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Abstract 5 

7Be is a cosmogenic radionuclide widely used as an atmospheric tracer, whose evaluation and forecasting can 6 
provide valuable information on changes in the atmospheric behavior. In this study, measurements of 7Be 7 
concentrations were made each month during the period 2007-2015 from samples of atmospheric aerosols 8 
filtered from the air. The aim was to propose a Seasonal Autoregressive Integrated Moving Average (SARIMA) 9 
model to develop an explanatory and predictive model of 7Be air concentrations. The Root Mean Square Error 10 
(RMSE) and the Adapted Mean Absolute Percentage Error (AMAPE) were selected to measure forecasting 11 
accuracy in identifying the best historical data time window to explain 7Be concentrations. A measure based on 12 
the variance of forecast errors was calculated to determine the impact of the model uncertainty on forecasts. 13 
We concluded that the SARIMA method is a powerful explanatory and predictive technique for explaining 7Be 14 
air concentrations in a long-term series of at least eight years of historical data to forecast 7Be concentration 15 
trends up to one year in advance.  16 

 17 

Keywords: 7Be, time series, Forecasting, SARIMA model. 18 

 19 

1. Introduction 20 

7Be is widely used as an atmospheric radiotracer due to its relatively short life (𝑇1
2⁄ = 53.3 days) and ease of 21 

measurement by γ-spectrometry, which provides important information on atmospheric air mass motions. A 22 
better understanding of its distribution would facilitate refinement and validation of global atmospheric 23 
circulation models (Dueñas et al. 2015). 7Be forecasting can thus be adopted as a target value in analyzing 24 
fluctuations or deviations that could imply important atmospheric changes. 25 

7Be is a cosmogenic radionuclide formed by spallation reactions of light atmospheric nuclei (such as carbon, 26 
nitrogen and oxygen) with very high-energy protons and neutrons of the primary cosmic rays (Lal et al., 1958; 27 
Bruninx, 1961). Most 7Be production (∼70%) occurs in the stratosphere and the remainder (∼30%) is produced 28 

in the troposphere, so that the 7Be production rate is altitude-dependent (Feely et al., 1989; Baeza et al., 1996; 29 
Kotsopoulou & Ioannidou, 2012). 30 

It is generally accepted that the 7Be production rate depends on a number of atmospheric factors. Several studies 31 
have pointed out that the intensity of galactic cosmic rays in the Earth’s orbit is affected by solar activity and 32 
the geomagnetic field, which is under constant cosmic ray bombardment from space (O’Brien, 1979; Vogt et 33 
al., 1990; Hötzl et al., 1991; Ioannidou & Papastefanou, 1994). In particular, an increase in solar activity and 34 
geomagnetic field reduce the galactic cosmic ray flux, which is followed by reduced 7Be production. 35 

In addition to the above-mentioned sources of variability, 7Be concentrations in the lower layers of the 36 
atmosphere present temporal variations caused by solar radiation and meteorological parameters that can affect 37 
regional weather patterns (temperature, relative humidity, precipitations, wind speed and wind direction) (Feely 38 
et al., 1989; Baeza et al., 1996).  39 

A recent study applied a decomposition of the 7Be time series into a trend-cycle, a seasonal and an irregular 40 
component in order to separate the inter- and intra-annual patterns of 7Be variability (Bas et al, 2016). The 41 
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results of this study showed the need to apply time series analysis to correlated data in order to separate the 42 
different sources of variability of 7Be concentrations and to develop a forecasting model.  43 

Many research studies have applied Multiple Linear Regression (MLR) analysis to develop a forecasting model 44 
for 7Be air concentrations using atmospheric and meteorological variables as predictors (e.g.Azahra et al, 45 
2004a, 2004b; Piñero-García et al., 2012, 2013; Dueñas et al., 1999, 2015). However, the disadvantage of the 46 
MLR technique is that it requires forecast meteorological parameters to predict7Be air concentrations. Several 47 
authors recommend the use of time series modeling techniques when monitoring correlated process data (Alwan 48 
& Roberts 1988; Harris & Ross 1991; Wardell et al. 1994). 49 

The objective of this study is to propose a seasonal Autoregressive Integrated Moving Average (SARIMA) 50 
model to develop a powerful explanatory and forecasting model of 7Be air concentrations. For this, different 51 
data ranges of historical data are proposed to identify and validate the number of periods which best fit to 7Be 52 
data. The optimal range of historical data is identified by means of the Root Mean Square Error (RMSE) and 53 
the Adapted Mean Absolute Percentage Error (AMAPE) as forecasting accuracy measures.The impact of the 54 
model uncertainty on forecastsis measured by the variance of the forecast errors. 55 

