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Universal elements for some classes of spaces

D. N. Georgiou, S. D. Iliadis and A. C. Megaritis∗

Abstract

In the paper [4] two dimensions, denoted by dm and Dm, are defined in
the class of all Hausdorff spaces. The dimension Dm does not have the
universality property in the class of separable metrizable spaces because
the family of all such spaces X with Dm(X) ≤ 0 coincides with the
family of all totally disconnected spaces in which there are no universal
elements (see [5]). In [3] we gave the dimension-like functions dm

IK,IB

IE

and Dm
IK,IB

IE , where IK is a class of subsets, IE a class of spaces and

IB a class of bases and we proved that in the families IP(dmIK,IB

IE ≤ κ)

and IP(Dm
IK,IB

IE ≤ κ) of all spaces X for which dm
IK,IB

IE (X) ≤ κ and

Dm
IK,IB

IE (X) ≤ κ, respectively there exist universal elements. In this
paper, we give some new dimension-like functions and define using these
definitions classes of spaces in which there are universal elements.

2010 MSC: 54B99, 54C25.
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1. Introduction and preliminaries

Agreement. All spaces are assumed to be T0-spaces of weight ≤ τ , where τ
is a fixed infinite cardinal. The set of all finite subsets of τ is denoted by F
and the first infinite cardinal is denoted by ω. The cardinality of a set X is
denoted by |X |. The class of all ordinals is denoted by O. We also consider
two symbols: −1 and ∞. It is assumed that −1 < α < ∞ for every α ∈ O.

In the proof of the main results of this paper widely we use notions and nota-
tions from [2]. For this reason we start given some of them.
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We shall use the symbol “ ≡ ” in order to introduce new notations without
mention this fact. If “ ∼ ” is an equivalence relation on a non-empty set X ,
then the set of all equivalence classes of ∼ is denoted by C(∼).

Let S be an indexed collection of spaces. An indexed collection

M ≡ {{UX
δ : δ ∈ τ} : X ∈ S} (1)

where {UX
δ : δ ∈ τ} is an indexed base for X , is called a co-mark of S. The

co-mark M of S is said to be a co-extension of a co-mark

M+ ≡ {{V X
δ : δ ∈ τ} : X ∈ S}

of S if there exists a one-to-one mapping θ of τ into itself such that for every
X ∈ S and for every δ ∈ τ , V X

δ = UX
θ(δ). The corresponding mapping θ is called

an indicial mapping from M+ to M.

Let
R1 ≡ {∼s

1: s ∈ F}

and
R0 ≡ {∼s

0: s ∈ F}

be two indexed families of equivalence relations on S. It is said that R1 is a
final refinement of R0 if for every s ∈ F there exists t ∈ F such that ∼t

1⊆∼s
0.

An indexed family R ≡ {∼s: s ∈ F} of equivalence relations on S is said to
be admissible if the following conditions are satisfied: (a) ∼∅= S × S, (b) for
every s ∈ F the number of ∼s-equivalence classes is finite, and (c) ∼s ⊆ ∼t,
if t ⊆ s. We denote by C(R) the set ∪{C(∼s) : s ∈ F}. The minimal ring of
subsets of S containing C(R) is denoted by C♦(R).

Consider the co-mark (1) of S. We denote by

RM ≡ {∼s
M: s ∈ F}

the indexed family of equivalence relations ∼s
M on S defined as follows: for

every X , Y ∈ S we set X ∼s
M Y if and only if there exists an isomorphism i of

the algebra of subsets of X generated by the set {UX
δ : δ ∈ s} onto the algebra

of subsets of Y generated by the set {UY
δ : δ ∈ s} such that i(UX

δ ) = UY
δ , for

every δ ∈ s. Also, we set ∼∅

M= S× S. An admissible family R of equivalence
relations on S is said to be M-admissible if R is a final refinement of RM.

Let R ≡ {∼s: s ∈ F} be an M-admissible family of equivalence relations on
S. On the set of all pairs (x,X), where X ∈ S and x ∈ X , we consider an
equivalence relation, denoted by ∼M

R , as follows: (x,X) ∼M
R (y, Y ) if and only

if X ∼s Y for every s ∈ F , and either x ∈ UX
δ and y ∈ UY

δ or x /∈ UX
δ and

y /∈ UY
δ for every δ ∈ τ . The set of all equivalence classes of the relation ∼M

R

is denoted by T(M,R) or simply by T.

For every H ∈ C♦(R) the set of all a ∈ T(M,R) for which there exists an
element (x,X) ∈ a such that X ∈ H is denoted by T(H). For every δ ∈ τ and
H ∈ C♦(R) we denote by UT

δ (H) the set of all a ∈ T(M,R) for which there
exists an element (x,X) ∈ a such that X ∈ H and x ∈ UX

δ .
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For every subset κ of τ and L ∈ C♦(R) we set

(1) BT
♦ ≡ {UT

δ (H) : δ ∈ τ and H ∈ C♦(R)}.

(2) BT
♦,κ ≡ {UT

δ (H) : δ ∈ κ and H ∈ C♦(R)}.

(3) BL
♦,κ ≡ {UT

δ (H) ∈ BT
♦,κ : H ⊆ L}.

Under some simple (set-theoretical) conditions on R the set BT
♦ is a base for a

topology on the set T(M,R) such that the corresponding space is a T0-space
of weight ≤ τ . Moreover, if for every X ∈ S the set {UX

δ : δ ∈ κ} is a base for
X , then the set BT

♦,κ is a base for the same topology on T(M,R). Therefore,

the family BL
♦,κ is a base for T(L). (See Corollary 1.2.8 and Proposition 1.2.9

in [2]).

For every element X of S there exists a natural embedding iXT of X into the
space T(M,R) defined as follows: for every x ∈ X , iXT (x) = a, where a is
the element of T(M,R) containing the pair (x,X). Thus, we have constructed
containing space T(M,R) for S of weight ≤ τ .

Suppose that for every X ∈ S a subset QX of X is given. The set

Q ≡ {QX : X ∈ S} (2)

is called a restriction of S. Let IF be a class of subsets. A restriction Q of an
indexed collection S of spaces is said to be a IF-restriction if (QX , X) ∈ IF for
every X ∈ S.

Consider the restriction (2) of S. The trace on Q of the co-mark M of S is the
co-mark

M|Q ≡ {{UX
δ ∩QX : δ ∈ τ} : QX ∈ Q}

of Q. The trace on Q of an equivalence relation ∼ on S is the equivalence
relation on Q denoted by ∼|Q and defined as follows: QX∼|QQY if and only
if X ∼ Y . Let R ≡ {∼s: s ∈ F} be an indexed family of equivalence relations
on S. The trace on Q of the family R is the family R|Q ≡ {∼s|Q : s ∈ F} of
equivalence relations on Q. The trace on Q of an element H of C♦(R) is the
element

H|Q ≡ {QX ∈ Q : X ∈ H}

of C♦(R|Q).

