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Abstract: Artificial Intelligence techniques have being applied to many problems in 

manufacturing systems in recent years. In the specific field of manufacturing scheduling 

many studies have been published trying to cope with the complexity of the manufacturing 

environment. One of the most utilized approaches is (multi) agent-based scheduling. 

Nevertheless, despite the large list of studies reported in this field, there is no resource or 

scientific study on the performance measure of this type of approach under very common 

and critical execution situations. This paper focuses on multi-agent systems (MAS) based 

algorithms for task allocation, particularly in manufacturing applications. The goal is to 

provide a mechanism to measure the performance of agent-based scheduling approaches for 

manufacturing systems under key critical situations such as: dynamic environment, 

rescheduling, and priority change. With this mechanism it will be possible to simulate critical 

situations and to stress the system in order to measure the performance of a given agent-based 

scheduling method. The proposed mechanism is a pioneering approach for performance 

evaluation of bidding-based MAS approaches for manufacturing scheduling. The proposed 

method and evaluation methodology can be used to run tests in different manufacturing floors 

since it is independent of the workshop configuration. Moreover, the evaluation results 
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presented in this paper show the key factors and scenarios that most affect the market-like 

MAS approaches for manufacturing scheduling. 

Keywords: multi-agent systems; intelligent manufacturing systems; manufacturing 

scheduling; task allocation 

 

1. Introduction 

The manufacturers’ success is no longer measured by their ability to cost-effectively produce a single 

product; success now seems to be measured in terms of flexibility, agility, and versatility [1]. In order to 

survive, manufacturing systems need to adapt at an ever-increasing pace to incorporate new technology, 

new products, new organizational structures, etc.  

The above trends have motivated researchers in academia and industry to create and exploit new 

production paradigms on the basis of autonomy and co-operation because both concepts are necessary 

to create flexible behavior and thus to adapt to the changing production conditions. Such technologies 

provide a natural way to overcome such problems and to design and implement distributed intelligent 

manufacturing environments [1,2]. One of the complex problems in manufacturing systems is scheduling. 

Manufacturing scheduling is the process of assigning manufacturing resources over time to the set of 

manufacturing processes in the process plan. It determines the most appropriate time to execute each 

operation, taking into account the temporal relationships between manufacturing processes and the 

capacity limitations of the shared manufacturing resources. The assignments also affect the optimality 

of a schedule with respect to criteria such as cost, tardiness, or throughput. In summary, scheduling is an 

optimization process where limited resources are allocated over time among both parallel and sequential 

activities. Such an optimization process is becoming increasingly important for manufacturing enterprises 

to increase their productivity and profitability through greater shop floor agility to survive in a globally 

competitive market [3]. 

In the past twenty years, researchers have been applying Artificial Intelligence (AI) techniques to 

many problems [4,5,6,7]. For a large literature review of AI applications for manufacturing systems see 

[8]. In the specific field of manufacturing scheduling many works are published that try to cope with the 

complexity of the manufacturing environment. One of the approaches most utilized in the specialized 

literature is (multi)agent-based scheduling. Nevertheless, despite the large list of studies reported in this 

field there is almost no resource or scientific study on the performance measure of this type of approaches 

under very common and critical execution situations. Even so, Bench4Start [9] must be pointed out as 

an interesting approach to define benchmarking solutions for manufacturing systems. Nevertheless, 

Bench4Start does not take into account multi-agent based approaches for manufacturing scheduling. The 

goal of the work presented in this paper is to provide a mechanism to measure the performance of agent-

based scheduling approaches for manufacturing systems under key critical situations such as: dynamic 

environment, rescheduling, and priority change. With this mechanism it will be possible to simulate critical 

situations and to stress the system in order to measure a given agent-based scheduling method performance. 

In this work a specific method developed for bidding-based or market-like multi-agent approaches of 

manufacturing scheduling is presented. 
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2. Task Allocation in Intelligent Manufacturing Systems: State of the Art, Background 

Techniques from Artificial Intelligence have already been used in Intelligent Manufacturing for more 

than twenty years [1]. However, the recent developments in multi-agent systems in the domain of 

Distributed Artificial Intelligence have brought new and interesting possibilities. Distributed intelligent 

manufacturing systems are based on multi-agent system (MAS) technology [11]. MAS studies the 

coordination of intelligent behavior among a group of (possibly preexisting) agents. An agent is an 

autonomous and flexible computational system, which is able to act in the environment [11].  

Today MAS is a very active area of research, which is beginning to see commercial and industrial 

applications [12,8,10,13]. 

The scheduling problem exists not only in manufacturing enterprises, but also in organizations like 

publishing houses, universities, hospitals, airports, and transportation companies. It is typically NP-hard, 

i.e., it is impossible to find an optimal solution without the use of an essentially enumerative algorithm, 

with computation time increasing exponentially with problem size. However, the manufacturing 

scheduling problem is one of the most difficult of all scheduling problems. 

