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Some remarks on stronger versions of the

Boundary Problem for Banach spaces

Jan-David Hardtke

Abstract

Let X be a real Banach space. A subset B of the dual unit sphere

of X is said to be a boundary for X, if every element of X attains

its norm on some functional in B. The well-known Boundary Problem

originally posed by Godefroy asks whether a bounded subset of X which

is compact in the topology of pointwise convergence on B is already

weakly compact. This problem was recently solved by Pfitzner in the

positive. In this note we collect some stronger versions of the solution

to the Boundary Problem, most of which are restricted to special types

of Banach spaces. We shall use the results and techniques of Pfitzner,

Cascales et al., Moors and others.
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1. Introduction

First we fix some notation: throughout this paper X denotes a real Banach
space, X∗ its dual, BX its closed unit ball and SX its unit sphere. For a subset
B of X∗ we denote by σB the topology on X of pointwise convergence on B. If
A ⊆ X , then coA stands for the convex hull of A and A

τ
for the closure of A

in any topology τ on X , except for the norm closure, which we simply denote
by A. Also, we denote by ex C the set of extreme points of a convex subset C
of X .

Now recall that a subset B of SX∗ is called a boundary for X , if for every
x ∈ X there is some b ∈ B such that b(x) = ‖x‖. It easily follows from
the Krein-Milman theorem that exBX∗ is always a boundary for X . In 1980



68 J.-D. Hardtke

Bourgain and Talagrand proved in [4] that a bounded subset A of X is weakly
compact if it is merely compact in the topology σE , where E = exBX∗ . In [14]
Godefroy asked whether the same statement holds for an arbitrary boundary
B, a question which has become known as the Boundary Problem.

Long since only partial positive answers were known, for example if X =
C(K) for some compact Hausdorff space K (cf. [5, Proposition 3]) or X = ℓ1(I)
for some set I (cf. [9, Theorem 4.9]). In [24, Theorem 1.1] the positive answer
for L1-preduals is contained. Moreover, the answer is positive if the set A is
additionally assumed to be convex (cf. [15, p.44]). It was only in 2008 that
the positive answer to the Boundary Problem was found in full generality by
Pfitzner in [20].

An important tool in the study of the Boundary Problem is the so called
Simons’ equality:

Theorem 1.1 (Simons, cf. [23]). If B is a boundary for X, then

(1.1) sup
x∗∈B

lim sup
n→∞

x∗(xn) = sup
x∗∈BX∗

lim sup
n→∞

x∗(xn)

holds for every bounded sequence (xn)n∈N in X.

In particular, it follows from Theorem 1.1 that the well-known Rainwater’s
theorem for the extreme points of the dual unit ball (cf. [21]) holds true for an
arbitrary boundary:

Corollary 1.2 (Simons, cf. [22] or [23]). If B is a boundary for X, then a
bounded sequence (xn)n∈N in X is weakly convergent to x ∈ X iff it is σB-
convergent to x.

Pfitzner’s proof also uses Simons’ equality, as well as a quantitative version
of Rosenthal’s ℓ1-theorem due to Behrends (cf. [3]) and an ingenious variant
of Hagler-Johnson’s construction.

Next we recall the following known characterization of weak compactness
(compare [16, p.145-149], [12, Theorem 5.5 and Exercise 5.19] as well as the
proof of [10, Theorem V.6.2]). It is a strengthening of the usual Eberlein-
Šmulian theorem.

Theorem 1.3. Let A be a bounded subset of X. Then the following assertions
are equivalent:

(i) A is weakly relatively compact.
(ii) For every sequence (xn)n∈N in A we have that

∞
⋂

k=1

co {xn : n ≥ k} 6= ∅.

(iii) For every sequence (xn)n∈N in A there is some x ∈ X such that

x∗(x) ≤ lim sup
n→∞

x∗(xn) ∀x∗ ∈ X∗.

