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Uniformizable and realcompact bornological

universes
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Abstract. Bornological universes were introduced some time ago

by Hu and obtained renewed interest in recent articles on convergence

in hyperspaces and function spaces and optimization theory. One of

Hu’s results gives us a necessary and sufficient condition for which a

bornological universe is metrizable. In this article we will extend this

result and give a characterization of uniformizable bornological uni-

verses. Furthermore, a construction on bornological universes that the

author used to find the bornological dual of function spaces endowed

with the bounded-open topology will be used to define realcompactness

for bornological universes. We will also give various characterizations

of this new concept.
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1. Introduction

A bornological universe (X,B) consists of a topological space X and a bornol-
ogy B on the underlying set of X . Bornological universes play a key role
in recent publications on convergence structures on hyperspaces [2, 3, 4, 14],
topologies on function spaces [7] and optimization theory [5, 6]. In [11] Hu
defines a bornological universe (X,B) to be metrizable if there is a metric d
on X such that the topology defined by d is the original topology on X and
the elements of B are exactly the sets that are bounded for this metric. In
this article the following characterization of metrizable bornological universes
is given:
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Theorem 1.1. A bornological universe (X,B) is metrizable iff the following

conditions are satisfied:

(1) X is metrizable,

(2) B has a countable base,
(3) for each B1 ∈ B there is a B2 ∈ B such that B1 ⊆

◦

B2

Keeping this result of Hu in mind we can ask ourselves when a bornological
universe is uniformizable. The first problem that we encounter is how to define
uniformizability for bornological universes. Each uniform space has an under-
lying topological space, but there are (at least) two natural bornologies that
we can associate with a uniformity: the bornology of sets that are bounded in
the sense of Bourbaki and the bornology of totally bounded sets. This gives
us two possible ways to define uniformizable bornological universes. We will
see, however, that both are equivalent. One of the various characterizations of
uniformizability for bornological universes that we will give is being isomorphic
to a subspace of a product of real lines. This property was also studied by Beer
in [1], but his definition of a product bornology is different from the one that
we will use here.

In [16] the author uses generalized bornologies (see [15]) to extend the duality
between locally convex topological vector spaces and bornological vector spaces
to vector spaces with a topology defined by extended quasinorms. One of the
objects that is encountered in this article is the space C(X) of continuous, real
valued maps on a Tychonoff space X endowed with the bounded-open topology
for some bornology B on X . To describe the bornological dual of this object
a realcompact extension υB(X) of X is introduced. The way this space υB(X)
is defined for a bornological universe (X,B) is similar to the definition of the
Hewitt realcompactification for topological spaces. We will use this to define
realcompactness for bornological universes.

2. Uniformizable bornological universes

Definition 2.1. A bornology on a set X is a set B ⊆ 2X that satisfies the

following conditions:

B1 {x} ∈ B for each x ∈ X,

B2 if B ∈ B and A ⊆ B, then A ∈ B,

B3 A ∪ B ∈ B whenever A, B ∈ B.

The elements of a bornology are called bounded sets and a map that preserves

boundedness is called a bounded map. A topological space X endowed with a

bornology B will be called a bornological universe.

It is easily verified that the category of bornological universes and bounded,
continuous maps is a topological construct. A source (fi : (X,B) → (Xi,Bi))i∈I

in this category is initial if X is endowed with the topology that is initial for
the source (fi : X → Xi)i∈I and a set B ⊆ X is bounded iff fi(B) is bounded
for each i ∈ I. This means that if (X,B) is a bornological universe and Y ⊆ X ,
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the subspace structure on Y consists of the subspace topology on Y and the
bornology of all subsets of Y that are bounded in X . The product structure on
a product of a family of bornological universes (Xi,Bi)i∈I on the other hand
is defined as the product topology and the bornology of sets B ⊆

∏
i∈I Xi for

which each projection πi(B) is bounded.

Definition 2.2. A subset B of a uniform space (X,U) is called bounded in
the sense of Bourbaki (see [8]) if for each entourage U ∈ U we can find an

n ∈ N and a finite set K ⊆ X such that B ⊆ Un(K).

