areas, which is temporarily 

maintained in the hippocampus (MacWhinney, 2012: 12).  

In this perspective, several scenarios are outlined. For instance, in case of 

bilingualism, simultaneous acquisition can result into equal or unbalanced 

dominance of the two languages, where weaker language is unable to provide 

sufficient inner resonance in order to prevent transfer from happening. In contrast, 

balanced proficiency in the two languages inhibits the code blending. However, 

in comparison to bilingualism, the L2 acquisition is structurally different, because 
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the second language tends to be considerably weaker than the native language. 

In contrast to child language acquisition, in this case explicit learning strategies 

must be implemented. 

In addition to the seven components, the Unified Model takes into account Age-

Related Effects on language acquisition. There is convergent evidence that at a 

certain point the ability to learn languages decreases. The Unified Model mainly 

attributes the Critical Period Hypothesis to the entrenchment of L1, which means 

that during the development of L1 specific structures get determined. In such a 

way, the human brain commits to specific linguistic paths that increasingly lead 

to the limitation of brain flexibility. Self-Organizing Maps may replicate such 

phenomena, as will be shown in the following chapter. 

Generally speaking, the Unified Model identifies two sets of factors, able of 

inhibiting or promoting language acquisition. Doublets of risk vs. support factors 

are listed as follows: entrenchment vs. resonance; misconnection vs. connection; 

negative vs. positive transfer; parasitism vs. internalization; isolation vs. 

participation. 

Entrenchment and resonance duo is quite simple to understand, since the 

counteraction of resonance to entrenchment consists in providing a mechanism 

of re-encoding the already committed neuronal circuitry. Furthermore, other brain 

processes may increase the effect of entrenchment. The characteristic structure 

of the brain has the tendency to connect words that have similar meaning and 

grammatical category into neuron clusters, or cortical maps.  

To address the connection vs. misconnection issue, one must consider the 

difference in part of speech assignment between L1 and L2: if both languages 

rely on the same system of grammatical category attribution, then no obstacle will 

interfere in L2 syntactic processing. On the other hand, if the two languages 

belong to two very different systems of grammatical category assignment, then 

the difficulty to learn L2 syntax will lead to a major parasitism on L1.   
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As already mentioned, parasitism refers to the mechanisms of emulating pre-

existing L1 structures while learning L2. Internalization process has the capacity 

to neutralize such parasitic mechanisms with the help of the inner speech.  

2.3.  Generalized Neighborhood Model (GNM, Bailey & Hahn)   

 

At this stage of inquiry, it is important to focus on the following question: how do 

L1 and L2 interact with each other? How does perception of typicality of lexical 

input affect L1 and L2 acquisition? Typicality is the extent to which a target word 

is perceived as similar to other words in the lexicon (Marzi et al., 2014b). 

Perception of similarity is recognized to be central to language acquisition and 

processing as it allows to establish correspondences with other similar words in 

the lexicon, and, in so doing, accelerate word recognition. Following the definition 

of Luce (1986: 4): “A similarity neighborhood is defined as a collection of words 

that are phonetically similar to a given stimulus word.” Similarity goes hand in 

hand with the concept of wordlikeness that generally refers to a speaker’s 

knowledge of the phonotactics9 in his/her native language, basically grounded on 

their lexical competence and consequently put in practice with the help of intuition 

(Bailey & Hahn, 2001). 

Marzi et al. (2016) posit that among phenomena that affect the acquisition of verb 

paradigms, family effects play an important role, since the neighbor family size 

effect intervenes during the acquisition of low frequency regular forms. This is not 

the case when irregular forms are memorized, since no co-activation of 

neighboring connections can be performed. Both family size and the frequency 

of the neighboring words can positively or negatively affect the activation of the 

target word, e.g. if a target word is surrounded by a higher-frequency lexical units, 

                                                           
9 Phonotactics are to be defined as the frequency of co-occurrence of certain sound patterns. 
Another concept to take into consideration is that phonology is governed by phonotactic 
constraints that identify which sound combinations are allowed and which are not in a given 
language (Välimaa-Blum, 2009). 
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it will be more difficult to access. Further evidence has shown (Baayen et al., 

2006; Milin et al., 2009) that the same facilitatory/inhibitory effects are to observe 

in the domain of inflectional patterns, as well as inflectional classes10, which are 

both involved in lexical processing. 

In examining the determinants of wordlikeness, Bailey & Hahn (2001) identified 

two distinct factors, which oppose lexical influence, lexical neighborhood, to the 

statistical knowledge of combinatorial patterns of sequence typicality, or 

phonotactic probability. Table 1 displays Albright’s (2006) review of this 

dichotomic model: 

 

Lexical knowledge Phonotactic knowledge 

➢ Speakers know the words of their 

language 

➢ Hearing a novel word activates a set 

of real words, while attempting lexical 

access 

➢ The more words it activates, and the 

more similar it sounds to them, the more 

plausible it is as a possible word 

➢ Speakers attend to combinatorial 

possibilities of different sounds in their 

language 

➢ Novel words are parsed into 

constituent sounds, and the likelihood of 

combinations is assessed 

➢ The more probable/“less illegal” the 

combinations are, the better the word 

sounds 

Table 1. Generalized Neighborhood Model by Bailey & Hahn (2001)  

 

The main main controversy underlying such distinction is whether lexical 

neighborhoods are fundamentally distinct from phonotactic knowledge or rather 

they are deeply interconnected in determining the sequence typicality. In their 

research paper, Bailey & Hahn (2001) set out to explore which one of the two 

                                                           
10 Milin & Moscoso Del Prado Martín (2009) define the Inflectional Paradigm as “the set of 
inflected variants that can be formed for a word by regular or predictable morphological 
transformations.” In what follows, an Inflectional Class is as well defined as “a set of words that 
form their IPs in the same way”, which can easily be traced to what is generally called as 
conjugations for verbs, and declensions for nouns. 
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above-mentioned phenomena (or alternatively the combination thereof) 

determines wordlikeness, the key assumption being that there is a constant 

interplay between the two of them.  

In the study mentioned, transition-probabilities measures are employed in order 

to capture the phonotactic probability at different positions across words. 

Transition probability is one of the two most common ways phonotactic probability 

is calculated, the other is bigram co-occurrence within the body of speech. Such 

metric allows for better exploration of the phonotactic gradience11, which can be 

interpreted as a lack of definite and rigid acceptability rules (Välimaa-Blum, 2009; 

Bybee, 2001: 64). 

On the other hand, lexical neighborhood measure is based on the phonemic 

overlap among lexical units within the mental lexicon, as well as the quantity of 

such shared phonemes (Luce, 1986). A neighbor is generally defined as “a word 

that could be transformed into the target word itself by a one phoneme 

substitution, insertion, or deletion” (Luce, 1986:17). Consequently, the 

neighborhood density is defined by the number of neighbor words (NNB) 

connected to the target word (Bailey & Hahn, 2001:571). The research taken into 

account here extends the measurement of neighbors to the words that feature 

two-phoneme edit distance. 

The Generalized Neighborhood Model (GNM, from now on) is an adaptation of 

the Generalized Context Model (GCM; Nosofsky, 1986, 1990), which refused the 

neighbor vs. non-neighbor dichotomy by assuming that novel words maintain 

neighboring relationship of different degrees, based on the “aggregate similarity” 

to the stored words (Albright, 2007: 5). GNM accounts for the effects of lexical 

neighborhood, namely the extent to which each novel word is to some degree 

                                                           
11 Bybee (2010) defines the concept of gradience as follows: “Gradience refers to the fact that 
many categories of language or grammar are difficult to distinguish, usually because change 
occurs over time in a gradual way, moving an element along a continuum from one category to 
another.” 



 

 

 

22 
 

supported by the similarity to the existing words in the lexicon12. Such supporting 

effect is provided among others by token frequency, which is believed to benefit 

word recognition (see Luce, 1986: 5 for further discussion). Furthermore, GNM 

provides a more realistic measure capable of capturing both monotonic and non-

monotonic frequency effects, which better determines the contribution made by 

words of different frequencies (Bailey & Hahn, 2001; Albright, 2007). In fact, 

although it seems more intuitive to assume that the frequency increase leads to 

stronger lexical support, it should be noted, though, that word-frequency paradox 

comes into play here. Word-frequency paradox (Mandler et al., 1982; Lohnas & 

Kahana, 2013) lies in the finding that high frequency facilitates word recalling, 

whereas low frequency benefits word recognition. This phenomenon is explained 

by Bybee (1995) as the result of the tendency of high frequency words to be 

processed as autonomous entities, rather than in conjunction with other lexical 

entries. The fact that high frequency inhibits morphological analysis results into 

less productivity and hence limits neighborhood interaction. This mechanism 

gives prominence to medium frequency words as they seem to have a greater 

role in determining new formations and wordlikeness (Bybee, 1995: 434; Albright, 

2007: 6; Bailey & Hahn, 2001: 580).  

Another newly added feature is the assessment of phonological differences, 

specifically aimed at identifying substitution, insertion, and deletion cost between 

neighbor-words. For example, in bat-sat the substitution of the initial consonant 

is easier when compared to the analogous substitution in bat-pat (Bailey & Hahn, 

2001: 563). As a result, greater dissimilarity leads to lesser lexical support, 

therefore to a greater psychological distance and cost (Albright, 2007; Bailey & 

Hahn, 2001). Structurally speaking, the dis/similarity is calculated by means of 

                                                           
12 Albright (2007:5) provides the following definition of the GNM:  
Support for item i = ∑weightw × e (−di,w /s) , where  
• weightw = a function of the token frequency of word w  
• di,w = psychological distance between nonce item i and existing word w  
• s = sensitivity, a parameter that controls the magnitude of the advantage that very similar 
neighbors have in determining the outcome  
• e ≈ 2.71828  
For further discussion, see Albright (2007). 
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the natural class distance metric, which proceeds to add up all the different 

phonological features13. Such metric ranges from 0, where no difference is 

observed between phonemes, to 1, corresponding to completely different 

phonemes.  

GNM’s main point of departure was to determine to what extent sequence 

typicality is influenced by phonotactic probabilities and by lexical influences. 

Furthermore, the very nature of sequence typicality was questioned in terms of 

its submission to neighborhood effects, as opposed to the dependency on 

statistical knowledge (Bailey & Hahn, 2001: 585).  

In conclusion, albeit acknowledging that both lexical neighborhoods and 

phonotactic (or orthotactic) probability are still far from being completely explored, 

findings from psycholinguistic and cognitive experiments run within the 

framework of the GNM indicate that lexical influences better predict wordlikeness 

than phonotactics do. 

  

                                                           
13 “[…] a natural class is a group of sounds sharing one or more linguistically significant phonetic 
characteristic” (Bailey & Hahn, 2001: 573). 
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3. LEXICAL PROCESSING  

 

Over the last forty years, many theoretical and psycholinguistic approaches have 

focused on the mechanism governing lexical storage and access and on the 

dynamics of language acquisition and processing (Jackendoff, 1975; Bybee, 

1985, 1995; Matthews, 1993; Aitchison, 1994; Aronoff, 1994; Baayen et al., 1997; 

MacWhinney, 1999; Libben, 2005; among others).  

Converging evidence from psycholinguistic studies suggests that lexical 

knowledge and morphological competence appear to be organized to maximize 

processing efficiency, rather than to minimize storage. Originally hypothesized by 

Vennemann (1974), the role of morphological competence is to help organize the 

lexicon in an appropriate way and to make words easier to be stored and 

accessed. 

In more recent times, this hypothesis has been developed into a view of the 

mental lexicon as a dynamic memory system (among others, Bybee, 1995; Ellis 

& Schmidt, 1998; Elman, 1995, 2004; Baayen, 2007; and specifically concerning 

L1 and L2 interaction, see Ellis, 1998, 2002; Li, 2009). 

The way lexical information is stored mirrors the way it is accessed and 

processed. In this perspective, an analysis of the dynamic interaction between 

lexical representations and distribution, degrees of regularity in input data, and 

perceptual competition can explain and illustrate the emergence of structure in 

the mental lexicon. 

 

3.1. Mental representation and processing 

 

According to psycholinguistic approaches, lexical representations correspond to 

the projection of a word in one’s mental lexicon, with the latter defined as the 

mental lexical archive of a speaker. It is generally accepted that in such lexicon, 

each entry is provided with some additional information, that ranges from 
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linguistic features to the way that particular unit can relate to other words (Gagné, 

2017; Traxler, 2012: 81) 

The question to which many linguists attempted to give an answer is how words 

are stored, processed and retrieved in the mental lexicon. Psycholinguistic 

evidence has suggested different approaches to lexical representation. Gagné 

(2017) classifies five different approaches accounting for lexical representation: 

 

i. The first approach posits that no morphological parsing is involved in the 

first stage of word recognition: whole word forms (be they morphologically 

simplex or complex) are stored in the mental lexicon. The main line of 

argument of this model, also defined as a full listing model (Domínguez 

et al., 2000: 376), is that the lexical representation of new entries is carried 

out through the mapping of semantic features. However, this approach 

does not completely exclude morphological analysis of complex 

morphological units. In fact, according to some theories belonging to this 

approach, when accessing a new and completely unknown word, an 

associative mechanism activates connections between the newly input 

word and already stored words that are perceived as similar (Cutler, 1980), 

or stored words that share the same root (e.g. Granger et al., 1991). 

ii. A second approach, on the contrary, relies on morphological 

decomposition. In this case, word representation starts with the 

segmentation of new lexical entries into their morphological constituents 

(i.e. morphemes). The general assumption of this approach, called full 

parsing model, is that the meaning of a word can be accessed by means 

of its isolated morphological constituents (Taft & Forster, 1976; Rastle & 

Davis, 2008).  

iii. The third access corresponds to the dual-route, or mixed models (as 

defined by Domínguez et al., 2000: 377), which hypothesize either a 

parallel activation of the first two approaches described above (Schreuder 
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& Baayen, 1997), or an independent activation of the whole-word access 

for familiar input and the decomposing access for novel input words 

(Caramazza et al., 1988). In these models, a line is drawn between mainly 

orthographic or semantic recognition. Besides, regular and irregular forms 

are treated differently.  

iv. A fourth approach states that the combination of the first two models 

operate concurrently, at the level of the surface form of the word and at 

the semantic level (Kuperman et al., 2009). This interactive multiple-

routes processing claims that a chronological order must be observed, 

e.g. in a bottom-up processing, the surface-level must be processed 

before semantic level. The most important point in this approach is that the 

two processing routes influence each other. Recent neurophysiological 

evidence (e.g. Pulvermüller, 2002) suggests that surface and semantic 

levels get simultaneously activated when processing an input word. 

v. The last approach following the overview of Gagné (2017) consists in 

attributing the morphological representation to the emergence of co-

activation of formal features (orthographic and/or phonological patterns) 

together with semantic features. In other words, the representation of a 

given word is “dissolved”, or distributed among a set of correlations within 

a network (Plaut & Gonnerman, 2000; Ferro et al., 2010; Marzi & Pirrelli, 

2015). 

3.2. Morphological storage and processing models 

 

Originally, the focus of morphological processing was placed on analytical 

languages, especially English, and limited to the processing model of the past 

tense of both regular and irregular verbs. In this work, I will revise three 

processing models, which account for three distinct ways to approach the 

morphological representation of lexical units. The main two criteria taken into 
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account are whether verbs are processed through storage or through 

computation on base-form instead. 

3.2.1. DUAL PROCESSING MODEL 

As already mentioned, the point of departure of morphological storage and 

processing models are mainly for irregular and regular verbal inflections. Pinker 

& Prince (1991) hold that regular morphology is directly linked to the application 

of rules, therefore to greater productivity, whereas irregular forms request 

“memory-driven processing”. From such perspective, it follows that irregular 

versus regular patterns are subjected to two distinct and dichotomic processing 

mechanisms.  

One assumption of this model predicts that irregular inflection is affected by the 

frequency rate. In fact, it claims that lower-frequency forms tend to undergo 

regularization (in a diachronic perspective), because their semantic 

representation in the mental lexicon is weaker than that of the highly-frequent 

verbs. Over-regularization is, in fact, a typical phenomenon not only of the U-

shaped learning curve in child language acquisition (Marcus et al., 1990; Pinker 

& Prince, 1991: 242), but also in adult dialects, which allow coexistence of 

doublets such as dived-dove (Stemberger, 1989; Marcus et al., 1990; Pinker & 

Prince, 1991: 234). 
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Although it is accepted that the operativeness of rule-based regular inflection, 

consisting in online computing of inflected form by adding a suffix to the base 

form, does not depend on previous storage of regular forms, Pinker and Prince 

(1991: 237) do not exclude that the system might actually memorize some regular 

inflections. In fact, this may be the case when past tense doublets coexist in the 

mental lexicon. Again, in no case, the generalization of the regular rules depends 

on such storage. 

3.2.2. CONNECTIONIST MODEL 

Murre (2005) traces back the connectionist models to the Hebbian neural learning 

rule14, often expressed as follows: ‘‘nerve cells that fire together, wire together.’’ 

Waskan15 explains Hebb’s proposal in the following way: “the connection 

between two biological neurons is strengthened (that is, the presynaptic neuron 

will come to have an even stronger excitatory influence) when both neurons are 

simultaneously active.”  

One of the most prominent connectionist model was theorized by Rumelhart & 

McClelland (1986). They suggest that: 

[…] implicit knowledge of language may be stored in connections 
among simple processing units organized in networks. While the 
behavior of such networks may be describable (at least 
approximately) as conforming to some system of rules, we 
suggest that an account of the fine structure of the phenomena 
of language use can best be formulated in models that make 
reference to the characteristics of the underlying networks. 
(Rumelhart & McClelland, 1987: 196) 

 

                                                           
14 Hebb (1949) proposes an explanation for the adaptation of neurons in the brain during the 
learning process, describing a basic mechanism for synaptic plasticity, where an increase in 
synaptic efficacy arises from the presynaptic cell's repeated and persistent stimulation of a 
postsynaptic cell. 
15Waskan, J. (2010). Connectionism. Internet Encyclopedia of Philosophy. Retrieved from: 
http://www.iep.utm.edu/connect/ [Last access: 11/07/2017] 
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According to this model, lexical representation emerges from neural connections, 

that is, generalization allows language acquisition. In the following citation of their 

work, Rumelhart & McClelland place great emphasis on one of their key 

assumptions: 

We have, we believe, provided a distinct alternative to the view 
that children learn the rules of English past-tense formation in 
any explicit sense. We have shown that a reasonable account of 
the acquisition of past tense can be provided without recourse to 
the notion of a "rule" as anything more than a description of the 
language. We have shown that, for this case, there is no 
induction problem. The child need not figure out what the rules 
are, nor even that there are rules. (Rumelhart & McClelland, 
1986: 267) 

 

The main assumption is that no distinction is to be made between regular and 

irregular verbs processing. The core principle of this model is that base input-

forms are linked in the associative memory to the output-past-tense forms. The 

strengths of such connections constantly rearrange during the learning process. 

Such neuron-like structures, are characterized by an “all-or-none character” 

(Waskan, 2010), which means that they are either “firing” or they are inactive. In 

other words, the signals are associated with an activation value that ranges 

between 0 (inactive state) and 1 (maximal activation firing), they are transmitted 

along neural connections. The target behavior is finally achieved thanks to the 

adaptive learning of neural networks, constantly adjusting to the changing weight 

of connections. This way, both the structure and the learning process are 

constantly updated. 

3.2.3. NETWORK MODEL 

The third model of morphological processing in language acquisition that I will 

sketch here is the Network model, proposed by Bybee (1985; 1988). It shares 

some essential characteristics with connectionist models, with some fundamental 

new features that distinguishes it from the previous models.  
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On the one hand, the common ground between Bybee’s theory and any other 

connectionist theory is that (i) ir/regular verbs are processed in the same way, 

contrary to what dual-processing model postulates; and, as a result, (ii) no explicit 

rules are formulated for language acquisition. Both models state that productivity 

of a morphological pattern is strictly related to its type frequency, rather than to a 

different morphological behavior. 

On the other hand, criteria such as type and token frequency, lexical strength, 

and lexical schemas are some of the most relevant properties of this model, which 

account for distinct lexical representations and different levels of productivity of 

ir/regular verbs.  

Lexical strength is intended as the semantic independence of a word in the 

mental lexicon: the stronger the representation, the less regularization tendency 

will emerge, the better accessibility of the entry. Bybee (1995) claims that lexical 

strength of a lexical item depends on its token frequency. She asserts that “words 

with higher lexical strength serve as the basis for the formation of new words” 

(Bybee, 1985).   

