Applied General Topology

Asymptotic proximities

I. V. Protasov

Abstract

A ballean is a set endowed with some family of subsets which are called the balls. The properties of the family of balls are postulated in such a way that the balleans can be considered as a natural asymptotic counterparts of the uniform topological spaces. We introduce and study an asymptotic proximity as a counterpart of proximity relation for uniform topological space.

2000 AMS Classification: 54E05, 54E15.
Keywords: ballean, determining covering, proximity.

1. Introduction and preliminaries

A ball structure is a triple $\mathcal{B}=(X, P, B)$ where X, P are non-empty sets and, for any $x \in X$ and $\alpha \in P, B(x, \alpha)$ is a subset of X which is called a ball of radius α around x. It is supposed that $x \in B(x, \alpha)$ for all $x \in X, \alpha \in P$. The set X is called the support of \mathcal{B}, P is called the set of radii. Given any $x \in X, A \subseteq X, \alpha \in P$, we put

$$
B^{*}(x, \alpha)=\{y \in X: x \in B(y, \alpha)\}, B(A, \alpha)=\bigcup_{a \in A} B(a, \alpha) .
$$

A ball structure is called

- lower symmetric if, for any $\alpha, \beta \in P$, there exist $\alpha^{\prime}, \beta^{\prime} \in P$ such that, for every $x \in X$,

$$
B^{*}\left(x, \alpha^{\prime}\right) \subseteq B(x, \alpha), B\left(x, \beta^{\prime}\right) \subseteq B^{*}(x, \beta)
$$

- upper symmetric if, for any $\alpha, \beta \in P$, there exist $\alpha^{\prime}, \beta^{\prime} \in P$ such that, for every $x \in X$,

$$
B(x, \alpha) \subseteq B^{*}\left(x, \alpha^{\prime}\right), B^{*}(x, \beta) \subseteq B\left(x, \beta^{\prime}\right)
$$

- lower multiplicative if, for any $\alpha, \beta \in P$, there exists $\gamma \in P$ such that, for every $x \in X$,

$$
B(B(x, \gamma), \gamma) \subseteq B(x, \alpha) \cap B(x, \beta)
$$

- upper multiplicative if, for any $\alpha, \beta \in P$, there exists $\gamma \in P$ such that, for every $x \in X$,

$$
B(B(x, \alpha), \beta) \subseteq B(x, \gamma)
$$

Let $\mathcal{B}=(X, P, B)$ be a lower symmetric and lower multiplicative ball structure. Then the family

$$
\left\{\bigcup_{x \in X} B(x, \alpha) \times B(x, \alpha): \alpha \in P\right\}
$$

is a base of entourages for some (uniquely determined) uniformity on X. On the other hand, if $\mathcal{U} \subseteq X \times X$ is a uniformity on X, then the ball structure (X, \mathcal{U}, B) is lower symmetric and lower multiplicative, where $B(x, U)=\{y \in$ $X:(x, y) \in U\}$. Thus, the lower symmetric and lower multiplicative ball structures can be identified with the uniform topological spaces.

We say that a ball structure is a ballean if \mathcal{B} is upper symmetric and upper multiplicative. A structure on X, equivalent to a ballean, can also be defined in terminology of entourages. In this case it is called a coarse structure [5]. For motivations to study balleans see [1], [4],[5].

Let $\mathcal{B}_{1}=\left(X_{1}, P_{1}, B_{1}\right)$ and $\mathcal{B}_{2}=\left(X_{2}, P_{2}, B_{2}\right)$ be balleans. A mapping f : $X_{1} \rightarrow X_{2}$ is called a \prec-mapping if, for every $\alpha \in P_{1}$, there exists $\beta \in P_{2}$ such that, for every $x \in X_{1}$,

$$
f\left(B_{1}(x, \alpha)\right) \subseteq B_{2}(f(x), \beta)
$$

A bijection $f: X_{1} \longrightarrow X_{2}$ is called an asymorphism between \mathcal{B}_{1} and \mathcal{B}_{2} if f and f^{-1} are \prec-mappings.