The M-admissible family R of equivalence relations on S is said to be (M,Q)-
admissible if R|Q is an M|Q-admissible family of equivalence relations on Q.

If R is an (M,Q)-admissible family of equivalence relations on S, then we
can consider the containing space T(M|Q,R|Q) for the indexed collection Q

corresponding to the co-mark M|Q and the M|Q-admissible family R|Q. The
containing space T(M|Q,R|Q) is denoted briefly by T|Q. There exists a natural
embedding of T(M|Q,R|Q) into T(M,R). So we can consider the containing
space T(M|Q,R|Q) as a subspace of the space T(M,R). The subsets of this
form will be called specific subsets of T(M,R).

A class IP of spaces is said to be saturated if for every indexed collection S of
spaces belonging to IP there exists a co-mark M+ of S satisfying the following
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condition: for every co-extensionM ofM+ there exists an M-admissible family
R+ of equivalence relations on S such that for every admissible family R of
equivalence relations on S, which is a final refinement of R+, and for every
L ∈ C♦(R) the space T(L) belongs to IP.

The co-mark M+ is said to be an initial co-mark of S corresponding to the
class IP and the family R is said to be an initial family of S corresponding to
the co-mark M and the class IP.

Agreement. In what follows we denote by ν a fixed cardinal greater than ω
and less than or equal to τ .

Notation. For every dimension-like function dfν , with as domain the class of
all spaces and as range the class O∪{−1,∞}; and for every α ∈ {−1}∪O, we
denote by IP(dfν ≤ α) the class of all spaces X with dfν(X) ≤ α.

2. The dimension-like functions: dmIK,IB
IE,ν and DmIK,IB

IE,ν

In this section we give some new dimension-like functions and define using
these definitions classes of spaces in which there are universal elements. The
proofs of these results are similar to the proofs of the results in [3], for this
reason are omitted.

Definition 2.1 (see [1]). Let A and B be two disjoint subsets of a space X .
We say that a subset L of X separates A and B if there exist two open subsets
U and W of X such that: (a) A ⊆ U , B ⊆ W , (b) U ∩ W = ∅, and (c)
X \ L = U ∪W .

Definition 2.2 (see [3]). A class IE of spaces is said to be IB-hereditary-
separated, where IB is a class of bases, if for every element X of IE there exists
a IB-base BX ≡ {Uδ : δ ∈ τ} for X such that for every two elements Uδ1 and
Uδ2 of BX with Cl(Uδ1)∩Cl(Uδ2) = ∅ there exists a subset L of X separating
the sets Cl(Uδ1) and Cl(Uδ2) and belonging to IE.

We note that if IE is IB-hereditary-separated, then ∅ ∈ IE. This follows by the
fact that the empty set is the unique subset of X separating the elements ∅

and X of BX .

Definition 2.3. Let IB be a class of bases, IE a IB-hereditary-separated class
of spaces, and IK a class of subsets with (X,X) ∈ IK for every space X . We

denote by dmIK,IB
IE,ν andDmIK,IB

IE,ν the dimension-like functions with as domain the

class of all spaces and as range the class O ∪ {−1,∞} satisfying the following
conditions:

(1) dmIK,IB
IE,ν (X) = DmIK,IB

IE,ν (X) = −1 if and only if X ∈ IE.

(2) DmIK,IB
IE,ν (X) ≤ α, α ∈ O, if and only if there exists a IB-base BX ≡

{Uδ : δ ∈ τ} for X such that for every two elements Uδ1 , Uδ2 of BX

with Cl(Uδ1) ∩ Cl(Uδ2) = ∅ there exists a subset L of X separating

Cl(Uδ1) and Cl(Uδ2) with dmIK,IB
IE,ν (L) < α.
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(3) dmIK,IB
IE,ν (X) ≤ α, α ∈ O, if and only if X = ∪{Si : i ∈ ν} such that: (a)

the subset Si of X is closed, (b) (Si, X) ∈ IK, and (c) DmIK,IB
IE,ν (Si) ≤ α,

i ∈ ν.

Therefore, dmIK,IB
IE,ν (X) = ∞ (respectively, DmIK,IB

IE,ν (X) = ∞) if and only if

the inequality dmIK,IB
IE,ν (X) ≤ α (respectively, DmIK,IB

IE,ν (X) ≤ α) is not true for
every α ∈ O.

Remark 2.4.

(1) In order that the above definition to be well defined we need to show

that if for a space X we have DmIK,IB
IE,ν (X) = dmIK,IB

IE,ν (X) = −1, then

DmIK,IB
IE,ν (X) ≤ 0 and dmIK,IB

IE,ν (X) ≤ 0.

For dimension-like function DmIK,IB
IE,ν this follows immediately by the

fact that X ∈ IE and the class IE is IB-hereditary-separated.

For dimension-like function dmIK,IB
IE,ν , we have (a) X = {Si : i ∈ ν},

where Si = X , (b) (X,X) ∈ IK, and (c) DmIK,IB
IE,ν (X) = −1 ≤ 0, which

means that dmIK,IB
IE,ν (X) ≤ 0.

(2) For ν = ω the dimension-like functions dmIK,IB
IE,ν and DmIK,IB

IE,ν coincide

with the dimension-like functions dmIK,IB
IE and DmIK,IB

IE , respectively
which are defined in [3].

Proposition 2.5. For every space X we have

dmIK,IB
IE,ν (X) ≤ DmIK,IB

IE,ν (X).

Proposition 2.6. For every space X, DmIK,IB
IE,ν (X) ∈ {−1,∞}∪τ+ and, there-

fore, dmIK,IB
IE,ν (X) ∈ {−1,∞}∪ τ+.

Theorem 2.7. Let IB be a saturated class of bases, IE a saturated IB-hereditary-
separated class of spaces, and IK a saturated class of subsets with (X,X) ∈ IK

for every space X. Then, for every κ ∈ {−1} ∪ ω the classes IP(dmIK,IB
IE,ν ≤ κ)

and IP(DmIK,IB
IE,ν ≤ κ) are saturated.

Corollary 2.8. For every κ ∈ ω in the classes

IP(dmIK,IB
IE,ν ≤ κ) and IP(DmIK,IB

IE,ν ≤ κ)

there exist universal elements.

Corollary 2.9. Let IP be one of the following classes

(a) the class of all (completely) regular spaces of weight ≤ τ ,
(b) the class of all (completely) regular countable-dimensi-onal spaces of

weight ≤ τ ,
(c) the class of all (completely) regular strongly countable-dimensional spaces

of weight ≤ τ ,
(d) the class of all (completely) regular locally finite-dimensional spaces of

weight ≤ τ , and
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(e) the class of all (completely) regular spaces X of weight ≤ τ such that
ind(X) ≤ α ∈ τ+.

Then, for every κ ∈ ω in the classes

IP(dmIK,IB
IE,ν ≤ κ) ∩ IP and IP(DmIK,IB

IE,ν ≤ κ) ∩ IP

there exist universal elements.