In [18] Moors proved a statement stronger than the equivalence of (i) and
(ii), which also sharpens the result from [4]:
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Theorem 1.4 (Moors, cf. [18]). A bounded subset A of X is weakly relatively
compact iff for every sequence (xn)n∈N in A we have that

∞
⋂

k=1

coσE {xn : n ≥ k} 6= ∅,

where E = exBX∗ . In particular, A is weakly relatively compact if it is merely
relatively countably compact in the topology σE .

In fact, Moors gets this theorem as a corollary to the following one:

Theorem 1.5 (Moors, cf. [18]). Let A be an infinite bounded subset of X.
Then there exists a countably infinite set F ⊆ A with coσEF = coF , where
E = ex BX∗ . In particular, for each bounded sequence (xn)n∈N in X there is a
subsequence (xnk

)k∈N with coσE {xnk
: k ∈ N} ⊆ co {xn : n ∈ N}.

The object of this paper is to give some results related to Theorem 1.4 in
the more general context of boundaries. In particular, we shall see, by a very
slight modification of the construction from [20], that a ‘non-relative’ version
of 1.4 holds for any boundary B of X , see Theorem 2.15.

Since we will also deal with some quantitative versions of Theorem 1.4, it is
necessary to introduce a bit more of terminology, which stems from [11]: Given
ε ≥ 0, a bounded subset A of X is said to be ε-weakly relatively compact (in

short ε-WRC) provided that dist(x∗∗, X) ≤ ε for every element x∗∗ ∈ A
w∗

,
where w∗ refers to the weak*-topology of X∗∗. For ε = 0 this is equivalent to
the classical case of weak relative compactness.
The authors of [11] used this notion to give a quantitative version of the well
known theorem of Krein (cf. [11, Theorem 2]). In their proof they made use
of double limit techniques in the spirit of Grothendieck. More precisely, they
worked with the following definition: Let bounded subsets A of X , M of X∗

and ε ≥ 0 be given. Then A is said to have ε-interchangeable double limits
with M if for any two sequences (xn)n∈N in A and (x∗

m)m∈N in M we have
∣

∣

∣
lim

n→∞
lim

m→∞
x∗

m(xn) − lim
m→∞

lim
n→∞

x∗
m(xn)

∣

∣

∣
≤ ε,

provided that all the limits involved exist. In this case we write A§ε§M .
The connection to ε-WRC sets is given by the following proposition:

Proposition 1.6 (Fabian et al., cf. [11]). Let A ⊆ X be bounded and ε ≥ 0.
Then the following hold:

(i) If A is ε-WRC, then A§2ε§BX∗.
(ii) If A§ε§BX∗, then A is ε-WRC.

In case ε = 0 this is the classical Grothendieck double limit criterion. For
various other quantitative results on weak compactness we refer the interested
reader to [2], [6], [7] and [11]. For some related results on weak sequential
completeness, see also [17].
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We are now ready to formulate and prove our results. However, it should be
added that all of them can easily be derived from already known results and
techniques.

2. Results and proofs

We begin with a quantitative version of Theorem 1.3. First we prove an
easy lemma that generalizes the equivalence of (ii) and (iii) in said theorem
(the proof is practically the same).

Lemma 2.1. Let B be a subset of BX∗ that separates the points of X and let
(xn)n∈N be a sequence in X as well as x ∈ X and ε ≥ 0. Then the following
assertions are equivalent:

(i) x ∈
⋂∞

k=1 coσB ({xn : n ≥ k} + εBX).
(ii) x∗(x) ≤ lim supn→∞ x∗(xn) + ε ∀x∗ ∈ BX∗ ∩ span B.

Proof. First we assume (i). It then directly follows that

x∗(x) ∈ co ({x∗(xn) : n ≥ k} + [−ε, ε]) ∀k ∈ N ∀x∗ ∈ BX∗ ∩ spanB.

