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Abstract

Home environments are changing as more technological devices are
used to improve daily life. The growing demand for high technology in
our homes means that robot integration will soon arrive. Home devices
are evolving in a connected paradigm in which data flows to perform
efficient home task management. Heterogeneous home robots con-
nected in a network can establish a workflow that complements their
capabilities and so increases performance within a mission execution.
This work addresses the definition and requirements of a robot-group
mission in the home context. The proposed solution relies on a net-
work of smart resources, which are defined as cyber-physical systems
that provide high-level service execution. Firstly, control middleware
architecture is introduced as the execution base for the Smart resources.
Next, the Smart resource topology and its integration within a robotic
platform are addressed. Services supplied by Smart resources manage
their execution through a robot behavior architecture. Robot behavior
execution is hierarchically organized through a mission definition that
can be established as an individual or collective approach. Environ-
ment model and interaction tasks characterize the operation capabil-
ities of each robot within a mission. Mission goal achievement in a
heterogeneous group is enhanced through the complement of the in-
teraction capabilities of each robot. To offer a clearer explanation, a
full use case is presented in which two robots cooperate to execute a
mission and the previously detailed steps are evaluated. Finally, some
of the obtained results are discussed as conclusions and future works
is introduced.





Resumen

Los entornos domésticos se encuentran sometidos a un proceso de
cambio gracias al empleo de dispositivos tecnológicos que mejoran
la calidad de vida de las personas. La creciente demanda de alta tecno-
logı́a en los hogares señala una próxima incorporación de la robótica
de servicio. Los dispositivos domésticos están evolucionando hacia un
paradigma de conexión en el cual la información fluye para ofrecer
una gestión más eficiente. En este entorno, robots heterogéneos co-
nectados a la red pueden establecer un flujo de trabajo que ofreciendo
nuevas soluciones y incrementando la eficiencia en la ejecución de ta-
reas. Este trabajo aborda la definición y los requisitos necesarios para
la ejecución de misiones en grupos de robots heterogéneos en entornos
domésticos. La solución propuesta se apoya en una red de Smart re-
sources, que son definidos como sistemas ciber-fı́sicos que proporcio-
nan servicios de alto nivel. En primer lugar, se presenta la arquitectura
del middleware de control en la cual se basa la ejecución de los Smart
resources. A continuación se detalla la topologı́a de los Smart resour-
ces, ası́ como su integración en plataformas robóticas. Los servicios
proporcionados por los Smart resources gestionan su ejecución me-
diante una arquitectura de comportamientos para robots. La ejecución
de estos comportamientos se organiza de forma jerárquica mediante
la definición de una misión con un objetivo establecido de forma in-
dividual o colectiva a un grupo de robots. Dentro de una misión, las
tareas de modelado e interacción con el entorno define las capacidades
de operación de los robots dentro de una misión. Mediante la integra-
ción de un grupo heterogéneo de robots sus diversas capacidades son
complementadas para el logro un objetivo común. A fin de caracteri-
zar esta propuesta, los mecanismos presentados en este documento se



evaluarán en detalle a lo largo de una serie experimentos en los cua-
les un grupo de robots heterogéneos ejecutan una misión colaborativa
para alcanzar un objetivo común. Finalmente, los resultados serán dis-
cutidos a modo de conclusiones dando lugar el establecimiento de un
trabajo futuro.



Resum

Els entorns domèstics es troben sotmesos a un procés de canvi gràcies
a lócupació de dispositius tecnològics que milloren la qualitat de vi-
da de les persones. La creixent demanda dálta tecnologia a les llars
assenyala una propera incorporació de la robòtica de servei. Els dis-
positius domèstics estan evolucionant cap a un paradigma de conne-
xió en el qual la informació flueix per oferir una gestió més eficient.
En aquest entorn, robots heterogenis connectats a la xarxa poden es-
tablir un flux de treball que ofereix noves solucions i incrementant
léficiència en léxecució de tasques. Aquest treball aborda la defini-
ció i els requisits necessaris per a léxecució de missions en grups de
robots heterogenis en entorns domèstics. La solució proposada es re-
colza en una xarxa de Smart resources, que són definits com a siste-
mes ciber-fı́sics que proporcionen serveis dált nivell. En primer lloc,
es presenta lárquitectura del middleware de control en la qual es ba-
sa léxecució dels Smart resources. A continuació es detalla la tipo-
logia dels Smart resources, aixı́ com la seva integració en platafor-
mes robòtiques. Els serveis proporcionats pels Smart resources ges-
tionen la seva execució mitjançant una arquitectura de comportaments
per a robots. Léxecució dáquests comportaments sórganitza de forma
jeràrquica mitjançant la definició dúna missió amb un objectiu esta-
blert de forma individual o col·lectiva a un grup de robots. Dins dúna
missió, les tasques de modelatge i interacció amb léntorn defineix les
capacitats dóperació dels robots dins dúna missió. Mitjançant la in-
tegració dún grup heterogeni de robots seves diverses capacitats són
complementades per a lássoliment un objectiu comú. Per tal de ca-
racteritzar aquesta proposta, els mecanismes presentats en aquest do-
cument sávaluaran en detall mitjançant dúna sèrie experiments en els



quals un grup de robots heterogenis executen una missió col·laborativa
per aconseguir un objectiu comú. Finalment, els resultats seran dis-
cutits a manera de conclusions donant lloc a léstabliment dún treball
futur.



摘摘摘要要要

隨著日益漸新的科技產品變得越來越普及，人們的生活品質與居

家環境受到了許多改善，家家戶戶對高科技產品需求與日俱增，

更顯現了機器設備與生活結合的時代即將到來。家庭設備逐漸發

展成一種數據能夠流動於其連結的模式，使其能更有效率地完成

作業。與網路連結的異構家庭機器人能建立一個補充其性能的工

作流程，使其提高執行任務的效能。本論文提出在家庭環境中使

用機器人團隊執行任務的定義與條件。本文所提出的解決方式仰

賴於被定義為能夠提供高級服務執行效能的網宇實體系統的智能

資源網路。首先，控制中介軟體架構做為智能資源的執行基準。

再來，智能資源的拓樸及它的整合都呈現於機器人平台。由智能

資源提供的服務將透過機器人行為架構管理這些執行動作。機器

人動作的執行，是分層次地透過一個可以被設定成個別或是集體

的任務定義所組成。一個任務的環境模式與動作的互動表現了每

個機器人的操作性能。一個異質組的任務目標成就需透過每個機

器人的互動能力補充而提升。一個較清楚的解釋是，一個完整的

使用案例為，兩個機器人合作執行一個任務，且先前詳細的步驟

皆受過評測，最後獲得的一些結果會於結論裡討論，並於未來的

論文中所介紹。
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ales que me han ayudado a crecer profesional y personalmente. En
primer lugar, quiero agradecer a Manuel Muñoz su ayuda, sus conse-
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compañeros de laboratorio y del Instituto de Automática e Informática
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CHAPTER

1
Introduction

Service robotics aims to improve people’s lifestyle by helping on the develop-
ment of daily tasks. Nevertheless, in order to make robots able to perform these
tasks, some big technological barriers must be crossed. Despite of the increas-
ing number of active researches that aims to face this challenges, daily-life robot
integration is still to come.

Therefore this work aims to provide new mechanisms and observations in order
to achieve this purpose. This chapter introduces the gaps which had motivated the
development of the contribution introduced along this dissertation. Therefore, an
initial hypothesis to fill the gaps is formulated. This hypothesis details the route
which leads this work and establishes the objectives to be achieved.

1



1. INTRODUCTION

1.1 Motivation
Nowadays the evolution of robotics research entail a constant enhancement of the

robots’ capabilities. Because of this, robotics is improving people’s work and daily

life in many aspects. Despite of its common application in industry, every time

more and more areas like the health, entertainment, or military industries are taking

advantage of the robotics potential.

Diversification of the application areas leads to the development of diversified

and heterogeneous robot platforms. Therefore, robots adapt its features, such as

sensors and actuators or computation capabilities, according to the characteristics

of the environment and the requested application tasks. Many of these applica-

tions may request a reliable object recognition and manipulation system in order

to perform environment interaction tasks. Some others may require performing

an accurate displacement along a certain environment by relying on a localization

algorithm. Furthermore, many robot configurations such as mobile, aerial or hu-

manoid can be managed in order to provide suitable solutions for each application.

In some of these applications a group of robots have to perform their tasks in a

shared environment. Furthermore, these robots can also share totally or partially a

common goal. In this case, a cooperation mechanism is required in order to achieve

a collaborative performance. According to this, the information sharing system and

the robot mission execution are critical.

Nevertheless, common solutions aim to establish a collaboration between ho-

mogeneous robot groups that manage the same types of information. This kind

of approach provides ad-hoc solutions in order to deal with the related informa-

tion. Because of reducing the scalability of the system and the integration of new

components, the potential applications are restricted.

As has been stated, there is a wide range of robot setups with their own ca-

pabilities. Robots in a heterogeneous group can cooperate in order to achieve a

common goal in the most efficient way. For this purpose, robots must use common

mechanisms in order to share their information in a group. This information can

characterize multiple features and can be provided with an heterogeneous reliabil-

ity. Therefore, adequate fusion mechanisms can join this information and maximize

the reliability. Furthermore, in order to take advantage of the singular capabilities

2



1.1 Motivation

of each robot, a proper task execution and coordination system between the partners
is required.

Heterogeneous robot groups are increasing their applicability while dealing
with service tasks carried out within indoor environments such as buildings and
houses. These environments are in constant improvement everyday by integrating
more technological devices in order to ease people’s daily life. Nowadays it is
usual to find home automation systems in which a network of devices interacts in
order to automate some simple domestic tasks such as managing the heating and
illumination, cooking, sweep and vacuum, etc. According to the growing demand
of high technology, the integration of robots into the home environment is about to
come. As a result, a group of heterogeneous robots connected among the network
can establish a workflow in order to complement their capabilities to increase the
performance of their tasks.

As detailed in further chapters, many current developments provide mecha-
nisms for robot task design and execution. Despite of this, there is no solution
capable of dealing with all the related aspects for robot operation, ranging from the
low-level execution to the high-level mission definition and planning. Furthermore,
the implementation of a full solution by gathering different developments requires
a previous integration work which usually leads to a ad-hoc implementation. Be-
cause of this, the motivation of this thesis is to provide a comprehensive solution
which fills all the requirements for complex robot operation such as service tasks.