3. The dimension-like functions: w-dmIK,IB
IE,ν and w-DmIK,IB

IE,ν

Definition 3.1. A class IE of spaces is said to be IB-weakly-hereditary-separated,
where IB is a class of bases, if for every element X of IE there exists a IB-base
BX ≡ {Uδ : δ ∈ τ} for X such that for every two elements Uδ1 and Uδ2 of BX

with Cl(Uδ1)∩Uδ2 = ∅ there exists a subset L of X separating the sets Cl(Uδ1)
and Uδ2 and belonging to IE.

We note that if IE is IB-weakly-hereditary-separated, then ∅ ∈ IE. This follows
by the fact that the empty set is the unique subset of X separating the elements
∅ and X of BX .

Definition 3.2. Let IB be a class of bases, IE a IB-weakly-hereditary-separated
class of spaces, and IK a class of subsets with (X,X) ∈ IK for every space X .

We denote by w-dmIK,IB
IE,ν and w-DmIK,IB

IE,ν the dimension-like functions with as

domain the class of all spaces and as range the class O ∪ {−1,∞} satisfying
the following conditions:

(1) w-dmIK,IB
IE,ν (X)=w-DmIK,IB

IE,ν (X) = −1 if and only if X ∈ IE.

(2) w-DmIK,IB
IE,ν (X) ≤ α, where α ∈ O, if and only if there exists a IB-base

BX ≡ {Uδ : δ ∈ τ} for X such that for every two elements Uδ1 , Uδ2

of BX with Cl(Uδ1) ∩ Uδ2 = ∅ there exists a subset L of X separating

Cl(Uδ1) and Uδ2 with w-dmIK,IB
IE,ν (L) < α.

(3) w-dmIK,IB
IE,ν (X) ≤ α, α ∈ O, if and only if X = ∪{Si : i ∈ ν} such

that: (a) the subset Si of X is closed, (b) (Si, X) ∈ IK, and (c) w-

DmIK,IB
IE,ν (Si) ≤ α, i ∈ ν.

Therefore, w-dmIK,IB
IE,ν (X) = ∞ (respectively, w-DmIK,IB

IE,ν (X) = ∞) if and

only if the inequality w-dmIK,IB
IE,ν (X) ≤ α (respectively, w-DmIK,IB

IE,ν (X) ≤ α) is
not true for every α ∈ O.

Remark 3.3. In order that the above definition to be well defined we need to
show that if for a space X we have w-DmIK,IB

IE,ν (X)=w-dmIK,IB
IE,ν (X) = −1, then

w-DmIK,IB
IE,ν (X) ≤ 0 and w-dmIK,IB

IE,ν (X) ≤ 0.

For dimension-like function w-DmIK,IB
IE,ν this follows immediately by the fact

that X ∈ IE and the class IE is IB-weakly-hereditary-separated.

For dimension-like function w-dmIK,IB
IE,ν , we have (a) X = {Si : i ∈ ν}, where

Si = X , (b) (X,X) ∈ IK, and (c) w-DmIK,IB
IE,ν (X) = −1 ≤ 0, which means that

w-dmIK,IB
IE,ν (X) ≤ 0.
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Proposition 3.4. For every space X we have

w-dmIK,IB
IE,ν (X) ≤ w-DmIK,IB

IE,ν (X). (3)

Proof. Let w-DmIK,IB
IE,ν (X) = α ∈ {−1,∞} ∪ O. The inequality (3) is clear if

α = −1 or α = ∞. Suppose that α ∈ O. We have X = ∪{Si : i ∈ ν}, where

Si = X . Since (Si, X) = (X,X) ∈ IK and w-DmIK,IB
IE,ν (Si) = w-DmIK,IB

IE,ν (X) ≤

α, the condition (3) of Definition 3.2 implies that w-dmIK,IB
IE,ν (X) ≤ α. �

Proposition 3.5. For every space X, w-DmIK,IB
IE,ν (X) ∈ {−1,∞} ∪ τ+, and,

therefore w-dmIK,IB
IE,ν (X) ∈ {−1,∞}∪ τ+.

Proof. Suppose that the proposition is not true. Let α be the minimal element

of O \ τ+ such that there exists a space X with w-DmIK,IB
IE,ν (X) = α. Let

BX = {Uδ : δ ∈ τ} be the IB-base forX mentioned in condition (2) of Definition
3.2.

Denote by P the set of all pairs (δ1, δ2) ∈ τ × τ with

Cl(Uδ1) ∩ Uδ2 = ∅.

For every (δ1, δ2) ∈ P let L(δ1, δ2) be a subset of X separating the sets Cl(Uδ1)
and Uδ2 with

w-dmIK,IB
IE,ν (L(δ1, δ2)) = β(δ1, δ2) < α.

First we suppose that β(δ1, δ2) < τ+ for every (δ1, δ2) ∈ P . Since |P | ≤ τ
there exists an ordinal β ∈ τ+ such that β(δ1, δ2) < β for every (δ1, δ2) ∈

P . Then, w-dmIK,IB
IE,ν (L(δ1, δ2)) < β and, by condition (2) of Definition 3.2,

w-DmIK,IB
IE,ν (X) ≤ β, which is a contradiction.

Now, we suppose that there exists (δ1, δ2) ∈ P such that τ+ ≤ β(δ1, δ2). Since

w-dmIK,IB
IE,ν (L(δ1, δ2)) = β(δ1, δ2), there exist closed subsets S

L(δ1,δ2)
i of L(δ1, δ2),

i ∈ ν, such that:

(a) L(δ1, δ2) = ∪{S
L(δ1,δ2)
i : i ∈ ν},

(b) (S
L(δ1,δ2)
i , L(δ1, δ2)) ∈ IK, and

(c) w-DmIK,IB
IE,ν (S

L(δ1,δ2)
i ) = βi ≤ β(δ1, δ2) < α.

If βi < τ+ for all i ∈ ν, then there exists an ordinal β ∈ τ+ such that βi ≤ β,

which means that w-DmIK,IB
IE,ν (S

L(δ1,δ2)
i ) ≤ β. Therefore,

w-DmIK,IB
IE,ν (L(δ1, δ2)) ≤ β < τ+ ≤ β(δ1, δ2),

which is a contradiction. Thus, there exists i ∈ ν such that

τ+ ≤ w-DmIK,IB
IE,ν (S

L(δ1,δ2)
i ) < α.

The last relation contradicts the choice of the ordinal α completing the proof
of the proposition. �
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Theorem 3.6. Let IB be a saturated class of bases, IE a saturated IB-weakly-
hereditary-separated class of spaces, and IK a saturated class of subsets such
that (X,X) ∈ IK for every space X. Then, for every κ ∈ {−1} ∪ ω the classes

IP(w-dmIK,IB
IE,ν ≤ κ) and IP(w-DmIK,IB

IE,ν ≤ κ) are saturated.

Proof. We prove the theorem by induction on κ. Let κ = −1. Then, a space

X belongs to IP(w-DmIK,IB
IE,ν ≤ −1) if and only if X belongs to IE, that is

IP(w-DmIK,IB
IE,ν ≤ −1) = IE.

