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Well-posedness, bornologies, and the structure
of metric spaces
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Abstract. Given a continuous nonnegative functional λ that makes
sense defined on an arbitrary metric space 〈X, d〉, one may consider
those spaces in which each sequence 〈xn〉 for which limn→∞λ(xn) = 0
clusters. The compact metric spaces, the complete metric spaces, the
cofinally complete metric spaces, and the UC-spaces all arise in this way.
Starting with a general continuous nonnegative functional λ defined on
〈X, d〉, we study the bornology Bλ of all subsets A of X on which
limn→∞λ(an) = 0 ⇒ 〈an〉 clusters, treating the possibility X ∈ Bλ as
a special case. We characterize those bornologies that can be expressed
as Bλ for some λ, as well as those that can be so induced by a uniformly
continuous λ.
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1. Introduction

In a first course in analysis, one is introduced to two important classes of
metric spaces as those in which certain sequences have cluster points: a metric
space 〈X, d〉 is called compact if each sequence 〈xn〉 in X has a cluster point,
whereas 〈X, d〉 is called complete if each Cauchy sequence in X has a cluster
point. A Cauchy sequence is one of course for which there exists for each ε > 0
a residual set of indices whose terms are pairwise ε-close. If we replace residual
by cofinal in the definition, we get a so-called cofinally Cauchy sequence and
the metric spaces X in which each cofinally Cauchy sequence has a cluster point
are called cofinally complete [10, 13, 18, 24, 36]. These are a well-studied class
of spaces lying between the compact spaces and the complete ones. Notably,
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these are the metric spaces that are uniformly paracompact [13, 23, 24, 35]
and also those on which each continuous function with values in a metric space
is uniformly locally bounded [10]. Lying between the compact spaces and the
cofinally complete spaces is the class of UC-spaces, also known as Atsuji spaces,
which are those metric spaces on which each continuous function with values in
a metric space is uniformly continuous [1, 5, 6, 7, 8, 27, 34, 38]. These are also
called the Lebesgue spaces [32], as they are those metric spaces 〈X, d〉 for which
each open cover has a Lebesgue number [1, 8]. These UC-spaces, too, can be
characterized sequentially, as observed by Toader [37]: 〈X, d〉 is a UC space
if and only if each pseudo-Cauchy sequence in X with distinct terms clusters,
where 〈xn〉 is called pseudo-Cauchy [8, p. 59] if for each ε > 0 and n ∈ N, there
exists k > j > n with d(xj , xk) < ε.

It seems worthwhile to study in some organized way classes of metric spaces
on which prescribed sequences have cluster points. One program could be to
look at other modifications of the definition of Cauchy sequence, but this ap-
proach is limited in scope and is not our purpose here. Instead, given some con-
tinuous nonnegative extended real-valued functional λ that makes sense defined
on an arbitrary metric space, we look at the class of ”λ-spaces”, i.e., the class of
metric spaces 〈X, d〉 such that each sequence 〈xn〉 in X with limn→∞λ(xn) = 0
has a cluster point. In terms of the language of optimization theory, a space
is in this class if either inf{λ(x) : x ∈ X} > 0 or the functional λ is Tychonoff
well-posed in the generalized sense [20, 31]. All of the classes mentioned in
the first paragraph fall within this framework. For the compact spaces, the
zero functional does the job. For the UC-spaces, the measure of isolation func-
tional I(x) = d(x, X\{x}) is characteristic [1, 8, 27]. For the cofinally complete
spaces, it is the measure of local compactness functional [10, 13] defined by

ν(x) =

{

sup{α > 0 : cl(Sα(x)) is compact} if x is a point of local compactness

0 otherwise
.

For the complete metric spaces, and paralleling the cofinally complete spaces
as we will see in Section 5 infra, it is it is the measure of local completeness
functional defined by

β(x) =

{

sup{α > 0 : cl(Sα(x)) is complete} if x has a complete neighborhood

0 otherwise
.

In each case discussed above, unless identically equal to ∞, the functional is
uniformly continuous; but we do not restrict ourselves in this way, nor do we
insist that our metric spaces be complete.

We find it advantageous to first study more primitively the ”λ-subsets” of
an arbitrary metric space 〈X, d〉: those nonempty subsets A such that each
sequence 〈an〉 within satisfying λ(an) → 0 clusters. In general these form a
bornology with closed base. As a major result, we characterize those bornolo-
gies that arise in this way.



Well-posedness, bornologies, and the structure of metric spaces 133

2. Preliminaries

All metric spaces are assumed to contain at least two points. We denote the
closure, set of limit points and interior of a subset A of a metric space 〈X, d〉
by cl(A), A′ and int(A), respectively. We denote the power set of A by P(A)
and the nonempty subsets of A by P0(A). We denote the set of all closed and
nonempty subsets of X by C0(X), and the set of all closed subsets by C(X).
We call A ∈ P0(X) uniformly discrete if ∃ε > 0 such that whenever a1, a2 are
in A and a1 6= a2, then d(a1, a2) ≥ ε. If 〈Y, ρ〉 is a second metric space, we
denote the continuous functions from X to Y by C(X, Y ).

If x0 ∈ X and ε > 0, we write Sε(x0) for the open ε-ball with center x0.
If A is a nonempty subset of X , we write d(x0, A) for the distance from x0 to
A, and if A = ∅ we agree that d(x0, A) = ∞. With d(x, A) now defined, we
denote for ε > 0 the ε-enlargement of A ∈ P(X) by Sε(A), i.e.,

Sε(A) := {x ∈ X : d(x, A) < ε} =
⋃

x∈A

Sε(x).

If A ∈ P0(X) and B ∈ P(X), we define the gap between them by

Dd(A, B) := inf {d(a, B) : a ∈ A}.

We can define the Hausdorff distance [8, 28] between two nonempty subsets
A and B in terms of enlargements:

Hd(A, B) := inf {ε > 0 : A ⊆ Sε(B) and B ⊆ Sε(A)}.

Hausdorff distance so defined is an extended real-valued pseudometric on P0(X)
which when restricted to the nonempty bounded sets is finite valued, and which
when restricted to C0(X) is an extended real-valued metric. Hausdorff distance
restricted to C0(X) preserves the following properties of the underlying space
(see, e.g., [8, Thm 3.2.4]).

Proposition 2.1. Let 〈X, d〉 be a metric space. The following are true:

(1) 〈C0(X), Hd〉 is complete if and only if 〈X, d〉 is complete;
(2) 〈C0(X), Hd〉 is totally bounded if and only if 〈X, d〉 is totally bounded;
(3) 〈C0(X), Hd〉 is compact if and only if 〈X, d〉 is compact.

A weaker form of convergence for sequences of closed sets than convergence
with respect to Hausdorff distance is Kuratowski convergence [8, 29, 28]. Given
a sequence 〈An〉 in C0(X), we define Li An := {x ∈ X : ∀ε > 0, Sε(x) ∩ An 6=
∅ residually} and Ls An := {x ∈ X : ∀ε > 0, Sε(x) ∩ An 6= ∅ cofinally}.
We say 〈An〉 is Kuratowski convergent to A and write K-limAn = A if A =
Li An = Ls An.

The following facts are well-known.
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Proposition 2.2. Let 〈An〉 be a sequence in C0(X). Then the following are
true:

(1) Li An and Ls An are both closed (but perhaps empty);
(2) Li An ⊆ Ls An;
(3) If An = {an}, then Li An = {lim an} if lim an exists and Li An = ∅

if not;
(4) If An = {an}, then Ls An = {x : x is a cluster point of 〈an〉} =

⋂∞
n∈N

cl({ak : k ≥ n});
(5) limHd(An, A) = 0 ⇒ K-limAn = A;
(6) If 〈An〉 is decreasing, then K-limAn =

⋂∞
n=1 An.

We can also define the Hausdorff measure of noncompactness [4] of a nonempty
subset A in terms of enlargements:

α(A) = inf {ε > 0 : A ⊆ Sε(F ), where F is a nonempty finite subset of X}.

Clearly, α(A) = ∞ if and only if A is unbounded. The functional α behaves as
follows:

(1) If A ⊆ B, then α(A) ≤ α(B);

(2) α(cl(A)) = α(A);

(3) α(A) = 0 if and only if A is totally bounded;

(4) α(A ∪ B) = max {α(A), α(B)};

(5) If limHd(An, A) = 0 then limα(An) = α(A).

A famous theorem concerning the Hausdorff measure of noncompactness is
Kuratowski’s Theorem [4, 29], proved in a novel way below; but first, we state
and prove a useful lemma:

Lemma 2.3. Let 〈X, d〉 be a metric space. Suppose 〈An〉 is a decreasing se-
quence in C0(X) which is not Hd-Cauchy. Then ∃ n1 < n2 < n3 < · · · and
xnk

∈ Ank
such that {xnk

: k ∈ N} is uniformly discrete.

Proof. Let 〈An〉 be a decreasing sequence in C0(X) that is not Hd-Cauchy.
Then ∃ε > 0 such that ∀n0 ∈ N, ∃m > n > n0 such that Hd(Am, An) > ε.
Choose m1, m2 with m2 > m1 > 1 such that Hd(Am1

, Am2
) > ε. Then let

i1 > m2, and choose m3, m4 with m4 > m3 > i1 such that Hd(Am3
, Am4

) >
ε. Then let i2 > m4, and choose m5, m6 with m6 > m5 > i2 such that
Hd(Am5

, Am6
) > ε. Continuing, we have m1 < m2 < m3 < · · · such that

Hd(Am2j−1
, Am2j

) > ε where j > 1. Now for i > 1, pick xni
∈ Am2i−1

with
d(xni

, Am2i
) > ε. Then for i < k,

d(xni
, xnk

) > d(xni
, Am2k−1

) > d(xni
, Am2k−2

) > d(xni
, Am2i

) > ε.

