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 

 
Abstract—Static Random Access Memories (SRAMs) are key 

in electronic systems. They are used not only as standalone 
devices but also embedded in Application Specific Integrated 
Circuits. One key challenge for memories is their susceptibility to 
radiation induced soft errors that change the value of memory 
cells. Error Correction Codes (ECCs) are commonly used to 
ensure correct data despite soft errors effects in semiconductor 
memories. Single Error Correction-Double Error Detection 
(SEC-DED) codes have been traditionally the preferred choice 
for data protection in SRAMs. During the last decade, the 
percentage of errors that affect more than one memory cell has 
increased substantially, mainly due to Multiple Cell Upsets 
(MCUs) caused by radiation. The bits affected by these errors are 
physically close. To mitigate their effects, ECCs that correct 
single errors and double adjacent errors have been proposed. 
These codes, known as SEC-DAEC, require the same number of 
parity bits as traditional SEC-DED codes and a moderate 
increase in the decoder complexity. However, MCUs are not 
limited to double adjacent errors, because they affect more bits 
as technology scales. In this brief, new codes that can correct 
triple adjacent errors and 3-bit burst errors are presented. They 
have been implemented using a 45nm library and compared to 
previous proposals, showing that our codes have better error 
protection with a moderate overhead and low redundancy. 

 
Index Terms— Error correction codes, memory, SEC-DED, 

SEC-DAEC, SEC-DAEC-TAEC, burst error correction codes. 

I. INTRODUCTION 

TATIC Random Access Memories (SRAMs) are an 
important component in most electronic systems. They are 

also commonly embedded into Application Specific Integrated 
Circuits (ASICs) and account for a significant portion of the 
circuit area. The importance of embedded memories is also 
expected to increase in the near future [1]. This widespread 
use makes the reliability of SRAM memories critical to ensure 
reliable electronic systems. One of the challenges for 
memories is radiation induced soft errors [2]. Soft errors 
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change the value stored in one or more memory cells and can 
lead to data corruption and system failure. In older technology 
nodes, most soft errors affected only one memory cell. 
However, as technology scaled, Multiple Cell Upsets (MCUs) 
have become more common and are a significant percentage 
of the errors in current technology nodes [3]. 

Error Correction Codes (ECCs) are widely used to protect 
memories from soft errors [4]. Single Error Correction-Double 
Error Detection (SEC-DED) codes can be used when only 
single bit errors need to be corrected [5]. This was the case for 
old technologies but also for advanced technology nodes when 
sufficient interleaving distance is used. Interleaving ensures 
that an MCU affects cells that belong to different words by 
placing the memory cells of the same word physically apart 
[6]. Its effectiveness is based on the observation that the cells 
affected by a soft error event are physically close and located 
in the area affected by the impact of the radiation particle [7]. 
The use of interleaving has implications for the memory 
design and can impact area and delay [8]. The routing is more 
complex, and power consumption is increased. Interleaving 
cannot always be used in small memories nor can be 
practically applied to content addressable memories. It also 
impacts the aspect ratio, which can be an issue for embedded 
memories [9],[10]. 

When interleaving is not a good option, ECCs that correct 
multiple nearby bit errors can be used. The simplest codes 
(SEC-DAEC) correct double adjacent errors in addition to 
single bit errors. They can be implemented with the same 
number of parity check bits as SEC-DED codes and with a 
moderate increase in the decoder complexity [8]. Several 
SEC-DAEC codes have been proposed recently to protect 
memories [8],[9],[11],[12]. One issue with most SEC-DAEC 
codes is that double non-adjacent errors can be mistaken for a 
correctable error causing an erroneous correction. Therefore, 
they cannot guarantee the detection of double random errors 
and are not DED codes as SEC-DED codes. However, the 
codes can be extended to ensure that this does not occur in 
general or for error patterns that affect nearby bits but are not 
double adjacent. This has been explored in [9],[12],[13] and in 
some cases requires additional parity check bits.  

Measurements from 65nm and 45nm SRAMs are reported 
in [10]. As can be observed in Fig. 1, although most MCUs 
have a length of 2, there is a non-negligible percentage of 
faults affecting 3 adjacent bits, and it is expected to grow as 
technology scales. Similar results are presented in [14]. This 
means that SEC-DAEC codes may no longer be effective to 
correct soft errors. The next step is to design codes that can 
correct multiple adjacent errors [15],[16],[17]. 
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Fig. 1. Ratio of length for MCU events [10]. 
 

