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Hereditary separability in Hausdorff continua
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Abstract

We consider those Hausdorff continua S such that each separable sub-
space of S is hereditarily separable. Due to results of Ostaszewski and
Rudin, respectively, all monotonically normal spaces and therefore all
continuous Hausdorff images of ordered compacta also have this prop-
erty. Our study focuses on the structure of such spaces that also possess
one of various rim properties, with emphasis given to rim-separability.
In so doing we obtain analogues of results of M. Tuncali and I. Lončar,
respectively.
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1. Introduction

It is straightforward that separability is inherited by open subspaces and
therefore by regular closed sets [3], and is hereditary in second countable spaces.
It has also been shown [14] that separability is inherited by closed sets in
Luzin spaces. We consider those Hausdorff spaces S such that each separable
subspace of S is hereditarily separable. Such a space will be said to be sub-
hereditarily separable. A motivation for our interest in this property lies partly
in its relationship to monotone normality and continuous Hausdorff images of
ordered compacta. It has been shown that all monotonically normal spaces are
sub-hereditarily separable [20]. The closed continuous image of a monotonically
normal space is known [10] to be monotonically normal and is therefore sub-
hereditarily separable. In particular, any continuous Hausdorff image of an
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ordered compactum [22] is sub-hereditarily separable. A first countable locally
connected sub-hereditarily separable continuum need not be the continuous
image of an arc as we demonstrate by example.

A central motivation for this study is a sequence of (still un-resolved) questions
raised in [8]:

Question - Is each locally connected separable Suslinian continuum hered-
itarily separable?

Question - Is each (hereditarily) separable locally connected Suslinian con-
tinuum metrizable?

We first note that local connectivity is essential in each of these questions.
There is constructed in [7] a compactification of the half-line [0,∞) whose
remainder is a homeomorphic copy of a Souslin line S (a linearly ordered
non-separable continuum having only countably many mutually disjoint sub-
intervals). The resulting continuum Z of course fails to be locally connected at
each point of S. We also note that in [2], Banakh, Fedorchuk, Nikiel and Tuncali
proved that under Suslin Hypothesis, each Suslinian continuum is metrizable,
and under the negation of Suslin Hypothesis, they constructed a hereditarily
separable, non-metric continuum which is nowhere locally connected.

Arkhangelskii [1] and Shapirovskii [23] have independently shown that if each
closed subspace of a separable compact space S is separable then S is hereditar-
ily separable. In addition, it is shown in [8] that each closed zero-dimensional
subset of a Suslinian continuum is metrizable. It therefore follows that it is suffi-
cient in the initial question above to consider the separability of non-degenerate
subcontinua.

In [26], it is shown that each separable and connected continuous image of a
compact ordered space is metrizable. It is therefore sufficient in the second
question above to consider whether the space is the continuous image of a
compact ordered space. We also note that in [9] it is shown that if there is an
example of a locally connected Suslinian continuum which is not the continuous
image of an arc then there is such a continuum which is separable.

2. Preliminaries

All spaces are assumed to be Hausdorff. A compactum is a compact space.
A continuum is a connected compactum. Recall that a continuum in Suslinian
provided that it possesses only countably many pairwise disjoint non-degenerate
subcontinua. An arc is a continuum X which admits a linear ordering such that
the order topology coincides with the given topology. It is straightforward that
each ordered compactum is contained in an arc. A space X is said to be an
IOK if it is the continuous image of some compact ordered space K. If K is
also connected, then X is said to be IOC.

A space S is hereditarily separable provided each subspace of S is separable.
A space S is said to be sub-hereditarily separable if and only if each separable
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subspace of S is hereditarily separable. For brevity, we will also say that such
a space is SHS.

A topological space X is said to be monotonically normal (see [10]) provided
that there exists a function G which assigns, to each point x ∈ X and each
open set U of X containing x, an open set G(x, U) such that

(1) x ∈ G(x, U) ⊆ U ,
(2) if U ′ is open and x ∈ U ⊂ U ′, then G(x, U) ⊆ G(x, U ′),
(3) if x and y are distinct points of X , then G(x,X − y)∩G(y,X − x) = ∅.

Such a function G is called a monotone normality operator on X . It follows
from a result of Ostaszewski [20] that each monotonically normal compactum
is SHS (see also [22]).

If S ⊆ X , IntX(S) will denote the interior of S with respect to X or simply
Int(S) if the superspace is clear. Similarly, BdX(S) (or simply Bd(S)) and
ClX(S) (or simply Cl(S)), respectively, will denote the boundary of S and
closure of S, respectively, with respect to X .