 56 

2. Material and Methods 57 
 58 
2.1. Study area and sampling 59 

Airborne particulate samples were collected weekly on the campus of the Universitat Politècnica de Valencia 60 
from January 2007 to December 2015. Valencia is situated on the east coast of Spain (15m above sea level) in 61 
the western Mediterranean Basin (39°28′50″ N, 0°21′59″ W) and has a relatively dry subtropical Mediterranean 62 
climate with very mild winters and long hot summers. The sampling point was located approximately 2 km 63 
away from the coastline. 64 

Aerosol samples were collected using Eberlyne G21DX and Saic AVS28A air samplers placed approximately 65 
1 m above ground level. The aerosol particles were retained on a cellulose filter of 4.2 x10-2 m effective 66 
diameter and 0.8 µm pore size. The filters were changed weekly and the average volume ranged from 300 to 67 
400 m3 per week. Each filter was put inside a plastic box and kept in a desiccator until it was measured.  68 

2.2. 7Be activity measurements 69 
 70 
A monthly composite sample containing 4-5 filters was measured by γ-spectrometry to determine specific 7Be 71 
activities using an HPGe detector (ORTEC Industries, USA) n-type with relative efficiency of 18% for 60Co 72 
gamma-ray. A certificated standard containing radionuclides with energies ranging from 59 to 1836.1 keV was 73 
used for preparing the calibrated filters, which were placed inside their plastic boxeson the top of the detector. 74 
The counting time was 60000s and the γ-line 477.7 KeV was used to calculate the activity. ORTEC Gamma-75 
Vision software was used for acquisition and analysis. Concentration activities were corrected for the 76 
radioactive decay to the mid-collection period. The mean measured uncertainties (K=2) were around 10 %. 77 
 78 
2.3. Statistical analysis 79 
 80 
A time series is a sequence of observations taken sequentially in time and influenced by four separate 81 
components: (i) a trend component or long-term movement, (ii) a cycle component or fluctuations about the 82 
trend of greater or lesser regularity (iii) a seasonal component reflecting seasonality, and (iv) a random or 83 
irregular component. Several techniques are available for separating the trend component from oscillating 84 
fluctuations and random variations in a seasonal time series. One of the most frequently used methods for 85 
estimating a time series is the method of the Seasonal Autoregressive Integrated Moving Average (SARIMA) 86 
model (Box & Jenkins 1976). 87 
 88 
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The SARIMA model building process is designed to take advantage of the association in the sequentially lagged 89 
relationships that usually exist in data collected periodically. If the time series has more than one seasonal 90 

behavior, for instance two, 𝑠 and 𝑠1, the model will be composed of more parameters in order to model the 91 

other seasonal period, e.g. SARIMA(𝑝, 𝑑, 𝑞)(𝑃, 𝐷, 𝑄)𝑠(𝑃1, 𝐷1, 𝑄1)𝑠1.  92 

According to Bas et al. (2016), 7Be concentration variability can be decomposed in terms of three main 93 
components: 1) trend-cycle, 2) seasonal and 3) irregular variations. Therefore, in principle, two periods could 94 
be considered, i.e. trend-cycle (11 years solar cycle) and seasonal (12 months).The trend-cycle component 95 
could not be totally modeled because the evaluated period was too short (2007-2015). In order to explicitly 96 

model the three parameters 𝑃1, 𝐷1, 𝑄1 of the trend-cycle component we needed more representative sample 97 

data. However, the model was able to capture part of the trend in the data with the 𝑑 parameter, as explained 98 
below. We could therefore only model one seasonal period: annual periodicity. 99 

A time series {𝑧𝑡, 𝑡 = 1, … , 𝑁} is generated by a SARIMA(𝑝, 𝑑, 𝑞)(𝑃, 𝐷, 𝑄)𝑠model for only one seasonal period 100 
if: 101 
 102 

𝜙𝑝(𝐵)𝛷𝑃(𝐵𝑠)(1 − 𝐵)𝑑(1 − 𝐵𝑠)𝐷𝑧𝑡 = 𝜃𝑞(𝐵)𝛩𝑄(𝐵𝑠)𝑎𝑡(𝑒𝑞. 1) 103 

 104 
where 𝑁 is the number of observations; 𝑝, 𝑑, 𝑞, 𝑃, 𝐷, 𝑄 are integers; 𝐵 is the lag operator (e.g. (1 − 𝐵)𝑧𝑡 = 𝑧𝑡 −105 

