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Asymptotic proximities

I. V. Protasov

Abstract. A ballean is a set endowed with some family of subsets

which are called the balls. The properties of the family of balls are pos-

tulated in such a way that the balleans can be considered as a natural

asymptotic counterparts of the uniform topological spaces. We intro-

duce and study an asymptotic proximity as a counterpart of proximity

relation for uniform topological space.
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1. Introduction and preliminaries

A ball structure is a triple B = (X, P, B) where X , P are non-empty sets
and, for any x ∈ X and α ∈ P , B(x, α) is a subset of X which is called a ball

of radius α around x. It is supposed that x ∈ B(x, α) for all x ∈ X , α ∈ P .
The set X is called the support of B, P is called the set of radii. Given any
x ∈ X , A ⊆ X , α ∈ P , we put

B∗(x, α) = {y ∈ X : x ∈ B(y, α)}, B(A, α) =
⋃

a∈A

B(a, α).

A ball structure is called

• lower symmetric if, for any α, β ∈ P , there exist α′, β′ ∈ P such that,
for every x ∈ X ,

B∗(x, α′) ⊆ B(x, α), B(x, β′) ⊆ B∗(x, β);

• upper symmetric if, for any α, β ∈ P , there exist α′, β′ ∈ P such that,
for every x ∈ X ,

B(x, α) ⊆ B∗(x, α′), B∗(x, β) ⊆ B(x, β′);
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• lower multiplicative if, for any α, β ∈ P , there exists γ ∈ P such that,
for every x ∈ X ,

B(B(x, γ), γ) ⊆ B(x, α) ∩ B(x, β);

• upper multiplicative if, for any α, β ∈ P , there exists γ ∈ P such that,
for every x ∈ X ,

B(B(x, α), β) ⊆ B(x, γ).

Let B = (X, P, B) be a lower symmetric and lower multiplicative ball struc-
ture. Then the family

{

⋃

x∈X

B(x, α) × B(x, α) : α ∈ P
}

is a base of entourages for some (uniquely determined) uniformity on X . On
the other hand, if U ⊆ X × X is a uniformity on X , then the ball structure
(X,U , B) is lower symmetric and lower multiplicative, where B(x, U) = {y ∈
X : (x, y) ∈ U}. Thus, the lower symmetric and lower multiplicative ball
structures can be identified with the uniform topological spaces.

We say that a ball structure is a ballean if B is upper symmetric and upper
multiplicative. A structure on X , equivalent to a ballean, can also be defined
in terminology of entourages. In this case it is called a coarse structure [5]. For
motivations to study balleans see [1],[4],[5].

Let B1 = (X1, P1, B1) and B2 = (X2, P2, B2) be balleans. A mapping f :
X1 → X2 is called a ≺-mapping if, for every α ∈ P1, there exists β ∈ P2 such
that, for every x ∈ X1,

f(B1(x, α)) ⊆ B2(f(x), β).

A bijection f : X1 −→ X2 is called an asymorphism between B1 and B2 if f

and f−1 are ≺-mappings.
Let B1, B2 be balleans with common support X . We say that B1 ≺ B2 if

the identity mapping id:X → X is a ≺-mapping of B1 to B2. If B1 ≺ B2 and
B2 ≺ B1, we say that B1 and B2 coincide and write B1 = B2.

Let B = (X, P, B) be a ballean. A subset Y ⊆ X is called bounded if there
exist α ∈ P such that Y ⊆ B(x, α) for some x ∈ Y . A family F of subsets of X

is called uniformly bounded if there exists α ∈ P such that F ⊆ B(x, α) for all
F ∈ F , x ∈ F . We use the following observation: the ballean B1 and B2 with
common support coincide if and only if every family of subsets of X uniformly
bounded in B1 is uniformly bounded in B2 and vise versa.

For an arbitrary ballean B = (X, P, B) we define preordering 6 on the set
P by the rule: α 6 β if and only if B(x, α) ⊆ B(x, β) for every x ∈ X . A
subset P ′ ⊆ P is called cofinal if, for every α ∈ P , there exists α′ ∈ P ′ such
that α 6 α′.