A space S is said to be rim-separable (rim-metrizable) at s ∈ S if and only
if S admits a basis of open sets at s with separable (metrizable) boundaries,
and S is rim-separable (rim-metrizable) provided that it is rim-separable (rim-
metrizable) at each point. It is clear that any rim-metrizable compact space
is rim-separable. A relatively comprehensive survey of rim properties may be
found in [5].

3. Examples and Fundamental Properties

Our interest in spaces that are sub-hereditarily separable was initially spurred
by the aforementioned results of Ostaszewski [20] and Rudin [22], respectively.
These results demonstrate that sub-hereditarily separability is a necessary con-
dition in order for a compactum to be an IOK. We give a short direct proof
of this below. The property is however not sufficient as the example below
demonstrates.

Theorem 3.1. If X is the continuous image of some compact ordered space
then X is SHS.

Proof. By the result of Arkhangelskii [1] and Shapirovskii [23] noted above,
it is enough to consider A ⊆ B ⊆ X with A closed in B and B separable
and closed in X . From Nikiel, Purisch, and Treybig [18], B is the continuous
image of the double arrow space (D = ([0, 1]×{0, 1})−{(0, 0), (1, 1)} with the
order topology given by lexicographic order). They have also noted that the
double arrow space is hereditarily separable. Therefore, B is also hereditarily
separable. �

Let Y = [0, 1]2 be equipped with the lexicographic order and let X = Y × [0, 1].
Then X is a first countable non-separable locally connected continuum that is
both SHS and rim-separable. We also note that X is neither an IOK [25] nor
rim-metrizable [28].
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We also note that sub-hereditarily separability is not preserved under arbitrary
continuous maps. The Sorgenfrey plane R2

l (where Rl is the real line with the
topology generated by the basis B = {[a, b) : a, b ∈ R, a < b}) fails to be
hereditarily separable although Rl is hereditarily separable. (Sub-hereditarily
separability therefore fails to be preserved under products.) Let R2

d denote
the plane with the discrete topology; R2

d is obviously SHS since each separable
subset is countable. The identity map id : R2

d → R2
l is clearly continuous.

Theorem 3.2. A topological space X is SHS if and only if there exists an open
continuous onto map f : X → Y such that Y is SHS and f−1(y) is separable
for each y ∈ Y .

Proof. Suppose A ⊆ B ⊆ X and B is separable. Since f(B) is separable
and Y is SHS, there exists a countable dense subset Df(A) of f(A). For each

y ∈ Df(A), let Dy denote a countable dense subset of f−1(y). Consider D =
∪{Dy : y ∈ Df(A)}. If D were not dense in A, there exists an A-open set U
such that U ∩ D = ∅. Assume that U = A ∩ U ′ with U ′ open in X . Then
f(U) = f(A) ∩ f(U ′), and f(U) ∩ Df(A) 	= ∅, a contradiction. Therefore,
U ∩D 	= ∅ and D is dense in A. �

Lemma 3.3. Suppose f : X → Y is a closed continuous map and X is SHS.
Then Y is SHS.

Proof. Consider A ⊆ B ⊆ Y with A closed in B and B separable and closed in
Y . Let D be a countable dense subset in B. For each d ∈ D, select one point
from f−1(d) and let DX be the collection of points so selected. Then Cl(DX)
is a hereditarily separable subspace of X . Since A ⊆ f(Cl(DX)), it follows that
A is separable. �

The following very simple theorem is an analogue to an important result of
Treybig [25] - if the product X × Y of two infinite Hausdorff spaces X and Y
is an IOK then each of X and Y is metrizable.

Theorem 3.4. If X and Y are compacta and X × Y is SHS, then each of X
and Y is SHS.

Proof. If each of X and Y are countable, the result is obvious. So, without
loss of generality, consider X to be uncountable. Suppose A ⊆ B ⊆ X and B
is separable. Then select a countable (or finite) closed subset Y ′ of Y . Then
B × Y ′ is separable and thus A × Y ′ is separable since X × Y is SHS. Then
the continuity and closedness of the projection πX onto X yields that A is
separable. �

A space Z is said to be locally sub-hereditarily separable (or locally SHS for
brevity) at z ∈ Z if and only if there is a SHS neighborhood of z in Z.

