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Abstract 

In this paper we present a novel family of zone plates with a fractal distribution of 

square zones. The focusing properties of these fractal diffractive lenses coined fractal 

square zone plates are analytically studied and the influence of the fractality is 

investigated. It is shown that under monochromatic illumination a fractal square zone 

plate gives rise a focal volume containing a delimited sequence of two-arms-cross 

pattern that are axially distributed according to the self-similarity of the lens. 
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1. Introduction 

Diffractive optics has found a great number of new applications in the last few 

years, satisfying the increasing demand of more compact, light-weight, and cost-

effective optical systems and components. With the rapid development of photonic 

technology, a wide range of applications arises also in areas where conventional 

refractive optics do not provide good solutions or where it is even impossible to use it, 

as for example, in some branches of Ophthalmology [1], in THz Imaging [2], and in X-

ray Microscopy [3]. Furthermore, with the availability of spatial light modulators 

technology, variable geometry of generated wavefronts becomes possible and DOEs can 

be recorded in real-time in recyclable recording media. This speeds up the development 

of new ideas in science and technology as cost-efficient rapid prototyping of DOEs and 

also in real time applications. Following this trend, a few years ago, we presented fractal 

zone plates (FZPs) [4] as new promising diffractive lenses with interesting focusing [5] 

and imaging properties [6]. A FZP is characterized by its fractal profile along the square 

of the radial coordinate. The main feature of a FZP arises from its ability to produce 

multiple foci distributed in a fractal way along the optical axis reproducing the self-

similarity of the FZP itself.  

Square zone plates (SZPs) [7, 8] are another kind of promising diffractive optical 

elements which are the result of the combination of two linear Fresnel zone plates [9]. 

Thus, its resulting structure presents alternate transparent and opaque square zones with 

side length jb , where b is the side length of the first zone and j is the number of the 

zone. Under a monochromatic plane wave illumination this configuration produces a 

focalization pattern with a cross-like irradiance distribution. SZPs have exhibited 

applications in precision alignment systems [10], in infrared antennas [11] and more 

recently have been combined with spiral phase masks for generating hollow beams [12].  



In this work we introduce the concept of fractal square zone plates (FSZP), i.e. 

zone plates with a fractal distribution of square zones. Some practical considerations 

about the design of this type of SZP are investigated, taking into account the physical 

limits imposed by the different construction parameters. Finally, the influence on the 

axial and transverse irradiance produced by the fractality of these lenses is numerically 

evaluated and compared with the response of conventional SZPs. 

 

2. FSZPs design. 

Our proposal for a FSZP is based on the triadic Cantor set shown in Fig. 1(a). The 

first step in the construction procedure consists in defining a straight-line segment of 

unit length called initiator (stage S=0). Next, at stage S=1, the generator of the set is 

constructed by dividing the segment in three equal parts of length 1/3 and removing the 

central one. Following this procedure in subsequent stages S=2, 3, … is easy to see that, 

in general, at stage S there are 2
S
 segments (each one of length 3

-S
) separated by 2

S
–1 

gaps. In Fig. 1(a), only the four first stages are shown for clarity. Note that the S-th 

stage of the Cantor set can be interpreted as a quasiperiodic distribution of segments 

which can be obtained by removing some segments in the finite periodic distribution as 

shown in Fig. 1(b). This periodic distribution at stage S has (3
S
+1)/2 segments with (3

S
-

1)/2 gaps being the total number of elements (segments+gaps) N=3
S
. 

 

 

Fig. 1. Comparison between (a) the triadic Cantor set and (b) the equivalent periodic structure generated 

at different stages S. 



 

It is interesting, for our purposes, to note that triadic Cantor set in Fig. 1(a) can 

also codified using an array of binary elements [13]. The generating array for S=1 is 

{101}, where “1” represent a white segment and “0” a black segment in Fig. 1. The 

Cantor array is generated recursively by replacing {1} by {101} and {0} by {000} at 

each stage of the construction of the fractal structure. Then, the corresponding array at 

S=2 would be {101000101} and the equivalent periodic array {101010101}.  