A well-known manufacturing-scheduling problem is the classical job shop scheduling where a set of 

jobs and a set of machines are given. Each machine can handle at most one job at a time. Each job 

consists of a chain of operations, each of which needs to be processed during an uninterrupted time 

period of a given length on a given machine. The purpose is to find the best schedule, i.e., an allocation 

of the operations to time intervals on the machines, which has the minimum total duration required 

completing all jobs. The total number of possible solutions for a classical job-shop scheduling problem 

with n jobs and m machines is (n!)m. 

The problem becomes even more complex when unforeseen dynamic situations are considered. In a 

job shop manufacturing environment, things rarely go as expected. The system may be asked to include 

additional tasks that are not anticipated, or to adapt to changes to several tasks, or to neglect certain tasks. 

The resources available for performing tasks are subject to changes. Certain resources can become 

unavailable, and additional resources can be introduced. The beginning time and the processing time of a 

task are also subject to variations. A task can take more or less time than anticipated, and tasks can arrive 

early or late. Other uncertainties include power system failures, machine failures, operator absence, and 

unavailability of tools and materials. An optimal schedule, generated after considerable effort, may 

rapidly become unacceptable because of unforeseen dynamic situations on the shop floor and a new 

schedule may have to be generated. This kind of rescheduling problem is also called dynamic scheduling 

or real-time scheduling. 

Agent-Based Scheduling for Manufacturing 

In this paper the discussion on scheduling is restricted to (a) the allocation of production operations 

to specific resources and (b) the specification of timing (start, duration, and completion) for those 

operations. The key characteristics, which typify an intelligent manufacturing scheduling approach,  

are [14]: 
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− A local decision-making and computational capability associated with each agent. 

− A cooperative interaction strategy that governs the way in which agents exchange information 

and determine mutually acceptable solutions. 

− An interchange mechanism or protocol, which manages the exchange of message types, needed 

to execute the cooperative strategy. 

− A means of ensuring that the global concerns of the factory are addressed. 

− A degree of central coordination (not present in all solutions). 

Work on agent-based scheduling for manufacturing systems to date has predominantly experimented 

with different algorithms [15–21] and simulated testing although issues such as the desire for an emergent 

schedule vs. a fixed schedule structure, and the relationship between scheduling and execution has  

been examined also. Schiegg [22] compiled an extensive bibliography on multi-agent scheduling in 

manufacturing systems. 

In agent-based manufacturing process planning and scheduling systems, bidding-based negotiations 

or market-like approaches are commonly used. In systems of this kind, the applied agent negotiation 

protocols require individual agents to reply to the incoming offers, to compete, and to negotiate or to 

bargain with other agents. As a result, rich knowledge bases and powerful learning and reasoning 

mechanisms are very important. Each agent should have at least knowledge of the capability, availability, 

and cost of the physical resource (e.g., a machine) represented by it. Some sophisticated agents need to 

have knowledge of other agents in the system, the products to be manufactured, and the know-how 

(historical experience, successful cases), etc. 

The decision scheme of an individual agent depends primarily on two aspects [3]: coordination or 

negotiation mechanisms used by the multi-agent system and its local decision-making mechanisms based 

on knowledge. For example, a Contract Net protocol needs each individual agent to reply to an offer 

with requested information such as cost, starting time, processing time, etc. [23]. A game-theory-based 

multi-agent system needs agents to follow game rules [24]. While a multi-agent system implemented  

with a conversation scheme will need each agent to follow the conversation policies [25]. Local  

decision-making may use rule-based and case-based mechanisms reasoning on top of the knowledge the 

agent possesses. To update an agent’s knowledge, learning mechanisms are needed. Such learning 

mechanisms may range from case-based reasoning to neural network and fuzzy logic-based reasoning. 

Negotiation protocols are used in most agent-based manufacturing scheduling systems for resource 

allocation. The Contract Net Protocol or its modified versions are the most commonly utilized, although 

some other protocols such as the voting mechanism have also been considered. Although Contract  

Net and its variants are usually used as negotiation protocols in most agent-based scheduling systems, 

market-based approaches are becoming more and more popular. Market-based like protocols use the  

so-called bargaining process or auction process, which is also simple and easy to use. Market-based like 

approaches have recently been used in a number of agent-based scheduling systems [26–29]. 

Two types of agent-based distributed manufacturing scheduling systems can be distinguished 

according to the following characteristics. 
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a. Scheduling is an incremental search process that can involve backtracking. Agents, responsible 

for scheduling orders, perform local incremental searches for their orders and may consider 

multiple resources. The global schedule is obtained through the merging of local schedules. This 

is very similar to centralized scheduling. 

b.  An agent represents a single resource (e.g., a work cell, a machine, a tool, a fixture, a worker, etc.) 

and is responsible for scheduling this resource. This agent may negotiate with other agents to 

carry out the overall scheduling [27,28,30]. 

Most agent-based manufacturing scheduling systems proposed and developed in literature use the 

second approach. 

