A RAFU linear space uniformly dense in $C \left[a, b \right]$

E. Corbacho Cortés

Abstract

In this paper we prove that a RAFU (radical functions) linear space, \mathcal{C}, is uniformly dense in $C \left[a, b \right]$ by means of a S-separation condition of certain subsets of $[a,b]$ due to Blasco-Moltó. This linear space is not a lattice or an algebra.

Given an arbitrary function $f \in C \left[a, b \right]$ we will obtain easily the sequence $(C_n)_n$ of \mathcal{C} that converges uniformly to f and we will show the degree of uniform approximation to f with $(C_n)_n$.

2010 MSC: 37L65

Keywords: RAFU; Uniform density; Uniform approximation; Radical functions; Approximation algorithm.

1. Introduction

Let K be a compact Hausdorff space. The Kakutani-Stone Theorem [10] gives a necessary and sufficient condition for the density of a lattice of $C(K)$ in the topology of the uniform convergence on K. The Stone-Weierstrass Theorem [7] provides a necessary and sufficient condition under which an algebra of $C(K)$ is uniformly dense. Nevertheless, the above conditions are not sufficient to ensure the uniform density of a linear space of $C(K)$. Tietze [5], Jameson [4], Mrowka [11], Blasco-Moltó [6], Garrido-Montalvo [8] and recently Gassó-Hernández-Rojas [9] have studied the uniform approximation for linear spaces.

In the Section 2 we will construct a RAFU (Radical functions) linear space, \mathcal{C}, in $C \left[a, b \right]$ and we will prove that \mathcal{C} is uniformly dense in $C \left[a, b \right]$ by using a S-separation condition according to Blasco-Moltó [6]. We will also see that the uniform density of \mathcal{C} in $C \left[a, b \right]$ is not a consequence of the results given by Kakutani-Stone, Stone-Weierstrass, Tietze, Jameson, or Mrowka.
It is true that Blasco-Moltó showed an example of a linear space, \mathcal{F}, uniformly dense in $C[0, 1]$ by using the S-separation condition but some questions were not studied: the linear combinations of elements belonging to \mathcal{F} which approximate uniformly every $f \in C[0, 1]$ and the degree of uniform approximation that \mathcal{F} provides were unknown. In the Section 3 we will solve these problems by using the RAFU linear space \mathcal{F}. Moreover, this linear space \mathcal{F} can be used as an example of approximation by series in the work of Gassó-Hernández-Rojas.

2. A RAFU linear space uniformly dense in $C[a, b]$

For each $n \in \mathbb{N}$ we consider the partition $P = \{x_0, x_1, ..., x_n\}$ of $[a, b]$ with $x_j = a + j \cdot \frac{b-a}{n}$, $j = 0, ..., n$ and we define in $[a, b]$ the functions

\[(2.1) \quad C_n(x) = k_1 + \sum_{i=2}^{n} (k_i - k_{i-1}) \cdot F_n(x_{i-1}, x)\]

where $\{k_i\}_{i=1}^{n}$ are a family of real arbitrary numbers and

\[(2.2) \quad F_n(x_{i-1}, x) = \frac{2n^{-1} \sqrt{x_{i-1} - x_0} + 2n^{-1} \sqrt{a - x_{i-1}}}{2n^{-1} \sqrt{x_n - x_{i-1}} + 2n^{-1} \sqrt{x_{i-1} - x_0}}, \quad i = 2, ..., n\]

We designate by \mathcal{F}_n the subset of $C[a, b]$ formed by the functions C_n and we also denote by \mathcal{F} the set $\mathcal{F} = \cup_{n \in \mathbb{N}} \mathcal{F}_n$.

Proposition 2.1. The set \mathcal{F} is a linear space included in $C[a, b]$.

Proof. It is clear that $\mathcal{F} \subset C[a, b]$. In the first place it is easy to check that \mathcal{F}_n is a linear space n-dimensional because n is fixed and hence the values $\{x_i\}_{i=0}^{n}$ are the same points. Moreover, a basis of \mathcal{F}_n is $\{1, F_n(x_1, x), ..., F_n(x_{n-1}, x)\}$.