𝑧𝑡−1; (1 − 𝐵12)𝑧𝑡 = 𝑧𝑡 − 𝑧𝑡−12 );  𝑠 is the seasonal period length; 𝑑 is the number of regular differences (𝑑 ≤106 

2); 𝐷 is the number of seasonal differences, and𝑎𝑡 is the random event or estimated residual at time t, which is 107 
a usual Gaussian white noise process (WN). 108 
 109 

𝜙𝑝(𝐵) = 1 − 𝜙1𝐵 − 𝜙2𝐵2 − ⋯ − 𝜙𝑝𝐵𝑝 ; (𝑒𝑞. 2),is the regular autoregressive operator (AR) of order 𝑝, 110 

𝜃𝑞(𝐵) = 1 − 𝜃1𝐵 − 𝜃2𝐵2 − ⋯ − 𝜃𝑞𝐵𝑞    ; (𝑒𝑞. 3),is the regular moving average operator (MA) of order 𝑞,  111 

𝛷𝑃(𝐵𝑠) = 1 − 𝛷1𝐵𝑠 − 𝛷2𝐵𝑠2 − ⋯ − 𝛷𝑃𝐵𝑠𝑃 ; (𝑒𝑞. 4), is the seasonal autoregressive operator (SAR) of order 112 

𝑃, 113 

𝛩𝑄(𝐵𝑠) = 1 − 𝛩1𝐵𝑠 − 𝛩2𝐵𝑠2 − ⋯ − 𝛩𝑄𝐵𝑠𝑄  ; (𝑒𝑞. 5),is the seasonal moving average operator (SMA) of order 114 

𝑄. 115 
 116 
The parameters (𝑝, 𝑑, 𝑞)(𝑃, 𝐷, 𝑄)𝑠try to model the time series behavior in the period evaluated. The first part 117 

of the SARIMA defined by the (𝑝, 𝑑, 𝑞) parameters is related to the regular part of the time series and the 118 

(𝑃, 𝐷, 𝑄)𝑠 with seasonal variations. 119 

 120 
Considering the annual periodicity observed in Bas et al. (2016) and the 7Be values measured monthly, the 121 
parameters of the SARIMA model have the following interpretation: 122 
 123 
p: determines the influence of the previous months of the same year on the forecasting month. It is known as 124 

the time series inertia. p is represented by 𝜙𝑝(𝐵) in Eq.1, which is defined in Eq. 2. 125 

d: associated with the influence of the trend on the time series. The parameter d represents the times that the 126 

time series should be differenced in order to eliminate the trend. d is represented by (1 − 𝐵)𝑑 in Eq. 1. 127 
q: determines the influence of random events produced by external factors, which affected previous months of 128 

the same year, on the forecasting month. q is represented by 𝜃𝑞(𝐵)in Eq.1, which is defined in Eq. 3. 129 

P: determines the influence of the months of past years on the forecasting month. P is represented by 𝛷𝑃(𝐵𝑠)in 130 
Eq.1, which is defined in Eq. 4. 131 
D: associated with the influence of the seasonal behavior on the time series. The parameter D represents the 132 
times that the time series should be differenced in order to eliminate the visual part of the seasonality. If the 133 
time series has a seasonal period, it is necessary to eliminate this seasonality in order to identify real 134 

relationships between the values of the time series. D is represented by (1 − 𝐵𝑠)𝐷 in Eq. 1. 135 
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Q: determines the influence of random events produced by external factors, which affected months of past 136 

years, on the forecasting month. Q is represented by 𝛩𝑄(𝐵𝑠)in Eq.1, which is defined in Eq. 5. 137 

 138 
As reported by Box & Jenkins (1976) and Shumway & Stoffer (2006), the SARIMA model consists of three 139 
main steps: 140 

Identification and estimation step 141 

First, the periodogram technique was applied to identify the periodic cycle in the time series (Schuster, 1898). 142 
The periodogram plot should have clear peaks at points corresponding to the periodic cycle in the cyclic model. 143 

The time series should then be differenced in order to be stationary in mean and variance (identifying 𝑑 and 𝐷 144 
parameters). Differencing is a technique that can also be used to remove trends. Trends are usually detected by 145 
inspecting the plot of the 7Be data over the period considered. However, they are also characterized by the 146 
autocorrelation function.  147 