A ballean B is called connected if, for any x, y ∈ X , there exists α ∈ P

such that y ∈ B(x, α). A connected ballean B is called ordinal if there exists a
well-ordered by 6 subset P ′ of P .



Asymptotic proximities 191

Every metric space (X, d) determines the metric ballean (X, R+, Bd) where
Bd(x, r) = {y ∈ X : d(x, y) ≤ r}. A ballean is called metrizable if it is asymor-
phic to some metric ballean. By [4, Theorem 9.1], a ballean B = (X, P, B) is
metrizable if and only if B is connected and P has a countable cofinal subset.
Clearly, every metrizable ballean is ordinal.

We begin the proper exposition with characterization (section 2) of families
of coverings of a set X which determine a ballean on X . Then we introduce and
study (section 3) an asymptotic proximity as an equivalence relation σ on the
family P(X) of all subsets of a set X such that Y ⊆ Z ⊆ Y ′ and Y σY ′ imply
Y σZ. Every proximity σ determines some ballean B(σ) on X . Given a ballean
B = (X, P, B), we say that the subsets Y, Z of X are close if there exists α ∈ P

such that Y ⊆ B(Z, α), Z ⊆ B(Y, α). The closeness relation is a prototype for
the asymptotic proximity. We show (Theorem 3.1) that, given an asymptotic
proximity σ on P(X), the closeness σ′ defined by B(σ) is finner then σ. On the
other hand (Theorem 3.4), if B = (X, P, B) is a ballean and σ is a closeness on
P(X) determined by B, then σ = σ′ where σ′ is closeness determined by B(σ).
In Section 4 we examine the question whether the closeness on P(X) arising
from a ballean B = (X, P, B) determines B. In general case this is not so, but
our main result (Theorem 4.2) gives a positive answer in the case of ordinal (in
particular, metrizable) balleans.

2. Determining coverings

Let X be a set, F be a family of subsets of X , Y ⊆ X . We put

st(Y,F) =
⋃

{F ∈ F : Y
⋂

F 6= ∅}.

Given any x ∈ X , we write st(x,F) instead of st({x},F).
For two families F ,F ′ of subsets of X , we put

st(F ,F ′) = {st(F,F ′) : F ∈ F}.

A family F of subsets of X is called hereditary if, for any subsets F, F ′ of X

such that F ∈ F and F ′ ⊆ F , we have F ′ ⊆ F .
A family F of subsets of X is called a covering if

⋃

F = X .
We say that a family {Fα, α ∈ P} of hereditary coverings of X is star stable

if, for any α, β ∈ P , there exist γ ∈ P such that

st(Fα,Fβ) ⊆ Fγ .

Let {Fα : α ∈ P} be a family of star stable coverings of X . We consider a
ball structure B = (X, P, B), where

B(x, α) = st(x,Fα),

and show that B is a ballean.
Given any x ∈ X and α ∈ P , we have

B(x, α) = {y ∈ X : y ∈ st(x,Fα)}, B∗(x, α) = {y ∈ X : x ∈ st(y,Fα)}.

Since y ∈ st(x,Fα) if and only if x ∈ st(y,Fα), then B∗(x, α) = B(x, α), so
B is upper symmetric.
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Given any x ∈ X and α, β ∈ P , we choose α′ ∈ P and γ ∈ P such that

st(Fα,Fα) ⊆ Fα′ and st(Fα′ ,Fβ) ⊆ Fγ .

Then we have

B(B(x, α), β) = st(st(x,Fα),Fβ) ⊆ st(x,Fγ) = B(x, γ),

so B is upper multiplicative.
We note that a subset Y of X is bounded in B if and only if Y ∈ Fα for

some α ∈ P . A family F of subsets of X is bounded in B if and only if there
exists α ∈ P such that F ⊆ Fα.