Theorem 3.5. A compactum X is SHS if and only if it is locally SHS at each
point.
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Proof. Consider A ⊆ B ⊆ X with A closed in B and B separable and closed
in X . For each point a of A, select a B-open separable neighborhood Na of a.
SinceX is locally SHS, A∩Na is separable. By compactness, A is separable. �
Theorem 3.6. If a first countable compactum X is not SHS then the closed
subspace S = {p ∈ X : X is not locally SHS at p} is not scattered and therefore
not countable.

Proof. Assume that S is scattered. S then has an isolated point q and therefore
a local basis {Un} of open sets at q such that Cl(Un)∩S = {q} for each n and
U1 ⊃Cl(U2)⊃ U2 ⊃Cl(U3)⊃ · · · . Since X is not locally SHS at q, we may
assume that there is a separable subset B ⊆ U1 and non-separable subset A
such that A ⊆ B ⊆ U1. Select a countable dense subset Qk ⊆ A∩ (U1−Cl(Uk))
for each k = 2, 3, . . . . Then Q = ∪∞k=2Qk is countable dense in A. X is then
locally SHS at q and therefore q 	∈ S, a contradiction. �
In [8], it is shown that each Suslinian continuum is first countable and that each
closed zero-dimensional subset of a Suslinian continuum is metrizable. In view
of the aforementioned questions (also in [8]), we then note that the following
result follows immediately.

Corollary 3.7. If X is a Suslinian continuum and X is not hereditarily sep-
arable then S = {p ∈ X : X is not locally hereditarily separable at p} contains
a non-degenerate subcontinuum.

4. The Class of Sub-hereditarily Separable Continua

Although several of the results hold in a more general setting (e.g. Lemma
4.3), we address in the main in this section spaces that are SHS continua. The
initial result is a simple analogue to Theorem 3.4, p. 1052 of [4].

Theorem 4.1. Suppose X is a locally connected rim-separable SHS continuum.
Then X admits a basis B such that, for each B ∈ B, B is Fσ in X, and Bd(B)
is separable.

Proof. Let B = {O : O is open and O = ∪Oi with O1 ⊆Cl(O1)⊆ O2 ⊆Cl(O2)⊆
· · · , each Oi is open in X , Bd(Oi) is separable for each i, O 	= X}. Then
Bd(O)⊆Cl(∪(Bd(Oi)) and is therefore separable by hypothesis. �
Lemma 4.2. For a rim-separable locally connected continuum X and an Fσ-
subset A of X, each compact subset K of Cl(A) − A lies in some separable
subspace of X. Such a K is therefore separable if X is SHS.

Proof. Let K be any compact subset of Cl(A) − A. We express A = ∪∞n=1An

where {An : n = 1, 2, . . . } is an increasing sequence of compact subsets of
X . By the rim-separability of X , we may select for each n = 1, 2, . . . an
open neighborhood Un of An in X with separable boundary Bd(Un) such that
Cl(Un)∩K = ∅. We now show that K lies in the closure of the separable
subspace S = ∪∞n=1Bd(Un). Let x ∈ K and V a connected open neighborhood
of x in X . Since x ∈ K ⊆Cl(A), there exists some n = 1, 2, . . . such that V
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meets An in some point a. Since V is connected and x 	∈ Cl(Un), the set V ∩Un

is not both closed and open in V . It then follows that V ∩Bd(Un)⊆ V ∩ S is
non-empty and x ∈Cl(S). �

A proof of the following may be found in [6].

Lemma 4.3. Let X denote a locally connected continuum and suppose that the
set T = {p ∈ X : X is not locally an IOK at p} is totally disconnected. Then
X is rim-metric (and therefore rim-separable).

Corollary 4.4. Let X denote a locally connected SHS continuum and suppose
that the set T = {p ∈ X : X is not locally an IOK at p} is totally disconnected.
Suppose that A is a compact subset of X such that there exists an Fσ-subset B
of X with A ⊆Cl(B)−B. Then A is separable.

Theorem 4.5. Suppose X is a rim-separable SHS continuum and X fails to
be locally connected at x ∈ X. Then for each open set O containing x there
exists a non-degenerate separable subcontinuum M of X such that M ⊆ O.

Proof. Let x ∈ O with O open in X . Since X fails to be locally connected
at x ∈ X , X is not connected im kleinen at x. As such [27], there exist open
sets U and U ′ and mutually disjoint continua C′

1, C
′
2, . . . so that x ∈ U ⊂

Cl(U) ⊂ U ′ ⊂ Cl(U ′) ⊂ O and each C′
i ⊆ O meets both U and (X − U ′).