3
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1.2 Hypothesis
According to the motivation stated above, the hypothesis is formulated as depicted
in Fig. 1.1.

Figure 1.1: Thesis Hypothesis.

In order to provide a comprehensive solution for robot execution is required to
deal with many different aspects from the lowest to the highest level. First of all,
an execution support middleware must be provided to manage the hardware and
low-level routines. This execution middleware needs to be extended to character-
ize its operation as a set of high-level information services which can be accessed
remotely to provide intelligent execution and context adaptation. Intelligent exe-
cution offers optimum resource management and supplies processed information
to develop high-level tasks. Therefore, remote services can be accessed and com-
bined to define robot behaviors. In order to generate complex operation, a mission
is established as an organized arrangement of robot behaviors that contributes to
the mission’s goal achievement. A group of robots with a common goal can es-
tablish a plan to perform their tasks in a collaborative way. Service robots must
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be able to recognize and interact with the environment in order to operate properly
and achieve the established goals. Therefore, robots require a formalized environ-
ment model, as well as environment feature classification and actuation capabil-
ities. Furthermore, collaboration between partners within a group of robots with
heterogeneous profiles enhances the environment interaction capabilities and pro-
motes mission goal achievement.
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1.3 Objectives
As stated in the motivation, the growing demand of high technology and home au-

tomation systems in domestic environments is promoting the future integration of

service robots for task automation. Furthermore, the establishment of an heteroge-

neous group of service robots with different capabilities allows to execute tasks in

a most efficient way by complementing their operation.

Robot tasks and mission execution involves many steps to form a full work-

ing solution. Each of these steps can be related with different techniques such

as kinematics, perception, interaction, etc. Therefore developing and deploying

robots mission is a complex task in which many factors have to be considered.

The main objective of this work is to present a comprehensive solution for mission

execution, and collaboration on heterogeneous robot groups, based on distributed

services execution. These services not only provide task delegation, but also high-

level abstraction, adaptive execution, and fault tolerance. Due to their applicability

on mission design and execution, the service definition and capabilities, and the

service management architecture, are set as the main contribution of this work.

Thanks to this solution, services can be easily integrated, promoting fast develop-

ment, deployment, and reusability.

According to this, the service integration along all the required steps, as well as

whole explanation from the most basic definitions to the most complex mechanism

must be detailed. Thus, this work proposes the following objectives:

• Review and analysis of the state of the art and key concepts for indoor ser-

vice robot mission execution, and present some related state of the art devel-

opments.

• Comprehensive analysis of the previous work of this contribution by present-

ing the execution support framework that provides the base for distributed

service development.

• Definition of the Smart Resources as the architecture proposal for distributed

service supply, and its characterization as a network abstractions that provide

intelligent and adaptive service execution.
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• Establishment of a robot behavior architecture based on Smart Resource Ser-
vices execution. Behavior execution must be organized in order to define a
robot mission, which can be framed within a plan for multi-robot groups.

• Development of environment formalization and interaction mechanism for
robot behavior execution, including interaction cooperation capabilities for
heterogeneous robot groups.

• Test of all the previous layers in a real mission execution case of study, and
analysis of the obtained results for characterizing the suitability of this con-
tribution.

Proposed developments for achieving these objectives are addressed along this
work. First, in Chapter 2 a detailed review of the main concepts and works related
with in-door robot mission execution and heterogeneous robot groups are intro-
duced. Next, in Chapter 3 the execution framework is detailed. This framework is
applied to provide the base for distributed service implementation. In Chapter 4 ,
Smart Resources are characterized as service providers, which supply an adaptive
and safe execution. These services are used for behavior execution as detailed in
the architecture presented in Chapter 5. The behaviors organization within a hi-
erarchical structure for mission definition, and the mission validation mechanisms
are also introduced. Chapter 6 details a formal environment definition and the en-
vironment interaction mechanisms based on Smart Resource services execution.
Furthermore, mechanisms for environment interaction enhancements on heteroge-
neous robot group are presented. All of these developments are evaluated in Chap-
ter 7 through a full use case in which two different robots will cooperate to execute
a mission. Finally, in Chapter 8, the obtained results are discussed as conclusions
leading to the establishment of the future work is introduced.
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CHAPTER

2
State of the Art

Nowadays it can be found a great number of researches that aims to inte-
grate service robots into our daily life. Some common research trends can be
reviewed in [175]. These solutions range from home service robots to medical
surgery manipulators, haptic controllers or educational and social robots. Focus-
ing on service robot developments, they are meant to be applied in many different
contexts: home tasks [61] [28], health caring [142], surveillance [112] or entertain-
ment [92] as more representative ones. Then, service robot operation should be
flexible enough to easily design and reassign its goal. Robot operation versatility
have been reflected in some works like [86] or [27]. Furthermore, some events like
the RoboCup@Home [177] competition, has been established in order to promote
service robotic developments by facing the challenges of integrating autonomous
within daily life environments.

As stated in the introduction, multiple elements must be disposed for achiev-
ing service robot operation. These elements range from the low-level execution
framework to the high-level mission and collaboration design. As introduced in the
hypothesis Fig. 1.1 many techniques are included, such as low-level task execution,
service distribution, robot behavior and mission architecture, and environment in-
teraction. Therefore, the state of the art of these elements is reviewed along this
chapter by introducing the most common mechanisms and its capabilities.
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2.1 Execution Support Arquitectures
First of all, every robot platform requires of an execution support architecture to

manage the low level execution and the hardware access. There are many middle-

ware solutions focused on how to provide a reliable and versatile architecture.

Among them, ROS [136] is one of the most used robot frameworks. ROS offers

task organization by establishing process nodes that can be combined. Therefore,

low-level execution is delegated to dedicated nodes allowing to develop more com-

plex tasks. Despite of its popularity, ROS also offers some withdrawals. The need

of dealing with ROS compatible devices, which developers provide the low-level

management nodes, and the lack of a real-time execution core are some of the most

important limitations.

The OROCOS [23] framework is another common solution. Its main features

are compiled in two libraries: one for kinematics and dynamics, and other for

Bayesian filtering methods. Furthermore, it provides a toolchain for software con-

trol definition. OROCOS is distinguished for offering hard real-time control, data

exchange tools, and event-driven services. However, this solution is more focused

on the control definition, lacking of an integration layer for high-level operation.

Because of this, the OROCOS framework is usually extended by the addition of

other frameworks like ROCK [16].

The YARP [55] middleware provides a collection of libraries for decoupled

robot design. YARP aims to establish a peer-to-peer topology where isolated de-

vices manage the low-level execution. Nevertheless, this solution excludes the con-

trol design, which has to rely on an underlying operating system.

Some other frameworks provide solutions for more specialized robot capabili-

ties. The CARMEN framework [114] is a clear example, which focus on solving

robot navigation task. Despite of this, it disregards the low-level control, and the

real-time management.

The scope of these works are summarized in Fig. 2.1 . As conclusion, there

is no framework, which provides a full solution for low-level execution. Real-time

execution, control design, filtering tools, task isolation, fault tolerance, and com-

munication systems are some of the most important requirements that a full frame-

work solution must address to provide a high-level task model. Therefore, this
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Figure 2.1: Execution support arquitectures

work introduces a Control Kernel Middleware (CKM) as a compressive solution
for low-level control tasks execution. The current CKM implementation is derived
from the model introduced in [3] and establishes the start point of the proposal here
addressed.
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2.2 Service Providers and Intelligent Devices
Robot platforms are usually implemented as a distributed network of embedded

devices. These devices make use of an execution middleware framework, like the

previously introduced ones, in order to execute low-level tasks. Networked embed-

ded devices can provide control-related services, and share relevant information to

perform their tasks. Therefore, distributed systems are a good solution to decen-

tralize the robot control among a set of specific-purpose devices.

Distributed Systems usually implements communication middleware, which

extends the execution framework in order to provide device connection and data

exchange mechanisms. It can be found many communication solutions such as Java

Message Service (JMS) [68], Internet Communication Engine (ICE) [69], Common

Object Request Broker Architecture (CORBA) [123], or Distributed Data System

(DDS) [124]. Some of them, like JMS, provide a message–centric architecture,

while some others, such as DDS, provide a data-centric approach. In spite of this,

all of them aim to provide reliable and flexible mechanisms for asynchronous data

exchange. JMS enables distributed communication by adding a common API for

the development of message-based applications in Java. DDS provide a publish-

subscriber platform independent solution. ICE and CORBA frameworks, both of

them, make use of an Object Request Broker (ORB) that defines the interface for

exchanged objects. Common ORB solutions are based on The ACE ORB (TAO)

[150] which, relies on the Adaptive Communication Environment (ACE) frame-

work [149].

In order to bring the system a fault-tolerance and/or adaptation mechanisms it is

need to offer the proper mechanisms to measure the performance. For that reason,

some communication frameworks, as the introduced TAO, or DDS between many

other, include Quality of Service (QoS) mechanisms [13]. As introduced in [78],

the design of real-time QoS-aware mechanisms allows to accurately evaluate the

service performance. In [133] is introduced a survey to provide QoS support on

middleware-based distributed messaging systems. Furthermore, an intelligent op-

timization algorithms for QoS management, just as the one presented in [181], pro-

motes service performance enhancements. Beyond the QoS policies, many other

quality measures can be evaluated in order to characterize the device performance.

12
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The Quality of Context (QoC) is defined in [24], and is oriented to characterize the

state of the end-point device [106].

Devices that implement quality-aware mechanisms are able to perform an in-

telligent adaption [105]. Adaptation routines are usually developed in order to

enhance the system performance, and solve execution issues and errors [26] [122].

When dealing with QoC evaluation, adaptation routines can determine the most

suitable service according to the current context, just as is introduced in in [186].

Adaptation is a well-known topic in Control Systems [11], because of this, the in-

tegration of quality adaptation routines can enhance the control performance [167].

Furthermore, by combining quality evaluation mechanisms with machine in-

telligence tools, device performance and potential failures can be predicted [48].

These techniques allow adapting the execution before the performance quality de-

creases. In order to make the adaptation process evolve continuously, learning algo-

rithms can be also applied [171]. Support vector machines (SVM) [37] have been

implemented in several works for quality improvement through adaptive fault di-

agnosis mechanisms [130][182][184]. These mechanisms allow to select the more

proper system classification in order to characterize its execution. One clear exam-

ple is presented in [74], where SVM are used for implementing a non-linear fuzzy

control which enhances the control quality.