We have shown 〈xni
〉 has distinct terms and is a uniformly discrete sequence.

�
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Here is our novel proof (in one direction) of Kuratowski’s Theorem based on
completeness of 〈C0(X), Hd〉.

Theorem 2.4 (Kuratowski’s Theorem on Completeness). Let 〈X, d〉 be
a metric space. Then 〈X, d〉 is complete if and only if whenever 〈An〉 is a
decreasing sequence in C0(X) with lim α(An) = 0, then A :=

⋂

n∈N
An 6= ∅.

Proof. Suppose 〈X, d〉 is complete and 〈An〉 is a decreasing sequence in C0(X)
with limα(An) = 0. Suppose 〈An〉 is not Hd-Cauchy. Then ∃n1 < n2 < n3 < ...
and xnk

∈ Ank
such that 〈xnk

〉 is a uniformly discrete sequence with distinct
terms. Then ∃ε > 0 such that d(xni

, xnj
) > ε where i 6= j. Hence ∀n ∈

N, α(An) ≥ ε
2 ⇒ limα(An) ≥ ε

2 , which is a contradiction. Thus 〈An〉 must
be Hd-Cauchy. Since 〈X, d〉 is complete, by Proposition 2.1(1) 〈C0(X), Hd〉 is
complete, so ∃B ∈ C0(X) with B = Hd − lim〈An〉. Since limHd(An, B) = 0,
by Proposition 2.2(5) B = K − limAn, . Since 〈An〉 is decreasing in C0(X), by
Proposition 2.2(6) K-lim An =

⋂∞
n=1 An. Hence B = A ⇒ A 6= ∅.

Conversely, suppose whenever 〈An〉 is a decreasing sequence in C0(X) with
limα(An) = 0, then A 6= ∅. Then if 〈xn〉 is a Cauchy sequence, we have
⋂∞

n∈N
cl{xk : k ≥ n} nonempty, so by Proposition 2.2(4), 〈xk〉 has a cluster

point. Hence 〈X, d〉 is complete. �

Let f : X → [0,∞]. Then by saying f is lower semi-continuous at a point
x0 ∈ X , we mean whenever α < f(x0), α ∈ R, then ∃δ > 0 such that ∀x ∈
Sδ(x0), f(x) > α. By saying f is upper semi-continuous at a point x0 ∈ X , we
mean whenever α > f(x0), α ∈ R, then ∃δ > 0 such that ∀x ∈ Sδ(x0), f(x) <
α. Note that f(x0) = ∞ ⇒ f is upper semi-continuous at x0, and f(x0) = 0 ⇒
f is lower semi-continuous at x0. If f is both upper and lower semi-continuous
at a point x0 ∈ X , then we say f is continuous at x0.

3. Notes on nonnegative continuous functionals

We first discuss a framework in which many important nonnegative contin-
uous functionals arise.

Let P be an hereditary property of open subsets of 〈X, d〉: if V, W are open
sets where W ⊆ V then P (V ) ⇒ P (W ). Define λP : X → [0,∞] by

λP (x) =

{

sup{α > 0 : P (Sα(x))} if ∃α > 0 where P (Sα(x));

0 otherwise.

Example 3.1. Consider P (V ) := V contains at most one point. Then the
resulting λP is the measure of isolation functional λP (x) = I(x) := d(x, X \
{x}).

Example 3.2. Next consider P (V ) := V ∩ E = ∅ where E ⊆ X . Then the
induced λP gives the distance from a variable point of X to the set E.

Example 3.3. Now consider the case when P (V ) := cl(V ) is compact. Then
the resulting λP is the measure of local compactness functional ν giving the
supremum of the radii of the closed balls with center x that are compact.
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Example 3.4. A final example of an hereditary property P is P (V ) := V is
countable.

Of particular importance is the kernel of the metric space 〈X, d〉 with re-
spect to a continuous function λ : X → [0,∞], which we define as Ker(λ) :=
{x ∈ X : λ(x) = 0}. If we consider the resulting λP from Example 3.1, then
Ker(λP )= X ′, the set of limit points of X . For λP from Example 3.2, we
get Ker(λP )= cl(E). For λP from Example 3.3, Ker(λP ) equals the points of
non-local compactness of X . Finally, if we consider the corresponding λP for
Example 3.4, then Ker(λP ) equals the set of condensation points of X .

Proposition 3.5. Let P be an hereditary property of open sets in 〈X, d〉. If
λP (x0) = ∞ for some x0 ∈ X, then λP (x) = ∞ for all x ∈ X. Otherwise if
λP is finite valued, then λP is 1-Lipschitz.

Proof. Suppose λP (x0) = ∞ for some x0 ∈ X . Let x ∈ X where x0 6= x,
and let α > 0 be arbitrary. Since sup{µ > 0 : P (Sµ(x0))} = ∞, ∃α0 > 0
such that P (Sα0

(x0)) and Sα(x) ⊆ Sα0
(x0), so that P (Sα(x)). This shows

that λP (x) = ∞ for all x ∈ X . Otherwise, λP is finite valued. If λP fails
to be 1-Lipschitz, there exist x, w ∈ X with λP (x) > λP (w) + d(x, w). Take
an α > 0 where λP (x) > α > λP (w) + d(x, w), so that P (Sα(x)). Then
Sα−d(x,w)(w) ⊆ Sα(x), so P (Sα−d(x,w)(w)). However, α − d(x, w) > λP (w),
which is a contradiction. Hence, λP is 1-Lipschitz. �

We next introduce the induced set functional λ : P0(X) → [0,∞] that we will
use to characterize λ-spaces in Section 5:

λ(A) := sup{λ(a) : a ∈ A},

where λ : X → [0,∞] is a continuous functional. The following proposition

lists obvious properties of the set functional λ.

Proposition 3.6. Let 〈X, d〉 be a metric space and let λ : P0(X) → [0,∞] be
as defined above. Then the following are true for nonempty subsets A, B:

(1) λ(A ∪ B) = max{λ(A), λ(B)};

(2) λ(cl(A)) = λ(A);

(3) λ(A) = 0 if and only if A ⊆ Ker(λ).

It is now useful to introduce a strengthening of uniform continuity of a
function restricted to a subset of X as considered in [14, 15].

Definition 3.7. Let 〈X, d〉 and 〈Y, ρ〉 be metric spaces and let A be a subset
of X. We say that a function f : X → Y is strongly uniformly continuous on
A if ∀ε > 0 ∃δ > 0 such that if d(x, w) < δ and {x, w} ∩ A 6= ∅, then
ρ(f(x), f(w)) < ε.

Note that strong uniform continuity on A = {x0} means simply that f is
continuous at x0. Strong uniform continuity on A = X is uniform continuity. A
continuous function on X is strongly uniformly continuous on each nonempty
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compact subset, not merely uniformly continuous when restricted to such a
subset.

Lemma 3.8. Let λ : X → [0,∞] be continuous. If λ is finite-valued and

strongly uniformly continuous on A ∈ P0(X) then λ is Hd-continuous at A.

Proof. We show that λ is lower and upper semi-continuous at A, respectively.
For lower semi-continuity, we have nothing to show if λ(A) = 0. Otherwise,

fix α0 > 0 and suppose α0 < λ(A). Then ∃a0 ∈ A such that λ(a0) > α0 + ε0,
where ε0 > 0. Choose by strong uniform continuity of λ on A δ0 > 0 such
that if a ∈ A, x ∈ X and d(a, x) < δ0, then |λ(a) − λ(x)| < ε0. Now suppose
Hd(A, B) < δ0; choose b ∈ B such that d(a0, b) < δ0. Then |λ(a0) − λ(b)| <
ε0 ⇒ λ(b) > α0 ⇒ λ(B) > α0.

For upper semi-continuity, we have nothing to show if λ(A) = ∞. Otherwise,

fix α1 > 0 with λ(A) < α1. Fix ε1 > 0 so that ∀a ∈ A, λ(a) < α1 − ε1

2 . Let
δ1 > 0 be such that if a ∈ A, x ∈ X and d(a, x) < δ1 then |λ(a) − λ(x)| < ε1

3 .
Suppose Hd(A, B) < δ1 and let b ∈ B be arbitrary. Choose a ∈ A such that
d(a, b) < δ1. Then

|λ(a) − λ(b)| < ε1

3 ⇒ −ε1

3 < λ(a) − λ(b) < α1 −
ε1

2 − λ(b)

⇒ λ(b) < α1 −
ε1

6 .

Since b ∈ B was arbitrary, λ(B) < α1. �

The next counterexample shows that when λ is not strongly uniformly con-
tinuous on A, it is not guaranteed that the λ functional is Hd-continuous at
A.

