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Abstract. Reilly and Vamanamurthy introduced the class of
‘clopen maps’ (≡ ‘cl-supercontinuous functions’). Subsequently gen-
eralizing clopen maps, Ekici defined and studied almost clopen maps
(≡ almost cl-supercontinuous functions). Continuing in the spirit of
Ekici, here basic properties of almost clopen maps are studied. Behav-
ior of separation axioms under almost clopen maps is elaborated. The
interrelations between direct and inverse transfer of topological prop-
erties under almost clopen maps are investigated. The results obtained
in the process generalize, improve and strengthen several known results
in literature including those of Ekici, Singh, and others.
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1. Introduction

Variants of continuity occur in almost all branches of mathematics and ap-
plications of mathematics. The strong variants of continuity with which we
shall be dealing in this paper include strongly continuous functions introduced
by Levine [13], perfectly continuous functions considered by Noiri ([18], [19]),
clopen maps (≡ cl-supercontinuous functions) defined by Reilly and Vamana-
murthy [21], and studied by Singh [26], z-supercontinuous functions initiated
by Kohli and Kumar [12], and supercontinuous functions introduced by Munshi
and Bassan [16]. The variants of continuity which are independent of continu-
ity and will be dealt with in this paper include regular set connected functions
(≡ almost perfectly continuous functions) defined by Dontchev, Ganster and
Reilly [3], almost clopen maps (≡ almost cl-supercontinuous functions) studied
by Ekici [4], almost z-supercontinuous functions [11] and δ-continuous func-
tions defined by Noiri [17]. Moreover, the weak forms of continuity which will



2 J. K. Kohli and D. Singh

crop up in our discussion include almost continuous functions due to Singal and
Singal [24], θ-continuous functions [5], quasi θ-continuous functions [20], weakly
continuous functions [14], faintly continuous functions [15], Dδ-continuous func-
tions [9], z-continuous functions [23], and others.

The purpose of this paper is to study properties of almost cl-supercontinuous
functions (≡ almost clopen maps). In the process we generalize, improve and
refine several known results in the literature including those of Ekici [4], Singh
[26], and others.

Section 2 is devoted to basic definitions, preliminaries and nomenclature. In
Section 3 of this paper we study basic properties of almost cl-supercontinuous
functions. It is shown that (i) almost cl-supercontinuity is preserved under the
expansion of range as well as under the shrinking of range if f(X) is δ-embedded
in Y ; (ii) A mapping into a product space is almost cl-supercontinuous if and
only if its composition with each projection map onto the co-ordinate space
is almost cl-supercontinuous; (iii) If X is almost zero-dimensional, then f
is almost cl-supercontinuous if and only if the graph function is almost cl-
supercontinuous.

Section 4 is devoted to the behavior of separation axioms under almost cl-
supercontinuous functions wherein interrelations between direct and inverse
transfer of separation properties are investigated. In the process we generalize
and considerably improve upon certain results of Ekici [4], and Singh [26].

In Section 5, we interrelate (almost) cl-supercontinuity and connectedness.
In the process we prove the existence and nonexistence of certain (almost)
cl-supercontinuous functions. In Section 6, we consider clopen almost closed
graphs and obtain refinements of certain results of Ekici [4].

2. Preliminaries and basic definitions

2.1. Nomenclature. Reilly and Vamanamurthy [21] call a function clopen
continuous if for each open set V containing f(x) there is a clopen (closed
and open) set U containing x such that f(U) ⊂ V . Similarly, Ekici [4] calls a
function almost clopen if for each x ∈ X and each regular open set V containing
f(x) there is a clopen set U containing x such that f(U) ⊂ V . Moreover,
Dontchev, Ganster and Reilly [3] call a function regular set connected if f−1(V )
is clopen in X for every regular open set V in Y .