Figure 2.2: Service providers and intelligent execution
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As summarizes Fig. 2.2, service providers within a distributed network decen-
tralize task execution and exchange control-related information in order to abstract
from the low-level implementation. The implementation of intelligent mechanisms
to evaluate the performance quality measures, such as QoS and QoC, promote the
development of service adaptation routines to adapt the system execution and en-
hance the global performance. Along this work is proposed an architecture to es-
tablish a QoS and QoC aware mechanisms to adapt the execution of the CKM tasks
according to a set quality requirements. Addressed solution allows the system to
request a high-level operation within the fixed quality bounds, and guarantees an
optimum management of the available resources for low-level execution.
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2.3 Robot Mission and Behaviors
Since the low-level execution is provided by the framework implementation, high-

level tasks must be organized within a behavior architecture in order to provide

complex operation capabilities [67]. Robot task control architectures have been a

highly contested issue for years since the early behavior model definition and for-

malization proposals were introduced by R. Brooks in [22] and Arkin [8]. These

architectures have a strong influence on current researches. The work in [159] in-

troduces an architecture that analyzes the motivational drives of the robot in order

to quickly adapt to the environment changes. Some other approaches, like the one

presented in [135] provide an integrated behavior-based control, where information

about the robot action is contained in atomic structures characterized as behavior

modules. In [70] an affordance-based behaviors is introduced to adapt the task vari-

ables to the objective. In order to define the tasks related with each behavior, some

works like [139] offer high-level configuration mechanisms, while other works like

[73] provide a toolkit for a full behavior task definition. Solutions like ROSCo

[121] or SMACH [19], takes the benefits of the ROS framework in order to provide

a highly integrated behavior definition method.

Robot behaviors can be organized by establishing a robot mission [47]. Mis-

sion planning includes behavior management and transitions in order to achieve a

final goal. Proper design of a mission is a requirement for guaranteeing an efficient

operation. One example is introduced in [7], where is proposed a mission spec-

ification framework that introduces high-level plans for real or simulated robots.

Some alternative solutions propose the implementation of Linear Temporal Logic

(LTL)[134] based missions [138]. Furthermore, the establishment of certain rules

to be fulfilled, allows to achieve its objective in an efficient way [50].

The amount of applications that requires a certain level of cooperation between

robots for mission execution have promoted the development of plan coordination

architectures [9] [128]. Common coordination systems make use of behaviors fu-

sion and an arbitration process in order to accurately perform in each situation. A

clear example is introduced by Proetzsch in [135], where the iB2C architecture is

proposed. This work establishes the use of behavior modules as the basic execu-

tion units within the architecture, which contains information about the action, the
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rating, and the transfer functions of the behavior. The contribution of the iB2C

architecture aims to implement two main different coordination groups for arbitra-

tion and command fusion. Beyond this kind of approaches, some out of the box

coordination solutions can be found. In [103] a multi-robot cooperation inspired

in a biological system is introduced. By imitating a pack of wolves, robots are

differentiated among alpha and beta roles, and collaborate to achieve a common

goal, for the case, the simulation of an elk hunt. Therefore, the communication

mechanisms are also critical in order to establish a collaboration. How to develop

a communication system oriented to a collaborative mission resolution offering a

proper coordination is addressed in works like [33] or [169].

Mission definition, reassign, or even monitor, are some critical steps for goal

achieving. Because of this, some works has been focused on providing tools for

ease the robot mission specification, allowing to configure it without the need of

any technical knowledge. As an example, in [49] a web based interface to help

elders to define robot missions in an easy and intuitive way is introduced. In [157]

a graphical language for mission planning is designed, while in [101] a software

tool for robot mission design is developed.

In order to guarantee that robot missions will be executed in a proper way,

and the final goal will be achieved, a formal verification method is required [102]

[100] [99]. Some benchmarks, like the RoboBench introduced in [174], or the

RoboCup@Home benchmark introduced in [172], has been designed in order to

analyze the quality of the mission execution. By characterizing its performance,

the mission execution can be improved as stated in [152]. Furthermore, in [144] is

studied how a low robot performance can be considered faulty, and whenever that

fault can be compensated by collaboration.

In regard of this, robot behaviors are characterized as a suitable mechanism for

organizing the robot task operation, while mission architectures allow organizing

the behaviors for goal achievement. As is depicted in Fig. 2.3 the combination of

the introduced tools allows to design high-level robot solutions, which abstract the

definition process from the lower implementation details as device management

or tasks execution. In combination with graphical configuration tools, a final user

can request a robot or a group of robots to perform service tasks without being

aware of the related technological aspects. Therefore, this work aims to establish a
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Figure 2.3: Robot behavior and mission definition

behavior architecture based on the delegation of low-level tasks among a network of
intelligent devices. These devices offer an optimum performance according to the
behavior requirements. As a results, the behavior specification and its organization
within a robot mission design enhances the scalability of this proposal and enhances
the global system performance.
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2.4 Environment Formalization and Interaction
A service robot which aims to perform its missions autonomously requires some

knowledge about the environment and its surroundings [98]. Environment formal-

ization has been a subject of study since early autonomous robot developments

[43]. Proposed solutions have evolved from basic occupancy grid models [51] to

complex 3D representations [164], offering a better recognition and characteriza-

tion of the surrounding objects [168]. Some representation topologies, like [179]

or [82], provides a 3D environment model by using cuboids. In the first work, an

Octree [176] based solution is proposed. In the second one, a Rtree [65] topology

is established by defining a set of rectangular cuboids. Despite of the 3D formal-

ization improvements, this definition will always be more complex to manage than

a 2D approach. In those cases when a 2D environment representation does not pro-

vide enough information for robot operation, a 2.5D representation could fill the

needs. A 2.5D representation describes the projection of a 2D geometry along a

third dimension in order to simulate a 3D representation. The advantages of gen-

erating an enriched 2.5D map representation for indoor is introduced in [96]. A

solution that manages 2D, 2.5D, and 3D models in the same definition is detailed

in [88]. Furthermore, this work is improved in [89] by combining space maps

(c-space) [95] and dynamic Voronoi diagrams [58] for environment representation.

The object definition is a fundamental information within the environment de-

scription. Because of this, object formalization must be addressed in order to pro-

mote environment interaction tasks. In [178] a hierarchical system for managing

3D object models is presented. This approach aims to define different level of ob-

jects for each type of elements (background, static or interaction objects, etc). Each

level is assigned to a certain Octree resolution according to its requirements. Con-

sequently a highly adaptable solution is obtained. Other work like [104] also pro-

pose the definition of a Global Structure Histogram (GSH) to establish a general-

ized representation of 3D objects. Furthermore, some contributions have proposed

to simultaneously model and recognize 3D objects [108] [87] by managing Object

Databases. Beyond the geometrical definition, other characteristics must also be

analyzed. Among them, the semantic definition provides useful offers about the
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object meaning. As an example, in [185] an object semantic definition table is pro-

posed. How to deal with semantic knowledge to generate an object classification

is detailed in [64]. That way, a semantic-based definition offers a more human

alike approach. As a result, semantic definitions encourages human interaction,

and promotes its application on service tasks [127].

In order to allow robots to perform within the described environment, it is re-

quired make them aware of its own position. To achieve that goal, robot must

implement a localization system. Early location algorithms were purely based on

odometry readings. However, this approach provides a low accuracy due to the

effect of wheel slippage, or unpredictable joint slack. Moreover, the lack of feed-

back makes this error incorrigible. Thus, most sophisticated localization systems

make use of sensors feedback combined with the appropriate statistical procedures

in order to compute a more accurate localization. A compilation of most common

localization algorithms and their advantages can be reviewed in[170].

The Monte Carlo Localization (MCL) particle filter, as described in [56][166],

is one of the most popular solutions. The MCL method represents an approxi-

mation, based on a finite number of random samples (characterized as particles)

in the workspace. The evolution of this set of particles along time is conditioned

by the robot operation and it’s computed through three steps: particle resampling,

state update, and particle weighting. The successive iteration of this algorithm as-

sures the particle convergence to the robot position as demonstrated in[166]. In this

work, the number of used particles is characterized as inversely proportional to the

speed of convergence. The required feedback for particle update can be provided

by different kind of sensors. While most solutions, like [56] or [166], integrates

laser range and ultrasounds sensors, other ones provides alternative arrangements

of sensors as can be reviewed in [25]. Despite of the suitability of the MCL algo-

rithm there are still some challenges to achieve. Thus, how to detect a kidnapped

robot situation, and when to execute sensor-reset mechanisms, are some common

problems. In [90] a resampling method is proposed to determine when is required

to increase (or decrease) the influence of the resample step by analyzing a set of

parameters. In this solution, the influence of the resample step is adjusted by vary-

ing the number of particles to be updated on each filtering cycle. Other works like

[34] propose an augmented-MCL or adaptive-MCL filter in order to improve the
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sensory information by adding a multi-observation system. This solution allows

dealing with ambiguous landmarks by applying a multi-observation method that

spreads a new distribution of particles on those locations consistent with the cur-

rent multi-observation. As a result, a quicker convergence to the real position is

provided.

The Unscented Kalman Filter (UKF) [165] is another relevant localization solu-

tion. This technique implements a normal distribution, parameterized as a Gaussian

function, which offers low computational cost. UKF has demonstrated to provide a

better approximation than other KF implementations by using a deterministic sam-

pling technique to select a minimal set of samples from the observations [165].

Typically, the belief of the position is calculated by a 2-step update procedure. The

first step deals with ‘time update’, while the second performs the ‘measurement

update’. Some variations are based on a multi-modal implementation of the UKF

[15]. This alternative demonstrates better results by computing the robot position

as a weighted sum of multiple Gaussians approximations. Despite of its advan-

tages, the multi-modal increases the computational costs. Because of this, in [76],

is proposed a ‘Multi-hypotheses UKF’. This approach aims to avoid some of the

terms in the Gaussian sum to increase the filter efficiency. However, this method

may lead to a loss of accuracy. To compensate this, a resampling step similar to

that applied in the MCL has been added. In that step, the weighting updates are

adjusted to discard the outlier values.