The work presented in this paper is focused on the second approach for the following potential 

advantages. (I) Resource agents may be connected directly to physical devices they represented so as to 

realize real-time dynamic rescheduling (of course, not immediate rescheduling after any change in the 

working environment for the sake of system stability). It may therefore provide the manufacturing 

system with higher reliability and device fault tolerance. (II) Schedules are achieved by using 

mechanisms similar to those being used in manufacturing supply chains (i.e., negotiation rather than 

search). This way, the manufacturing capabilities of manufacturers can be directly connected to each 

other and optimization is possible at the supply chain level in addition to the shop floor level and the 

enterprise level. 

It is becoming clear that agent-based approaches offer many advantages for distributed manufacturing 

scheduling systems: modularity, reconfigurability, scalability, upgradeability, and robustness (including 

fault recovery). The results achieved so far in the agent research community provide excellent motivation 

for further development of solutions in this area. Moreover, at present, there are no other ways to solve 

these complex problems. However, whether the potential advantages of agent-based approaches can 

actually be realized in industrial systems will depend on the selection of a suitable system architecture 

for agent organization and an appropriate approach for agent encapsulation; on the design and 

implementation of effective mechanisms and protocols for communication, cooperation, coordination, 

and negotiation; and on the design and implementation of advanced internal architectures and efficient 

decision schemes of individual agents. Moreover, the key to success in any field is how well a given 

approach performs under very common and critical situations. Our goal is to assess this problem providing 

a mechanism that can help when evaluating the performance of a given agent-based scheduling approach 

for manufacturing. 

3. A Bidding-Based MAS Approach for Dynamic Scheduling in Manufacturing 

In this work the main interest is the performance of bidding-based or market-like MAS approaches 

for dynamic scheduling of manufacturing systems under critical situations. 

The bidding process implemented into a MAS is any protocol that allows an agent to focus on one or 

more resources to determine its final allocation as well as the involved transactions set in which the 

agents will be involved. 
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The bidding scheme has proven its efficiency as a general solution when applied to resource allocation 

integrated into a MAS [31]. Many variants of biddings have been developed, including single, combined, 

and multiple [32]. 

It is important to remark that the most common bidding scheme—ascendant bidding, known as 

English auction—represents just a small piece of a wide bidding spectrum. The fact that the bidding 

process is a relatively simple resource allocation mechanism, allows this working scheme to conform an 

infinite set. 

The most common bidding model includes: one resource to be allocated, one seller, and many 

potential buyers. Each one of the buyers will set their own tag price for the item and want to acquire it 

at the lowest price as well. 

Having multiple agents grouped at one side of the market environment makes them fall into the single-

sided bidding category. The main goal defined for this classification is developing a specific protocol in 

order to solve a certain amount of defined global criteria, like creating an earn maximizing protocol, or 

establishing an economically efficient auction process, one that guarantees the potential buyer to acquire 

the selling item offering the maximum market value. 

As previously stated, there is a wide range of working schemes for bidding processes. However, they 

all share a diverse structure, taxonomically speaking, common to all of them. For research purposes and 

simulation of real applications, they are to be considered as a structured framework for diverse negotiation 

threads. Each one of them includes certain rules, basically outlined by three main categories: 

(1) Postulation rules: defining how, who, when, and what is to be contained for every auction bid. 

(2) Clarification rules: defining when negotiations occur, what each one of them is related to in the 

bidding process (who obtains the resources and which bids are being modified) 

(3) Information rules: related to bidders with active participation in the bidding process 

The vast majority of the different bidding schemata include the above rules to a certain degree. However, 

more rules are likely to be added. However, aside from the bidding type and complexity aggregated to the 

industrial process, each design includes those three basic axes in its different implementations. 

Given the vast amount of bidding schemes, the problem of how to select one of them may arise. With 

some considerations, the selection is not that relevant, as formalized in the following theorem: 

Theorem 1. Revenue Equivalence Theorem. [33] Assume that each of n risk-neutral agents has an 

independent private valuation for a single good at auction, drawn from a common cumulative distribution 

F(o) that is strictly increasing and atom less on [o, ō]. Then any auction mechanism in which the good 

will be allocated to the agent with the highest valuation, and any agent with valuation o has an expected 

utility of zero; this yields the same expected revenue, and, hence, results in any bidder with valuation o 

making the same expected payment. 

From the above paragraph, it can be concluded that when bidders have independent and private bids, 

every auction scheme earns an equivalent. Aside from the theorem being useful to remark that the 

bidding type selection is not that relevant, it is a very useful analytical tool. In particular, it can be used 

to identify equilibrium strategies in that auction types fulfill the theorem conditions. 
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4. The Proposed Model and Working Environment 

In this section the mechanism to measure the performance of bidding-based scheduling approaches 

for manufacturing systems is presented. It is defined as a MAS that can simulate critical situations in 

order to stress a manufacturing working environment and measure the performance of the scheduling 

approach (bidding-based) that is being used. It is important to point out that the work presented in  

this paper is focused on bidding-based mechanisms, nevertheless, other approaches for agent-based 

manufacturing scheduling are also important. The model described in this section can be modified in 

order to cope with other agent-based approaches. The final goal of the work, which is being developed 

by the authors, is to provide a complete package that the user can configure in order to test different 

agent-based approaches for manufacturing systems. 