\mathcal{F} is a linear space. Let C_p and C_q be two elements belonging to \mathcal{F}. Then, $C_p \in \mathcal{F}_{p, r}$, $r \in \mathbb{N}$ and $C_q \in \mathcal{F}_{q, s}$, $s \in \mathbb{N}$ by considering zero the coefficients $(k_i - k_{i-1})$ of the functions $F_n(x_{i-1}, x)$ that do not appear on the expressions of C_p or C_q. In particular, C_p and C_q belong to the linear space $\mathcal{F}_{p, q}$ and, of course, $C_p + C_q \in \mathcal{F}$. Finally, it is immediate to check that if $C_p \in \mathcal{F}$ and $\lambda \in \mathbb{R}$ then $\lambda \cdot C_p \in \mathcal{F}$. \[\Box\]

Definition 2.2. A RAFU linear space is a linear space whose basis is formed by radical functions of the type (2.2). We will say that \mathcal{F} is a RAFU linear space.

The theorems of uniform approximation in $C(K)$ for lattices are known as Kakutani-Stone theorems (the interested reader can see [10], [7], [12]).

The family \mathcal{F} is not a lattice. In fact, in the interval $[-1, 1]$ the function $C(x) = \sqrt{x} \in \mathcal{F}$ but $|C(x)| \notin \mathcal{F}$ because at $x = 0$ its side derivatives do not have the same sign. Therefore, the family \mathcal{F} does not satisfy the Kakutani-Stone theorems.

The theorems of uniform approximation in $C(K)$ for algebras are known as Stone-Weierstrass theorems (the interested reader can see [7], [12]).
A simple count proves that \mathcal{C} is not an algebra, therefore the set \mathcal{C} does not verify the Stone-Weierstrass theorems.

Let X be a topological space and let $C^*(X)$ be the set consisting of all bounded continuous functions and let $C(X)$ be the set consisting of all continuous functions.

Definition 2.3. Let \mathcal{F} be a family of $C^*(X)$. We say that

1. A zero-set in X is a set of the form $Z(f) = \{x \in X : f(x) = 0\}$ with $f \in C^*(X)$.
2. The Lebesgue-sets of $f \in C(X)$ are the sets $L_\alpha(f) = \{x \in X : f(x) \leq \alpha\}$ and $L_\beta(f) = \{x \in X : f(x) \geq \beta\}$ where α and β are real numbers.
3. \mathcal{F} S_1-separates the subsets A and B of X when there is $f \in \mathcal{F}$, $0 \leq f \leq 1$ such that $f(x) = 0$ if $x \in A$ and $f(x) = 1$ if $x \in B$.
4. (Blasco-Moltó [6]). \mathcal{F} S'_{ε}-separates the subsets A and B of X if for each $\delta > 0$, there is $f \in \mathcal{F}$ such that $0 \leq f \leq 1$ for every $x \in X$, $f(A) \subset [0, \delta]$ and $f(B) \subset [1 - \delta, 1]$.
5. (Garrido-Montalvo [7]). \mathcal{F} S'_{ε}-separates the subsets A and B of X if for each $\delta > 0$, there is $f \in \mathcal{F}$ such that $-\delta \leq f \leq 1 + \delta$ for every $x \in X$, $f(A) \subset [-\delta, \delta]$ and $f(B) \subset [1 - \delta, 1 + \delta]$.
6. Given a series of continuous functions $\sum_{i \in I} f_i$ on X, the series is locally convergent, for every $x \in X$, if there is a neighborhood U of x such that the series converges uniformly on U. For $E \subset C(X)$, $\sum(E)$ is the set of all $f \in C(X)$ such that $f = \sum_{i \in I} f_i$ with $f_i \in E$ for every $i \in I$ and $\sum_{i \in I} f_i$ is a locally convergent series. $\sum(E)$ denotes the uniform closure of $\sum(E)$.

Theorem 2.4 (Tietze [5], Mrowka [11]). Let \mathcal{F} be a linear space of $C^*(X)$. \mathcal{F} is uniformly dense in $C^*(X)$ if and only if \mathcal{F} S_1-separates every pair of disjoint zero-sets in X.

Theorem 2.5 (Jameson [4]). Let \mathcal{F} be a linear space of $C^*(X)$. \mathcal{F} is uniformly dense in $C^*(X)$ if and only if \mathcal{F} S_1-separates every pair of disjoint closed subsets in X.

By the properties of the functions of the linear space \mathcal{C} it is possible to deduce that we cannot apply to \mathcal{C} the results of Tietze, Mrowka or Jameson.