Therefore, IP(w-DmIK,IB
IE,ν ≤ −1) is a saturated class of spaces. Similarly, the

class IP(w-dmIK,IB
IE,ν ≤ −1) is saturated.

Let κ ∈ ω. Suppose that the classes IP(w-dmIK,IB
IE,ν ≤ m) and IP(w-DmIK,IB

IE,ν ≤ m)

are saturated, m ∈ {−1}∪κ. We prove that the classes IP(w-DmIK,IB
IE,ν ≤ κ) and

IP(w-dmIK,IB
IE,ν ≤ κ) are also saturated. First we prove that IP(w-DmIK,IB

IE,ν ≤ κ)
is a saturated class.

Let S be an indexed collection of elements of IP(w-DmIK,IB
IE,ν ≤ κ). For every

X ∈ S let BX ≡ {V X
ε : ε ∈ τ} be an indexed IB-base for X satisfying condition

(2) of Definition 3.2. Then, there exist

(a) an indexed set {LX
η : η ∈ τ} of subsets of X ,

(b) two indexed sets {WX
η : η ∈ τ} and {OX

η : η ∈ τ} of open subsets of X ,
and
(c) a one-to-one mapping ϕ of τ × τ onto τ
such that

(1) For every ε1, ε2 ∈ τ and η = ϕ(ε1, ε2) we have

(d) Cl(V X
ε1
) ⊆ WX

η , V X
ε2

⊆ OX
η ,

(e) WX
η ∩OX

η = ∅, and

(f) X \ LX
η = WX

η ∪OX
η ,

in the case, where Cl(V X
ε1
)∩V X

ε2
= ∅, and LX

η = ∅ in the case, where Cl(V X
ε1
)∩

V X
ε2

6= ∅.

(2) For every η ∈ τ , w-dmIK,IB
IE,ν (LX

η ) ≤ κ− 1.

For every η ∈ τ we set

Lη = {LX
η : X ∈ S},

Wη = {WX
η : X ∈ S}, and

Oη = {OX
η : X ∈ S}.

By the above property (2), Lη is an indexed collection of elements of the class

IPκ−1 ≡ IP(w-dmIK,IB
IE,ν ≤ κ − 1). By inductive assumption the class IPκ−1 is

saturated. Therefore, there exists an initial co-mark M+
Lη

of Lη corresponding

to the class IPκ−1. Denote by Mη a co-mark of S such that its trace on Lη is
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a co-extension of the co-mark M+
Lη

. The existence of such a co-mark is easily

proved.

Consider the co-indication

N ≡ {{V X
ε : ε ∈ τ} : X ∈ S}

of the IB-co-base B ≡ {BX : X ∈ S} of S. Since IB is a saturated class of bases
there exists an initial co-mark M+

IB of S corresponding to the co-indication N

of B and the class IB. In particular, M+
IB is a co-extension of N.

By Lemma 2.1.2 of [2], there exists a co-mark M+ of S, which a co-extension of
the co-marks M+

IB and Mη for every η ∈ τ . In particular, M+ is a co-extension
of N. We show that M+ is an initial co-mark of S corresponding to the class

IP(w-DmIK,IB
IE,ν ≤ κ).

Indeed, let
M ≡ {{UX

δ : δ ∈ τ} : X ∈ S}

be an arbitrary co-extension of M+. Then, M is a co-extension of the co-marks
M+

IB, N, and Mη for every η ∈ τ . Denote by ϑ an indicial mapping from N to
M. Then, for every X ∈ IE, V X

ε = UX
ϑ(ε), ε ∈ τ . Obviously, the co-mark M|Lη

is a co-extension of the co-mark M+
Lη

of Lη.

Let R+
IB be an initial family of equivalence relations on S corresponding to the

co-mark M, the co-indication N of B, and the class IB. Let also R+
Lη

be an

initial family of equivalence relations on Lη corresponding to the co-markM|Lη

and the class IPκ−1. Denote by Rη the family of equivalence relations on S such
that the trace on Lη of Rη is the family R+

Lη
.

By Lemma 2.1.1 of [2], there exists an admissible family R+ of equivalence
relations on S, which is a final refinement of the families R+

IB and Rη for every
η ∈ τ . In particular, R+ is M-admissible. Without loss of generality, we can
suppose that R+ is (M,Wη)-admissible, (M,Oη)-admissible, (M,Co(Wη))-
admissible, and (M,Co(Oη))-admissible. We prove that R+ is an initial family

of S corresponding to the co-mark M of S and the class IP(w-DmIK,IB
IE,ν ≤ κ).

For this purpose we consider an arbitrary admissible family R of equivalence
relations on S, which is a final refinement of R+, and prove that for every

L ∈ C♦(R) the space T(L) belongs to IP(w-DmIK,IB
IE,ν ≤ κ). Let L ∈ C♦(R).

Since IB is a saturated class, we have (BL
♦,ϑ(τ),T(L)) ∈ IB. We show that the

base BL
♦,ϑ(τ) of T(L) satisfies condition (2) of Definition 3.2, that is for every

UT
δ1
(H1) and UT

δ2
(H2) of B

L
♦,ϑ(τ) (where H1, H2 ⊆ L), with

ClT(L)(U
T
δ1
(H1)) ∩ UT

δ2
(H2) = ∅ (4)

there exists a subset L of T(L) separating ClT(L)(U
T
δ1
(H1)) and UT

δ2
(H2) such

that w-dmIK,IB
IE,ν (L) ≤ κ− 1.

Consider two elements UT
δ1
(H1), UT

δ2
(H2) of BL

♦,ϑ(τ) satisfying relation (4).

First we suppose that H1 ∩H2 = ∅. Then,
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(g) ClT(L)(U
T
δ1
(H1)) ⊆ T(H1), U

T
δ2
(H2) ⊆ T(L \H1),

(h) T(H1) ∩ T(L \H1) = ∅, and
(i) T(L) = T(H1) ∪T(L \H1).

Therefore, the empty set separates the sets ClT(L)(U
T
δ1
(H1)) and UT

δ2
(H2).

Since w-dmIK,IB
IE,ν (∅) = −1 < κ, we have w-DmIK,IB

IE,ν (T(L)) ≤ κ.

Now, we suppose that H1 ∩ H2 6= ∅. Let H = H1 ∩ H2, ϑ−1(δ1) = ε1,
ϑ−1(δ2) = ε2, and η = ϕ(ε1, ε2). We prove that T(H|Lη

) separates the sets

ClT(L)(U
T
δ1
(H1)) and UT

δ2
(H2), and w-dmIK,IB

IE,ν (T(H|Lη
)) ≤ κ− 1 < κ.

Since IPκ−1 is a saturated class of spaces, the subspace T(H|Lη
) of T(M|Lη

,R|Lη
)

belongs to IPκ−1. Hence,

w-dmIK,IB
IE,ν (T(H|Lη

)) ≤ κ− 1 < κ.