A FSZP can be constructed in a similar way to a SZP; i.e., as a sequence of square 

zones with side length jb  but defining the transmittance tj of the j-th zone as the j-th 

element of the fractal binary array where tj=1 for transparent zones and tj=0 for opaque 

zones. The resulting structure for S=3 is shown in Fig. 2(a) and Fig. 2(b) shows the 

equivalent SZP with the same focal length. Note that a FSZP can be considered as a 

SZP but with some missing clear square zones. 

In mathematical terms, the transmittance function for both kinds of lenses can be 

written with the same mathematical expression,  

𝑝(𝑥, 𝑦) = ∑ 𝑡𝑗[𝑟𝑒𝑐𝑡(
𝑥

𝑎√𝑗 𝑁⁄
)𝑟𝑒𝑐𝑡(

𝑦

𝑎√𝑗 𝑁⁄
)𝑁

𝑗=1 − 𝑟𝑒𝑐𝑡(
𝑥

𝑎√(𝑗−1) 𝑁⁄
)𝑟𝑒𝑐𝑡(

𝑦

𝑎√(𝑗−1) 𝑁⁄
)], (1) 

whereN is the total number of zones and the length of the outer zone is 2a. 

 

 

Fig. 2. Comparison between (a) a FSZP and (b) the equivalent SZP (S=3). 

  



3. Focusing properties of FSZPs. 

 Let us consider the irradiance provided by a square pupil of length 2a, and 

amplitude transmittance p(x,y), when it is illuminated by a monochromatic plane wave 

of wavelength λ. Within the Fresnel approximation the diffracted field at a given point 

(x,y,z), where z is the axial distance from the pupil plane, can be expressed by 

𝐼(𝑥, 𝑦, 𝑧) =  
1

𝜆2𝑧2 |∬ 𝑝(𝑥𝑜 , 𝑦𝑜)𝑒
−𝑖𝜋

𝜆𝑧
(𝑥𝑜

2+𝑦𝑜
2)𝑒

𝑖2𝜋

𝜆𝑧
(𝑥𝑥𝑜+𝑦𝑦𝑜)

𝑑𝑥𝑜𝑑𝑦𝑜
∞

−∞
|

2

. (2) 

If the transmittance of the pupil is defined in terms of the normalized 

variables, {𝑥̅𝑜 , 𝑦̅𝑜} = {𝑥𝑜 𝑎⁄ , 𝑦𝑜 𝑎⁄ }, then the irradiance can be re-written as, 

𝐼(𝑥̅, 𝑦̅, 𝑢) = 4𝑢2 |∬ 𝑞(𝑥̅𝑜 , 𝑦̅𝑜)𝑒−𝑖2𝜋𝑢(𝑥̅𝑜
2+𝑦̅𝑜

2)𝑒𝑖2𝜋𝑢(2𝑥̅𝑥̅𝑜+2𝑦̅𝑦̅𝑜)𝑑𝑥̅𝑜𝑑𝑦̅𝑜
1

−1
|

2

. (3) 

where 𝑞(𝑥̅𝑜 , 𝑦̅𝑜) = 𝑝(𝑎𝑥̅𝑜 , 𝑎𝑦̅𝑜) , 𝑢 = 𝑎2 2𝜆𝑧⁄  is the reduced axial coordinate, and 

{𝑥̅, 𝑦̅} = {𝑥 𝑎⁄ , 𝑦 𝑎⁄ } are the normalized transverse coordinates. 

 If we consider the diffracting square aperture of transmittance (1) in the above 

equation we obtain the analytical expression of the irradiance : 