After differencing the time series, a tentative autoregressive moving average (ARMA) process is carried out 148 
based on the estimated autocorrelation function (ACF) and the estimated partial autocorrelation function 149 
(PACF). The shape of the ACF and PACF of the real time series is compared with the shape of the theoretical 150 
model to identify possible different parameters 𝑝, 𝑞, 𝑃 and 𝑄 of the SARIMA model (Peña, 2010; Shumway & 151 
Stoffer, 2006). Having specified tentative models in the identification step, the parameters of the candidate 152 
models are estimated by a maximum likelihood function (Shine & Lee, 2000). 153 

After trying several combinations for parameters 𝑝, 𝑞, 𝑃 and 𝑄, the best and mostparsimonious model was 154 
selected, considering the minimum AMAPE and RMSE (defined in the section on the Forecasting Step) for the 155 
forecasting data as accuracy measures of the predictive power.  156 

Validation step 157 

In this step, the below statistical testswere used to check the adequacy of the identified models for each time 158 
period. An essential part of the procedure is to examine the residuals of the SARIMA model, which should be 159 
considered, if the model is satisfactory, as White Noise (WN). We examine some simple toolstestsfor checking 160 
the hypothesis that the residuals are WN and the model is valid. If the fit model passes the following tests, it 161 
can be used to make a forecast. 162 
 163 
- t-ratio test to evaluate the significance of the parameters estimated in each model. The parameters are 164 

considered significant with a 95% of confidence level if p-values<0.05.  165 
- Kolmogorov-Smirnov (K-S) test applying Lilliefors correction of the residual series to check that the noise 166 

process is Gaussian. The residual series is Gaussian if p-values>0.05.  167 
- Q* Ljung-Box test to check the condition that the residuals can be considered as a WN. The statistic 168 

proposed is 169 

𝑄∗ = 𝑛(𝑛 + 2) ∑(𝑛 − 𝑘)−1 𝑟𝑘(𝑎)

𝑚

𝐾=1

(𝑒𝑞. 6) 170 

where 𝑟𝑘(𝜀) is the sample autocorrelation 𝑓 order 𝑘 of the residual, 𝑛 is the length of residual series and 𝑚 is 171 

the number of lags considered, 𝑄∗ ≈ 𝒳𝑚−𝑛
2 , 𝑛 = 𝑝 + 𝑞 + 𝑃 + 𝑄. The model is considered valid if 172 

𝑃(𝒳2(𝑚 − 𝑛) > 𝑄∗) = 𝑝 − 𝑣𝑎𝑙𝑢𝑒 > 0.05. In this study, Q* Ljung-Box statistic is calculated for a large 𝑚 in 173 
each model, as suggested by Peña (2010). 174 
 175 
 176 
 177 
 178 
 179 
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Forecasting step 180 

To assess the forecasting performance of different models each data set is divided into two samples for training 181 
and testing. This procedure is known as an out-of-sample technique, which means that the training data used in 182 
model fitting are different to the test sample (out-of-sample) used to evaluate the established model. 183 
 184 
Several measurement statistics can be used to examine the forecast accuracy of different models. Root Mean 185 
Square Error (RMSE) and Mean Absolute Percentage Error (MAPE) are the most frequently used criteria to 186 
evaluate the performance of the forecasting models. One of the disadvantages of the MAPE criteria is the 187 
adverse effect of small actual values, in which case MAPE criteria will contribute large terms to the MAPE 188 
coefficient, even if the difference between the actual and forecast values is small. It is therefore better to use an 189 
adapted MAPE (AMAPE), as defined in various studies (Tsay, 2005; Wu &Shahidehpour, 2010): 190 

𝑅𝑀𝑆𝐸 = √
∑ (𝑧̂𝑡 − 𝑧𝑡)2𝑛

𝑡=1

𝑛
(𝑒𝑞. 7) 191 

𝐴𝑀𝐴𝑃𝐸 =
1

𝑛
∑ (

|𝑧̂𝑡 − 𝑧𝑡|
1

𝑛
∑ 𝑧𝑡

𝑛
𝑡=1

)

𝑛

𝑡=1

∗ 100%  (𝑒𝑞. 8) 192 

 193 
where 𝑡 represents the time and 𝑛 is the sample size for forecasts; 𝑧̂𝑡 is the forecast at 𝑡 from any mentioned 194 

model and 𝑧𝑡 is the actual value at 𝑡. The RMSE statistic depends on the scale of the variables and measures 195 

the absolute errors. The AMPAE statistic measures the relative errors. The smaller the RMSE and AMAPE the 196 
better the accuracy of the model.  197 
 198 
However, the model could give good results in the accuracy measurements for three-months-ahead, but poor 199 
results for one-year-ahead, for instance, which means the impact of the model uncertainty on forecasts needs 200 
to be measured (Chatfield, 2000). In this study, a measure was used based on the variance of forecast errors 201 
(difference between the actual and forecast value) to quantify this uncertainty. The smaller the variance the less 202 
uncertain the model or the more accurate the forecast results. The variance of error for sample size nfor forecasts 203 
is defined as: 204 
 205 
 206 