The proposed MAS architecture includes two levels. The first one is composed of those entities 

related to the real environment to be simulated. The second comprehends the responsible agents designed 

for controlling and handling the aforementioned entities. Furthermore, the MAS architecture requires 

more elements, such as information and communication management for each agent, as well as 

coordination and execution control for the assigned jobs. 

The working environment in which the proposed approach will be tested consists of an assembly line 

system, with job stations receiving constant manufacturing assignments from different categories. The 

integrated agents are autonomous, each one representing a physical entity into the system. 

To properly apply the bidding scheme, two agent categories are included: bidder and auctioneer 

agents, both autonomous and able to intercommunicate: 

Auctioneer agent: coordinates the initial stage of the auction process. It sets the starting price of the 

job order. Moreover, it analyzes the generated bids and defines the best one. 

Bidder agent: encapsulates the state of a given machine when a job order arrives. It also defines the 

bid during the entire process of the auction. 

The implemented auction technique is the English auction. The auctioneer sets the assigned value for 

the job order as well as the prices randomly generated and offered by the bidder agents. The auctioneer 

agent generates and sends the reserved price for the resource to the system. A bidding agent is assigned 

for each assembly line. The individual bids are sequentially sent to the auctioneer when a new job unit 

requires processing.  

In the following sections, a complete and detailed evaluation of the bidding-based MAS approach for 

task allocation in manufacturing environment is presented. The bidding-based approach is tested in order 

to measure its performance under key critical requirements of manufacturing systems. In order to 

simulate the situations for testing, dynamic environment and rescheduling, specific algorithms, which 

include these characteristics, are proposed. It is important to point out that if the concrete bidding 

mechanisms needs to be changed (for example, a Dutch auction, Japanese auction, etc.) it is only required 

to change the step in which the auctioneer evaluates the bids and the internal process by which every 

bidder agent defines their individual bid. 
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4.1. Dynamic Environment 

One of the basic properties characterizing a modern manufacturing system is dynamism, defined as 

the set of changes in the structure and behavior during operation. This expresses different competencies, 

responsibilities, and relationships between entities [34]. 

The first scheduling requirement in the manufacturing field is for it to be dynamic [35]; in it, the job 

orders arrive at the assembly line with diverse characteristics like different priorities, manufacturing 

times, etc. In order to create a simulation environment for this requirement, the software elements 

depicted in Figure 1 were included. 

Figure 1. Conceptual classes for the multi-agent systems (MAS) Dynamic Environment. 

 

 

 

 

 

 

 

 

For the proper execution of the Dynamic Environment simulation tests, the following conditions  

were considered: 

− Every agent can process only one job at a time. 

− A set of n operation jobs is available for processing at time zero. 

− Setup times for the operations are included in processing times. 

− m different machines are continuously available. 

− The evaluations for the bids, resource value assignations, and bid amount generations are 

effectuated randomly. 

− The priority values are randomly generated for every job order and classified as being of  

high, medium or low priority. Unless otherwise stated, the corresponding range values for all 

simulations are 0–3 for low, 4–7 for medium and 8–9 for high priorities, respectively. 

− Parameters evaluated: Allocation or rejection (when the maximum bid value is lower than the 

resource value), time for each resource, job order priority and occurrence of assignation with 

increased initial value 

The operation flow related to the MAS agents for this test is in Table 1. 
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Table 1. Algorithm for job allocation in the Dynamic Environment test. 

(1) The auctioneer agent Si sets the initial value Vi for the corresponding resource to every generated  

job assignment. 

(2) Every registered bidder agent Aj presents one bid (ρj), constituting a set of eligible random options  

Cij = {ρj, ρj+1 … ρj+n} to allocate every job. Si verifies every bid and once ρj ≥ Vi is accomplished; 

the corresponding resource is assigned to the Aj agent. 

(3) ρj ≥ Vi + 1 is evaluated, in order to maximize the allocation value of the corresponding resource.  

If the evaluation is valid, the resource will be allocated at Vi + 1 price, otherwise the allocation will 

take effect at Vi price. 

(4) If ρj < Vi is valid for every element of Cij, the allocation will be considered empty. A new bidding 

stage takes effect. 

(5) If ρj = … ρj+1 = ρj+n is valid for every member of Cij, ρj will be considered the maximum bid for the 

corresponding resource allocation. 

4.2. Rescheduling 

The Rescheduling process can be defined in general terms as a dynamic adjustment that updates the 

production scheme in response to sudden interruptions susceptible to occurrence in the manufacturing 

shop floor. There are diverse strategies that specify how and when to apply rescheduling to properly 

confront those occurrences. Within the scope of this work, the following strategies will be considered: 

High Priority and High Utilization [36]. 

The above strategies represent the combination of two elements: Rescheduling criteria and types of 

used algorithm for production rescheduling, both described in the following paragraph.  

Rescheduling criteria: An interrupted job order by a failure in the manufacturing machines will be 

referenced as affected job; also, the amount of time for job completion will be the remaining time. 

 Job priority: This criterion refers to the case of alternative machine susceptible of accepting the 

affected job, depending upon the priorities of the assigned job (actual job priority > minimum 

alternative job priority). If the affected job priority is higher than the equivalent in the processing 

job in the alternative machine, the latter is interrupted and the affected job starts to be processed. 