New lexical entries create associations with other units across the lexicon, 

enabling the emergence of morphological connections between base forms and 

complex forms, as well as among complex forms. It is believed that new words 

do not undergo any segmentation, although a sort of morphological analysis is 

actually carried out in extracting common phonological and semantic features 

between new forms and already stored words. The number of detected common 

features affects lexical representation, which gradually increases as more and 

more morphological connections are constituted. Thus, this model posits that 

stronger connections result into major lexical strength. An example of how 

semantic and phonological connections work is sketched below (Bybee, 1988): 

the singular form of cat is semantically connected to its plural form cats. 

Furthermore, the latter form can form further connections with other plural nouns 

in the mental lexicon. In Figure 2, below, the relevant features are bolded for 

attention. 
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Figure 2. Lexical connections between words (Bybee, 1988: 127; 1995). 

 

The amount of phonological and semantic connections determines the Degree of 

Relatedness that has a positive effect on word recognition. The author argues 

that the degree of relatedness depends more on shared semantic features, rather 

than form features (Bybee, 1988: 129). 

Token frequency has a great impact on both lexical strength and lexical 

connections. This idea can be captured if one accepts Bybee’s (1995: 129) 

conclusion that words with higher frequency are more autonomous, have 

stronger lexical representation, hence engage less with other words and are 

better learnt on their own terms. In contrast, less frequent forms construct a 

network with other lexical items, and are better learnt through such relations. 

Further assumption ascribes to greater frequency the paradigm changes, such 

as suppletion — a common trait in the most frequent paradigms (Bybee, 1995: 

129). With respect to low frequency forms, networks of shared semantic and 

phonological patterns result in the emergence of generalizations that Bybee 



 

 

 

32 
 

defines as schemas16. The productivity of such schemas depends on the 

following two criteria: (i) degree of specificity of the schema, and (ii) its lexical 

strength. The specificity of the schema points to its defining properties: less 

specific schema will be more open, thus more productive. The productivity of the 

schema is also positively affected by its strength, which is directly proportional to 

its type frequency. In this case, the type frequency refers to the occurrence of 

morphological pattern as a whole. The opposite scenario is as follows: the greater 

the number of defining features, the closer the schema. Consequently, its low 

productivity leads to lesser exposure to new items, and ultimately to lower type 

frequency.  

In addition to this line of argument, Bybee (1995) makes a distinction between 

two sorts of schemas: product-oriented and source-oriented, which correspond 

to irregular and regular verbs analysis, respectively. As a matter of fact, product-

oriented schemas indicate common features between base and derived forms, 

but do not explain how this derivation is carried out, e.g. string-strung. As a 

counterpart to this operation, source-oriented schemas do establish inflectional 

relation by relating the basic form with derived past from in the dental suffix, as in 

walk-walked. This latter class recalls the generative rules, theorizing online 

computation of past tense forms, as opposed to representation process.  

Since no attempt to avoid redundancy is made according to this model, both 

schemas can be activated for the same connection.  

3.2.4. DISCUSSION 

Rule-based and classical connectionist approaches (i.e. one-route vs dual-route 

processing) have dominated the debate on morphological processing for a couple 

of decades (around from the mid-80s to the mid-2000s).  

                                                           
16 In Bybee’s approach, schemas represent phonological properties of a morphological class that 
are used to organize and access the lexicon.  
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According to the dual-route approach (§ 3.2.1), access to a morphologically 

complex word implicates two steps: (i) a preliminary access to the input full-word, 

and (ii) an optional morpheme-based access resulting from combinatorial rules. 

According to the one-route approach (§ 3.2.2), morphological structure is a by-

product of a direct correspondence (without combinatorial rules) between a 

lexical base as an input form and a correspondent output form, namely an 

inflected or derived form (e.g. walk-walked, ring-rang). 

Both approaches obey to a strictly derivational view of morphological relations, 

according to which a fully inflected form is always produced/analyzed on the basis 

of a unique, underlying lexical (base) form. By modelling inflection as a 

phonological/orthographical mapping function from a lexical base to its range of 

inflected forms, classical connectionist architectures are closer to a rule-free 

variant of the classical constructive view (where roots and affixes are the basic 

building blocks of morphological competence, on the assumption that the lexicon 

is largely redundancy-free), than to associative models of the mental lexicon. 

Nowadays, there is convergent evidence (coming from the large body of 

psycholinguistic studies) of a distributed account of morphological structure as an 

emergent property of lexical self-organization, based on relations between 

surface forms, in line with the network model proposed by Bybee (§ 3.2.3). 

 It should be assumed that all word forms are memorized in the lexicon, with no 

distinction between a stored base form and all other related forms, which are 

processed on-line (see Baayen, 2007, for an overview).  

In addition, to capture the fact that words encountered frequently exhibit different 

lexical properties from words encountered infrequently, any model of the mental 

lexicon must assume that accessing a word in some way affects the access 

representation of that word (Marslen-Wilson, 1993; Sandra, 1994; among others). 
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3.3. Computational modelling 

 

The way lexical information is stored may reflect the way it is represented, 

accessed and retrieved as patterns of concurrent activation of memory areas. 

Memory, as already pointed out, plays a central role in lexical modelling, and in 

such account, computer simulations of memory processes can well address 

issues of lexical acquisition and processing.  

From a computational standpoint, lexical processing has to address three 

fundamental issues: (i) the nature of input representations, (ii) the nature of output 

representations, (iii) the formal relationship holding between (i) and (ii). Such 

issues are strongly influenced both by the way specific tasks are modelled, and 

by the theoretical approach they are related to, as summarized by Ellis: 

[…] language researchers take recourse to computer modeling 
by which the test of the simulation is whether competences 
emerge that parallel those of human language learners exposed 
to similar input. In this way, the debate between deductive and 
inductive approaches to language acquisition is being rephrased 
in terms of well-articulated models and real-world data. (Ellis, 
2005: 7) 

 

Computational simulations may offer the possibility to gain insights into the 

relationship between representation (memory) and processing strategies 

(perception and production), and empirically verify, under controlled simulations 

of word stimuli, that memory structures represent the way external stimuli are 

perceived and processed in our brain. 

In such account, neural networks, as adopted in computational modelling, 

represent simplified models of neural processing in the brain, as they can mimic 

the behavior of aggregations of neurons in the cortical areas involved in the 

classification of sensory data.  
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Kohonen’s Self-Organizing Maps (SOMs, Kohonen, 2001) define a class of 

unsupervised17 artificial neural networks that mimics the behavior of small 

aggregations of neurons in the cortical areas involved in the classification of input 

data. 

3.3.1. KOHONEN’S SELF-ORGANIZING MAPS  

In such architecture, processing consists in the activation of specific neurons 

upon presentation of a particular stimulus. A distinguishing feature of this brain 

maps is their topological organization, where nearby neurons in the map are 

activated by similar stimuli. There is evidence that at least some aspects of their 

neural connectivity emerge through self-organization as a function of cumulated 

sensory experience (Kaas et al., 1983). Functionally, these kind of brain maps 

are dynamic memory stores, which are directly involved in input processing, 

exhibiting effects of dedicated long-term topological organization. 

Kohonen (2001) points out that artificial neural networks cannot emulate the 

complex anatomy of human brain, therefore they are meant to describe a limited 

area of it, which corresponds to a particular function. He suggested that (1982: 

64) “This particular network model is first used to demonstrate, in an ultimately 

simplified configuration, that the activity of neighboring cells, due to the lateral 

interactions, can become clustered in small groups [...]”. 

A SOM can be defined as a “topology-preserving” map (Rojas, 1996), in so far 

as it succeeds in duplicating the topological correspondence, that is to say the 

spatial relation, between the incoming stimuli and the inputs in the cortex. For 

                                                           
17 Unsupervised is referred to the fact that there is no human supervision, thus recreating a 
competitive learning process (Holmén, 1996). Such characteristic of SOMs (and TSOMs as well) 
reflects the lack of instructions, balanced by the ability of the map to “classify” input stimuli. In 
other words, perception is what enables the acquisition, where the incoming stimuli are classified, 
stored, and grouped in order to let shared features to emerge. In this perspective, the 
classification process optimizes input storage. This characteristic mimics a genuine learning 
process where a child is exposed to the flow of unknown linguistic information that s/he is 
supposed to learn without any explicit instruction. The learning process is thus carried out 
intuitively by detecting similarities across the incoming stimuli. 
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example, neurobiological evidence has shown that the human brain processes 

visual information in such a way that a two-dimensional mapping is projected on 

the cortex (Rojas, 1996: 392). The same experimental evidence points to the fact 

that external inputs activate the immediate neighbors of the unit.  

When presenting the SOMs, Kohonen (1982: 59) explicitly referred to an 

“idealized neural structure”, although he assumed that this model could have 

much wider application (Kohonen, 1982, 2001).  

This kind of neural modelling realistically explains the organization of certain brain 

structures, whose characteristics are unfolded through SOM’s adaptive 

processing (Kohonen, 2001: 85). In simple terms, Self-Organizing Maps originate 

"elastic net" of points that can be described as “ordered maps of various sensory 

features onto a layered neural network” (Kohonen, 2001: 69).  

The nearest node to a sensory stimulus is the so-called Best Matching Unit 

(BMU), which is the salient unit. The competition underlying SOMs mechanism 

yields a winner that represents all the grouping of input vectors (Waskan, 2010). 

All nodes surrounding the BMU form the neighborhood. To sum up, during the 

learning process, the neighboring nodes interact in order to learn from the same 

sensory input. As a consequence, local relaxation on the weight of neuronal 

vectors within the neighborhood is achieved, which finally results in the global 

ordering of the map (Kohonen, 2001: 87).   

Neural network modelling has been mainly applied to the domain of monolingual 

lexical acquisition, whereas, up to day, only a few studies implying neural 

modelling devoted to bilingualism has been carried out (Zhao & Li, 2007). In the 

attempt to bridge this gap, Zhao & Li (2007) in their study Bilingual Lexical 

Representation in a Self-Organizing Neural Network Model, focused on 

investigating whether within the framework of bilingualism, the lexicon of the two 

languages develops into one shared representation in the mental lexical, or rather 

they are stored separately. Zhao & Li (2007) proposed a SOM-based architecture 

with three feature maps, corresponding to input level (auditory-phonology), 
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lexical-semantic representation level, and output level (articulation). Once it 

receives semantic or phonological input vector, a SOM generates 

representational mappings on two-dimensional array of nodes that can take a 

rectangular or hexagonal form.  

 

 
Figure 3: DevLex II structure (Li, Zhao & MacWhinney, 2007). 

 

A whole set of variables affects language acquisition, for this reason, the above-

mentioned study narrowed down the investigation by focusing on three different 

L2 acquisition scenarios: simultaneous, early, and late learning. The main 

hypothesis was that bilingual lexicon evolves progressively as L2 is being 

learned. For this purpose, the DevLex II, has been used in order to detect the 

dynamical nature of bilingual lexical organization. The structure of DevLex II is 

illustrated in Figure 3 above.  

The three levels account for phonological, semantic, and production 

representations. Both the input and semantic information are represented by 
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SOMs, connected through Hebbian learning.  

As already mentioned, DevLex II was trained to simulate three distinct learning 

contexts. To do so, 500 were presented simultaneously, as well as more or less 

sequentially, to the network over 10 learning epochs. Each word was input 10 

times per epoch. The bilingualism regime was recreated by parallel exposition of 

the map to both lexica simultaneously, 50 form per epoch. In the second scenario, 

corresponding to the early learning, L2 lexicon (Chinese) was input after 100 L1 

words (English) were presented to the map. Finally, within the late learning 

context L2 lexicon intervened after the network saw 400 L1 forms.  

Figure 4 summarizes the results of such experiments by showing both 

phonological as well as semantic maps, showcasing the lexical distribution of 

L1/L2 lexica in three training regimes. Dark areas represent L2 lexicon. 

In case of simultaneous learning context, the results reflect a situation in which 

L1 and L2 achieve two separate lexical representations, where no dominant 

language is attested. The boundaries of both languages are clear. On the other 

hand, in early learning situation L2 partially loses its agglomerate characteristic 

—at least in the phonology map— by giving more space to L1. In this way, L1 

starts gaining dominance over L2, which can be observed also in the dedicated 

semantic map. In the last scenario the distributional pattern drastically changes. 

In fact, L2 lexicon is assimilated to the dominant L1 lexicon, L2 fragments moving 

closer to the areas of L1 on the basis of shared features, be they semantic or 

phonological. Zhao & Li (2007) explain such distribution with plasticity loss18. In 

other words, in late learning regime lexical organizational structure is already 

established, thus the difficulty of changing the topology of the network increases 

with neuronal entrenchment. 

 

 

                                                           
18 See § 2.1 for more detail.  
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Figure 4: Bilingual lexical representations on semantic map (left) and phonological map 
(right). White areas correspond to L1 words (English). Black areas correspond to L2 words 
(Chinese), captured in the following three acquisitional regimes: simultaneous (a, b), early 

(c, d), and late (e, f) ones (Zhao & Li, 2007). 

 

One limitation of DevLex II model is pertinent here: the lack of the temporal 

dimension of input removes the surface word relations that trigger the emergence 

of lexical structure. In this way, semantic representation gains at the expense of 

the predictability of the incoming word. 

In the following section, I will briefly outline an architecture based on one level of 

representation, where input words are encoded on the input layer as temporal 

sequences of symbols.  
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3.3.2. TEMPORAL SELF-ORGANIZING MAPS   

The main difference between classical SOMs and TSOMs is the temporal 

dimension: in SOMs input words are shown in a static way, whereas temporality 

is an essential component of Temporal Self-Organizing Maps (TSOMs hereafter). 

In fact, sequential representation of words as time-series of symbols is a more 

realistic way of recreating human language perception, be it based on acoustic, 

or written input. 

To be more specific, TSOMs represent a variant of classical SOMs, by adding a 

level of temporal connectivity, implemented as a pool of re-entrant connections 

providing the state of activation of the map at the immediately preceding time tick. 

Temporal connections encode the map’s expectations of upcoming input on the 

basis of past experience (Pirrelli et al., 2015). In this way, a map can memorize 

input words as time-series of symbols (e.g. orthographic letters or phonological 

representations) as activation chains of nodes.  

The TSOM architecture (see Figure 5 below) is characterized by a grid of 

topologically organized memory node (exactly as Kohonen’s SOMs are), which 

represents one layer of (artificial) neurons, with two layers of connectivity: (i) all 

nodes are fully connected with the input vector with no time delay (i.e. the spatial 

connection layer); (ii) each node is connected with all other nodes (i.e. temporal 

connection layer), whose connections are updated with one-step time delay, 

based on activity synchronization between a BMU at a preceding time and the 

following activating BMU (i.e. the most highly activated node at time t-1 and the 

node at time t that mostly get activated). 

Each learning step includes three phases: (i) input encoding, (ii) activation and 

(iii) weight adjustment. A symbol is represented on the input layer at time t 

through an input vector of x codes (see Figure 5). At each exposure, map nodes 

are activated in parallel depending on how close their weights on the spatial 

connection are to the x input vector, and how strongly nodes are connected with 

the BMU at time t-1 over the temporal layer (Ferro et al., 2011). 
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Figure 5: Outline architecture of TSOM (Ferro et al., 2011; Pirrelli et al., 2015) 

During training, due to such learning dynamic, each node develops a sensitivity 

to both a position-specific symbol and a context-specific symbol by incrementally 

adjusting its weights to recurrent patterns of morphological structure. As a 

consequence, a pool of nodes tends to specialize to respond to any specific input 

symbol, by showing higher activity levels than all others when the symbols appear 

in a particular context (Marzi et al., 2017). In this way, the overall organization of 

a TSOM will be determined by the morphological structure of training data, 

depending on three factors: similarity, frequency, and symbol timing. In fact, 

similar symbol sequences generate overlapping activation patterns; highly 

frequent symbols and chunks tend to select dedicated nodes; nodes react 

differently depending on the context where a symbol is repeatedly found. 

Perception of similarity between input words can thus be measured in terms of 

recurrent patterns shared by inflected forms, and TSOMs may provide an 

explanatory framework by bringing together insights from neighbor family effects 
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on word recognition, evidence from family size effects in serial lexical access19 

and paradigm-based dynamics in lexical acquisition. 

3.3.3. MODELLING FIRST AND SECOND LANGUAGE ACQUISITION AND 

PROCESSING WITH TSOMS 

Wordlikeness effects appear to interact with memory issues, and in particular with 

how lexical representations are encoded in the long-term storage. TSOMs, 

namely computational models of serial memories may take into account 

dynamics of lexical acquisition and processing, by relying on some basic 

mechanisms of co-activation and competition between concurrently stored 

words.  

To make things very simple, lexical processing is based on (i) the co-activation 

and competition of memory resources, (ii) the activation primacy based on the 

“winner takes all” principle20, and (iii) selective specialization, over training.  

During acquisition, words get permanently coded in our long-term memory as 

neuron activation patterns that sequentially fire. In such an account, they can be 

conceptualized as time series of symbols. 

In the architecture of TSOMs, words are represented by time-series of symbols, 

which are vector-coded on the input layer and administered to the TSOM one at 

a time. During training, words are shown randomly, without any semantic or 

morpho-syntactic features or any possible inter-word relations. In this way, each 

node gets attuned to context-specific symbol by incrementally adjusting its 

synaptic weights to recurrent patterns of morphological structure.  

                                                           
19 Serial lexical access refers to the temporal dimension of lexical access, where each word is 
accessed through sequence of symbols. At this stage of analysis, words shall be thought of as 
temporal series of inputs, rather than being represented by one node only. In this way, it is 
possible to appreciate that also at a superficial access of row forms, namely in absence of the 
semantic dimension, it is possible to find out what words have in common. For example, book 
and handbook share part of their form, as well as machen and gemacht (German “do” and “done”), 
which share the stem “mach” even if it appears temporally dis-aligned in these forms, or abriendo, 
conociendo, etc. sharing the same inflectional suffix “iendo”. 
20 The principle which is behind the idea of Best Matching Unit, as well. 
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To sum up, both short-term and long-term memory dynamics cooperate in word 

processing by TSOMs by triggering the short-term activation and the long-term 

adjustment. This two-fold dynamic21 shows how processing and storage are 

mutually interdependent: node patterns get activated as input stimuli are 

sequentially fired, then the connections undergo readjustment that finally leads 

to the identification of the Best Matching Unit. At the end, the nodes that are 

directly connected to the BMU gain strength, those that did not get weaker. 

Finally, the repeated firing of the same input stimulus leads to a stronger 

activation of the BMU and, as a final result, to the specialization of the pattern. 

Within the framework of the TSOMs, the specialization of the BMU to a specific 

activation pattern is given by frequency distribution and formal redundancy in the 

training data (Marzi & Pirrelli, 2015). 

The above described selective specialization simulates the human propensity to 

show more sensitivity towards most typical chunks in their native language. It is 

important to observe that during learning, connection adjustment decreases by 

the decreasing of plasticity. As a consequence, L2 acquisition and processing 

tend to be affected by a reduced specialization for context-specific symbol 

identity, and a weaker entrenchment of highly frequent sub-strings.  

  

                                                           
21 Marzi & Pirrelli (2015) for further detail. 
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4. METHOD AND CORPORA 

4.1. Selection criterion from corpora 

4.1.1. THE SPANISH DATASET 

To investigate the dynamics of word and paradigm acquisition in a bilingual 

training condition, a set of fifty Spanish verbs is compared with fifty German and 

fifty Italian verb sub-paradigms, which were selected with the same criterion22  

(respectively from the CELEX Lexical database23, Baayen et al. 1995, and Paisà 

Corpus, Lyding et al. 2014).   

Thus, fifty Spanish verb sub-paradigms were selected among the most highly 

ranked paradigms by cumulative frequency in a European Spanish subcorpus of 

the larger Spanish TenTen corpus available in the online corpus analysis tool, 

Sketch Engine (sketchengine.co.uk). The choice of Peninsular Spanish is 

motivated by the different use of the past tense between European and Latin 

American Spanish, which would affect the frequency of selected paradigms.    

For each paradigm, an identical set of 15 cells was used for training (namely, the 

infinitive, present and past participle, singular and plural simple present, singular 

and plural simple past), for an overall number of 750 inflected forms. For each 

form, a function of real word frequency distributions in the reference corpus is 

considered (with token frequencies in the range of 1 to 1001). The correlation 

between corpus frequencies and dataset frequencies is significantly24 high 

(r=0.99). See detailed figures in Table 2. 

                                                           
22 The German and Italian sets of data had been selected and annotated by the ComphysLab at 
the Institute for Computational Linguistics, National Research Council of Italy. 
23 Celex is a web interface to lexical database (http://celex.mpi.nl/). For different languages 
(English, Duthc, German) it may contain token frequencies, part of speech tagging (POS, namely 
morpho-syntactic information), lemma, among others.  
24 Statistical analyses are run with R (http://cran.r-project.org). This kind of statistical analyses 
were provided by the Institute for Computational Linguistics (Pisa). Since it was necessary to 
reduce the whole amount of token frequencies for reducing the computational effort and duration 
in the arbitrary range of 1-1001, I found it necessary to demonstrate that the adopted function to 
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In case of any unattested verb form in the reference corpus, the set of the 

selected 15 cells was completed by adding the missing form as hapax. 

