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We propose a fuzzy method to analyze datasets of perceptual color differences with two main objectives: to detect
inconsistencies between couples of color pairs and to assign a degree of consistency to each color pair in a dataset.
This method can be thought as the outcome of a previous one developed for a similar purpose [J. Mod. Opt. 56,
1447 (2009)], whose performance is compared with the proposed one. In this work, we present the results
achieved using the dataset employed to develop the current CIE/ISO color-difference formula, CIEDE2000,
but the method could be applied to any dataset. Specifically, in the mentioned dataset, we find that some couples
of color pairs have contradictory information, which can interfere in the successful development of future color-
difference formulas as well as in checking the performance of current ones. © 2016 Optical Society of America
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1. INTRODUCTION/PURPOSE

Development of accurate experimental datasets of perceptual
color differences is of paramount importance since they play
a crucial role in improving the correlation between visually
perceived (ΔV ) and instrumentally measured (ΔE ) color
differences [1–3]. To date, several experimental datasets with
limited accuracy have been proposed for developing and testing
the merits of different color-difference formulas used in indus-
trial applications [4–9]. Undoubtedly, a key point for successful
future advances in this field would be to achieve a reliable and
broad set of color pairs, distributed throughout all regions of
color space, visually assessed by a high number of observers
with normal color vision using an appropriate methodology.
This has long been sought by the International Commission
on Illumination (CIE) and different researchers [10–16].

Usual datasets of perceptual color differences are sets of
numerous color pairs, where for each color pair (at least) the
instrumentally measured color coordinates of the two samples
and the average visual difference from assessments performed
by a panel of observers are reported. Because of the subjective
nature of these visual experiments and the influence of different
experimental conditions, differences may exist between the
results reported for similar color pairs in different datasets,
and even within one dataset, as the consequence of inherent
observer variability or even errors [3,6,17,18]. In any case,

despite these potential differences, it is important to guarantee
that each dataset has sufficient internal consistency, and also
that different datasets agree relatively well with each other,
at least in the cases where the viewing conditions and method-
ologies followed by different experiments were similar. Thus,
it is advisable to have the appropriate methods to analyze
the consistency of color-difference datasets. We can use such
methods to test currently available and future datasets to be
employed in color-difference evaluations.

In this work, we introduce a general method to analyze the
consistency of a color-difference dataset, and we use it for the
so-called COM dataset [3], which was employed to develop
the current CIE/ISO-recommended color-difference formula,
CIEDE2000 [19]. The word COM comes from “combined,”
because this dataset was formed by the combination of color
pairs from four different subsets [6]. After the development
of CIEDE2000, a mistake in the use of one of these four subsets
was detected [3] and repaired, leading to the so-called COM-
corrected dataset, which is the one considered in the current
work. The COM-corrected dataset has 3813 color pairs from
four different subsets (provided by four different renowned lab-
oratories), which were rescaled before combination. Specifically,
these four subsets are designated as BFD-P [20], Leeds [21],
RIT-DuPont [2], and Witt [22] and have 2776, 307, 312,
and 418 color pairs, respectively. Despite the precautions taken,
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some inconsistent couples of color pairs can unfortunately be
detected in the current COM-corrected dataset. For example,
in the case from the BFD-P subset shown in Table 1, a couple
of color pairs have quite similar CIELAB color coordinates and
CIEDE2000 color differences (columns 2–8) but with visual
differences (column 9) differing by more than a factor of 6.
This kind of inconsistent situation is undesirable for reliable da-
tasets to be used by the color-difference community, and it seems
necessary to have a method to detect and solve them appropri-
ately (e.g., by removing at least one of the two inconsistent color
pairs), as intended in the current paper.