Example 3.9. Let X = [0,∞)× [0,∞) and define λ : X → [0,∞) by λ(x, y) =
xy. Let A = {(0, y) : y ∈ [0,∞)}. Obviously, λ is not strongly uniformly
continuous on A, since one can take ε = 1 and for any δ > 0, if n > 2

δ we have

d((0, n), ( 2
n , n)) < δ, but |λ(0, n)−λ( 2

n , n)| = 2 > ε. If we let An = { 1
n}×[0,∞),

then 〈An〉
Hd→ A. But for all n, λ(An) = ∞ while λ(A) = 0, showing λ is not

Hd-continuous at A.

4. λ-Subsets

Definition 4.1. Let 〈X, d〉 be a metric space, and λ : X → [0,∞] be contin-
uous. We say A ∈ P0(X) is a λ-subset of X if whenever 〈an〉 is a sequence
in A and λ(an) → 0, then 〈an〉 has a cluster point in X. When X is itself a
λ-subset, then 〈X, d〉 is called a λ-space.

We denote the family of λ-subsets by Bλ. Note that Bλ is not altered by
replacing λ by min{λ, 1}, if one is bothered by functionals that naturally
assume values of ∞. We now provide some examples.

Example 4.2. If 〈X, d〉 is any metric space, and λ(x) ≡ 1, then Bλ = P0(X).

Example 4.3. If 〈X, d〉 is a metric space, then the family of nonempty subsets
with compact closure K0(X) is Bλ for the zero functional λ on X .
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Example 4.4. If 〈X, d〉 is an unbounded metric space and x0 ∈ X , then
the family of nonempty d-bounded subsets Bd(X) is Bλ for the continuous
functional on X defined by

λ(x) =
1

1 + d(x, x0)

Notice here that while inf λ(X) = 0, we have Ker(λ) = ∅. We shall see
presently that Bλ for all such λ-functionals arises in this way (see Theorem
4.17 infra).

Example 4.5. The λ-subsets of a metric space corresponding to the measure
of isolation functional I(x) = d(x, X\{x}) are called the UC-subsets, as studied
in [15]. The λ-subsets of a metric space corresponding to the measure of local
compactness functional ν are called the cofinally complete subsets, as studied
in [13].

Definition 4.6. Let X be a topological space. We call a family of nonempty
subsets A of X a bornology [9, 14, 22, 30] provided

(1)
⋃

A = X;
(2) {A1, A2, A3, ..., An} ⊆ A ⇒

⋃n
i=1 Ai ∈ A;

(3) A ∈ A and ∅ 6= B ⊆ A ⇒ B ∈ A.

We will of course be focusing on bornologies in a metric space 〈X, d〉. The
largest bornology is P0(X) and the smallest is the set of nonempty finite subsets
F0(X). The bornologies K0(X) and Bd(X) lie between these extremes. Of
importance in the sequel are functional bornologies, that is, bornologies arising
as the family of subsets on which a real-valued function with domain X is
bounded. The proof of the next proposition is left to the reader, and it implies
that K0(X) is the smallest possible Bλ.

Proposition 4.7. Let λ : X → [0,∞] be continuous. Then Bλ forms a bornol-
ogy containing the nonempty compact subsets.

By a base for a bornology, we mean a subfamily that is cofinal in the bornol-
ogy with respect to inclusion. For example, a countable base for the metrically
bounded subsets of 〈X, d〉 consists of all balls with a fixed center and integral
radius. The next result says that Bλ has a closed base, that is, a base that
consists of closed sets.

Proposition 4.8. Let λ : X → [0,∞] be continuous, and let A be a λ-set.
Then cl(A) is also a λ-set.

Proof. Let 〈xn〉 be a sequence in cl(A) where λ(xn) → 0. We may assume
∀n ∈ N that λ(xn) < ∞. By the continuity of λ, ∃ a sequence 〈an〉 in A where
∀n ∈ N, d(xn, an) < 1

n and λ(an) < λ(xn) + 1
n . Then since 〈an〉 has a cluster

point, 〈xn〉 must have one also. �
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The following elementary proposition was not noticed for either the bornol-
ogy of UC-subsets or the bornology of cofinally complete subsets. It will be
used to characterize those bornologies that are Bλ for some λ ∈ C(X, [0,∞)).

Proposition 4.9. Let 〈X, d〉 be a metric space and let λ : X → [0,∞] be
continuous. Suppose B is a nonempty closed subset of X. Then B is a λ-
subset if and only if B ∩ Ker(λ) is compact, and whenever A is a nonempty
closed subset of B with A ∩ Ker(λ) = ∅, then inf λ(A) > 0.

Proof. Suppose first that B is a λ-set. Then each sequence in B ∩ Ker(λ) is a
minimizing sequence and since B ∩Ker(λ) is closed, the sequence clusters to a
point of B ∩Ker(λ). Suppose next that A ∈ C0(X)∩ P0(B) does not intersect
Ker(λ), yet inf λ(A) = 0. Then λ has a minimizing sequence in A that clusters
to a point of A which by continuity also must be in Ker(λ) , contradicting
A ∩ Ker(λ) = ∅.

Conversely, suppose B satisfies the two conditions, and 〈bn〉 is a sequence in
B with λ(bn) → 0 but that does not cluster. By the assumed compactness of
B ∩ Ker(λ), and by passing to a subsequence, we may assume that ∀n, bn /∈
Ker(λ). But then with A = {bn : n ∈ N}, the second condition is violated. �

Proposition 4.10. Let λ : X → [0,∞] be continuous. Then a λ-set A is
compact if and only if ∀ε > 0, Bε := {a ∈ A : λ(a) ≥ ε} is compact.

Proof. Let A be compact λ-set. Since λ is a continuous function, {x : λ(x) ≥ ε}
is closed. Since Bε = A ∩ {x : λ(x) ≥ ε}, Bε is compact.

Conversely, suppose 〈an〉 is an arbitrary sequence in A. If λ(an) → 0, then
the sequence clusters because A is a λ-set. Otherwise, ∃ε > 0 and an infinite
subset N1 of N such that ∀n ∈ N1, λ(an) ≥ ε. Hence 〈an〉n∈N1

is a sequence in
the compact set Bε. Thus, the sequence 〈an〉 clusters, and A is compact. �

Our next proposition involves λ-subsets and strong uniform continuity.

Proposition 4.11. Let λ : X → [0,∞) be continuous.

(1) If A is a λ-subset, λ is strongly uniformly continuous on A, and 〈xn〉
is a sequence in X with lim d(xn, A) = 0 and lim λ(xn) = 0, then 〈xn〉
clusters.

(2) Strong uniform continuity of λ on each member of Bλ coincides with
global uniform continuity.

Proof. We prove statement (2), leaving (1) to the reader. Suppose λ fails to be
globally uniformly continuous. Then for some ε > 0, there exist sequences 〈xn〉
and 〈wn〉 in X such that for each n, d(xn, wn) < 1

n yet f(xn) + ε < f(wn).
While B := {wn : n ∈ N} is in Bλ, λ is not strongly uniformly continuous on
B. �

Example 4.12. For a counterexample to Proposition 4.11(1), let us revisit
the metric space X and the functional λ of Example 3.9. Then A := {(x, y) :
xy = 1} ∪ {(x, y) : x = y and x ≤ 1}, as shown in Figure 1, is a λ-set. If
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xn = (0, n), then lim d(xn, A) = 0 and limλ(xn) = 0, but the sequence 〈xn〉
does not cluster.

Figure 1

The next result is anticipated by a decomposition theorem for spaces on
which a continuous function that is Tychonoff well-posed in the generalized
sense is defined [31, Prop 10.1.7]. It is also anticipated by particular decom-
position theorems in the special cases of the bornology of UC-subsets and the
bornology of cofinally complete subsets [13, 15] (see previously for UC spaces
and cofinally complete spaces [8, 10, 23]).

Theorem 4.13. Let 〈X, d〉 be a metric space and suppose λ ∈ C(X, [0,∞]).
Then A ∈ P0(X) is a λ-subset if and only if cl(A) ∩ Ker(λ) is compact and
∀δ > 0, ∃ε > 0 such that a ∈ A \ Sδ(cl(A) ∩ Ker(λ)) ⇒ λ(a) > ε.

Proof. First, suppose cl(A) ∩ Ker(λ) is not compact, and therefore nonempty.
Choose a sequence 〈an〉 in cl(A)∩Ker(λ) with no cluster point. Then λ(an) →
0, but 〈an〉 has no cluster point ⇒ cl(A) is not a λ-set ⇒ A is not a λ-set.
Suppose now that for some δ > 0 that inf{λ(a) : a ∈ A \Sδ(cl(A)∩Ker(λ))} =
0. Select an ∈ A \ Sδ(cl(A) ∩ Ker(λ)) with λ(an) < 1

n . There can be no
possible cluster point p for 〈an〉 as by continuity λ(p) = 0 must hold, while
d(p, cl(A) ∩ Ker(λ)) ≥ δ. Again, A is not a λ-set.

Conversely, suppose cl(A) ∩ Ker(λ) is compact, and ∀δ > 0, ∃εδ > 0 such
that a ∈ A \ Sδ(cl(A) ∩ Ker(λ)) ⇒ λ(a) > εδ. Let 〈an〉 be a sequence in A
where λ(an) → 0. If cl(A) ∩ Ker(λ) = ∅, then A = A \ Sδ(cl(A) ∩ Ker(λ))
for each δ. So then given δ > 0, ∀n λ(an) > εδ, which is a contradiction. We
conclude that cl(A) ∩ Ker(λ) 6= ∅. Then given δ > 0, λ(an) ≤ εδ eventually
⇒ an ∈ Sδ(cl(A) ∩ Ker(λ)) eventually ⇒ 〈an〉 has a cluster point by the
compactness of cl(A) ∩ Ker(λ). �

We now address a basic question: what are necessary and sufficient condi-
tions on a bornology B in a metric space 〈X, d〉 such that B = Bλ for some
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λ ∈ C(X, [0,∞))? The key tools in answering this question are Proposition 4.9
and an important lemma of S.-T. Hu ([25, Thm 13.2] or [26, p. 189]), proved
using the Urysohn Lemma.