Let $\mathcal{B}_{1}, \mathcal{B}_{2}$ be balleans with common support X. We say that $\mathcal{B}_{1} \prec \mathcal{B}_{2}$ if the identity mapping $i d: X \rightarrow X$ is a \prec-mapping of \mathcal{B}_{1} to \mathcal{B}_{2}. If $\mathcal{B}_{1} \prec \mathcal{B}_{2}$ and $\mathcal{B}_{2} \prec \mathcal{B}_{1}$, we say that \mathcal{B}_{1} and \mathcal{B}_{2} coincide and write $\mathcal{B}_{1}=\mathcal{B}_{2}$.

Let $\mathcal{B}=(X, P, B)$ be a ballean. A subset $Y \subseteq X$ is called bounded if there exist $\alpha \in P$ such that $Y \subseteq B(x, \alpha)$ for some $x \in Y$. A family \mathcal{F} of subsets of X is called uniformly bounded if there exists $\alpha \in P$ such that $F \subseteq B(x, \alpha)$ for all $F \in \mathcal{F}, x \in F$. We use the following observation: the ballean \mathcal{B}_{1} and \mathcal{B}_{2} with common support coincide if and only if every family of subsets of X uniformly bounded in \mathcal{B}_{1} is uniformly bounded in \mathcal{B}_{2} and vise versa.

For an arbitrary ballean $\mathcal{B}=(X, P, B)$ we define preordering \leqslant on the set P by the rule: $\alpha \leqslant \beta$ if and only if $B(x, \alpha) \subseteq B(x, \beta)$ for every $x \in X$. A subset $P^{\prime} \subseteq P$ is called cofinal if, for every $\alpha \in P$, there exists $\alpha^{\prime} \in P^{\prime}$ such that $\alpha \leqslant \alpha^{\prime}$.

A ballean \mathcal{B} is called connected if, for any $x, y \in X$, there exists $\alpha \in P$ such that $y \in B(x, \alpha)$. A connected ballean \mathcal{B} is called ordinal if there exists a well-ordered by $\leqslant \operatorname{subset} P^{\prime}$ of P.

Every metric space (X, d) determines the metric ballean $\left(X, \mathbb{R}^{+}, B_{d}\right)$ where $B_{d}(x, r)=\{y \in X: d(x, y) \leq r\}$. A ballean is called metrizable if it is asymorphic to some metric ballean. By [4, Theorem 9.1], a ballean $\mathcal{B}=(X, P, B)$ is metrizable if and only if \mathcal{B} is connected and P has a countable cofinal subset. Clearly, every metrizable ballean is ordinal.

We begin the proper exposition with characterization (section 2) of families of coverings of a set X which determine a ballean on X. Then we introduce and study (section 3) an asymptotic proximity as an equivalence relation σ on the family $\mathcal{P}(X)$ of all subsets of a set X such that $Y \subseteq Z \subseteq Y^{\prime}$ and $Y \sigma Y^{\prime}$ imply $Y \sigma Z$. Every proximity σ determines some ballean $\mathcal{B}(\sigma)$ on X. Given a ballean $\mathcal{B}=(X, P, B)$, we say that the subsets Y, Z of X are close if there exists $\alpha \in P$ such that $Y \subseteq B(Z, \alpha), Z \subseteq B(Y, \alpha)$. The closeness relation is a prototype for the asymptotic proximity. We show (Theorem 3.1) that, given an asymptotic proximity σ on $\mathcal{P}(X)$, the closeness σ^{\prime} defined by $\mathcal{B}(\sigma)$ is finner then σ. On the other hand (Theorem 3.4), if $\mathcal{B}=(X, P, B)$ is a ballean and σ is a closeness on $\mathcal{P}(X)$ determined by \mathcal{B}, then $\sigma=\sigma^{\prime}$ where σ^{\prime} is closeness determined by $\mathcal{B}(\sigma)$. In Section 4 we examine the question whether the closeness on $\mathcal{P}(X)$ arising from a ballean $\mathcal{B}=(X, P, B)$ determines \mathcal{B}. In general case this is not so, but our main result (Theorem 4.2) gives a positive answer in the case of ordinal (in particular, metrizable) balleans.