Thus we also have x∗(x) ≤ supn≥k x∗(xn) + ε for all k ∈ N and all x∗ ∈
BX∗ ∩ spanB and the assertion (ii) follows.

Now we assume that (ii) holds and take k ∈ N arbitrary. Suppose that

x 6∈ coσB ({xn : n ≥ k} + εBX) .

Then by the separation theorem we could find a functional x∗ ∈ (X, σB)′ =
spanB with ‖x∗‖ = 1 and a number α ∈ R such that

x∗(y) ≤ α < x∗(x) ∀y ∈ coσB ({xn : n ≥ k} + εBX) .

It follows that

lim sup
n→∞

x∗(xn) + ε ≤ α < x∗(x),

a contradiction which ends the proof. �

Now we can give a quantitative version of the first equivalence in Theorem
1.3.

Theorem 2.2. Let A ⊆ X be bounded and ε ≥ 0. If for each sequence (xn)n∈N

in A we have

(2.1)

∞
⋂

k=1

co ({xn : n ≥ k} + εBX) 6= ∅,

then A is 2ε-WRC.
If A is ε-WRC, then

(2.2)

∞
⋂

k=1

co ({xn : n ≥ k} + rBX) 6= ∅

holds for every sequence (xn)n∈N in A and every r > ε.
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Proof. First we assume that (2.1) holds for every sequence in A. Let (xn)n∈N

and (x∗
m)m∈N be sequences in A and BX∗ , respectively, such that the limits

lim
n→∞

lim
m→∞

x∗
m(xn) and lim

m→∞
lim

n→∞
x∗

m(xn)

exist. By assumption, we can pick an element

x ∈

∞
⋂

k=1

co ({xn : n ≥ k} + εBX) .

From Lemma 2.1 we conclude that

(2.3) lim inf
n→∞

x∗(xn) − ε ≤ x∗(x) ≤ lim sup
n→∞

x∗(xn) + ε ∀x∗ ∈ BX∗ .

It follows that

(2.4)
∣

∣

∣
x∗

m(x) − lim
n→∞

x∗
m(xn)

∣

∣

∣
≤ ε ∀m ∈ N.

Now take a weak*-cluster point x∗ ∈ BX∗ of the sequence (x∗
m)m∈N. Then

(2.5) lim
n→∞

lim
m→∞

x∗
m(xn) = lim

n→∞
x∗(xn).

By (2.3) we have

(2.6)
∣

∣

∣
x∗(x) − lim

n→∞
x∗(xn)

∣

∣

∣
≤ ε.

Since x∗(x)−limm→∞ limn→∞ x∗
m(xn) is a cluster point of the sequence (x∗

m(x)−
limn→∞ x∗

m(xn))m∈N it follows from (2.4) that

(2.7)
∣

∣

∣
x∗(x) − lim

m→∞
lim

n→∞
x∗

m(xn)
∣

∣

∣
≤ ε.

From (2.5), (2.6) and (2.7) we get
∣

∣

∣
lim

m→∞
lim

n→∞
x∗

m(xn) − lim
n→∞

lim
m→∞

x∗
m(xn)

∣

∣

∣
≤ 2ε.

Thus we have proved A§2ε§BX∗ . Hence, by Proposition 1.6, A is 2ε-WRC.
Now assume that A is ε-WRC and take any sequence (xn)n∈N in A as well as

r > ε. Let x∗∗ ∈ A
w∗

be a weak*-cluster point of (xn)n∈N. Since A is ε-WRC
there is some x ∈ X such that ‖x∗∗ − x‖ ≤ r.

For every x∗ ∈ BX∗ the number x∗∗(x∗) is a cluster point of the sequence
(x∗(xn))n∈N and thus

x∗(x) ≤ ‖x − x∗∗‖ ‖x∗‖ + x∗∗(x∗) ≤ r + lim sup
n→∞

x∗(xn).