We prove that the subset T(H|Lη
) of T(L) separates ClT(L)(U

T
δ1
(H1)) and

UT
δ2
(H2). Suppose that X ∈ H. Since the subsets Cl(V X

ε1
) and V X

ε2
of X are

disjoint, by condition (1) we have

(k) Cl(V X
ε1
) ⊆ WX

η , V X
ε2

⊆ OX
η ,

(l) WX
η ∩OX

η = ∅, and

(m) X \ LX
η = WX

η ∪OX
η .

The above relations imply that

(n) ClT(L)(U
T
δ1
(H)) ⊆ T(H|Wη

) = T|Wη
∩ T(H),

UT
δ2
(H) ⊆ T(H|Oη

) = T|Oη
∩ T(H),

(o) T(H|Wη
) ∩T(H|Oη

) = ∅, and
(p) T(H) \ T(H|Lη

) = T(H|Wη
) ∪T(H|Oη

).

Since the restriction Wη of S is open and the family R is (M,Co(Wη))-
admissible, by Lemma 1.4.7 of [2], the subset T|Wη

of T is open. Similarly,
the subset T|Oη

of T is open. Also, since the subset T(H) of T is open and
T(H) ⊆ T(L), the sets T(H|Wη

) and T(H|Oη
) are open in T(L).

Setting

W = T(H1 \H) ∪ T(H|Wn
) and O = T(L \H1) ∪ T(H|On

)

we have

(q) ClT(L)(U
T
δ1
(H1)) ⊆ W , UT

δ2
(H2) ⊆ O,

(r) W ∩O = ∅, and
(s) T(L) \ T(H|Lη

) = W ∪O.

Therefore, the subset T(H|Lη
) of T(L) separates the sets ClT(L)(U

T
δ1
(H1)) and

UT
δ1
(H2). Thus, the class IP(w −DmIK,IB

IE,ν ≤ κ) is saturated.

Now, we prove that the class IP(w-dmIK,IB
IE,ν ≤ κ) is saturated. Let S be a indexed

collection of elements of IP(w-dmIK,IB
IE,ν ≤ κ). For every X ∈ S there exists an

indexed set {QX
i : i ∈ ν} of subsets of X such that
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(3) X = ∪{QX
i : i ∈ ν}.

(4) For every i ∈ ν, the subset QX
i of X is closed and (QX

i , X) ∈ IK.

(5) For every i ∈ ν, w-DmIK,IB
IE,ν (QX

i ) ≤ κ.

We set Qi = {QX
i : X ∈ S}, i ∈ ν. By the preceding, the class IP ≡

IP(w-DmIK,IB
IE,ν ≤ κ) is saturated. By property (5), Qi is an indexed collec-

tion of elements of the class IP. Therefore, there exists an initial co-mark M+
Qi

of Qi corresponding to the class IP. Denote by Mi a co-mark of S such that
its trace on Qi is a co-extension of the co-mark M+

Qi
.

By property (4), the restriction Qi of S is a IK-restriction. Since IK is a
saturated class of subsets, for every i ∈ ν there exists an initial co-mark M+

IK,i

of S corresponding to the IK-restriction Qi.

By Lemma 2.1.2 of [2], there exists a co-mark M+ of S, which a co-extension
of the co-marks Mi and M+

IK,i for every i ∈ ν. We show that M+ is an initial

co-mark of S corresponding to the class IP(w-dmIK,IB
IE,ν ≤ κ).

Indeed, let

M ≡ {{UX
δ : δ ∈ τ} : X ∈ S}

be an arbitrary co-extension of M+. Then, M is a co-extension of the co-marks
Mi and M+

IK,i and the co-mark M|Qi
is a co-extension of the co-mark M+

Qi
of

Qi, i ∈ ν.

Let R+
Qi

be an initial family of equivalence relations on Qi corresponding to

the co-mark M|Qi
and the class IP. Denote by Ri the family of equivalence

relations on S such that the trace on Qi of Ri is the family R+
Qi

. Let also R+
IK,i

be an initial family of equivalence relations on S corresponding to the co-mark
M and the IK-restriction Qi.

By Lemma 2.1.1 of [2], there exists an admissible family R+ of equivalence
relations on S, which is a final refinement of the families Ri and R+

IK,i, i ∈ ν.

Therefore, R+ is an M-admissible family.

We prove that R+ is an initial family of S corresponding to the co-mark M of

S and the class IP(w-dmIK,IB
IE,ν ≤ κ). For this purpose, we consider an arbitrary

admissible family R of equivalence relations on S, which is a final refinement of
R+. Then, R is a final refinement of the families Ri and R+

IK,i for every i ∈ ν.

We need to prove that for every L ∈ C♦(R), T(L) ∈ IP(w-dmIK,IB
IE,ν ≤ κ). Let

L ∈ C♦(R). It suffices to show that T(L) = ∪{Ti(L) : i ∈ ν} such that

(t) the subset Ti(L) of T(L) is closed,
(u) (Ti(L),T(L)) ∈ IK, and

(v) w-DmIK,IB
IE,ν (Ti(L)) ≤ κ, i ∈ ν.

We set Ti(L) = T(L|Qi
), i ∈ ν. It is easy to verify that the subset T(L|Qi

) of
T(L) is closed and T(L) = ∪{T(L|Qi

) : i ∈ ν}. Since IK is a saturated class
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of subsets, (T(L|Qi
),T(L)) ∈ IK. Since IP is a saturated class, the subspace

T(L|Qi
) of T(M|Qi

,R|Qi
) belongs to IP. Hence, w-DmIK,IB

IE,ν (T(L|Qi
)) ≤ κ.

Thus, by condition (3) of Definition 3.2, w-dmIK,IB
IE,ν (T(L)) ≤ κ proving that the

class IP(w-dmIK,IB
IE,ν ≤ κ) is saturated. �

Corollary 3.7. For every κ ∈ ω in the classes

IP(w-dmIK,IB
IE,ν ≤ κ) and IP(w-DmIK,IB

IE,ν ≤ κ)

there exist universal elements.

Corollary 3.8. Let IP be one of the following classes

(a) the class of all (completely) regular spaces of weight ≤ τ ,
(b) the class of all (completely) regular countable-dimensi-onal spaces of

weight ≤ τ ,
(c) the class of all (completely) regular strongly countable-dimensional spaces

of weight ≤ τ ,
(d) the class of all (completely) regular locally finite-dimensional spaces of

weight ≤ τ , and
(e) the class of all (completely) regular spaces X of weight ≤ τ such that

ind(X) ≤ α ∈ τ+.

Then, for every κ ∈ ω in the classes

IP(w-dmIK,IB
IE,ν ≤ κ) ∩ IP and IP(w-DmIK,IB

IE,ν ≤ κ) ∩ IP

there exist universal elements.