As stated above, double and triple adjacent errors are the 
most common patterns for multiple errors. However, 3-bit 
burst errors are also possible. A burst error is a group of 
adjacent bits where, at least, the first and the last bits are in 
error. So, double almost adjacent errors (2 bits in error 
separated by a right bit) must be studied. For a better 
understanding, Fig. 2 shows how a high energy particle strike 
of the same size (the balls) may provoke single or multiple cell 
upsets depending on the size of the memory cells (the prisms). 
It is noticeable that, although the fault affects several bits (3 in 
the case presented in Fig. 2 (b)), not all of them become in 
error [16]. Consider that a high energy particle forces a high 
logic level in the affected memory cells, for example. The 
stored bits only become in error if the value previously stored 
was a low logic level. In other words, an MCU affecting 3 bits 
could manifest as a triple adjacent error, but also as a double 
almost adjacent error, a double adjacent error, a single error or 
even it could not cause error. 

 

  

(a) Single Cell Upset (b) Multiple Cell Upset 
 

Fig. 2. Single and Multiple Cell Upsets in memory elements. 
 

Thus, SEC-DAEC-TAEC codes and 3-bit burst ECCs 
would be useful. These codes have been explored in [17] for 
data words of 16 bits. In that case, an additional parity check 
bit was required compared to a SEC-DED code. The decoding 
complexity is also larger than that for SEC-DED or SEC-
DAEC codes as more syndromes have to be checked for error 
detection. More powerful codes are presented in [16], 
combining double error and burst error correction for data 
words of up to 24 bits, but at the cost of a high redundancy. 

In this brief, the design of SEC-DAEC-TAEC and 3-bit 
burst ECCs for different data word lengths is considered. In 
particular, codes for 16, 32 and 64 data bits are presented. 
Two optimization criteria have been used to select the codes: 
minimizing the total number of ones in the parity check matrix 
or the maximum number of ones in its rows. The first criterion 
is commonly used to minimize the decoder complexity while 
the second is used to optimize its speed [8]. The parity check 
matrices for all the proposed codes are provided. These results 
can be useful to designers that need to deal with multiple bit 
errors in SRAM memories. 

In addition, the encoders and decoders for these codes have 
been modelled in HDL, synthesized for a 45nm library [18], 
and compared to other existing proposals. The results show 
that our codes offer better coverage, with the same redundancy 
(for SEC-DAEC-TAEC codes) or only one bit more (for 3-bit 
burst error correction) than SEC-DED or SEC-DAEC codes. 
Furthermore, the results show that the proposed codes can be 
efficiently implemented and require only a moderate area and 
latency overhead versus existing SEC-DAEC codes. 

The rest of the brief is organized as follows: in section II the 
procedure used to design the codes is briefly described. The 
SEC-DAEC-TAEC and 3-bit burst ECCs are presented in 
section III. Section IV performs a comparison with some of 
the previous SEC-DAEC codes. Finally, the conclusions are 
summarized in section V. 

II. CODE DESIGN TECHNIQUE 

The process used to design the codes is based on 
formulating the problem as a Boolean Satisfiability problem. 
An algorithm developed by the authors is used to solve it and 
to obtain a parity check matrix which defines the code to be 
designed. Although a detailed explanation of the methodology 
(which can be found in [19]) is out of the scope of this brief, it 
is briefly summarized in the following. A syndrome based 
decoding [20] is assumed for the codes as has been done for 
the existing SEC-DAEC codes. 

After determining the values of n and k for the code to be 
designed (where k is the length of the original data word and n 
is the length of the final encoded word), the first step is the 
selection of error patterns to be corrected. In this case, the 
SEC feature is represented with error vectors (…1…), error 
vectors for DAEC shows the pattern (…11…), for DAAEC 
(…101…), and for TAEC (…111…), where the dots 
represents zero or more 0’s (correct bits) and the 1’s are the 
bits in error. 

The next step is to find the parity check matrix H that 
satisfies the conditions (1) and (2), where E  represents the 
set of error vectors to be corrected, and E  is the set of error 
vectors to be detected. 
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To find the matrix, a recursive backtracking algorithm is 
used. It checks partial matrices and adds a new column only if 
the previous matrix satisfies the requirements. In this way, the 
algorithm starts with a partial_H matrix, with n–k rows and 
only one column. New columns are added and the new partial 
matrices are checked recursively. Both the initial and the 
added columns must be non-zero, so there are 2n–k – 1 
combinations for each column. A detailed explanation of this 
algorithm can be found in [19]. 