Lemma 2.1 now yields

x ∈

∞
⋂

k=1

co ({xn : n ≥ k} + rBX)

and the proof is finished. �

As an immediate corollary we get
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Corollary 2.3. If A ⊆ X is bounded and ε ≥ 0 such that
∞
⋂

k=1

(co {xn : n ≥ k} + εBX) 6= ∅

for every sequence (xn)n∈N in A, then A is 2ε-WRC.

Now we can also prove a quantitative version of Theorem 1.4:

Corollary 2.4. Let A ⊆ X be bounded, ε ≥ 0 and E = exBX∗ . If for each
sequence (xn)n∈N in A we have that

∞
⋂

k=1

(coσE {xn : n ≥ k} + εBX) 6= ∅,

then A is 2ε-WRC.

Proof. Let (xn)n∈N be a sequence in A. By means of Theorem 1.5 and an easy
diagonal argument we can find a subsequence (xnk

)k∈N such that coσE {xnk
: k ≥ l} ⊆

co {xn : n ≥ l} for all l (compare [18, Corollary 0.2]). It then follows from our
assumption that

∞
⋂

l=1

(co {xn : n ≥ l} + εBX) 6= ∅.

Hence, by Corollary 2.3, A is 2ε-WRC. �

Next we observe that Moors’ Theorem 1.5 does not only work for the extreme
points of BX∗ but also for any weak*-separable boundary.

Theorem 2.5. Let B be a weak*-separable boundary for X and A a bounded
infinite subset of X. Then there is a countably infinite set F ⊆ A such that
coF = coσBF . In particular, for every bounded sequence (xn)n∈N in X there
exists a subsequence (xnk

)k∈N with coσB {xnk
: k ∈ N} ⊆ co {xn : n ∈ N}.

Proof. The proof is completely analogous to that of Theorem 1.5 given in [18],
in fact it is even simpler, so we shall only sketch it. Arguing by contradiction,
we suppose that for each countably infinite subset F of A there is an element
z ∈ coσB F \ coF .

Then we can show exactly as in [18] (using the Bishop-Phelps theorem (cf.
[13, Theorem 5.5]) and the Hahn-Banach separation theorem) that for every
sequence (xn)n∈N in A for which the set {xn : n ∈ N} is infinite, there is an
element

(2.8) x ∈

∞
⋂

k=1

coσB {xn : n ≥ k} \ co {xn : n ∈ N} .

We remark that the weak*-separability of B is not needed for this step.
Next we fix a sequence (xn)n∈N in A whose members are distinct and a

countable weak*-dense subset {x∗
m : m ∈ N} of B. By the usual diagonal ar-

gument we may select a subsequence (again denoted by (xn)n∈N) such that
limn→∞ x∗

m(xn) exists for all m.
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We then choose an element x according to (2.8) and conclude that for each
m ∈ N we have limn→∞ x∗

m(xn) = x∗
m(x).

Now let x∗ ∈ B be arbitrary. Again as in [18] we will show that limn→∞ x∗(xn) =
x∗(x). Suppose that this is not the case. Then there is an ε > 0 such that
|x∗(x) − x∗(xn)| > ε for infinitely many n ∈ N. Let us assume x∗(xn) >
ε + x∗(x) for infinitely many n and arrange these indices in an increasing se-
quence (nk)k∈N. By (2.8) we can find

z ∈

∞
⋂

l=1

coσB {xnk
: k ≥ l} \ co {xnk

: k ∈ N} .

It follows that x∗
m(z) = limk→∞ x∗

m(xnk
) = x∗

m(x) for all m and since {x∗
m : m ∈ N}

is weak*-dense in B this implies x∗(x) = x∗(z), whereas on the other hand
x∗(z) ≥ ε + x∗(x), a contradiction.