4. The dimension-like functions: s-dmIK,IB
IE,ν and s-DmIK,IB

IE,ν

Definition 4.1. A class IE of spaces is said to be IB-strong-hereditary-separated,
where IB is a class of bases, if for every element X of IE there exists a IB-base
BX ≡ {Uδ : δ ∈ τ} for X such that for every two elements Uδ1 and Uδ2 of BX

with Uδ1 ∩ Uδ2 = ∅ there exists a subset L of X separating the sets Uδ1 and
Uδ2 and belonging to IE.

We note that if IE is IB-strong-hereditary-separated, then ∅ ∈ IE. This follows
by the fact that the empty set is the unique subset of X separating the elements
∅ and X of BX .

Definition 4.2. Let IB be a class of bases, IE a IB-strong-hereditary-separated
class of spaces, and IK a class of subsets with (X,X) ∈ IK for every space X .

We denote by s-dmIK,IB
IE,ν and s-DmIK,IB

IE,ν the dimension-like functions with as

domain the class of all spaces and as range the class O ∪ {−1,∞} satisfying
the following conditions:

(1) s-dmIK,IB
IE,ν (X)=s-DmIK,IB

IE,ν (X) = −1 if and only if X ∈ IE.

(2) s-DmIK,IB
IE,ν (X) ≤ α, where α ∈ O, if and only if there exists a IB-base

BX ≡ {Uδ : δ ∈ τ} for X such that for every two elements Uδ1 , Uδ2 of
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BX with Uδ1 ∩ Uδ2 = ∅ there exists a subset L of X separating Uδ1

and Uδ2 with s-dmIK,IB
IE,ν (L) < α.

(3) s-dmIK,IB
IE,ν (X) ≤ α, α ∈ O, if and only if X = ∪{Si : i ∈ ν} such

that: (a) the subset Si of X is closed, (b) (Si, X) ∈ IK, and (c) s-

DmIK,IB
IE,ν (Si) ≤ α, i ∈ ν.

Therefore, s-dmIK,IB
IE,ν (X) = ∞ (respectively, s-DmIK,IB

IE,ν (X) = ∞) if and only

if the inequality s-dmIK,IB
IE,ν (X) ≤ α (respectively, s-DmIK,IB

IE,ν (X) ≤ α) is not true
for every α ∈ O.

Remark 4.3. In order that the above definition to be well defined we need to
show that if for a space X we have s-DmIK,IB

IE,ν (X)=s-dmIK,IB
IE,ν (X) = −1, then

s-DmIK,IB
IE,ν (X) ≤ 0 and s-dmIK,IB

IE,ν (X) ≤ 0.

For dimension-like function s-DmIK,IB
IE,ν this follows immediately by the fact that

X ∈ IE and the class IE is IB-strong-hereditary-separated.

For dimension-like function s-dmIK,IB
IE,ν , we have (a) X = {Si : i ∈ ν}, where

Si = X , (b) (X,X) ∈ IK, and (c) s-DmIK,IB
IE,ν (X) = −1 ≤ 0, which means that

s-dmIK,IB
IE,ν (X) ≤ 0.

Proposition 4.4. For every space X we have

s-dmIK,IB
IE,ν (X) ≤ s-DmIK,IB

IE,ν (X). (5)

Proof. Let s-DmIK,IB
IE,ν (X) = α ∈ {−1,∞} ∪ O. The inequality (5) is clear if

α = −1 or α = ∞. Suppose that α ∈ O. We have X = ∪{Si : i ∈ ν}, where

Si = X . Since (Si, X) = (X,X) ∈ IK and s-DmIK,IB
IE,ν (Si) = s-DmIK,IB

IE,ν (X) ≤ α,

the condition (3) of Definition 4.2 implies that s-dmIK,IB
IE,ν (X) ≤ α. �

Proposition 4.5. For every space X, s-DmIK,IB
IE,ν (X) ∈ {−1,∞} ∪ τ+, and,

therefore s-dmIK,IB
IE,ν (X) ∈ {−1,∞}∪ τ+.

Proof. Suppose that the proposition is not true. Let α be the minimal element

of O \ τ+ such that there exists a space X with s-DmIK,IB
IE,ν (X) = α. Let

BX = {Uδ : δ ∈ τ} be the IB-base forX mentioned in condition (2) of Definition
4.2.

Denote by P the set of all pairs (δ1, δ2) ∈ τ × τ with

Uδ1 ∩ Uδ2 = ∅.

For every (δ1, δ2) ∈ P let L(δ1, δ2) be a subset of X separating the sets Uδ1 and
Uδ2 with

s-dmIK,IB
IE,ν (L(δ1, δ2)) = β(δ1, δ2) < α.

First we suppose that β(δ1, δ2) < τ+ for every (δ1, δ2) ∈ P . Since |P | ≤ τ there
exists an ordinal β ∈ τ+ such that β(δ1, δ2) < β for every (δ1, δ2) ∈ P . Then,
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s-dmIK,IB
IE,ν (L(δ1, δ2)) < β and, by condition (2) of Definition 4.2, s-DmIK,IB

IE,ν ≤ β,
which is a contradiction.

Now, we suppose that there exists (δ1, δ2) ∈ P such that τ+ ≤ β(δ1, δ2). Since

s-dmIK,IB
IE,ν (L(δ1, δ2)) = β(δ1, δ2), there exist closed subsets S

L(δ1,δ2)
i of L(δ1, δ2),

i ∈ ν, such that:

(a) L(δ1, δ2) = ∪{S
L(δ1,δ2)
i : i ∈ ν},

(b) (S
L(δ1,δ2)
i , L(δ1, δ2)) ∈ IK, and

(c) s-DmIK,IB
IE,ν (S

L(δ1,δ2)
i ) = βi ≤ β(δ1, δ2) < α.

If βi < τ+ for all i ∈ ν, then there exists an ordinal β ∈ τ+ such that βi ≤ β,

which means that s-DmIK,IB
IE,ν (S

L(δ1,δ2)
i ) ≤ β. Therefore,

s-dmIK,IB
IE,ν (L(δ1, δ2)) ≤ β < τ+ ≤ β(δ1, δ2),

which is a contradiction. Thus, there exists i ∈ ν such that

τ+ ≤ s-DmIK,IB
IE,ν (S

L(δ1,δ2)
i ) < α.

The last relation contradicts the choice of the ordinal α completing the proof
of the proposition. �

Theorem 4.6. Let IB be a saturated class of bases, IE a saturated IB-strong-
hereditary-separated class of spaces, and IK a saturated class of subsets such
that (X,X) ∈ IK for every space X. Then, for every κ ∈ {−1} ∪ ω the classes

IP(s-dmIK,IB
IE,ν ≤ κ) and IP(s-DmIK,IB

IE,ν ≤ κ) are saturated.

Proof. We prove the theorem by induction on κ. Let κ = −1. Then, a space

X belongs to IP(s-DmIK,IB
IE,ν ≤ −1) if and only if X belongs to IE, that is

IP(s-DmIK,IB
IE,ν ≤ −1) = IE.

Therefore, IP(s-DmIK,IB
IE,ν ≤ −1) is a saturated class of spaces. Similarly, the

class IP(s-dmIK,IB
IE,ν ≤ −1) is saturated.