2. Determining coverings

Let X be a set, \mathcal{F} be a family of subsets of $X, Y \subseteq X$. We put

$$
s t(Y, \mathcal{F})=\bigcup\{F \in \mathcal{F}: Y \bigcap F \neq \varnothing\}
$$

Given any $x \in X$, we write $\operatorname{st}(x, \mathcal{F})$ instead of $\operatorname{st}(\{x\}, \mathcal{F})$.
For two families $\mathcal{F}, \mathcal{F}^{\prime}$ of subsets of X, we put

$$
\operatorname{st}\left(\mathcal{F}, \mathcal{F}^{\prime}\right)=\left\{s t\left(F, \mathcal{F}^{\prime}\right): F \in \mathcal{F}\right\}
$$

A family \mathcal{F} of subsets of X is called hereditary if, for any subsets F, F^{\prime} of X such that $F \in \mathcal{F}$ and $F^{\prime} \subseteq F$, we have $F^{\prime} \subseteq \mathcal{F}$.

A family \mathcal{F} of subsets of X is called a covering if $\bigcup \mathcal{F}=X$.
We say that a family $\left\{\mathcal{F}_{\alpha}, \alpha \in P\right\}$ of hereditary coverings of X is star stable if, for any $\alpha, \beta \in P$, there exist $\gamma \in P$ such that

$$
\operatorname{st}\left(\mathcal{F}_{\alpha}, \mathcal{F}_{\beta}\right) \subseteq \mathcal{F}_{\gamma}
$$

Let $\left\{\mathcal{F}_{\alpha}: \alpha \in P\right\}$ be a family of star stable coverings of X. We consider a ball structure $\mathcal{B}=(X, P, B)$, where

$$
B(x, \alpha)=\operatorname{st}\left(x, \mathcal{F}_{\alpha}\right),
$$

and show that \mathcal{B} is a ballean.
Given any $x \in X$ and $\alpha \in P$, we have

$$
B(x, \alpha)=\left\{y \in X: y \in \operatorname{st}\left(x, \mathcal{F}_{\alpha}\right)\right\}, \quad B^{*}(x, \alpha)=\left\{y \in X: x \in \operatorname{st}\left(y, \mathcal{F}_{\alpha}\right)\right\} .
$$

Since $y \in \operatorname{st}\left(x, \mathcal{F}_{\alpha}\right)$ if and only if $x \in \operatorname{st}\left(y, \mathcal{F}_{\alpha}\right)$, then $B^{*}(x, \alpha)=B(x, \alpha)$, so \mathcal{B} is upper symmetric.

Given any $x \in X$ and $\alpha, \beta \in P$, we choose $\alpha^{\prime} \in P$ and $\gamma \in P$ such that

$$
\operatorname{st}\left(\mathcal{F}_{\alpha}, \mathcal{F}_{\alpha}\right) \subseteq \mathcal{F}_{\alpha^{\prime}} \text { and } \operatorname{st}\left(\mathcal{F}_{\alpha^{\prime}}, \mathcal{F}_{\beta}\right) \subseteq \mathcal{F}_{\gamma}
$$

Then we have

$$
B(B(x, \alpha), \beta)=\operatorname{st}\left(s t\left(x, \mathcal{F}_{\alpha}\right), \mathcal{F}_{\beta}\right) \subseteq \operatorname{st}\left(x, \mathcal{F}_{\gamma}\right)=B(x, \gamma)
$$

so \mathcal{B} is upper multiplicative.
We note that a subset Y of X is bounded in \mathcal{B} if and only if $Y \in \mathcal{F}_{\alpha}$ for some $\alpha \in P$. A family \mathcal{F} of subsets of X is bounded in \mathcal{B} if and only if there exists $\alpha \in P$ such that $\mathcal{F} \subseteq \mathcal{F}_{\alpha}$.

Thus we have shown that every star stable family of coverings of X determines some ballean on X. On the other hand, let $\mathcal{B}=(X, P, B)$ be an arbitrary ballean on X. For every $\alpha \in P$, we put

$$
\mathcal{F}_{\alpha}=\{F \subseteq X: F \subseteq B(x, \alpha) \text { for some } x \in X\}
$$

Then the ballean on X determined by the star stable family $\left\{\mathcal{F}_{\alpha}: \alpha \in P\right\}$ of coverings of X coincides with \mathcal{B}.