 

SPANISH SET Corpus frequencies Dataset frequencies 

Mean (standard deviation) 117681.6 (357262.1)    23.47 (66.43) 

Minimum 0 1 

Maximum 5376382 1001 

1st quantile 1517 2 

3rd quantile 95174 19 

Median 24030 6 

 

Table 2: Detailed figures for the selected dataset with reference corpus frequencies (left 

column) and the functionally adjusted frequencies (right column) 

 

As expected, in both sets, word token frequencies are not normally distributed. 

See boxplot distribution and linear regression25 in Figure 6. 

 

 

  

                                                           

limit token frequencies did not alter the distributions of tokens, that is to say that low-frequency 
words are still strongly less-attested than highly-frequent ones.  
25 Linear regression is an approach for modelling the relationship between a variable (y axes, 
token frequency in this case) and the data (x axes). Boxplots represent a simple and intuitive way 
to describe data. White circles indicate outliers. 
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Figure 6: Boxplot distribution of Corpus (top left panel) and dataset frequencies (top right 

panel). Linear regressions for frequencies in the two sets, which are corpus-based (bottom 

left panel) and functionally reduced (bottom right panel) show non-normal distributions of 

token frequencies (y axes). 

 

Detailed figures and the distribution of data confirm that the functionally reduced 

frequencies of each word form in my dataset did not modify the distribution of 

variables within the selected sample of paradigms as attested in the reference 

corpus. The advantage of reducing token frequencies into a range of 1-1001 is 

represented by a heavily scaling down of computational resources. In addition, 

reducing frequencies of the selected subset of verb forms for the three languages 

– Spanish, German and Italian – into the same range, makes them fully 

comparable, regardless of the different size of the reference corpora. 

Out of the 50 selected Spanish sub-paradigms, 27 are irregular and 23 are 

regular26. 

Figure 7 shows token frequencies for the two formally defined categories, namely 

irregulars and regulars. 

                                                           
26 For details, see § 4.2. 



 

 

 

47 
 

 
Figure 7: Token frequency distribution for irregular (I) and regular (R) paradigms in the 

Spanish dataset. 

 

A one-way ANOVA test27 shows a significant effect of (ir)regularity in frequencies 

distribution (p-value <0.001).  

Concerning words, the average length is 7.235 (with a standard deviation of 

2.33). The minimum length is two, and the maximum length is 15.  

4.1.2. THE GERMAN DATASET 

Out of the 50 most frequent German verb paradigms 34 are formally classified as 

irregulars and 16 as regulars. The average length of fully inflected verb forms is 

6.356 (with a standard deviation of 1.57). The minimum length is three and the 

maximum length is 11.  

Once again, corpus-based and functionally-reduced frequency distributions are 

highly correlated (r=0.99), and frequencies are not normally distributed (p-value 

< 0.001). Detailed figures are given in Table 3.  

 

                                                           
27 Analysis of variance, or ANOVA, indicates that there are differences between two groups of 
data – words of irregular paradigms and words in regular ones. The strength of the assertion is 
quantified by giving the significance strength, i.e. p-value. For each p-value that is lower than 0.05 
the hypothesis is accepted. 
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GERMAN SET Corpus frequencies Dataset frequencies 

Mean (standard deviation) 564.3 (2159.77) 13.71 (48.69) 

Minimum 0 1 

Maximum 44361 1001 

1st quantile 15 1 

3rd quantile 430 11 

Median 160 5 

 

Table 3: Detailed figures for the selected dataset with reference corpus frequencies (left 

column) and the functionally adjusted frequencies (right column) 

 

A one-way ANOVA test shows a significant effect of (ir)regularity in frequencies 

distribution (p-value <0.001). See Figure 8 for frequency distributions in the two 

formal categories. 

 
Figure 8: Token frequency distribution for irregular (I) and regular (R) paradigms in the 

German dataset. 

 

 

4.1.3. THE ITALIAN DATASET 

 

With the same criterion the Italian set of the 50 most frequent verb paradigms has 

been selected. As for Spanish and German, corpus-based and functionally-

reduced frequency distributions are highly correlated (r=0.99), with the 

frequencies not normally distributed (p-value < 0.001). See Table 4 for detailed 

figures. 
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ITALIAN SET Corpus frequencies Dataset frequencies 

Mean (standard deviation) 14975 (103994.9) 6.936 (41.38) 

Minimum 0 1 

Maximum 2514092 1001 

1st quantile 24 1 

3rd quantile 8243 4 

Median 1166 1 

 

Table 4: Detailed figures for the selected dataset with reference corpus frequencies (left 

column) and the functionally adjusted frequencies (right column). 

 

The average length of Italian verb forms is 7.082 (with a standard deviation of 

1.88). The minimum28 length is two and the maximum length is 11. 27 paradigms 

are formally classified as irregulars and 23 as regulars. Once again, the token 

frequency is differently distributed depending on (ir)regularity. In fact, a one-way 

ANOVA test shows a significant effect of (ir)regularity in frequencies distribution 

(p-value <0.01). Figure 9 shows frequency distributions in the two formal 

categories. 

 
Figure 9: Token frequency distribution for irregular (I) and regular (R) paradigms in the 

Italian dataset. 

                                                           
28 The third person singular for the simple present of essere (be), è (is), is encoded as e’. Thus 
the input to the TSOM is #,E,’,$. 
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4.2. Spanish dataset annotation 

 

For each fully inflected verb form in the Spanish dataset, stem, suffix, and prefix 

if any, are annotated by defining their length in terms of the number of symbols. 

The segmentation has been carried out by separating the endings – 

representative of the three Spanish conjugations, -ar, -er, -ir – from the stems. 

Spanish verbal inflection does not present any prefix in the past tense forms. 

Some difficulties have been experienced due to irregularities of certain inflection 

pattern, as well as to occasional phonological alternation within the stem.  

Spanish verbs are classified as either regulars or irregulars by Nueva gramática 

de la lengua española (RAE, 2011: 57-69). Whereby verb paradigms did not fit 

the canonical inflectional patterns of amar, temer, partir (RAE 2011: 57), a more 

detailed analysis was necessary.  

Spanish verbal inflection is subjected to different degrees of irregularities, which 

can be roughly divided into vowel, consonant, or mixed change. Vowel change 

leads to the so called diphthongisation, when the stem vowel is replaced by a 

diphthong, as follows: o - ue, like in contar - cuento; e - ie, like in pensar - pienso. 

Consonant change produces similar output, resulting into an alternation of a 

consonant, e.g. in hacer - hago. Both strategies are comprised in the mixed 

irregular pattern. However, the highest level of irregularity is represented by 

suppletive roots, which corresponds to a root alternation. This is the case of ir – 

voy – fui (“(to)go” – “(I)go” – “(I)went”), ser – soy – fui (“(to)be” – “(I)am” – “(I)was”), 

among others. 

Another type of irregularity of Spanish verbs is dictated by the vowel alternation, 

known as “raising”, because the stem vowel “raises” from “e” to “i”. This 

phenomenon belongs to the third conjugation, e.g. pedir – pido, and sometimes 

it also integrates the diphthongisation, like in mentir – miento (Embick, 2012). 

As already mentioned, each verb form was annotated with its stem and suffix (i.e. 

an inflectional ending), corresponding to the Data-Set columns “root length” and 

“suffix length”. Some verb forms show peculiarities in the inflection pattern, both 
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within the stem and the ending. For this reason, it seems necessary to explain 

the reasons of the morphological segmentation adopted in this study. First of all, 

some orthographic variations are due to different phonological contexts 

(Zamorano Mansilla, 2008), which are completely predictable, like in utilizo - 

utilicé, where z and c correspond to the same phoneme /θ/. 

Where endings are not directly linked to the stem, e.g. seguir – sigue, I adopted 

the same criterion as for regular forms, that is to say, solely the suffixes were 

isolated from the rest of the verb-form, so that the exceeding vowel was 

considered as part of the stem.  

One more category of irregular verbs in Spanish exhibit just one irregular inflected 

form, usually the first singular of the Present Indicative, e.g. poner - pongo, salir 

- salgo, and hacer - hago, although in these verbs almost all the other selected 

forms are completely irregular. 

  

4.3. Experimental design 

 

A battery of experiments is designed to investigate the functional behavior of 

TSOMs, and their morphological organization, when trained on different lexica in 

different training conditions.  

To simulate different conditions of input exposure to more than one language, 

and to address issues of L2 acquisition and processing and L1/L2 competition, 

an incremental training regime was adopted. That is, with no resetting of the 

TSOM parameters and no loss of already stored information, TSOM maps are 

exposed to the selected datasets in various combinations:  

(i) one condition of Spanish L1 and German L2, that is the set of 750 inflected 

forms for Spanish language is shown to the map for 100 epochs (in the 

range of learning epochs 1-100), and the set of 750 German forms are 
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shown for 50 epochs (in the range of learning epochs 51-10029);  

(ii) the reverse condition, i.e. German L1 and Spanish L2;  

(iii)  one condition of Spanish L1 and Italian L2, that is the set of 750 inflected 

forms for Spanish language is shown to the map for 100 epochs (in the 

range of learning epochs 1-100), and the set of 750 Italian forms are shown 

for 50 epochs (in the range of learning epochs 51-100);  

(iv)  the reverse condition, i.e. Italian L1 and Spanish L2;  

(v) a perfect bilingual experimental condition, with Spanish and German as 

both L1 (i.e. both datasets are input in the range of learning epochs 1-100); 

(vi)  the perfect bilingual experimental condition, with Spanish and Italian as 

both L1 (i.e. both datasets are input in the range of learning epochs 1-100); 

(vii)  3 strictly monolingual contexts – Spanish, German and Italian – for the 3 

experimental conditions where only one dataset is shown, to compare 

results with bilingual regimes. 

For each training condition, word forms of the 3 datasets are input according to 

their token frequencies, and with an identical parametrical set 5 TSOM instances 

are repeatedly run so to average results30. Each is represented by a time-series 

of symbols, namely a sequence of orthographic letters, administered one symbol 

at a time.  

The choice of the orthographic code is determined by a better availability of 

corpora. In addition, Spanish, German and Italian can all be defined as 

substantially transparent languages, that is with a transparent orthography31.  

                                                           
29 An exposure to L2 starting from epoch 51 (in a learning range 1-100) cannot be defined as an 
early bilingualism. However, the richness of L2 input – both in type and token frequency (i.e. 
richness of the vocabulary and amount of exposure) – brings to high accuracy results at the end 
of learning. These may be thought as corresponding to a good proficiency in mastering L2 lexicon, 
although some differences in the overall organization must be noticed.  
30 The bigger the number of instances, the more reliable the results, since averaged results 
minimize randomness factors. When defining the amount of repetitions of the same configuration, 
the overall computational time must be taken into account. The experiment at issue is quite time-
consuming, in fact for each combination, for each dataset, around three hours were devoted to 
complete the training. The estimation, in this case, for all language combinations, results in about 
225 training hours. 
31 Spanish and Italian are fully transparent; German is transparent to a lesser extent than Spanish 
and Italian.   
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A whole word is presented to a TSOM starting with a start-of-word symbol (#) and 

ending with the symbol ($) representing the end of a word. Each symbol is coded 

as orthogonal to any other symbol (see symbol encoding vectors, Annex 1). 

For the sake of precision, it must be pointed out that the Spanish and German 

monolingual maps are 40 x 40 memory node maps, whereas for any other training 

regime lexica are shown to 42 x 42 node maps. The estimation is based on the 

overall complexity of lexical input, that is in consideration of the average length 

of input words, formal redundancy (i.e. recurrent morphological structure shared 

by word forms, and number of word types). It must be noticed that, for example, 

in the three sets of 750 words, there are 715 word-types for Spanish, 504 types 

for German, and 748 for Italian. For the selected 15 cells, there are, in fact, many 

homographs in German, some homographs in Spanish, and only four in Italian32.  

After having outlined the method and the datasets used for the study, I will report 

in detail on some experimental results in the following Chapter.  

                                                           
32 In the Italian dataset we have sono for io sono ‘I am’ and essi sono ‘they are’; stato as the past 
participle for essere ‘to be’ and stare ‘to stay’. German verbal inflection is strongly characterized 
by redundancy: infinitive, 1st and 3rd plural persons for the indicative present share the same form, 
both in regular than in irregular predictable paradigms, as well as 1st and 3rd singular persons for 
the simple past (präteritum), and 1st and 3rd plural person for the simple past. Idiosyncratic 
paradigms do not follow this redundancy.  
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5. EXPERIMENTAL RESULTS  

 

After training, the memory content of each of the trained TSOM maps were tested 

to verify the internal organization on two tasks: word RECODING and word RECALL.  

The task of RECODING consists in quantify the accuracy of the map’s activation on 

input forms. An input word is recognized correctly if each best matching unit 

(BMU) in the activation chain is correctly associated with the current input symbol. 

Errors are counted when an input symbol activates a BMU associated with a 

different symbol. In this case, the whole word is considered wrongly recoded. It 

can be said that word recognition depends on the current input stimulus, that is, 

as a measure of short-term memory.  

Conversely, word RECALL depends on the long-term memory of a map, and 

simulates the process of retrieving a sequence of symbols from its BMUs. Errors 

occur when the map misrecalls one or more symbols in the input string, by 

replacing it with a different symbol or by outputting correct symbols in the wrong 

order. Also for this task, errors on one symbol only are counted as an error (Marzi 

et al., 2014a). 

Results on recoding and recall tasks for each language in the different learning 

conditions are averaged over the five repetitions and are given in Table 5. 
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Language – learning epoch Recoding accuracy Recall accuracy standard 

deviation 

Spanish monolingual - 100 100% 99.30% 0.61 

German monolingual - 100 100% 99.52% 0.27 

Italian monolingual - 100 100% 98.69% 0.55 

Spanish L1 - 50 100% 98.88% 0.56 

Spanish L1 - 100 100% 98.38% 1.23 

German L2 - 100 100% 91.98% 1.92 

German L1 – 50 100% 99.33% 0.36 

German L1 – 100 100% 98.65% 0.51 

Spanish L2 – 100 98.43% (0.88 sd) 92.67% 0.87 

Spanish L1 – 50 100% 99.33% 0.44 

Spanish L1 – 100 100% 99.22% 0.47 

Italian L2 – 100 100% 95.24% 1.26 

Italian L1 – 50 100% 99.06% 0.34 

Italian L1 – 100 100% 96.39% 0.61 

Spanish L2 - 100 100% 97.03% 1.07 

Spanish L1 – 50 100% 97.31% 0.55 

Spanish L1- 100 100% 97.43% 0.47 

German L1 – 50 100% 97.98% 0.66 

German L1 - 100 100% 98.17% 0.55 

Spanish L1 – 50 100% 98.07% 0.46 

Spanish L1 – 100 100% 96.07% 1.69 

Italian L1 – 50 100% 98.07% 0.46 

Italian L1 - 100 100% 96.15% 1.65 

Table 5: Recoding and recall accuracy are given in percentage for each language in all 
training conditions. Scores are averaged on 5 repetitions. 

 

5.1. Monolingual regime 

A detailed analysis started from the acquisition time of word forms for the three 

lexica in the three monolingual training conditions.  

In Figure 10, the time course of word acquisition is given for Spanish, German 

and Italian monolingual training. In detail, recoding and recall are monitored over 

time33.  

                                                           
33 In detail, acquisition time is monitored, and plotted accordingly, over the following learning 
epochs: 1:30, 50, 51:61, and the final epoch, 100.   
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Figure 10: Recoding and recall accuracy over learning epochs for Spanish (top plot), 
German (bottom left plot) and Italian (bottom right plot) words. Scores are averaged on 5 

repetitions. 

Figure 11 shows the acquisition epoch for the 50 most frequent paradigms in 

three strictly monolingual contexts, going from the fastest – namely the easier to 

learn - paradigm on the top (ver - restare - werden) to the most difficult paradigm 

on the bottom. The paradigm acquisition epoch provides an estimate of the 

average time necessary for all forms of the paradigm to be recoded and recalled 

correctly.  

It shall be observed that regular and irregular verbs are mixed, which reflects the 

balance between the facility to learn regular patterns and the importance of 

frequency in the acquisition of irregular patterns. In addition, it should be noticed 

that in case of one or more forms representing a challenge for storage and 
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retrieval from memory storage, the whole paradigm acquisition time will result 

delayed. It is the case, for example, of arbeiten in German, and stare in Italian, 

where regular past forms represent a challenge for correctly retrieving their 

memory traces due to the repetition of chunks (arbeit-et-et, ste-ste).  

 

 
Figure 11: Spanish, Italian, and German data set course of acquisition, where paradigms 

are ranked by increasing learning epoch (from top to bottom). 
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The simulation carried out by TSOMs can be thought of as if a child was gradually 

acquiring a lexicon, starting from the most frequent and short units, then learning 

increasingly longer and less frequent ones (Marzi & Pirrelli, 2015). For instance, 

surface word relations lead to the morphological organization in the lexicon. A 

gradient of perceived regularity-irregularity, rather than regularity vs. dichotomy, 

plays an important role in the formulation of the morphological organization to the 

extent to which regularity/predictability facilitates the emergence of common 

patterns, whereas highly irregularity/unpredictability makes it more difficult.  

In fact, regular–irregular distinction is not as categorical as it is commonly held. 

Degrees of irregularity affect language acquisition differently. This observation 

should become evident by looking at the Spanish paradigm time of acquisition 

(Figure 11, left panel), where the first nine verbs are all irregulars. It should be 

appreciated that these nine verbs exhibit different degrees of irregularity. In fact, 

the less irregular ones have lower cumulative frequency (reported in brackets)34, 

meanwhile the highly irregular ones are attested with very high frequency. This 

observation confirms the assumption that the frequency factor can neutralize the 

complexity of some irregular patterns, by supporting the acquisition of word forms 

in isolation. In this case, the situation is diametrically opposed for regulars: among 

the last forms appear some regular verbs, such as permitir, pasar, and, most 

importantly, abrir and existir, the latter two being in the very last two positions. 

Despite their regularity, these forms are on the bottom of the list because of their 

scant frequency. The case of abrir is especially interesting, because although the 

paradigm is classified as regular, this verb has an irregular Past Participle abierto 

that certainly does not support a faster learning. In this, and similar cases, in fact, 

the whole paradigm can benefit from the cumulated stem frequency of all forms 

to a lesser extent. This is the overall dynamic that supports some less attested 

paradigms (see for example gustar, presentar, quedar, llevar).  

                                                           
34 The cumulative frequency refers to the sum of the frequencies for all the selected 15 forms of 
the verb. 
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For German and Italian, the paradigm acquisition times confirm that there is not 

a unique factor determining the acquisitional dynamics. Neither word frequency 

nor regularity vs irregularity by itself can explain the evidence. All these factors 

must be considered in their complexity. Moreover, word frequency is not the alone 

quantitative amount to be taken into account, since the distribution of token 

frequencies among forms in the same paradigm plays a significant role.    

In this perspective, previous studies (e.g. Marzi & Pirrelli, 2015: 519) posit that 

skewed frequency distributions tend to slow down the acquisition of the paradigm 

as a whole. Since the paradigm acquisition epoch is calculated as the average 

acquisition time of all forms, less-frequency items will affect it negatively. This 

important issue can be illustrated with the form arbeiten, showing a significant 

acquisitional delay with respect to the other 49 German verbs, which can be 

attributed to both its skewed frequency distribution and the length of some of its 

forms35.  

Particular cases apart, the paradigm frequency has less effect on regular verbs, 

whose acquisition is facilitated by the neighboring family of words, rather than by 

frequency as in the case of irregulars. The regular forms, in fact, can not only be 

inferred from other forms of the same paradigm, but they can benefit from a sort 

of boosting effect given by the cumulative frequency of inflected forms that share 

the same stem (Marzi et al., 2014a). 

As already mentioned in §3.3.3, words get coded in our long-term memory as 

activation patterns of time-series of symbols. When receiving an input stimulus at 

time t, TSOM triggers the competitive activation of all nodes. This dynamic of 

lexical acquisition and processing is displayed in Figure 12, where concurrently 

stored words result in a partially overlapping activation pattern between abrir - 

abierto. The memory grid36 shows here TSOM’s both internal synaptic 

                                                           
35 Within the paradigm of arbeiten, arbeitest and arbeitetest are hapax forms and, interestingly 
enough, they also belong to the group of the longest units. Other forms, such as arbeitetest and 
arbeiteten, share the same characteristic of sequence repetition, in addition to their low frequency.  
36 The size of memory grid is here 40 X 40 nodes. 
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connectivity between sequentially activated nodes (see arrows in Figure 12) and 

levels of co-activation (see color for each node).  