Let κ ∈ ω. Suppose that the classes IP(s-dmIK,IB
IE,ν ≤ m) and IP(s-DmIK,IB

IE,ν ≤ m)

are saturated, m ∈ {−1}∪κ. We prove that the classes IP(s-DmIK,IB
IE,ν ≤ κ) and

IP(s-dmIK,IB
IE,ν ≤ κ) are also saturated. First we prove that IP(s-DmIK,IB

IE,ν ≤ κ) is
a saturated class.

Let S be an indexed collection of elements of IP(s-DmIK,IB
IE,ν ≤ κ). For every

X ∈ S let BX ≡ {V X
ε : ε ∈ τ} be an indexed IB-base for X satisfying condition

(2) of Definition 4.2. Then, there exist

(a) an indexed set {LX
η : η ∈ τ} of subsets of X ,

(b) two indexed sets {WX
η : η ∈ τ} and {OX

η : η ∈ τ} of open subsets of X ,
and
(c) a one-to-one mapping ϕ of τ × τ onto τ
such that
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(1) For every ε1, ε2 ∈ τ and η = ϕ(ε1, ε2) we have

(d) V X
ε1

⊆ WX
η , V X

ε2
⊆ OX

η ,

(e) WX
η ∩OX

η = ∅, and

(f) X \ LX
η = WX

η ∪OX
η ,

in the case, where V X
ε1

∩V X
ε2

= ∅, and LX
η = ∅ in the case, where V X

ε1
∩V X

ε2
6= ∅.

(2) For every η ∈ τ , s-dmIK,IB
IE,ν (LX

η ) ≤ κ− 1.

For every η ∈ τ we set

Lη = {LX
η : X ∈ S},

Wη = {WX
η : X ∈ S}, and

Oη = {OX
η : X ∈ S}.

By the above property (2), Lη is an indexed collection of elements of the class

IPκ−1 ≡ IP(s-dmIK,IB
IE,ν ≤ κ − 1). By inductive assumption the class IPκ−1 is

saturated. Therefore, there exists an initial co-mark M+
Lη

of Lη corresponding

to the class IPκ−1. Denote by Mη a co-mark of S such that its trace on Lη is
a co-extension of the co-mark M+

Lη
. The existence of such a co-mark is easily

proved.

Consider the co-indication

N ≡ {{V X
ε : ε ∈ τ} : X ∈ S}

of the IB-co-base B ≡ {BX : X ∈ S} of S. Since IB is a saturated class of bases
there exists an initial co-mark M+

IB of S corresponding to the co-indication N

of B and the class IB. In particular, M+
IB is a co-extension of N.

By Lemma 2.1.2 of [2], there exists a co-mark M+ of S, which a co-extension of
the co-marks M+

IB and Mη for every η ∈ τ . In particular, M+ is a co-extension
of N. We show that M+ is an initial co-mark of S corresponding to the class

IP(s-DmIK,IB
IE,ν ≤ κ).

Indeed, let

M ≡ {{UX
δ : δ ∈ τ} : X ∈ S}

be an arbitrary co-extension of M+. Then, M is a co-extension of the co-marks
M+

IB, N, and Mη for every η ∈ τ . Denote by ϑ an indicial mapping from N to
M. Then, for every X ∈ IE, V X

ε = UX
ϑ(ε), ε ∈ τ . Obviously, the co-mark M|Lη

is a co-extension of the co-mark M+
Lη

of Lη.

Let R+
IB be an initial family of equivalence relations on S corresponding to the

co-mark M, the co-indication N of B, and the class IB. Let also R+
Lη

be an

initial family of equivalence relations on Lη corresponding to the co-markM|Lη

and the class IPκ−1. Denote by Rη the family of equivalence relations on S such
that the trace on Lη of Rη is the family R+

Lη
.

By Lemma 2.1.1 of [2], there exists an admissible family R+ of equivalence
relations on S, which is a final refinement of the families R+

IB and Rη for every
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η ∈ τ . In particular, R+ is M-admissible. Without loss of generality, we can
suppose that R+ is (M,Wη)-admissible, (M,Oη)-admissible, (M,Co(Wη))-
admissible, and (M,Co(Oη))-admissible. We prove that R+ is an initial family

of S corresponding to the co-mark M of S and the class IP(s-DmIK,IB
IE,ν ≤ κ).

For this purpose we consider an arbitrary admissible family R of equivalence
relations on S, which is a final refinement of R+, and prove that for every

L ∈ C♦(R) the space T(L) belongs to IP(s-DmIK,IB
IE,ν ≤ κ). Let L ∈ C♦(R).

Since IB is a saturated class, we have (BL
♦,ϑ(τ),T(L)) ∈ IB. We show that the

base BL
♦,ϑ(τ) of T(L) satisfies condition (2) of Definition 4.2, that is for every

UT
δ1
(H1) and UT

δ2
(H2) of B

L
♦,ϑ(τ) (where H1, H2 ⊆ L), with

UT
δ1
(H1) ∩ UT

δ2
(H2) = ∅ (5)

there exists a subset L of T(L) separating UT
δ1
(H1) and UT

δ2
(H2) such that

s-dmIK,IB
IE,ν (L) ≤ κ− 1.

Consider two elements UT
δ1
(H1), UT

δ2
(H2) of BL

♦,ϑ(τ) satisfying relation (5).

First we suppose that H1 ∩H2 = ∅. Then,

(g) UT
δ1
(H1) ⊆ T(H1), U

T
δ2
(H2) ⊆ T(L \H1),

(h) T(H1) ∩ T(L \H1) = ∅, and
(i) T(L) = T(H1) ∪T(L \H1).

Therefore, the empty set separates the sets UT
δ1
(H1) and UT

δ2
(H2). Since

s-dmIK,IB
IE,ν (∅) = −1 < κ, we have s-DmIK,IB

IE,ν (T(L)) ≤ κ.

Now, we suppose that H1 ∩ H2 6= ∅. Let H = H1 ∩ H2, ϑ−1(δ1) = ε1,
ϑ−1(δ2) = ε2, and η = ϕ(ε1, ε2). We prove that T(H|Lη

) separates the sets

UT
δ1
(H1) and UT

δ2
(H2), and s-dmIK,IB

IE,ν (T(H|Lη
)) ≤ κ− 1 < κ.

Since IPκ−1 is a saturated class of spaces, the subspace T(H|Lη
) of T(M|Lη

,R|Lη
)

belongs to IPκ−1. Hence,

s-dmIK,IB
IE,ν (T(H|Lη

)) ≤ κ− 1 < κ.

We prove that the subset T(H|Lη
) of T(L) separates UT

δ1
(H1) and UT

δ2
(H2).

Suppose that X ∈ H. Since the subsets V X
ε1

and V X
ε2

of X are disjoint, by
condition (1) we have

(k) V X
ε1

⊆ WX
η , V X

ε2
⊆ OX

η ,

(l) WX
η ∩OX

η = ∅, and

(m) X \ LX
η = WX

η ∪OX
η .