However, as was also pointed out in [26] that in the topological folklore the
phrase “clopen map” is used for the functions which map clopen sets to open
sets and hence therein the “clopen continuous maps” of Reilly and Vamana-
murthy are renamed as “cl-supercontinuous functions”, a better nomenclature
since it represents a strong form of supercontinuity introduced by Munshi and
Bassan [16]. In the same sprit in this paper we rename “almost clopen maps”
studied by Ekici [4] as “almost cl-supercontinuous functions” and ”regular set
connected functions” defined by Dontchev, Ganster and Reilly [3] as “almost
perfectly continuous functions”, respectively.

For the convenience of the reader and for the clarity of presentation we give
here the precise definitions of all these variants of continuity.
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Definition 2.2. A function f : X → Y from a topological space X into a
topological space Y is said to be

(i) strongly continuous [13] if f(Ā) ⊂ f(A) for each subset A of X.
(ii) perfectly continuous [18] if f−1(V ) is clopen in X for every open set

V ⊂ Y .
(iii) almost perfectly continuous (≡ regular set connected [3]) if f−1(V ) is

clopen for every regular open set V in Y .
(iv) cl-supercontinuous [26] (≡ clopen map [21]) if for each open set V con-

taining f(x) there is a clopen set U containing x such that f(U) ⊂ V .
(v) almost cl-supercontinuous (≡ almost clopen map [4]) if for each x ∈

X and each regular open set V containing f(x) there is a clopen set U
containing x such that f(U) ⊂ V .

(vi) z-supercontinuous [12] if for each x ∈ X and each open set V containing
f(x) there is a cozero set U containing x such that f(U) ⊂ V .

(vii) almost z-supercontinuous [11] if for each x ∈ X and each regular open
set V containing f(x) there is a cozero set U containing x such that
f(U) ⊂ V .

(viii) supercontinuous [16] if for each x ∈ X and each open set V containing
f(x) there is a regular open set U containing x such that f(U) ⊂ V .

(ix) δ-continuous [17] if for each x ∈ X and each regular open set V containing
f(x) there is a regular open set U containing x such that f(U) ⊂ V .

(x) almost continuous [24] if for each x ∈ X and each regular open set V
containing f(x) there is an open set U containing x such that f(U) ⊂ V .

Remark 2.3. The original definitions of the concepts (v), (vii), (viii), (ix) and
(x) in Definitions 2.2 are slightly different from the ones which first appeared
in the literature but are equivalent to ones given here, and are the simplest and
most convenient to work with.

The following implications are immediate from the definitions and well known
(or easily verified).

strongly continuous

⇓

perfectly continuous ⇒ almost perfectly continuous

⇓ ⇓

cl-supercontinuous ⇒ almost cl-supercontinuous

⇓ ⇓

z-supercontinuous ⇒ almost z-supercontinuous

⇓ ⇓

supercontinuous ⇒ δ-continuous

⇓ ⇓

continuous ⇒ almost continuous

However, it is well known that none of the above implications is reversible.
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3. Basic properties of almost cl-supercontinuous functions

Definition 3.1. A set G in a topological space X is said to be cl-open [26]
( δ-open [29]) if for each x ∈ G, there exist a clopen (regular open) set H such
that x ∈ H ⊆ G, equivalently G is the union of clopen (regular open) sets. The
complement of a cl-open (δ-open) set is referred to as cl-closed ( δ-closed) set.

Theorem 3.2. Let f : X → Y and g : Y → Z be functions. Then the following
statements are true.

(a) If f is cl-supercontinuous and g is continuous, then g◦f is cl-supercontinuous.
(b) If f is cl-supercontinuous and g is almost continuous, then g ◦ f is almost

cl-supercontinuous.
(c) If f is almost cl-supercontinuous and g is δ-continuous, then g◦f is almost

cl-supercontinuous.
(d) If f is almost cl-supercontinuous and g is supercontinuous, then g ◦ f is

cl-supercontinuous.

Proof. The assertion (a) is due to Singh (see [26, Theorem 2.10]) and (b) is due
to Ekici [4, Theorem 13(2)].