Theorem 2.6 (Blasco-Moltó [6]). Let X be a topological space. A linear space \mathcal{F} of $C^*(X)$ is uniformly dense in $C^*(X)$ if and only if \mathcal{F} S'_ε-separates every pair of disjoint zero-sets in X.

We go to see that we can apply this theorem to prove the uniform density of \mathcal{C} in $C[a, b]$. Let us consider in $[a, b]$ the step function defined by $f(x) = \begin{cases} k_1 & a \leq x \leq x_1 \\ k_2 & x_1 < x \leq b \end{cases}$, $k_1, k_2 \in \mathbb{R}$. If we calculate, for each $n \in \mathbb{N}$, the expressions of the radical functions $c_n(x) = M_n + N_n \cdot \sqrt[n]{b-x_1}$ that are obtained by the conditions $c_n(a) = k_1$ and $c_n(b) = k_2$, we obtain $N_n = \sqrt[n]{\frac{k_2-k_1}{k_2-x_1} + 2n \cdot \sqrt[n]{b-x_1} - a}$.

A RAFU linear space uniformly dense in $C[a, b]$
and \(M_n = k_1 + \frac{(k_2 - k_1) - 2^{n+1} \sqrt{x_1} - x_1}{2^{n+1} \sqrt{b - x_1} + 2^{n+1} \sqrt{b - x_1} - 0} \). In this case, an elementary count shows that the sequence \((c_n) \) satisfies \(\lim_{n \to +\infty} c_n(x) = \begin{cases} k_1 & a \leq x < x_1 \\ \frac{k_1 + k_2}{2} & x = x_1 \\ k_2 & x < x \leq b \end{cases} \).

Now, we will consider an arbitrary step function in \([a, b] \)

\[
(2.3) \quad f(x) = k_1 \cdot \chi_{[x_0, x_1]} + \sum_{i=2}^{m} k_i \cdot \chi_{[x_{i-1}, x_i]}
\]

where \(k_i \in \mathbb{R}, i = 1, ..., m \) and \(x \in [x_0 = a, x_m = b] \). By an elementary count we can write (2.3) in the form \(f(x) = \sum_{i=1}^{m} f_i(x) \) where \(f_1(x) = k_1 \cdot \chi_{[x_0, x_m]} \) and \(f_p(x) = (k_p - k_{p-1}) \cdot \chi_{[x_{p-1}, x_m]}, p = 2, ..., m \).

For each \(f_p \) we construct its sequence of radical functions \((c_{p,n}) \). For every \(n \in \mathbb{N} \), the corresponding sequence for \(f_1 \) is \(c_{1,n}(x) = k_1 \) and for \(f_p, p > 1 \), we obtain \(c_{p,n}(x) = M_{p,n} + N_{p,n} \cdot 2^{n+1} \sqrt{x - x_{p-1}} \) where \(N_{p,n} \) and \(M_{p,n} \) are given by \(N_{p,n} = \frac{2^{n+1} \sqrt{x_m - x_{p-1}} + 2^{n+1} \sqrt{x_{p-1} - x_0}}{k_p - k_{p-1}} \) and \(M_{p,n} = \frac{2^{n+1} \sqrt{x_m - x_{p-1}} + 2^{n+1} \sqrt{x_{p-1} - x_0}}{k_p - k_{p-1}} \).

Finally, if we denote by \((C_{m,n})_n \) to the sequence \(C_{m,n}(x) = \sum_{i=1}^{n} c_{i,n}(x) \) then \(\lim_{n \to +\infty} C_{m,n}(x) = \begin{cases} f(x) & x \in [x_0, x_m] \setminus \{x_1, x_2, ..., x_{m-1}\} \\ f_p(x) & x = x_p, p = 1, ..., m - 1 \end{cases} \) by elementary properties of the limits.

Proposition 2.7. Let \(f \) be the function defined by (2.3). For any \(\beta > 0 \) such that \((x_i - \beta, x_i + \beta) \cap (x_j - \beta, x_j + \beta) = \emptyset \) where \(i \neq j \) and \(i, j \in \{1, ..., m - 1\} \) the limit \(\lim_{n \to +\infty} C_{m,n} = f \) is uniform on \([x_0, x_1 - \beta] \cup [x_1 + \beta, x_2 - \beta] \cup ... \cup [x_{m-1} + \beta, x_m]\).

Proof.