We propose a new method to analyze datasets of perceptual
color differences, which is composed of two different steps. The
first step analyzes the whole dataset by taking couples of color
pairs and determining which of them are inconsistent. The sec-
ond step complements the previous one and assigns a degree of
consistency to each color pair by comparison with similar color
pairs in the dataset. In a previous paper [23], we proposed a one-
step method to detect inconsistent color pairs in datasets of
perceptual color differences and analyzed the COM-corrected
dataset using such a method, assigning a degree of consistency
to each of the color pairs. However, there is room for some rel-
evant improvements in our previous method [23], considering
specifically the following three points:

(1) In [23], to determine the consistency of a color pair, we
compared it with other color pairs positioned in the same re-
gion of the color space, and the degree of nearness between two
color pairs was measured using the CIELAB distance between
the central points of the color pairs. However, now we find that
this criterion of nearness is not very appropriate because near-
ness of central points does not necessarily imply similarity of
two color pairs. Now, we have redefined the concept of nearness
since, instead of depending on the distance between the central
points of the two color pairs, results improve when it depends
on the distance between the color samples in the pairs.

(2) Given a set of near color pairs, to determine consistencies
in [23], we used the ratio between the visual color differenceΔV
and the CIEDE2000 color difference (i.e., ΔV ∕ΔE00) for all
near color pairs. However, it is well known that human percep-
tion behaves nonlinearly for different magnitudes of color
differences [4,6,9,10,14]. Therefore, a color pair will now be
compared only with near color pairs having similar visual color
differences ΔV (which implies that there will be also similarity
with respect to ΔE00).

(3) In [23], in addition to determining degrees of consis-
tency, we used a statistical analysis based on the average and
standard deviation of the quotientΔV ∕ΔE00 in each neighbor-
hood. These two measurements (in particular the standard
deviation) are particularly sensitive to the presence of noise
and outliers, which may limit the accuracy of the final results.

In fact, the inconsistent color pairs shown in Table 1 were not
clearly detected by the method in [23], and these color pairs
were assigned similar middle degrees of consistency of 0.41
and 0.66, respectively (column 10 in Table 1), but in fact they
are highly inconsistent, as detected by the procedure described
in the current paper (column 13 in Table 1). This was most
probably because in the neighborhood of these pairs the stan-
dard deviation of the quotient ΔV ∕ΔE00 was very large, and
then the accuracy dropped. Thus, we now replace the previous
quotient ΔV ∕ΔE00 by the absolute value of the difference
between ΔV and ΔE00, D � jΔV − ΔE00j, which has several
advantages concerning stability and invariance to translation,
assuming that ΔV and ΔE00 are in a common scale, as has
been done in the current paper (see Section 4).

The standardized residual sum of squares (STRESS) index
[24] was used in [23] to test the performance of color-difference
formulas for the COM-corrected dataset before and after the
removal of any inconsistent color pairs detected. The use of
a weighted STRESS [25,14] also proved useful to assess the
degree of consistency assigned to each color pair using the
new method proposed in the current paper. However, bearing
in mind that the STRESS index is not very sensitive to the
removal of a small number of color pairs from a dataset, in
addition to STRESS we have also used the mean square error
(MSE) to analyze our current results.

This paper is structured as follows: Section 2 introduces the
new method for detecting inconsistencies between couples of
color pairs, which is based on fuzzy rules (given that the ideas
behind the proposed new method are explained by linguistic
terms, we will use fuzzy logic to formulate them); Section 3
describes the proposed method for determining the degree
of consistency of each color pair; Section 4 provides the results
found for the COM-corrected dataset [3]; finally, conclusions
are drawn in Section 5.

2. STEP 1: DETECTION OF INCONSISTENT
COUPLES OF COLOR PAIRS

In the experimental color-difference dataset to be analyzed,
each color pair is denoted as S i � fAi ;Bi ;ΔV i;ΔE00;ig, where
Ai and Bi denote the CIELAB color coordinates of the two
color samples in the pair, given by Ai � fL�;Ai ; a�;Ai ; b�;Ai g
and Bi � fL�;Bi ; a�;Bi ; b�;Bi g, respectively; ΔV i represents the
average visual color difference reported by observers; and
ΔE00;i is the computed color difference from the CIELAB
color coordinates of the two samples in the pair using the
CIEDE2000 color-difference formula [6,19]. Among many
color-difference formulas currently available [1,26–30], here
we use just the CIEDE2000 formula, because it is the current
CIE/ISO recommendation to achieve the best agreement with

