

APPLIED GENERAL TOPOLOGY © Universidad Politécnica de Valencia Volume 9, No. 2, 2008 pp. 189-195

Asymptotic proximities

I. V. Protasov

ABSTRACT. A ballean is a set endowed with some family of subsets which are called the balls. The properties of the family of balls are postulated in such a way that the balleans can be considered as a natural asymptotic counterparts of the uniform topological spaces. We introduce and study an asymptotic proximity as a counterpart of proximity relation for uniform topological space.

2000 AMS Classification: 54E05, 54E15.

Keywords: ballean, determining covering, proximity.

1. INTRODUCTION AND PRELIMINARIES

A ball structure is a triple $\mathcal{B} = (X, P, B)$ where X, P are non-empty sets and, for any $x \in X$ and $\alpha \in P$, $B(x, \alpha)$ is a subset of X which is called a ball of radius α around x. It is supposed that $x \in B(x, \alpha)$ for all $x \in X$, $\alpha \in P$. The set X is called the *support* of \mathcal{B} , P is called the *set of radii*. Given any $x \in X, A \subseteq X, \alpha \in P$, we put

$$B^*(x,\alpha) = \{y \in X : x \in B(y,\alpha)\}, B(A,\alpha) = \bigcup_{a \in A} B(a,\alpha).$$

A ball structure is called

• lower symmetric if, for any $\alpha, \beta \in P$, there exist $\alpha', \beta' \in P$ such that, for every $x \in X$,

 $B^*(x,\alpha') \subseteq B(x,\alpha), B(x,\beta') \subseteq B^*(x,\beta);$

• upper symmetric if, for any $\alpha, \beta \in P$, there exist $\alpha', \beta' \in P$ such that, for every $x \in X$,

 $B(x,\alpha) \subseteq B^*(x,\alpha'), B^*(x,\beta) \subseteq B(x,\beta');$

I. V. Protasov

• lower multiplicative if, for any $\alpha, \beta \in P$, there exists $\gamma \in P$ such that, for every $x \in X$,

$$B(B(x,\gamma),\gamma) \subseteq B(x,\alpha) \cap B(x,\beta);$$

• upper multiplicative if, for any $\alpha, \beta \in P$, there exists $\gamma \in P$ such that, for every $x \in X$,

$$B(B(x,\alpha),\beta) \subseteq B(x,\gamma).$$

Let $\mathcal{B} = (X, P, B)$ be a lower symmetric and lower multiplicative ball structure. Then the family

$$\Big\{\bigcup_{x\in X}B(x,\alpha)\times B(x,\alpha):\alpha\in P\Big\}$$

is a base of entourages for some (uniquely determined) uniformity on X. On the other hand, if $\mathcal{U} \subseteq X \times X$ is a uniformity on X, then the ball structure (X, \mathcal{U}, B) is lower symmetric and lower multiplicative, where $B(x, U) = \{y \in X : (x, y) \in U\}$. Thus, the lower symmetric and lower multiplicative ball structures can be identified with the uniform topological spaces.

We say that a ball structure is a *ballean* if \mathcal{B} is upper symmetric and upper multiplicative. A structure on X, equivalent to a ballean, can also be defined in terminology of entourages. In this case it is called a coarse structure [5]. For motivations to study balleans see [1],[4],[5].

Let $\mathcal{B}_1 = (X_1, P_1, B_1)$ and $\mathcal{B}_2 = (X_2, P_2, B_2)$ be balleans. A mapping $f : X_1 \to X_2$ is called a \prec -mapping if, for every $\alpha \in P_1$, there exists $\beta \in P_2$ such that, for every $x \in X_1$,

$$f(B_1(x,\alpha)) \subseteq B_2(f(x),\beta).$$

A bijection $f: X_1 \longrightarrow X_2$ is called an *asymorphism* between \mathcal{B}_1 and \mathcal{B}_2 if f and f^{-1} are \prec -mappings.

Let $\mathcal{B}_1, \mathcal{B}_2$ be balleans with common support X. We say that $\mathcal{B}_1 \prec \mathcal{B}_2$ if the identity mapping $id: X \to X$ is a \prec -mapping of \mathcal{B}_1 to \mathcal{B}_2 . If $\mathcal{B}_1 \prec \mathcal{B}_2$ and $\mathcal{B}_2 \prec \mathcal{B}_1$, we say that \mathcal{B}_1 and \mathcal{B}_2 coincide and write $\mathcal{B}_1 = \mathcal{B}_2$.