Thus we have shown that every star stable family of coverings of X deter-
mines some ballean on X . On the other hand, let B = (X, P, B) be an arbitrary
ballean on X . For every α ∈ P , we put

Fα = {F ⊆ X : F ⊆ B(x, α) for some x ∈ X}.

Then the ballean on X determined by the star stable family {Fα : α ∈ P}
of coverings of X coincides with B.

3. Proximities and closeness

Let X be a set, P(X) be a family of all subsets of X . Let σ be an equivalence
on P(X) such that, for all Y, Y ′, Z ∈ P(X),

Y ⊆ Z ⊆ Y ′, Y σY ′ =⇒ Y σZ.

We say that σ is (an asymptotic) proximity and describe a way in which σ

defines some ballean B(σ) on X .
We call a family F of subsets of X to be non-expanding with respect to σ

if, for every subset Y of X , we have

Y σ(Y
⋃

st(Y,F)).

We note that every subfamily of non-expanding family is non-expanding.
Let F1,F2 be non-expanding with respect to σ families of subsets of X . We

show that the family st(F1,F2) is also non-expanding with respect to σ.
We fix an arbitrary subset Y of X and put

F ′

2 = {F ′ ∈ F2 : Y
⋂

F ′ 6= ∅}.

Since F ′

2 is non-expanding, we have

Y σ(Y
⋃⋃

F ′

2).

We put Z = Y
⋃⋃

F ′

2 and

F ′

1 = {F ∈ F1 : F
⋂

F ′ 6= ∅ for some F ′ ∈ F ′

2}.

Since F ′

1 is non-expanding, we have

Zσ(Z
⋃⋃

F ′

1).
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We put T = Z
⋃⋃

F ′

1. Since F2 is non-expanding, we have

Tσ(T
⋃

(
⋃

{F ∈ F2 : F
⋂

T 6= ∅})).

We put H = T
⋃

(
⋃

{F ∈ F2 : F
⋂

T 6= ∅}). Then Y σH and Y ⊆ H . By
the construction of H , we have

Y ⊆ Y
⋃

(
⋃

{S ∈ st(F1,F2) : S
⋂

Y 6= ∅}) ⊆ H.

Since σ is a proximity, we conclude

Y σ(Y
⋃

(
⋃

{S ∈ st(F1,F2) : S
⋂

Y 6= ∅})).

In particular, we proved that the family of all non-expanding (with respect
to σ) hereditary covering of X is star stable. Following Section 2, we define
B(σ) by means this family of coverings.

We note that a subset Y of X is bounded in B(σ) if and only if the family
{Y } is non-expanding, equivalently, {y}σY for every y ∈ Y . A family F of
subsets of X is uniformly bounded in B(σ) if and only if F is non-expanding.

Let B = (X, P, B) be a ballean. We consider a relation σ on P(X) defined
by the rule: Y σZ if and only if there exists α ∈ P such that Y ⊆ B(Z, α), Z ⊆
B(Y, α). It is easy to see that σ is a proximity; we call it a closeness defined by
B. We note that Y, Z are close if and only if there exists a uniformly bounded
covering F of X such that

⋃

{F ∈ F : F
⋂

Y 6= ∅} =
⋃

{F ∈ F : F
⋂

Z 6= ∅}.

Theorem 3.1. Let X be a set, σ be a proximity on P(X), σ′ be a closeness

defined by B(σ). Then σ′ ⊆ σ.

Proof. We remind that a family F of subsets of X is uniformly bounded in
B(σ) if and only if F is non-expanding with respect to σ. Let Y, Z ∈ P(X)
and Y σ′Z. Then there exists a non-expanding (with respect to σ) family F of
subsets of X such that Y ⊆

⋃

F , Z ⊆
⋃

F and Y
⋂

F 6= ∅, Z
⋂

F 6= ∅ for
every F ∈ F . It follows that Y σ(

⋃

F) and Zσ(
⋃

F), so Y σZ. 2 �

The following two examples show that the proximity σ from Theorem 3.1
could be much more coarse than σ′.