Thus (xn)n∈N is σB-convergent to x and hence, by Corollary 1.2 it is also
weakly convergent to x, which in turn implies x ∈ co {xn : n ∈ N}, contradict-
ing the choice of x. �

Note that the assumption of weak*-separability of B is fulfilled, in particular,
if X is separable, for then the weak*-topology on BX∗ is metrizable. As an
immediate corollary we get 2.4 for weak*-separable boundaries.

Corollary 2.6. Let B be a boundary for X and A a bounded subset of X as
well as ε ≥ 0. If B is weak*-separable (in particular, if X is separable) and for
each sequence (xn)n∈N in A we have

∞
⋂

k=1

(coσB {xn : n ≥ k} + εBX) 6= ∅,

then A is 2ε-WRC.

Proof. Exactly as the proof of Corollary 2.4. �

Let us now consider Banach spaces of a certain type, namely the case
X = C(K) for some compact Hausdorff space K or X = ℓ1(I) for some in-
dex set I. In [5] respectively [9] Cascales et al. found the positive solution to
the Boundary Problem for these types of spaces. In fact, they even proved a
stronger statement, namely that in the above cases the space (X, σB) is an-
gelic1 for every boundary B of X . In order to get the statement of Corollary 2.6
for arbitrary boundaries in C(K)- and ℓ1(I)-spaces we shall need the following
easy lemma.

Lemma 2.7. Let T and S be subsets of X∗ such that for every countable set
D ⊆ X and every x∗ ∈ T there is some y∗ ∈ S such that x∗(x) = y∗(x) for all
x ∈ D.
Then for every countable set D ⊆ X we have coσS D ⊆ coσT D.

1See [5] or [12] for the definition and background.
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Proof. Let D ⊆ X be countable and take any x ∈ coσS D. Further, fix
x∗

1, . . . , x
∗
n ∈ T and ε > 0. By assumption we can find y∗

1 , . . . , y∗
n ∈ S such

that
x∗

i (y) = y∗
i (y) ∀y ∈ D ∪ {x} ∀i = 1, . . . , n.

But then the same equality holds for every y ∈ co (D ∪ {x}) and since x ∈
coσS D we may select some y ∈ coD with |y∗

i (x) − y∗
i (y)| ≤ ε for all i = 1, . . . , n.

It follows that |x∗
i (x) − x∗

i (y)| ≤ ε for i = 1, . . . , n and the proof is finished. �

According to the results of Cascales et al. the condition of Lemma 2.7 is
fulfilled if X = C(K) or X = ℓ1(I), T = exBX∗ and S is any boundary for
X (see [5, Lemma 1] for X = C(K) and the proof of [9, Theorem 4.9] for
X = ℓ1(I)), thus we immediately get the following lemma.

Lemma 2.8. If X = C(K) for some compact Hausdorff space K or X = ℓ1(I)
for some index set I and B is any boundary for X, then for every countable
set D ⊆ X we have coσB D ⊆ coσE D, where E = ex BX∗ .

From Lemma 2.8 and Corollary 2.4 we now get the desired result.

Corollary 2.9. If X = C(K) for some compact Hausdorff space K or X =
ℓ1(I) for some set I and B is any boundary for X as well as A ⊆ X a bounded
set and ε ≥ 0 such that for every sequence (xn)n∈N in A we have

∞
⋂

k=1

(coσB {xn : n ≥ k} + εBX) 6= ∅,

then A is 2ε-WRC.

Next we turn to spaces not containing isomorphic copies of ℓ1. It is known
that for such spaces one has coγB = BX∗ for every boundary B of X , where we
denote by γ the topology on X∗ of uniform convergence on bounded countable
subsets of X (cf. [8, Theorem 5.4]).

We will also need two easy lemmas.

Lemma 2.10. Let A ⊆ X and S ⊆ X∗ be bounded as well as ε ≥ 0 such that
A§ε§S. Then we also have A§ε§S

γ
.