 Machine utilization: Referred to when there are alternative machines able to receive the affected 

job depending upon its amount of utilization. When a failure in the machine affects a job, the 

availability of the alternatives is evaluated. If many options are presented, the machine with the 

lowest workload is selected. 

Algorithm types 

 High interference: Applied when a failure occurs. When activated, this algorithm will search 

alternative processing machines, ignoring the remaining time of the affected job process.  

 Low interference: Consists of searching alternative machines only when failure time is higher 

than the affected job process remaining time. 

In order to apply this test to the proposed algorithm, a set of software components was developed,  

as depicted in Figure 2. 
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Figure 2. Conceptual classes for rescheduling. 

 

 

 

In the following sections, the two types of simulated situations for rescheduling are implemented  

by the High Priority Algorithm and the High Utilization Algorithm. In this way the performance of the 

bidding-based MAS approach for scheduling can be validated when using the two mentioned techniques. 

4.2.1. High Priority Algorithm 

For simulation purposes of rescheduling requirements, the bidding-based algorithm is modified in 

order to use the high priority technique. In the first instance, when there is a breakdown occurrence 

affecting any of the scheduled jobs, the algorithm will select an alternative machine. If the priority of 

the affected job is higher than the available capacity of the remaining machines, the allocation is 

considered deserted. Otherwise, the job will be allocated to the machine with enough processing capacity. 

In this test, the following conditions are considered:  
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 Every agent can process only one job at a time 

 The random breakdown occurrence will always be applied on the machine with the best available 

capacity, 0 being for no machine failure and 1 for absence of breakdown. After the revision of 

this value for every scheduled job, the allocation process is initiated. 

 A set of n operation jobs is available for processing at time zero. 

 Setup times for the operations are included in processing times. 

 m different machines are continuously available. 

The characteristics of the High Priority Algorithm are defined in Table 2. 

Table 2. High priority algorithm for rescheduling. 

(1) The auctioneer agent Si sets the starting price (priority) Vi corresponding to every job order generated. 

Operation time ti is initialized. 

(2) Every registered bidding agent Aj offers a particular bid ρj, structuring one eligible random options set  

Cij = {ρj, ρj+1 … ρj+n} for assigning each job order. Si verifies every bid and evaluates ρj ≥ Vi, if valid,  

the resource is allocated to the Aj corresponding agent. 

(3) A failure condition is generated randomly in the maximum bid agent max (ρj). As an alternative, the agent 

with the immediate lower bid is selected. The operation time increases due to the failure. The increment 

is defined by: ti = ti + ∆ti. 

(4) ρj ≥ Vi + 1, is evaluated in order to maximize the allocation value of the corresponding resource. When 

valid, the corresponding job will be definitely allocated at a price equal to Vi + 1, otherwise it will be 

allocated at a price equal to Vi. 

(5) If ρj < Vi is valid for every element of Cij, the allocation will be considered deserted, and a new round of 

bids will take place. In a real environment, this is interpreted as a ðt waiting time, equivalent to the 

reincorporation of the failed machine. 

(6) If ρj = ρj+1 = … ρj+n is valid for every element of Cij, ρj will be designated as the maximum bid for defining 

the resource allocation, evaluated for both failure or normal working processes. 

4.2.2. High Utilization Algorithm 

This algorithm includes basically the same processing rules as the High Priority Algorithm, with one 

difference: once the failure in the best machine is generated, a seek process is started in order to find the 

minimum bid presented in the system (the least capable agent) This algorithm is formalized in Table 3. 

4.3. Priority Change Algorithm 

The jobs that are under execution in a manufacturing system can experiment priority changes during 

exection due to different situations, i.e., changes in the raw material bills, new job orders with different 

priority that enter the system affecting the already scheduled jobs, etc. In order to cope with this situation 

the Priority Change Algorithm is proposed to manage the system behavior when the priority level 

associated with the actual job rises at some point during execution. In order to simulate this situation, 

the proposed approach randomly generates two priority levels for the given job order, and defines a 

subsystem composed of the most and least occupied agents. Table 4 describes this algorithm in a more 

detailed fashion. 
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Table 3. High utilization algorithm for rescheduling. 

(1) The auctioneer agent Si assigns the starting price (priority) Vi for the resource corresponding to every 

job order generated. Operation time ti is initialized. 

(2) Every registered bidder agent Aj generates a ρj bid, defining a random probable values set  

Cij = {ρj, ρj+1 … ρj+n} for assigning each job order. Si verifies every bid and evaluates ρj ≥ Vi, when valid, 

the resource is allocated to the Aj agent temporarily. 

(3) A failure condition in the agent with the best offer: max (ρj), is generated. As an alternative, the agent 

accomplishing a min(Cij)—which represents the agent with the most inactive state in the set—is chosen. 

The total operation time reflects an increment due to the generated failure defined for ti = ti + ∆ti. 

(4) ρj ≥ Vi + 1 is evaluated, trying to maximize the allocation job value. When the comparison evaluates 

true, the job will be allocated at a Vi + 1 price tag, otherwise the final assignation price will be Vi. 