The complete execution of the algorithm is commonly 
unfeasible. Nevertheless, the first solutions are usually found 
quickly, if the code exists. The algorithm may choose better 
solutions according to different optimization criteria, but 
finding the best solution requires finishing the process. In this 
brief, two criteria have been used: 



 Smallest Hamming weight of H: this solution 
commonly offers circuits with the lowest number of 
logic gates in a hardware implementation of the 
encoder and syndrome computation. 

 Smallest Hamming weight of the heaviest row of H: 
the logic depth of each parity or syndrome bit generator 
depends on the Hamming weight of the associated row. 
The heaviest row is a factor for the maximum speed of 
the encoder and the decoder circuits. 

 

Once selected the H matrix, it is easy to determine the logic 
equations to calculate each parity and syndrome bit, and the 
syndrome lookup table. They are required for the encoder and 
decoder implementation. An example is also included in [19]. 

III. PROPOSED CODES 

As discussed in the introduction, the objective is to design 
SEC-DAEC-TAEC and 3-bit burst ECCs for data word sizes 
more commonly used in memories. As in [8], words of 16, 32 
and 64 data bits are considered. So, these will be the values of 
k for each code. Since for each word size there are many 
possible codes and parity check matrices, the algorithm tries to 
optimize the code in two ways, as mentioned before. One of 
the optimizations tries to reduce the total number of ones in 
the parity check matrix as this reduces the decoder complexity 
[8]. The other optimization criterion tries to reduce the 
maximum number of ones in the rows of the parity check 
matrix. This in turn reduces the decoder delay [8].  

For word length of n, a SEC-DAEC-TAEC code has to 
identify and correct n+n–1+n–2 = 3n–3 error patterns and a 3-
bit burst ECC n+n–1+n–2+n–2 = 4n–5 error patterns. This 
means that the number of different syndromes has to be larger 
than 3n–3 in the first case and larger than 4n–5 in the second, 
which in turn means that the number of parity check bits n–k 
should be such that 2n–k>3n–3 and 2n–k>4n–5, respectively. It 
is important to note that these conditions are necessary but not 
sufficient: the lowest value of n meeting the above conditions 
minimizes the code redundancy, but it does not guarantee the 
existence of a code with the required features. If it does not 
exist, the alternatives are to increase the number of parity bits 
(i.e. increasing n, as k is commonly a value fixed by design) or 
to reduce the number of error patterns to be corrected. 

The described optimization algorithm has been used to 
design the codes by setting n to the lowest value that met the 
previous inequalities. As stated above, if no solution is found, 
n can be increased by one until valid codes are obtained. The 
optimization algorithm has been stopped after a practical 
execution time (about one week). Therefore, the codes 
presented may not be the optimum ones but any difference in 
terms of number of ones should be small. The results for 3-bit 
burst ECCs required one more parity check bit than a SEC-
DED code in all cases. This is in line with previous results for 
words of 16 bits in [17]. However, in most cases, SEC-DAEC-
TAEC codes can be implemented with the same number of 
parity bits needed for a SEC-DED code. 

The parity check matrices H of the 3-bit burst ECCs 
obtained are given in Figs. 3 to 8. H matrices of the SEC-
DAEC-TAEC codes obtained are given in Figs. 9 to 14. 

A particular case is the (22, 16) SEC-DAEC-TAEC code. 
Using our methodology, no code with these features has    

been found. Although the number of syndromes available   
(222–16–1 = 63) is just enough to fit the errors to be corrected 
(3·22–3 = 63), no solution was found after long executions of 
the algorithm using different configurations. This can be due 
to the fact that no spare syndromes are available and therefore 
the error patterns to be corrected have to match perfectly to the 
syndromes. As stated above, although the values of n and k 
meet the inequality 2n–k>3n–3, this is not a sufficient 
condition, at least from our search results. If an increase in the 
redundancy (using higher values of n) is not desired, the 
solution to find a code is to reduce the number of error 
patterns to be corrected. In this case, we decided to find a 
SEC-DAEC code with a percentage of correction of triple 
adjacent errors as high as possible, while the rest are detected. 
This code offers a compromise solution, and shows the 
flexibility of the methodology used to design the codes. In this 
case, the code found and presented here corrects 18 out of 20 
triple adjacent errors, i.e. 90%. The other 2 errors are detected 
but not corrected. 