Proof. Let (xn)n∈N and (x∗
m)m∈N be sequences in A and S

γ
, respectively, such

that the limits

lim
n→∞

lim
m→∞

x∗
m(xn) and lim

m→∞
lim

n→∞
x∗

m(xn)

exist. For each m ∈ N we can pick a functional x̃∗
m ∈ S with

|x∗
m(xn) − x̃∗

m(xn)| ≤
1

m
∀n ∈ N.

By the usual diagonal argument, choose a subsequence (xnk
)k∈N such that

limk→∞ x̃∗
m(xnk

) exists for all m. It then easily follows that

lim
m→∞

lim
n→∞

x∗
m(xn) = lim

m→∞
lim

k→∞
x̃∗

m(xnk
) and

lim
n→∞

lim
m→∞

x∗
m(xn) = lim

k→∞
lim

m→∞
x̃∗

m(xnk
).
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Since A§ε§S, we conclude that
∣

∣

∣
lim

n→∞
lim

m→∞
x∗

m(xn) − lim
m→∞

lim
n→∞

x∗
m(xn)

∣

∣

∣
≤ ε,

finishing the proof. �

Lemma 2.11. Let (xn)n∈N be a bounded sequence in X and B ⊆ BX∗ such
coγB = BX∗ . Then

coσB {xn : n ∈ N} = co {xn : n ∈ N} .

Proof. Take x ∈ coσB {xn : n ∈ N} and let ε > 0 and x∗
1, . . . , x

∗
k ∈ BX∗ be

arbitrary. By assumption, we can find x̃∗
1, . . . , x̃

∗
k ∈ co B such that for i =

1, . . . , k we have

|x̃∗
i (xn) − x∗

i (xn)| ≤ ε ∀n ∈ N and |x̃∗
i (x) − x∗

i (x)| ≤ ε.

It follows that

|x̃∗
i (y) − x∗

i (y)| ≤ ε ∀y ∈ co ({xn : n ∈ N} ∪ {x}) ∀i = 1, . . . , k.

Now take some element y ∈ co {xn : n ∈ N} with |x̃∗
i (y) − x̃∗

i (x)| ≤ ε for all
i = 1, . . . , k.
Employing the triangle inequality we can deduce |x∗

i (x) − x∗
i (y)| ≤ 3ε, which

ends the proof. �

As an immediate consequence of Lemma 2.11, Corollary 2.3 and the afore-
mentioned result [8, Theorem 5.4] we get the following corollary.

Corollary 2.12. Suppose ℓ1 6⊆ X and let B be a boundary for X. If A ⊆ X
is bounded and ε ≥ 0 such that for each sequence (xn)n∈N in A we have

∞
⋂

k=1

(coσB {xn : n ≥ k} + εBX) 6= ∅,

then A is 2ε-WRC.

We can further get a kind of ‘boundary double limit criterion’.

Proposition 2.13. Let B be a boundary for X as well as ε ≥ 0 and A ⊆ X
be bounded such that A§ε§B. Then A is 2ε-WRC. If ℓ1 6⊆ X, then A is even
ε-WRC.

Proof. From [7, Theorem 3.3] it follows that we also have A§ε§ coB. Since
B is a boundary for X the Hahn-Banach separation theorem implies BX∗ =
cow∗

B. Therefore it follows from [2, Lemma 3] that A§2ε§BX∗ . Thus by (ii)
of Proposition 1.6 A is 2ε-WRC.2

Moreover, if ℓ1 6⊆ X then we even have BX∗ = coγB by the already cited [8,
Theorem 5.4]. Hence A§ε§BX∗ by Lemma 2.10, thus A is ε-WRC. �

2This proof also works under the weaker assumption that B is only norming for X, i.e.

‖x‖ = supb∈B b(x) for all x ∈ X, because in this case we also have BX∗ = cow
∗

B by the

separation theorem.
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Our final aim in this note is to prove a ‘non-relative’ version of Theorem
1.4 for arbitrary boundaries. To do so, we will use the techniques of Pfitzner
from [20]. More precisely, we can get the following slight generalization of the
“in particular case” of [20, Proposition 8]. Recall that an ℓ1-sequence in X is
simply a sequence equivalent to the canonical basis of ℓ1.