  

 
Figure 12: Co-activation levels for chain of memory nodes that activate abrir - abierto. 

 

The mapping of colors allows for the reduction of the representation of 

multidimensional data on two-dimensional grid of nodes (where red stands for 

maximum activation, and blue for minimum activation). If we follow the activation 

pattern from the symbol # (start of word) to the symbol $ (end of word)37, we’ll 

notice that the pattern branches off in correspondence of the node b, which is the 

last shared node between the two forms.  

 

                                                           
37 Abrir and abierto are shown to the map as the input strings #a,b,r,i,r$ and #a,b,i,e,r,t,o$, 
respectively.  
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Figure 13: Co-activation levels for chain of memory nodes that activate considerar - 

considerado. 

 

In this way, the correlation between the incoming stimuli and the already stored 

forms provides evidence to our assumption that storage and processing are two 

sides of the same coin. As further proof, Figure 13 shows the co-activation of 

considerar - considerado patterns. Once again, the overlapping nodes 

c,o,n,s,i,d,e,r,a exhibit high level of co-activation (intense red clusters of nodes) 

up to the thematic vowel, where the memory chain splits in two different memory 

traces. 

It should be appreciated that although abrir and considerar are both regular 

paradigms, the irregular past participle form of abrir makes this form less co-

activated to the infinitive form, for example, than considerar and considerado.  
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Although it has been affirmed that regularity/irregularity is a gradient of 

predictability, it is in any case interesting to monitor the different acquisition pace 

for regulars and irregulars (as formally classified). 

 

 

  

Figure 14: Learning differences between irregulars and regulars for Spanish (top panel), 
German (bottom left panel) and Italian (bottom right panel). Accuracy is given for word types. 

 

Figure 14 shows for the three monolingual contexts the difference in acquisition 

pace between regulars (dashed line) and irregulars (solid line). Recall accuracy 

refers to the capacity of the network to correctly retrieve the stored form. 

Apparently, the difference between regulars and irregulars in the three languages 

is very small. Furthermore, as observed in the present experiments, the first 30 

learning epochs play a crucial role, because they represent the time span when 
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the learning process achieves and stabilizes the highest recoding and recall 

accuracy.  

This dynamic can be explained by verifying how the plasticity of the TSOM map 

lets adapt the spatial clustering firstly to the most frequent input symbols, 

specializing different nodes in the same cluster for symbol occurrences in 

different temporal contexts, and then progressively to the less frequently ones. 

This adaptive self-organization reaches a stable point at around learning epoch 

20. In fact, there are no differences in clustering between learning epoch 20 and 

30 (see Figure 15 below). 
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Figure 15: Symbol clustering in the Spanish monolingual regime: learning epochs 0 (top left 

panel), 5 (top right panel), 10 (middle left panel), 20 (middle right panel), 30 (bottom panel). 

 

Turning back to the acquisition pace for the three languages (Figure 14), Italian 

and German show more similarity between them, compared to Spanish results: 

in both contexts irregulars are more rapidly learnt until the epoch 12 

approximately, where the situation overturns. In Spanish the irregular forms lead 

the learning process (note the gap around epoch 10). This is due to the 

distribution of frequencies. In fact, it must not be forgotten that irregular forms are 

more frequent than regular ones (as highlighted in § 4). This is confirmed when 

instead of monitoring recall accuracy over word types, we observe recall accuracy 

over tokens (see Figure 16). In such case, differences get more evident, and 

confirm that irregulars are acquired earlier since they may rely on higher token 

frequencies of word forms. 
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Figure 16: Learning differences between irregulars and regulars for Spanish (top panel), 
German (bottom left panel) and Italian (bottom right panel). Accuracy is given for word tokens. 

 

Evidence as shown in Figure 16 supports the position that token frequency should 

be taken into account, since the map (in the present approach) is exposed to as 

many inputs as the overall amount of tokens. Therefore, it is not surprising that, 

on average, forms of irregular paradigms strongly benefit from their higher 

frequency support, compared to regulars.  

The importance of type/token frequency has been emphasized by Bybee within 

the framework of the Network Model (see §3.2.3). In fact, the lack of 

processability of some idiosyncratic verbs is balanced by their very high token 

frequency. Figure 16 reveals this difference in frequency effect, by highlighting 

the huge gap between regular vs. irregular paradigms recall. The bigger 

difference of this kind is observed in Italian, where irregulars show a remarkable 

peak in correspondence to the fifth epoch. Conversely, due to their lower token 
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frequency, regular forms need more training to achieve a better recall with respect 

to the other two languages. 

Preliminarily, I conclude that morphology acquisition is determined by word token 

frequency as well as by formal redundancy, that is to say, by morphological 

regularity intended as shared patterns. The more verb inflected forms share part 

of their superficial forms (i.e. the stem), the better and easier the acquisition of 

them. It is important at this stage of analysis to move to bilingual learning regimes, 

where it will be interesting to monitor a somewhat different behavior for L2 forms.  

5.2. Bilingual regimes 

At the beginning of this chapter, in table 5, I summarized accuracy percentage 

for each combination of lexical exposure. However, it is more informative to 

monitor the pace of acquisition during learning epochs, as already pointed out for 

the monolingual condition. 

In detail, I consider the Spanish-L1 German-L2 regime, where the set of 750 

inflected Spanish forms is shown to the map for the total amount of 100 epochs, 

and the set of 750 German forms are shown for a total of 50 epochs, starting from 

learning epoch 51 up to 100. In comparing Spanish monolingual and bilingual 

context, the trend is fully comparable until the epoch 51, when the map is for the 

first time exposed to the second language input. Figure 17 shows recoding and 

recall accuracy for the two lexica. 
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Figure 17: Acquisition pace shown as accuracy for the recoding and recall task over learning 

epochs for Spanish (left panel) and German (left panel) in the training condition Spanish L1 and 

German L2. 

 

 

This behavior is due to a competition-based processing. When to the stable 

organization of a TSOM new lexical items are shown, in particular items of 

language with own specific orthotactic constraints (L2), it can be observed an 

initial stage where the overlapping of representations for L1 and L2 may cause 

an influence on L1 itself (see learning epochs 51-61). However, they are L2 

lexical representations that are mostly influenced by competition, since they are 

also characterized by lack of context-specific specialization of its orthographic 

representations. A lack of fine specialization may cause processing problems in 

recognition and access (as observed by Bradlow & Pisoni, 1999, for lack of 

phonetic specialization). In fact, if an already stored word has an underspecified 

mental representation, the interference of strongly specified representations 

(typical of L1) may lead to misidentification (Cook, 2013). I contend here that this 

is induced by a much reduced amount of memory resources devoted to L2 

specific representations.  

To verify this position, Figure 18 offers a sequential representation of some 

stages for the bilingual regime, namely learning epochs 5, 10, 20, 50, which 

define the monolingual stage of acquisition for Spanish only; and learning epochs 

61 and 100 defining the L1-L2 stage. Similar to what happens in the monolingual 

context (Figure 15), the spatial clustering prioritizes the most frequent inputs first, 
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finally adapting to the less frequently ones as well. Again, no difference in 

clustering after the learning epoch 20 is observed. In fact, there are no differences 

in clustering between learning epoch 20 and 50. When word forms of L2 are input 

to the map, some marginal nodes get recycled from L1 representations to adapt 

themselves to the new input. This is necessary, for example, for symbols that do 

not occur in L1 (in the present case umlauted vowels and sharp-s, ä, ü, ö, ß). See 

sparse nodes in Figure 18 (bottom left panel) highlighted with black circles. 
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Figure 18: Symbol clustering at different learning stages in the Spanish L1 and German L2 

regime: learning epochs 5 (top left panel), 10 (top right panel), 20 (middle left panel), 50 (middle 

right panel), 61 (bottom left panel), 100 (bottom right panel). 

 

The recycling process of memory resources during different stages of learning 

can be quantitatively detected by evaluating the exact percentage of memory 

nodes activated by lexical representations for each language (see Table 6). 

Language – learning epoch Map nodes % 

Spanish monolingual - 100 36.44% 

Spanish L1 - 50 35.69% 

Spanish L1 - 100 30.86% 

German L2 - 100 17.07% 

German L1 – 50 34.00% 

German L1 – 100 28.75% 

Spanish L2 – 100 17.55% 

Spanish L1 – 50 36.02% 

Spanish L1 – 100 33.88% 

Italian L2 – 100 22.60% 

Italian L1 – 50 33.56% 

Italian L1 – 100 29.63% 

Spanish L2 - 100 24.33% 

Spanish L1 – 50 26.58% 

Spanish L1- 100 26.58% 

German L1 – 50 23.04% 

German L1 - 100 23.04% 

Spanish L1 – 50 30.67% 

Spanish L1 – 100 30.69% 

Italian L1 – 50 24.88% 

Italian L1 - 100 24.88% 

Table 6: For each training regime, percentage of specialized memory resources are given for 
each language. 
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The general trend monitored for the Spanish(L1)-German(L2) exposure 

condition, is also confirmed for reverse condition, as well as for the Spanish-

Italian regime. 

Figure 19 shows the incremental learning of the Spanish-L1 Italian-L2 regime, 

where the set of 750 Italian forms are added to the 750 Spanish forms starting 

from learning epoch 51 (up to 100). Once again, the Spanish trend for recoding 

and recall accuracy is comparable to the monolingual regime, with the only 

exception of learning epochs 51-61, that is when the map is for the first time 

exposed to the second language input. What is important to notice is that when 

the Spanish map is tested with the Italian input before learning it, that is before 

the L2 learning begins (epochs 1-50), a somewhat different behavior can be 

observed in comparison to the SpanishL1-GermanL2 regime (see Figure 17). 

The unseen Italian input is recoded with a higher accuracy than German input in 

the corresponding condition. 

 

  

Figure 19: Acquisition pace shown as accuracy for the recoding and recall task over learning 

epochs for Spanish (left panel) and Italian (left panel) in the training condition Spanish L1 and 

Italian L2. 

 

This is due the orthotactic likelihood that makes Spanish and Italian forms being 

perceived as more similar than Spanish and German ones. 
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In fact, one of the main determinant for lexical acquisition and processing is 

perception of similarity (see Chapter 2). Words that are perceived as similar to 

many other words in the lexicon may accelerate word recognition, and acquisition 

therefore, since wordlikeness effects interact with memory (§3.3.3). 

To monitor this effect in different lexical exposures, at the end of training, it is 

useful to verify the TSOM’s ability to anticipate a target word, that is to predict its 

continuation as soon as the onset is shown (Figure 20). The more symbols are 

anticipated, the easier the prediction of the target word.  

For the sake of clarity, within the frame of child language acquisition, the best 

possible learning strategy should lead to generalizations extracted from the 

(limited) linguistic input at the disposal of the child. Consequently, from the 

viewpoint of the surface word, formal predictability can be considered a 

touchstone for lexical acquisition, inasmuch it provides a starting point by relying 

on the already stored information. 

The point has already been made that orthotactics and redundancy play a big 

role in language acquisition, but what happens when two languages from different 

families coexist in the same bilingual context? 

 

  

Figure 20: TSOM’s ability to anticipate input words at the end of learning, by showing 
progressively the symbol sequences. Lines plot the anticipation over the activation levels for 

Spanish in the different exposure conditions: in combination with German (left plot) monolingual 
(grey dashed line), bilingual (dark dashed line), L1 (grey solid line), L2 (dotted line); with Italian 

(right plot) bilingual (dark dashed line), L1 (grey solid line), L2 (dotted line). 
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Figure 20 (left plot) shows this ability on the Spanish lexicon in the four training 

conditions, L1 (when German is L2), L2 (when German is L1), bilingual and 

monolingual ones. Figure 20 (right plot) shows the ability for Spanish in the 

Spanish-Italian combination. A gradient trend should be appreciated, ranging 

from monolingual condition to L2 training condition. 

Intuitively, monolingual Spanish condition features the best anticipation ability, as 

no L2 is there to obstruct it. Conversely, the worst results are to observe in the 

situation in which Spanish is in the L2 condition. By comparing the three bilingual 

conditions between the Spanish vs. German and Spanish vs. Italian, the plots 

reveal that the latter pair offer better results in terms of word anticipation (note 

the slope difference between the two sets of regressions). Such difference can 

be attributed to the linguistic distance, that is to more similar orthographic 

patterns, which ultimately facilitates word processing and acquisition. 

I conclude the experimental section by turning back to the paradigm acquisition 

epoch (as shown in Figure 11, §5.1, for the monolingual contexts) in the bilingual 

training conditions. It is important to observe the differences for the same dataset 

in the different training conditions, that is the monolingual regime (Figure 11), and 

the bilingual ones (Figures 21-28). As already express, the paradigm acquisition 

epoch provides an estimate of the average time necessary for all forms of a 

paradigm to be recoded and recalled correctly. In addition, the time span38 of 

acquisition displays for each paradigm clear figures of the difficulty of acquisition, 

as a function of morphological ir/regularity and token frequency. The shorter the 

span, the easier the acquisition.  

It should be observed that when a lexicon is in the L1 training condition, with the 

only exclusion of a few paradigms for which a couple of forms get never be 

acquired, the time span of acquisition is short, and benefit by either high token 

frequency of word forms, or by morphological regularity. On the contrary, when 

                                                           
38 Paradigm acquisition span has been defined as the number of epochs it takes to complete the 
acquisition of a paradigm after the first member of the paradigm is acquired (Marzi et al., 2014a). 
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the same lexicon is in the L2 condition, the acquisition dynamic benefit from these 

both determinants to a lesser extent. In fact, in a lesser number of cases token 

frequency and formal regularity (lexical redundancy) succeed in contrasting the 

competition effect of the L1 lexicon. 

 

 

Figure 21: Spanish course (left plot) and span (right plot) of acquisition and in the Spanish_L1 
and German_L2 condition, with paradigms ranked by increasing learning epoch (from top 

to bottom).  
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Figure 22: Spanish course (left plot) and span (right plot) of acquisition and in the Spanish_L2 
and German_L1 condition, with paradigms ranked by increasing learning epoch (from top 

to bottom).  
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Figure 23: German course (left plot) and span (right plot) of acquisition and in the Spanish_L1 
and German_L2 condition, with paradigms ranked by increasing learning epoch (from top 

to bottom).  
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Figure 24: Spanish course (left plot) and span (right plot) of acquisition and in the Spanish_L1 
and Italian_L2 condition, with paradigms ranked by increasing learning epoch (from top to 

bottom).  
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Figure 25: Spanish course (left plot) and span (right plot) of acquisition and in the Spanish_L2 
and Italian_L1 condition, with paradigms ranked by increasing learning epoch (from top to 

bottom).  
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Figure 26: Italian course (left plot) and span (right plot) of acquisition and in the Spanish_L1 
and Italian_L2 condition, with paradigms ranked by increasing learning epoch (from top to 

bottom).  
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Figure 27: Spanish course (left plot) and span (right plot) of acquisition and in the Spanish_L1 
and German_L1 condition, with paradigms ranked by increasing learning epoch (from top 

to bottom).  
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Figure 28: Spanish course (left plot) and span (right plot) of acquisition and in the Spanish_L1 
and Italian_L1 condition, with paradigms ranked by increasing learning epoch (from top to 

bottom).  
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6. CONCLUDING REMARKS 

 

Starting from the evidence provided by researchers at ComPhys Lab of the 

Institute for Computational Linguistics, Italian National Research Council (Pisa, 

ILC-CNR), the main goal of my thesis was to extend the application of 

computational modelling of language acquisition in monolingual and bilingual 

contexts to Spanish, which has not yet been treated within the given research 

framework. 

For the first step, I briefly outlined some of the most prominent psycholinguistic 

approaches to the study of language acquisition. Secondly, three major models 

of morphological processing have been presented. For instance, three models of 

lexical representation and processing have been explained, following the 

classification proposed by Bybee (1995), i.e. dual-processing model, 

connectionist model, and network model. The difference between these three 

models lies in whether they make a distinction between regular and irregular 

verbs and their processing models, and whether or not the type/token frequency 

of verbal morphological patterns plays any role at all. 

The experimental part of this study was focused on the first and second language 

acquisition of Spanish verbs, contrasted with parallel datasets in the Italian and 

German languages. In order to compile the dataset, I extracted the 50 most 

frequent verb paradigms from European Spanish Web Corpus (2011), available 

in Sketch Engine, for a total of 750 inflected forms (corresponding to the forms of 

the infinitive, present, and past participle, singular and plural simple present, 

singular and plural simple past). The frequency distribution is provided for each 

inflected form. For an analysis and evaluation of the emergent organization of 

paradigmatic relations, I annotated each form with morpho-syntactic information 

(i.e. stem and affix length, paradigmatic cell, formal (ir)regularity, paradigm). 

Specific difficulties arose during the segmentation of Spanish verbs, due to the 

peculiarities of some irregular patterns.  
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The computational modelling and processing of Spanish verbs forms has been 

simulated with Temporal Self-Organizing Maps (TSOMs), based on Kohonen’s 

Self-Organizing Maps (2001), augmented with a temporal layer. Basically, this 

computational model reproduces dynamics of lexical learning and processing by 

imitating the emergence of neural self-organization, through the incremental 

adaptation of topologically and temporally aligned synaptic connections. 

Starting from the literature review, also in connection with psycholinguistic 

evidence made available by studies of the last thirty years, I tried to put in 

evidence here that an adaptive self-organization during learning is conducive to 

the emergence of relations between word forms, which are stored in the mental 

lexicon in a concurrent and competitive dynamic. In particular, in the adopted 

bilingual perspective, monitoring the acquisitional trajectories of more than one 

lexica (in both L1+L2 and L1/L1 contexts) showed how recycled memory 

resources and weaker connections affect L2 acquisition and processing, with a 

smaller specialization for context-specific input chunks, depending on the 

exposure conditions.  

With this goal in mind, experiments in different training conditions were designed. 

It is obvious that many other experimental conditions could be tested, as for 

example, more degrees of bilingualism, in a gradient of successive bilingualism 

ranging from very early, early, up to late, and very late bilingualism. This kind of 

approach would focus the attention on the plasticity loss and the increasing 

entrenchment of L1, with a subsequent and gradual difficulty for the L2 lexicon to 

create its own context-specific specialization. 

Although time and space constraints did not allow these additional learning 

conditions, it is not hard to imagine and predict TSOMs behavior in these regimes. 

Map plasticity, as often underlined in my thesis, is in fact a determinant for a 

sufficiently specialized representation of lexical input. Very late exposure to L2 

word forms, or early exposure to very reduced evidence of L2 lexicon, will 

determine a local, parasitic representation for the L2. As observed by Hernandez 
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et al. (2005), late bilinguals typically learn L2 with a reduced plasticity relying on 

strategies of “parasitic dependence” of L2 on their L1. 

I may conclude that neurally-inspired computational models can provide a 

computational framework to analytically verify and study the developmental 

processes governing the acquisition and processing of the morphological lexicon 

in different languages, and reproduce a wide range of naturalistic conditions of 

both mono- and multi-lingual input exposure. 

In such perspective, a more complex computational architecture, where a 

temporal self-organizing map is connected to other levels of representation, 

according to the Hebbian learning principle, may better simulate and predict 

speakers’ and learners’ lexical behavior. As evidenced in this study, the 

biologically-inspired TSOM architecture on the one hand provide a temporal layer 

that succeed in properly reproducing the sequential nature of linguistic inputs; on 

the other hand, however, it addresses this investigation from an exclusively 

phonotactic/orthotactic viewpoint, which neglects the semantic level in favor of 

the surface word relation analysis Therefore, my suggestion goes in the direction 

of a combination of the TSOM’s level of representation of lexical input as temporal 

sequence of symbols with the DevLex II word’s meaning representation. 

Prospective research in this direction would give the possibility to simulate, and 

thus explain, more and more complex interaction and competition effects also at 

the level of semantic access in the frame of first and second language studies.  