Let $\mathcal{B} = (X, P, B)$ be a ballean. A subset $Y \subseteq X$ is called *bounded* if there exist $\alpha \in P$ such that $Y \subseteq B(x, \alpha)$ for some $x \in Y$. A family \mathcal{F} of subsets of X is called *uniformly bounded* if there exists $\alpha \in P$ such that $F \subseteq B(x, \alpha)$ for all $F \in \mathcal{F}, x \in F$. We use the following observation: the ballean \mathcal{B}_1 and \mathcal{B}_2 with common support coincide if and only if every family of subsets of X uniformly bounded in \mathcal{B}_1 is uniformly bounded in \mathcal{B}_2 and vise versa.

For an arbitrary ballean $\mathcal{B} = (X, P, B)$ we define preordering \leq on the set P by the rule: $\alpha \leq \beta$ if and only if $B(x, \alpha) \subseteq B(x, \beta)$ for every $x \in X$. A subset $P' \subseteq P$ is called *cofinal* if, for every $\alpha \in P$, there exists $\alpha' \in P'$ such that $\alpha \leq \alpha'$.

A ballean \mathcal{B} is called *connected* if, for any $x, y \in X$, there exists $\alpha \in P$ such that $y \in B(x, \alpha)$. A connected ballean \mathcal{B} is called *ordinal* if there exists a well-ordered by \leq subset P' of P.

190

Every metric space (X, d) determines the *metric ballean* (X, \mathbb{R}^+, B_d) where $B_d(x, r) = \{y \in X : d(x, y) \leq r\}$. A ballean is called *metrizable* if it is asymorphic to some metric ballean. By [4, Theorem 9.1], a ballean $\mathcal{B} = (X, P, B)$ is metrizable if and only if \mathcal{B} is connected and P has a countable cofinal subset. Clearly, every metrizable ballean is ordinal.

We begin the proper exposition with characterization (section 2) of families of coverings of a set X which determine a ballean on X. Then we introduce and study (section 3) an asymptotic proximity as an equivalence relation σ on the family $\mathcal{P}(X)$ of all subsets of a set X such that $Y \subseteq Z \subseteq Y'$ and $Y\sigma Y'$ imply $Y\sigma Z$. Every proximity σ determines some ballean $\mathcal{B}(\sigma)$ on X. Given a ballean $\mathcal{B} = (X, P, B)$, we say that the subsets Y, Z of X are close if there exists $\alpha \in P$ such that $Y \subseteq B(Z, \alpha), Z \subseteq B(Y, \alpha)$. The closeness relation is a prototype for the asymptotic proximity. We show (Theorem 3.1) that, given an asymptotic proximity σ on $\mathcal{P}(X)$, the closeness σ' defined by $\mathcal{B}(\sigma)$ is finner then σ . On the other hand (Theorem 3.4), if $\mathcal{B} = (X, P, B)$ is a ballean and σ is a closeness on $\mathcal{P}(X)$ determined by \mathcal{B} , then $\sigma = \sigma'$ where σ' is closeness determined by $\mathcal{B}(\sigma)$. In Section 4 we examine the question whether the closeness on $\mathcal{P}(X)$ arising from a ballean $\mathcal{B} = (X, P, B)$ determines \mathcal{B} . In general case this is not so, but our main result (Theorem 4.2) gives a positive answer in the case of ordinal (in particular, metrizable) balleans.

2. Determining coverings

Let X be a set, \mathcal{F} be a family of subsets of $X, Y \subseteq X$. We put

$$st(Y,\mathcal{F}) = \bigcup \{F \in \mathcal{F} : Y \bigcap F \neq \emptyset\}.$$

Given any $x \in X$, we write $st(x, \mathcal{F})$ instead of $st(\{x\}, \mathcal{F})$. For two families $\mathcal{F}, \mathcal{F}'$ of subsets of X, we put

 $st(\mathcal{F}, \mathcal{F}') = \{st(F, \mathcal{F}') : F \in \mathcal{F}\}.$

A family \mathcal{F} of subsets of X is called *hereditary* if, for any subsets F, F' of X such that $F \in \mathcal{F}$ and $F' \subseteq F$, we have $F' \subseteq \mathcal{F}$.

A family \mathcal{F} of subsets of X is called a *covering* if $\bigcup \mathcal{F} = X$.

We say that a family $\{\mathcal{F}_{\alpha}, \alpha \in P\}$ of hereditary coverings of X is *star stable* if, for any $\alpha, \beta \in P$, there exist $\gamma \in P$ such that

$$st(\mathcal{F}_{\alpha},\mathcal{F}_{\beta})\subseteq\mathcal{F}_{\gamma}.$$

Let $\{\mathcal{F}_{\alpha} : \alpha \in P\}$ be a family of star stable coverings of X. We consider a ball structure $\mathcal{B} = (X, P, B)$, where

$$B(x,\alpha) = st(x,\mathcal{F}_{\alpha}),$$

and show that \mathcal{B} is a ballean.