(5) If ρj < Vi is true for every element of Cij, the allocation process is considered deserted. A new bidding 

round starts. This is considered as a ðt waiting time, equivalent to the reincorporation of the machine 

including a generated failure. 

(6) If ρj = ρj+1 = … ρj+n is true for every element of Cij, ρj is designated as the highest bid for defining the 

resource allocation, and is evaluated for all system configurations. 

Table 4. Priority change algorithm. 

(1) The auctioneer agent Si assigns the initial prices (priorities) Vi y Hi for the corresponding resource on 

each generated job. Hi > Vi. is true for all cases 

(2) From the priority ranges defined, the increment in priority will be classified as low to medium, medium 

to high or low to high, according to the generated values for Vi y Hi 

(3) Every registered bidder agent Aj presents a ρj bid, defining a set of random possible options  

Cij = {ρj, ρj+1 … ρj+n} in order to allocate each job order. Si verifies every bid and makes a selection on 

the best and worst offers max(ρj) and min(ρj), corresponding to the most and least occupied agents in 

the system, respectively. 

(4) K = max(ρj) + min(ρj) is defined as the total capacity for the system to process the job order. 

(5) If K < Vi evaluates true, the allocation process is considered deserted, and a new bidding round  

takes place. 

(6) If K ≥ Vi and K < Hi, the system is considered saturated when trying to process the actual job with a 

higher priority value. This result is added to the general evaluation of the system. 

(7) If K ≥ Hi is true, the system is considered not saturated and capable of processing the task at a higher 

priority. The result of the allocation is registered and incorporated to the general evaluation for the 

SMA on this specific test. 

5. Performance Evaluation of the Bidding-Based Scheduling Approach Using the  

Proposed Mechanism 

In this section the analysis of the execution of the bidding-based MAS approach for task allocation is 

described. The test where executed taking into account the performance criteria defined and modeled in 

the previous section: dynamic environment, rescheduling with high priority, rescheduling with high 

utilization, and priority change. The tests were executed running 100 simulations for the working 

environment (defined in Section 5) under the different complexity scenarios. 
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5.1. Dynamic Environment Test 

The dynamic environment test was executed simulating the dynamic and random entrance of new job 

orders for one to 10 tasks. Moreover, every task was randomly labeled with a priority value: eight to 

nine for high priority, four to seven for medium priority, and zero to three for low priority. The results 

depicted in Figure 3 show that high priority allocation for jobs decreases when there are more job orders 

in the system. It varies, on average, from 24% with one job to 10% with ten jobs. On the other hand, the 

number of jobs does has almost no effect on the allocation of medium priority jobs in the system. 

Finally, it can be noticed that when the number of jobs in the system increases, a very high amount 

of allocated jobs belongs to the low priority level, reaching up to 51.5% on average. Also, the unallocated 

job index with one job is very high (39%), while it remains almost stable (10.5% on average) when the 

number of jobs increases. 

Figure 3. Dynamic Environment Test: Task allocation for one to 10 tasks order with high, 

medium, and low priority. 

 

5.2. Rescheduling with High Priority Test 

The rescheduling with High Priority test was executed with the following configuration: One hundred 

simulations; dynamic entrance of new job orders for one to 10 tasks, and priority values of eight to nine 

meaning high priority tasks, four to seven for medium, and zero to three for low. Random breakdown 

occurrences are simulated. The breakdown is always applied to the machine with the best available 

capacity, with zero being for no machine failure and one for absence of breakdown. After the revision 

of this value for every scheduled job, the allocation process is initiated. 

Figure 4 shows that, despite the random failure generation in the most capable machine, the unassigned 

job levels maintain a low average for the medium and low priority scenarios. Although the high priority 

level scenario shows a decreasing performance when more job orders appear in the system, the 

percentage of allocated tasks is always between 30% and 50%. This result, in a real working environment 

1 2 3 4 5 6 7 8 9 10

HP 0.24 0.2 0.08 0.06 0.02 0.06 0.05 0.07 0.01 0.1

MP 0.28 0.29 0.31 0.19 0.35 0.41 0.26 0.29 0.29 0.29

LP 0.11 0.43 0.52 0.46 0.52 0.45 0.43 0.38 0.57 0.47
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scenario, indicates that the system is capable of processing a high percentage of jobs with a level of 

priority higher than the one initially required. 

Figure 4. Rescheduling with High Priority Test: Task allocation for one to three task orders 

with high, medium, and low priority. 

 

Once the testing process of the described software model finishes, having two generated job tasks, 

the unallocation index grows noticeably, moving from 9% to 20% for medium priority, and from 15% 

to 35% for high priority. This characteristic remains practically the same for low priorities. Despite that, 

the system behavior maintains acceptable levels of completed jobs, given that the unallocated job 

average level is lower than 10%. The observed general distribution is 25%, 30%, and 44% for high, 

medium, and low priority levels, respectively. The average completion time (50 ms) is slightly higher 

than the one observed in the previous test scenario (Dynamic Environment). This implies that the 

decision process before a machine failure generates an additional delay in the general allocation time. 