Proposition 2.14. Let B be a boundary for X. If A ⊆ X is bounded and for
every sequence (xn)n∈N in A we have

(2.9) A ∩

∞
⋂

k=1

coσB {xn : n ≥ k} 6= ∅,

then A does not contain an ℓ1-sequence.

Proof. The proof is completely analogous to that of [20, Proposition 8], there-
fore we will only give a very brief sketch. We use the notation and definitions
from [20]. Arguing by contradiction, we assume that there is an ℓ1-sequence
(xn)n∈N in A. By [20, Lemma 2] we may assume that (xn)n∈N is δ-stable.
We take a sequence (αk)k∈N of positive numbers decreasing to zero. By [20,

Lemma 7] we can find ε ≥ 1/2δ̃B(xn) = 1/2δ̃(xn) > 0, a sequence (bk)k∈N in B
and a tree (Ωσ)σ∈S such that for each k ∈ N and every σ, σ′ ∈ Sk with σk = 0
and σ′

k = 1 we have

bk(xn − xn′) ≥ 2ε(1 − αk) ∀n ∈ Ωσ, n′ ∈ Ωσ′ .

It follows that the same inequality holds for every x ∈ coσB {xn : n ∈ Ωσ} and
x′ ∈ coσB {xn′ : n′ ∈ Ωσ′}.
Now using our hypothesis we can proceed completely analogous to the proof of
the claim in [20, Proposition 8] to find a sequence (ym)m∈N in A∩

⋂∞

k=1 coσB {xn : n ≥ k}
such that

bk(ym − ym′) ≥ 2ε(1 − αk) ∀m ≤ k < m′.

Next we take an element

y ∈ A ∩

∞
⋂

k=1

coσB {ym : m ≥ k} .

As in the proof of [20, Proposition 8] we put

x =
∞
∑

m=1

2−m(ym − y)

and proceed again exactly as in the proof of [20, Proposition 8] to show that
‖ym − y‖ ≤ 2ε for all m and ‖x‖ = 2ε. Finally, taking a functional b ∈ B with
b(x) = ‖x‖ we obtain b(y) = 2ε + b(y) and with this contradiction the proof is
finished. �

Now we can get the final result.
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Theorem 2.15. Let B be a boundary for X and A ⊆ X be bounded. Then the
following assertions are equivalent:

(i) A is countably compact in the topology σB .
(ii) For every sequence (xn)n∈N in A we have

A ∩
∞
⋂

k=1

coσB {xn : n ≥ k} 6= ∅.

(iii) For every sequence (xn)n∈N in A there is some x ∈ A with

x∗(x) ≤ lim sup
n→∞

x∗(xn) ∀x∗ ∈ spanB.

(iv) A is weakly compact.

Proof. The implications (i) ⇒ (ii) and (iv) ⇒ (i) are clear and the equivalence
of (ii) and (iii) follows from Lemma 2.1. It only remains to prove (ii) ⇒ (iv).

Let us assume that (ii) holds and take an arbitrary sequence (xn)n∈N in
A. By Proposition 2.14 no subsequence of (xn)n∈N is an ℓ1-sequence and thus
Rosenthal’s theorem (cf. [3] or [1, Theorem 10.2.1]) applies to yield a subse-
quence (xnk

)k∈N which is weakly Cauchy. Now choose an element

x ∈ A ∩

∞
⋂

l=1

coσB {xnk
: k ≥ l} .

It easily follows that limk→∞ b(xnk
) = b(x) for all b ∈ B. By Corollary 1.2

(xnk
)k∈N is weakly convergent to x.