A comparison between UKF and MCL can be found in [14], where both algo-

rithms are reviewed in detail. As a conclusion, the MCL method turns out to be

more complex and computationally heavier than UKF. However, the MCL is char-

acterized to perform more accurately, and to efficiently deal with the sensor-reset

issues. Moreover, some MCL implementations that involve a small number of par-

ticles can computationally perform in a similar way to the UKF. Despite of this,

it must be emphasized that an efficient localization system performance is always

achieved through a continuous and reliable sensor feedback.

Once the robot is able to define its environment, and locate its own position,

it is necessary to provide it some interaction capabilities. In order to perform this

interaction, environment objects must be recognized through sensor classification
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[29]. Furthermore, using different types of sensors allows obtaining a more accu-

rate classification [129]. In order to deal with this, sensor fusion techniques are

introduced as a critical element to enable robot environment interaction [8]. There-

fore, fusion techniques aim to manage robot multi-sensor configurations in order

to combine their measures [120] [97]. The sensor fusion step can be integrated at

different levels along the information classification chain, ranging from the low-

level raw sensor data [57][6], to high-level environment information [38] [146].

In every case, sensor fusion increases the accuracy of the measurements and, con-

sequently, the precision of the environment knowledge [183]. As a result, sensor

fusion optimize the object classification promoting the robot-environment interac-

tion [46]. The next step is to analyze the object affordances in order to perform

this interaction. This affordances are related with the semantic definition of each

object. The most common interaction required to carry out service task is the ma-

nipulation [160]. Learning the affordance models of environment objects for robot

manipulation is a hot topic within the service robot area [113]. Therefore, object

perception, affordance analysis and manipulation strategies are forming a critical

chain of tasks for service robot performance [80]. In [111] a clear example of the

practical application of these techniques is addressed.

Collaboration between robots is not only established in terms of coordination,

it can also improve the individual robot environment knowledge by sharing dif-

ferent observations among the group [131]. As can be reviewed in works like [1]

or [12] robot collaboration usually presents a decentralized architecture in which

robots exchanges mission-related information. Consequently, sharing information

allows optimizing the mission execution [158]. Therefore, it can be found several

approaches focused on collaborative sensing [12], detection and tracking [141] or

exploration [32]. Robot collaboration group are usually developed as identical or

similar platforms [44]. Because of this, the shared information is related with the

classification of same magnitude observations, and provides similar accuracy [53].

Some other developments are focused on offering a non-restrictive magnitude in-

formation sharing procedure that solves these limitations [75][1].

Regardless of its advantages or withdrawals, the application of collaborative

mechanisms always allows to enhance the mission execution, and provide new op-

eration possibilities [17]. Furthermore, cooperation for environment interaction is
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not only restricted between robots. In [31] are developed to deal with different on-

board sensors as distributed collaborative agents. In a similar way, service robots

tend to be integrated into a Smart Home environment, as introduced in [20]. Some

others propose an advanced interaction with the services robots by using networked

peripherals [62]. In [35] is proposed the CASA architecture for the development

and integration of smart home devices. Since service robots are meant to perform

in a coexisting space with humans, a human-robot collaboration has been addressed

in works like [151] or [71].

As a result, the robot collaboration allows achieving complex tasks in an effi-

cient way. The integration of heterogeneous robot groups brings new possibilities

according to the different capabilities of the robot partners. This collaboration can

be extended to humans or domotic systems increasing their possible applications.

According to all of this, the limitations for service robots are being supplied by

novelty solutions, which aims to bring the robotic integration to people’s daily life.

Figure 2.4: Environment formalization and interaction

Presented works provide a solution to formalize, navigate, and interact with

multiple elements among the environment. These mechanisms allow robots to

characterize their operation within a service mission. All the requirements for robot

operation can be met as summarized in Fig. 2.4. In order to provide a full solution

some of these solutions must be integrated. Despite of this, method integration
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is a time-consuming task and usually provides as a result an ad-hoc solution that
cannot be reused. Therefore, this work aims to provide a full solution for robot
operation, which relies on a common execution support that eases the integration
of all this layers. This proposal encourages its applicability between heterogeneous
robot platform and environments.
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2.5 Conclusions
According to the works reviewed in this chapter, service robots that aims to achieve
autonomous in-door operation must meet a wide set of requirements. Starting from
the low-level execution, robots requires of a solid execution base in order to per-
form more complex operation. Control based and robot specific architectures have
been introduce to abstract the system from device specific management to support
robot tasks execution. These robot tasks have to be properly organized and man-
aged to achieve any goal. Therefore, robot behaviors and missions have been in-
troduced as a suitable solution to define and achieve robot goals in an autonomous
way. When dealing with service robots, the behaviors involved in the mission exe-
cution are usually related with the environment interaction. Therefore, it is neces-
sary to gather all the different mechanisms that allow the robot to model, recognize,
and interact their surroundings.

The work described along this document aims to provide a comprehensive solu-
tion for filling all these requirements. Despite of this, not all the elements involved
in this proposal have been developed in the frame of this contribution. Therefore,
next chapter introduces a control-oriented middleware which provides real-time
support for control tasks execution, and has been used as the start point of this
work.
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3
Framework

Robots can be defined as cyber-physical systems which executes control-oriented

tasks with strong requirements [84]. A cyber-physical system is defined in [137],

as a systems which integrates the capabilities of computation and management of a

physical device. The characteristics of Cyber-physical systems are defined in terms

of: performance, reliability, scalability, fault-tolerance, and stand-alone execution

[91].

Furthermore, cyber-physical systems must execute real-time tasks on embedded

devices with limited resources. A control-kernel [4] defines the minimum require-

ments for execution reliable real-time control tasks. This kernel must guarantee a

safe execution of the performing tasks and ensure the progress of the whole control

system. Therefore this control-kernel must be aware of the limited resources of the

physical device in order to schedule the tasks execution.

Cyber-physical systems that implement a control-kernel execution core can be

characterized as Smart Devices. Among their capabilities, Smart Devices are able

to work with high-level information, and provide a communication interface for

information exchange [21]. In a robotic platform, Smart Devices are suitable for

decoupling high-level control tasks [93], especially those ones that requires the

management of low-level information, such as the sensor tasks.
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This chapter introduces a control kernel middleware (CKM) architecture and its
features. This architecture provides a solution to implement and execute real-time
control tasks on embedded systems. The task distribution and the configuration
capabilities of the CKM are also addressed. Next, the CKM is integrated as the
execution core of a Smart Device implementation. Smart Devices extend the func-
tionality of the CKM by allowing to manage high-level control information and
CKM configurations. Figure 3.1 depicts the layout of this chapter.

Figure 3.1: Chapter 3 layout.

Since the contribution of this thesis starts from a previous work, the details of
the CKM implementation, its general features, and main distribution capabilities
has been already addressed in works like [36] or [153]. Therefore, this chapter
aims to introduce the previous developments and characterize the proposed en-
hancements in order to establish a functional base for Smart Device development.
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3.1 Control Kernel Middleware
In order to develop a cyber-physical system for embedded real-time control task
execution, many challenges must be faced. The limited resources as computational
power, memory, or network-bandwidth, are some of the most common problems.
Therefore, the technology is evolving to improve the traditional morphology and
design criteria. Since the embedded systems capabilities are increasing over time,
it is promoting to move from ad-hoc nodes implementation to powerful embed-
ded computers. Furthermore, the networking technology trend is to move from
control-specific networks to general-purpose communication infrastructures such
as Ethernet or Wi-Fi networks. Even the increase of the computing power allows
to perform an embedded system partitioning in order provide different criticality
subsystems with additional benefits such as isolation and safety. As a result, the es-
tablishment of a Distributed Control System (DCS) based on networked real-time
embedded devices provides a suitable solution for most control scenarios.

Along this section an approach to the CKM (Control Kernel Middleware) and
its main features are introduced and a topology for distributed embedded control is
proposed. Moreover, a graphical middleware configuration interface is presented
in addition with the mechanisms for configuration management and settings.

3.1.1 Control Kernel Concept
The implementation of a robust kernel or middleware provides functionalities, ser-
vices and interfaces to manage the physical resources within the system. The speci-
fication of the Control Kernel (CK) concept, as is presented in [3], details a reliable
solution for real-time control task execution. In this definition, control system com-
ponents (sensors, controllers, operator terminals and actuators) are often spatially
deallocated offering a distributed perspective, in which all the components are in-
terconnected through a network.

CKM, as an implementation of the CK concept, provides an interface that is
composed by a set of control services [36][116]. These services are designed in
order to help the designer to configure the control application and define the basic
and prioritized control activities involved. The CKM implementation aims to guar-
antee fault tolerance and execution safety, and offer highly configurable and hybrid
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control solutions. Proposed design improves the reliability of control activities exe-

cution by implementing a task model and execution containers. This solution helps

to divide control operations into subtasks, which also can be isolated locally or

distributed in several nodes. By implementing the CKM, nodes can make use of

the functionalities and abstractions related to the software control components. It

also provides real-time services (strict or not), management of the control tasks, ac-

cess to its physical surrounding (sensors, actuators and plants), or communication

management in both local and distributed way.

Therefore, the CKM allows to adapt the control applications to the growing

complexity and functionality requirements of new applications. According to the

requirements of the application, and the characteristics of the implementing de-

vices, two main CKM versions can be differentiated: the Tinny Control Kernel

Middleware (TCKM) and the Full Control Kernel Middleware (FCKM). The TCKM

has been designed for devices with very limited resources, and provides the basic

control services. The FCKM extends those services by providing new ones, and is

oriented to service nodes. A list of all the services available in both, the TCKM

and the FCKM implementations, can be reviewed in Fig. 3.2.

Figure 3.2: Control Kernel Blocks
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3.1.1.1 Light nodes and Tiny Control Kernel Middleware

The TCKM is designed for working on less performance nodes and offers a cost-

effective solution with low power consumption. These nodes are usually physically

closer to the controlled process and are responsible of low-level operations as act-

ing/sensing task. Relevant information is exchanged with the service nodes, which

are responsible of the high-level tasks. Light nodes also provide safety mechanism

in order to alert about faulty operation by raising events and alarms. To manage

these situations, the TCKM implements event and alarm handlers. Furthermore,

the TCKM includes monitoring tasks for supervising the system state. TCKM

main services can be organized in the following categories:

• Sensor perception service: This service interacts with sensors in order to

provide data at the required sample period.

• Control service: Compute the control action according to the sensor feed-

back.

• Actuator service: Interacts with the plant trough actuators according to the

computed control action.