Lemma 4.14 (Hu’s Lemma). Let B 6= P0(X) be a bornology on a normal
topological space X having a countable base {Bn : n ∈ N} such that ∀n ∈
N, cl(Bn) ⊆ int(Bn+1). Then there exists an unbounded f ∈ C(X, [0,∞)) such
that

B = {A : f(A) is a bounded set of reals}.

It is easy to see that the conditions of the lemma are satisfied if and only if
(1) ∀B ∈ B, B 6= X ; (2) B has a countable base; (3) B has an open base; and
(4) B has a closed base.

To obtain our characterization, we break our λ-functionals into two classes:
those for which Ker(λ) = ∅, and those for which Ker(λ) 6= ∅. We need an
immediate consequence of Theorem 4.13 to deal with the first situation that
we record as a lemma.

Lemma 4.15. Let λ ∈ C(X, [0,∞)) have no minimum value, yet inf λ(X) = 0.
Then Bλ = {A ∈ P0(X) : inf λ(A) > 0}.

Theorem 4.16. Let B be a bornology on 〈X, d〉. Then B = Bλ for some
λ ∈ C(X, [0,∞)) with Ker(λ) = ∅ if and only if B has a countable base {Bn :
n ∈ N} such that ∀n ∈ N, cl(Bn) ⊆ int(Bn+1).

Proof. For sufficiency, if X ∈ B, we can put λ(x) ≡ 1. Otherwise, applying Hu’s
Lemma to generate an unbounded f ∈ C(X, [0,∞)), put λ(x) := (1 + f(x))−1.
Noting that λ is bounded away from zero on a subset of X if and only if f is
bounded above on the subset, we see by Lemma 4.15 that λ does the job.

For necessity, if B = Bλ where Ker(λ) = ∅, then by Lemma 4.15, B ∈ B ⇔
inf λ(B) > 0. By the continuity of λ, {λ−1([ 1

n ,∞)) : n ∈ N} is the desired
countable base. �

Theorem 4.17. Let B be a bornology on 〈X, d〉. The following conditions are
equivalent:

(1) B = Bλ for some λ ∈ C(X, [0,∞)) with Ker(λ) = ∅;
(2) B = Bρ(X) for some metric ρ equivalent to d.

Proof. (2) ⇒ (1). If ρ is a bounded metric, take λ(x) ≡ 1. Otherwise, we invoke
Theorem 4.16 for Bρ(X), putting Bn := {x : ρ(x, x0) ≤ n} where x0 ∈ X is
fixed.

(1) ⇒ (2). If Bλ = P0(X), take ρ = min{1, d}. Otherwise, with Bn =
λ−1([ 1

n ,∞)) 6= X , apply Hu’s Lemma to once again generate an unbounded f .
The metric

ρ(x, w) := min{1, d(x, w)} + |f(x) − f(w)|

satisfies Bλ = Bρ(X) and is equivalent to d. �
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We now come to the harder part.

Theorem 4.18. Let B be a bornology on 〈X, d〉. The following conditions are
equivalent:

(1) B = Bλ for some λ ∈ C(X, [0,∞)) with Ker(λ) 6= ∅;
(2) B has a closed base, and ∃C ∈ C0(X) with open neighborhoods {Vn : n ∈

N} satisfying ∩∞
n=1Vn = C and ∀n ∈ N, cl(Vn+1) ⊆ Vn such that ∀B ∈

C0(X), B ∈ B ⇔ B ∩ C is compact, and whenever A is a nonempty
closed subset of B disjoint from C, then for some n, A ∩ Vn = ∅.

Proof. (1) ⇒ (2). By Proposition 4.8, B has a closed base, and by Proposition
4.9, we can take C = Ker(λ) and Vn = λ−1([0, 1

n )).

(2) ⇒ (1). We consider several cases for the set C. First if C = X , then
a nonempty closed set B is in B if and only if B is compact, and since the
bornology has a closed base, it is the bornology K0(X) of nonempty subsets
with compact closure and with λ(x) ≡ 0, we get B = Bλ. A second possibility
is that C = Vn ⊂ X for some n. Since {C, X\C} forms a nontrivial separation
of X , the function λ assigning 0 to each point of C and 1 to each point of X\C
is continuous. We intend to show that B = Bλ.

Since both bornologies have closed bases, it suffices to show closed members
of one belong to the other. If B ∈ B ∩ C0(X), then any minimizing sequence
in B lies eventually in C, and since B ∩ C is compact, it clusters. This shows
B ∈ Bλ. For the reverse inclusion, if B ∈ Bλ is closed, then B ∩ Ker(λ) is
compact, that is, B ∩ C is compact. Also if A is a closed subset of B disjoint
from C, then A ∩ Vn = ∅ without any consideration of λ.

In the remaining case we may assume without loss of generality that ∀n ∈
N, C ⊂ Vn ⊂ X . We now apply Hu’s Lemma to the metric subspace X\C with
respect to the bornology having the closed base {X\Vn : n ∈ N}. We produce
an unbounded continuous f : X\C → [0,∞) such that ∀A ∈ P0(X\C), f(A)
is bounded if and only if for some n, A ⊆ X\Vn. We next define our function
λ by

λ(x) =

{

0 if x ∈ C
1

1+f(x) otherwise
.

Evidently λ is continuous restricted to the open set X\C. Given ε ∈ (0, 1),
choose n ∈ N with {x ∈ X\C : f(x) ≤ 1−ε

ε } ⊆ X\Vn. It follows that ∀x ∈ Vn,
we have λ(x) < ε, establishing global continuity of λ.

Again we must show that B ∩ C0(X) = Bλ ∩ C0(X). For a closed set B,
B ∩Ker(λ) is compact if and only if B ∩C is compact because by construction
Ker(λ) = C. If B ∈ C0(X) and A is a nonempty closed subset with A ∩ C =
A ∩ Ker(λ) = ∅ then ∃n with A ∩ Vn = ∅ ⇔ ∃n with A ⊆ X\Vn ⇔ f is
bounded above on A ⇔ inf λ(A) > 0. The result now follows from Proposition
4.9. �
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We next show that that there are bornologies with closed base that fail to
be a bornology of λ-subsets.

Example 4.19. Consider R with the zero-one metric and and let B be the
bornology of countable nonempty subsets. Since R is uncountable, B fails to
have a countable base. By Theorem 4.16, it remains to show that B cannot be
Bλ for any λ with nonempty kernel. We show that condition (2) of Theorem
4.18 cannot hold. Suppose to the contrary that such a C with neighborhoods
{Vn : n ∈ N} existed. Since the intersection of C with each countable set must
be compact, we conclude C is finite. For each n, put Bn := X\Vn. Clearly,
Bn ∩ C is compact as it is empty. Also each (closed) subset of Bn is trivially
disjoint from Vn. By condition (2) of Theorem 4.18, Bn must be countable,
and since X\C = ∪∞

n=1Bn, it too must be countable. This is a contradiction,
and so the bornology of countable subsets cannot be a bornology of λ-subsets.

Here is a natural follow-up question: when is a bornology B a bornology
of λ-subsets for some uniformly continuous λ : X → [0,∞)? In our analysis,
strong uniform continuity of a function on members of a bornology plays a key
role. We first obtain an analog of Hu’s Lemma, which is implicit in the proof
of [14, Thm. 3.18].

Lemma 4.20. Suppose B is a bornology on a metric space 〈X, d〉 that does
not contain X. Suppose B has a countable base {Bn : n ∈ N} such that
∀n ∈ N, ∃δn > 0 with Sδn

(Bn) ⊆ Bn+1. Then there exists an unbounded
f ∈ C(X, [0,∞)) such that f is strongly uniformly continuous on each Bn and
such that

B = {A : f(A) is a bounded set of reals}.

Proof. For each n ∈ N let fn : X → [0, 1] be the uniformly continuous function
defined by fn(x) = min{1, 1

δn
d(x, Bn)}. The values of fn all lie in [0, 1], and

fn(Bn) = {0} and fn(X\Bn+1) = {1}. Put f = f1 + f2 + f3 + · · · . First note
that the restriction of f to each Bn agrees with f1 + f2 + f3 + · · · + fn−1 so
that

(1) ∀n, f restricted to Bn is uniformly continuous;

(2) ∀n, f(Bn) ⊆ [0, n− 1].

By (1) f is strongly uniformly continuous on each Bn because f is uniformly
continuous restricted to Bn+1 and this larger set contains an enlargement of
Bn. By (2) ∀n, f(Bn) is bounded, so f restricted to each member of B is
bounded because {Bn : n ∈ N} is a base. Finally, if f(A) is bounded, then for
some n, A ⊆ Bn because x /∈ Bn+1 ⇒ f(x) ≥ n . �

We note that the function f in the Lemma 4.20 is strongly uniformly contin-
uous on each member of B. More generally, the sets on which a continuous real
function g is strongly uniformly continuous always form a bornology containing
the UC-subsets; in fact, the UC-subsets form the largest common bornology as
g runs over C(X, R) [15]. We also note that if δn can be chosen independent of
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n in the statement of Lemma 4.20, one can construct a uniformly continuous
function f , but the proof is a little more delicate [9, Thm. 4.2].