On a different dimension, a further development of such an approach could 

develop a more complex input representation, simulating not only single words 

but complex words (complex words, sentences). 
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ANNEX 1 

SYMBOL CODING 

# 100000000000000000000000000000000000 

A 010000000000000000000000000000000000 

B 001000000000000000000000000000000000 

C 000100000000000000000000000000000000 

D 000010000000000000000000000000000000 

E 000001000000000000000000000000000000 

F 000000100000000000000000000000000000 

G 000000010000000000000000000000000000 

H 000000001000000000000000000000000000 

I 000000000100000000000000000000000000 

J 000000000010000000000000000000000000 

K 000000000001000000000000000000000000 

L 000000000000100000000000000000000000 

M 000000000000010000000000000000000000 

N 000000000000001000000000000000000000 

O 000000000000000100000000000000000000 

P 000000000000000010000000000000000000 

Q 000000000000000001000000000000000000 

R 000000000000000000100000000000000000 

S 000000000000000000010000000000000000 

T 000000000000000000001000000000000000 

U 000000000000000000000100000000000000 

V 000000000000000000000010000000000000 

W 000000000000000000000001000000000000 

X 000000000000000000000000100000000000 

Y 000000000000000000000000010000000000 

Z 000000000000000000000000001000000000 
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$ 000000000000000000000000000100000000 

' 000000000000000000000000000010000000 

ae 000000000000000000000000000001000000 

oe 000000000000000000000000000000100000 

ue 000000000000000000000000000000010000 

ss 000000000000000000000000000000001000 

í 000000000000000000000000000000000100 

ó 000000000000000000000000000000000010 

á 000000000000000000000000000000000001 
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ANNEX 2 

 

SPANISH DATASET 

 
tsom word form frequency word form paradigmatic 

cell 
conjugation lexical 

exponent 
prefix 
length 

root 
length 

suffix 
length 

I/R 

#,A,B,R,I,R,$ 22 abrir i 1 abrir 0 3 2 R 

#,A,B,R,I,E,N,D,O,$ 5 abriendo pE 1 abrir 0 3 5 R 

#,A,B,I,E,R,T,O,$ 36 abierto pA 1 abrir 0 5 2 R 

#,A,B,R,O,$ 2 abro 1SIE 1 abrir 0 3 1 R 

#,A,B,R,E,S,$ 2 abres 2SIE 1 abrir 0 3 2 R 

#,A,B,R,E,$ 18 abre 3SIE 1 abrir 0 3 1 R 

#,A,B,R,I,M,O,S,$ 3 abrimos 1PIE 1 abrir 0 3 4 R 

#,A,B,R,í,S,$ 2 abrís 2PIE 1 abrir 0 3 2 R 

#,A,B,R,E,N,$ 6 abren 3PIE 1 abrir 0 3 2 R 

#,A,B,R,í,$ 2 abrí 1SIA 1 abrir 0 3 1 R 

#,A,B,R,I,S,T,E,$ 2 abriste 2SIA 1 abrir 0 3 4 R 

#,A,B,R,I,ó,$ 9 abrió 3SIA 1 abrir 0 3 2 R 

#,A,B,R,I,M,O,S,$ 1 abrimos 1PIA 1 abrir 0 3 4 R 

#,A,B,R,I,S,T,E,I,S,$ 2 abristeis 2PIA 1 abrir 0 3 6 R 

#,A,B,R,I,E,R,O,N,$ 3 abrieron 3PIA 1 abrir 0 3 5 R 

#,C,O,N,O,C,E,R,$ 80 conocer i 2 conocer 0 5 2 I 

#,C,O,N,O,C,I,E,N,D,O,$ 5 conociendo pE 2 conocer 0 5 5 I 

#,C,O,N,O,C,I,D,O,$ 33 conocido pA 2 conocer 0 5 3 I 

#,C,O,N,O,Z,C,O,$ 3 conozco 1SIE 2 conocer 0 6 1 I 

#,C,O,N,O,C,E,S,$ 5 conoces 2SIE 2 conocer 0 5 2 I 

#,C,O,N,O,C,E,$ 24 conoce 3SIE 2 conocer 0 5 1 I 

#,C,O,N,O,C,E,M,O,S,$ 10 conocemos 1PIE 2 conocer 0 5 4 I 

#,C,O,N,O,C,E,',I,S,$ 2 conocéis 2PIE 2 conocer 0 5 4 I 

#,C,O,N,O,C,E,N,$ 11 conocen 3PIE 2 conocer 0 5 2 I 

#,C,O,N,O,C,í,$ 4 conocí 1SIA 2 conocer 0 5 1 I 

#,C,O,N,O,C,I,S,T,E,$ 2 conociste 2SIA 2 conocer 0 5 4 I 

#,C,O,N,O,C,I,ó,$ 5 conoció 3SIA 2 conocer 0 5 2 I 

#,C,O,N,O,C,I,M,O,S,$ 2 conocimos 1PIA 2 conocer 0 5 4 I 

#,C,O,N,O,C,I,S,T,E,I,S,$ 2 conocisteis 2PIA 2 conocer 0 5 6 I 

#,C,O,N,O,C,I,E,R,O,N,$ 3 conocieron 3PIA 2 conocer 0 5 5 I 

#,C,O,N,S,E,G,U,I,R,$ 59 conseguir i 3 conseguir 0 7 2 I 

#,C,O,N,S,I,G,U,I,E,N,D,O,$ 7 consiguiendo pE 3 conseguir 0 7 5 I 

#,C,O,N,S,E,G,U,I,D,O,$ 28 conseguido pA 3 conseguir 0 7 3 I 

#,C,O,N,S,I,G,O,$ 8 consigo 1SIE 3 conseguir 0 6 1 I 

#,C,O,N,S,I,G,U,E,S,$ 3 consigues 2SIE 3 conseguir 0 7 2 I 

#,C,O,N,S,I,G,U,E,$ 18 consigue 3SIE 3 conseguir 0 7 1 I 

#,C,O,N,S,E,G,U,I,M,O,S,$ 2 conseguimos 1PIE 3 conseguir 0 7 4 I 

#,C,O,N,S,E,G,U,í,S,$ 2 conseguís 2PIE 3 conseguir 0 7 2 I 

#,C,O,N,S,I,G,U,E,N,$ 7 consiguen 3PIE 3 conseguir 0 7 2 I 

#,C,O,N,S,E,G,U,í,$ 3 conseguí 1SIA 3 conseguir 0 7 1 I 

#,C,O,N,S,E,G,U,I,S,T,E,$ 2 conseguiste 2SIA 3 conseguir 0 7 4 I 
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#,C,O,N,S,I,G,U,I,ó,$ 14 consiguió 3SIA 3 conseguir 0 7 2 I 

#,C,O,N,S,E,G,U,I,M,O,S,$ 4 conseguimos 1PIA 3 conseguir 0 7 4 I 

#,C,O,N,S,E,G,U,I,S,T,E,I,S,$ 2 conseguisteis 2PIA 3 conseguir 0 7 6 I 

#,C,O,N,S,I,G,U,I,E,R,O,N,$ 6 consiguieron 3PIA 3 conseguir 0 7 5 I 

#,C,O,N,S,I,D,E,R,A,R,$ 16 considerar i 4 considerar 0 8 2 R 

#,C,O,N,S,I,D,E,R,A,N,D,O,$ 12 considerando pE 4 considerar 0 8 4 R 

#,C,O,N,S,I,D,E,R,A,D,O,$ 16 considerado pA 4 considerar 0 8 3 R 

#,C,O,N,S,I,D,E,R,O,$ 9 considero 1SIE 4 considerar 0 8 1 R 

#,C,O,N,S,I,D,E,R,A,S,$ 2 consideras 2SIE 4 considerar 0 8 2 R 

#,C,O,N,S,I,D,E,R,A,$ 33 considera 3SIE 4 considerar 0 8 1 R 

#,C,O,N,S,I,D,E,R,A,M,O,S,$ 7 consideramos 1PIE 4 considerar 0 8 4 R 

#,C,O,N,S,I,D,E,R,á,I,S,$ 2 consideráis 2PIE 4 considerar 0 8 3 R 

#,C,O,N,S,I,D,E,R,A,N,$ 14 consideran 3PIE 4 considerar 0 8 2 R 

#,C,O,N,S,I,D,E,R,E,',$ 2 consideré 1SIA 4 considerar 0 8 2 R 

#,C,O,N,S,I,D,E,R,A,S,T,E,$ 2 consideraste 2SIA 4 considerar 0 8 4 R 

#,C,O,N,S,I,D,E,R,ó,$ 2 consideró 3SIA 4 considerar 0 8 1 R 

#,C,O,N,S,I,D,E,R,A,M,O,S,$ 1 consideramos 1PIA 4 considerar 0 8 4 R 

#,C,O,N,S,I,D,E,R,A,S,T,E,I,S,$ 2 considerasteis 2PIA 4 considerar 0 8 6 R 

#,C,O,N,S,I,D,E,R,A,R,O,N,$ 2 consideraron 3PIA 4 considerar 0 8 4 R 

#,C,O,N,T,A,R,$ 36 contar i 5 contar 0 4 2 I 

#,C,O,N,T,A,N,D,O,$ 9 contando pE 5 contar 0 4 4 I 

#,C,O,N,T,A,D,O,$ 11 contado pA 5 contar 0 4 3 I 

#,C,U,E,N,T,O,$ 7 cuento 1SIE 5 contar 0 5 1 I 

#,C,U,E,N,T,A,S,$ 4 cuentas 2SIE 5 contar 0 5 2 I 

#,C,U,E,N,T,A,$ 63 cuenta 3SIE 5 contar 0 5 1 I 

#,C,O,N,T,A,M,O,S,$ 9 contamos 1PIE 5 contar 0 4 4 I 

#,C,O,N,T,á,I,S,$ 2 contáis 2PIE 5 contar 0 4 3 I 

#,C,U,E,N,T,A,N,$ 21 cuentan 3PIE 5 contar 0 5 2 I 

#,C,O,N,T,E,',$ 2 conté 1SIA 5 contar 0 4 2 I 

#,C,O,N,T,A,S,T,E,$ 2 contaste 2SIA 5 contar 0 4 4 I 

#,C,O,N,T,ó,$ 10 contó 3SIA 5 contar 0 4 1 I 

#,C,O,N,T,A,M,O,S,$ 1 contamos 1PIA 5 contar 0 4 4 I 

#,C,O,N,T,A,S,T,E,I,S,$ 2 contasteis 2PIA 5 contar 0 4 6 I 

#,C,O,N,T,A,R,O,N,$ 3 contaron 3PIA 5 contar 0 4 4 I 

#,C,R,E,A,R,$ 54 crear i 6 crear 0 3 2 R 

#,C,R,E,A,N,D,O,$ 11 creando pE 6 crear 0 3 4 R 

#,C,R,E,A,D,O,$ 4 creado pA 6 crear 0 3 3 R 

#,C,R,E,O,$ 162 creo 1SIE 6 crear 0 3 1 R 

#,C,R,E,A,S,$ 3 creas 2SIE 6 crear 0 3 2 R 

#,C,R,E,A,$ 17 crea 3SIE 6 crear 0 3 1 R 

#,C,R,E,A,M,O,S,$ 3 creamos 1PIE 6 crear 0 3 4 R 

#,C,R,E,á,I,S,$ 2 creáis 2PIE 6 crear 0 3 3 R 

#,C,R,E,A,N,$ 8 crean 3PIE 6 crear 0 3 2 R 

#,C,R,E,E,',$ 2 creé 1SIA 6 crear 0 3 2 R 

#,C,R,E,A,S,T,E,$ 2 creaste 2SIA 6 crear 0 3 4 R 

#,C,R,E,ó,$ 9 creó 3SIA 6 crear 0 3 1 R 

#,C,R,E,A,M,O,S,$ 1 creamos 1PIA 6 crear 0 3 4 R 

#,C,R,E,A,S,T,E,I,S,$ 2 creasteis 2PIA 6 crear 0 3 6 R 
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#,C,R,E,A,R,O,N,$ 4 crearon 3PIA 6 crear 0 3 4 R 

#,D,A,R,$ 116 dar i 7 dar 0 1 2 I 

#,D,A,N,D,O,$ 30 dando pE 7 dar 0 1 4 I 

#,D,A,D,O,$ 75 dado pA 7 dar 0 1 3 I 

#,D,O,Y,$ 12 doy 1SIE 7 dar 0 1 2 I 

#,D,A,S,$ 9 das 2SIE 7 dar 0 1 2 I 

#,D,A,$ 118 da 3SIE 7 dar 0 1 1 I 

#,D,A,M,O,S,$ 9 damos 1PIE 7 dar 0 1 4 I 

#,D,A,I,S,$ 3 dais 2PIE 7 dar 0 1 3 I 

#,D,A,N,$ 42 dan 3PIE 7 dar 0 1 2 I 

#,D,I,$ 11 di 1SIA 7 dar 0 1 1 I 

#,D,I,S,T,E,$ 2 diste 2SIA 7 dar 0 1 4 I 

#,D,I,O,$ 34 dio 3SIA 7 dar 0 1 2 I 

#,D,I,M,O,S,$ 3 dimos 1PIA 7 dar 0 1 4 I 

#,D,I,S,T,E,I,S,$ 2 disteis 2PIA 7 dar 0 1 6 I 

#,D,I,E,R,O,N,$ 16 dieron 3PIA 7 dar 0 1 5 I 

#,D,E,B,E,R,$ 2 deber i 8 deber 0 3 2 R 

#,D,E,B,I,E,N,D,O,$ 6 debiendo pE 8 deber 0 3 5 R 

#,D,E,B,I,D,O,$ 55 debido pA 8 deber 0 3 3 R 

#,D,E,B,O,$ 11 debo 1SIE 8 deber 0 3 1 R 

#,D,E,B,E,S,$ 13 debes 2SIE 8 deber 0 3 2 R 

#,D,E,B,E,$ 148 debe 3SIE 8 deber 0 3 1 R 

#,D,E,B,E,M,O,S,$ 30 debemos 1PIE 8 deber 0 3 4 R 

#,D,E,B,E,',I,S,$ 3 debéis 2PIE 8 deber 0 3 4 R 

#,D,E,B,E,N,$ 69 deben 3PIE 8 deber 0 3 2 R 

#,D,E,B,í,$ 2 debí 1SIA 8 deber 0 3 1 R 

#,D,E,B,I,S,T,E,$ 2 debiste 2SIA 8 deber 0 3 4 R 

#,D,E,B,I,ó,$ 7 debió 3SIA 8 deber 0 3 2 R 

#,D,E,B,I,M,O,S,$ 2 debimos 1PIA 8 deber 0 3 4 R 

#,D,E,B,I,S,T,E,I,S,$ 2 debisteis 2PIA 8 deber 0 3 6 R 

#,D,E,B,I,E,R,O,N,$ 3 debieron 3PIA 8 deber 0 3 5 R 

#,D,E,C,I,R,$ 176 decir i 9 decir 0 3 2 I 

#,D,I,C,I,E,N,D,O,$ 18 diciendo pE 9 decir 0 3 5 I 

#,D,I,C,H,O,$ 13 dicho pA 9 decir 0 4 1 I 

#,D,I,G,O,$ 6 digo 1SIE 9 decir 0 3 1 I 

#,D,I,C,E,S,$ 16 dices 2SIE 9 decir 0 3 2 I 

#,D,I,C,E,$ 103 dice 3SIE 9 decir 0 3 1 I 

#,D,E,C,I,M,O,S,$ 6 decimos 1PIE 9 decir 0 3 4 I 

#,D,E,C,í,S,$ 3 decís 2PIE 9 decir 0 3 2 I 

#,D,I,C,E,N,$ 38 dicen 3PIE 9 decir 0 3 2 I 

#,D,I,J,E,$ 13 dije 1SIA 9 decir 0 3 1 I 

#,D,I,J,I,S,T,E,$ 2 dijiste 2SIA 9 decir 0 3 4 I 

#,D,I,J,O,$ 73 dijo 3SIA 9 decir 0 3 1 I 

#,D,I,J,I,M,O,S,$ 3 dijimos 1PIA 9 decir 0 3 4 I 

#,D,I,J,I,S,T,E,I,S,$ 2 dijisteis 2PIA 9 decir 0 3 6 I 

#,D,I,J,E,R,O,N,$ 9 dijeron 3PIA 9 decir 0 3 4 I 

#,D,E,J,A,R,$ 54 dejar i 10 dejar 0 3 2 R 

#,D,E,J,A,N,D,O,$ 17 dejando pE 10 dejar 0 3 4 R 
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#,D,E,J,A,D,O,$ 26 dejado pA 10 dejar 0 3 3 R 

#,D,E,J,O,$ 12 dejo 1SIE 10 dejar 0 3 1 R 

#,D,E,J,A,S,$ 3 dejas 2SIE 10 dejar 0 3 2 R 

#,D,E,J,A,$ 42 deja 3SIE 10 dejar 0 3 1 R 

#,D,E,J,A,M,O,S,$ 9 dejamos 1PIE 10 dejar 0 3 4 R 

#,D,E,J,á,I,S,$ 2 dejáis 2PIE 10 dejar 0 3 3 R 

#,D,E,J,A,N,$ 16 dejan 3PIE 10 dejar 0 3 2 R 

#,D,E,J,E,',$ 4 dejé 1SIA 10 dejar 0 3 2 R 

#,D,E,J,A,S,T,E,$ 2 dejaste 2SIA 10 dejar 0 3 4 R 

#,D,E,J,ó,$ 20 dejó 3SIA 10 dejar 0 3 1 R 

#,D,E,J,A,M,O,S,$ 1 dejamos 1PIA 10 dejar 0 3 4 R 

#,D,E,J,A,S,T,E,I,S,$ 2 dejasteis 2PIA 10 dejar 0 3 6 R 

#,D,E,J,A,R,O,N,$ 8 dejaron 3PIA 10 dejar 0 3 4 R 

#,D,E,S,A,R,R,O,L,L,A,R,$ 40 desarrollar i 11 desarrollar 0 9 2 R 

#,D,E,S,A,R,R,O,L,L,A,N,D,O,$ 12 desarrollando pE 11 desarrollar 0 9 4 R 

#,D,E,S,A,R,R,O,L,L,A,D,O,$ 24 desarrollado pA 11 desarrollar 0 9 3 R 

#,D,E,S,A,R,R,O,L,L,O,$ 2 desarrollo 1SIE 11 desarrollar 0 9 1 R 

#,D,E,S,A,R,R,O,L,L,A,S,$ 2 desarrollas 2SIE 11 desarrollar 0 9 2 R 

#,D,E,S,A,R,R,O,L,L,A,$ 20 desarrolla 3SIE 11 desarrollar 0 9 1 R 

#,D,E,S,A,R,R,O,L,L,A,M,O,S,$ 2 desarrollamos 1PIE 11 desarrollar 0 9 4 R 

#,D,E,S,A,R,R,O,L,L,á,I,S,$ 2 desarrolláis 2PIE 11 desarrollar 0 9 3 R 

#,D,E,S,A,R,R,O,L,L,A,N,$ 11 desarrollan 3PIE 11 desarrollar 0 9 2 R 

#,D,E,S,A,R,R,O,L,L,E,',$ 2 desarrollé 1SIA 11 desarrollar 0 9 2 R 

#,D,E,S,A,R,R,O,L,L,A,S,T,E,$ 2 desarrollaste 2SIA 11 desarrollar 0 9 4 R 

#,D,E,S,A,R,R,O,L,L,ó,$ 6 desarrolló 3SIA 11 desarrollar 0 9 1 R 

#,D,E,S,A,R,R,O,L,L,A,M,O,S,$ 1 desarrollamos 1PIA 11 desarrollar 0 9 4 R 

#,D,E,S,A,R,R,O,L,L,A,S,T,E,I,S,$ 2 desarrollasteis 2PIA 11 desarrollar 0 9 6 R 

#,D,E,S,A,R,R,O,L,L,A,R,O,N,$ 3 desarrollaron 3PIA 11 desarrollar 0 9 4 R 

#,D,I,S,P,O,N,E,R,$ 17 disponer i 12 disponer 0 6 2 I 

#,D,I,S,P,O,N,I,E,N,D,O,$ 3 disponiendo pE 12 disponer 0 6 5 I 

#,D,I,S,P,U,E,S,T,O,$ 33 dispuesto pA 12 disponer 0 7 2 I 

#,D,I,S,P,O,N,G,O,$ 4 dispongo 1SIE 12 disponer 0 7 1 I 

#,D,I,S,P,O,N,E,S,$ 2 dispones 2SIE 12 disponer 0 6 2 I 

#,D,I,S,P,O,N,E,$ 44 dispone 3SIE 12 disponer 0 6 1 I 

#,D,I,S,P,O,N,E,M,O,S,$ 7 disponemos 1PIE 12 disponer 0 6 4 I 

#,D,I,S,P,O,N,E,',I,S,$ 2 disponéis 2PIE 12 disponer 0 6 4 I 

#,D,I,S,P,O,N,E,N,$ 12 disponen 3PIE 12 disponer 0 6 2 I 

#,D,I,S,P,U,S,E,$ 2 dispuse 1SIA 12 disponer 0 6 1 I 

#,D,I,S,P,U,S,I,S,T,E,$ 2 dispusiste 2SIA 12 disponer 0 6 4 I 

#,D,I,S,P,U,S,O,$ 3 dispuso 3SIA 12 disponer 0 6 1 I 

#,D,I,S,P,U,S,I,M,O,S,$ 2 dispusimos 1PIA 12 disponer 0 6 4 I 

#,D,I,S,P,U,S,I,S,T,E,I,S,$ 2 dispusisteis 2PIA 12 disponer 0 6 6 I 

#,D,I,S,P,U,S,I,E,R,O,N,$ 2 dispusieron 3PIA 12 disponer 0 6 5 I 

#,E,N,C,O,N,T,R,A,R,$ 60 encontrar i 13 encontrar 0 7 2 I 

#,E,N,C,O,N,T,R,A,N,D,O,$ 3 encontrando pE 13 encontrar 0 7 4 I 

#,E,N,C,O,N,T,R,A,D,O,$ 21 encontrado pA 13 encontrar 0 7 3 I 

#,E,N,C,U,E,N,T,R,O,$ 11 encuentro 1SIE 13 encontrar 0 8 1 I 

#,E,N,C,U,E,N,T,R,A,S,$ 6 encuentras 2SIE 13 encontrar 0 8 2 I 
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#,E,N,C,U,E,N,T,R,A,$ 77 encuentra 3SIE 13 encontrar 0 8 1 I 