To prove (c); let W ⊂ Z be a regular open set. Since g is δ-continuous,
g−1(W ) is a δ-open set in Y , i.e. g−1(W ) =

⋃

α

Vα, where each Vα is a regular

open set in Y (see [17]). Since f is almost cl-supercontinuous, each f−1(Vα) is
cl-open in X . Thus (g ◦ f)−1(W ) = f−1(g−1(W )) = f−1(

⋃

α

Vα) =
⋃

α

f−1(Vα)

being the union of cl-open sets is cl-open in X and so g ◦ f is almost cl-
supercontinuous.

To prove (d); let W be an open set in Z. Since g is supercontinuous, g−1(W )
is δ-open set in Y , i.e. g−1(W )=

⋃

α

Vα, where each Vα is a regular open set in

Y (see[16]). Since f is almost cl-supercontinuous, f−1(Vα) is a cl-open set in X
for each α. Thus (g ◦ f)−1(W )=f−1(g−1(W ))=f−1(

⋃

α

Vα)=
⋃

α

f−1(Vα) being

the union of cl-open sets is cl-open in X . Hence g ◦f is cl-supercontinuous. �

Remark 3.3. The assertion (c) of Theorem 3.2 represents a simultaneous
generalization of parts (1), (4), (5) and (6) of Theorem 13 of Ekici [4].

Theorem 3.4. Let {Xα : α ∈ Λ} be a cl-open cover of X. If for each α
fα = f |Xα is almost cl-supercontinuous, then f is almost cl-supercontinuous.

Proof. Let V be a regular open subset of Y . Then f−1(V ) = ∪{f−1
α (V ) : α ∈

Λ}. Since each fα is almost cl-supercontinuous, each f−1
α (V ) is cl-open in Xα

and hence in X . Thus f−1(V ) being the union of cl-open sets is cl-open and
so f is almost cl-supercontinuous. �

Remark 3.5. Since every clopen set is cl-open, Theorem 3.4 is an improvement
of Theorem 11 of Ekici [4].

Our next result gives a sufficient condition for the preservation of almost cl-
supercontinuity under the shrinking of range. First we formulate the concept
of a δ-embedded set which seems to be of considerable significance in itself.



Almost cl-supercontinuous functions 5

Definition 3.6. A subset S of a space X is said to be δ-embedded in X if every
regular open set in S is the intersection of a regular open set in X with S or
equivalently every regular closed set in S is the intersection of a regular closed
set in X with S.

Theorem 3.7. Let f : X → Y be an almost cl-supercontinuous function. If
f(X) is δ-embedded in Y , then f : X → f(X) is almost cl-supercontinuous.

Proof. Let V1 be a regular open set in f(X). Since f(X) is δ-embedded in
Y , there exists a regular open set V in Y such that V1 = V ∩ f(X). Again,
since f is almost cl-supercontinuous, f−1(V ) is cl-open in X . Now f−1(V1) =
f−1(V ∩ f(X)) = f−1(V ) ∩ f−1(f(X)) = f−1(V ) and so f : X → f(X) is
almost cl-supercontinuous. �

Remark 3.8. In contrast to Theorem 3.7, it is easily verified that almost cl-
supercontinuity is preserved under the expansion of range. The following lemma
due to Singal and Singal [24] will be used in the sequel.

Lemma 3.9 ([24]). Let {Xα : α ∈ Λ} be a family of spaces and let X =
∏

Xα

be the product space. If x = (xα) ∈ X and V is a regular open set containing x,
then there exists a basic regular open set

∏
Vα such that x ∈

∏
Vα ⊂ V , where

Vα is a regular open set in Xα for each α ∈ Λ and Vα = Xα for all except
finitely many α1, α2 . . . αn ∈ Λ.

Our next result shows that a mapping into a product space is almost cl-
supercontinuous if and only if its composition with each projection map onto
a co-ordinate space is almost cl-supercontinuous.