Table 1. Example of Two Inconsistent Color Pairs in the BFD-P Subseta

Color Pair L�;A a�;A b�;A L�;B a�;B b�;B ΔE00 ΔV FM ΔMij;1 ΔMij;2 I ij
I 40.730 −44.325 36.707 40.083 −43.851 36.144 0.611 2.257 0.41 0.00 0.50 0.86
J 40.730 −44.325 36.707 40.307 −43.700 36.568 0.429 0.359 0.66

aNote the very similar values of color coordinates of the samples andΔEoo color differences, while the two visual differencesΔV are very different (more than a factor
of 6). FM is the degree of consistency of each of these pairs from the method described in [23]; ΔMij1 and ΔMij;2 are distances between couples of pairs; and I ij is the
degree of inconsistency (see text).
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visually perceived color differences [14,19]. Nonetheless,
the method proposed here can be used with any other color-
difference formula.

Let us consider two color pairs S i and S j, which are close in
the color space and have similar ΔE00 values. In such a case, it
is expected that these two color pairs will also have similar ΔV
values. When this fails, it is considered an inconsistency. Since
all this reasoning is formulated by means of vague linguistic
terms, we can use fuzzy logic for its numerical representation
[31]. Following the above notation, let us denote by ΔΔV ij �
jΔV i − ΔV jj and ΔΔEij � jΔE00;i − ΔE00;jj the absolute
value of the differences between ΔV and ΔE00 for the pairs
S i and S j, respectively. To represent the nearness in the color
space of the two color pairs S i and S j, we defined the pair of
distances �ΔMij;1;ΔMij;2�:
�ΔMij;1;ΔMij;2� � �‖Ai − Aj‖; ‖Bi − Bj‖�

if ‖Ai − Aj‖� ‖Bi − Bj‖ ≤ ‖Ai − Bj‖� ‖Bi − Aj‖;

otherwise�ΔMij;1;ΔMij;2� � �‖Ai − Bj‖; ‖Bi − Aj‖�; (1)

where ‖ · ‖ denotes the Euclidean distance in CIELAB space
between the two points separated by the symbol −. A graphic
example of the meaning of Eq. (1) is given in Fig. 1, where we
can see meaningful nonnull distances in the specific case where
the centers C i and C j of two color pairs are at the same point.

Then the following fuzzy rule is used to detect inconsistent
couples of color pairs:

Fuzzy rule 1.1:
IF ΔMij;1 is small, AND ΔMij;2 is small, AND ΔΔEij is

very small, AND ΔΔV ij is not small,
THEN S i and S j are inconsistent.
This fuzzy rule provides a number in the interval [0,1] rep-

resenting the degree of inconsistency of the two color pairs. This
degree, associated with the degree of certainty of the consequent,
is identified with the degree of certainty of the antecedent. In
turn, as is common practice in fuzzy-logic systems [31], the cer-
tainty of the antecedent is computed using a continuous t-norm
to perform the conjunction of the certainties of the vague terms
involved. In particular, we have used the classical product
t-norm, which means that the certainty of the antecedent is given
by the product of the certainties of the four vague terms in fuzzy
rule 1.1. In our case, using an S-type fuzzy membership function,
the degree to which ΔMij;1 is small is computed as

ΔM small
ij;1 � 1 − μ�ΔMij;1; α1; γ1�; (2)

where

μ�x; α; γ� �

8>>>><
>>>>:

0 if x ≤ α

1 − 2
�
x−γ
γ−α

�
2

if α < x ≤ α�γ
2

2
�
x−α
γ−α

�
2

if α�γ
2 < x ≤ γ

1 if x > γ

: (3)

Analogously, ΔM small
ij;2 is also defined as in Eqs. (2) and (3).