The Hamming distance is 3 for all the codes presented. 
Since all the codes are SEC, the minimum distance is at least 
3. Also, as all codes have columns with weight 2, an error on 
one of those columns and on the two parity bits will produce a 
valid codeword. Therefore, there are words at distance 3. An 
interesting treatment for Hamming distance when burst errors 
are considered can be found in [16]. 
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Fig. 3. Parity check matrix for the (23,16) 3-bit burst ECC optimized to reduce 
the total number of ones.  
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Fig. 4. Parity check matrix for the (40,32) 3-bit burst ECC optimized to reduce 
the total number of ones.  
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Fig. 5. Parity check matrix for the (73,64) 3-bit burst ECC optimized to reduce 
the total number of ones.  
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Fig. 6. Parity check matrix for the (23,16) 3-bit burst ECC optimized to reduce 
the maximum number of ones in a row. 
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Fig. 7. Parity check matrix for the (40,32) 3-bit burst ECC optimized to reduce 

the maximum number of ones in a row.  
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Fig. 8. Parity check matrix for the (73,64) 3-bit burst ECC optimized to reduce 

the maximum number of ones in a row.  
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Fig. 9. Parity check matrix for the (22,16) SEC-DAEC-quasiTAEC (90% 

correction-10% detection) code optimized to reduce the total number of ones.  
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Fig. 10. Parity check matrix for the (39,32) SEC-DAEC-TAEC code 

optimized to reduce the total number of ones.  
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Fig. 11. Parity check matrix for the (72,64) SEC-DAEC-TAEC code 

optimized to reduce the total number of ones.  
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Fig. 12. Parity check matrix for the (22,16) SEC-DAEC-quasiTAEC (90% 

correction-10% detection) code optimized to reduce the maximum number of 
ones in a row. 
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Fig. 13. Parity check matrix for the (39,32) SEC-DAEC-TAEC code 

optimized to reduce the maximum number of ones in a row.  
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Fig. 14. Parity check matrix (H) for the (72,64) SEC-DAEC-TAEC code 

optimized to reduce the maximum number of ones in a row.  
 

IV. EVALUATION AND COMPARISON  

The proposed codes have been compared to the SEC-DAEC 
codes presented in [8], and to the 3-bit burst ECC presented in 
[17]. The encoders and decoders have been modelled in HDL 
and synthesized for a 45nm library [18]. They have been 
synthesized twice, optimizing area and delay, respectively. 

The results for each configuration are summarized in Table 
I, where 3 groups of columns are distinguished. In the first 
part (redundancy and complexity), it can be observed that the 
new 3-bit burst ECCs require one more parity bit than SEC-
DAEC codes, while the proposed SEC-DAEC-TAEC codes 
can be implemented with the same number of parity bits as 
SEC-DAEC codes. This is an interesting result as TAEC can 
be implemented without increasing the memory bitwidth. 

In the same part, Hamming weights are displayed, and the 
optimized parameter for each code is emphasized. In terms of 
the total number of ones, the new codes provide reductions 
compared to the SEC-DAEC codes in [8] of up to 22%, 
showing the optimization ability of our methodology. The 
reduction in terms of the maximum number of ones in a row is 
also relevant. Finally, for k = 16, our proposals also reduce the 
number of ones in the matrix compared to the 3-bit burst ECC 
presented in [17]. 

As stated above, encoders and decoders have been 
synthesized twice. In the first run, the tool is configured to 
optimize area (second part of Table I), and in the second to 
optimize delay (third part). These settings provide respectively 
the best area and delay that can be achieved. In both cases area 
(in µm2) and delay (in ns) are reported, but the most relevant 
columns (the optimized parameter for each case) are 
emphasized in Table I. It can be observed that the area and 
delay of the encoders for a given block size is similar for most 
of the codes considered. The same applies for the decoder 
delay. On the other hand, the area of the decoders is larger for 
the 3-bit burst codes as they have to identify and correct more 
patterns. However, in all cases, the proposed codes require 
less than two times the area of existing SEC-DAEC codes. 
The results also show that the proposed codes designed to 
reduce the total number of ones (Figs. 3 to 5 and 9 to 11) 
require less area for the encoder as expected. Conversely, the 
codes designed to reduce the maximum number of ones in a 
row (Figs. 6 to 8 and 12 to 14) have in most cases lower 
encoder/decoder delay. Therefore, they should be used to 
optimize area or delay respectively. 

