

APPLIED GENERAL TOPOLOGY © Universidad Politécnica de Valencia Volume 13, no. 1, 2012 pp. 27-31

# Hausdorff closed extensions of pre-uniform spaces

Adalberto García-Máynez and Rubén Mancio-Toledo

#### Abstract

The family of densely finite open covers of a Hausdorff space X determines a completable pre-uniformity on X and the canonical completion  $\hat{X}$  is Hausdorff closed. We compare  $\hat{X}$  with the Katetov extension kXof X and give sufficient conditions for the non-equivalence of kX and  $\hat{X}$ .

## 2010 MSC: 54A20, 54E15

KEYWORDS: Hausdorff closed space, densely finite-cover, Katetov extension, round filter

### 1. Preliminary results

For the sake of convenience to the reader, we recall some definitions. They also appear in [2].

A filter  $\mathcal{T}$  in a pre-uniform space  $(X, \mathcal{U})$  is  $\mathcal{U}$ -Cauchy if for every cover  $\alpha \in \mathcal{U}$ , we have  $\mathcal{T} \cap \alpha \neq \emptyset$ .

A  $\mathcal{U}$ -Cauchy filter  $\mathcal{T}$  in a pre-uniform space is  $\mathcal{U}$ -round if for every  $F_0 \in \mathcal{T}$ , there exists a cover  $\alpha \in \mathcal{U}$  such that  $S_T^*(\mathcal{T}, \alpha) \subset F_0$ , where :

 $S_T^*(\mathcal{T}, \alpha) = \bigcup \{ A \in \alpha | A \cap F \neq \emptyset \text{ for every } F \in \mathcal{T} \}$ .

 $\mathcal{U}$ -round filters  $\mathcal{T}$  in a Hausdorff pre-uniform space  $(X, \mathcal{U})$  satisfy the following conditions: (See [2, Theorem 3.8.4 and 3.8.5]).

1) For every  $p \in X$ ,  $\mathcal{T}$  adheres to p if and only if  $\mathcal{T}$  converges to p.

2) Every neighborhood filter is  $\mathcal{U}$ -round

As a consequence of 1), in Hausdorff pre-uniform spaces, a  $\mathcal{U}$ -round filter  $\mathcal{T}$  is either non-adherent or converges to a unique point.

An ultrafilter of open sets in a topological space  $(X, \tau)$  is a non-empty subfamily  $\mathcal{G}$  of  $\tau - \{\emptyset\}$  satisfying :

- 1) If  $G_1, G_2 \in \mathcal{G}$ , also  $G_1 \cap G_2 \in \mathcal{G}$ ;
- 2) If  $G \in \mathcal{G}$  and  $G \subseteq H$ , where  $H \in \tau$ , then  $H \in \mathcal{G}$ ;
- 3) If  $G_0 \in \tau$  and  $G_0 \cap G \neq \emptyset$  for every  $G \in \mathcal{G}$ , then  $G_0 \in \mathcal{G}$ .

Likewise  $\mathcal{U}$ -round filters, an ultrafilter of open sets in a Hausdorff space X is either non-adherent or converges to a unique point.

Hausdorff closed spaces are characterized by the property : ([1, p.283])

\*) Every ultrafilter of open sets is convergent.

An open cover  $\alpha$  of a topological space X is *densely finite* if there exists a finite subfamily  $\{A_1, A_2, \ldots, A_n\} \subseteq \alpha$  such that  $X = A_1^- \cup A_2^- \cup \cdots \cup A_n^-$ .

The family  $\mathcal{U}$  of densely finite covers of a Hausdorff space  $(X, \tau)$  constitutes a compatible pre-uniform basis which satisfies the condition :

\*\*) Every  $\mathcal{U}$ -Cauchy filter contains a  $\mathcal{U}$ -round filter.

By [5],  $(X, \mathcal{U})$  has a canonical completion  $(\widehat{X}, \widehat{\mathcal{U}})$  and the topology  $\tau_{\widehat{\mathcal{U}}}$  is Hausdorff closed.  $\widehat{X}$  consists of all the  $\mathcal{U}$ -round filters and  $\widehat{\mathcal{U}}$  consists of all the extension covers  $\widehat{\alpha}$  ( $\alpha \in \mathcal{U}$ ), where  $\widehat{\alpha} = \left\{\widehat{A} \mid A \in \alpha\right\}$  and  $\widehat{A} = \left\{\xi \in \widehat{X} \mid A \in \xi\right\}$ . The canonical embedding  $h: X \to \widehat{X}$  assigns to each  $p \in X$ , its neighborhood filter  $\mu_p$ .