We will need the following fact about strong uniform continuity.

Proposition 4.21. Suppose g : 〈X, d〉 → (0,∞) is strongly uniformly contin-
uous on a nonempty subset A of X, and g is bounded away from zero in some
enlargement of A. Then λ(x) := 1

g(x) is strongly uniformly continuous on A.

Proof. Suppose ∀x ∈ Sδ(A), we have g(x) ≥ α > 0. Given ε > 0, ∃δε ∈ (0, δ)
such that if a ∈ A and x ∈ X and d(a, x) < δε, then |g(x) − g(a)| < εα2. We
compute

|λ(x) − λ(a)| =

∣

∣

∣

∣

1

g(x)
−

1

g(a)

∣

∣

∣

∣

=
|g(a) − g(x)|

|g(x)g(a)|
,

and since {a, x} ⊆ Sδε
(A) ⊆ Sδ(A), we further have

|g(a) − g(x)|

|g(x)g(a)|
<

εα2

|g(x)g(a)|
≤

εα2

α2
= ε,

and this yields |λ(x) − λ(a)| < ε. �

Theorem 4.22. Let B be a bornology on 〈X, d〉. The following conditions are
equivalent:

(1) B = Bλ for some uniformly continuous λ : X → [0,∞) with Ker(λ) =
∅;

(2) B has a countable base {Bn : n ∈ N} such that ∀n ∈ N, ∃δn > 0 with
Sδn

(Bn) ⊆ Bn+1.

Proof. (1) ⇒ (2). If inf λ(X) > 0, then X ∈ B and we can put Bn := X
for each n ∈ N. Otherwise, put Bn = λ−1([ 1

n ,∞)) ∈ B; choose by uniform
continuity of λ a positive δn such that

d(x, w) < δn ⇒ |f(x) − f(w)| <
1

n
−

1

n + 1
.

Then we have ∀n ∈ N, Sδn
(Bn) ⊆ Bn+1.

(2) ⇒ (1) The case X ∈ B, that is B = P0(X), is of course trivial. Otherwise,
we take f as guaranteed by Lemma 4.20 and as expected put λ(x) = (1 +
f(x))−1. We use Proposition 4.11(2) to establish uniform continuity. Fix n ∈ N.
We know g(x) := 1 + f(x) is strongly uniformly continuous on Bn and that g
is bounded below by 1 on all of X . Taking the reciprocal, by Proposition 4.21,
we see that λ is strongly uniformly continuous on each Bn and thus on each
B ∈ B, as required. �

As expected, the bornologies that fulfill the conditions of Theorem 4.22 are
metric boundedness structures [9], that is, they are of the form Bρ for certain ρ
equivalent to d. In turns out that the metrics ρ are those for which the identity
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id : 〈X, d〉 → 〈X, ρ〉 is strongly uniformly continuous on each ρ-bounded subset.
We leave this as an exercise to the interested reader, following the proof of
Theorem 4.17 (see also [14]).

Theorem 4.23. Let B be a bornology on 〈X, d〉. The following conditions are
equivalent:

(1) B = Bλ for some uniformly continuous λ : X → [0,∞) with Ker(λ) 6=
∅;

(2) B has a closed base, and ∃C ∈ C0(X) with open neighborhoods {Vn : n ∈
N} satisfying ∩∞

n=1Vn = C and ∀n ∈ N, ∃δn > 0 with Sδn
(Vn+1) ⊆ Vn

such that ∀B ∈ C0(X), B ∈ B ⇔ B ∩ C is compact, and whenever
A is a nonempty closed subset of B disjoint from C, then for some
n, A ∩ Vn = ∅.

Proof. (1) ⇒ (2). Let λ satisfy condition (1), and put C = Ker(λ). If C =
X, ∀n ∈ N, put Vn = X . Otherwise, ∃k ∈ N and x ∈ X with λ(x) > 1

k . In

this case ∀n ∈ N, put Vn := {x ∈ X : λ(x) < 1
n+k}. By uniform continuity of

λ, ∃δn > 0 with

d(x, w) < δn ⇒ |λ(x) − λ(w)| <
1

n + k
−

1

n + k + 1

which means that Sδn
(Vn+1) ⊆ Vn. By Proposition 4.8 and Proposition 4.9,

Bλ satisfies the conditions on a bornology B listed in (2).

(2) ⇒ (1). We handle this implication by modifying the proof of (2) ⇒ (1) in
Theorem 4.18. The case C = X is handled in exactly the same manner. In the
case that C = Vn ⊂ X for some n, we define a uniformly continuous function
λ on X by λ(x) = min{ 1

δn
d(x, C), 1}. Since Sδn

(C) ⊆ Vn, we see that λ maps

each point of X\C to 1 and each point of C to 0. Verification that B = Bλ

proceeds exactly as in the proof of Theorem 4.18.
In the remaining case we can assume for each n ∈ N that C ⊂ Vn ⊂ X . By

condition (2), ∀n ∈ N, we have

Sδn
(X\Vn) ⊆ X\Vn+1.

We now apply Lemma 4.20 to the space X\C equipped with the bornology
with base {X\Vn : n ∈ N} to produce an unbounded f : X\C → [0,∞) that is
strongly uniformly continuous on each set X\Vn and such that f(A) is bounded
if and only if A is a subset of some X\Vn. We now define λ : X → [0,∞) by

λ(x) =

{

0 if x ∈ C
1

1+f(x) otherwise
.

The proof of Theorem 4.22 shows that the restriction of λ to X\C is uniformly
continuous, so if λ fails to be globally uniformly continuous, ∃ε > 0 such that
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∀k ∈ N, ∃ck ∈ C and xk ∈ X\C such that d(ck, xk) < 1
k while λ(xk) > ε. Now

as λ is bounded below by ε on {xk : k ∈ N}, f is bounded above so restricted.
It follows that for some n0 ∈ N, we have {xk : k ∈ N}∩Vn0

= ∅. But choosing
1
k < δn0

, by condition (2)

d(ck, xk) <
1

k
⇒ ck ∈ X\Vn0+1.

This is a contradiction because X\Vn0+1 ∩ C = ∅. This contradiction estab-
lishes global uniform continuity, and agreement of the bornologies is argued as
before. �

To end this section, we note that convergence in Hausdorff distance need
not preserve λ-sets, even when the λ-functional is uniformly continuous.

Example 4.24. Let λ : R2 → [0,∞), where λ(x, y) = y, and for each positive
integer n put An := {(x, 0) : x ∈ [0, n]} ∪ {(x, y) : y = 1

n (x − n), x ∈ [n, n +

1]} ∪ {(x, y) : y = 1
n , x ≥ n + 1}, as shown in Figure 2. Then λ is uniformly

continuous and 〈An〉 is a sequence of closed λ-sets converging in Hausdorff
distance to A, where A := {(x, y) : y = 0, x ≥ 0}. But A is not a λ-set.

Figure 2

5. λ-Spaces

Given a continuous nonnegative function λ on a metric space 〈X, d〉, recall
that X is called a λ-space provided each sequence 〈xn〉 in X with lim λ(xn) = 0
has a cluster point. As noted in the introduction, if λ is defined appropriately,
the λ-spaces include the compact metric spaces, the UC-spaces and the cofinally
complete metric spaces. We now show that they include the complete metric
spaces.
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Proposition 5.1. Let 〈X, d〉 be a metric space, and let P (V ) mean cl(V ) is a
complete subspace equipped with the metric d. Put β := λP , so that

β(x) =

{

sup{α > 0 : cl(Sα(x)) is complete} if ∃α > 0 with cl(Sα(x)) complete;

0 otherwise.

Then 〈X, d〉 is a complete metric space if and only if 〈X, d〉 is a β-space.

Proof. Proving this is straightforward. First suppose 〈X, d〉 is complete, so
∀x ∈ X, β(x) = ∞. Each sequence 〈xn〉 with limβ(xn) = 0 has a cluster point
as this is true vacuously. Hence 〈X, d〉 is a β-space.

To see the converse, suppose 〈X, d〉 is a β-space and 〈xn〉 is a Cauchy se-
quence. There are two possibilities: (1) limβ(xn) = 0, and (2) lim sup β(xn) >
0. If limβ(xn) = 0, then there exists a cluster point by the definition of
a β-space. Otherwise ∃ε > 0 and and infinite subset N1 of N such that
∀n ∈ N1, β(xn) > ε. Choose k ∈ N such that if n > m > k, then d(xn, xm) < ε.
If n1 ∈ N1 and n1 > k, then {x : d(x, xn1

) ≤ ε} contains a tail of 〈xn〉 that is
also Cauchy. Since β(xn1

) > ε, {x : d(x, xn1
) ≤ ε} is complete, which implies

the tail has a cluster point, so 〈xn〉 has a cluster point also. Hence 〈X, d〉 is
complete. �

Proposition 4.9 and Theorem 4.13 provide characterizations of λ-spaces,
which we now list.