𝜎𝜀
2 =

1

𝑛
∑ ([

|𝑧̂𝑡 − 𝑧𝑡|
1

𝑛
∑ 𝑧𝑡

𝑛
𝑡=1

] −
1

𝑛
∑ (

|𝑧̂𝑡 − 𝑧𝑡|
1

𝑛
∑ 𝑧𝑡

𝑛
𝑡=1

)

𝑛

𝑡=1

)

𝑛

𝑡=1

2

(𝑒𝑞. 9) 207 

 208 

3. Results and discussion 209 



6 
 

Figure 1 shows the evolution of the actual 7Be air concentrations and its measurement uncertainty during the 210 
entire study period from 2007 to 2015. A seasonal pattern with a sinusoidal trend can be clearly seen.  211 

Fig 1. Temporal evolution of 7Be air concentration over the period 2007-2015. 212 

The steps involved in developing a SARIMA model are applied to different data ranges of historical data in 213 
order to identify and validate the number of periods which best fit actual 7Be data. 214 
 215 
First of all, results in Table 1 show the identification of a SARIMA model for each data range proposed, which 216 
were between two and eight years of historical data, considering 2007 as the initial year.  217 

In the identification and estimation step, the periodogram analysis was applied to all the time series considered 218 

All these results identified a relevant peak of a period of 12 months (annual periodicity) (𝑠 = 12). For instance, 219 
Figure 2 shows the periodogram plot for the 7Be time series over period 2007-2014.In this periodogram, one 220 

relevant peak is observed, corresponding to a cyclical period of 12 months (1/0.083333)., which indicates an 221 
annual periodicity. 222 

 223 

 224 

 225 

 226 

 227 

 228 

 229 

 230 

Fig 2. Periodogram of the 7Be time series over the period 2007-2014 231 

After differencing the time seriesand trying several combinations for parameters 𝑝, 𝑞, 𝑃 and 𝑄, based on the 232 
shape of the ACF and PACF, the best and mostparsimonious model was selected, considering the minimum 233 
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AMAPE and RMSE for the forecasting data as accuracy measures of the predictive power. Tables 1 reports the 234 

results of the parameters𝑝, 𝑑, 𝑞, 𝑃, 𝐷 and 𝑄 identifiedfor each selected model over the time period specified. 235 

In the validation step, the t-ratio test, the Kolmogorov-Smirnov test and the Q* Ljung-Box test introduced in 236 
Section 2.3 were applied to validate the adequacy of the identified models for each time period. Tables 1show 237 
that, since they pass the above tests (p-values for t-ratio test are less than 0.05 and p-values for K-S and Q* 238 
tests are greater than 0.05) all the models selected to explain 7Be air concentrations in a specific time period 239 
could be used to make forecasts. 240 
 241 
The training data used for model fitting in the forecasting step was the data from the time period specified in 242 
Table 1, and the test sample used to evaluate the established model was the data of the year following the time 243 
period analyzed.  244 

Figures 4-5show the RMSE, AMAPE for the different models proposed. Note that RMSE and AMAPE values 245 
were calculated considering the sample sizes for out-of-sample forecasts of 1,3,6,9, and 12 months. As can be 246 
observed, in general, the RMSE value for 1 month is very different to that of more than 1 month, suggesting 247 
that predictions for one month period are uncertain. The selection model criteria are thus based on forecasts of 248 
at least three months.  249 

The models estimated with only a few years of historical data have higher values for the accuracy measurements 250 
in the forecasting sample sizes proposed (Figures 4-5), which means these models have a high degree of 251 
uncertainty and  are therefore not useful for predicting 7Be concentrations. As an exception, the model proposed 252 
with a time window of three years (2007-2009) provides good results in the RMSE and AMAPE coefficients 253 
for a forecasting sample of more than three months. However, the accuracy measurements for three-months-254 
ahead are somewhat higher, indicating that the forecasting errors are not constant and the model is uncertain 255 
for short-term forecasting.  256 