Given any $x \in X$ and $\alpha \in P$, we have

$$B(x,\alpha) = \{ y \in X : y \in st(x,\mathcal{F}_{\alpha}) \}, \quad B^*(x,\alpha) = \{ y \in X : x \in st(y,\mathcal{F}_{\alpha}) \}.$$

Since $y \in st(x, \mathcal{F}_{\alpha})$ if and only if $x \in st(y, \mathcal{F}_{\alpha})$, then $B^*(x, \alpha) = B(x, \alpha)$, so \mathcal{B} is upper symmetric.

I. V. Protasov

Given any $x \in X$ and $\alpha, \beta \in P$, we choose $\alpha' \in P$ and $\gamma \in P$ such that

$$st(\mathcal{F}_{\alpha}, \mathcal{F}_{\alpha}) \subseteq \mathcal{F}_{\alpha'}$$
 and $st(\mathcal{F}_{\alpha'}, \mathcal{F}_{\beta}) \subseteq \mathcal{F}_{\gamma}$.

Then we have

$$B(B(x,\alpha),\beta) = st(st(x,\mathcal{F}_{\alpha}),\mathcal{F}_{\beta}) \subseteq st(x,\mathcal{F}_{\gamma}) = B(x,\gamma),$$

so \mathcal{B} is upper multiplicative.

We note that a subset Y of X is bounded in \mathcal{B} if and only if $Y \in \mathcal{F}_{\alpha}$ for some $\alpha \in P$. A family \mathcal{F} of subsets of X is bounded in \mathcal{B} if and only if there exists $\alpha \in P$ such that $\mathcal{F} \subseteq \mathcal{F}_{\alpha}$.

Thus we have shown that every star stable family of coverings of X determines some ballean on X. On the other hand, let $\mathcal{B} = (X, P, B)$ be an arbitrary ballean on X. For every $\alpha \in P$, we put

$$\mathcal{F}_{\alpha} = \{ F \subseteq X : F \subseteq B(x, \alpha) \text{ for some } x \in X \}.$$

Then the ballean on X determined by the star stable family $\{\mathcal{F}_{\alpha} : \alpha \in P\}$ of coverings of X coincides with \mathcal{B} .

3. Proximities and closeness

Let X be a set, $\mathcal{P}(X)$ be a family of all subsets of X. Let σ be an equivalence on $\mathcal{P}(X)$ such that, for all $Y, Y', Z \in \mathcal{P}(X)$,

$$Y \subseteq Z \subseteq Y', \ Y\sigma Y' \Longrightarrow Y\sigma Z.$$

We say that σ is (an asymptotic) proximity and describe a way in which σ defines some ballean $\mathcal{B}(\sigma)$ on X.

We call a family \mathcal{F} of subsets of X to be *non-expanding* with respect to σ if, for every subset Y of X, we have

$$Y\sigma(Y \bigcup st(Y, \mathcal{F})).$$

We note that every subfamily of non-expanding family is non-expanding. Let $\mathcal{F}_1, \mathcal{F}_2$ be non-expanding with respect to σ families of subsets of X. We

show that the family $st(\mathcal{F}_1, \mathcal{F}_2)$ is also non-expanding with respect to σ .

We fix an arbitrary subset Y of X and put

$$\mathcal{F}_2' = \{ F' \in \mathcal{F}_2 : Y \bigcap F' \neq \emptyset \}.$$

Since \mathcal{F}'_2 is non-expanding, we have

$$Y\sigma(Y \bigcup \mathcal{F}_2').$$

We put $Z = Y \bigcup \mathcal{F}'_2$ and

$$\mathcal{F}'_1 = \{ F \in \mathcal{F}_1 : F \bigcap F' \neq \emptyset \text{ for some } F' \in \mathcal{F}'_2 \}.$$

Since \mathcal{F}'_1 is non-expanding, we have

$$Z\sigma(Z\bigcup \bigcup \mathcal{F}'_1).$$

192

We put $T = Z \bigcup \mathcal{F}'_1$. Since \mathcal{F}_2 is non-expanding, we have

$$T\sigma(T\bigcup(\bigcup\{F\in\mathcal{F}_2:F\bigcap T\neq\varnothing\})).$$

We put $H = T \bigcup (\bigcup \{F \in \mathcal{F}_2 : F \cap T \neq \emptyset\})$. Then $Y \sigma H$ and $Y \subseteq H$. By the construction of H, we have

$$Y \subseteq Y \bigcup (\bigcup \{S \in st(\mathcal{F}_1, \mathcal{F}_2) : S \bigcap Y \neq \emptyset\}) \subseteq H.$$

Since σ is a proximity, we conclude

$$Y\sigma(Y\bigcup(\bigcup\{S\in st(\mathcal{F}_1,\mathcal{F}_2):S\bigcap Y\neq\varnothing\})).$$

In particular, we proved that the family of all non-expanding (with respect to σ) hereditary covering of X is star stable. Following Section 2, we define $\mathcal{B}(\sigma)$ by means this family of coverings.