3. Proximities and closeness

Let X be a set, $\mathcal{P}(X)$ be a family of all subsets of X. Let σ be an equivalence on $\mathcal{P}(X)$ such that, for all $Y, Y^{\prime}, Z \in \mathcal{P}(X)$,

$$
Y \subseteq Z \subseteq Y^{\prime}, \quad Y \sigma Y^{\prime} \Longrightarrow Y \sigma Z
$$

We say that σ is (an asymptotic) proximity and describe a way in which σ defines some ballean $\mathcal{B}(\sigma)$ on X.

We call a family \mathcal{F} of subsets of X to be non-expanding with respect to σ if, for every subset Y of X, we have

$$
Y \sigma(Y \bigcup s t(Y, \mathcal{F}))
$$

We note that every subfamily of non-expanding family is non-expanding.
Let $\mathcal{F}_{1}, \mathcal{F}_{2}$ be non-expanding with respect to σ families of subsets of X. We show that the family $\operatorname{st}\left(\mathcal{F}_{1}, \mathcal{F}_{2}\right)$ is also non-expanding with respect to σ.

We fix an arbitrary subset Y of X and put

$$
\mathcal{F}_{2}^{\prime}=\left\{F^{\prime} \in \mathcal{F}_{2}: Y \bigcap F^{\prime} \neq \varnothing\right\}
$$

Since \mathcal{F}_{2}^{\prime} is non-expanding, we have

$$
Y \sigma\left(Y \bigcup \bigcup \mathcal{F}_{2}^{\prime}\right)
$$

We put $Z=Y \bigcup \bigcup \mathcal{F}_{2}^{\prime}$ and

$$
\mathcal{F}_{1}^{\prime}=\left\{F \in \mathcal{F}_{1}: F \bigcap F^{\prime} \neq \varnothing \text { for some } F^{\prime} \in \mathcal{F}_{2}^{\prime}\right\}
$$

Since \mathcal{F}_{1}^{\prime} is non-expanding, we have

$$
Z \sigma\left(Z \bigcup \bigcup \mathcal{F}_{1}^{\prime}\right)
$$

We put $T=Z \bigcup \bigcup \mathcal{F}_{1}^{\prime}$. Since \mathcal{F}_{2} is non-expanding, we have

$$
T \sigma\left(T \bigcup\left(\bigcup\left\{F \in \mathcal{F}_{2}: F \bigcap T \neq \varnothing\right\}\right)\right)
$$

We put $H=T \bigcup\left(\bigcup\left\{F \in \mathcal{F}_{2}: F \bigcap T \neq \varnothing\right\}\right)$. Then $Y \sigma H$ and $Y \subseteq H$. By the construction of H, we have

$$
Y \subseteq Y \bigcup\left(\bigcup\left\{S \in \operatorname{st}\left(\mathcal{F}_{1}, \mathcal{F}_{2}\right): S \bigcap Y \neq \varnothing\right\}\right) \subseteq H
$$

Since σ is a proximity, we conclude

$$
Y \sigma\left(Y \bigcup\left(\bigcup\left\{S \in \operatorname{st}\left(\mathcal{F}_{1}, \mathcal{F}_{2}\right): S \bigcap Y \neq \varnothing\right\}\right)\right)
$$

In particular, we proved that the family of all non-expanding (with respect to σ) hereditary covering of X is star stable. Following Section 2, we define $\mathcal{B}(\sigma)$ by means this family of coverings.

We note that a subset Y of X is bounded in $\mathcal{B}(\sigma)$ if and only if the family $\{Y\}$ is non-expanding, equivalently, $\{y\} \sigma Y$ for every $y \in Y$. A family \mathcal{F} of subsets of X is uniformly bounded in $\mathcal{B}(\sigma)$ if and only if \mathcal{F} is non-expanding.