Figures 4-5show that the SARIMA(0,1,1)𝑥(1,1,3)12model provides good results for the RMSE and AMAPE 257 

accuracy measurements in a time window of seven (2007-2013) or eight (2007-2014) years. However, a time 258 
series with an 8-year time window appears to be better, because the measurement based on the variance of the 259 

forecast errors defined in eq. 9, is lower, 𝜎𝜀
2 =0.0067 (Table 1), indicating that the model is less uncertain and 260 

the errors are more constant and stable across a one-year-ahead forecast. This result shows it is important to 261 
control the quality of the forecasting data. Note that the errors are minimal with a forecast window of six 262 
months.  263 

In order to confirm these results and identify the time window that best fits 7Be air concentrations, the analysis 264 
was repeated remaining the out-of sample fixed to the year 2015. Results are showed in Table 2.  265 

The steps applied to identify and validate the best model in each period of time proposed in Table 2 are the 266 
same as the steps followed and explained above for Table 1.  267 

Again, the RMSE, AMAPE and the low value in 𝜎𝜀
2 (Figure 4-5 and Table 2 respectively) suggest that the 268 

model with 8 years of historical data (2007-2014) is the most suitable for monitoring and forecasting 7Be data. 269 

 270 

 271 

 272 

 273 

 274 

 275 

 276 
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 280 

 281 

 282 

 283 

 284 

 285 

 286 

 287 

 288 

 289 

 290 

 291 

 292 

Table 1. SARIMA models proposed for different time window data. 293 
 294 

  295 

Model Identification and 

Estimation 
Model Validation 

Model 

Forecasting 

Period Parameters  t-ratio statistic K-S statistic Q* statistic 𝝈𝜺
𝟐

 

   (p-value) (p-value) (p-value) m=nº of lags  

2007-2008 (0,1,0)(1,0,1)12 𝛷1 6.74 (0.000001) 0.11073 17.541 0.0493 

 𝛩1 9.45 (<0.000001) (0.6571) (0.0632)  

    m=12  

2007-2009 (0,1,1)(1,1,2)12 𝜃1 3.20 (0.004637) 0.092656 10.468 0.0143 

 𝛷1 -4.03 (0.000701) (0.8756) (0.2337)  

 𝛩1 -2.28 (0.033760)  m=12  

 𝛩2 4.94 (0.000090)    

2007-2010 (0,1,1)(0,1,2)12 𝜃1 3.50 (0.001381) 0.06604 29.061 0.0236 

 𝛩1 13.16 (<0.000001) (0.9623) (0.1125)  

 𝛩2 -7.06 (<0.000001)  m=24  

2007-2011 (0,1,1)(2,1,2)12 𝜃1 7.18 (<0.000001) 0.12184 18.998 0.0224 

  𝛷1 -4.84 (0.000017) (0.078) (0.9549)  

  𝛷2 -18.06 (<0.000001)  m=36  

  𝛩1 7.13 (<0.000001)    

  𝛩2 -3.55 (0.000951)    

2007-2012 (0,1,1)(2,1,2)12 𝜃1 8.71 (<0.000001) 0.08602 39.543 0.0599 

  𝛷1 -5.14 (0.000004) (0.3415) (0.622)  

  𝛷2 -14.91 (<0.000001)  m=48  

  𝛩1 10.30 (<0.000001)    

  𝛩2 -5.08 (0.000005)    

2007-2013 (0,1,1)(1,1,3)12 𝜃1 7.08 (<0.000001) 0.074491 48.092 0.0172 

  𝛷1 -6.84 (<0.000001) (0.426) (0.2742)  

  𝛩1 6.59 (<0.000001)  m=48  

  𝛩2 14.74 (<0.000001)    

  𝛩3 -12.12 (<0.000001)    

2007-2014 (0,1,1)(1,1,3)12 𝜃1 8.04 (<0.000001) 0.079983 47.809 0.0067 

  𝛷1 -9.49 (<0.000001) (0.2119) (0.2837)  

  𝛩1 8.08 (<0.000001)  m=48  

  𝛩2 19.50 (<0.000001)    

  𝛩3 -13.70 (<0.000001)    
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Table 2. SARIMA models proposed for different time window data with common out-of-sample. 315 
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 332 

Fig 4. RMSE (eq. 7) for models evaluated in table 1 and 2. 333 
 334 

Model Identification and 

Estimation 
Model Validation 

Model 

Forecasting 

Period Parameters  t-ratio statistic K-S statistic Q* statistic 𝝈𝜺
𝟐

 

   (p-value) (p-value) (p-value) m=nº of lags  

2013-2014 (1,1,0)(1,0,0)12 𝜙1 4.02 (0.000609) 0.17806 9.2619 0.1290 

 𝛷1 -30.87 (<0.000001) (0.05674) (0.5074)  

    m=12  

2012-2014 (0,1,1)(0,1,2)12 𝜃1 6.13 (0.000005) 0.088324 10.972 0.0219 

  𝛩1 8.90 (<0.000001) (0.913) (0.277)  