Theorem 5.2. Let 〈X, d〉 be a metric space, and let λ : X → [0,∞] be contin-
uous. The following are equivalent:

(1) 〈X, d〉 is a λ-space;

(2) Ker(λ) is compact, and if A ∈ C0(X) with A ∩ Ker(λ) = ∅, then inf
λ(A) > 0;

(3) Ker(λ) is compact, and ∀δ > 0, ∃ε > 0 such that d(x,Ker(λ)) > δ ⇒
λ(x) > ε.

Although all λ-spaces must have a compact kernel, it is easy to produce
examples showing that this alone is not sufficient (see, e.g., [31, Ex. 10.1.3]).
The following proposition shows how normal pathology is in this regard.

Proposition 5.3. Let 〈X, d〉 be a noncompact metric space and let C be an
arbitrary compact subset. Then there exists λ ∈ C(X, [0,∞)) with Ker(λ) = C
for which X is not a λ-space.

Proof. Pick distinct points x1, x2, x3, . . . in X\C such that 〈xn〉 has no cluster
point. Note that A := {xn : n ∈ N} is a closed discrete set. If C = ∅, choose
by the Tietze Extension Theorem [21, p. 149] f ∈ C(X, [0,∞)) satisfying
f(xn) = n, and clearly λ(x) = (1+f(x))−1 does the job. When C is nonempty,
by the Tietze Extension Theorem, there is a nonnegative continuous function
λ1 on X mapping C to 0 such that ∀n, λ1(xn) = 1

n . The desired λ is defined
by λ(x) = λ1(x) + d(x, A ∪ C). �



148 G. Beer and M. Segura

The last result of course shows that whenever C is a nonempty compact
subset of a metric space 〈X, d〉, then there is a function having C as its set of
minimizers that fails to be Tychonoff well-posed in the generalized sense.

The next result characterizes λ-spaces in terms of a general Cantor-type
theorem. As its validity is known in the most important special cases (see
[6, 10]), it comes as no surprise.

Theorem 5.4. Let λ : 〈X, d〉 → [0,∞] be a continuous function. Then 〈X, d〉
is a λ-space if and only if whenever 〈An〉 is a decreasing sequence in C0(X)

with λ(An) → 0 then
⋂

n∈N
An is nonempty.

Proof. Suppose 〈X, d〉 is a λ-space and 〈An〉 is decreasing in C0(X) with λ(An) →
0. For each n ∈ N, pick xn ∈ An arbitrarily. We have

0 ≤ λ(xn) ≤ sup{λ(a) : a ∈ An}.

As λ(An) → 0, we have λ(xn) → 0, so 〈xn〉 must have a cluster point, say p.
Then given ε > 0 and n0 ∈ N, ∃k ≥ n0 such that

d(xk, p) < ε ⇒ xk ∈ Sε(p) ⇒ p ∈ cl({xj : j ≥ n0}) ⊆ cl





∞
⋃

j=n0

Aj



 ⊆ An0
,

because 〈An〉 is a decreasing sequence and An0
is closed. Hence, p ∈ ∩n∈NAn.

Conversely, let 〈yn〉 be a sequence in 〈X, d〉 where lim λ(yn) = 0. For each
n ∈ N, put An := cl({yk : k ≥ n}). Fix ε > 0; ∃n0 ∈ N such that n ≥ n0 ⇒
λ(yn) < ε. As a result, ∀n ≥ n0, sup{λ(a) : a ∈ An} ≤ ε ⇒ limλ(An) = 0.
Hence

⋂∞
n=1 cl({yk : k ≥ n}) 6= ∅, and 〈yn〉 has a cluster point. �

Lemma 5.5. Let 〈X, d〉 be a λ-space. Suppose 〈An〉 is a decreasing sequence
in C0(X) with limλ(An) = 0. Then A :=

⋂

n∈N
An is nonempty and compact

and limHd(An, A) = 0.

Proof. The set A is nonempty by Theorem 5.4. Choose an arbitrary sequence
x1, x2, x3, ... in A. Since λ is monotone and limλ(An) = 0, we have λ(A) = 0.
Hence ∀n ∈ N, λ(xn) = 0 ⇒ 〈xn〉 has a cluster point in A because A is closed.
Thus, A is compact.

Now we show lim Hd(An, A) = 0. Suppose this does not hold; then ∃ε > 0
such that ∀n0 ∈ N, ∃k ≥ n0 with Hd(Ak, A) > ε. Since An0

⊇ Ak, clearly
An0

* Sε(A). Pick ∀n ∈ N xn ∈ An \ Sε(A). Since limλ(xn) = 0, 〈xn〉 must
have a cluster point, say p. Hence

p ∈
⋂

k∈N

cl({xn : n ≥ k}) ⊆
⋂

k∈N

Ak = A.

But ∀n ∈ N, d(xn, p) ≥ d(xn, A) ≥ ε, which is a contradiction. Thus, 〈An〉
converges to A in Hausdorff distance. �
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Theorem 5.6. If 〈X, d〉 is complete, then the following statements are equiv-
alent:

(1) 〈X, d〉 is a λ-space;
(2) the measure of noncompactness functional α is continuous with respect

to λ on C0(X) : ∀ε > 0, ∃δ > 0 such that A ∈ C0(X) and λ(A) < δ ⇒
α(A) < ε.

Proof. (2) ⇒ (1). Let 〈An〉 be a decreasing sequence in C0(X) with limλ(An) =
0. Fix ε > 0; ∃δ > 0 such that λ(An) < δ ⇒ α(An) < ε. Since limλ(An) =
0, we have lim α(An) = 0. Since X is complete, by Kuratowski’s Theorem,
⋂

n∈N
An 6= ∅. Hence, by Theorem 5.4, X is a λ-space.

(1) ⇒ (2). Assume (1) holds but (2) fails, i.e., ∃ε > 0 such that given n ∈ N,
∃Bn ∈ C0(X) with λ(Bn) ≤ 1

n but α(Bn) ≥ ε. Let An := {x : λ(x) ≤
1
n} and put A :=

⋂

n∈N
An which by Lemma 5.5 is nonempty and compact

and limHd(An, A) = 0. Since An ⊇ Bn, by continuity of α with respect to
Hausdorff distance, ∀n ∈ N, α(An) ≥ ε ⇒ α(A) ≥ ε. But α(A) = 0 as A is
compact; thus we have a contradiction. �

Given an hereditary property P of open subsets of a metrizable space X ,
the induced functional λP depends on the nature of the balls of the particular
metric chosen. With one choice, we might obtain a λP -space but with another,
not so.

Example 5.7. Let X = {0} ∪ { 1
n : n ∈ N} ∪ {4 − 1

n : n ∈ N} as a topological
subspace of R, and let P (V ) be the property that V contains at most one
point. For a particular compatible metric d, the associated functional λd

P is of
course the measure of isolation functional. When d is the Euclidean metric,
the resulting space is not a λP -space, as λd

P (4 − 1
n ) = 1

n2+n while 〈4 − 1
n 〉 fails

to cluster in X . On the other hand the mapping g : X → R defined by

g(x) =

{

2n if x = 4 − 1
n for some n

x otherwise

is a topological embedding, and this yields a metric ρ on X defined by ρ(x, w) =
|g(x) − g(w)| for which 〈X, ρ〉 is a λP -space.

The next result, in the special case of UC-spaces, appears in the first John
Rainwater paper [34], a pseudonym used by mathematicians associated with
the University of Washington. In the special case of cofinally complete spaces,
it is due to S. Romaguera [36].

Theorem 5.8. Let X be a metrizable topological space, and let P be an hered-
itary property of open sets. The following conditions are equivalent:

(1) X has a compatible metric d such that 〈X, d〉 is a λP -space;
(2) Ker(λP ) is compact.
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Proof. If d is a compatible metric, let us write for the purposes of this proof
Sd

α(x) for the open d-ball with center x and radius α, and λd
P for the induced

functional. Note that the set {x ∈ X : λP (x) = 0} is well-defined, i.e., it
does not depend on the particular metric chosen, for if ρ is another compatible
metric, then at each x,

∀α > 0, ¬P (Sd
α(x)) if and only if ∀α > 0, ¬P (Sρ

α(x)).

Let us denote this well-defined set by Ker(λP ). With this in mind, it follows
from Theorem 5.2 that (2) is necessary for (1). For the sufficiency of (2)
for (1), we use this technical fact about open covers: if X is metrizable and
{Ωk : k ∈ N} is a family of open covers of X , then there exists a compatible
metric d for X such that ∀k ∈ N, {Sd

1/k(x) : x ∈ X} refines Ωk [21, p. 196].

It is possible that while compact, Ker(λP ) is empty. Then each x ∈ X
has an open neighborhood Vx such that P (Vx). By the just-stated refinement
result, there exists a compatible metric d such that {Sd

1 (x) : x ∈ X} refines
{Vx : x ∈ X}. Since P is hereditary, ∀x, λd

P (x) = sup{α > 0 : P (Sd
α(x))} ≥ 1,

and so 〈X, d〉 is a λP -space. Otherwise, Ker(λP ) is nonempty and compact and
so there is a countable family of open neighborhoods {Wk : k ∈ N} of Ker(λP )
such that whenever V is open and Ker(λP ) ⊆ V , ∃k ∈ N with Wk ⊆ V . Again,
for each x /∈ Ker(λP ), let Vx be an open neighborhood of x with P (Vx). For
each k ∈ N, define an open cover Ωk of X as follows:

Ωk := {Vx : x /∈ Wk} ∪ {Wk}.