Theorem 3.10. Let {fα : X → Xα : α ∈ Λ} be a family of functions and
let f : X →

∏
αεΛ Xα be defined by f(x) = (fα(x)) for each x ∈ X. Then

f is almost cl-supercontinuous if and only if each fα : X → Xα is almost
cl-supercontinuous.

Proof. Let f : X →
∏

αεΛ Xα be almost cl-supercontinuous. Since projection
maps are δ-continuous, then in view of Theorem 3.2 (c) the composition fα =
pα ◦ f , where pα denotes the projection of

∏
αεΛ Xα onto αth-coordinate space

Xα, is almost cl-supercontinuous for each α.
Conversely, suppose that each fα : X → Xα is almost cl-supercontinuous.

To show that the function f is almost cl-supercontinuous, it is sufficient to
show that f−1(V ) is cl-open for each regular open set V in the product space∏

αεΛ Xα. In view of Lemma 3.9, it is clear that each regular open set V
in the product space

∏
Xα is the union of basic regular open sets of the

form
∏

Vα where each Vα is regular open in Xα and Vα = Xα for each
α except finitely many indices α1, α2 . . . αn. Thus each basic regular open
set in

∏
Xα is the finite intersection of sub-basic regular open sets of the

form Vβ ×
∏

α6=β Xα, where Vβ is a regular open set in Xβ. Since arbitrary
unions and finite intersections of cl-open sets is cl-open, it suffices to prove that
f−1(S) is cl-open for every subbasic regular open set S in the product space∏

αεΛ Xα. Let Vβ×
∏

α6=β Xα be a subbasic regular open set in
∏

αεΛ Xα. Then
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f−1(Vβ ×
∏

α6=β Xα) = f−1(pβ
−1(Vβ)) = f−1

β (Vβ) is cl-open in X . Hence f is
almost cl-supercontinuous. �

Definition 3.11 ([7]). A space X is said to be almost zero dimensional at
x ∈ X if for every regular open set V containing x there exists a clopen set
U containing x such that U ⊂ V . The space X is said to be almost zero
dimensional if it is almost zero dimensional at each x ∈ X.

Theorem 3.12 ([7]). A space X is almost zero dimensional if and only if each
regular open set in X is cl-open.

Theorem 3.13. Let f : X → Y be a function and g : X → X × Y , defined by
g(x) = (x, f(x)) for each x ∈ X, be the graph function. Then g is almost cl-
supercontinuous if and only if f is almost cl-supercontinuous and X is almost
zero dimensional.

Proof. Let g : X → X × Y be almost cl-supercontinuous. Then in view of
Theorem 3.2 (c) it is immediate that the composition f = py ◦ g is almost
cl-supercontinuous, where py is the projection from X × Y onto Y (see also
[4,Theorem12]). To prove that X is almost zero dimensional, let U be a reguar
open set in X and let x ∈ U . Then U ×Y is a regular open set containing g(x).
Since g is almost cl-supercontinuous, there exists a clopen set W containing x
such that g(W ) ⊂ U × Y . Thus x ∈ W ⊂ U , which shows that U is a cl-open
and so the space X is almost zero dimensional.

To prove sufficiency, let x ∈ X and let W be a regular open set containing
g(x). By Lemma 3.9 there exist regular open sets U ⊂ X and V ⊂ Y such
that (x, f(x)) ∈ U × V ⊂ W . Since X is almost zero dimensional, there exists
a clopen set G1 in X containing x such that x ∈ G1 ⊂ U . Since f is almost
cl-supercontinuous, there exists a clopen set G2 in X containing x such that
f(G2) ⊂ V . Let G = G1 ∩ G2. Then G is a clopen set containing x and
g(G) ⊂ U × V ⊂ W . This proves that g is almost cl-supercontinuous. �

4. Separation axioms

Definitions 4.1. A space X is said to be

(i) ultra Hausdorff [27] if for each pair of distinct points x and y in X there
exist disjoint clopen sets U and V containing x and y, respectively.