• Code delegation: Offers a mechanism for function delegation from nodes

with a high load to idle ones in order to obtain better resource usage.

• Resources monitor and events/alarms system: Provides fault tolerance by the

monitoring the available resources and the system execution performance.

Monitor will raise an alarm, or trigger an event, whenever an anomalous

situation is detected.

• Data and controllers: Aims to provide a transparent mechanisms between

local and distributed. It also manages the access and switch between the

available controllers.

• Network Management: Manage all the network resources allowing the com-

munication between nodes.
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3.1.1.2 Service nodes and Full Control Kernel Middleware

The basic TCKM services are extended in the FCKM with the aim to provide an

enhanced interface to the control application. Service nodes which implements

FCKM are responsible of the execution of complex control loops and must provide

high quality control. At the same time, the FCKM take profit of the high capa-

bilities of IO and networking of more powerful nodes. Furthermore, the control

requirements define the necessary conditions to guaranty the performance and re-

liability of the designed control. The resource management mechanism executes a

code delegation among the idle nodes in order to provide a better resource usage.

Therefore, the additional services introduced by the FCKM are:

• Resources Management: This service performs an optimal use of the avail-

able resources in the system by the application of code delegation mecha-

nisms.

• User Interfaces and high-level IO: Most control systems provides HMI or

SCADA interfaces. The proposed system also provides an HMI interface for

the control application, and the high-level IO on end-user devices.

• Advanced Networking: General purpose networks can be managed for con-

figuration and data exchange.

3.1.2 Middleware General Features

Beyond the TCKM and the FCKM implementations, general CKM implementa-

tions provides a set of features which includes: sensor perception, control, ac-

tuation, monitor and alarm system, resource management, code delegation, con-

troller switching, scheduling, networking, and data management. These features

are grouped around services, which are detailed next.

3.1.2.1 Sensory Perception Service

Sensor measurements are acquired every requested period according to each sen-

sor requirements. Data acquisition delays should not be reflected as control loop

delays. Thus, Data acquisition time must not affect to the controller period, or
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the delivery time for control actions. Its supposed that controllers are calculated

for a specified period, the variations on it, known as jitter [10, 107], entails losses

in control quality. In order to avoid this problem, the CKM provide a delay-free

extrapolated measure computed in order to suit the control period requirements.

Furthermore, raw measures acquired from sensors must be processed to generate

understandable information. That way, CKM provide some adaptation functions

that promote the integration between services.

3.1.2.2 Control Service

The main functionality provided is to supply a valid control action to the corre-

sponding actuator. To avoid possible system failures, it has been implemented

a safety mechanism. The execution of secure routine allows the system to per-

form in those cases where the control action cannot be computed. These solutions

ranges from reusing the last computed, to executing a safe-stop maneuver. The

most common solution aims to execute a set of basic activities for safe operation.

As described in [153] a set of future control actions are extrapolated using a GPC

controller, and stored by the actuation service. If is not possible to close the loop,

then this service will use these stored actions until the data losing problem is solved.

3.1.2.3 Actuation Service

This service manages the control action computed by the control service, and the

adequate the control action data for the actuator. This is step is inverse to the one

provided by the sensor service. General information must be translated to specific

raw data that can be managed by the actuator device. This service must also avoid

dangerous or unsafe actuations values in order to provide a safe operation.

3.1.2.4 Monitoring and Alarms System

The monitor is in charge to obtain the information that characterizes the system

states as well as the resource utilization. The state information can be analyzed

in order to take decisions about the actions to perform such as; code delegation,

mode exchange, disconnection, or any other that has been required. Additionally,

an alarm system makes the middleware aware of undesired operation and faulty
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execution. This service requests the information to the monitor and evaluates if the
execution requirements are fulfilled, otherwise a specific alarm will be raised.

3.1.2.5 Resource Management

The resource management provides the mechanisms to configure and evaluate the
resource usage within the system. Due to the limitation of resources its manage-
ment is a critical step in order to achieve a proper execution of the CKM and all its
services. This service, in addition to the monitor and alarm service, aims to provide
a high execution performance and prevents system overloads by making use of the
code delegation service.

3.1.2.6 Code Delegation

This service allows exchanging sections of code between system nodes. However,
only some specific functions or modules are suitable for exchange. Delegation
of code segments can be performed at runtime allowing its execution at anytime.
Common delegated code is related to a certain action, just as a new controller ex-
ecution or the addition/removal of a sensing process. That functionality allows the
middleware to move code from one busy-node to another load-free. Among the
criteria to perform these movements of code, not only computational load levels
are taken into account, but also all those criteria that improve the use of resources.
The code delegation service is fully detailed in [36].

3.1.2.7 Controller Switching

Controllers can be delegated, added, or deleted by means of this service. Therefore,
the CKM must guarantee the proper switching between controllers. Nevertheless,
the control designer must choose the switching criteria.

3.1.2.8 Scheduling and Flexible Tasking

Tasks will be optimally planned based on current control objectives, the quality
levels, and the amount of resources available. Furthermore, some optional tasks
can be executed only when there is enough resources available. According to this,
control algorithms can be divided into a required and an optional part. Therefore,
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advanced control is only performed when system have enough available resources,

executing a basic control otherwise. Thanks to the CKM services, optional tasks

can also be delegated to idle nodes. Flexible tasks are those that can modify its

parameter of execution at run time. Between the execution parameter, the control

period is a critical for control tasks. For long time periods the control quality can

be compromised, but the short times requires an intensive usage of the resources.

Therefore, the flexible task execution allows modifying this parameter to adapt the

available resources.

3.1.2.9 Networking

The network management is required in order to exchange data and distribute the

tasks among the devices. Two main different types of communication must be

managed: the specific field-bus communication for sensor and actuators, and the

general propose network. The network topology will be detailed in further sections.

3.1.2.10 Data Management

The CKM provides transparent access to distributed data in control applications,

and between internal and external devices (sensors and actuators). Thus, all the

distributed components can be accessed regardless of their location. Although this,

distributed data must also meet some temporal requirements. This is especially

remarkable in those cases where the dissemination of control data requires of a

time-stamp or life-span in order to prevent failures.

3.1.3 Distributed Embedded Control Kernel

As stated before, CKM node requires of a network infrastructure in order to pro-

vide some services such as: resource management, code delegation, or data man-

agement. Because of this, a distributed node topology is introduced along this

section. Furthermore, a node partition and virtualization mechanism is included in

this topology. The information exchange between nodes is performed through a

Control Kernel Multi-Peer architecture, which is also addressed in this section.
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3.1.3.1 Underlying Topology

In a cyber-physical devices network, every component could be characterized by

its own performance and capabilities. As stated in last section, two types of nodes

could be distinguished: the light nodes and the service nodes. In most common

CKM implementations light nodes integrates the TCKM, letting the FCKM to be

integrated on service nodes. Furthermore, light nodes usually focus on field-bus

networks, while service nodes manage general-purpose networks. According to

this, topology of a CKM distributed control network can be depicted as shown in

Figure 3.3 without loss of generality.

Figure 3.3: Distributed CKM Topology

3.1.3.2 Virtualized and Partitioned Nodes

Virtualization [40, 109] is a well know technology in the field of powerful com-

puters and servers. The increase of the computing power on embedded devices

has opened new possibilities for virtualization in these systems. Within embedded
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control systems virtualizations aims to provide different subsystems with differ-

ent criticality levels. Some critical control tasks are essential for the execution

performance and safety (p.e. airplane flaps servo-controllers), while others can

be shutdown and restarted with minimal impact on the mission performance (p.e.

graphical interfaces or comfort control).

The trend on DCS is to distribute the critical tasks on dedicated computing

nodes and then, replicate them. Typical solutions for preventing hardware failures

involves 3x replicated units, which are managed by an integration unit that detects

possible failures. Following this design pattern, ’n’ critical activities need at least

’3n’ computing nodes. The use of virtualization technology leads to a more sim-

ple and efficient engineering pattern by running ’n’ redundant critical tasks on 3

computing nodes holding ’n’ partitions each as displayed in Figure 3.4. Different

partitions hosted in the same node, can run different a middleware, and be loaded

or restarted independently. Furthermore, virtualization technology also provides

temporal and spatial isolation properties. The spatial isolation is introduced as the

assignation of hardware memory areas and peripherals access to every partition

running in the same computing node. The temporal isolation is the predictable

computing time assigned to these partitions. Because of this, partitions can be

managed as separated distributed nodes within the network.

The CKM has been extended to support node virtualization and partition man-

agements. The integrated virtualization solution is based on the open source project

XtratuM, as introduced in [110]. Therefore, virtualized partitions can execute the

CKM and make use of its underlying infrastructure in a transparent way.

3.1.4 Control Kernel Multi-Peer

The Control Kernel Multi-Peer (CKMP) has been developed in order to provide a

communication architecture to exchange information. The CKM implementation

provides a Publisher/Subscriber solution to exchange topic-driven data. This so-

lution aims to automatically detect the local and distributed networked processes,

establish a permanent connection between them, and perform a reliable and effi-

cient data exchange.
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Figure 3.4: Virtualization

3.1.4.1 Peer Connexion

Each member of the group establishes TCP/IP connections with the rest of the

members by forming a connection ”mandala” as shown in Fig. 3.5. In order to

setup this network, each member within the network accepts connections on a cer-

tain port through a server thread. Whenever this port is busy and the connection

cannot be established, it will retry to connect to the next port number until the

connection is finally established or a maximum number of tries is reached. Once

the connection is established, this pair establishes its identity as a 64-bit Globally

Unique Identifier (GUID) computed by combining the IP address (32 bits unsigned)

and the port number (16 bits). The GUID of a pair, not only identifies it among the

network in a single way, but also is used to establish an interaction order between

the pairs.

Therefore, an ordered connection structure is set. Given a pair with a certain

GUID, it will establish the connection with those pairs with a grater GUID, and let

the pairs with a lower GUID to request the connection. The interaction between

pairs during the connection procedure is detailed in Fig. 3.5.
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Figure 3.5: CKM network topology and connection mechanism.

3.1.4.2 Peer Discovery

Whenever the CKMultiPeer is started, it establishes a multicast broadcast channel

by choosing an IP address (type ”D” from 224.0.0.0 to 239.255.255.255) and a

port. Therefore, the “group identity” is set as the combination of the IP address and

the broadcast port number. Each member of the group broadcasts their identity by

sending their GUID through the broadcast channel. In the same way, the identity

of all the other group members is received through this channel. Every time a pair

receives the identity of a new one, it broadcasts its own identity in order to ensure

that the new pair of the group is aware of it. Once there are no new pairs in the

group, the broadcast channel remains silent. However, a ”heartbeat” message is

sent at a fixed period for verifying that the current network setup is still valid.