For a locally convex topological vector space the classical notion of bound-
edness coincides with boundedness in the sense of Bourbaki with respect to the
canonical uniformity. In a metric space (X, d) we have that each set that is
bounded for the metric d is bounded in the sense of Bourbaki for the underlying
uniformity, but the converse is in general not true.

If (X,U) is a uniform space, then the sets that are bounded in the sense of
Bourbaki form a bornology on X . A second bornology that we can associate
with the uniformity U is the bornology of totally bounded subsets. A subset
B of a uniform space is totally bounded if for each entourage U there is a finite
partition (Bi)

n
i=1 of B such that Bi ×Bi ⊆ U for each i ∈ I. This is equivalent

with saying that for each entourage U ∈ U there is a finite set K ⊆ X such
that B ⊆ U(K), so obviously each totally bounded set is bounded in the sense
of Bourbaki. The proof of the following theorem can be found in [10].

Theorem 2.3. Let (X,U) be a uniform space. The following statements are

equivalent:

(1) A is bounded in the sense of Bourbaki,

(2) A is bounded for each uniformly continuous pseudometric d on X,

(3) each real valued, uniformly continuous map is bounded on A.

The bornology of sets that are bounded in the sense of Bourbaki and the
bornology of totally bounded sets are two natural bornologies associated with
a uniform space. At first sight it therefore looks like we can define two notions
of uniformizability for topological bornological spaces. We will see that they
are actually equal.

Definition 2.4. We will call a bornological universe (X,B) bb-uniformizable if

there is a uniform space (X,U) for which X is the underlying topological space

and B is the set of subsets of X that are bounded in the sense of Bourbaki for U .

In the case that B is equal to the set of totally bounded subsets of the uniform

space (X,U) we will call (X,B) tb-uniformizable.

Let (X,U) be a uniform space and take V ⊆ U . If each entourage in U
contains a finite intersection of elements of V , then V is called a base for U .
For a set C of real valued maps on a set X we will denote the uniform space
that is initial for the source C as (X, C). Define U ǫ

f as the set that contains all

(x, y) ∈ X × X for which |f(x) − f(y)| < ǫ. The entourages U ǫ
f , form a base

for the uniformity of (X, C).
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Lemma 2.5. Let V be a base for a uniformity U . If for each V ∈ V we can

find a finite partition (Bi)
n
i=0 of B such that Bi × Bi ⊆ V for all 0 ≤ i ≤ n,

then B is totally bounded.

Proof. Each entourage U ∈ U contains a set V0∩ . . .∩Vm where each Vk is in V .
For all 0 ≤ k ≤ m we can find a finite partition Pk of B such that Bk×Bk ⊆ Vk

for each Bk ∈ Pk. If we define P as {B0 ∩ . . . ∩ Bm|∀0 ≤ k ≤ m : Bk ∈ Pk},
then P is a finite partition of B and each of each of its elements P satisfies
P × P ⊆ U . �

Lemma 2.6. For a set C of real valued maps on a set X, the following state-

ments are equivalent:

(1) f(B) is bounded for all f ∈ C,

(2) B is totally bounded in (X, C),
(3) B is bounded in the sense of Bourbaki in (X, C).

Proof. If we assume that the first statement is true and we take ǫ > 0 and
f ∈ C, then we can find a finite partition (Ci)

n
i=0 of f(B) such that each

element of this partition has diameter smaller than ǫ. The sets Bi, defined
as B ∩ f−1(Ci), form a finite partition of B and for each 0 ≤ i ≤ n holds
Bi × Bi ⊆ U ǫ

f . Applying lemma 2.5 gives us that B is totally bounded in

(X, C).
We already saw that the second statement implies the third. Now suppose

that B is bounded in the sense of Bourbaki. This yields that it is bounded for
each uniformly continuous metric on (X, C). Since df , where df (x, y) is defined
as |f(x)− f(y)|, is a uniformly continuous metric for each f ∈ C, we have that
f(B) is bounded. �

Definition 2.7. We will call a bornology B on a topological space saturated if

it contains each B that satisfies the following condition: if (Gn)n is a sequence

of open sets such that each bounded set is contained in some Gn and Gn ⊆ Gn+1

for all n ∈ N, then there is an m ∈ N for which B ⊆ Gm.