Theorem 2.6 in [3] establishes that a non-adherent filter  $\mathcal{T}$  in  $(X, \mathcal{U})$  is  $\mathcal{U}$ -round if and only if  $\mathcal{T}$  has as a basis an ultrafilter of open sets.

Besides the completion  $(\widehat{X}, \widehat{\mathcal{U}}), (X, \tau)$  has its Katetov extension kX, where:

 $kX = X \cup \{\mathcal{G} \mid \mathcal{G} \text{ is a non-adherent ultrafilter of open sets} \}$ 

If  $p \in X$ , a neighborhood basis of p is the filter  $\mu_p$  of  $\tau$ -neighborhoods of p. If  $\mathcal{G} \in kX - X$ , a neighborhood basis of  $\mathcal{G}$  consists of all the sets  $\{\mathcal{G}\} \cup G$ , where  $G \in \mathcal{G}$ .

The resulting topology of kX turns out to be Hausdorff closed and kX - X is a closed discrete subspace without interior points, and hence X is open and dense in kX.

We wonder what is the relation between kX and  $\widehat{X}$ .

We recall first some definitions :

A subset A of a topological space X is C-bounded (or relatively pseudocompact) if for every continuous function  $\varphi \colon X \to \mathbb{R}, \varphi(A)$  is bounded.

 $A \subseteq X$  is *C*-discrete (with respect to X) if for each  $a \in A$ , there exists an open set  $U_a$  such that  $a \in U_a$  and the family  $\{U_a \mid a \in A\}$  is discrete (with respect to X).

The following equivalence is well known (see, for instance [4] : 4.73.3).

A subset A of a Tychonoff space X is C-bounded if and only if every C-discrete subset of X contained in A is finite.

28

- 1)  $W_1 \cup W_2 \subseteq U;$
- 2)  $W_1 \cap W_2 = \emptyset;$
- 3)  $W_1^-$  and  $W_2^-$  are non-compact.

For instance, every non-empty open set U in a nowhere locally compact regular space is wide.

We also have :

**Lemma 1.1.** Every open set U in a Tychonoff space which is not C-bounded, is wide.

*Proof.* By hypothesis, there exists an infinite discrete family of open sets  $W_1, W_2, \ldots$ , where  $W_i^- \subseteq U$  for every *i*. If  $S = \bigcup_{i=1}^{\infty} W_{2i-1}$  and  $T = \bigcup_{i=1}^{\infty} W_{2i}$ , we have  $S^- \cup T^- \subseteq U$ ,  $S \cap T = \emptyset$  and none of the sets  $S^-, T^-$  is compact.  $\Box$ 

## 2. Main result

We give a sufficient condition on a Tychonoff space X which insures that the extensions  $\hat{X}$  and kX are non-equivalent.

**Theorem 2.1.** Let X be a non-compact Tychonoff space where every open set with non-compact closure is wide. Then  $\hat{X} - h(X)$  is dense in itself, where  $h: (X, \mathcal{U}) \to (\hat{X}, \hat{\mathcal{U}})$  is the canonical embedding of X into  $\hat{X}$ .

Proof. Let us take any element  $\xi \in \hat{X} - X$  (we identify each point  $p \in X$  with its neighborhood filter). Let U be an open set in X such that  $\xi \in \hat{U}$ . Therefore,  $U \in \xi$ . Since the round filter  $\xi$  is non-adherent,  $U^-$  cannot be compact. By hypothesis, U is wide. Let S, T be open sets such that  $S \cup T \subseteq U$ ,  $S \cap T = \emptyset$  and  $S^-, T^-$  are both non-compact. By [1, p. 283],  $S^-$  and  $T^-$  cannot be Hausdorff closed. Hence there exist non-adherent ultrafilters of open sets  $\mu_1, \mu_2$  in  $S^-, T^-$ , respectively. Hence the restrictions  $\mu_1 \mid S$  and  $\mu_2 \mid T$  are non-adherent filterbases consisting of open sets in X. Take ultrafilters of open sets  $\xi_1, \xi_2$  in X containing  $\mu_1 \mid S$  and  $\mu_2 \mid T$ , respectively. Clearly  $\xi_1$  and  $\xi_2$  are also non-adherent and U belongs to both of them. Therefore, at least one of the round filters  $\xi_1^+, \xi_2^+$  is different from  $\xi$ . Therefore,  $\hat{U} \cap (\hat{X} - X)$  consists of more than one element and  $\hat{X} - X$  is dense in itself.