A pair that receives the identity of a new pair within the group must execute

a connection sequence (as previously described in Fig. 3.5) in order to setup the

Multipeer communication infrastructure.

3.1.4.3 Messasge Types

In order to transmit information through MultiPeer network, it is necessary to de-

fine a message structure. Therefore, a set of different types of messages has been

developed. Each message type is implemented as a class that extends the abstract

base class ”Message”. As a result, all the message types share a common format

consisting of a prologue, a header, and a load.
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Current message support implementation includes next types: PLAIN, TOPIC-
DATA, TOPICLINKS, SYNCTIME, and PROXYWRAPPER. A detailed descrip-
tion of these types can be found in Fig. 3.6. Therefore, CKM services can be
implemented in order to manage just a certain type of messages. As an example,
the SYNCTIME message type is managed by the clock synchronization service,
while TOPICDATA and TOPICLINKS messages are related with the publication/-
subscription service. A regular CKMultipeer user that just wants to transmit or
receive information must use the PLAIN message type.

Figure 3.6: Message Types.

3.1.4.4 Listeners

In order to manage the received messages, the CKMultipeer implements a Listener
structure, which interface is well-defined. Messages are received through a callback
mechanism. Current implementation pays attention to the life cycle of the memory.
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After invoking the callback it automatically destroys the message for freeing the
memory space. Whenever is required to store the message information, it must be
managed within the callback.

3.1.5 Middleware Configuration
The CKM has been presented as a solution to provide a framework for the design
and execution of DCS. For this purpose, the CKM implementation offers a set of
services and interfaces to manage the components of the control system: sensors,
actuators, and controllers. Therefore, in order to manage these components, the
CKM has to deal with multiple configuration options and parameters. To ease the
configuration process, some similar frameworks make use of graphical interfaces.
It can be found a wide range of different solutions focused on: node configura-
tion [126], [117], real-time system parameterization[173], communication network
[79], or robotics [132]. Regarding these examples, a graphical interface has been
designed to help the user to configure the CKM.

3.1.5.1 Configuration Model

Each one of the services provided by the CKM offers different configuration capa-
bilities [36]. Therefore, it has been defined a configuration model based in XSD
files [163] [18], which specify all the required parameters for characterizing the
services and its execution. In Fig. 3.7 can be reviewed a representation of the con-
figuration model described in the XSD files. This model includes next components:

• Node: Represents a physical element which a logical component has no as-
sociated specific functionality but containing other logical components such
as sensors, actuators, controllers, channels and topics.

• Sensors and actuators: Are logical components that connect the node input
and output in order to manage a sensor or actuator hardware respectively. For
this purpose, both components provide a defined set of functions for signal
processing and adequacy.

• Controller: Is a purely logical component that has no associated hardware
channel and computes the control signal.
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Figure 3.7: Configuration model of CKM

• Data Topics: Are used for the distribution of information between compo-
nents and other nodes. An internal data topic is used within the scope of
a node while the communications between nodes is shared through external
topics. Both types of topics are managed by the CKM in the same way, being
only conceptually differentiated.

• HW Channels: Are considered as the logical representation of physical in-
put/output elements.

Therefore the XSD the design of the system nodes can be modeled. Further-
more, every node describes the integration of a combination of the available logi-
cal components, which can exchange information through topics, and manage the
physical hardware channels. In order to give an example, the XSD representation
of a node model is depicted in Fig. 3.8. Once the model of the whole system is
specified, the XSD model can be validated in order to check the design coherence.

3.1.5.2 Configuration Files

Once the system is modeled, the CKM makes use of a XML file to specify the
system configuration. These XML files are generated from the model defined in
the XSD, and contain the parameterization of every device in the system. In order
to avoid errors, the XML configuration can be validated against the XSD model
through the mechanism described in [81]. Once the configuration is validated,
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Figure 3.8: XSD representation of a node design model.

the XML files must be distributed among the control network. Finally, the CKM
devices must parse this XML file and load the specified configuration by setting all
the required services.

Even though the configuration files can be manually edited by following the
model described in the XSD, this task can be very complex and easily leads to
errors. For that reason, it has been developed a graphical user interface that allows
generating and modifying the XML configuration in the simplest way.

3.1.5.3 Graphic Configuration Interface

This interface has been developed in order to ease the system configuration and
provide a graphical overview. In Fig. 3.9 can be observed a configuration example
using the developed interface. As a result, the user can design a control application
without technical knowledge just as: real-time programming, communication sys-
tems, or signal processing among others. Furthermore, the configuration options
allowed in the graphic interface are displayed according to the XSD model. Once
the control application is fully designed, this interface generates and distributes
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Figure 3.9: Configuration editor interface

the required XML files that will be used by the CKM to load the proper service

configuration on every node.

3.1.6 CKM: Capabilities and Applications

The CKM implementation and its main features provide a useful solution for con-

trol application development. Its distribution capabilities and the integration of

the CKMultiPeer communication architecture ease the establishment of DCS net-

works. Moreover, its configuration capabilities, in addition to the configuration

interfaces, allow the user to configure the CKM operation in the simplest way.

Because of its capabilities, the CKM is used along this thesis in order to pro-

vide a kernel for complex systems. As stated before, the CKM offers RT exe-

cution, fault tolerance, and hardware abstraction for the development of control

tasks. Therefore, further developments like the Smart Devices (introduced in next
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section), bases its execution on a CKM implementation. As a result, CKM based
developments are focused to provide new interaction mechanisms for efficiently
management and configuration of the CKM execution.
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3.2 Smart Devices
As stated previously, the distribution of computational load between different nodes

of a distributed system is a common procedure for improving the performance on

control systems [93]. The low cost of the embedded devices used as nodes pro-

motes this kind of implementations. Whenever these nodes implement an execution

framework like the CKM, they can be characterized as Smart Devices. Therefore,

a Smart Device offers the capability of working with high level information, and

provides a communication interface for the configuration, management, and data

access [21]. Because of this, Smart Devices are especially suitable for these cases

in which large amounts of data must be managed according to rates fixed by the

client and provide a continuous information flow. In a control environment this

kind of task are usually related with the sensor and actuator management.

Figure 3.10: Phases and components into a Smart Device.

The development of a Smart Device based on a Control Kernel Middleware
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implementation is addressed along this section. Furthermore, some mechanisms

for data management enhancements are introduced. These mechanisms include a

new data buffering system, and a plugin topology for data processing.

3.2.1 Smart Devices: A Control Kernel Middleware Implemen-
tation

Smart Devices can be integrated in control networks in order to help on the ex-

ecution of complex tasks. Therefore, Smart Devices executes low-level task to

provide high-level operation functionalities and supply control-related informa-

tion. Provided functionalities has been presented to offer a wide range of solu-

tions, such as: adaptive device execution [45], data management [162] [83], sensor

management[94], or robot control [63] among many others.

In the proposed approach, Smart Devices operation relies on a CKM implemen-

tation, which provides real-time services for control task execution and low-level

communications. A description of the proposed Smart Device architecture is de-

picted in Fig. 3.10.

3.2.2 Process architecture: Smart Plugin Topology

In order to be able to operate with high-level information, Smart Devices needs to

process this information through one or several processes. Therefore it has been

proposed process architecture named Smart Plugin Topology (SPT), which can be

reviewed in Fig. 3.11. The SPT aims to efficiently execute the processing step by

producing process duplicities or an inappropriate use of the system resources. In

this architecture processes has been characterized as plugins that can be organized

among them in order to extend their individual operation. Therefore, the SPT man-

ages the different plugins available in the system and composes its execution. This

composition is performed on runtime and is based in the Composite design pattern

as introduced in [59].
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Figure 3.11: Smart Plugin Topology (SPT)

3.2.3 Data path mechanisms

In order to manage the low-level execution Smart Devices must deal with a big

amount of information, which is restricted by time constraints. Within a control ap-

plication loop some conditions, such as the Nyquist theorem [54] must be fulfilled

for proper execution. Therefore, the data flow among the Smart Device processes

must be enhanced.

To achieve this, a triple buffer mechanism has been developed. The proposed

solution aims to establish a continuous data flow to nourish the SPT and exchange

processed information. Smart Devices receive and supply information through the

CKMultiPeer network and HW channels. Therefore, triple buffer implementation

avoids processing bottlenecks and parallelizes the data exchange tasks.

The triple buffer mechanism works as follows. The first buffer is used to store

the data acquired through the CKMultiPeer network or the HW Channels. The sec-

ond buffer contains the data currently processed by the SPT. Finally, the processed

information in the third buffer is supplied to the CKMultipeer network or the HW

Channels. Two threads manage the switch between buffers: one for acquiring-

processing buffers, and other one for processing-supplying buffers. The operation
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Figure 3.12: Triple Buffer

of the triple buffer mechanisms is detailed in Fig. 3.12. As a result, the information
processed by the SPT does not interferes into the data exchange process, allowing
the Smart Device to supply information at a fixed rate.
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3.3 Conclusions
Along this chapter the Control Kernel Middleware (CKM) has been introduced as
a previous work. The CKM architecture provides mechanisms and routines for the
implementation of real-time control tasks. In order to offer a full description of
its capabilities, all the CKM services has been listed. The distribution model of
the CKM has been presented to provide a suitable topology for delegating the con-
trol tasks execution among the devices in the network. To improve the distribution
capabilities of the CKM a Control Kernel Multipeer has been designed provid-
ing a solution for publish/subscriber based communication. This solution includes
network management enhancements as network peer discovery and listing. The
detailed model of the CKM implementation and its configuration has been intro-
duced. Through a graphical application the CKM execution and its distribution can
be configured.

Next, the Smart Device concept has been introduced as cyber-physical devices
that provides support for high-level execution. The Smart Device bases its execu-
tion on the CKM core. Therefore, Smart Devices extends the functionality of the
CKM services offering a high-level interaction layer for control tasks configura-
tion and execution. As a result, Smart Devices abstract from the management of
low-level tasks by establishing a Smart Plugin Topology (SPT) which avoids code
duplicity and promotes application reuse.