This definition is equivalent with saying that B is equal to the intersection of
all bornologies that contain B and are generated by a sequence (Gn)n of open
sets that satisfies Gn ⊆ Gn+1 for all n ∈ N.

From here on the set of all continuous, real valued maps on X that are
bounded on all elements of B will be denoted as CB(X).

Proposition 2.8. The following statements are equivalent:

(1) CB(X) is an initial source,

(2) (X,B) is bb-uniformizable,

(3) X is completely regular and B is saturated.
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Proof. If the first statement is true, then we have by definition that the under-
lying topological space of (X, CB(X)) is the original topology in X . We know
from lemma 2.6 that the set of subsets of X that are bounded in the sense of
Bourbaki in (X, CB(X)) is exactly B.

Now suppose that (X,B) is bb-uniformizable. We automatically obtain that
X is completely regular. If B is an unbounded subset of X , then we can find
a uniformly continuous metric d on X for which B is unbounded. Take an
arbitrary x0 ∈ X and define Gn as the open ball with center x0 and radius
n + 1. This is an increasing sequence of open sets that satisfies the conditions
stated in definition 2.7. Furthermore, we know that B is not contained in any
of the sets Gn. Hence we have that B is saturated.

For a completely regular space X , the initial topology for the source that
consists of all continuous maps into [0, 1] is the original topology. Clearly, these
maps are all in CB(X). If we now assume that the third statement is true and
that B is an unbounded set, then we can find a sequence (Gn)n such that each
bounded set is contained in some Gn, Gn ⊆ Gn+1 for all n ∈ N and no Gn

contains B. Choose a sequence (xn)n in B such that xn ∈ B \ Gn. Let φn be
a map into [0, n] that vanishes on Gn and attains the value n in xn. Define
the map φ as

∑
n φn. Since φ is equal to

∑n

k=0 φk on each Gn we obtain that
φ is a continuous map. By definition, φ is bounded on all elements of B and
unbounded on B. �

A subset of a topological space is called relatively pseudocompact if it is
mapped to a bounded subset of R by all real valued, continuous maps on X .
The previous proposition yields that each relatively pseudocompact subset of
a uniformizable bornological universe is bounded.

Proposition 2.9. An object (X,B) is bb-uniformizable iff it is tb-uniformizable.

Proof. If (X,B) is bb-uniformizable, then CB(X) is initial. From lemma 2.6 we
obtain that (X, CB(X)) is a uniform space with underlying topological space X
for which the totally bounded subsets are exactly the sets in B.

Now let (X,B) be a tb-uniformizable object and B an unbounded subset of
X . We can find a uniformly continuous metric d on X and a sequence (xn)n

in B such that for distinct numbers n and m it holds that d(xn, xm) ≥ 1.
Define Kn as the set {xm|m ≥ n} and Gn as the set of all x ∈ X that lie
at a d-distance strictly greater than 1/(n + 3) from Kn. This is an increasing
sequence of open sets and Gn ⊆ Gn+1 for all n ∈ N. This sequence also
satisfies that each bounded set is contained in some Gn. If this were not the
case, then there would be a bounded set that contains a countable subset with
the property that all of its elements, for the metric d, lie at a distance greater
than 1/3 of each other. This would imply that this bounded set is not totally
bounded. Since B is not contained in any of the sets Gn we obtain that B is
saturated. �



282 T. Vroegrijk

From here on a bb-uniformizable bornological universe will be simply called
uniformizable. We will say that a bornological universe (X,B) is Hausdorff if
X is Hausdorff.

Proposition 2.10. The following statements are equivalent:

(1) (X,B) is Hausdorff and uniformizable,

(2) (X,B) is isomorphic to a subspace of a product of real lines.

Proof. If (X,B) is Hausdorff uniformizable, then the source CB(X) is initial
and separating. This yields that the map from X to R

CB(X) that sends an
element x to (f(x))f∈CB(X), is in fact an embedding.