1st part. It verifies that \(\lim_{n \to +\infty} 2^{n+1} \sqrt{x} = \begin{cases} -1 & x \in [-M, -\frac{1}{K}] \\ 1 & x \in [\frac{1}{K}, M] \end{cases} \)

where \(M \) and \(K \) are large positive real numbers. Moreover, the limit becomes uniform.

The function \(h_n(x) = 2^{n+1} \sqrt{x} \) is strictly increasing on \(\mathbb{R} \), therefore \(h_n(-M) \leq h_n(x) \leq h_n(-\frac{1}{K}) \) for \(x \in [-M, -\frac{1}{K}] \) and fixed \(\epsilon > 0 \) it is possible to find \(n_{M,K} \in \mathbb{N} \) such that if \(n \geq n_{M,K} \) then \(-1 - \epsilon < h_n(-M) \leq h_n(x) \leq h_n(-\frac{1}{K}) < -1 + \epsilon \). In other words, \(|h_n(x) + 1| < \epsilon \). Analogous, we obtain \(|h_n(x) - 1| < \epsilon \) on \([\frac{1}{K}, M] \).

2nd part. Given a partition \(P = \{a = x_0, x_1, ..., x_m = b\} \) of \([a, b] \) with \(a < x_1 < ... < b \). For each \(n \in \mathbb{N} \) and \(p = 2, ..., m \) we define in \([a, b] \) the function

\[
F_n(x_{p-1}, m, x) = \frac{2^{n+1} \sqrt{x_{p-1} - x_0} + 2^{n+1} \sqrt{x - x_{p-1}}}{2^{n+1} \sqrt{x_m - x_{p-1}} + 2^{n+1} \sqrt{x_{p-1} - x_0}}
\]
Then, it follows that \(\lim_{n \to \infty} F_n(x_{p-1}, 1, x) = \begin{cases} 0 & x < x_{p-1} \\ \frac{1}{2} & x = x_{p-1}, \ p = 2, ..., m \\ 1 & x > x_{p-1} \end{cases} \)
and these limits are uniform on \([x_0, x_1 - \beta] \cup [x_1 + \beta, x_2 - \beta] \cup \ldots \cup [x_{m-1} + \beta, x_m]\).

The first assertion is consequence of the elementary properties of the limits and the second is obtained by applying the first part and take into account that for each \(p = 2, ..., m \) only a root of \(F_n(x_{p-1}, m, x) \) depends upon \(x \).

3rd part. By the second part and the definitions of \(C_{m,n} \) and \(f \) we obtain the result which we want to prove. \(\square \)

Proposition 2.8. Let \(\beta > 0 \) be such that \((x_i - \beta, x_i + \beta) \cap (x_j - \beta, x_j + \beta) = \emptyset \) where \(i \neq j \) and \(i, j \in \{1, ..., m-1\} \). Then, for all \(\varepsilon > 0 \), there exists \(n_0 \in \mathbb{N} \) such that for \(n > n_0 \) it follows that:

1. \(|C_{m,n}(x) - f(x)| < \left| k_{j+1} - k_j \right| + \varepsilon \)
2. \(|C_{m,n}(x) - (k_j \cdot (1 - \alpha) + k_{j+1} \cdot \alpha)| < \varepsilon \)

where \(x \in (x_j - \beta, x_j + \beta) \), \(j = 1, ..., m - 1 \) and \(\alpha, \alpha' \in (0, 1) \).

Proof. 1st Part. Let \(x \in (x_j - \beta, x_j + \beta) \) be, \(j = 1, ..., m - 1 \). By the Proposition 2.7 the sequence \((F_n)_n \) converges uniformly to 1 as \(p - 1 < j \) and to 0 as \(p - 1 > j \).

Moreover there exists \(n_0 \in \mathbb{N} \) such that \(\forall n > n_0 \) the function \((k_{j+1} - k_j) F_n(x_{p-1}, m, x) \) transforms the interval \((x_j - \beta, x_j + \beta) \) into the interval \((0, (k_{j+1} - k_j)) \). The rest is obtained by the elementary properties of the limits and the definition of \(C_{m,n}(x) \).

2nd Part. It is analogous to the 1st part by considering \(\forall n > n_0 \) the function \((k_{j+1} - k_j) F_n(x_{p-1}, m, x) \) attains on \((x_j - \beta, x_j + \beta) \) the values \((k_{j+1} - k_j) \cdot \alpha \), \(\alpha, \alpha' \in (0, 1) \). \(\square \)

Theorem 2.9. The RA FU linear space \(\mathfrak{L} \) is uniformly dense in \(C[a, b] \).