5.3. Rescheduling with High Utilization Test 

This test was executed under the same configuration of the working environment as for the previous 

tests (that is, 100 simulations; dynamic and random entrance of new job orders for one to 10 tasks; and, 

tasks’ priority values: eight to nine for high priority, four to seven for medium priority, and zero to three 

for low priority). The processing rules for this test are similar to those of the High Priority test, with the 

following difference: once the failure in the best machine is generated, a seeking process is started to 

find the minimum bid presented in the system (the least capable agent). 

Figure 5 shows the percentage of allocated tasks when random job orders enter the system with 

different priority levels. Analyzing these results again reveals the difficulty to allocate high priority level 

tasks in the system when the task orders increases. 

  

1 2 3 4 5 6 7 8 9 10

HP 15% 30% 24% 11% 12% 10% 15% 12% 8% 15%

MP 75% 60% 74% 30% 30% 33% 35% 41% 38% 36%

LP 97% 95% 82% 46% 42% 45% 45% 42% 48% 48%
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Figure 5. Rescheduling with High Utilization Test: Task allocation for zero to 10 task orders 

with high, medium, and low priority. 

 

In the simulation using the High Utilization algorithm, the implemented Java code for the auctioneer 

seeks the lowest offer among the bidder agents and evaluates it against the randomly assigned value for 

the generated tasks. An independent routine is programmed in order to define a winner when the 

presented bids are equal; besides, three static functions use the bids as parameters to divide the 

information into decision blocks to allow the proper selection of the best bid for this particular case. 

The allocation time using the High Utilization algorithm maintains practically the same observed 

levels in the application of the High Priority algorithm (arround 49 to 50 ms). 

5.4. Priority Change Test 

In this section the Priority Change test is decribed. In this test, the bidding-based MAS approach for 

task allocation is simulated with priority changes in the job orders that ramdonly enter the system. This 

way the average increment in the system saturation can be evaluated. For this test, the software simulator 

randomly generates the priority values as integer values in the range between zero and nine. To properly 

determine the coupled priority resulting from pairing two tasks of different values, the following conditions 

are considered: the total priority level is low if it falls in the range of zero to six, medium between seven 

and 12 and high between 13 and 18. For practical purposes, if the system is able to receive the job order 

at some initial priority but cannot complete it when its level is raised, it is considered oversaturated. 

The high saturation in the system, when priority changes, is revealed in Figure 6 and in Table 5, with 

a 93% average for all the generated transitions, which leads to the conclusion that only with Low to 

Medium transitions the system has a good processing and allocating performance for the job tasks under 

this specific schema. 

  

1 2 3 4 5 6 7 8 9 10

HP 85% 65% 55% 16% 6% 7% 7% 7% 11% 9%

MP 90% 80% 75% 27% 29% 32% 29% 37% 35% 24%

LP 95% 95% 98% 36% 48% 44% 54% 40% 42% 57%
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Figure 6. Average system saturation under simulations of the priority change test. 

 

Table 5. Average system saturation levels. 

Total Experiments Low to Medium Priority Medium to High Priority Low to High Priority 

1–20 83% 99% 99% 

21–40 81% 96% 97% 

41–50 92% 96% 98% 

6. Performance Evaluation Analysis of the Algorithm 

In this section, the overall performance of the bidding-based MAS approach when integrated by 

means of the algorithms presented in Section 5, to the diverse complexity scenarios is analyzed. The 

performance evaluation analysis considers the following: an optimum system performance is present 

when the processed orders are completed with a higher than initial priority (value), i.e., the best bidder 

agent is able to accelerate the process; good performance is presen if the best bidder is able to allocate  

the job order at the initial price, and finally, a bad performance is present when the order cannot be 

allocated (Figure 7). 

Figure 7. Performance evaluation for different tests. 

 

Analyzing the results in Figure 7, it is clear that the overall behavior of the bidding-based MAS 

approach is good, on average, for those situations in which a high rescheduling requirement is present. 

For dynamic environments its behavior is not bad. Nevertheless, the number of unallocated tasks is 

higher than in the other tests. 
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In Figure 8, it can be noticed that the unallocated (NA) job level for the Dynamic environment Test 

is minimal (7%) and the entire allocation level is relatively high; however, a substantial amount of 

allocated jobs corresponds to low priority level orders, almost three times the result of high priority 

orders. Under the same optimum, good and bad classification scenarios, the High Priority test application 

results (Figure 8) show that despite the absence of the best bidder agent and the consequent utilization 

of an alternative, the accumulated amount of successfully allocated jobs is above 70%; however, 

categorizing the results, the high amount of unallocated jobs, almost equiparable to every allocated order 

category, is noticable. 

For the High Utilization test, just as in the previous case, a failure occurrence in the best bidder agent 

is generated. Under these conditions, the alternative agent will be the least optimal. As expected, the 

amount of successfully completed orders decreases significantly (Figure 8). Furthermore, when the 

results for every priority level are distributed, the successfully completed high priority job order level is 

below 10%. Contrary to this, the low priority allocation level increases, reaching 32% on average. 