Similarly, the degree in which ΔΔEij is very small is
defined as

ΔΔE very small
ij � 1 − μ�ΔΔEij; α2; γ2�; (4)

where the function μ has been defined in Eq. (3).
Finally, the degree to which ΔΔV ij is not small is defined as

ΔΔV not small
ij � μ�ΔΔV ij; α3; γ3�; (5)

where once again the function μ is the one defined in Eq. (3).
The conjunction of the certainties of the four statements in

the antecedent of fuzzy rule 1.1 (i.e., ΔMij;1 is small, AND
ΔMij;2 is small, AND ΔΔEij is very small, AND ΔΔV ij is
not small) is computed by the product of these four variables.
Therefore, if we identify the certainty of the consequent with
that of the antecedent, the degree of inconsistency between the
pairs S i and S j is given by the parameter

I ij � ΔM small
ij;1 · ΔM small

ij;2 · ΔΔE very small
ij · ΔΔV not small

ij ; (6)

in such a way that higher I ij values (its maximum value being 1)
indicate greater inconsistency of the couple of color pairs S i
and S j.

Moreover, if in the foregoing fuzzy rule 1.1, we exchange the
roles of ΔE and ΔV , we can set the next fuzzy rule, which is
also able to identify inconsistencies:

Fuzzy rule 1.2:
IF ΔMij;1 is small, AND ΔMij;2 is small, AND ΔΔV ij is

very small, AND ΔΔEij is not small,
THEN S i and S j are inconsistent.
Following an analogous procedure to the one leading to I ij

in Eq. (6), from fuzzy rule 1.2 we can find another fuzzy degree
of inconsistency between the color pairs S i and S j, which we
denote by I�ij, and which is defined by

I�ij � ΔM small
ij;1 · ΔM small

ij;2 · ΔΔV very small
ij · ΔΔEnot small

ij ; (7)

whereΔΔV very small
ij andΔΔEnot small

ij are defined analogously as
in previous Eqs. (4) and (5), respectively.

Finally, the couple of color pairs S i and S j are considered
inconsistent if either I ij [Eq. (6)] or I�ij [Eq. (7)] exceed a certain
fixed value or threshold. Note that from previous fuzzy rules
[Eqs. (6) and (7)] we can detect couples of inconsistent color
pairs but no information concerning which of the two color
pairs may be considered wrong. The adopted threshold values
as well as the color pairs to be removed will be studied in
Section 4, using the COM-corrected dataset.

Fig. 1. Example of the two options to compute ΔMij;1 and ΔMij;2
from Eq. (1), in two specific cases where the distances between the
centers C i and C j of the two color pairs (with samples indicated
by triangles and circles, respectively) were null.
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3. STEP 2: CONSISTENCY OF EACH COLOR
PAIR

In this section, we describe the second step of our proposed
method for consistency analysis, improving the one previously
proposed by us in [23]. The aim of the current procedure is to
determine the degree to which each color pair in a dataset can
be considered consistent, by comparison with similar color pairs
in the same dataset. Since both consistent and similar are linguis-
tic terms, they can be modeled by means of fuzzy sets [32]. The
degree of membership to the fuzzy set consistent represents the
consistency of each color pair. Specifically, as mentioned before,
the improvement of the current method with respect to the one
in [23] is based on the following three points: First, we redefine
the concept of nearness considering the positions of the samples
of the two color pairs in the CIELAB color space instead of the
distance between their corresponding centers (denoted as C i
and C j in Fig. 1); second, we consider that a color pair S i
should be compared only with those color pairs having similar
ΔV i values (which implies them also to have similar ΔE00;i
values; otherwise the pair would have been detected and re-
moved in step 1 of our method); third, we no longer need
to use the quotient ΔV ∕ΔE00, which was justified in [23] be-
cause experimental data with very different ΔV i values could
be involved in the computations of the degree of consistency
using our previous method. Now, assuming that ΔV i and
ΔE00;i values are in a common scale, we can replace the above
quotient by the difference Di � jΔV i − ΔE00;ij, noting that
Di has several advantages concerning stability and invariance
to translation. Below, we will detail the procedure of incorpo-
rating the aforementioned improvements.