#,E,N,C,O,N,T,R,A,M,O,S,$ 23 encontramos 1PIE 13 encontrar 0 7 4 I 

#,E,N,C,O,N,T,R,á,I,S,$ 2 encontráis 2PIE 13 encontrar 0 7 3 I 

#,E,N,C,U,E,N,T,R,A,N,$ 42 encuentran 3PIE 13 encontrar 0 8 2 I 

#,E,N,C,O,N,T,R,E,',$ 6 encontré 1SIA 13 encontrar 0 7 2 I 

#,E,N,C,O,N,T,R,A,S,T,E,$ 2 encontraste 2SIA 13 encontrar 0 7 4 I 

#,E,N,C,O,N,T,R,ó,$ 9 encontró 3SIA 13 encontrar 0 7 1 I 

#,E,N,C,O,N,T,R,A,M,O,S,$ 1 encontramos 1PIA 13 encontrar 0 7 4 I 

#,E,N,C,O,N,T,R,A,S,T,E,I,S,$ 2 encontrasteis 2PIA 13 encontrar 0 7 6 I 

#,E,N,C,O,N,T,R,A,R,O,N,$ 6 encontraron 3PIA 13 encontrar 0 7 4 I 

#,E,S,P,E,R,A,R,$ 29 esperar i 14 esperar 0 5 2 R 

#,E,S,P,E,R,A,N,D,O,$ 15 esperando pE 14 esperar 0 5 4 R 

#,E,S,P,E,R,A,D,O,$ 8 esperado pA 14 esperar 0 5 3 R 

#,E,S,P,E,R,O,$ 48 espero 1SIE 14 esperar 0 5 1 R 

#,E,S,P,E,R,A,S,$ 3 esperas 2SIE 14 esperar 0 5 2 R 

#,E,S,P,E,R,A,$ 26 espera 3SIE 14 esperar 0 5 1 R 

#,E,S,P,E,R,A,M,O,S,$ 13 esperamos 1PIE 14 esperar 0 5 4 R 

#,E,S,P,E,R,á,I,S,$ 2 esperáis 2PIE 14 esperar 0 5 3 R 

#,E,S,P,E,R,A,N,$ 9 esperan 3PIE 14 esperar 0 5 2 R 

#,E,S,P,E,R,E,',$ 2 esperé 1SIA 14 esperar 0 5 2 R 

#,E,S,P,E,R,A,S,T,E,$ 2 esperaste 2SIA 14 esperar 0 5 4 R 

#,E,S,P,E,R,ó,$ 2 esperó 3SIA 14 esperar 0 5 1 R 

#,E,S,P,E,R,A,M,O,S,$ 1 esperamos 1PIA 14 esperar 0 5 4 R 

#,E,S,P,E,R,A,S,T,E,I,S,$ 2 esperasteis 2PIA 14 esperar 0 5 6 R 

#,E,S,P,E,R,A,R,O,N,$ 2 esperaron 3PIA 14 esperar 0 5 4 R 

#,E,S,T,A,B,L,E,C,E,R,$ 29 establecer i 15 establecer 0 8 2 I 

#,E,S,T,A,B,L,E,C,I,E,N,D,O,$ 5 estableciendo pE 15 establecer 0 8 5 I 

#,E,S,T,A,B,L,E,C,I,D,O,$ 33 establecido pA 15 establecer 0 8 3 I 

#,E,S,T,A,B,L,E,Z,C,O,$ 2 establezco 1SIE 15 establecer 0 9 1 I 

#,E,S,T,A,B,L,E,C,E,S,$ 2 estableces 2SIE 15 establecer 0 8 2 I 

#,E,S,T,A,B,L,E,C,E,$ 30 establece 3SIE 15 establecer 0 8 1 I 

#,E,S,T,A,B,L,E,C,E,M,O,S,$ 2 establecemos 1PIE 15 establecer 0 8 4 I 

#,E,S,T,A,B,L,E,C,E,',I,S,$ 2 establecéis 2PIE 15 establecer 0 8 4 I 

#,E,S,T,A,B,L,E,C,E,N,$ 12 establecen 3PIE 15 establecer 0 8 2 I 

#,E,S,T,A,B,L,E,C,í,$ 2 establecí 1SIA 15 establecer 0 8 1 I 

#,E,S,T,A,B,L,E,C,I,S,T,E,$ 2 estableciste 2SIA 15 establecer 0 8 4 I 

#,E,S,T,A,B,L,E,C,I,ó,$ 5 estableció 3SIA 15 establecer 0 8 2 I 

#,E,S,T,A,B,L,E,C,I,M,O,S,$ 2 establecimos 1PIA 15 establecer 0 8 4 I 

#,E,S,T,A,B,L,E,C,I,S,T,E,I,S,$ 2 establecisteis 2PIA 15 establecer 0 8 6 I 

#,E,S,T,A,B,L,E,C,I,E,R,O,N,$ 3 establecieron 3PIA 15 establecer 0 8 5 I 

#,E,S,T,A,R,$ 131 estar i 16 estar 0 3 2 I 

#,E,S,T,A,N,D,O,$ 12 estando pE 16 estar 0 3 4 I 

#,E,S,T,A,D,O,$ 40 estado pA 16 estar 0 3 3 I 

#,E,S,T,O,Y,$ 99 estoy 1SIE 16 estar 0 3 2 I 

#,E,S,T,á,S,$ 22 estás 2SIE 16 estar 0 3 2 I 

#,E,S,T,á,$ 524 está 3SIE 16 estar 0 3 1 I 

#,E,S,T,A,M,O,S,$ 93 estamos 1PIE 16 estar 0 3 4 I 

#,E,S,T,á,I,S,$ 5 estáis 2PIE 16 estar 0 3 3 I 
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#,E,S,T,á,N,$ 225 están 3PIE 16 estar 0 3 2 I 

#,E,S,T,U,V,E,$ 10 estuve 1SIA 16 estar 0 5 1 I 

#,E,S,T,U,V,I,S,T,E,$ 2 estuviste 2SIA 16 estar 0 5 4 I 

#,E,S,T,U,V,O,$ 28 estuvo 3SIA 16 estar 0 5 1 I 

#,E,S,T,U,V,I,M,O,S,$ 5 estuvimos 1PIA 16 estar 0 5 4 I 

#,E,S,T,U,V,I,S,T,E,I,S,$ 2 estuvisteis 2PIA 16 estar 0 5 6 I 

#,E,S,T,U,V,I,E,R,O,N,$ 9 estuvieron 3PIA 16 estar 0 5 5 I 

#,E,X,I,S,T,I,R,$ 10 existir i 17 existir 0 5 2 R 

#,E,X,I,S,T,I,E,N,D,O,$ 4 existiendo pE 17 existir 0 5 5 R 

#,E,X,I,S,T,I,D,O,$ 4 existido pA 17 existir 0 5 3 R 

#,E,X,I,S,T,O,$ 2 existo 1SIE 17 existir 0 5 1 R 

#,E,X,I,S,T,E,S,$ 2 existes 2SIE 17 existir 0 5 2 R 

#,E,X,I,S,T,E,$ 58 existe 3SIE 17 existir 0 5 1 R 

#,E,X,I,S,T,I,M,O,S,$ 2 existimos 1PIE 17 existir 0 5 4 R 

#,E,X,I,S,T,í,S,$ 2 existís 2PIE 17 existir 0 5 2 R 

#,E,X,I,S,T,E,N,$ 45 existen 3PIE 17 existir 0 5 2 R 

#,E,X,I,S,T,í,$ 2 existí 1SIA 17 existir 0 5 1 R 

#,E,X,I,S,T,I,S,T,E,$ 2 exististe 2SIA 17 existir 0 5 4 R 

#,E,X,I,S,T,I,ó,$ 3 existió 3SIA 17 existir 0 5 2 R 

#,E,X,I,S,T,I,M,O,S,$ 1 existimos 1PIA 17 existir 0 5 4 R 

#,E,X,I,S,T,I,S,T,E,I,S,$ 1 exististeis 2PIA 17 existir 0 5 6 R 

#,E,X,I,S,T,I,E,R,O,N,$ 2 existieron 3PIA 17 existir 0 5 5 R 

#,G,U,S,T,A,R,$ 4 gustar i 18 gustar 0 4 2 R 

#,G,U,S,T,A,N,D,O,$ 2 gustando pE 18 gustar 0 4 4 R 

#,G,U,S,T,A,D,O,$ 14 gustado pA 18 gustar 0 4 3 R 

#,G,U,S,T,O,$ 3 gusto 1SIE 18 gustar 0 4 1 R 

#,G,U,S,T,A,S,$ 2 gustas 2SIE 18 gustar 0 4 2 R 

#,G,U,S,T,A,$ 62 gusta 3SIE 18 gustar 0 4 1 R 

#,G,U,S,T,A,M,O,S,$ 1 gustamos 1PIE 18 gustar 0 4 4 R 

#,G,U,S,T,á,I,S,$ 2 gustáis 2PIE 18 gustar 0 4 3 R 

#,G,U,S,T,A,N,$ 16 gustan 3PIE 18 gustar 0 4 2 R 

#,G,U,S,T,E,',$ 2 gusté 1SIA 18 gustar 0 4 2 R 

#,G,U,S,T,A,S,T,E,$ 2 gustaste 2SIA 18 gustar 0 4 4 R 

#,G,U,S,T,ó,$ 8 gustó 3SIA 18 gustar 0 4 1 R 

#,G,U,S,T,A,M,O,S,$ 2 gustamos 1PIA 18 gustar 0 4 4 R 

#,G,U,S,T,A,S,T,E,I,S,$ 2 gustasteis 2PIA 18 gustar 0 4 6 R 

#,G,U,S,T,A,R,O,N,$ 3 gustaron 3PIA 18 gustar 0 4 4 R 

#,H,A,B,E,R,$ 59 haber i 19 haber 0 3 2 I 

#,H,A,B,I,E,N,D,O,$ 6 habiendo pE 19 haber 0 3 5 I 

#,H,A,B,I,D,O,$ 10 habido pA 19 haber 0 3 3 I 

#,H,E,$ 116 he 1SIE 19 haber 0 1 1 I 

#,H,A,S,$ 23 has 2SIE 19 haber 0 1 2 I 

#,H,A,$ 1001 ha 3SIE 19 haber 0 1 1 I 

#,H,E,M,O,S,$ 72 hemos 1PIE 19 haber 0 1 4 I 

#,H,A,B,E,',I,S,$ 6 habéis 2PIE 19 haber 0 3 4 I 

#,H,A,N,$ 305 han 3PIE 19 haber 0 1 2 I 

#,H,U,B,E,$ 2 hube 1SIA 19 haber 0 3 1 I 

#,H,U,B,I,S,T,E,$ 2 hubiste 2SIA 19 haber 0 3 4 I 
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#,H,U,B,O,$ 15 hubo 3SIA 19 haber 0 3 1 I 

#,H,U,B,I,M,O,S,$ 2 hubimos 1PIA 19 haber 0 3 4 I 

#,H,U,B,I,S,T,E,I,S,$ 2 hubisteis 2PIA 19 haber 0 3 6 I 

#,H,U,B,I,E,R,O,N,$ 2 hubieron 3PIA 19 haber 0 3 5 I 

#,H,A,B,L,A,R,$ 55 hablar i 20 hablar 0 4 2 R 

#,H,A,B,L,A,N,D,O,$ 26 hablando pE 20 hablar 0 4 4 R 

#,H,A,B,L,A,D,O,$ 13 hablado pA 20 hablar 0 4 3 R 

#,H,A,B,L,O,$ 9 hablo 1SIE 20 hablar 0 4 1 R 

#,H,A,B,L,A,S,$ 2 hablas 2SIE 20 hablar 0 4 2 R 

#,H,A,B,L,A,$ 31 habla 3SIE 20 hablar 0 4 1 R 

#,H,A,B,L,A,M,O,S,$ 14 hablamos 1PIE 20 hablar 0 4 4 R 

#,H,A,B,L,á,I,S,$ 2 habláis 2PIE 20 hablar 0 4 3 R 

#,H,A,B,L,A,N,$ 12 hablan 3PIE 20 hablar 0 4 2 R 

#,H,A,B,L,E,',$ 3 hablé 1SIA 20 hablar 0 4 2 R 

#,H,A,B,L,A,S,T,E,$ 2 hablaste 2SIA 20 hablar 0 4 4 R 

#,H,A,B,L,ó,$ 7 habló 3SIA 20 hablar 0 4 1 R 

#,H,A,B,L,A,M,O,S,$ 1 hablamos 1PIA 20 hablar 0 4 4 R 

#,H,A,B,L,A,S,T,E,I,S,$ 2 hablasteis 2PIA 20 hablar 0 4 6 R 

#,H,A,B,L,A,R,O,N,$ 3 hablaron 3PIA 20 hablar 0 4 4 R 

#,H,A,C,E,R,$ 286 hacer i 21 hacer 0 3 2 I 

#,H,A,C,I,E,N,D,O,$ 62 haciendo pE 21 hacer 0 3 5 I 

#,H,E,C,H,O,$ 115 hecho pA 21 hacer 0 2 3 I 

#,H,A,G,O,$ 20 hago 1SIE 21 hacer 0 3 1 I 

#,H,A,C,E,S,$ 5 haces 2SIE 21 hacer 0 3 2 I 

#,H,A,C,E,$ 328 hace 3SIE 21 hacer 0 3 1 I 

#,H,A,C,E,M,O,S,$ 18 hacemos 1PIE 21 hacer 0 3 4 I 

#,H,A,C,E,',I,S,$ 3 hacéis 2PIE 21 hacer 0 3 4 I 

#,H,A,C,E,N,$ 74 hacen 3PIE 21 hacer 0 3 2 I 

#,H,I,C,E,$ 13 hice 1SIA 21 hacer 0 3 1 I 

#,H,I,C,I,S,T,E,$ 3 hiciste 2SIA 21 hacer 0 3 4 I 

#,H,I,Z,O,$ 64 hizo 3SIA 21 hacer 0 3 1 I 

#,H,I,C,I,M,O,S,$ 6 hicimos 1PIA 21 hacer 0 3 4 I 

#,H,I,C,I,S,T,E,I,S,$ 2 hicisteis 2PIA 21 hacer 0 3 6 I 

#,H,I,C,I,E,R,O,N,$ 23 hicieron 3PIA 21 hacer 0 3 5 I 

#,I,N,C,L,U,I,R,$ 17 incluir i 22 incluir 0 5 2 I 

#,I,N,C,L,U,Y,E,N,D,O,$ 21 incluyendo pE 22 incluir 0 5 5 I 

#,I,N,C,L,U,I,D,O,$ 20 incluido pA 22 incluir 0 5 3 I 

#,I,N,C,L,U,Y,O,$ 3 incluyo 1SIE 22 incluir 0 6 1 I 

#,I,N,C,L,U,Y,E,S,$ 2 incluyes 2SIE 22 incluir 0 6 2 I 

#,I,N,C,L,U,Y,E,$ 44 incluye 3SIE 22 incluir 0 6 1 I 

#,I,N,C,L,U,I,M,O,S,$ 1 incluimos 1PIE 22 incluir 0 5 4 I 

#,I,N,C,L,U,í,S,$ 2 incluís 2PIE 22 incluir 0 5 2 I 

#,I,N,C,L,U,Y,E,N,$ 20 incluyen 3PIE 22 incluir 0 6 2 I 

#,I,N,C,L,U,í,$ 2 incluí 1SIA 22 incluir 0 5 1 I 

#,I,N,C,L,U,I,S,T,E,$ 2 incluiste 2SIA 22 incluir 0 5 4 I 

#,I,N,C,L,U,Y,ó,$ 4 incluyó 3SIA 22 incluir 0 6 1 I 

#,I,N,C,L,U,I,M,O,S,$ 2 incluimos 1PIA 22 incluir 0 5 4 I 

#,I,N,C,L,U,I,S,T,E,I,S,$ 2 incluisteis 2PIA 22 incluir 0 5 6 I 
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#,I,N,C,L,U,Y,E,R,O,N,$ 2 incluyeron 3PIA 22 incluir 0 6 4 I 

#,I,R,$ 91 ir i 23 ir 0 1 1 I 

#,Y,E,N,D,O,$ 4 yendo pE 23 ir 0 1 4 I 

#,I,D,O,$ 32 ido pA 23 ir 0 1 2 I 

#,V,O,Y,$ 59 voy 1SIE 23 ir 0 1 2 I 

#,V,A,S,$ 19 vas 2SIE 23 ir 0 1 2 I 

#,V,A,$ 185 va 3SIE 23 ir 0 1 1 I 

#,V,A,M,O,S,$ 63 vamos 1PIE 23 ir 0 1 4 I 

#,V,á,I,S,$ 6 váis 2PIE 23 ir 0 1 3 I 

#,V,A,N,$ 91 van 3PIE 23 ir 0 1 2 I 

#,F,U,I,$ 7 fui 1SIA 23 ir 0 2 1 I 

#,F,U,I,S,T,E,$ 2 fuiste 2SIA 23 ir 0 2 4 I 

#,F,U,E,$ 12 fue 3SIA 23 ir 0 2 1 I 

#,F,U,I,M,O,S,$ 5 fuimos 1PIA 23 ir 0 2 4 I 

#,F,U,I,S,T,E,I,S,$ 2 fuisteis 2PIA 23 ir 0 2 6 I 

#,F,U,E,R,O,N,$ 9 fueron 3PIA 23 ir 0 2 4 I 

#,L,L,A,M,A,R,$ 17 llamar i 24 llamar 0 4 2 R 

#,L,L,A,M,A,N,D,O,$ 5 llamando pE 24 llamar 0 4 4 R 

#,L,L,A,M,A,D,O,$ 31 llamado pA 24 llamar 0 4 3 R 

#,L,L,A,M,O,$ 7 llamo 1SIE 24 llamar 0 4 1 R 

#,L,L,A,M,A,S,$ 2 llamas 2SIE 24 llamar 0 4 2 R 

#,L,L,A,M,A,$ 30 llama 3SIE 24 llamar 0 4 1 R 

#,L,L,A,M,A,M,O,S,$ 5 llamamos 1PIE 24 llamar 0 4 4 R 

#,L,L,A,M,á,I,S,$ 2 llamáis 2PIE 24 llamar 0 4 3 R 

#,L,L,A,M,A,N,$ 11 llaman 3PIE 24 llamar 0 4 2 R 

#,L,L,A,M,E,',$ 2 llamé 1SIA 24 llamar 0 4 2 R 

#,L,L,A,M,A,S,T,E,$ 2 llamaste 2SIA 24 llamar 0 4 4 R 

#,L,L,A,M,ó,$ 8 llamó 3SIA 24 llamar 0 4 1 R 

#,L,L,A,M,A,M,O,S,$ 1 llamamos 1PIA 24 llamar 0 4 4 R 

#,L,L,A,M,A,S,T,E,I,S,$ 2 llamasteis 2PIA 24 llamar 0 4 6 R 

#,L,L,A,M,A,R,O,N,$ 3 llamaron 3PIA 24 llamar 0 4 4 R 

#,L,L,E,G,A,R,$ 81 llegar i 25 llegar 0 4 2 R 

#,L,L,E,G,A,N,D,O,$ 11 llegando pE 25 llegar 0 4 4 R 

#,L,L,E,G,A,D,O,$ 34 llegado pA 25 llegar 0 4 3 R 

#,L,L,E,G,O,$ 7 llego 1SIE 25 llegar 0 4 1 R 

#,L,L,E,G,A,S,$ 3 llegas 2SIE 25 llegar 0 4 2 R 

#,L,L,E,G,A,$ 45 llega 3SIE 25 llegar 0 4 1 R 

#,L,L,E,G,A,M,O,S,$ 8 llegamos 1PIE 25 llegar 0 4 4 R 

#,L,L,E,G,á,I,S,$ 2 llegáis 2PIE 25 llegar 0 4 3 R 

#,L,L,E,G,A,N,$ 18 llegan 3PIE 25 llegar 0 4 2 R 

#,L,L,E,G,U,E,',$ 5 llegué 1SIA 25 llegar 0 4 3 R 

#,L,L,E,G,A,S,T,E,$ 2 llegaste 2SIA 25 llegar 0 4 4 R 

#,L,L,E,G,ó,$ 32 llegó 3SIA 25 llegar 0 4 1 R 

#,L,L,E,G,A,M,O,S,$ 1 llegamos 1PIA 25 llegar 0 4 4 R 

#,L,L,E,G,A,S,T,E,I,S,$ 2 llegasteis 2PIA 25 llegar 0 4 6 R 

#,L,L,E,G,A,R,O,N,$ 12 llegaron 3PIA 25 llegar 0 4 4 R 

#,L,L,E,V,A,R,$ 57 llevar i 26 llevar 0 4 2 R 

#,L,L,E,V,A,N,D,O,$ 11 llevando pE 26 llevar 0 4 4 R 
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#,L,L,E,V,A,D,O,$ 25 llevado pA 26 llevar 0 4 3 R 