Figure 8. Task allocation distribution for different test and different priority values. 

 

The final perspective is the Priority Change test analysis shown in Figure 6. In this, the average 

saturation level of the entire system is measured, i.e., the system behavior when higher than initial 

priority levels are generated for all cases. For practical reasons, when reaching a 100% or higher 

saturation measure, the system is considered to surpass its capacity for processing incoming orders; for 

this reason, with the obtained values over 90% on average, it can be concluded that the system performs 

highly saturated under this conditions. 

7. Robustness Measure Analysis of the Bidding-Based Algorithm 

In this section, the robustness of the bidding-based MAS approach for task allocation is analyzed.  

An optimized system, in a classical sense, can be very sensitive to small changes, without previous 

notification. It is preferable to design a system capable of delivering a high robustness level. Marczyk 

states that “optimization is precisely the opposite of robustness” [37] and, in this context, the system 

design is aimed at finding optimal solutions for the creation of a robust system. Precisely, the modeling 

process to attain this objective requires solving all related optimization problems, which are susceptible to 

demanding too much computing power [38]. 
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The robustness of a schedule is not an easy concept to measure or even to define. A robustness 

measure can be calculated from the amount of lost time between the order finishing time and the order 

shipping time. In this case, a possible schedule robustness measure can be defined as: 

𝑅(𝑆) =
∑ ω𝑗
𝑛
𝑗=1 (𝑑𝑗 − 𝐶𝑗)

Σω𝑗𝑑𝑗
 (1) 

where: 

 

𝑑𝑗, is the shipping time for job order j. 

𝐶𝑗, is the makespan for j. 

ω𝑗, is a weigh (priority) value assigned to the job order j. 

This way the robustness measure becomes better as the value of R(S) increases. 

Consider, for example, the processing time, shipping time, and priority values shown in Table 6 for 

three jobs. 

Table 6. Initial values for simulation. 

Values Job 1 Job 2 Job 3 

𝑝𝑗 10 10 10 

𝑑𝑗 10 22 34 

ω𝑗 1 100 100 

𝐶𝑗, can be calculated from the cumulative processing time of the given job. In this case from Table 6 

the following values are derived: C1 = 10, C2 = 20 and C3 = 30. 

The robustness measure using Equation (1) for schedule <1,2,3> is: 

𝑅(< 1,2,3 >) =
600

5610
= 0.11  

while for the sequence <2,3,1>, the robustness measure is higher: 

𝑅(< 2,3,1 >) =
2580

5610
= 0.46  

which means the second schedule is more robust than the first one. Moreover, this sequence has the 

higher value when analyzing all the possible sequences for this particular example. 

In order to measure the robustness level of the generated schedules from the bidding-based MAS 

approach, a set of simulation tests taking into account the following issues, was executed: 

− Once the process is initialized, if the task is allocated at first bid, the pj value remains without 

changes; however, if the capacity of the bidder allows the allocation at a higher value, the 

processing time is reduced and the pj value is decreased in one time unit; however, in the case 

that the job could not be allocated, a system delay is considered and two time units are added for 

the processing time pj 

− Fifty simulation tests were executed for this test, measuring the robustness index for each one 

and calculating their general average in order to obtain a comparative index against the optimal 

robustness level calculated initially. 
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As an example, when there is no adjudication of any task into the MAS, the robustness index level is 

defined as follows: 

𝑅(< 2,3,1 >) =
100 × 6 + 100 × 8 + 1 × (−26)

5610
= 0.24  

The general results from the robustness test reveals a 0.29 robustness unit for the average case  

(a 37% of the robustness measure for the most robust sequence) and a 0.38 robustness unit (17%) for the 

maximum capacity allocation in the system. Those values were calculated measuring the probability of 

interruption ocurrence, as well as the ability for reprogramming the assigned job tasks [39]. 

8. Conclusions 

The research goal of the work presented in this paper is to provide a mechanism to measure the 

performance of agent-based scheduling approaches for manufacturing systems under key critical 

situations such as dynamic environment, rescheduling, and priority change. With this mechanism it will 

be possible to simulate critical situations and to stress the system in order to measure a given agent-based 

scheduling method performance. In this work a specific method developed for bidding-based or market-

like multi-agent approaches for manufacturing scheduling was presented. The method presented and the 

evaluation test performed revealed that the bidding algorithm integrated into MAS is a useful model for 

effective utilization in real applications. However, some operating elements are in need of improvement, 

such as the system capacity for allocating job orders on failure occurrences into the best agents, which 

directly affects the robustness level. In addition, it is required that the methodology can include real 

measurement elements like operating times, incoming data with real variation, storing, and real time 

incorporation of historical data, among others. 

In order to complete the mechanism for performance measure of agent-based scheduling approaches, 

more work is being developed in order to provide specific measurement methods for other kinds of 

agent-based scheduling approaches such as temperature equilibrium, swarm intelligence, etc. This will 

make it possible to have a performance measurement package that can be used to measure different 

agent-based approaches under different critical situations that affect the task allocation problem in 

manufacturing systems. 
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