First, we build the fuzzy set of color pairs similar to the pair
S i, denoted as SS i . We consider two color pairs similar when
they are not far apart in the color space and their ΔV values are
similar. To represent nearness in color space we will use the pair
of distances �ΔMij;1;ΔMij;2� defined in Eq. (1), and for the
similarity between ΔV values, we will use again ΔΔV ij �
jΔV i − ΔV jj. Then, the reasoning behind the concept of sim-
ilarity that we employ follows the next fuzzy rule:

Fuzzy rule 2.1:
IF ΔMij;1 is not large, AND ΔMij;2 is not large, AND

ΔΔV ij is not large,
THEN S j is similar to S i.
Fuzzy inference [31] can be used to determine a degree of

certainty in the interval [0,1] for the expression in the conse-
quent: “S j is similar to S i.” This degree will be identified with
the membership of S j to the fuzzy set of neighbors similar to S i,
denoted by SS i �S j�.

Once again, the certainty of the consequent will be identi-
fied with the certainty of the antecedent. In the antecedent of
fuzzy rule 2.1, we need to model three vague terms, for which
we will use the fuzzy sets described in Eqs. (8) and (9).

The degree of certainty of “ΔMij;1 is not large,” denoted by
ΔM not large

ij;1 , is computed using an S-type function as

ΔM not large
ij;1 � 1 − μ�ΔMij;1; α4; γ4�; (8)

where the function μ was defined in Eq. (3).

Analogously, the certainty of “ΔMij;2 is not large,” denoted
as ΔM not large

ij;2 , is computed in the same way indicated
in Eq. (8).

For the certainty of “ΔΔV ij is not large,” denoted as
ΔΔV not large

ij , we perform in a similar way, using the following
expression:

ΔΔV not large
ij � 1 − μ�ΔΔV ij; α5; γ5�: (9)

Finally, to model the conjunction operation AND in fuzzy
rule 2.1, we make use of the product t-norm. Therefore, we
compute SS i �S j� as

SS i �S j� � ΔM not large
ij;1 · ΔM not large

ij;2 · ΔΔV not large
ij : (10)

Given the fuzzy set of color pairs similar to S i, denoted as SS i ,
the degree of consistency of the color pair S i, denoted by C�S i�,
is computed by comparing the value of the difference Di �
jΔV i − ΔE00;ij with an average of the Dj differences observed
for the similar color pairs in SS i . To do so, we used the fuzzy
metric in Eq. (11) [32], because it was successfully employed in
previous works [33,34] and was able to compare those values,
taking into account the weighted average and standard
deviation of the Dj values [Eqs. (12) and (13), respectively]:

C�S i� � FMS�Di; D̃i; σ̃i� �
σ̃i

σ̃i � jDi − D̃ij
; (11)

where D̃i and σ̃i are the fuzzy mean and fuzzy standard deviation
of the Dj values of the color pairs in SS i , computed as

D̃i �
P

S j∈S;S j≠S i
SS i �S j�DjP

S j∈S;S j≠S i
SS i �S j�

(12)

and

σ̃i �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
S j∈S;S j≠S i

SS i �S j��Dj − D̃i�2P
S j∈S;S j≠S i

SS i �S j�

vuut ; (13)

respectively. The degree of consistency C�S i� [Eq. (11)] repre-
sents the degree to which Di is near to D̃i , taking into account
the fuzzy standard deviation σ̃i. A high value (close to 1) of
C�S i� indicates that the agreement is good and the value of
Di is close to its neighbors. On the other hand, if C�S i� is
low (close to 0), the agreement is small and the color pair
S i is noisy or has low consistency. Again, for practical purposes,
we must fix a value or threshold to consider a pair consistent or
inconsistent, as will be studied for a specific dataset in the next
section.

4. RESULTS OF THE FUZZY CONSISTENCY
ANALYSIS FOR THE COM-CORRECTED
DATASET

We have used the method proposed in the two previous sec-
tions to analyze the consistency of the 3813 color pairs in the
COM-corrected dataset [3].