We note that a subset Y of X is bounded in $\mathcal{B}(\sigma)$ if and only if the family $\{Y\}$ is non-expanding, equivalently, $\{y\}\sigma Y$ for every $y \in Y$. A family \mathcal{F} of subsets of X is uniformly bounded in $\mathcal{B}(\sigma)$ if and only if \mathcal{F} is non-expanding.

Let $\mathcal{B} = (X, P, B)$ be a ballean. We consider a relation σ on $\mathcal{P}(X)$ defined by the rule: $Y\sigma Z$ if and only if there exists $\alpha \in P$ such that $Y \subseteq B(Z, \alpha), Z \subseteq B(Y, \alpha)$. It is easy to see that σ is a proximity; we call it a *closeness* defined by \mathcal{B} . We note that Y, Z are close if and only if there exists a uniformly bounded covering \mathcal{F} of X such that

$$\bigcup \{F \in \mathcal{F} : F \bigcap Y \neq \varnothing\} = \bigcup \{F \in \mathcal{F} : F \bigcap Z \neq \varnothing\}.$$

Theorem 3.1. Let X be a set, σ be a proximity on $\mathcal{P}(X)$, σ' be a closeness defined by $\mathcal{B}(\sigma)$. Then $\sigma' \subseteq \sigma$.

Proof. We remind that a family \mathcal{F} of subsets of X is uniformly bounded in $\mathcal{B}(\sigma)$ if and only if \mathcal{F} is non-expanding with respect to σ . Let $Y, Z \in \mathcal{P}(X)$ and $Y\sigma'Z$. Then there exists a non-expanding (with respect to σ) family \mathcal{F} of subsets of X such that $Y \subseteq \bigcup \mathcal{F}, Z \subseteq \bigcup \mathcal{F}$ and $Y \bigcap F \neq \emptyset, Z \bigcap F \neq \emptyset$ for every $F \in \mathcal{F}$. It follows that $Y\sigma(\bigcup \mathcal{F})$ and $Z\sigma(\bigcup \mathcal{F})$, so $Y\sigma Z$. \Box

The following two examples show that the proximity σ from Theorem 3.1 could be much more coarse than σ' .

Example 3.2. Let X be an infinite set. We define an equivalence σ on $\mathcal{P}(X)$ by the rule: $Y\sigma Z$ if and only if either Y, Z are finite, or Y, Z are infinite. Then a subset Y of X is bounded in $\mathcal{B}(\sigma)$ if and only if Y is finite; a family \mathcal{F} of subsets of X is uniformly bounded in $\mathcal{B}(\sigma)$ if and only if each subset $F \in \mathcal{F}$ is finite and, for every $x \in X$, the set $\{F \in \mathcal{F} : x \in F\}$ is finite. We show that $Y\sigma'Z$ if and only if either Y, Z are finite, or Y, Z are infinite and |Y| = |Z|. We should only check that if Y, Z are infinite and |Y| = |Z| then $Y\sigma'Z$. To this end we fix some bijection $f: Y \longrightarrow Z$, and put $\mathcal{F} = \{\{y, f(y)\} : y \in Y\}$. Then \mathcal{F} is uniformly bounded in $\mathcal{B}(\sigma), Y\sigma'(\bigcup \mathcal{F})$ and $Z\sigma'(\bigcup \mathcal{F})$, so $Y\sigma'Z$. Now if X is uncountable than σ is coarser than σ' .

Example 3.3. Let X be a well-ordered set. We define an equivalence σ on $\mathcal{P}(X)$ by the rule: $Y\sigma Z$ if and only if $\min Y = \min Z$. Then a subset Y is bounded in $\mathcal{B}(\sigma)$ if and only if Y is a singleton. It follows that $Y\sigma'Z$ if and only if Y = Z.

Theorem 3.4. Let $\mathcal{B} = (X, P, B)$ be a ballean, σ be a closeness defined by \mathcal{B} , σ' be a closeness defined by $\mathcal{B}(\sigma)$. Then $\sigma = \sigma'$.