The above relations imply that

(n) UT
δ1
(H) ⊆ T(H|Wη

) = T|Wη
∩ T(H), UT

δ2
(H) ⊆ T(H|Oη

) = T|Oη
∩T(H),

(o) T(H|Wη
) ∩T(H|Oη

) = ∅, and
(p) T(H) \ T(H|Lη

) = T(H|Wη
) ∪T(H|Oη

).

Since the restriction Wη of S is open and the family R is (M,Co(Wη))-
admissible, by Lemma 1.4.7 of [2], the subset T|Wη

of T is open. Similarly,
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the subset T|Oη
of T is open. Also, since the subset T(H) of T is open and

T(H) ⊆ T(L), the sets T(H|Wη
) and T(H|Oη

) are open in T(L).

Setting

W = T(H1 \H) ∪ T(H|Wn
) and O = T(L \H1) ∪ T(H|On

)

we have

(q) UT
δ1
(H1) ⊆ W , UT

δ2
(H2) ⊆ O,

(r) W ∩O = ∅, and
(s) T(L) \ T(H|Lη

) = W ∪O.

Therefore, the subset T(H|Lη
) of T(L) separates the sets UT

δ1
(H1) and UT

δ1
(H2).

Thus, the class IP(s-DmIK,IB
IE,ν ≤ κ) is saturated.

Now, we prove that the class IP(s-dmIK,IB
IE,ν ≤ κ) is saturated. Let S be a indexed

collection of elements of IP(s-dmIK,IB
IE,ν ≤ κ). For every X ∈ S there exists an

indexed set {QX
i : i ∈ ν} of subsets of X such that

(3) X = ∪{QX
i : i ∈ ν}.

(4) For every i ∈ ν, the subset QX
i of X is closed and (QX

i , X) ∈ IK.

(5) For every i ∈ ν, s-DmIK,IB
IE,ν (QX

i ) ≤ κ.

We set Qi = {QX
i : X ∈ S}, i ∈ ν. By the preceding, the class IP ≡

IP(s-DmIK,IB
IE,ν ≤ κ) is saturated. By property (5), Qi is an indexed collec-

tion of elements of the class IP. Therefore, there exists an initial co-mark M+
Qi

of Qi corresponding to the class IP. Denote by Mi a co-mark of S such that
its trace on Qi is a co-extension of the co-mark M+

Qi
.

By property (4), the restriction Qi of S is a IK-restriction. Since IK is a
saturated class of subsets, for every i ∈ ν there exists an initial co-mark M+

IK,i

of S corresponding to the IK-restriction Qi.

By Lemma 2.1.2 of [2], there exists a co-mark M+ of S, which a co-extension
of the co-marks Mi and M+

IK,i for every i ∈ ν. We show that M+ is an initial

co-mark of S corresponding to the class IP(s-dmIK,IB
IE,ν ≤ κ).

Indeed, let

M ≡ {{UX
δ : δ ∈ τ} : X ∈ S}

be an arbitrary co-extension of M+. Then, M is a co-extension of the co-marks
Mi and M+

IK,i and the co-mark M|Qi
is a co-extension of the co-mark M+

Qi
of

Qi, i ∈ ν.

Let R+
Qi

be an initial family of equivalence relations on Qi corresponding to

the co-mark M|Qi
and the class IP. Denote by Ri the family of equivalence

relations on S such that the trace on Qi of Ri is the family R+
Qi

. Let also R+
IK,i

be an initial family of equivalence relations on S corresponding to the co-mark
M and the IK-restriction Qi.
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By Lemma 2.1.1 of [2], there exists an admissible family R+ of equivalence
relations on S, which is a final refinement of the families Ri and R+

IK,i, i ∈ ν.

Therefore, R+ is an M-admissible family.

We prove that R+ is an initial family of S corresponding to the co-mark M of

S and the class IP(s-dmIK,IB
IE,ν ≤ κ). For this purpose, we consider an arbitrary

admissible family R of equivalence relations on S, which is a final refinement of
R+. Then, R is a final refinement of the families Ri and R+

IK,i for every i ∈ ν.

We need to prove that for every L ∈ C♦(R), T(L) ∈ IP(s-dmIK,IB
IE,ν ≤ κ). Let

L ∈ C♦(R). It suffices to show that T(L) = ∪{Ti(L) : i ∈ ν} such that

(t) the subset Ti(L) of T(L) is closed,
(u) (Ti(L),T(L)) ∈ IK, and

(v) s-DmIK,IB
IE,ν (Ti(L)) ≤ κ, i ∈ ν.

We set Ti(L) = T(L|Qi
), i ∈ ν. It is easy to verify that the subset T(L|Qi

) of
T(L) is closed and T(L) = ∪{T(L|Qi

) : i ∈ ν}. Since IK is a saturated class
of subsets, (T(L|Qi

),T(L)) ∈ IK. Since IP is a saturated class, the subspace

T(L|Qi
) of T(M|Qi

,R|Qi
) belongs to IP. Hence, s-DmIK,IB

IE,ν (T(L|Qi
)) ≤ κ.

Thus, by condition (3) of Definition 4.2, s-dmIK,IB
IE,ν (T(L)) ≤ κ proving that the

class IP(s-dmIK,IB
IE,ν ≤ κ) is saturated. �

Corollary 4.7. For every κ ∈ ω in the classes

IP(s-dmIK,IB
IE,ν ≤ κ) and IP(s-DmIK,IB

IE,ν ≤ κ)

there exist universal elements.

Corollary 4.8. Let IP be one of the following classes

(a) the class of all (completely) regular spaces of weight ≤ τ ,
(b) the class of all (completely) regular countable-dimensi-onal spaces of

weight ≤ τ ,
(c) the class of all (completely) regular strongly countable-dimensional spaces

of weight ≤ τ ,
(d) the class of all (completely) regular locally finite-dimensional spaces of

weight ≤ τ , and
(e) the class of all (completely) regular spaces X of weight ≤ τ such that

ind(X) ≤ α ∈ τ+.

Then, for every κ ∈ ω in the classes

IP(s-dmIK,IB
IE,ν ≤ κ) ∩ IP and IP(s-DmIK,IB

IE,ν ≤ κ) ∩ IP

there exist universal elements.

5. Questions

Question 5.1. Does there exists a universal element in the class of all spaces

X with dmIK,IB
IE,ν (X) ≤ α or in the class of all spaces X with DmIK,IB

IE,ν (X) ≤ α,
where α is an ordinal.
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Question 5.2. Does there exists a universal element in the class of all spaces X

with w-dmIK,IB
IE,ν (X) ≤ α or in the class of all spaces X with w-DmIK,IB

IE,ν (X) ≤ α,
where α is an ordinal.

Question 5.3. Does there exists a universal element in the class of all spaces X

with s-dmIK,IB
IE,ν (X) ≤ α or in the class of all spaces X with s-DmIK,IB

IE,ν (X) ≤ α,
where α is an ordinal.
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