  𝛩2 -4.61 (0.000169)  m=12  

2011-2014 (0,1,1)(0,1,3)12 𝜃1 7.80 (<0.000001) 0.10949 27.277 0.0363 

  𝛩1 15.48 (<0.000001) (0.3577) (0.1276)  

  𝛩2 -8.49 (<0.000001)  m=24  

  𝛩3 5.07 (0.000018)    

2010-2014 (0,1,1)(2,1,2)12 𝜃1 5.36 (0.000003) 0.093043 28.889 0.0359 

  𝛷1 -9.53 (<0.000001) (0.3909) (0.575)  

  𝛷2 -14.02 (<0.000001)  m=36  

  𝛩1 7.35 (<0.000001)    

  𝛩2 -4.22 (0.000124)    

2009-2014 (0,1,1)(2,1,2)12 𝜃1 11.09 (<0.000001) 0.068811 45.291 0.0167 

  𝛷1 -2.54 ( 0.013958) (0.696) (0.3766)  

  𝛷2 -7.54 (<0.000001)  m=48  

  𝛩1 13.04 (<0.000001)    

  𝛩2 -6.67 (<0.000001)    

2008-2014 (0,1,1)(3,1,2)12 𝜃1 9.79 (<0.000001) 0.069582 34.671 0.0146 

  𝛷1 -4.29 (0.000059) (0.5373) (0.7816)  

  𝛷2 -9.99 (<0.000001)  m=48  

  𝛷3 -5.42 (0.000001)    

  𝛩1 13.77 (<0.000001)    

  𝛩2 -6.92 (<0.000001)    

2007-2014 (0,1,1)(1,1,3)12 𝜃1 8.04 (<0.000001) 0.079983 47.809 0.0067 

  𝛷1 -9.49 (<0.000001) (0.2119) (0.2837)  

  𝛩1 8.08 (<0.000001)  m=48  

  𝛩2 19.50 (<0.000001)    

  𝛩3 -13.70 (<0.000001)    
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 351 

Fig 5. AMAPE (Eq. 8) for models evaluated in Tables 1 and 2. 352 
 353 

The estimated and validated SARIMA(0,1,1)𝑥(1,1,3)12 model proposedfor a time window of eight years 354 
(2007-2014) is:  355 

𝛷1(𝐵12)(1 − 𝐵)1(1 − 𝐵12)1𝑧𝑡 = 𝜃1(𝐵)𝛩3(𝐵12)𝑎𝑡                                (𝑒𝑞. 10) 356 
 357 
The coefficients are estimated by a maximum likelihood function, obtaining the following values: 358 

𝜃1 = 0.665 359 

𝛷1 = −0.814 360 

𝛩1 = 0.555 361 
𝛩2 = 0.932 362 

𝛩3 = −0.687 363 
 364 
Considering Equations 2 to 5 and the estimated parameters above, Equation 10 can be expressed as follows: 365 

(1 + 0.814𝐵12)(1 − 𝐵)(1 − 𝐵12)𝑧𝑡 = (1 − 0.665𝐵)(1 − 0.555𝐵12 − 0.932𝐵24 + 0.687𝐵36)𝑎𝑡   (𝑒𝑞. 11) 366 

where 𝑎𝑡 ≈ 𝑊𝑁(0, 6.6E − 07) and 𝐵 is the lag operator.  367 

According to Bas et al. (2016), 7Be concentration variability can be decomposed into terms of three main 368 
components: 1) trend-cycle, 2) seasonal and 3) irregular variations. Solar activity is a cosmogenic factor with 369 
a high influence on the trend-cycle component of 7Be variability. Solar radiation, temperature and relative 370 
humidity are influential factors in seasonal 7Be variations and, finally, precipitations and wind speed influence 371 
the irregular part of the 7Be time series decomposition.  372 

Considering the results obtained in Bas et al. (2016) and the model proposed in this paper (Eq. 11), the following 373 
relation between the SARIMA parameters and the atmospheric factors could be interpreted.  374 

In the model proposed, the parameter 𝑝 is zero; this result means that no significant influence of the 7Be for the 375 
previous months of the same year was observed on the 7Be for the forecasting month, which means that the 376 
time series has no inertia. 377 