#,L,L,E,V,O,$ 18 llevo 1SIE 26 llevar 0 4 1 R 

#,L,L,E,V,A,S,$ 6 llevas 2SIE 26 llevar 0 4 2 R 

#,L,L,E,V,A,$ 8 lleva 3SIE 26 llevar 0 4 1 R 

#,L,L,E,V,A,M,O,S,$ 10 llevamos 1PIE 26 llevar 0 4 4 R 

#,L,L,E,V,á,I,S,$ 2 lleváis 2PIE 26 llevar 0 4 3 R 

#,L,L,E,V,A,N,$ 26 llevan 3PIE 26 llevar 0 4 2 R 

#,L,L,E,V,E,',$ 3 llevé 1SIA 26 llevar 0 4 2 R 

#,L,L,E,V,A,S,T,E,$ 2 llevaste 2SIA 26 llevar 0 4 4 R 

#,L,L,E,V,ó,$ 17 llevó 3SIA 26 llevar 0 4 1 R 

#,L,L,E,V,A,M,O,S,$ 1 llevamos 1PIA 26 llevar 0 4 4 R 

#,L,L,E,V,A,S,T,E,I,S,$ 2 llevasteis 2PIA 26 llevar 0 4 6 R 

#,L,L,E,V,A,R,O,N,$ 8 llevaron 3PIA 26 llevar 0 4 4 R 

#,O,F,R,E,C,E,R,$ 33 ofrecer i 27 ofrecer 0 5 2 I 

#,O,F,R,E,C,I,E,N,D,O,$ 10 ofreciendo pE 27 ofrecer 0 5 5 I 

#,O,F,R,E,C,I,D,O,$ 7 ofrecido pA 27 ofrecer 0 5 3 I 

#,O,F,R,E,Z,C,O,$ 3 ofrezco 1SIE 27 ofrecer 0 6 1 I 

#,O,F,R,E,C,E,S,$ 2 ofreces 2SIE 27 ofrecer 0 5 2 I 

#,O,F,R,E,C,E,$ 81 ofrece 3SIE 27 ofrecer 0 5 1 I 

#,O,F,R,E,C,E,M,O,S,$ 9 ofrecemos 1PIE 27 ofrecer 0 5 4 I 

#,O,F,R,E,C,E,',I,S,$ 2 ofrecéis 2PIE 27 ofrecer 0 5 4 I 

#,O,F,R,E,C,E,N,$ 25 ofrecen 3PIE 27 ofrecer 0 5 2 I 

#,O,F,R,E,C,í,$ 2 ofrecí 1SIA 27 ofrecer 0 5 1 I 

#,O,F,R,E,C,I,S,T,E,$ 2 ofreciste 2SIA 27 ofrecer 0 5 4 I 

#,O,F,R,E,C,I,ó,$ 7 ofreció 3SIA 27 ofrecer 0 5 2 I 

#,O,F,R,E,C,I,M,O,S,$ 2 ofrecimos 1PIA 27 ofrecer 0 5 4 I 

#,O,F,R,E,C,I,S,T,E,I,S,$ 2 ofrecisteis 2PIA 27 ofrecer 0 5 6 I 

#,O,F,R,E,C,I,E,R,O,N,$ 4 ofrecieron 3PIA 27 ofrecer 0 5 5 I 

#,P,A,R,E,C,E,R,$ 18 parecer i 28 parecer 0 5 2 I 

#,P,A,R,E,C,I,E,N,D,O,$ 2 pareciendo pE 28 parecer 0 5 5 I 

#,P,A,R,E,C,I,D,O,$ 18 parecido pA 28 parecer 0 5 3 I 

#,P,A,R,E,Z,C,O,$ 2 parezco 1SIE 28 parecer 0 6 1 I 

#,P,A,R,E,C,E,S,$ 2 pareces 2SIE 28 parecer 0 5 2 I 

#,P,A,R,E,C,E,$ 159 parece 3SIE 28 parecer 0 5 1 I 

#,P,A,R,E,C,E,M,O,S,$ 2 parecemos 1PIE 28 parecer 0 5 4 I 

#,P,A,R,E,C,E,',I,S,$ 2 parecéis 2PIE 28 parecer 0 5 4 I 

#,P,A,R,E,C,E,N,$ 20 parecen 3PIE 28 parecer 0 5 2 I 

#,P,A,R,E,C,í,$ 2 parecí 1SIA 28 parecer 0 5 1 I 

#,P,A,R,E,C,I,S,T,E,$ 2 pareciste 2SIA 28 parecer 0 5 4 I 

#,P,A,R,E,C,I,ó,$ 8 pareció 3SIA 28 parecer 0 5 2 I 

#,P,A,R,E,C,I,M,O,S,$ 2 parecimos 1PIA 28 parecer 0 5 4 I 

#,P,A,R,E,C,I,S,T,E,I,S,$ 2 parecisteis 2PIA 28 parecer 0 5 6 I 

#,P,A,R,E,C,I,E,R,O,N,$ 2 parecieron 3PIA 28 parecer 0 5 5 I 

#,P,A,S,A,R,$ 59 pasar i 29 pasar 0 3 2 R 

#,P,A,S,A,N,D,O,$ 24 pasando pE 29 pasar 0 3 4 R 

#,P,A,S,A,D,O,$ 128 pasado pA 29 pasar 0 3 3 R 

#,P,A,S,O,$ 9 paso 1SIE 29 pasar 0 3 1 R 

#,P,A,S,A,S,$ 2 pasas 2SIE 29 pasar 0 3 2 R 
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#,P,A,S,A,$ 63 pasa 3SIE 29 pasar 0 3 1 R 

#,P,A,S,A,M,O,S,$ 8 pasamos 1PIE 29 pasar 0 3 4 R 

#,P,A,S,á,I,S,$ 2 pasáis 2PIE 29 pasar 0 3 3 R 

#,P,A,S,A,N,$ 17 pasan 3PIE 29 pasar 0 3 2 R 

#,P,A,S,E,',$ 4 pasé 1SIA 29 pasar 0 3 2 R 

#,P,A,S,A,S,T,E,$ 2 pasaste 2SIA 29 pasar 0 3 4 R 

#,P,A,S,ó,$ 21 pasó 3SIA 29 pasar 0 3 1 R 

#,P,A,S,A,M,O,S,$ 1 pasamos 1PIA 29 pasar 0 3 4 R 

#,P,A,S,A,S,T,E,I,S,$ 2 pasasteis 2PIA 29 pasar 0 3 6 R 

#,P,A,S,A,R,O,N,$ 7 pasaron 3PIA 29 pasar 0 3 4 R 

#,P,E,N,S,A,R,$ 42 pensar i 30 pensar 0 4 2 I 

#,P,E,N,S,A,N,D,O,$ 18 pensando pE 30 pensar 0 4 4 I 

#,P,E,N,S,A,D,O,$ 14 pensado pA 30 pensar 0 4 3 I 

#,P,I,E,N,S,O,$ 21 pienso 1SIE 30 pensar 0 5 1 I 

#,P,I,E,N,S,A,S,$ 5 piensas 2SIE 30 pensar 0 5 2 I 

#,P,I,E,N,S,A,$ 17 piensa 3SIE 30 pensar 0 5 1 I 

#,P,E,N,S,A,M,O,S,$ 8 pensamos 1PIE 30 pensar 0 4 4 I 

#,P,E,N,S,á,I,S,$ 2 pensáis 2PIE 30 pensar 0 4 3 I 

#,P,I,E,N,S,A,N,$ 9 piensan 3PIE 30 pensar 0 5 2 I 

#,P,E,N,S,E,',$ 7 pensé 1SIA 30 pensar 0 4 2 I 

#,P,E,N,S,A,S,T,E,$ 2 pensaste 2SIA 30 pensar 0 4 4 I 

#,P,E,N,S,ó,$ 4 pensó 3SIA 30 pensar 0 4 1 I 

#,P,E,N,S,A,M,O,S,$ 1 pensamos 1PIA 30 pensar 0 4 4 I 

#,P,E,N,S,A,S,T,E,I,S,$ 2 pensasteis 2PIA 30 pensar 0 4 6 I 

#,P,E,N,S,A,R,O,N,$ 2 pensaron 3PIA 30 pensar 0 4 4 I 

#,P,E,R,M,I,T,I,R,$ 18 permitir i 31 permitir 0 6 2 R 

#,P,E,R,M,I,T,I,E,N,D,O,$ 8 permitiendo pE 31 permitir 0 6 5 R 

#,P,E,R,M,I,T,I,D,O,$ 15 permitido pA 31 permitir 0 6 3 R 

#,P,E,R,M,I,T,O,$ 2 permito 1SIE 31 permitir 0 6 1 R 

#,P,E,R,M,I,T,E,S,$ 2 permites 2SIE 31 permitir 0 6 2 R 

#,P,E,R,M,I,T,E,$ 82 permite 3SIE 31 permitir 0 6 1 R 

#,P,E,R,M,I,T,I,M,O,S,$ 2 permitimos 1PIE 31 permitir 0 6 4 R 

#,P,E,R,M,I,T,í,S,$ 2 permitís 2PIE 31 permitir 0 6 2 R 

#,P,E,R,M,I,T,E,N,$ 25 permiten 3PIE 31 permitir 0 6 2 R 

#,P,E,R,M,I,T,í,$ 2 permití 1SIA 31 permitir 0 6 1 R 

#,P,E,R,M,I,T,I,S,T,E,$ 2 permitiste 2SIA 31 permitir 0 6 4 R 

#,P,E,R,M,I,T,I,ó,$ 8 permitió 3SIA 31 permitir 0 6 2 R 

#,P,E,R,M,I,T,I,M,O,S,$ 1 permitimos 1PIA 31 permitir 0 6 4 R 

#,P,E,R,M,I,T,I,S,T,E,I,S,$ 2 permitisteis 2PIA 31 permitir 0 6 6 R 

#,P,E,R,M,I,T,I,E,R,O,N,$ 4 permitieron 3PIA 31 permitir 0 6 5 R 

#,P,O,D,E,R,$ 91 poder i 32 poder 0 3 2 I 

#,P,U,D,I,E,N,D,O,$ 11 pudiendo pE 32 poder 0 3 5 I 

#,P,O,D,I,D,O,$ 33 podido pA 32 poder 0 3 3 I 

#,P,U,E,D,O,$ 54 puedo 1SIE 32 poder 0 4 1 I 

#,P,U,E,D,E,S,$ 68 puedes 2SIE 32 poder 0 4 2 I 

#,P,U,E,D,E,$ 421 puede 3SIE 32 poder 0 4 1 I 

#,P,O,D,E,M,O,S,$ 85 podemos 1PIE 32 poder 0 3 4 I 

#,P,O,D,E,',I,S,$ 11 podéis 2PIE 32 poder 0 3 4 I 
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#,P,U,E,D,E,N,$ 194 pueden 3PIE 32 poder 0 4 2 I 

#,P,U,D,E,$ 9 pude 1SIA 32 poder 0 3 1 I 

#,P,U,D,I,S,T,E,$ 2 pudiste 2SIA 32 poder 0 3 4 I 

#,P,U,D,O,$ 24 pudo 3SIA 32 poder 0 3 1 I 

#,P,U,D,I,M,O,S,$ 6 pudimos 1PIA 32 poder 0 3 4 I 

#,P,U,D,I,S,T,E,I,S,$ 2 pudisteis 2PIA 32 poder 0 3 6 I 

#,P,U,D,I,E,R,O,N,$ 10 pudieron 3PIA 32 poder 0 3 5 I 

#,P,O,N,E,R,$ 71 poner i 33 poner 0 3 2 I 

#,P,O,N,I,E,N,D,O,$ 13 poniendo pE 33 poner 0 3 5 I 

#,P,U,E,S,T,O,$ 57 puesto pA 33 poner 0 4 2 I 

#,P,O,N,G,O,$ 13 pongo 1SIE 33 poner 0 4 1 I 

#,P,O,N,E,S,$ 6 pones 2SIE 33 poner 0 3 2 I 

#,P,O,N,E,$ 44 pone 3SIE 33 poner 0 3 1 I 

#,P,O,N,E,M,O,S,$ 9 ponemos 1PIE 33 poner 0 3 4 I 

#,P,O,N,E,',I,S,$ 2 ponéis 2PIE 33 poner 0 3 4 I 

#,P,O,N,E,N,$ 20 ponen 3PIE 33 poner 0 3 2 I 

#,P,U,S,E,$ 7 puse 1SIA 33 poner 0 3 1 I 

#,P,U,S,I,S,T,E,$ 2 pusiste 2SIA 33 poner 0 3 4 I 

#,P,U,S,O,$ 21 puso 3SIA 33 poner 0 3 1 I 

#,P,U,S,I,M,O,S,$ 3 pusimos 1PIA 33 poner 0 3 4 I 

#,P,U,S,I,S,T,E,I,S,$ 2 pusisteis 2PIA 33 poner 0 3 6 I 

#,P,U,S,I,E,R,O,N,$ 8 pusieron 3PIA 33 poner 0 3 5 I 

#,P,R,E,S,E,N,T,A,R,$ 34 presentar i 34 presentar 0 7 2 R 

#,P,R,E,S,E,N,T,A,N,D,O,$ 6 presentando pE 34 presentar 0 7 4 R 

#,P,R,E,S,E,N,T,A,D,O,$ 32 presentado pA 34 presentar 0 7 3 R 

#,P,R,E,S,E,N,T,O,$ 4 presento 1SIE 34 presentar 0 7 1 R 

#,P,R,E,S,E,N,T,A,S,$ 2 presentas 2SIE 34 presentar 0 7 2 R 

#,P,R,E,S,E,N,T,A,$ 48 presenta 3SIE 34 presentar 0 7 1 R 

#,P,R,E,S,E,N,T,A,M,O,S,$ 7 presentamos 1PIE 34 presentar 0 7 4 R 

#,P,R,E,S,E,N,T,á,I,S,$ 2 presentáis 2PIE 34 presentar 0 7 3 R 

#,P,R,E,S,E,N,T,A,N,$ 21 presentan 3PIE 34 presentar 0 7 2 R 

#,P,R,E,S,E,N,T,E,',$ 2 presenté 1SIA 34 presentar 0 7 2 R 

#,P,R,E,S,E,N,T,A,S,T,E,$ 2 presentaste 2SIA 34 presentar 0 7 4 R 

#,P,R,E,S,E,N,T,ó,$ 17 presentó 3SIA 34 presentar 0 7 1 R 

#,P,R,E,S,E,N,T,A,M,O,S,$ 1 presentamos 1PIA 34 presentar 0 7 4 R 

#,P,R,E,S,E,N,T,A,S,T,E,I,S,$ 2 presentasteis 2PIA 34 presentar 0 7 6 R 

#,P,R,E,S,E,N,T,A,R,O,N,$ 7 presentaron 3PIA 34 presentar 0 7 4 R 

#,P,U,B,L,I,C,A,R,$ 11 publicar i 35 publicar 0 6 2 R 

#,P,U,B,L,I,C,A,N,D,O,$ 3 publicando pE 35 publicar 0 6 4 R 

#,P,U,B,L,I,C,A,D,O,$ 62 publicado pA 35 publicar 0 6 3 R 

#,P,U,B,L,I,C,O,$ 7 publico 1SIE 35 publicar 0 6 1 R 

#,P,U,B,L,I,C,A,S,$ 3 publicas 2SIE 35 publicar 0 6 2 R 

#,P,U,B,L,I,C,A,$ 15 publica 3SIE 35 publicar 0 6 1 R 

#,P,U,B,L,I,C,A,M,O,S,$ 2 publicamos 1PIE 35 publicar 0 6 4 R 

#,P,U,B,L,I,C,á,I,S,$ 2 publicáis 2PIE 35 publicar 0 6 3 R 

#,P,U,B,L,I,C,A,N,$ 5 publican 3PIE 35 publicar 0 6 2 R 

#,P,U,B,L,I,Q,U,E,',$ 2 publiqué 1SIA 35 publicar 0 6 3 R 

#,P,U,B,L,I,C,A,S,T,E,$ 2 publicaste 2SIA 35 publicar 0 6 4 R 
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#,P,U,B,L,I,C,ó,$ 9 publicó 3SIA 35 publicar 0 6 1 R 

#,P,U,B,L,I,C,A,M,O,S,$ 1 publicamos 1PIA 35 publicar 0 6 4 R 

#,P,U,B,L,I,C,A,S,T,E,I,S,$ 2 publicasteis 2PIA 35 publicar 0 6 6 R 

#,P,U,B,L,I,C,A,R,O,N,$ 3 publicaron 3PIA 35 publicar 0 6 4 R 

#,Q,U,E,D,A,R,$ 17 quedar i 36 quedar 0 4 2 R 

#,Q,U,E,D,A,N,D,O,$ 9 quedando pE 36 quedar 0 4 4 R 

#,Q,U,E,D,A,D,O,$ 24 quedado pA 36 quedar 0 4 3 R 

#,Q,U,E,D,O,$ 10 quedo 1SIE 36 quedar 0 4 1 R 

#,Q,U,E,D,A,S,$ 2 quedas 2SIE 36 quedar 0 4 2 R 

#,Q,U,E,D,A,$ 67 queda 3SIE 36 quedar 0 4 1 R 

#,Q,U,E,D,A,M,O,S,$ 6 quedamos 1PIE 36 quedar 0 4 4 R 

#,Q,U,E,D,á,I,S,$ 2 quedáis 2PIE 36 quedar 0 4 3 R 

#,Q,U,E,D,A,N,$ 29 quedan 3PIE 36 quedar 0 4 2 R 

#,Q,U,E,D,E,',$ 5 quedé 1SIA 36 quedar 0 4 2 R 

#,Q,U,E,D,A,S,T,E,$ 2 quedaste 2SIA 36 quedar 0 4 4 R 

#,Q,U,E,D,ó,$ 19 quedó 3SIA 36 quedar 0 4 1 R 

#,Q,U,E,D,A,M,O,S,$ 1 quedamos 1PIA 36 quedar 0 4 4 R 

#,Q,U,E,D,A,S,T,E,I,S,$ 2 quedasteis 2PIA 36 quedar 0 4 6 R 

#,Q,U,E,D,A,R,O,N,$ 8 quedaron 3PIA 36 quedar 0 4 4 R 

#,Q,U,E,R,E,R,$ 11 querer i 37 querer 0 4 2 I 

#,Q,U,E,R,I,E,N,D,O,$ 3 queriendo pE 37 querer 0 4 5 I 

#,Q,U,E,R,I,D,O,$ 21 querido pA 37 querer 0 4 3 I 

#,Q,U,I,E,R,O,$ 56 quiero 1SIE 37 querer 0 5 1 I 

#,Q,U,I,E,R,E,S,$ 29 quieres 2SIE 37 querer 0 5 2 I 

#,Q,U,I,E,R,E,$ 72 quiere 3SIE 37 querer 0 5 1 I 

#,Q,U,E,R,E,M,O,S,$ 34 queremos 1PIE 37 querer 0 4 4 I 

#,Q,U,E,R,E,',I,S,$ 5 queréis 2PIE 37 querer 0 4 4 I 

#,Q,U,I,E,R,E,N,$ 33 quieren 3PIE 37 querer 0 5 2 I 

#,Q,U,I,S,E,$ 4 quise 1SIA 37 querer 0 4 1 I 

#,Q,U,I,S,I,S,T,E,$ 2 quisiste 2SIA 37 querer 0 4 4 I 

#,Q,U,I,S,O,$ 11 quiso 3SIA 37 querer 0 4 1 I 

#,Q,U,I,S,I,M,O,S,$ 2 quisimos 1PIA 37 querer 0 4 4 I 

#,Q,U,I,S,I,S,T,E,I,S,$ 2 quisisteis 2PIA 37 querer 0 4 6 I 

#,Q,U,I,S,I,E,R,O,N,$ 4 quisieron 3PIA 37 querer 0 4 5 I 

#,R,E,A,L,I,Z,A,R,$ 92 realizar i 38 realizar 0 6 2 R 

#,R,E,A,L,I,Z,A,N,D,O,$ 17 realizando pE 38 realizar 0 6 4 R 

#,R,E,A,L,I,Z,A,D,O,$ 48 realizado pA 38 realizar 0 6 3 R 

#,R,E,A,L,I,Z,O,$ 3 realizo 1SIE 38 realizar 0 6 1 R 

#,R,E,A,L,I,Z,A,S,$ 2 realizas 2SIE 38 realizar 0 6 2 R 

#,R,E,A,L,I,Z,A,$ 33 realiza 3SIE 38 realizar 0 6 1 R 

#,R,E,A,L,I,Z,A,M,O,S,$ 5 realizamos 1PIE 38 realizar 0 6 4 R 

#,R,E,A,L,I,Z,á,I,S,$ 2 realizáis 2PIE 38 realizar 0 6 3 R 

#,R,E,A,L,I,Z,A,N,$ 19 realizan 3PIE 38 realizar 0 6 2 R 

#,R,E,A,L,I,C,E,',$ 2 realicé 1SIA 38 realizar 0 6 2 R 

#,R,E,A,L,I,Z,A,S,T,E,$ 2 realizaste 2SIA 38 realizar 0 6 4 R 

#,R,E,A,L,I,Z,ó,$ 16 realizó 3SIA 38 realizar 0 6 1 R 

#,R,E,A,L,I,Z,A,M,O,S,$ 1 realizamos 1PIA 38 realizar 0 6 4 R 

#,R,E,A,L,I,Z,A,S,T,E,I,S,$ 2 realizasteis 2PIA 38 realizar 0 6 6 R 
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#,R,E,A,L,I,Z,A,R,O,N,$ 7 realizaron 3PIA 38 realizar 0 6 4 R 