For each i, select a component Ci of C
′
i ∩ Cl(U ′) such that Ci meets both U

and (X − U ′). The limiting continuum of M of {Ci}∞i=1 is separable by the
reasoning of Lemma 4.2 and, by construction, is contained in O. �
Theorem 4.6. Suppose X is a Suslinian SHS continuum and each pair of
points x and y is contained in a separable subcontinuum S(x, y) of X. Then X
is (hereditarily) separable.

Proof. LetM be a maximal family of non-degenerate pairwise disjoint separa-
ble subcontinua of X . Since X is Suslinian, M = {Mi : i = 1, 2, 3, . . .} is at
most countable and therefore ∪M had countable dense subset D. D is then
dense in X ; else there exist open sets U and O such that U ⊂Cl(U) ⊂ O and
O∩Cl(D) = O ∩ (∪M) = ∅. Then for p ∈ U and q ∈ (X − O), the closure
of the component of S(p, q) ∩ U is a separable continuum, contradicting the
maximality ofM. �

We note that the condition described in the hypothesis of the previous result
- the existence of a separable continuum containing each pair of distinct points
- may be generalized and that generalization has been shown to have wide
applications in utility theory. In particular, space Z is said to be separably
connected if for each pair of distinct points x and y in Z, there is a separable
connected subspace S ⊂ Z such that S contains both x and y. The reader is
referred to the survey of Induráin [11] for results concerning such spaces and
their applications.

Separable continua may arise in locally connected Suslinian continua in a
somewhat natural way by utilizing related equivalence relations. In particular,
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a locally connected SHS Suslinian continuum admits an upper semi-continuous
decomposition such that the resulting decomposition space is the continuous
image of an arc. The following is based on similar constructions employed in
work of B. Pearson and J. Simone (e.g., [24]), respectively. Let X be a locally
connected Suslinian continuum. For each x ∈ X , define Mx = {y ∈ X : there
exists a separable subcontinuum of X containing x and y}. Note that each
Mx is separable by Theorem 4.6. Let G = {Mx : x ∈ X}. Then X/G is
hereditarily locally connected and is thus the image of an arc [17], and each
element Mx ∈ G is a (separable) continuum.

Corollary 4.7. Let X be a Suslinian SHS locally connected continuum. If X
contains no non-degenerate separable subcontinuum then X is an IOC.

Proof. X is first countable and rim-metrizable (and therefore rim-separable)
by [7]. Let G denote the decomposition of X as indicated above. If X contains
no non-degenerate separable subcontinuum then G is a decomposition of X
into singletons. Therefore, X is an IOC. �

5. Inverse Limits of Separable Continua

In this section, we consider rim-separable continua as a sub-class of hereditar-
ily separable continua. In particular, we demonstrate that each rim-separable
continuum is the inverse limit of a σ-directed inverse system of separable con-
tinua with monotone surjective bonding mappings. The following four results
are analogues of various results of M. Tuncali [28]. Where the proof is not
provided, it is an obvious modification of that of Tuncali .

Lemma 5.1. Let X be a continuum and let U be an open set in X with
separable boundary. Let G denote the upper semi-continuous decomposition of
Cl(U) into components. Then Cl(U)/G is separable.

Theorem 5.2. Let X be a rim-separable continuum and let Y be compact
metric. Suppose f : X → Y is onto and light. Then X is separable.

Proof. Let f : X → Y be a light mapping of a rim-separable continuum X
onto a metrizable continuum Y . Let B be a countable basis for the topology on
Y and let {(Vn,Wn) : n = 1, 2, 3, . . .} be an enumeration of the set {(V,W ) :
each of V and W is in B and Cl(V )⊆ W}. For each n = 1, 2, 3, . . . there is
by the rim-separability of X an open neighborhood Un ⊆ X of the compact
subset f−1(Cl(Vn)) such that Cl(Un)⊆ f−1(Cl(Wn)) and Bd(Un) is separable.

We now show that the separable set S = ∪∞n=1Bd(Un) is dense in X so
that X is separable. Let x ∈ X and let U be an open neighborhood of x in
X . As the mapping f is light, the pre-image f−1(y) of the point y = f(x)
is zero-dimensional. We may assume, by replacing U by a suitable smaller
neighborhood if necessary, that U ∩ f−1(y) is both closed and open in f−1(y)
and that X − U is non-empty. X−Bd(U) is then a neighborhood of f−1(y)
and we can find a basic neighborhood W ∈ B of y such that f−1(Cl(W ))⊆
X−Bd(U). Select any basic neighborhood V ∈ B of y such that Cl(V )⊆ W .