Example 3.2. Let X be an infinite set. We define an equivalence σ on P(X)
by the rule: Y σZ if and only if either Y, Z are finite, or Y, Z are infinite. Then
a subset Y of X is bounded in B(σ) if and only if Y is finite; a family F of
subsets of X is uniformly bounded in B(σ) if and only if each subset F ∈ F is
finite and, for every x ∈ X , the set {F ∈ F : x ∈ F} is finite. We show that
Y σ′Z if and only if either Y, Z are finite, or Y, Z are infinite and |Y | = |Z|. We
should only check that if Y, Z are infinite and |Y | = |Z| then Y σ′Z. To this
end we fix some bijection f : Y −→ Z, and put F = {{y, f(y)} : y ∈ Y }. Then
F is uniformly bounded in B(σ), Y σ′(

⋃

F) and Zσ′(
⋃

F), so Y σ′Z. Now if X

is uncountable than σ is coarser than σ′. 2
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Example 3.3. Let X be a well-ordered set. We define an equivalence σ on
P(X) by the rule: Y σZ if and only if minY = minZ. Then a subset Y is
bounded in B(σ) if and only if Y is a singleton. It follows that Y σ′Z if and
only if Y = Z. 2

Theorem 3.4. Let B = (X, P, B) be a ballean, σ be a closeness defined by B,

σ′ be a closeness defined by B(σ). Then σ = σ′.

Proof. By Theorem 3.1, σ ⊆ σ′. To see that σ ⊆ σ′ it suffices to note that
every uniformly bounded in B family of subsets of X is non-expanding with
respect to σ. �

4. Does closeness determine a ballean?

Let B1 and B2 be balleans with common support X , σ1 and σ2 be closeness
on P(X) defined by B1 and B2. Is B1 = B2 provided that σ1 = σ2?

We give a negative answer to this general question, but prove one partial
statement (Theorem 4.2) in positive direction.

Example 4.1. Let X be a countable set. We consider two families ϕ1, ϕ2 of
coverings of X .

A family ϕ1 is defined by the rule: F ∈ ϕ1 if and only if every subset F ∈ F
is finite, and the set {F ∈ F : x ∈ F} is finite for every x ∈ X .

A family ϕ2 is defined by the rule: F ∈ ϕ2 if and only if there exists a natural
number n such that |F | ≤ n for every F ∈ F , and there exists a natural number
m such that |{F ∈ F : x ∈ F}| ≤ m for every x ∈ X .

Clearly, the families ϕ1 and ϕ2 are star-stable. Let B1 and B2 be balleans
on X determined by ϕ1 and ϕ2. Using arguments from Example 3.2, it is easy
to see that B1 and B2 define the same closeness σ: Y σZ if and only if either
Y, Z are finite, or Y, Z are infinite. Then we take a partition {Fn : n ∈ ω} of
X such that |Fn| = n for every n ∈ ω. Clearly, F is uniformly bounded in B1,
but F is not uniformly bounded in B2. It follows that B1 is stronger than B2.

It is worth to mark that Example 4.1 gives a ballean B with the closeness σ

such that B 6= B(σ). To see this, we put B = B2 and note that B(σ) = B1.

Theorem 4.2. Let B1 = (X1, P1, B1) and B2 = (X2, P2, B2) be ordinal balleans

with common support and the same closeness. Then B1 = B2.

Proof. We assume on the contrary that, say, B2 ≺ B1 does not hold, and
choose β ∈ P2 such that, for every α ∈ P1, there exists x(α) ∈ X such that
B2(x(α), β) * B1(x(α), α). We may suppose that P1 is well-ordered. In the
proof of Theorem 2.1 from [3] we constructed inductively a subset

Y = {y(α) : α ∈ P1}

of X such that the family {B1(y(α), α) : α ∈ P1} is disjoint and, for every
α′ ∈ P ,

B2(y(α′), β) *
⋃

{B1(y(α), α) : α ∈ P1}.

We put Z = B2(Y, β). Then Y, Z are close in B2, but Y, Z are not close in
B1, whence a contradiction. �
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