(ii) ultra T1 (≡clopen T1 [4]) if for each pair of distinct points x and y in X
there exist clopen sets U and V containing x and y, respectively such that
y /∈ U and x /∈ V .

(iii) ultra T0-space if for each pair of distinct points x and y in X there exists
a clopen set U containing one of the points x and y but not the other.

Proposition 4.2. For a topological space X the following statements are equiv-
alent.

(a) X is an ultra Hausdorff space.
(b) X is an ultra T1-space.
(c) X is an ultra T0-space.
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Proof. Clearly (a)⇒(b)⇒(c). To prove (c)⇒(a), let X be an ultra T0-space
and let x, y be any two distinct points in X . Then there exists a clopen set U
containing one of the points x and y but not the other. To be precise assume
that x ∈ U Then U and X \ U are disjoint clopen sets containing x and y,
respectively and so X is an ultra Hausdroff space. �

Definitions 4.3. A topological space X is said to be

(i) δT1-space (≡ r-T1 space [4]) if for each pair of distinct points x and y in
X there exist regular open sets U and V containing x and y, respectively
such that y /∈ U and x /∈ V .

(ii) δT0-space if for each pair of distinct points x and y in X there exists a
regular open set containing one of the points x and y but not the other.

Hausdorff space ⇒ δT1-space ⇒ δT0-space

⇓ ⇓

T1-space ⇒ T0-space

Example 4.4. The real line with co-finite topology is a T1-space which is not
δT0 and so not a δT1-space.

It is shown in [26] that if f : X → Y is a cl-supercontinuous injection into
a T0-space Y , then X is an ultra-Hausdorff space. In contrast, for an almost
cl-supercontinuous injection we have the following.

Theorem 4.5. Let f : X → Y be an almost cl-supercontinuous injection. If
Y is a δT0-space, then X is an ultra-Hausdorff space.

Proof. Let x1 and x2 be two distinct points in X . Then f(x1) 6= f(x2). Since
Y is a δT0-space, there exists a regular open set V containing one of the points
f(x1) or f(x2) but not the other. To be precise, assume that f(x1) ∈ V .
Since f is an almost cl-supercontinuous function, there exists a clopen set U
containing x1 such that f(U) ⊂ V . Then U and X \U are disjoint clopen sets
containing x1 and x2 respectively and so X is ultra-Hausdorff. �

Remark 4.6. The above theorem generalizes Theorems 20 and 22 of Ekici [4].

Further, Ekici ([4,Theorem23]) proved that the equalizer of two almost cl-
supercontinuous functions into a Hausdorff space is closed. Here we obtain the
following stronger version.

Theorem 4.7. Let f, g : X → Y be almost cl-supercontinuous functions into
a Hausdorff space Y . Then the equalizer E = {x ∈ X : f(x) = g(x)} of the
functions f and g is a cl-closed subset of X.

Proof. To prove that E is cl-closed, we shall show that X \ E is cl-open. To
this end, let x ∈ X \ E. Then f(x) 6= g(x). Since Y is Hausdorff, there exist
disjoint open sets U1 and V1 containing f(x) and g(x), respectively. Then
U = (Ū1)

0 and V = (V̄1)
0 are disjoint regular open sets containing f(x) and

g(x), respectively. Since f and g are almost cl-supercontinuous functions, there
exist clopen sets G1 and G2 containing x such that f(G1) ⊂ U and g(G2) ⊂ V .
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Then G = G1 ∩ G2 is a clopen set containing x. Since U and V are disjoint,
clearly G ⊂ X \ E and so X \ E is cl-open. �

The following theorem represents an strengthening of Theorem 24 of Ekici [4].

Theorem 4.8. Let f : X → Y be an almost cl-supercontinuous function into
a Hausdorff space Y . Then the set A = {(x1, x2) ∈ X × X : f(x1) = f(x2)} is
a cl-closed subset of X × X.