To prove the converse, we need to show that each subspace of a product
of real lines is Hausdorff uniformizable. We can endow each subset X of a
product R

α of real lines with the uniformity that it inherits from the product
uniformity on R

α. This uniformity is the initial one for the source that consists
of all projection maps to R. We know that the underlying topology of this
uniformity is the original topology on X . Lemma 2.6 grants us that a subset
of X is bounded in the sense of Bourbaki for this uniformity iff each of its
projections is bounded. �

An article by Beer (see [1]) also contains a necessary and sufficient condition
for a bornological universe to be embeddable into a product of real lines. The
product bornology, however, is in this article defined as the bornology generated
by all sets for which at least one projection is bounded, while we use the
bornology of sets for which all projections are bounded.

3. Realcompact bornological universes

A subset B of a locally convex topological vector space E is called bounded

if each continuous seminorm is bounded on B. If E satisfies the condition that
each seminorm that is bounded on all bounded sets is automatically continu-
ous, then E is called bornological. The bornological objects form a concretely
coreflective subcategory of the category of locally convex topological vector
spaces.

Let B be a bornology on a Tychonoff space X that consists only of relatively
pseudocompact sets. The set of all real valued, continuous maps on X endowed
with the bounded-open topology is a locally convex topological vector space.
In [13] Schmets gives a characterization of the bornological coreflection of this
topological vector space using the Hewitt realcompactification υ(X) of X .

If the elements of B are no longer supposed to be relatively pseudocompact,
then the bounded-open topology is no longer a vector topology. In [16], how-
ever, an extension of the classical duality between topological and bornological
vector spaces is given that allows us to define the bornological coreflection of
this space. In that same article a characterization of this bornological core-
flection is given using a realcompact space υB(X) that contains X as a dense
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subspace. We will use these spaces to define realcompactness for bornological
universes and give various characterizations of this new concept.

Let (X,B) be a bornological universe where X is a Tychonoff space. The
space υB(X) is defined as {x ∈ β(X)|∀f ∈ CB(X) : fβ(x) 6= ∞}. Here fβ is
the unique map from β(X) to the one-point compactification of R that satisfies
the condition that its restriction to X is equal to f .

Proposition 3.1. υB(X) is a realcompact Tychonoff space that contains each

B ∈ B as a relatively compact subspace, i.e. the closure in υB(X) of an element

in B is compact.

Proof. The proof of the first statement can be found in [9]. Furthermore,
it is a well-known fact that the relatively pseudocompact subsets of X are
relatively compact in υ(X). The proof of the second statement is completely
analogous. �

Definition 3.2. A bornological universe (X,B) will be called realcompact if

υB(X) is equal to X.

Proposition 3.3. (X,B) is realcompact iff X is realcompact as a topological

space and B contains only relatively compact subsets.

Proof. That this condition is necessary follows from the previous proposition.
If this condition is satisfied, then each real valued, continuous map is automat-
ically bounded on all elements of B. This means that CB(X) is equal to C(X)
and that υB(X) is by definition equal to the Hewitt realcompactification of X .
Since we assumed X to be realcompact we obtain that υB(X) equals X . �

Proposition 3.4. (υB(X), C(υB(X)) is the completion of (X, CB(X)).

Proof. Because υB(X) is a realcompact Tychonoff space, we obtain that the
uniform space (υB(X), C(υB(X)) is complete (see [9]). To prove that it is the
completion of (X, CB(X)) we need to show that (X, CB(X)) →֒ (υB(X), C(υB(X))
is a dense embedding. Because all B ∈ B are relatively compact in υB(X) we
have that the restriction of a map f ∈ C(υB(X)) to X is bounded and because
the source C(υB(X)) is initial this yields that (X, CB(X)) →֒ (υB(X), C(υB(X))
is uniformly continuous. Moreover, because each f ∈ CB(X) can be extended to
a real valued, continuous map on υB(X) — the extension being the restriction
of fβ to υB(X) — we obtain that this map is actually a dense embedding. �

Corollary 3.5. (X,B) is realcompact iff (X, CB(X)) is complete.

By a character on an algebra we mean a non-zero, real valued algebra mor-
phism. One of the possible characterizations of realcompactness of a Tychonoff
space X is the following: for each character τ on C(X) there is an x ∈ X such
that τ(f) = f(x) for each f ∈ C(X). This means that for a realcompact topo-
logical space each character on the algebra of real valued, continuous maps is
equal to a point-evaluation. In the setting for bornological universes we have
the following result:
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Proposition 3.6. (X,B) is realcompact iff each character on CB(X) is equal

to a point-evaluation.