𝐼(𝑥̅, 𝑦̅, 𝑢) =
1

16
|∑ 𝑡𝑗

𝑁
𝑗=1 {(𝑒𝑟𝑓[(1 + 𝑖)√𝜋𝑢(√𝑗 𝑁⁄ + 𝑥̅)] + 𝑒𝑟𝑓[(1 + 𝑖)√𝜋𝑢(√𝑗 𝑁⁄ −

𝑥̅)]) × (𝑒𝑟𝑓[(1 + 𝑖)√𝜋𝑢(√𝑗 𝑁⁄ + 𝑦̅)] + 𝑒𝑟𝑓[(1 + 𝑖)√𝜋𝑢(√𝑗 𝑁⁄ − 𝑦̅)]) −

(𝑒𝑟𝑓[(1 + 𝑖)√𝜋𝑢(√(𝑗 − 1) 𝑁⁄ + 𝑥̅)] + 𝑒𝑟𝑓[(1 + 𝑖)√𝜋𝑢(√(𝑗 − 1) 𝑁⁄ − 𝑥̅)]) ×

(𝑒𝑟𝑓[(1 + 𝑖)√𝜋𝑢(√(𝑗 − 1) 𝑁⁄ + 𝑦̅)] + 𝑒𝑟𝑓[(1 + 𝑖)√𝜋𝑢(√(𝑗 − 1) 𝑁⁄ − 𝑦̅)])}|
2
. (4) 

where erf(x) is the error function of the argument x. If we focus our attention to the 

values that the irradiance takes along the optical axis, Eq. (4) becomes: 

𝐼(0, 0, 𝑢) =  |∑ 𝑡𝑗
𝑁
𝑗=1 (𝑒𝑟𝑓2[(1 + 𝑖)√𝜋𝑢√𝑗 𝑁⁄ ] − 𝑒𝑟𝑓2[(1 + 𝑖)√𝜋𝑢√(𝑗 − 1) 𝑁⁄ ])|

2
 (5) 

The axial irradiance of FSZPs computed for different stages of growth S is 

shown in Fig. 3. The irradiance of the associated SZPs is shown in the same figure for 

comparison. Note that the scale for the axial coordinate in each step is a magnified 



version of the one in the previous step by a factor γ=3. It can be seen that the axial 

positions of the central lobes of the main foci coincide with those of the associated SZP. 

Interestingly, the irradiance produced by the FSZPshave fractal properties. In fact, the 

three patterns in the left part of Fig. 3 are self-similar, i.e., the axial irradiance 

distribution corresponding to a given FSZP of order S=4 is a modulated version of the 

irradiance distribution corresponding to the FSZP of order S=3. The same happens for 

S=3 and S=2. This means that the axial irradiance generated by a FSZP is self-similar, 

as it is the FSZP itself. 

 

 

Fig.3.Normalized irradiance vs. the axial coordinate u obtained for a FSZP (left part) and its associated 

SZP (right part) at three stages of growth, S=2 (upper part), S=3 (middle part), and S=4 (lower part). 

  



The distribution of the diffracted energy, not only in the optical axis but over the 

whole transverse plane is of interest for the prediction of the applications capabilities of 

FSZPs. Thus, a two-dimensional analysis of the diffracted intensities is required. 

Equation (4) has been used to calculate the evolution of the diffraction patterns for a 

FSZP from near field to far field. Of particular interest are the intensities at transverse 

planes corresponding to the different maxima of the axial irradiance. Fig. 4 shows the 

result obtained for S=3 at the main focus located at u=13.40 and two subsidiary foci 

located at u=12.20, and u=9.05. Intensities are normalized to the maximum value 

obtained at the main focus.  

 

Fig. 4.Transverse diffraction patternsof a SFZP with S=3 at(a) the main focus located at u=13.40, and two 

subsidiary foci located at (b) u=12.20 and (c) u=9.05. 



It is shown that under monochromatic illumination a FSZP gives a main focal 

volume containing a two-arms-cross pattern which, at this plane, is similar to that 

obtained with the associated SZP (not shown). However, it can be noted that the 

secondary maxima at u=12.20, and u=9.05 preserves the crossed shape, and this 

behavior can be interpreted as an extension of depth of focus. In fact, the intensity given 

by the associated SZP at these planes is almost zero.  

 

4. Conclusions. 

A new family of diffractive lenses, coined “Fractal Square Zone Plates”, has 

been introduced. It is shown that the distribution of square zones of theses fractal lenses 

is obtained through the triadic Cantor set. The focusing properties of FSZPs have been 

analyzed and compared with those corresponding to a conventional SZP. Under 

monochromatic illumination FSZPs produces a focal volume containing a delimited 

sequence of two-arms-cross pattern that are axially distributed according to the self-

similarity of the lens. One potential application of these new designs of square lenses 

with increased depth of focus is its integration in three-dimensional optical alignment 

systems. Other polygonal Fresnel zone plates [14, 15] with fractal structure are currently 

under study.  
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