Proof. Consider the family \(\mathcal{L} \) of all sets which are finite unions of disjoint compact intervals. First, we will prove that \(\mathfrak{L} \) \(S \)-separates every pair of disjoint sets of \(\mathcal{L} \). Clearly, it suffices to prove the following fact: Given \(\delta > 0 \) and the intervals \([\alpha_i, \beta_i]\), \(1 \leq i \leq m \), \(m \geq 2 \), \(0 \leq \alpha_j \leq \beta_j \leq \alpha_{j+1} < 1 \), there is a function \(f \) in \(\mathfrak{L} \) such that \(0 \leq f(x) \leq 1 \) for every \(x \in [a, b] \), \(f([\alpha_i, \beta_i]) \subset [0, \delta] \) for \(i \) odd and \(f([\alpha_i, \beta_i]) \subset [1 - \delta, 1] \) for \(i \) even, \(1 \leq i \leq m \).

Consider a partition \(P = (x_i)_{0}^{n} \) of \([a, b]\) with \(x_j = a + j \cdot \frac{b-a}{n} \), \(j = 0, ..., n \) such that \(\beta_j < x_p < \alpha_{j+1} \) for every \(j \) and some \(x_p \). We also consider a step function \(h \) defined in \([a, b]\) from the values \(x_j \) such that \(h(x) = 0 \) or \(h(x) = 1 \) for every \(x \in [a, b] \) but verifying that \(h([x_i, x_i]) = 0 \) when \([\alpha_i, \beta_i] \subset [x_i, x_i] \) and \(i \) is odd, \(h([x_k, x_i]) = 1 \) when \([\alpha_i, \beta_i] \subset [x_k, x_i] \) and \(i \) is even, \(1 \leq i \leq m \).

Fixed an appropriate value \(\beta \leq \min \left\{ \frac{|x_n - \beta|}{2}, \frac{|x_{n+1} - x_n|}{2} \right\} \) and given \(\delta > 0 \) we can choose suitable partitions of \([a, b]\) into \(2kn \) intervals, if it was necessary for some \(k \in \mathbb{N} \), supporting the previous conditions and, by the propositions 2.7 and 2.8, we can obtain a function \(C_{2kn} \in \mathfrak{L} \) such that \(0 \leq C_{2kn}(x) \leq \delta \).
1 and \(|C_{2kn} - h| < \delta \), that is to say, \(C_{2kn}([\alpha_i, \beta_i]) \subseteq [0, \delta] \) for \(i \) odd and \(C_{2kn}([\alpha_i, \beta_i]) \subseteq [1 - \delta, 1] \) for \(i \) even.

Next, we will prove that \(\mathcal{C} \) \(S \)-separates every pair of disjoint zero-sets \(Z_1 \) and \(Z_2 \) of \([a, b] \). Since \(\mathcal{L} \) is a basis for the closed sets of \([a, b] \) we have \(Z_1 = \cap \{ B \in \mathcal{L} : Z_1 \subseteq B \} \). As \(Z_2 \) is compact the family \(\{ Z_2 \} \cup \{ B \in \mathcal{L} : Z_1 \subseteq B \} \) does not have the finite intersection property. Therefore \(Z_2 \cap B_1 \cap ... \cap B_p = \emptyset \), for some \(B_i \in \mathcal{L}, Z_i \subseteq B_i, 1 \leq i \leq p \). Since \(\mathcal{L} \) is closed under finite intersections it follows that \(B' = B_1 \cap ... \cap B_p \in \mathcal{L}, Z_1 \subseteq B' \) and \(B' \cap Z_2 = \emptyset \). In the same way we find \(B'' \in \mathcal{L} \), such that \(Z_2 \subseteq B'' \) and \(B' \cap B'' = \emptyset \). Since \(\mathcal{C} \) \(S \)-separates \(B' \) and \(B'' \), by Blasco-Moltó’s Theorem, \(\mathcal{C} \) is uniformly dense in \(C[a, b] \). \(\square \)

The \(S \)-separation of subsets is equivalent to the \(S' \)-separation of subsets in linear spaces containing constant functions (Garrido-Montalvo [8]). Clearly \(\mathcal{C} \) contains the constant functions, therefore we can also deduce the uniform density of \(\mathcal{C} \) in \(C[a, b] \) by using the \(S' \)-separation condition of every pair of disjoint zero-sets in \(X \).