The coefficient (1 + 0.814𝐵12) is associated with the parameter P=1, which determines the influence of the 378 
months of previous years on the forecasting month; for instance, the forecasting value for 7Be activity in January 379 
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2015 is influenced by the 7Be activity observed in January 2014. The dependence observed between the 380 
seasonal observations could be influenced by solar radiation, temperature and relative humidity, which are 381 
regular atmospheric variables that affect seasonal 7Be variations (Bas et al., 2016). 382 

The coefficient (1 − 𝐵) is associated with the parameter d=1, which recognize the presence of a trend in the 383 
time series. This trend could be affected by solar activity considering the results of Bas et al. (2016). The model 384 
proposed is able to detect a trend influenced by a part of the solar cycle, but is unable to model the cycle 385 
component due to solar activity because the evaluated period is too short. 386 

The parameter D=1 recognize the presence of an annual seasonality and is associated with the coefficient 387 
(1 − 𝐵12) in the model. This coefficient eliminates the visual part of the seasonality in order to capture the real 388 
dependencies between the months in different years.  389 

The coefficient (1 − 0.665𝐵) is associated with the parameter q=1. This coefficient identifies the influence of 390 
external factors, which affected the previous month, on the forecasting month. According to the results of Bas 391 
et al. (2006), these external factors could be precipitation and wind speed, among others, due to their irregular 392 
and random behavior. This result means that the 7Be activity obtained in the forecasting months through the 393 
model is affected by the irregular factors that happened in the previous month.  394 

Finally, the coefficient (1 − 0.555𝐵12 − 0.932𝐵24 + 0.687𝐵36) is associated with the parameter Q=3 and 395 
also captures the influence of random factors such as precipitation and wind speed, which affected months of 396 
the previous three years, on the forecasting month. In general, this parameter captures the long-term influence 397 
of external factors on the forecasting month.  398 

Figure 6 shows the comparison between measured and forecast values using a SARIMA(0,1,1)𝑥(1,1,3)12 in a 399 
training sample 2007-2014.  400 

 401 
 402 
 403 
 404 
 405 
 406 
 407 
 408 
 409 
 410 
 411 
 412 
 413 
 414 
 415 
 416 
 417 
 418 
 419 
 420 
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 440 

Fig 6. Comparison between measured and forecast (SARIMA) power 441 
 442 

4. Conclusions 443 
 444 
A Seasonal Autoregressive Integrated Moving Average (SARIMA) model was proposed in different year 445 
ranges to forecast 7Be air concentrations in Valencia, in particular a SARIMA(𝑝, 𝑑, 𝑞)(𝑃, 𝐷, 𝑄)𝑠. The 446 

forecasting results for the different models were compared and analyzed for the subsequent 12 months by out-447 
of-sample tests.  448 

The results show that the best time series models are based on a time window of at least eight years of data 449 
when forecasting 7Be concentrations. Considering the forecasting power measured by the RMSE and AMAPE 450 
accuracy coefficients and the impact of the model uncertainty measured by the variance of the errors, a 451 
SARIMA(0,1,1)𝑥(1,1,3)12 model was proposed to best fit 7Be concentration data for a time window of eight 452 
years (2007-2014). The prediction results for the out-of-sample year are appropriate and the errors observed 453 

are constant, with a minimum uncertainty of 𝜎𝜀
2 =0.0067. The results show also that the optimal forecasting 454 

time range is six months, since the errors are higher for longer prediction periods. 455 

The time series models proposed in this paper have the advantage of not requiring any forecast meteorological 456 
parameters to develop the model, as is required for a Multiple Linear Regression (MLR) model. In this case, 457 
7Be forecasting can thus be adopted as a target value in analyzing deviations that could imply important 458 
atmospheric changes. The forecasting values obtained with SARIMA models do not explicitly capture an 459 
anomaly in specific atmospheric variables, which is the advantage of the MLR model. However, the SARIMA 460 
model can detect that a deviation occurred and was produced by an atmospheric factor. The SARIMA models 461 
combined with the influence of exogenous factors could cope with this problem and would be an interesting 462 
subject for future research. Despite this limitation, the model proposed in this study, in addition to the results 463 
of Bas et al. (2016), point to an interesting relationship between the model and the atmospheric parameters.  464 

The availability of further data measurements will make it possible to adjust a time series with a wider time 465 
window period to submit the minimum period of years that best fit 7Be air concentrations to a further analysis. 466 
For instance, the availability of more complete solar cycles could provide enough information to explicitly 467 
model the trend-cycle component. With regard to the application, one could envisage that it will be possible to 468 
develop the proposed forecasting models not only for 7Be air concentrations, but also for monitoring and 469 
forecasting a range of different radionuclides.  470 
 471 
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