Let $\mathcal{B}=(X, P, B)$ be a ballean. We consider a relation σ on $\mathcal{P}(X)$ defined by the rule: $Y \sigma Z$ if and only if there exists $\alpha \in P$ such that $Y \subseteq B(Z, \alpha), Z \subseteq$ $B(Y, \alpha)$. It is easy to see that σ is a proximity; we call it a closeness defined by \mathcal{B}. We note that Y, Z are close if and only if there exists a uniformly bounded covering \mathcal{F} of X such that

$$
\bigcup\{F \in \mathcal{F}: F \bigcap Y \neq \varnothing\}=\bigcup\{F \in \mathcal{F}: F \bigcap Z \neq \varnothing\}
$$

Theorem 3.1. Let X be a set, σ be a proximity on $\mathcal{P}(X), \sigma^{\prime}$ be a closeness defined by $\mathcal{B}(\sigma)$. Then $\sigma^{\prime} \subseteq \sigma$.

Proof. We remind that a family \mathcal{F} of subsets of X is uniformly bounded in $\mathcal{B}(\sigma)$ if and only if \mathcal{F} is non-expanding with respect to σ. Let $Y, Z \in \mathcal{P}(X)$ and $Y \sigma^{\prime} Z$. Then there exists a non-expanding (with respect to σ) family \mathcal{F} of subsets of X such that $Y \subseteq \bigcup \mathcal{F}, Z \subseteq \bigcup \mathcal{F}$ and $Y \bigcap F \neq \varnothing, Z \bigcap F \neq \varnothing$ for every $F \in \mathcal{F}$. It follows that $Y \sigma(\bigcup \mathcal{F})$ and $Z \sigma(\bigcup \mathcal{F})$, so $Y \sigma Z$.

The following two examples show that the proximity σ from Theorem 3.1 could be much more coarse than σ^{\prime}.

Example 3.2. Let X be an infinite set. We define an equivalence σ on $\mathcal{P}(X)$ by the rule: $Y \sigma Z$ if and only if either Y, Z are finite, or Y, Z are infinite. Then a subset Y of X is bounded in $\mathcal{B}(\sigma)$ if and only if Y is finite; a family \mathcal{F} of subsets of X is uniformly bounded in $\mathcal{B}(\sigma)$ if and only if each subset $F \in \mathcal{F}$ is finite and, for every $x \in X$, the set $\{F \in \mathcal{F}: x \in F\}$ is finite. We show that $Y \sigma^{\prime} Z$ if and only if either Y, Z are finite, or Y, Z are infinite and $|Y|=|Z|$. We should only check that if Y, Z are infinite and $|Y|=|Z|$ then $Y \sigma^{\prime} Z$. To this end we fix some bijection $f: Y \longrightarrow Z$, and put $\mathcal{F}=\{\{y, f(y)\}: y \in Y\}$. Then \mathcal{F} is uniformly bounded in $\mathcal{B}(\sigma), Y \sigma^{\prime}(\bigcup \mathcal{F})$ and $Z \sigma^{\prime}(\bigcup \mathcal{F})$, so $Y \sigma^{\prime} Z$. Now if X is uncountable than σ is coarser than σ^{\prime}.

Example 3.3. Let X be a well-ordered set. We define an equivalence σ on $\mathcal{P}(X)$ by the rule: $Y \sigma Z$ if and only if $\min Y=\min Z$. Then a subset Y is bounded in $\mathcal{B}(\sigma)$ if and only if Y is a singleton. It follows that $Y \sigma^{\prime} Z$ if and only if $Y=Z$.
Theorem 3.4. Let $\mathcal{B}=(X, P, B)$ be a ballean, σ be a closeness defined by \mathcal{B}, σ^{\prime} be a closeness defined by $\mathcal{B}(\sigma)$. Then $\sigma=\sigma^{\prime}$.
Proof. By Theorem 3.1, $\sigma \subseteq \sigma^{\prime}$. To see that $\sigma \subseteq \sigma^{\prime}$ it suffices to note that every uniformly bounded in \mathcal{B} family of subsets of X is non-expanding with respect to σ.

4. Does closeness determine a ballean?

Let \mathcal{B}_{1} and \mathcal{B}_{2} be balleans with common support X, σ_{1} and σ_{2} be closeness on $\mathcal{P}(X)$ defined by \mathcal{B}_{1} and \mathcal{B}_{2}. Is $\mathcal{B}_{1}=\mathcal{B}_{2}$ provided that $\sigma_{1}=\sigma_{2}$?