As a summary, the proposed codes improve previous SEC-
DAEC designs by implementing either TAEC or 3-bit burst 
error correction, and also reduce the number of ones in the 
parity check matrix. The proposed codes can be efficiently 
implemented, and require only a moderate overhead versus 
existing SEC-DAEC codes. 

 



TABLE I 
COMPARISON OF THE PROPOSED CODES (EMPHASIZED) TO OTHER CODES. AREA EXPRESSED IN µm2 AND DELAY IN ns. 

 

  REDUNDANCY AND COMPLEXITY AREA OPTIMIZATION DELAY OPTIMIZATION 
   Total number Max. num. of ENCODER DECODER ENCODER DECODER 
k Code n-k of ones in H ones in a row area delay area delay area delay area delay 

16 

SEC-DAEC presented in [8] 6 54 10 156 0.47 1006 1.06 229 0.23 1439 0.47 
3-bit burst ECC presented in [17] 7 54 8 131 0.38 1404 1.35 172 0.19 1963 0.47 

3-bit burst ECC proposed in Fig. 3  7 46 8 117 0.35 1298 1.22 167 0.19 1824 0.47 
3-bit burst ECC proposed in Fig. 6  7 49 7 124 0.33 1356 1.20 179 0.19 1998 0.46 

SEC-DAEC-quasiTAEC proposed in Fig. 9 6 51 11 91 0.44 1135 1.23 119 0.21 1528 0.49 
SEC-DAEC-quasiTAEC proposed in Fig. 12 6 56 10 135 0.52 1128 1.27 196 0.23 1599 0.49 

32 

SEC-DAEC presented in [8] 7 103 15 322 0.53 1902 1.33 387 0.29 2751 0.53 
3-bit burst ECC proposed in Fig. 4 8 90 15 270 0.43 2603 1.35 320 0.26 3658 0.54 
3-bit burst ECC proposed in Fig. 7  8 91 12 264 0.45 2628 1.32 376 0.24 3599 0.54 

SEC-DAEC-TAEC proposed in Fig. 10 7 92 15 279 0.49 2202 1.34 328 0.26 3000 0.54 
SEC-DAEC-TAEC proposed in Fig. 13 7 93 14 288 0.55 2336 1.40 374 0.25 3190 0.53 

64 

SEC-DAEC presented in [8] 8 232 32 678 0.61 3106 1.75 812 0.33 4227 0.61 
3-bit burst ECC proposed in Fig. 5 9 180 25 566 0.58 5279 1.81 695 0.30 7165 0.62 
3-bit burst ECC proposed in Fig. 8  9 182 23 572 0.59 5158 2.01 696 0.29 6833 0.61 

SEC-DAEC-TAEC proposed in Fig. 11 8 189 27 583 0.65 3672 1.67 703 0.30 4928 0.62 
SEC-DAEC-TAEC proposed in Fig. 14 8 196 25 587 0.60 4563 1.87 722 0.31 5976 0.62 

V. CONCLUSIONS  

In this brief, new SEC-DAEC-TAEC and 3-bit burst error 
correction codes have been proposed to protect SRAM 
memories from Multiple Cell Upsets (MCUs). The codes 
presented cover the most common memory word lengths. The 
new codes complement the recently proposed 3-bit burst error 
correction code for 16-bit words. 

The codes have been synthesized and compared to existing 
SEC-DAEC codes and the results show that the new codes 
provide significant reductions in the number of ones in the 
parity check matrix and in the maximum number of ones in its 
rows. Those reductions should translate into lower complexity 
for the encoder and syndrome computation. The proposed 
SEC-DAEC-TAEC codes can be implemented with the same 
number of parity check bits as SEC-DAEC codes while the 3-
bit burst error correction codes require only one additional 
parity check bit. The synthesis results confirm that the 
proposed codes can be efficiently implemented, and introduce 
only a moderate overhead versus existing SEC-DAEC codes. 

The parity check matrices for all the codes are provided in 
systematic form and can be readily used by designers of 
systems in which SRAM memories suffer MCUs that affect up 
to three neighboring bits. 
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