Proof. Suppose that this condition is satisfied and that y is an element of
υB(X). This element y defines a character on CB(X) by sending an f to fβ(y)
and thus we can find an x ∈ X such that f(x) = fβ(y) for all f ∈ CB(X).
Because the continuous maps from β(X) into [0, 1] separate points we obtain
that x = y.

If X is equal to υB(X), then all elements of B are relatively compact and
therefore CB(X) is equal to C(X). If we combine this result with the fact that
υB(X), and therefore X , is realcompact as a topological space, then we get
that each character on the algebra of bounded continuous maps on (X,B) is
equal to a point-evaluation. �

For a Tychonoff space X both compactness and realcompactness can be char-
acterized using z-ultrafilters. In particular, X is compact iff each z-ultrafilter is
fixed and X is realcompact iff each z-ultrafilter with the countable intersection
property is fixed. We will see that for bornological universes (X,B) with a
normal underlying topological space X the notion of realcompactness can be
described with z-ultrafilters as well.

Definition 3.7. Let (X,B) be a bornological universe. A decreasing sequence

(Zn)n of zero-sets is called unbounded if for each B ∈ B there is an n ∈ N for

which B ∩ Zn = φ.

Lemma 3.8. If B is a subset of a normal space and Z is a zero-set that

intersects with all zero-sets that contain B, then Z intersects with B.

Proof. If this were not the case, then we could find a continuous map from X
into [0, 1] such that f(B) ⊆ {0} and f(Z) ⊆ {1}. This would imply that there
is a zero-set that contains B and does not intersect with Z. �

Lemma 3.9. A subset B of a topological space X is relatively compact iff each

open cover of X contains a finite subcover of B.

Proposition 3.10. Let (X,B) be a bornological universe with a normal under-

lying topological space X. (X,B) is realcompact iff each z-ultrafilter that does

not contain a decreasing, unbounded sequence of zero-sets, is fixed.

Proof. Let (X,B) be realcompact and F a z-ultrafilter on X that does not
contain a decreasing, unbounded sequence of zero-sets. We want to prove that
F has the countable intersection property. Take a decreasing sequence (Zn)n

of zero-sets in F . By definition we can find a B ∈ B such that for each n ∈ N

we have B ∩ Zn 6= φ. Because B is compact, the z-filter generated by the sets
B ∩Zn is fixed. Hence we obtain that

⋂
n Zn is not empty. This means that F

has the countable intersection property and that, because X is realcompact, F
is fixed.

To prove that this condition is sufficient we first take a z-ultrafilter F on X
with the countable intersection property. Since each singleton in X is bounded
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we obtain that F does not contain any decreasing, unbounded sequence of zero-
sets and thus, that F is fixed. This yields that X is realcompact. Now we take
a B ∈ B and an open cover G of X . Let Z be the set of all zero-sets that contain
a set X \ G with G ∈ G and all zero-sets that contain B. If we assume that
G does not contain a finite subcover of B, then Z has the finite intersection
property and we can find a z-ultrafilter F that contains Z. From lemma 3.8 we
obtain that each element of F intersects with B and this of course implies that
F does not contain any decreasing, unbounded sequences of zero-sets. Because
F is not fixed we have to conclude that our original assumption was false and
that G does contain a finite subcover of B. �

When we look at the proof it is clear that if we do not assume the space X
to be normal, the condition stated in the previous proposition is still necessary.

The last results that we will encounter all concern Hausdorff uniformizable
bornological universes (X,B), i.e. X is Tychonoff and B is saturated. We
already saw that in a Hausdorff uniformizable bornological universe (X,B) all
relatively pseudocompact sets, and therefore all relatively compact sets, are
contained in B. We also know that in a realcompact bornological universe all
bounded sets are relatively compact. This means that if a bornological universe
(X,B) is uniformizable and realcompact, the space X is realcompact and B is
the bornology of relatively compact sets (which is equal to the bornology of
relatively pseudocompact sets for realcompact spaces). Since in this case all
continuous, real valued maps on X are bounded we automatically obtain that
the converse implication is true as well.