In step 1, for practical purposes, the values α1 � 1 and
γ1 � 5 have been reasonably well adopted [4,6,9] in
Eq. (2), meaning that, in terms of nearness in color space,
distances lower than or equal to 1 CIELAB unit are small
(degree 1), and those higher than 5 CIELAB units are not
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at all considered small (degree 0). Concerning the criteria for
color differences, we adopted the values α2 � 0.2 and γ2 � 1
in Eq. (4), signifying that when the CIEDE2000 color differ-
ence between two color pairs is below 0.2 units it is considered
very small (degree 1), and when it exceeds 1 unit it is not at all
considered very small (degree 0). In the case of Eq. (5) involving
the perceived difference ΔV , it is important to note that we
have rescaled the values of ΔV to CIEDE2000 color-difference
units [24]. In this case, we adopted α3 � 1 and γ3 � 2, which
means that when the ΔV difference between two color pairs is
below 1 unit it is considered small (degree 0), and when it ex-
ceeds 2 units it is considered not small (degree 1). With respect
to fuzzy rule 1.2, where the roles of ΔE00;i and ΔV i are ex-
changed, we can use the same parameter setting as that in fuzzy
rule 1.1, given that both magnitudes are in a common scale.

In step 2 of our current proposed method, we have adopted
the values α4 � 1 and γ4 � 10 in Eq. (8) because they indicate
distances between neighboring color pairs. On the one hand,
this choice is based on the fact that in most industrial applica-
tions and color atlases, distances above 10 CIELAB units are
usually considered large [4,5], whereas shorter distances may
be reasonably considered to be not large to some degree. On
the other hand, distances smaller than 1 CIELAB unit are def-
initely not large with maximum certainty [2,4,8,9]. Regarding
the criteria adopted for differences in ΔV , we considered in
Eq. (9) α5 � 0.5 and γ5 � 2, meaning that when ΔΔV ij is
larger or equal than 2 CIEDE2000 units, the color pairs S i
and S j are not at all considered similar, but when this difference
is below 0.5 units, they are considered completely similar. It is
important to note that in step 2 we are modeling the concept of
being not large, which is different from the concept of being
small, modeled in the previous paragraph when we discussed
the values of parameters for step 1. In step 1, we look for in-
consistencies between almost identical couples of color pairs,
but in step 2 we are interested in comparing a particular color
pair with other similar color pairs in the same region of color

space. Therefore, in step 2 we need to be less restrictive than
in step 1 in terms of both nearness of color samples and
differences in ΔV values, since we do not look for almost
the same values but just similar ones.

Figure 2 is a plot of the μ function in Eq. (3), considering
the different couples of values of parameters α and γ mentioned
in the two previous paragraphs. Note that values of parameters
α and γ must be selected carefully because the wrong use of the
concepts small and not large can lead to contradictory results,
as we confirm after different trials.

A. Results of Step 1

As an example, the degree of inconsistency for the couple of
color pairs shown in Table 1 is as high as I ij � 0.86 from fuzzy
rule 1.1, with ΔM small

ij;1 � ΔM small
ij;2 � ΔΔE small

ij � 1 and
ΔΔV not small

ij � 0.86. This means that the two color pairs in
Table 1 are very inconsistent, a fact which was not detected
by our previous method in [23].

Of course, different results are found depending on the
threshold fixed to consider a couple of color pairs as inconsis-
tent. Figure 3 shows the number of inconsistent color pairs
from the fuzzy rules 1.1 and 1.2 for different values of threshold
(i.e., I ij and I�ij values). As expected, we see that the lower the
threshold, the higher the number of couple of color pairs with
higher inconsistency than the threshold (it should be remem-
bered that these degrees of inconsistency are in the range [0,1],
where higher values indicate greater inconsistency). Finally, a
threshold of inconsistency equal to 0.5 has been assumed
henceforth, bearing in mind that a couple of color pairs with
a degree of consistency higher than 0.5 can be considered more
inconsistent than consistent. It was found that, assuming this
0.5 threshold, there were 117 inconsistent couples of color pairs
using the fuzzy rule 1.1, and 113 inconsistent couples of color
pairs using the fuzzy rule 1.2. Therefore, we detected a total of
230 inconsistencies between couples of color pairs. Bearing in
mind that for this dataset the total number of comparisons