Within a Robot architecture characterized as a DCS, Smart Devices provides
a stand-alone solution for decoupling low-level control tasks among the network.
The Smart Device integration promotes the scalability of the system. Nevertheless
this solution have some drawbacks, the heterogeneity among the Smart Devices
and its interaction increases the development complexity on large Smart Device
networks and hinders its reuse capabilities. Therefore, next step aims to provide an
abstraction layer that offers a common interface to manage the configuration and
interaction process with Smart Devices.
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4
Smart Resources

As presented in the previous section, this contribution is framed into a DCS

system in which Smart Devices exchanges information in order to execute control

tasks. Smart Devices have been introduced to provide high-level data management,

working with well-defined data structures, instead of raw data. In this way, client

processes is abstracted from raw data and low-level operation. By adding a com-

munication API, Smart Devices can be managed by clients in a homogeneous way.

As a result, a Smart Device turns into an abstract network resource that offers well-

defined interaction capabilities for configuring its tasks and requiring or supplying

high-level information. These resources are named Smart Resources.

This chapter presents the Smart Resource architecture, and characterizes its per-

formance within a DCS. First, Smart Resource is introduced to rely on a Smart De-

vice, which implements the CKM for supporting the execution of the tasks. Next, a

Task Configuring Module (TCM) is presented in order to allow Smart Resources to

configure dynamically SPT plugins. Therefore, how to analyze the QoS (Quality of

Service) and QoC (Quality of Context) to detect changes in the system state, how to

select which scenario suits it more accurately, and how to manage this information

in order to allow the TCM to select the most desirable configuration, is going to be

addressed below. As a result, Smart Resources offer advanced algorithm support,

49



4. SMART RESOURCES

just as complex data processing, adaptive execution, or fault-tolerance and alarm
rising mechanisms.

According to the scope of this work, Smart Resources must be integrated into
robotic systems. This section also addresses how robots can make use of the Smart
Resources in the simplest way. The integration of ROS as an execution alternative
to the CKM characterizes the Smart Resources as a ROS-ready entity (is compati-
ble with ROS). As a result, this solution integrates the versatility and mechanisms
provided by ROS, and the distribution, reliability and adaptability of the Smart
Resources. The outline of this chapter is established as depicted in Fig. 4.1.

Figure 4.1: Chapter 4 layout.
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4.1 Smart Resources: Distributed Service Providers
Smart Resources are cyber-psychical entities that provide a well-define interface to
provide, configure and monitor high-level services. Theses Smart Resources ser-
vices adapt its execution in order to fit the service supply requirements. The Smart
Resource architecture is designed as an extension of the Smart Device architecture.
This extension provides a well-defined interface for configure, access and monitor
the services offered by the Smart Resource. By relying on the Smart Device imple-
mentation, Smart Resources are able to operate independently and offer high level
service management to abstract the client from device related issues.

Therefore, as depicted in Fig. 4.2, in a bottom-up approach three different lay-
ers are established: execution, distribution, and plan. The execution is related with
the Smart Device implementation that executes low-level control tasks. The dis-
tribution layer provides an interface to access to the Smart Device services and its
configuration parameters. Finally, the plan aims to deal with the services provided
by the Smart Resources.

Figure 4.2: Bottom-up: the execution layer provides low-level execution and adap-
tation mechanisms; the distribution layer allows clients to access and configure the
services; clients access services in order to execute a high-level operation plan.
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Figure 4.3: Phases and components into a Smart Resource.

Figure 4.3 shows a more detailed vies of a Smart Resource. Main components

include: the execution kernel, the Smart Plugin Topology (SPT) and the Task Con-

figuring Module (TCM), and the service management API.

• The execution kernel provides the mechanisms for task execution and man-

ages low-level access to sensors and actuators. Current Smart Resource de-

sign usually characterizes its execution kernel as a CKM implementation.

Despite of this, some robot-oriented Smart Resources can implement a ROS

execution kernel as is going to be introduced on further sections.

• Process tasks has been characterized as execution plugins that are organized

within the SPT. The SPT is a Smart Device feature that organizes and com-

bines execution plugins to execute complex tasks as a composition of sim-

pler ones. A specific plugin configuration and composition is characterized
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a SPT execution profile. A profile selection avoid process redundancy and
optimizes the system execution.

• TCM is designed to adapt the system execution to the Service Requirements
(SR) [119]. TCM analyzes the QoS and QoC measures and executes an
adaption based on a support vector machine implementation [42]. Through
a complete evaluation and adaptation process the TCM selects the most suit-
able SPT execution profile according to the requested conditions.

• Service management API relays on the CKMultipeer Publish/Subscribe com-
munication to provide access to the Smart Resource services. Service access
involves high-level input/output data, service configuration and monitor in-
formation. Thus, final clients can make use of this API to parameterize the
execution of the services, plan, and monitor the performance of the system.

The execution kernel (CKM) and the SPT has been introduced in chapter 3.
Then, Task Configuring Module (TCM) and the service management API are ad-
dressed in this chapter. As result, Smart Resource design as service provider is
detailed.
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4.2 Task Configuring Model: Adaptive Execution Mech-
anisms
Task Configuring Module (TCM) is designed to provide adaptive execution mech-
anisms. Proposed adaptation offers a quality-based approach. Thus, TCM analyzes
the system quality measures to adapt the system execution to the current scenario.
The analyzed quality measures are the Quality of Service (QoC) and the Quality of
Control (QoC). These measures bring information about the system performance
and alerts about system malfunction or undesired execution parameters. Adaptive
mechanism aims to bind these measures within the requested range by modifying
the system execution. As a result, global system execution is adapted to perform as
expected.

4.2.1 Quality-based model and SPT configuration selection
The developed adaptation mechanism is based on a quality model that determines
the SPT configuration. This quality model establishes as a set quality policies
related to the QoS and QoC measures. Each set of policies within the quality model
must be related to a specific SPT execution configuration. The pair formed by a set
of quality polices and SPT configuration is characterized as a System Scenario.

4.2.1.1 Quality measures: Quality of Service and End-point Quality of Con-
text Metadata

QoS mechanisms has been introduced to provide reliability, fault tolerance [93] and
offer real-time capabilities [148] within a DCS. Nevertheless, QoC measures bring
useful information about the execution context. Context is characterized as end-
point metadata, which gathers information about the Smart Resource state such as
hardware resources usage or tasks performance.

QoC measures and its meaning can be managed in different ways depending on
the application. Despite of this, QoC measures are always included in one of the
following domains:

• Temporal: Related with time values as periods, latency, or delays. Temporal
requirements are hard constraints for reliable control system execution.
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• Spatial: Lack of memory, memory inconsistency, and data isolation problems

could lead to system malfunction.

• Performance Reliability awareness: Awareness of incoherent values, out of

bound data, or undesirable combination of system variables, between other,

are key evaluators to trigger Smart Resource reconfiguration to select a more

proper scenario.

Smart Resources have been developed in order to support different QoS and

QoC measures. Through the establishment of the proper quality policies System

Scenarios can be properly defined in order to characterize the Smart Resources

services execution.

4.2.1.2 Quality policies and measure evaluation

Quality evaluation mechanisms has been addressed in many works [145]. The

establishment of Quality Policies allows to check the suitability of the quality mea-

sures. In a formal description a quality policy QT is established to evaluate the

evolution of a quality measure Qi a long n time steps:

{
Qi|i = 0, 1, ..., n

}
(4.1)

Quality policy QT is defined in terms of temporal, spatial or performance re-

quirements, and establishes the bounds of the quality measure Qi.

QT =

{
QT ∈ Qtemporal ∪Qspatial ∪Qperformance

QTlowerBound
≤ Qi ≤ QTupperBound

(4.2)

Being the cumulative distribution function of Q computed as:

F (x) = P (Q ≤ x) =
∑
Qi≤x

f(Qi)→

{
QT i Qi ≤ x

0 Qi < 0
(4.3)

Therefore, the probability of Q to lie between the Qt quality bounds is ex-

pressed as:

P (QTlower
< Q < QTupper) = F (QTupper)− F (QTlower

) (4.4)
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The probability distribution of two different quality measuresQ andQ′, is com-

puted as the convolution of their individual distributions. The convolution defines

the probability density function of the sum of both quality measures.

(f ∗ f ′)(t) =

∫ ∞
0

f(x)f ′(t− x)dx (4.5)

According to the quality policies, and the computed distribution of the quality

measures, the suitability of the system performance can be evaluated.

4.2.1.3 System Scenarios

Control systems can operate in many different scenarios, ranging from idle mode

to the edge of its capacities, executing one or several different tasks. One system,

ever with only one well defined task, can face different requirements with different

tolerances along the progression of its tasks. That way, each possible situation,

with its own requirements, define a new scenario.

In more detail, a certain scenario Sx is characterized by the computational pro-

cess Px and a set of End-point Metadata Quality policies which have to be met.

Therefore a system is formalized as show on the following equations 4.6 and 4.2.

A system is defined by a set of n Scenarios S, being each one designed to

adapt any performance condition that can be faced, always considering the system

constraints.

Sys =
{
Si|i = 0, 1, ..., n

}
→ Sx = {Px, Qx}|Qx = {Qx1, Qx2, . . . , Qxn} (4.6)

The quality policies included in all the System Scenarios must cover the full

range of possible quality values. Therefore, the number of n of Si scenarios in Sys

determines how specific must be their Quality policies. The fewer scenarios are

in the system, the wider range of quality measures must be included in their poli-

cies. Consequently, by increasing the number of scenarios the system adaptation

capabilities are enhanced.
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4.2.1.4 Quality-based Scenario Selection

Once the definition of scenario and the evaluation mechanisms have been intro-

duced, the process for scenario selection must be described. The active scenario is

defined as the most suitable of all the possible scenarios according to the system

requirements. Active scenario will remain selected while the quality requirements

of the system (QR) are maintained and the implied quality measures remains be-

tween the expected ranges. If one of these conditions is not satisfied, adaptation

mechanisms will take actions.

The active scenario selection is computed by implementing active learning

based techniques. Therefore, Soft Margins [37] are applied to compute the state

of each scenario as is introduced in Equation 4.7.