Proposition 3.11. (X,B) is Hausdorff uniformizable and realcompact iff it is

isomorphic to a closed subspace of a product of real lines.

Proof. Each realcompact topological space X is isomorphic to a closed subset
C of a product R

α of real lines. In such a space a subset B is bounded iff
each of its projections is bounded or, equivalently, it is contained in a compact
subset of R

α. Since C is closed this is equivalent to saying that the closure of
B in C is compact. This means that this condition is necessary.

We know that a topological space that is isomorphic to a closed subset of a
product of real lines is realcompact and that the closure of a bounded set in
such a space is compact, so this condition is also sufficient. �

Definition 3.12. For a Hausdorff uniformizable bornological universe (X,B)
we define υ(X,B) as the object (υB(X), υ(B)), where υ(B) denotes the set of all

relatively compact subsets of υB(X). This is again a Hausdorff uniformizable

bornological universe and by definition it is also realcompact.

Proposition 3.13. Let f : (X,B) → (Y,B′) be a morphism. If we define

υ(f) as the restriction of β(f) to υB(X), then υ(f) : υ(X,B) → υ(Y,B′) is a

morphism.
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Proof. What we need to prove is that β(f) is a morphism from υB(X) to
υB′(Y ). Let x be an element of υB(X). For each g ∈ CB′(Y ) we have that
g ◦ f is an element of CB(X) and thus that (g ◦ f)β(x) is real. Because the
map (g ◦ f)β is equal to gβ ◦ β(f) we obtain that β(f)(x) is in υB′(Y ). That
υ(f) is bounded is trivially true, since relatively compact sets are mapped to
relatively compact sets. �

Corollary 3.14. υ(X,B) is the realcompact reflection of (X,B) in the cate-

gory of Hausdorff uniformizable bornological universes and bounded, continuous

maps.

Proof. We know that (X,B) →֒ υ(X,B) is a morphism. Furthermore, if (Y,B′)
is realcompact, then υ(Y,B) is equal to (Y,B) and thus we obtain for each map
f : (X,B) → (Y,B′) that is bounded and continuous that υ(f) is a morphism
from υ(X,B) to (Y,B). �

The following proposition extends the well-known theorem that states that
the Hewitt realcompactification of a dense subspace Y of X equals the Hewitt
realcompactification of X iff Y is C-embedded in X .

Proposition 3.15. Let Y be a dense subspace of X and let B′ be the subspace

bornology on Y derived from B. The following statements are equivalent:

(1) if (Z,B′′) is realcompact, then each map f : (Y,B′) → (Z,B′′) that is

continuous and bounded has an extension to (X,B),
(2) each realvalued map f on (Y,B′) that is continuous and bounded has

an extension to (X,B),
(3) υ(Y,B′) = υ(X,B).

Proof. The first statement implies the second because R endowed with the
bornology of relatively compact subsets is a realcompact bornological universe.

From the second statement we obtain that each realvalued, continuous map f
that is bounded on Y has an extension to X . This implies that β(Y ) = β(X).
By definition we have that υB′(Y ) ⊆ υB(X). Now take an x ∈ υB(X), an
f ′ ∈ CB′(Y ) and let f be the extension of f ′ to X . Since they coincide on a
dense subset we have that (f ′)β equals fβ. Hence we get that (f ′)β(x) is equal
to fβ(x) and therefore an element of the reals. Because this is true for all maps
in CB′(Y ) we obtain that υB(X) is a subset of υB′(Y ). From the foregoing we
obtain that υB(X) is equal to υB′(Y ) and thus that υ(X,B) equals υ(Y,B′).

Suppose the third statement is true and take a map f : (Y,B′) → (Z,B′′),
where f is bounded and continuous and (Z,B′′) is realcompact. We know
that the map υ(f) : υ(Y,B) → υ(Z,B′′) is bounded and continuous and that
υ(Z,B′′) is equal to (Z,B′′). This implies that the restriction of υ(f) to X is a
map to (Z,B′′) that extends f . �



Uniformizable and realcompact bornological universes 287

References

[1] G. Beer, Embeddings of bornological universes, Set-valued Analysis 16 (2008), 477–488.
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