Fig. 2. Plot of μ function in Eq. (3), for the different values of
parameters αi and γi considered in the text. Below the value αi the
membership of the neighborhoods is equal to 0; then the membership
increases smoothly until value γi ; and finally, above value γi , the mem-
bership is equal to 1.
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between neighboring color pairs at least partially fulfilling the
closeness conditions given by the μ function with α1 � 1 and
γ1 � 5 and α2 � 0.2 and γ2 � 1, using fuzzy rules 1.1 and
1.2, was 118,700, the number of 230 inconsistencies represents
only 0.19%. Thus, the COM-corrected dataset can be consid-
ered overall to be considerably consistent under step 1 of our
method. However, as stated above, step 1 informs us about in-
consistencies only between couples of color pairs, but no infor-
mation is provided about which is the less inconsistent color
pair in a given couple of inconsistent color pairs nor about
the degree of consistency of a given color pair. Finally, it is also
worth pointing that there were 517 and 521 pairs for which we
found no neighbors to compare with for fuzzy rule 1.1 and
fuzzy rule 1.2, respectively. Therefore we have been unable
to compare these color pairs with any others.

Roughly we may assume that, in a couple of inconsistent
color pairs, the color pair with higher jΔE − ΔV j is the most
inconsistent, and therefore the one wemust select to be removed.
This procedure gives us 67 inconsistent pairs, from the 230
couples of inconsistent pairs, because using this criterion some
pairs were inconsistent in more than one couple. To analyze the
influence of these pairs, we can add that, after removing these 67
pairs, the STRESS value for the CIEDE2000 color-difference
formula reduced from 29.20 to 28.05, which represents more
than a 1-point decrease. While this small improvement in
STRESS values is not statistically significant at a confidence level
of 95% (F � 0.923, FC � 0.938,N � 3746) [23,3], it can be
considered as an indicator of both the validity of our proposed
method to remove inconsistent couples of color pairs and the
high consistency or reliability of the COM-corrected dataset.
Using a more outlier- and error-sensitive index, the mean square
error, we found that, for the CIEDE2000 formula, by removing
these 67 color pairs, the MSE decreased from 0.36 to 0.33.

B. Results of Step 2

We applied the procedure proposed in Section 3 after removing
the 67 inconsistent pairs mentioned above. Using this procedure,
each pair is compared, through its Di � jΔV i − ΔE00;ij value,
with its fuzzy neighborhoods. As we can see in Fig. 4, the color

pairs in the COM-corrected dataset are not uniformly distrib-
uted in color space. Note that the histogram in Fig. 4 is not
accumulative but just shows the number of color pairs with dif-
ferent numbers of fuzzy neighbors indicated on the abscissa axis.
There are many pairs with a low number of neighbors. If we
consider the addition of the neighborhood degrees of all pairs
S j that have nonnull values in SS i �S j�, we find that, for example,
668 pairs (17.5%) have less than 6 fuzzy neighbors and 2294
pairs (60.2%) have less than 20 fuzzy neighbors. It should be
noted that step 2 works by comparison with similar color pairs,
and therefore it is meaningless to consider step 2 for color pairs
with only a very few neighbors. In this context, from trial and
error, we think that, using this dataset, the results of step 2 can be
considered reliable if either SS i has a value of more than six units
or there are at least three neighbors with membership SS i �S j�
higher than 0.35 (i.e., there are three pairs with very few, but
quite similar, neighbors). Thus, we found that 176 color pairs
did not fulfill these requirements, and they were discarded in
such a way that only the remaining 3570 color pairs were con-
sidered for the next analyses (it should be remembered that 67
color pairs were already removed in step 1).

As in step 1, different results were found depending on the
fixed threshold to consider a color pair as consistent from its
C�S i� value. The higher the value adopted as the threshold,
the greater the number of color pairs with a consistency below
the fixed threshold. Figure 5 shows, for the pairs considered
from the COM-corrected dataset, the number of color pairs
with a degree of consistency below different threshold values.
STRESS values found for the CIEDE2000 color-difference for-
mula after removing color pairs with a degree of consistency
equal to or lower than the values on the abscissa axis are also
shown by the continuous line in Fig. 5. After removing the 67
pairs detected in step 1 plus the 176 pairs with no neighbors,
there were really few color pairs with a low degree of consis-
tency. For example, only a few color pairs can be noted in
Fig. 5 below a threshold value of 0.2. In any case, removing