We give a negative answer to this general question, but prove one partial statement (Theorem 4.2) in positive direction.
Example 4.1. Let X be a countable set. We consider two families φ_{1}, φ_{2} of coverings of X.

A family φ_{1} is defined by the rule: $\mathcal{F} \in \varphi_{1}$ if and only if every subset $F \in \mathcal{F}$ is finite, and the set $\{F \in \mathcal{F}: x \in F\}$ is finite for every $x \in X$.

A family φ_{2} is defined by the rule: $\mathcal{F} \in \varphi_{2}$ if and only if there exists a natural number n such that $|F| \leq n$ for every $F \in \mathcal{F}$, and there exists a natural number m such that $|\{F \in \mathcal{F}: x \in F\}| \leq m$ for every $x \in X$.

Clearly, the families φ_{1} and φ_{2} are star-stable. Let \mathcal{B}_{1} and \mathcal{B}_{2} be balleans on X determined by φ_{1} and φ_{2}. Using arguments from Example 3.2, it is easy to see that \mathcal{B}_{1} and \mathcal{B}_{2} define the same closeness $\sigma: Y \sigma Z$ if and only if either Y, Z are finite, or Y, Z are infinite. Then we take a partition $\left\{F_{n}: n \in \omega\right\}$ of X such that $\left|F_{n}\right|=n$ for every $n \in \omega$. Clearly, \mathcal{F} is uniformly bounded in \mathcal{B}_{1}, but \mathcal{F} is not uniformly bounded in \mathcal{B}_{2}. It follows that \mathcal{B}_{1} is stronger than \mathcal{B}_{2}.

It is worth to mark that Example 4.1 gives a ballean \mathcal{B} with the closeness σ such that $\mathcal{B} \neq \mathcal{B}(\sigma)$. To see this, we put $\mathcal{B}=\mathcal{B}_{2}$ and note that $\mathcal{B}(\sigma)=\mathcal{B}_{1}$.
Theorem 4.2. Let $\mathcal{B}_{1}=\left(X_{1}, P_{1}, B_{1}\right)$ and $\mathcal{B}_{2}=\left(X_{2}, P_{2}, B_{2}\right)$ be ordinal balleans with common support and the same closeness. Then $\mathcal{B}_{1}=\mathcal{B}_{2}$.
Proof. We assume on the contrary that, say, $\mathcal{B}_{2} \prec \mathcal{B}_{1}$ does not hold, and choose $\beta \in P_{2}$ such that, for every $\alpha \in P_{1}$, there exists $x(\alpha) \in X$ such that $B_{2}(x(\alpha), \beta) \nsubseteq B_{1}(x(\alpha), \alpha)$. We may suppose that P_{1} is well-ordered. In the proof of Theorem 2.1 from [3] we constructed inductively a subset

$$
Y=\left\{y(\alpha): \alpha \in P_{1}\right\}
$$

of X such that the family $\left\{B_{1}(y(\alpha), \alpha): \alpha \in P_{1}\right\}$ is disjoint and, for every $\alpha^{\prime} \in P$,

$$
B_{2}\left(y\left(\alpha^{\prime}\right), \beta\right) \nsubseteq \bigcup\left\{B_{1}(y(\alpha), \alpha): \alpha \in P_{1}\right\}
$$

We put $Z=B_{2}(Y, \beta)$. Then Y, Z are close in \mathcal{B}_{2}, but Y, Z are not close in \mathcal{B}_{1}, whence a contradiction.

References

[1] A. Dranishnikov, Asymptotic topology, Russian Math. Surveys 55 (2000), 71-116.
2] R. Engelking, General Topology, PWN, Warszava, 1985.
[3] M. Filali and I. V. Protasov, Slowly oscillating function on locally compact groups, Applied General Topology 6, no. 1 (2005) 67-77.
[4] I. V. Protasov and T. Banakh, Ball Structures and Colorings of Groups and Graphs, Math. Stud. Monogr. Ser. V.11, 2003.
[5] J. Roe, Lectures on Coarse Geometry, AMS University Lecture Series, 31 (2003).

Received March 2007
Accepted December 2007
I. V. Protasov (protasov@unicyb.kiev.ua)

Department of Cybernetics, Kyiv National University, Volodimirska 64, Kyiv 01033, UKRAINE.