Thus we have shown that A is weakly sequentially compact. Hence it is also
weakly compact, by the Eberlein-Šmulian theorem. �

Remark 2.1. It is proved in [11, Remark 10] that for X = ℓ1 the statement
BX§ε§BX∗ is false for every 0 < ε < 2. An alternative proof of this fact is given
[6, Example 5.2]. It is further proved in [11, Remark 10] that every separable
Banach space X which contains an isomorphic copy of ℓ1 can be equivalently
renormed such that, in this renorming, the statement BX§ε§BX∗ is false for
every 0 < ε < 2. The proof makes use of the notion of octahedral norms.

We wish to point out here that the argument from [6, Example 5.2] can be
carried over to arbitrary Banach spaces containing a copy of ℓ1, precisely we
have the following proposition.

Proposition 2.16. If X is a (not necessarily separable) Banach space which
contains ℓ1 than the statement BX§ε§BX∗ (in the original norm of X) is false
for every 0 < ε < 2.

Proof. Take 0 < ε < 2 arbitrary and fix 0 < δ < 1 such that 2(1 − δ) > ε.
Since X contains ℓ1 we may find, with the aid of James’ ℓ1-distortion theorem
(cf. [1, Theorem 10.3.1]), a sequence (xn)n∈N in the unit sphere of X such that
T : ℓ1 → X defined by

Ty =
∞
∑

k=1

αkxk ∀y = (αn)n∈N ∈ ℓ1
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is an isomorphism (onto U = ranT ) with
∥

∥T−1
∥

∥ ≤ (1 − δ)−1. Consequently,

the adjoint T ∗ : U∗ → ℓ∞ is as well an isomorphism with
∥

∥(T ∗)−1
∥

∥ ≤ (1−δ)−1.
Now we can define as in [6, Example 5.2] for each n ∈ N a norm one functional
y∗

n ∈ ℓ∞ by

y∗
n(m) =

{

1, if m ≤ n

−1, if m > n.

Put u∗
n = (T ∗)−1y∗

n for all n ∈ N. Then ‖u∗
n‖ ≤ (1 − δ)−1 and hence by the

Hahn-Banach extension theorem we can find x∗
n ∈ BX∗ with x∗

n|U = (1 − δ)u∗
n

for all n ∈ N. It follows that
∣

∣

∣
lim

n→∞
lim

m→∞
x∗

n(xm) − lim
m→∞

lim
n→∞

x∗
n(xm)

∣

∣

∣
= 2(1 − δ) > ε

and the proof is finished. �

In the notation of [6] we have proved γ(BX) = 2 for every Banach space
X containing an isomorphic copy of ℓ1, which implies that the value of BX

under all other measures of weak non-compactness considered in [6] is equal to
one (again compare [6, Example 5.2]). So in a certain sense a Banach space
containing ℓ1 is ‘as non-reflexive as possible’.

Remark 2.2. Shortly after the first version of this paper was published on the
web, the author received a message from Prof. Warren B. Moors, who kindly
pointed out to him that the above Lemma 2.8 probably also holds true if X
is an L1-predual3 (which includes all C(K)-spaces), refering to the paper [19].
Indeed, from [19, Theorem 3] one can easily get the following result: if B is a
boundary for the L1-predual X and E = ex BX∗ , then

coσB {xn : n ∈ N} ⊆ coσE {xn : n ∈ N}

holds for every sequence (xn)n∈N in X . For the proof just apply [19, Theorem
3] to the countable set coQ {xn : n ∈ N} consisting of all convex combinations
of the xn’s with rational coefficients.

It follows that Corollary 2.9 also carries over to arbitrary boundaries of
L1-preduals.

Acknowledgements. The author wishes to express his gratitude to Prof.
Warren B. Moors for providing him with the important hint already mentioned
in the remark above and to the anonymous referee for multiple comments and
suggestions (in particular for proposing Lemma 2.7) which improved the expo-
sition of the results.

3Recall that a Banach space X is called an L1-predual if X∗ is isometric to L1(µ) for
some suitable measure µ.
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