58 D. Daniel and M. Tuncali

Then (V,W ) = (Vn,Wn) for some n = 1, 2, 3, . . . By the choice of the open
neighborhood Un, we have x ∈ f−1(Cl(V ))⊆ Un ⊆ f−1(W ) ⊆ f−1(Cl(W ))⊆
X−Bd(U). Since X is a continuum, the open neighborhood U ∩ Un of x in X
has non-empty boundary in X . This boundary lies in U so that U ∩S 	= ∅. �
Lemma 5.3. A compactum X is rim-separable if and only if, for each pair p, q
of distinct elements of X, there exists a closed separable subset S of X such
that S separates X between p and q.

Theorem 5.4. Let X be a rim-separable continuum and let f : X → Y be
onto and monotone. Then Y is rim-separable.

Recall that an inverse system X = {Xa, pab, A} is σ-directed provided that
for each sequence {ai : i = 1, 2, . . . } there is an a ∈ A such that a ≥ ai for
each i = 1, 2, . . . . In Theorem 18 of [13] (see also [12]), I. Lončar demonstrates
that each rim-metrizable continuum X admits a σ-directed inverse system X =
{Xa, pab, A} such that eachXa is a metrizable continuum, each pab is monotone
and onto, and X = lim←−X.

Theorem 5.5. Let X be a rim-separable continuum. There exists a σ-directed
inverse system X = {Xa, pab, A} such that each Xa is a separable continuum,
each pab is monotone and onto, and X = lim←−X.

Proof. By Mardeśič [15] and by Nikiel, Tuncali, and Tymchatyn (Theorem 9.4
of [19]), there is a σ-directed inverse system Y = {Ya, qab, A} such that each
Ya is compact metric, each qab is onto, and X = lim←−Y. For each a ∈ A,
let qa : X → Ya denote the natural projection. For each a ∈ A, apply the
monotone-light factorization of qa to obtain a space Xa, a monotone mapping
q′a : X → Xa, and a light mapping q′′a : Xa → Ya such that qa = q′′a ◦ q′a.

By Mardeśič [15], for each pair a, b of elements of A such that a ≤ b in
A, there is a monotone mapping pab : Xb → Xa. We therefore obtain an
inverse system X = {Xa, pab, A} such that X = lim←−X. Applying Theorem

5.4 to q′a : X → Xa, each Xa is rim-separable. Applying Theorem 5.2 to
q′′a : Xa → Ya, each Xa is separable. �

From this result, a number of analogues of results of Lončar follow. Further-
more, the proofs are essentially identical to their proofs. In particular, the two
following results (and their proofs) are analogues of Theorem 19 and Theorem
20, respectively, of [13]. Recall that a metric continuum is said to have the
property of Kelley if and only if, given ε > 0, there is a δ > 0 such that if a and
b are in X , d(a, b) < ε and a ∈ A ∈ C(X) then there exists B ∈ C(X) such
that b ∈ B and H(A,B) < ε. It is known that each locally connected metric
continuum has the property of Kelley (see e.g. [16]). The following topological
generalization of this property is due to W. J. Charatonik. A continuum X
is defined to have the property of Kelley if, for each a ∈ X , each A in C(X)
containing a, and each open set V ∈ C(X) containing A, there exists an open
set W containing a and, if b ∈W , then there exists B ∈ C(X) such that b ∈ B
and B ∈ V . Lončar (Theorem 9 of [12] ) has shown that each locally connected
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continuum has the property of Kelley. A continuum X is smooth at the point
p ∈ X if for each convergent net {xn} of points of X and for each subcontinuum
K of X such that both p and x = lim{xn} are in K, there exists a net {Ki} of
subcontinua of X such that each Ki contains p and some xn and K = lim{Ki}.
Rakowski [21] has shown that a continuum X is smooth at p if and only if for
each subcontinuum N of X containing p and for each open set V such that
N ⊆ V there exists an open connected set K such that N ⊆ K ⊆ V . Re-
call also that a dendroid is an arcwise connected and hereditarily unicoherent
continuum.

Corollary 5.6. Every rim-separable dendroid with the property of Kelley is
smooth.

Corollary 5.7. Every rim-separable dendroid is the inverse limit of an inverse
system of separable dendroids.

Acknowledgements. The authors acknowledge with gratitude the referee for
many helpful comments and suggestions. In particular, the referee’s suggestions
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