Choose a compatible metric d such that for each k, {Sd
1/k(x) : x ∈ X} refines

Ωk. Now let 〈xn〉 satisfy limn→∞λd
P (xn) = 0. For each k, Wk contains a tail of

〈xn〉, specifically xn ∈ Wk when λd
P (xn) < 1

k . Since {Wk : k ∈ N} forms a base

for the neighborhoods of Ker(λP ), ∀ε > 0, ∃nε ∈ N ∀n ≥ nε, xn ∈ Sd
ε (Ker(λP ).

Since Ker(λP ) is compact, 〈xn〉 has a cluster point and 〈X, d〉 is a λP -space in
this second case, too. �

With respect to product spaces equipped with the box metric, if we consider
again an hereditary property of open sets P , we can write a formula for λP

if the property P ”factors”, as it does in the case of the measure of isolation
functional and the measure of local compactness functional.

Proposition 5.9. Let P1, P2 be hereditary properties of open sets in X1, X2

respectively, and P be a property of open sets in X1 × X2 such that P (U × V )
if and only if both P1(U) and P2(V ). Then λP : X1 × X2 → [0,∞] can be
expressed by λP (x, y) = min{λP1

(x), λP2
(y)}.

Proof. Let x ∈ X1 and y ∈ X2. Suppose α < min{λP1
(x), λP2

(y)}. Then
P1(Sα(x)) ∧ P2(Sα(y)) ⇒ P (Sα(x, y)), and so λP (x, y) ≥ α. As a result,
λP (x, y) ≥ min{λP1

(x), λP2
(y)}. Suppose β < λP (x, y). Then P (Sβ(x, y)) ⇒
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P1(Sβ(x))∧P2(Sβ(y)) ⇒ λP1
(x) ≥ β∧λP2

(y) ≥ β, so min{λP1
(x), λP2

(y)} ≥ β.
Hence min{λP1

(x), λP2
(y)} ≥ λP (x, y). �

Proposition 5.10. Suppose λ(x1, x2) = min{λ1(x1), λ2(x2)} where λ1 and
λ2 are continuous, nonnegative extended real-valued functions on X1 and X2,
respectively. Then λ is continuous and nonnegative, and

Ker(λ) = [Ker(λ1) × X2] ∪ [X1 × Ker(λ2)].

The next result is hinted at by a result of Hohti [23, Thm. 2.2.1] for cofinally
complete metric spaces.

Theorem 5.11. Let 〈X1, d1〉 and 〈X2, d2〉 be metric spaces, where λ1 : X1 →
[0,∞) and λ2 : X2 → [0,∞) are continuous. Consider the metric space 〈X1 ×
X2, d〉, where d is the box metric, and

λ(x1, x2) = min{λ1(x1), λ2(x2)}.

The following are equivalent:

(1) X1 × X2 is a λ-space;
(2) X1 is a λ1-space, X2 is a λ2-space, and additionally both (i) Ker(λ1)

6= ∅ ⇒ X2 is compact, and (ii) Ker(λ2) 6= ∅ ⇒ X1 is compact.

Proof. (1)⇒(2): To show that X1 is a λ1-space, let 〈an〉 be a sequence in X1

where λ1(an) → 0. Consider 〈(an, c)〉 as a sequence in X1×X2, where c ∈ X2 is
fixed arbitrarily. Then λ(an, c) = min{λ1(an), λ2(c)} → 0 because λ(an) → 0.
As a result, 〈(an, c)〉 must have a cluster point (p1, c). Hence, 〈an〉 clusters. In
a similar manner, it can be shown that X2 is a λ2-space.

Suppose now Ker(λ1)6= ∅. Then ∃x ∈ X1 with λ1(x) = 0. Let 〈bn〉 be an
arbitrary sequence in X2. We can then let 〈(x, bn)〉 be a sequence in X1 ×X2.
Then λ(x, bn) = min{λ1(x), λ2(bn)} → 0 so 〈(x, bn)〉 has a cluster point (x, p3).
Hence 〈bn〉 clusters ⇒ X2 compact. Similarly, it can be shown that if Ker(λ2)6=
∅, then X1 is compact.

(2)⇒(1): To show X1×X2 is a λ-space, let 〈(an, bn)〉 be a sequence in X1×X2

with λ(an, bn) → 0. Consider the case where there exists a subsequence of
〈an〉, say 〈an1

〉n1∈N1
with N1 ⊆ N, where λ1(an1

) → 0. Then ∃N2 ⊆ N1 where
〈an2

〉n2∈N2
converges to a point of Ker(λ1). Since 〈bn〉 is in X2, which must

be compact, then ∃N3 ⊆ N2 such that 〈bn3
〉n3∈N3

converges and 〈an3
〉n3∈N3

converges. Hence, 〈(an3
, bn3

)〉n3∈N3
converges, which implies 〈(an, bn)〉 clusters.

In the case where there exists a subsequence of 〈bn〉, say 〈bn1
〉n1∈N1

with N1 ⊆
N, where λ2(bn1

) → 0, it can be similarly shown that 〈(an, bn)〉 clusters, and
this is left to the reader. �

Remark 5.12. Proposition 5.10 gives an alternate justification that conditions
(2i) and (2ii) are necessary in Theorem 5.11.

Example 5.13. In the case that λ1 = λ2 = the measure of local completeness
functional, when both X1 and X2 are complete, it is clear that Ker(λ1) =
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Ker(λ1) = ∅, so that X1 × X2 is complete if and only if X1 and X2 are
complete, as we all know.

Example 5.14. In the case that λ1 = λ2 = the measure of isolation functional,
condition (2) becomes X1 and X2 are both UC-spaces, and if either space has
limit points, the other must be compact.

What is most interesting about this result emerges after we take a closer
look at statement (2) of Theorem 5.11 from the perspective of mathematical
logic. Formally, statement (2) is of the form

P ∧ (Q ⇒ S) ∧ (R ⇒ T ),

which is logically equivalent to

[(P ∧ ¬Q) ∨ (P ∧ S)] ∧ [(P ∧ ¬R) ∨ (P ∧ T )].

Since conjunction is distributive over disjunction, the following four-part dis-
junction is equivalent to (2):

inf{λ1(x) : x ∈ X1} > 0 and inf{λ2(x) : x ∈ X2} > 0,

or

X2 is an λ2-space, X1 is compact, and inf{λ1(x) : x ∈ X1} > 0,

or

X1 is an λ1-space, X2 is compact, and inf{λ2(x) : x ∈ X2} > 0,

or

both X1 and X2 are compact.

Thus, all factor spaces that would yield a product space that is a λ-space, where
λ is as defined in Theorem 5.11, must fall into one of these four categories.

Example 5.15. In the case that λ1 = λ2 = the measure of local compactness
functional, when X1 (resp. X2) is compact, then automatically λ1(x) ≡ ∞
(resp. λ2(x) ≡ ∞). Thus, the final three statements of the four just listed can
be condensed down to one statement: either X1 or X2 is compact, while the
other is cofinally complete. The disjunction of this statement with the first,
which in this context says that both X1 and X2 are uniformly locally compact,
can be seen to be equivalent to Hohti’s formulation [23].

6. λ-Subsets and Bornological Convergence

Over the last few years, there has been intense interest in bornological con-
vergence of nets of sets in a metric space [12, 14, 15, 16, 30]. This was first
described for nets of closed sets by Borwein and Vanderweff [17] as follows.

Definition 6.1. Let B be a bornology in metric space 〈X, d〉. We declare a net
〈Ai〉i∈I of closed subsets of X B-convergent to a closed subset A of X if for
each B ∈ B and each ε > 0, we have eventually both

Ai ∩ B ⊆ Sε(A) and A ∩ B ⊆ Sε(Ai).
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Notice that convergence to the empty set means that eventually the net
lies outside each set in the bornology. When B = P0(X), we obtain re-
stricting our attention to C0(X) convergence in Hausdorff distance because
X ∈ P0(X). When B is the bornology of nonempty bounded subsets, we
obtain Attouch-Wets convergence [2, 3, 8], also called bounded-Hausdorff con-
vergence [33]. When B is the bornology of nonempty subsets with compact
closure, we obtain convergence with respect to the Fell topology [8, Theorem
5.1.6], also called the topology of closed convergence [28], which for sequences
of closed sets reduces to classical Kuratowski convergence [8, Theorem 5.2.10].
Recently it has been shown that convergence of linear transformations with
respect to standard topologies of uniform convergence can be understood as
bornological convergence of their associated graphs [11].

Each of the bornological convergences just listed above are topological; in
fact, the first two are compatible with metrizable topologies on C(X). As shown
in [12], those bornologies for which B-convergence is topological on C(X) are
those that are shielded from closed sets, according to the following definition.

Definition 6.2. Let B be a bornology on a metric space 〈X, d〉. We say that
B1 ∈ B is a shield for B ∈ B provided B ⊆ B1 and whenever C ∈ C0(X) is
disjoint from B1, we have Dd(B, C) > 0. We say B is shielded from closed sets
provided each B in B has a shield in the bornology.

In terms of open sets, B is shielded from closed sets if and only if given
B ∈ B ∃B1 ∈ B such that B ⊆ B1 and each neighborhood of B1 contains
some ε-enlargement of B. Hence, a bornology having the property that B ∈
B ⇒ ∃ε > 0 with Sε(B) ∈ B is obviously shielded from closed sets. So is a
bornology having a base of compact sets, as then for each B ∈ B, the compact
set cl(B) serves as shield for B. More generally, whenever B is shielded from
closed sets, then ∀B ∈ B, cl(B) ∈ B. A wealth of additional information about
this concept can be found in [12].