#,R,E,C,I,B,I,R,$ 28 recibir i 39 recibir 0 5 2 R 

#,R,E,C,I,B,I,E,N,D,O,$ 6 recibiendo pE 39 recibir 0 5 5 R 

#,R,E,C,I,B,I,D,O,$ 28 recibido pA 39 recibir 0 5 3 R 

#,R,E,C,I,B,O,$ 2 recibo 1SIE 39 recibir 0 5 1 R 

#,R,E,C,I,B,E,S,$ 2 recibes 2SIE 39 recibir 0 5 2 R 

#,R,E,C,I,B,E,$ 18 recibe 3SIE 39 recibir 0 5 1 R 

#,R,E,C,I,B,I,M,O,S,$ 4 recibimos 1PIE 39 recibir 0 5 4 R 

#,R,E,C,I,B,í,S,$ 2 recibís 2PIE 39 recibir 0 5 2 R 

#,R,E,C,I,B,E,N,$ 11 reciben 3PIE 39 recibir 0 5 2 R 

#,R,E,C,I,B,í,$ 3 recibí 1SIA 39 recibir 0 5 1 R 

#,R,E,C,I,B,I,S,T,E,$ 2 recibiste 2SIA 39 recibir 0 5 4 R 

#,R,E,C,I,B,I,ó,$ 15 recibió 3SIA 39 recibir 0 5 2 R 

#,R,E,C,I,B,I,M,O,S,$ 1 recibimos 1PIA 39 recibir 0 5 4 R 

#,R,E,C,I,B,I,S,T,E,I,S,$ 2 recibisteis 2PIA 39 recibir 0 5 6 R 

#,R,E,C,I,B,I,E,R,O,N,$ 6 recibieron 3PIA 39 recibir 0 5 5 R 

#,S,A,B,E,R,$ 76 saber i 40 saber 0 3 2 I 

#,S,A,B,I,E,N,D,O,$ 7 sabiendo pE 40 saber 0 3 5 I 

#,S,A,B,I,D,O,$ 12 sabido pA 40 saber 0 3 3 I 

#,S,E,',$ 56 sé 1SIE 40 saber 0 1 2 I 

#,S,A,B,E,S,$ 21 sabes 2SIE 40 saber 0 3 2 I 

#,S,A,B,E,$ 59 sabe 3SIE 40 saber 0 3 1 I 

#,S,A,B,E,M,O,S,$ 30 sabemos 1PIE 40 saber 0 3 4 I 

#,S,A,B,E,',I,S,$ 7 sabéis 2PIE 40 saber 0 3 4 I 

#,S,A,B,E,N,$ 24 saben 3PIE 40 saber 0 3 2 I 

#,S,U,P,E,$ 3 supe 1SIA 40 saber 0 3 1 I 

#,S,U,P,I,S,T,E,$ 2 supiste 2SIA 40 saber 0 3 4 I 

#,S,U,P,O,$ 7 supo 3SIA 40 saber 0 3 1 I 

#,S,U,P,I,M,O,S,$ 2 supimos 1PIA 40 saber 0 3 4 I 

#,S,U,P,I,S,T,E,I,S,$ 2 supisteis 2PIA 40 saber 0 3 6 I 

#,S,U,P,I,E,R,O,N,$ 3 supieron 3PIA 40 saber 0 3 5 I 

#,S,A,L,I,R,$ 45 salir i 41 salir 0 3 2 I 

#,S,A,L,I,E,N,D,O,$ 7 saliendo pE 41 salir 0 3 5 I 

#,S,A,L,I,D,O,$ 16 salido pA 41 salir 0 3 3 I 

#,S,A,L,G,O,$ 4 salgo 1SIE 41 salir 0 4 1 I 

#,S,A,L,E,S,$ 2 sales 2SIE 41 salir 0 3 2 I 

#,S,A,L,E,$ 32 sale 3SIE 41 salir 0 3 1 I 

#,S,A,L,I,M,O,S,$ 5 salimos 1PIE 41 salir 0 3 4 I 

#,S,A,L,í,S,$ 2 salís 2PIE 41 salir 0 3 2 I 

#,S,A,L,E,N,$ 15 salen 3PIE 41 salir 0 3 2 I 

#,S,A,L,í,$ 3 salí 1SIA 41 salir 0 3 1 I 

#,S,A,L,I,S,T,E,$ 2 saliste 2SIA 41 salir 0 3 4 I 

#,S,A,L,I,ó,$ 15 salió 3SIA 41 salir 0 3 2 I 

#,S,A,L,I,M,O,S,$ 1 salimos 1PIA 41 salir 0 3 4 I 

#,S,A,L,I,S,T,E,I,S,$ 2 salisteis 2PIA 41 salir 0 3 6 I 

#,S,A,L,I,E,R,O,N,$ 6 salieron 3PIA 41 salir 0 3 5 I 

#,S,E,G,U,I,R,$ 80 seguir i 42 seguir 0 4 2 I 

#,S,I,G,U,I,E,N,D,O,$ 19 siguiendo pE 42 seguir 0 4 5 I 
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#,S,E,G,U,I,D,O,$ 17 seguido pA 42 seguir 0 4 3 I 

#,S,I,G,O,$ 14 sigo 1SIE 42 seguir 0 3 1 I 

#,S,I,G,U,E,S,$ 4 sigues 2SIE 42 seguir 0 4 2 I 

#,S,I,G,U,E,$ 73 sigue 3SIE 42 seguir 0 4 1 I 

#,S,E,G,U,I,M,O,S,$ 2 seguimos 1PIE 42 seguir 0 4 4 I 

#,S,E,G,U,í,S,$ 2 seguís 2PIE 42 seguir 0 4 2 I 

#,S,I,G,U,E,N,$ 29 siguen 3PIE 42 seguir 0 4 2 I 

#,S,E,G,U,í,$ 2 seguí 1SIA 42 seguir 0 4 1 I 

#,S,E,G,U,I,S,T,E,$ 2 seguiste 2SIA 42 seguir 0 4 4 I 

#,S,I,G,U,I,ó,$ 7 siguió 3SIA 42 seguir 0 4 2 I 

#,S,E,G,U,I,M,O,S,$ 11 seguimos 1PIA 42 seguir 0 4 4 I 

#,S,E,G,U,I,S,T,E,I,S,$ 2 seguisteis 2PIA 42 seguir 0 4 6 I 

#,S,I,G,U,I,E,R,O,N,$ 5 siguieron 3PIA 42 seguir 0 4 5 I 

#,S,E,R,$ 168 ser i 43 ser 0 1 2 I 

#,S,I,E,N,D,O,$ 31 siendo pE 43 ser 0 1 5 I 

#,S,I,D,O,$ 83 sido pA 43 ser 0 1 3 I 

#,S,O,Y,$ 19 soy 1SIE 43 ser 0 1 2 I 

#,E,R,E,S,$ 9 eres 2SIE 43 ser 0 2 2 I 

#,E,S,$ 904 es 3SIE 43 ser 0 2 0 I 

#,S,O,M,O,S,$ 15 somos 1PIE 43 ser 0 1 4 I 

#,S,O,I,S,$ 3 sois 2PIE 43 ser 0 1 3 I 

#,S,O,N,$ 210 son 3PIE 43 ser 0 1 2 I 

#,F,U,I,$ 3 fui 1SIA 43 ser 0 2 1 I 

#,F,U,I,S,T,E,$ 2 fuiste 2SIA 43 ser 0 2 4 I 

#,F,U,E,$ 112 fue 3SIA 43 ser 0 2 1 I 

#,F,U,I,M,O,S,$ 2 fuimos 1PIA 43 ser 0 2 4 I 

#,F,U,I,S,T,E,I,S,$ 2 fuisteis 2PIA 43 ser 0 2 6 I 

#,F,U,E,R,O,N,$ 29 fueron 3PIA 43 ser 0 2 4 I 

#,T,E,N,E,R,$ 195 tener i 44 tener 0 3 2 I 

#,T,E,N,I,E,N,D,O,$ 39 teniendo pE 44 tener 0 3 5 I 

#,T,E,N,I,D,O,$ 68 tenido pA 44 tener 0 3 3 I 

#,T,E,N,G,O,$ 127 tengo 1SIE 44 tener 0 4 1 I 

#,T,I,E,N,E,S,$ 64 tienes 2SIE 44 tener 0 4 2 I 

#,T,I,E,N,E,$ 440 tiene 3SIE 44 tener 0 4 1 I 

#,T,E,N,E,M,O,S,$ 103 tenemos 1PIE 44 tener 0 3 4 I 

#,T,E,N,E,',I,S,$ 10 tenéis 2PIE 44 tener 0 3 4 I 

#,T,I,E,N,E,N,$ 194 tienen 3PIE 44 tener 0 4 2 I 

#,T,U,V,E,$ 15 tuve 1SIA 44 tener 0 3 1 I 

#,T,U,V,I,S,T,E,$ 2 tuviste 2SIA 44 tener 0 3 4 I 

#,T,U,V,O,$ 53 tuvo 3SIA 44 tener 0 3 1 I 

#,T,U,V,I,M,O,S,$ 8 tuvimos 1PIA 44 tener 0 3 4 I 

#,T,U,V,I,S,T,E,I,S,$ 2 tuvisteis 2PIA 44 tener 0 3 6 I 

#,T,U,V,I,E,R,O,N,$ 17 tuvieron 3PIA 44 tener 0 3 5 I 

#,T,R,A,B,A,J,A,R,$ 53 trabajar i 45 trabajar 0 6 2 R 

#,T,R,A,B,A,J,A,N,D,O,$ 28 trabajando pE 45 trabajar 0 6 4 R 

#,T,R,A,B,A,J,A,D,O,$ 13 trabajado pA 45 trabajar 0 6 3 R 

#,T,R,A,B,A,J,O,$ 4 trabajo 1SIE 45 trabajar 0 6 1 R 

#,T,R,A,B,A,J,A,S,$ 3 trabajas 2SIE 45 trabajar 0 6 2 R 
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#,T,R,A,B,A,J,A,$ 21 trabaja 3SIE 45 trabajar 0 6 1 R 

#,T,R,A,B,A,J,A,M,O,S,$ 6 trabajamos 1PIE 45 trabajar 0 6 4 R 

#,T,R,A,B,A,J,á,I,S,$ 2 trabajáis 2PIE 45 trabajar 0 6 3 R 

#,T,R,A,B,A,J,A,N,$ 16 trabajan 3PIE 45 trabajar 0 6 2 R 

#,T,R,A,B,A,J,E,',$ 2 trabajé 1SIA 45 trabajar 0 6 2 R 

#,T,R,A,B,A,J,A,S,T,E,$ 2 trabajaste 2SIA 45 trabajar 0 6 4 R 

#,T,R,A,B,A,J,ó,$ 6 trabajó 3SIA 45 trabajar 0 6 1 R 

#,T,R,A,B,A,J,A,M,O,S,$ 1 trabajamos 1PIA 45 trabajar 0 6 4 R 

#,T,R,A,B,A,J,A,S,T,E,I,S,$ 2 trabajasteis 2PIA 45 trabajar 0 6 6 R 

#,T,R,A,B,A,J,A,R,O,N,$ 3 trabajaron 3PIA 45 trabajar 0 6 4 R 

#,T,R,A,T,A,R,$ 24 tratar i 46 tratar 0 4 2 R 

#,T,R,A,T,A,N,D,O,$ 8 tratando pE 46 tratar 0 4 4 R 

#,T,R,A,T,A,D,O,$ 8 tratado pA 46 tratar 0 4 3 R 

#,T,R,A,T,O,$ 2 trato 1SIE 46 tratar 0 4 1 R 

#,T,R,A,T,A,S,$ 2 tratas 2SIE 46 tratar 0 4 2 R 

#,T,R,A,T,A,$ 100 trata 3SIE 46 tratar 0 4 1 R 

#,T,R,A,T,A,M,O,S,$ 3 tratamos 1PIE 46 tratar 0 4 4 R 

#,T,R,A,T,á,I,S,$ 2 tratáis 2PIE 46 tratar 0 4 3 R 

#,T,R,A,T,A,N,$ 9 tratan 3PIE 46 tratar 0 4 2 R 

#,T,R,A,T,E,',$ 2 traté 1SIA 46 tratar 0 4 2 R 

#,T,R,A,T,A,S,T,E,$ 2 trataste 2SIA 46 tratar 0 4 4 R 

#,T,R,A,T,ó,$ 5 trató 3SIA 46 tratar 0 4 1 R 

#,T,R,A,T,A,M,O,S,$ 1 tratamos 1PIA 46 tratar 0 4 4 R 

#,T,R,A,T,A,S,T,E,I,S,$ 2 tratasteis 2PIA 46 tratar 0 4 6 R 

#,T,R,A,T,A,R,O,N,$ 3 trataron 3PIA 46 tratar 0 4 4 R 

#,U,T,I,L,I,Z,A,R,$ 45 utilizar i 47 utilizar 0 6 2 R 

#,U,T,I,L,I,Z,A,N,D,O,$ 21 utilizando pE 47 utilizar 0 6 4 R 

#,U,T,I,L,I,Z,A,D,O,$ 19 utilizado pA 47 utilizar 0 6 3 R 

#,U,T,I,L,I,Z,O,$ 4 utilizo 1SIE 47 utilizar 0 6 1 R 

#,U,T,I,L,I,Z,A,S,$ 2 utilizas 2SIE 47 utilizar 0 6 2 R 

#,U,T,I,L,I,Z,A,$ 25 utiliza 3SIE 47 utilizar 0 6 1 R 

#,U,T,I,L,I,Z,A,M,O,S,$ 4 utilizamos 1PIE 47 utilizar 0 6 4 R 

#,U,T,I,L,I,Z,á,I,S,$ 2 utilizáis 2PIE 47 utilizar 0 6 3 R 

#,U,T,I,L,I,Z,A,N,$ 18 utilizan 3PIE 47 utilizar 0 6 2 R 

#,U,T,I,L,I,C,E,',$ 2 utilicé 1SIA 47 utilizar 0 6 2 R 

#,U,T,I,L,I,Z,A,S,T,E,$ 2 utilizaste 2SIA 47 utilizar 0 6 4 R 

#,U,T,I,L,I,Z,ó,$ 5 utilizó 3SIA 47 utilizar 0 6 1 R 

#,U,T,I,L,I,Z,A,M,O,S,$ 1 utilizamos 1PIA 47 utilizar 0 6 4 R 

#,U,T,I,L,I,Z,A,S,T,E,I,S,$ 2 utilizasteis 2PIA 47 utilizar 0 6 6 R 

#,U,T,I,L,I,Z,A,R,O,N,$ 3 utilizaron 3PIA 47 utilizar 0 6 4 R 

#,V,E,N,I,R,$ 14 venir i 48 venir 0 3 2 I 

#,V,I,N,I,E,N,D,O,$ 3 viniendo pE 48 venir 0 3 5 I 

#,V,E,N,I,D,O,$ 15 venido pA 48 venir 0 3 3 I 

#,V,E,N,G,O,$ 1 vengo 1SIE 48 venir 0 4 1 I 

#,V,I,E,N,E,S,$ 3 vienes 2SIE 48 venir 0 4 2 I 

#,V,I,E,N,E,$ 63 viene 3SIE 48 venir 0 4 1 I 

#,V,E,N,I,M,O,S,$ 4 venimos 1PIE 48 venir 0 3 4 I 

#,V,E,N,í,S,$ 2 venís 2PIE 48 venir 0 3 2 I 
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#,V,I,E,N,E,N,$ 21 vienen 3PIE 48 venir 0 4 2 I 

#,V,I,N,E,$ 2 vine 1SIA 48 venir 0 3 1 I 

#,V,I,N,I,S,T,E,$ 2 viniste 2SIA 48 venir 0 3 4 I 

#,V,I,N,O,$ 9 vino 3SIA 48 venir 0 3 1 I 

#,V,I,N,I,M,O,S,$ 2 vinimos 1PIA 48 venir 0 3 4 I 

#,V,I,N,I,S,T,E,I,S,$ 2 vinisteis 2PIA 48 venir 0 3 6 I 

#,V,I,N,I,E,R,O,N,$ 4 vinieron 3PIA 48 venir 0 3 5 I 

#,V,E,R,$ 237 ver i 49 ver 0 1 2 I 

#,V,I,E,N,D,O,$ 20 viendo pE 49 ver 0 1 5 I 

#,V,I,S,T,O,$ 76 visto pA 49 ver 0 1 4 I 

#,V,E,O,$ 39 veo 1SIE 49 ver 0 1 2 I 

#,V,E,S,$ 6 ves 2SIE 49 ver 0 1 2 I 

#,V,E,$ 43 ve 3SIE 49 ver 0 1 1 I 

#,V,E,M,O,S,$ 19 vemos 1PIE 49 ver 0 1 4 I 

#,V,E,I,S,$ 5 veis 2PIE 49 ver 0 1 3 I 

#,V,E,N,$ 22 ven 3PIE 49 ver 0 1 2 I 

#,V,I,$ 17 vi 1SIA 49 ver 0 1 1 I 

#,V,I,S,T,E,$ 1 viste 2SIA 49 ver 0 1 4 I 

#,V,I,O,$ 14 vio 3SIA 49 ver 0 1 2 I 

#,V,I,M,O,S,$ 6 vimos 1PIA 49 ver 0 1 4 I 

#,V,I,S,T,E,I,S,$ 2 visteis 2PIA 49 ver 0 1 6 I 

#,V,I,E,R,O,N,$ 7 vieron 3PIA 49 ver 0 1 5 I 

#,V,O,L,V,E,R,$ 37 volver i 50 volver 0 4 2 I 

#,V,O,L,V,I,E,N,D,O,$ 6 volviendo pE 50 volver 0 4 5 I 

#,V,U,E,L,T,O,$ 16 vuelto pA 50 volver 0 4 2 I 

#,V,U,E,L,V,O,$ 7 vuelvo 1SIE 50 volver 0 5 1 I 

#,V,U,E,L,V,E,S,$ 3 vuelves 2SIE 50 volver 0 5 2 I 

#,V,U,E,L,V,E,$ 26 vuelve 3SIE 50 volver 0 5 1 I 

#,V,O,L,V,E,M,O,S,$ 5 volvemos 1PIE 50 volver 0 4 4 I 

#,V,O,L,V,E,',I,S,$ 2 volvéis 2PIE 50 volver 0 4 4 I 

#,V,U,E,L,V,E,N,$ 9 vuelven 3PIE 50 volver 0 5 2 I 

#,V,O,L,V,í,$ 3 volví 1SIA 50 volver 0 4 1 I 

#,V,O,L,V,I,S,T,E,$ 2 volviste 2SIA 50 volver 0 4 4 I 

#,V,O,L,V,I,ó,$ 13 volvió 3SIA 50 volver 0 4 2 I 

#,V,O,L,V,I,M,O,S,$ 2 volvimos 1PIA 50 volver 0 4 4 I 

#,V,O,L,V,I,S,T,E,I,S,$ 2 volvisteis 2PIA 50 volver 0 4 6 I 

#,V,O,L,V,I,E,R,O,N,$ 5 volvieron 3PIA 50 volver 0 4 5 I 

 