**Corollary 2.2.** Every normal Hausdorff metacompact space X satisfies the condition in the theorem.

*Proof.* Let  $U \subseteq X$  be an open set whose closure is non compact. By [4, 4.74.5], the subspace  $U^-$  cannot be pseudocompact and hence U cannot be C-bounded.

**Corollary 2.3.** t If X is paracompact and  $T_2$ , then  $\hat{X} - X$  is dense in itself, and hence the extensions kX and  $\hat{X}$  are non-equivalent (unless X is compact).

**Lemma 2.4.** Let U be an open set in a regular Hausdorff space X and let  $\xi \in \widehat{U} \cap (\widehat{X} - X)$ . Then U is wide if and only if  $(\widehat{U} - \{\xi\}) \cap (\widehat{X} - X) \neq \emptyset$ . Hence, if U is not wide, we have  $\{\xi\} = \widehat{U} \cap (\widehat{X} - X)$ .

*Proof.* Reason as in Theorem 2.1.

**Example 2.5.** Let X be the space of countable ordinals with the order topology. Then every uncountable open set in X is wide and hence  $\hat{X} - X$  is dense in itself.

*Proof.* Let D be the set of non-limit ordinals in X. Then D is open, discrete and dense in X. If  $U \subseteq X$  is an uncountable open set in X, then  $U \cap D$  is also uncountable (because otherwise  $U^- = (U \cap D)^-$  would be compact and hence U would be countable). Clearly,  $U \cap D$  is the union of two uncountable disjoint subsets. Hence, U is wide.

**Example 2.6.** The half disk  $X = \{(p,q) \in \mathbb{R}^2 | p^2 + q^2 \le 1, q > 0\}$  has a noncompact Hausdorff closed extension Z whose remainder Z - X is closed and discrete. However Z is not equivalent to  $\hat{X}$  neither to kX.

*Proof.* Let  $Z = X \cup \{(z,0) \mid -1 \leq z \leq 1\}$ . For each  $(z,0) \in Z - X$ , define  $\mu_z$  be the set of unions of  $\{(z,0)\}$  with upper half open disks in  $\mathbb{R}^2$  centered at (z,0) and intersected with X. If  $z \in X$ ,  $\mu_z$  consists of all open disks in  $\mathbb{R}^2$  centered at z and intersected with X.

We can now topologize Z with the help of these filter bases  $\mu_z$  and convert it into a Hausdorff, non-regular, extension of X. To see that Z is Hausdorff closed, we consider a cover of Z consisting of elements of the filterbases  $\mu_z$ . Since

$$\{(p,q) \in \mathbb{R}^2 \,|\, p^2 + q^2 \le 1, q \ge 0\}$$

is compact in the usual topology of  $\mathbb{R}^2$ , we could get a finite subcover for this space if we adjoin to the elements of  $\mu_z$  ( $z \in Z - X$ ) their radii in the X-axis. Therefore, the original cover has a finite subfamily which covers X (recall X is dense in Z). This argument proves that every open cover of Z is densely finite, and hence Z is Hausdorff closed (see [1]). Clearly the remainder Z - Xis closed and discrete. For each point  $z \in Z - X$ , we can find an infinite family of ultrafilters of open sets in X which have z as a convergence point. This remark proves that Z is not equivalent to  $\hat{X}$  neither to kX, because in these extensions, every point of the remainder is the convergence point of a unique ultrafilter of open sets in X.

#### References

- [1] R. Engelking, General Topology, Polish Scientific Publishers (Warszawa, 1975).
- [2] A. García-Máynez and Rubén S. Mancio, Completions of pre-uniform spaces, Appl. Gen. Topol. 8, no. 2 (2007), 213–221.
- [3] A. García-Máynez and Rubén S. Mancio, Extending maps between pre-uniform spaces, Appl. Gen. Topol. 13, no. 1 (2012), 21–25.
- [4] A. García-Máynez and A. Tamariz, Topología General, Porrúa (México, 1988).
- [5] Rubén S. Mancio, Los espacios pre-uniformes y sus completaciones, Ph. D. Thesis, Universidad Nacional Autónoma de México, 2007.

(Received January 2010 – Accepted January 2011)

### A. GARCÍA-MÁYNEZ (agmaynez@matem.unam.mx)

Instituto de Matemáticas, Universidad Nacional Autónoma de México, Área de la Investigación Científica, Circuito Exterior, Ciudad Universitaria, 04510 México, D.F. México

RUBÉN MANCIO-TOLEDO (rmancio@esfm.ipn.mx) Escuela Superior de Física y Matemáticas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Col. Lindavista, 07738 México, D.F.