Proof. Let (x, y) /∈ A. Then f(x) 6= f(y). Since Y is Hausdorff, there exist
disjoint open sets U1 and V1 containing f(x) and f(y), respectively. Then
U = (Ū1)

0 and V = (V̄1)
0 are disjoint regular open sets containing f(x) and

f(y), respectively. Since f is almost cl-supercontinuous, there exist clopen
sets G1 and G2 containing x and y, respectively such that f(G1) ⊂ U and
f(G2) ⊂ V . Then G1 × G2 is a clopen subset of X × X containing (x, y) and
(G1×G2)∩A = φ. Hence G1×G2 ⊂ (X×X)\A and so (X×X)\A is cl-open
being the union of clopen sets. Thus A is a cl-closed subset of X × X . �

Definitions 4.9. A space X is said to be

(i) almost regular [22] if for each regularly closed set F and each x /∈ F there
exist disjoint open sets U and V containing x and F , respectively.

(ii) mildly normal [25] if for every pair of disjoint regular closed sets A and B
there exist disjoint open sets U and V containing A and B, respectively.

The following theorem shows that the hypothesis that “X is regular” in
Theorem 27 of Ekici [4] is superfluous and hence can be omitted.

Theorem 4.10. Let f : X → Y be an almost cl-supercontinuous open bijection.
Then Y is an almost regular space.

Proof. Let F be a regular closed subset of Y and let y be a point outside
F . Then f−1(y) ∩ f−1(F ) = φ and f−1(y) is a singleton. Since f is almost
cl-supercontinuous, f−1(F ) is a cl-closed subset of X . Hence X \f−1(F ) is a cl-
open subset of X containing f−1(y). So there exists a clopen set G containing
f−1(y) such that G ⊂ X \ f−1(F ). Then G and X \G are disjoint clopen sets
containing f−1(y) and f−1(F ), respectively. Since f is an open bijection, f(G)
and f(X \ G) are disjoint open sets containing y and F , respectively. So Y is
an almost regular space. �

Definitions 4.11. A space X is said to be weakly ∆-normal [2] (weakly θ-
normal [8], [10]) if each pair of disjoint δ-closed (θ-closed) are contained in
disjoint open sets.

The following theorem represents a significant improvement of Theorem 28
of Ekici [4].

Theorem 4.12. Let f : X → Y be an almost cl-supercontinuous open bijection
defined on a weakly θ-normal space X. Then Y is mildly normal.
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Proof. Let A and B be disjoint regular closed subsets of Y . Since f is almost
cl-supercontinuous, f−1(A) and f−1(B) are disjoint cl-closed subsets of X .
Since every cl-closed set is θ-closed and since X is weakly θ-normal, there exist
disjoint open sets U and V containing f−1(A) and f−1(B), respectively. Since
f is an open bijection, f(U) and f(V ) are disjoint open sets containing A and
B, respectively and hence Y is mildly normal. �

Corollary 4.13. Let f : X → Y be an almost cl-supercontinuous open bijection
defined on a weakly ∆-normal space X. Then Y is mildly normal.

Corollary 4.14 (Ekici [4, Theorem 28]). If f is an almost cl-supercontinuous
open bijection from a normal space X onto a space Y , then Y is mildly normal.

Proof. Every normal space is a weakly θ-normal space. �

5. Connectedness

Ekici [4] calls a space X almost connected if X can not be written as a
disjoint union of two nonempty regular open sets.

We observe that a space is connected if and only if it can not be expressed
as a disjoint union of two nonempty clopen sets and hence it can not be written
as the disjoint union of two nonempty regular open sets. Thus the notion of
almost connectedness introduced by Ekici is precisely connectedness.