Proof. By Theorem 3.1, $\sigma \subseteq \sigma'$. To see that $\sigma \subseteq \sigma'$ it suffices to note that every uniformly bounded in \mathcal{B} family of subsets of X is non-expanding with respect to σ .

4. Does closeness determine a ballean?

Let \mathcal{B}_1 and \mathcal{B}_2 be balleans with common support X, σ_1 and σ_2 be closeness on $\mathcal{P}(X)$ defined by \mathcal{B}_1 and \mathcal{B}_2 . Is $\mathcal{B}_1 = \mathcal{B}_2$ provided that $\sigma_1 = \sigma_2$?

We give a negative answer to this general question, but prove one partial statement (Theorem 4.2) in positive direction.

Example 4.1. Let X be a countable set. We consider two families φ_1, φ_2 of coverings of X.

A family φ_1 is defined by the rule: $\mathcal{F} \in \varphi_1$ if and only if every subset $F \in \mathcal{F}$ is finite, and the set $\{F \in \mathcal{F} : x \in F\}$ is finite for every $x \in X$.

A family φ_2 is defined by the rule: $\mathcal{F} \in \varphi_2$ if and only if there exists a natural number n such that $|F| \leq n$ for every $F \in \mathcal{F}$, and there exists a natural number m such that $|\{F \in \mathcal{F} : x \in F\}| \leq m$ for every $x \in X$.

Clearly, the families φ_1 and φ_2 are star-stable. Let \mathcal{B}_1 and \mathcal{B}_2 be balleans on X determined by φ_1 and φ_2 . Using arguments from Example 3.2, it is easy to see that \mathcal{B}_1 and \mathcal{B}_2 define the same closeness σ : $Y\sigma Z$ if and only if either Y, Z are finite, or Y, Z are infinite. Then we take a partition $\{F_n : n \in \omega\}$ of X such that $|F_n| = n$ for every $n \in \omega$. Clearly, \mathcal{F} is uniformly bounded in \mathcal{B}_1 , but \mathcal{F} is not uniformly bounded in \mathcal{B}_2 . It follows that \mathcal{B}_1 is stronger than \mathcal{B}_2 .

It is worth to mark that Example 4.1 gives a ballean \mathcal{B} with the closeness σ such that $\mathcal{B} \neq \mathcal{B}(\sigma)$. To see this, we put $\mathcal{B} = \mathcal{B}_2$ and note that $\mathcal{B}(\sigma) = \mathcal{B}_1$.

Theorem 4.2. Let $\mathcal{B}_1 = (X_1, P_1, B_1)$ and $\mathcal{B}_2 = (X_2, P_2, B_2)$ be ordinal balleans with common support and the same closeness. Then $\mathcal{B}_1 = \mathcal{B}_2$.

Proof. We assume on the contrary that, say, $\mathcal{B}_2 \prec \mathcal{B}_1$ does not hold, and choose $\beta \in P_2$ such that, for every $\alpha \in P_1$, there exists $x(\alpha) \in X$ such that $B_2(x(\alpha), \beta) \nsubseteq B_1(x(\alpha), \alpha)$. We may suppose that P_1 is well-ordered. In the proof of Theorem 2.1 from [3] we constructed inductively a subset

$$Y = \{y(\alpha) : \alpha \in P_1\}$$

of X such that the family $\{B_1(y(\alpha), \alpha) : \alpha \in P_1\}$ is disjoint and, for every $\alpha' \in P$,

$$B_2(y(\alpha'),\beta) \nsubseteq \bigcup \{B_1(y(\alpha),\alpha) : \alpha \in P_1\}.$$

We put $Z = B_2(Y, \beta)$. Then Y, Z are close in \mathcal{B}_2 , but Y, Z are not close in \mathcal{B}_1 , whence a contradiction.

194

Asymptotic proximities

References

- [1] A. Dranishnikov, Asymptotic topology, Russian Math. Surveys 55 (2000), 71–116.
- [2] R. Engelking, General Topology, PWN, Warszava, 1985.
- [3] M. Filali and I. V. Protasov, Slowly oscillating function on locally compact groups, Applied General Topology 6, no. 1 (2005) 67-77.
- [4] I. V. Protasov and T. Banakh, Ball Structures and Colorings of Groups and Graphs, Math. Stud. Monogr. Ser. V.11, 2003.
- [5] J. Roe, Lectures on Coarse Geometry, AMS University Lecture Series, 31 (2003).

Received March 2007

Accepted December 2007

I. V. PROTASOV (protasov@unicyb.kiev.ua) Department of Cybernetics, Kyiv National University, Volodimirska 64, Kyiv 01033, UKRAINE.