Theorem 6.3. Let λ ∈ C(X, [0,∞)) be strongly uniformly continuous on some
B ∈ Bλ. Then B has a shield in Bλ.

Proof. Without loss of generality, we may assume X is not a λ-space and B is
a closed λ-set. By strong uniform continuity of λ on B, ∀n ∈ N, ∃δn ∈ (0, 1

n )

such that ∀b ∈ B, ∀x ∈ X, d(x, b) < δn ⇒ |λ(b) − λ(x)| < 1
n . We may also

assume that 〈δn〉 is decreasing. Let b ∈ B \ Ker(λ). There exists a smallest
nb ∈ N such that 1

nb
< λ(b). If x ∈ X satisfies d(x, b) < δ2nb

, then

1

2nb
< λ(x) < λ(b) +

1

2nb
.

Also note that λ(b) ≤ 1
nb−1 , whenever nb 6= 1. Set δ(b) = δ2nb

. We claim

B1 := (Ker(λ) ∩ B) ∪
⋃

b∈B\Ker(λ)

Sδ(b)(b)

is a shield for B which lies in Bλ.
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We first show B1 is λ-set. Let 〈xk〉 be a sequence in B1 with λ(xk) →
0. If infinitely many terms of 〈xk〉 are contained in Ker(λ) ∩ B, then 〈xk〉
must cluster by the compactness of Ker(λ) ∩ B. Otherwise, by passing to a
subsequence we can assume ∀k ∈ N, xk ∈

⋃

b∈B\Ker(λ) Sδ(b)(b) and λ(xk) < 1
2 .

Pick bk ∈ B \ Ker(λ) with xk ∈ Sδ(bk)(bk). Fix k and let’s for the moment

write n := nbk
. We know that 1

2n < λ(xk), so n ≥ 2 and λ(bk) ≤ 1
n−1 . Note

also 1
n−1 ≤ 2

n , so

λ(bk) ≤
2

n
= 4 ·

1

2n
< 4λ(xk).

Hence λ(bk) → 0, so 〈bk〉 has a cluster point p. Thus, p is a cluster point of
〈xk〉 because δ(bk) → 0.

Now we must show whenever C ∈ C0(X) with C∩B1 = ∅, then Dd(C, B) >
0. By the compactness of Ker(λ) ∩B, we find µ > 0 such that Dd(C, Ker(λ) ∩
B) > 2µ. Put T1 := B∩Sµ(Ker(λ)∩B) and T2 := B \Sµ(Ker(λ)∩B), so that
T1 ∪ T2 = B. Then Dd(C, T1) ≥ µ > 0. By Theorem 4.13, there exists ε > 0
such that ∀b ∈ T2, λ(b) > ε. Let k ∈ N satisfy 1

k < ε. If b ∈ T2, then λ(b) > 1
k

so δ2k ≤ δ(b). Hence,

⋃

b∈T2

Sδ2k
(b) ⊆

⋃

b∈T2

Sδ(b)(b) ⊆ B1.

As a result, C ∩
⋃

b∈T2
Sδ2k

(b) = ∅. Then Dd(C, T2) ≥ δ2k > 0. Thus,

Dd(C, B) = Dd(C, T1 ∪ T2) = min{Dd(C, T1), Dd(C, T2)} > 0. �

Corollary 6.4. Let λ : X → [0,∞) be uniformly continuous. Then Bλ is
shielded from closed sets.

Example 6.5. Consider for a counterexample [0,∞) × [0,∞) equipped with
the usual metric. If λ : [0,∞) × [0,∞) → [0,∞), where λ(x, y) = xy, then
B := {(x, y) : xy = 1} ∪ {(x, y) : x = y and x ≤ 1} is a λ-set. Suppose
B1 were a shield for B. As a result of B1 being a λ-set, ∃n ∈ N such that
B1 ∩ {(x, 0) : x ≥ 0} ⊆ [0, n] × {0}. Then C := [2n,∞) × {0} is closed and
disjoint from B1, but Dd(C, B) = 0. This is a contradiction. Note of course
that λ is not strongly uniformly continuous on B.

Bornological convergence of a net 〈Ai〉i∈I of closed sets to a closed set
A as determined by a bornology B can obviously be broken into two condi-
tions, the first of which is called upper B-convergence, and the second lower
B-convergence [30]:

(i) ∀B ∈ B, ∀ε > 0 eventually Ai ∩ B ⊆ Sε(A), and

(ii) ∀B ∈ B, ∀ε > 0 eventually A ∩ B ⊆ Sε(Ai).

As bornologies are hereditary, evidently, (ii) is in general equivalent to

(ii′) ∀B ∈ B, B ⊆ A ⇒ ∀ε > 0, B ⊆ Sε(Ai) eventually.
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As shown in [12], when the two-sided convergence is topological, condition
(i) can be replaced by the following condition:

(i′) ∀B ∈ B, if Dd(B, A) > 0, then eventually Dd(B, Ai) > 0.

From condition (i′), the topology T
+
B

of upper B-convergence is generated
by all sets of the form {A ∈ C(X) : Dd(A, B) > 0} (B ∈ B), called the
upper B-proximal topology in the literature [19]. The topology T

−
B

of lower
B-convergence is not so transparent. In the case that B is the bornology of
cofinally complete subsets, this was executed in [13]. Here we show that the de-
scription obtained for T

−
Bλ

when λ is the measure of local compactness extends
naturally to the case when λ is a general uniformly continuous nonnegative
functional. Our proof here is based on condition (ii′) rather than on condition
(ii) as it was in the particular case addressed in [13] and seems simpler to us.

To describe a set of generators for the topology, we employ notation used in
[13]: if V is a nonempty open subset of X , put V − := {A ∈ C(X) : A∩V 6= ∅},
and if W is a family of nonempty open subsets of X , put

W
−− := {A ∈ C(X) : ∃ε > 0 ∀W ∈ W, ∃aW ∈ A with Sε(aW ) ⊆ W}.

Note that for a nonempty open subset V, {V }−− = V −.

Theorem 6.6. Let λ be a nonnegative uniformly continuous real-valued func-
tion on a metric space 〈X, d〉 . Then the topology T

−
Bλ

of lower Bλ-convergence

on the closed subsets of X is generated by all sets of the form V − where V is a
nonempty open subset of X plus all sets of the form W−− where W is a family
of nonempty open sets with inf {λ(x) : x ∈ ∪W} > 0.

Proof. First suppose 〈Ai〉i∈I is a net in C(X) that is lower Bλ-convergent to
A. Suppose A ∈ V − where V is open. Pick a ∈ A and ε > 0 with Sε(a) ⊆ V .
Since {a} ⊆ A, applying condition (ii′) with B = {a} ∈ Bλ gives eventually
Ai ∩ Sε(a) 6= ∅, so eventually Ai ∩ V 6= ∅. Next suppose A ∈ W−− where
inf{λ(x) : x ∈ ∪W} = µ > 0. Choose α > 0 such that ∀W ∈ W, ∃aW ∈
A with Sα(aW ) ⊆ W. Since B = {aW : W ∈ W} ∈ Bλ and B ⊆ A, by (ii′)
∃i0 ∈ I ∀i � i0, B ⊆ Sα

2
(Ai). Fix i � i0; ∀W ∈ W, Sα

2
(aW ) ∩ Ai 6= ∅, and we

conclude

Ai ∈ {Sα(aW ) : W ∈ W}−− ⊆ W
−−.

For the converse, suppose 〈Ai〉i∈I converges to A in the topology with the
prescribed set of generators. Let B1 be a fixed λ-set with B1 ⊆ A and let
ε > 0 be arbitrary. Put B := cl(B1) ⊆ A; it suffices to show that eventually
B ⊆ Sε(Ai). We first consider two extreme cases for B: (1) B is compact, and
(2) inf {λ(b) : b ∈ B} = µ > 0.
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In case (1), by compactness ∃{b1, b2, b3, . . . , bn} in B such that B ⊆ ∪n
j=1S ε

2
(bj).

As {b1, b2, b3, . . . , bn} ⊆ A, ∀j ≤ n we have A ∈ S ε
2
(bj)

−, and so eventually

Ai ∈ ∩n
j=1S ε

2
(bj)

−. It follows that {b1, b2, b3, . . . , bn} ⊆ S ε
2
(Ai) eventually

and so B ⊆ Sε(Ai) eventually. In case (2) by uniform continuity there exists
δ ∈ (0, ε) such that whenever b ∈ B and x ∈ X with d(x, b) < δ, then λ(x) > µ

2 .
With W = {Sδ(b) : b ∈ B}, we have A ∈ W−−, so Ai ∈ W−− eventually, and
when this occurs, B ⊆ Sδ(Ai) ⊆ Sε(Ai).

For B which does not fit into either case (1) or (2), in view of Theorem 4.13
we have B ∩Ker(λ) 6= ∅, and for some ε > 0 we have B\S ε

2
(B ∩Ker (λ)) 6= ∅.

By the two extreme cases just considered, eventually both

(i) B ∩ Ker(λ) ⊆ S ε
2
(Ai), and

(ii) B\S ε
2
(B ∩ Ker(λ)) ⊆ S ε

2
(Ai),

and for all such i, we have B ⊆ Sε(Ai), as required. �
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