Moreover, the hypothesis of Theorem 30 of Ekici [4] is too strong and can
be considerably weakened, since connectedness is preserved under functions
satisfying fairly mild continuity conditions. The known such weakest variant of
continuity is slight continuity [6]. A function f : X → Y is said to be slightly
continuous if f−1(V ) is open in X for every clopen subset V of Y . Thus
connectedness is preserved under each of the following variants of continuity
listed in the following diagram, each of which is weaker than continuity except
δ-continuity (which is independent of continuity).

almost cl-supercontinuous
⇓

continuous δ-continuous [17]
⇓ ⇓

almost continuous [24]
⇓

θ-continuous [5]
⇓ ⇓

quasi-θ-continuous [20] weakly continuous [14]
⇓ ⇓

faintly continuous [15]
⇓

Dδ-continuous [9]
⇓

z-continuous [23]
⇓

slightly-continuous [6]
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Definition 5.1 ([27], [1]). A space X is said to be hyperconnected if every
nonempty open set in X is dense in X.

Ekici [4] showed that an almost cl-supercontinuous image of a connected
space is hyperconnected. In contrast, our next result shows that cl-supercontinuous
image of a connected space is indiscrete.

Theorem 5.2. Let f : X → Y be a cl-supercontinuous function from a con-
nected space X onto a space Y . Then Y is an indiscrete space.

Proof. Suppose that Y is not indiscrete and let V 6= Y be an open set in
Y . Since f is cl-supercontinuous, by [26, Theorem 2.2] f−1(V ) is a nonempty
proper cl-open subset of X . So there exists a nonempty proper clopen subset
of X , contradicting the fact that X is connected. �

Thus there exists no cl-supercontinuous function from a connected space
onto a non indiscrete space. In contrast it is shown in [26, Theorem 4.9] that
there exist no non constant cl-supercontinuous function from a connected space
into a T0-space.

6. Clopen almost closed graphs

Definition 6.1 ([4]). The graph G(f) of a function f : X → Y is said to be
clopen almost closed if for each (x, y) /∈ G(f) there exists a clopen set U of x
and a regular open set V containing y such that (U × V ) ∩ G(f) = φ.

The following theorem represents an improved version of Theorem 35 of
Ekici [4] which was essentially proved by him. However, for the convenience of
the reader we include its proof.

Theorem 6.2. Let f : X → Y be an injection such that its graph G(f) is
clopen almost closed. Then X is ultra Hausdorff.

Proof. Let x, y ∈ X, x 6= y. Since f is an injection, (x, f(y)) /∈ G(f). In view
of almost closedness of the graph G(f), there exist a clopen set U of x and
a regular open set V containing f(y) such that (U × V ) ∩ G(f) = φ. Then
f(U) ∩ V = φ and hence U ∩ f−1(V ) = φ. Therefore y /∈ U . Then U and
X \ U are disjoint clopen sets containing x and y, respectively. Hence X is
ultra Hausdorff. �

Finally, we point out that in the hypothesis of [4, Theorem 41, Part 3], it is
sufficient to assume X to be countably compact instead of compact.

The next result is an strengthening of Theorem 39 of Ekici [4] which was
essentially proved by him. However, for the sake of completeness and continuity
of presentation, we include its proof.

Theorem 6.3. Let f : X → Y be a function such that the graph G(f) of f
is clopen almost closed in X × Y . Then f−1(K) is cl-closed in X for every
N -closed subset K of Y .
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Proof. Let K be an N -closed subset of Y . To prove that f−1(K) is cl-closed,
we shall show that X \ f−1(K) is cl-open. To this end, let x ∈ X \ f−1(K).
Then for each y ∈ K, (x, y) /∈ G(f). So there exists a clopen set Uy containing
x and a regular open set Vy containing y such that (Uy × Vy) ∩ G(f) = φ
and hence f(Uy) ∩ Vy = φ. The collection {Vy : y ∈ K} is a cover of K by
regular open sets in Y . So there exist finitely many y1, . . . , yn ∈ K such that
K ⊂

⋃n

i=1 Yyi
. Let U =

⋂n

i=1 Uyi
. Then U is a clopen set containing x such

that f(U) ∩ K = φ. Hence U ⊂ X \ f−1(K) and so U is cl-open being the
union of clopen sets. �
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