Fig. 4. Number of color pairs (y-axis) for different numbers of fuzzy
neighbors (x-axis, where the bar width is equal to 3). It should be remem-
bered that α4 � 1 and γ4 � 10 fixed the adopted neighborhood criterion.
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Fig. 5. Histogram with number of color pairs with a degree of con-
sistency lower than C�Si� values shown in the x-axis. The continuous
line in the plot (associated to the right y-axis units) corresponds to
STRESS values calculated for the CIEDE2000 color-difference for-
mula after removing color pairs with degrees of consistency equal
to or lower than specific C�Si� values shown on the x-axis.
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the pairs with a degree of consistency lower than 0.50 (935
pairs), STRESS reduces up to 23.96. If we are more restrictive,
STRESS continues to decrease until we achieve a degree of con-
sistency approaching 0.8. At this point, if we continue to re-
move color pairs STRESS rises, because in fact these last color
pairs removed are quite consistent and there is no strong reason
to remove them. As desired, removal of highly inconsistent
color pairs improves the performance of the CIEDE2000
color-difference formula measured using the STRESS index.

In summary, the proposed method provides information for
removing inconsistent color pairs from a dataset. Specifically,
step 2 gives a degree of consistency for each color pair, which
is highly useful information for any dataset. It should be noted
that, with a few exceptions [2,25], the reliability of individual
color pairs is not provided in available color-difference datasets,
where only average ΔE and ΔV values are provided. The reli-
ability of ΔV may be the standard deviation of the answers
reported by the observers or something similar. When this in-
formation is not available, at least our method is able to provide
information on the reliability of an individual color pair, based
on its agreement or consistency with neighboring color pairs
(assuming that there are a reasonable minimum number of
such neighbor color pairs). This information on the specific
reliability of each color pair can also be considered to compute
a weighted STRESS [8,14,24,25] for any color-difference for-
mula, which may be a good option for a better assessment of
the merit of such a formula. For example, using CIEDE2000 as
the color-difference formula, and the weights provided by the
consistency index C�S i� described in step 2, we find that the
weighted STRESS value (WSTRESS) for the COM-corrected
dataset was 26.14 while the STRESS value was 27.53. In this
case the difference between STRESS and WSTRESS was small
because all 3570 selected color pairs are quite reliable. When
removal of many or all inconsistent color pairs is not advisable,
the use of WSTRESS may be preferable to the use of STRESS.

Finally, Fig. 6 shows that results from step 2 of current
method are quite different from those of our previous method
in [23]. Pearson’s linear correlation coefficient for data shown in

Fig. 6 is quite low (r � 0.039), and it bears noting that the
degrees of consistency provided by our current method are
in general slightly higher than those provided by our previous
method.

5. CONCLUSIONS

In this paper, we have introduced a two-step method to analyze
datasets of perceptual color differences, improving the accuracy
achieved by the method in [23]. The first step analyzes the
dataset to determine inconsistencies between couples of pairs.
Thus, it provides couples of pairs in the dataset that are not
consistent with each other. The second step assigns each color
pair a degree of consistency by comparing each color pair with
similar color pairs in the dataset. The best results are found
using steps 1 and 2 sequentially. This procedure can be used
to remove inconsistent data in a perceived color-difference
database, enabling STRESS values provided by a good color-
difference formula to be reduced simply by controlling a thresh-
old consistency-degree parameter.

For the COM-corrected dataset, we conclude that there are
696 (18%) color pairs which cannot be properly analyzed be-
cause they lack adequate similar color pairs in the same region
of the color space: Specifically, 520 color pairs had no other
color pair to compare with in step 1, and 176 color pairs
did not have enough neighbors to make the results of step 2
meaningful. The results for the remaining color pairs of the
COM-corrected dataset can be considered quite satisfactory
since only 67 inconsistent color pairs were found in step 1,
and there were only 37 color pairs that reached a degree of con-
sistency lower than 0.25 in step 2.
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