3. The degree of uniform approximation with the RAFU linear space

Blasco-Moltó [6] proved that the linear subspace \(\mathcal{F} \) of \(C[0,1] \) generated by the functions
\[
\{ \exp((x + \mu)^n) : \mu \in \mathbb{R}, x \in [0,1], n = 0, 1, 3, ..., 2k + 1, ... \}
\]
is uniformly dense in \(C[0,1] \), but the linear combinations which approximate uniformly a function \(f \in C[0,1] \) and the degree of uniform approximation that \(\mathcal{F} \) provides were not studied.

The following result has been proved recently in the XXII CEDYA-XII CMA [2] and solves these two problems by considering the linear space \(\mathcal{C} \).

Theorem 3.1. Let \(f \) be a continuous function defined on \([a, b] \) and let \(P = \{ x_0 = a, x_1, ..., x_n = b \} \) be a partition of \([a, b] \) with \(x_j = a + j \cdot \frac{b-a}{n}, j = 0, ..., n \). Then,
\[
\| C_n - f \| \leq \frac{M - m}{\sqrt{n}} + \omega \left(\frac{b - a}{n} \right), \quad n \geq 2
\]
where \(\| \cdot \| \) denotes the uniform norm, \(M \) and \(m \) are the maximum and the minimum of \(f \) on \([a, b] \) respectively, \(\omega(\delta) \) its modulus of continuity and \(C_n(x) \) is defined for all \(x \in [a, b] \) and \(n \in \mathbb{N} \) by \(C_n(x) = f(x) + \sum_{j=2}^{n}[f(x_j) - f(x_{j-1})] \cdot F_n(x_{j-1}, x) \).

Let us observe that the values \(\{ k_i \}_{i=1}^{n} \) of (2.1) becomes \(\{ f(x_i) \}_{i=1}^{n} \) in this case.

Theorem 3.2 (Gassó-Hernández-Rojas [9]). Let \(A \) be a subset of \(C(X) \) and \(E \) a linear space of \(C(X) \) which \(S \)-separates Lebesgue-sets of \(A \). Then the sublattice generated by \(A \) is contained in \(\sum(E) \).
A RAFU linear space uniformly dense in $C[a, b]$

The RAFU linear space satisfies the Theorem 3.1 when $X = [a, b]$ because every Lebesgue-set is also a zero-set since $L_{\alpha}(f) = Z((f - \alpha) \lor 0)$ and $L^{\beta}(f) = Z((f - \beta) \land 0)$ and we have proved that C S-separates every pair of disjoint zero-sets Z_1 and Z_2 of $[a, b]$. In this case, if $A = C(X)$ we can say that $C(X)$ is contained in $\sum C$. In fact, given $f \in C[a, b]$, we already knew that $f(x) = \sum_{n=1}^{\infty} c_n(x)$ where $c_n \in C$, $n \in \mathbb{N}$, and the series converges uniformly.

Example 3.3. Given the functions $f(x) = e^{-x^2}$ on $[-3, 3]$, $g(x) = \frac{3x}{x^2+1}$ on $[-5, 6]$, $h(x) = 5(x+8)(x+6)(x+2)(x-3)(x-5)$ on $[-10, 6]$ and $l(x) = |x|$ on $[-10, 6]$, the Figure 1 shows the graphics of these functions together with their approximations by means of its respective radical function C^{75} belonging to the RAFU linear space C.

4. Conclusions

The RAFU method is an original and unknown procedure of uniform approximation on $C[a, b]$. This method improves the instability of the polynomial interpolation and it is based in the use of radical functions to approximate any continuous function defined in $[a, b]$. We have constructed a linear space C uniformly dense on $C[a, b]$ and this linear space is not a lattice or an algebra. At the moment, the proof of this result was direct but in this work we have proved that C is uniformly dense on $C[a, b]$ by using a S-separation condition due to Blasco-Moltó [6] or an equivalent S'-separation condition due to Garrido-Montalvo [8]. We already knew another example of a linear space uniformly dense by using these separation conditions [6] but by considering the set C, we can know easily the linear combinations of elements belonging to
which approximate uniformly every \(f \in C[a, b] \) and the degree of uniform approximation that \(\mathcal{C} \) provides.

References

(Received January 2012 – Accepted December 2012)

E. Corbacho Cortés (ecorcor@unex.es)
Department of Mathematics, University of Extremadura, Spain.