Sstate = fy(wi.fev(Si, QR, ξi)− th) ≥ 1− ξi|i = 1, 2, . . . , n (4.7)

Where given a state Si is related with its weight value wi, an all states common

threshold th and the penalization factor xii. The fev algorithm is detailed using

pseudo-code in the Algorithm 1, and the result of the fev is interpreted as show on

Equation 4.8.

fev = evaluation(S,QR, ξ)→

{
0 Nonusable

]0, 1] Relevance
(4.8)

Algorithm 1 Evaluation function fev
1: procedure EVALUATION(Q,QR, ξ)
2: for i=1 to n do
3: if Qi = RQi then
4: acc← acc+ 1

5: end if
6: end for
7: suit← acc/n

8: affectedSuit← suit ∗ (1− ξ)
9: return affectedSuit

10: end procedure
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Scenario state is related whit the equations 4.3 and 4.4 since is affected by the

evaluation of the Quality policies.

Sactive = max(Sstate)|Sactive ∈ S : Sactive = Sx ⇐⇒ ∀Qx ∈ Sx : F (Qx+1) 6= 0

(4.9)

Each time an active scenario is switched because of neglecting the active quality

policies, instead of a change of the quality requirements, the penalization factor ξ

is actualized by computing the inequation presented in 4.7. Penalization factor

prevent system to oscillate between scenarios dealing with reconfiguration cost.

Furthermore, the penalization factor ξ is related with the optimization of the system

execution. It also can be implemented using learning algorithms based in Soft

Margins in which the global penalization of the system is evaluated as part of the

equation as is presented in the equation 4.10.

1

2
||w||2 + C

n∑
i=1

ξi (4.10)

Figure 4.4: End-point Quality Metadata evaluation and Active Scenario selection
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The graphical representation of this proposal is shown in Fig. 4.4. In this figure
can be noticed the flow of one step in the scenario selection mechanisms. How the
quality requirements, which will be characterized by the active mission state, are
conditioning the switch between scenarios is also presented.

Figure 4.5: Scenarios are characterized by a process defined in the System Plugin
Topology, and a set of End-point Quality Metadata policies

4.2.1.5 TCM for Smart Resource Scenario Selection

The TCM has been introduced to provide adaptable execution scenarios to fit the
expected performance quality. As presented in Section 4.2.1.3, a scenario is com-
posed by a process Px and a required quality policies Qx. When implemented in a
Smart Resources, TCM characterizes its process Px as a specific SPT plugin config-
uration that performs according to the quality policies defined in Qx. Through the
evaluation of the quality measures the TCM allows the clients not only to request
a Smart Resource service, but also to specify the expected performance quality
bounds. The suitability of the TCM is detailed through a set of experimental tests
in Section 7.2.
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4.3 Communication API: Services Management
As has been introduced, the Smart Resource services are accessed through a com-
munication API that is included into the programming model and is managed by
the CKM. Therefore, the developed service management API organizes its infor-
mation by topics. These topics have to follow a certain structure in order to provide
a standardized way to manage the services. As a result, every client in the network
can access to the available distributed services through their respective topics. In
Fig. 4.6 Smart Resources API is characterized to deal with three main type of
topics: Data, configuration, and quality monitoring.

Figure 4.6: Smart Resources selects the low level execution components in order to
provide services which operates with high level information. Services are distributed
within the network and can be accessed through a publish-subscriber API.

These topics are organized as follows:

• Data topics: Specifies a high-level input/output information which describes
the service process.

• Configuration topics: These topics are used to characterize the service op-
eration. This information provides a service parameterization, and specifies
the system requirements for proper service execution.

• Quality and Alarms topics: Characterize the system performance through the
QoS and QoC measures, and notifies system events, such as service malfunc-
tion or non-compliance of the negotiated quality policies.
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4.4 Smart Resources for Robotic
To distribute Smart Resource services among all clients of the robot or the device

(for example, navigation nodes, behavioral nodes, and others), it is necessary to

make use of the publish/subscribe communication system previously introduced.

The ROS architecture also makes use of a publish/subscribe based on topics [39].

Therefore, ROS node can share the information resulting of complex task execu-

tion [140]. Whenever a device can provide or access ROS network information it

is defined as ROS-ready device (or ROS-ready robot). ROS-ready devices provides

a set of advantages to the robot designed and robot user. These advantages include

the possibility to make compatible different ROS nodes, the reuse of different de-

velopments made by different research groups and companies, and the ability to

simulate different devices, robots and scenarios using the multi-robot simulator,

Gazebo [85].

There are a great amount of ROS ready developments. In [30] is presented a

robot that uses ROS to integrate all robot sensors. PhaROS [52] is an architecture

that adapts a robot programming language to be used in ROS to program dynam-

ically a robot. ASTRO [147] provides a service architecture oriented to big and

complex robot scenarios. ROSbridge [41] provides a bridge to view ROS based

systems from non-ROS users, usually web services and Internet. These are just

a few examples that ROS can be used in a wide range of robotics and automation

system fields. In all the cases described above, ROS is accessed by means a method

to translate ROS messages to devices functionalities.

According to this, the integration of the Smart Resources into the ROS network

allows their characterization as ROS-ready devices. The main goal of this inte-

gration is to make the distributed services accessible to every kind of ROS based

device. In order to understand the benefits of integrating ROS-ready Smart Re-

sources for robotic is required to detail how the Smart Resources capabilities can

suit the needs of a robot.

First of all, the type of service that can be required by any kind of robot is sim-

ilar to distributed control systems. Therefore, smart resources can provide sensor,

actuator and control tasks that will be offered as distributed services.
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Distributed services provided by Smart Resources are accessed through a net-

work interface provided by the MultiPeer Middleware previously defined. In this

framework some topics in the network may transport critical information. There-

fore, as any information within a distributed control network, the supply rates must

be ensured.

As stated before, Smart Resources offer the capability of adapting to the system

which is configured to work within some quality bounds. Every time a Service is

requested, it must be configured in order to fulfill the need of the client. In this case,

main requirements will be related with the supply rate of the information. Accord-

ing to this, when system face high computational load situations, the information

quality can be decreased in order to prioritize the rates and avoid control prob-

lems. Some other requirements are related to information reliability and operation

performance.

Although the service quality adaptation mechanism offers an optimum man-

agement of Smart Resource capabilities, the context configuration turns out to be a

critical step for increasing the system efficiency. Therefore the adaptation can also

be used to suit different requirements according to many different factors such a the

robot mission [102] [118]. During a mission robots can be designed to perform in

different environments and contexts. More specifically, robot mission design usu-

ally faces different contexts and dynamic environments and situations. According

to this the performance of the required services should be adapted to the context

in which the robot is developing its tasks. For this reason Smart Resources can be

configured to manage different kind of information according to the needs of the

robot, and also modify the quality requirements by changing the System profile.

4.4.1 ROS integration: ROS MultiPeer Architecture

Smart Resources have been introduced as a suitable option for a wide range of

applications. According to this, the integration between Smart Resources and ROS

systems aims to adapt their services to be easily accessed by ROS nodes. Therefore,

the CKM execution kernel is replaced by a ROS based kernel in order to establish

a ROS-ready Smart Resource architecture, just as detailed in Fig. 4.7.

62



4.4 Smart Resources for Robotic

Figure 4.7: Smart Resources are integrated in ROS platform by relying service exe-
cution on ROS nodes which can be interacted as distributed services.

This is integration is achieved not only by basing the services on ROS node
execution, but adapting the service topic information to be managed as ROS top-
ics. Therefor, the service information must be offered into data structures that are
understandable for ROS nodes.

Nevertheless, dealing with distributed ROS communications offers some with-
draws. First of all, is the need to export a ROS Core instance form a master peer.
Also, real-time constraints are not managed in this kind of communications. De-
spite of this, Smart Resources must be configured as stand-alone systems that can-
not depend from a mater peer. In order to solve this issue, the ROS communica-
tions are bridged in order to make use of the CKMultiPeer architecture proposing
a ROS MultiPeer Architecture (RMPA). As a result, ROS distribution network is
established as a set of stand-alone ROS based Smart Resources, which exchange
distribution over the RMPA network. Both, classic ROS distribution and RMPA
approach can be compared in Fig. 4.8.

Thanks to this integration, Smart Resources services are compatible with ROS-
based platforms and can be accessed by every network peer implementing the
RMPA.
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Figure 4.8: Classic ROS node distribution (left) rely on ROS Core import by external
devices establishing a strong dependence. ROS Multi-Peer Architecture (right) pro-
vides stand-alone ROS devices which exchange ROS compatible information through
the MultiPeer network.
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4.5 Conclusions
Along this chapter Smart Resource have been introduced to provide a common
interface to access Smart Devices as cyber-physical systems which operates at high-
level. This API provides a layer to access the Smart Devices functionalities as
abstract network resources through a well-defined high-level interaction process.

Even though the main purpose of Smart Resources is to provide a common
way to access network resources it also aims to provide these resources in the most
efficient way. Therefore, Smart Resource API allows to specify the quality re-
quirements for the accessed resource. In order to suit these requirements the TCM
mechanism has been introduced. The TCM allows the Smart Resources to detect
changes and adapt its operation through the analysis of QoS and QoC measures. As
a results, Smart Resources provides a high-level commanded adaptive execution.

The inclusion Smart Resource resources within a robot development, encour-
ages the establishment of a services based architecture. The distribution of the
robot tasks among the networked services supplied by the Smart Resources pro-
vides a scalable and adaptable solution for high-level robot operation definition.
Moreover, the development of ROS-based Smart Resources and the integration of
the Smart Resources with ROS systems increases the potential application of this
solution.

At this point, robots can define high-level tasks by accessing the Smart Re-
source services. Nevertheless, in order to perform complex operation or establish
an execution sequence, these services need to be properly arranged and managed.
Because of this, next chapter aims to establish a robot behavior architecture based
on Smart Resource services, and present a behavior hierarchy for mission defini-
tion.
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CHAPTER

5
Robot Behavior and Mission

Architecture

Robot task organization architectures have been presented as a critical element
for robot performance. The proposed solution aims to organize the robot task ex-
ecution by framing them within individual behaviors. The execution of behaviors
through the access to the services provided by the Smart Resources in the, promotes
the implementation and execution of individual robot behaviors, and how its adap-
tation mechanisms allow to enhance its performance. Individual behaviors must
also be organized in order to define a complete mission. Therefore, a hierarchical
structure to manage the behavior execution allows designing complex tasks. When
dealing with a robot group where common objective is fixed, robot can cooperate
in order to achieve the mission goal more efficiently. This cooperation is specially
remarkable when dealing with heterogeneous robot groups which involves agents
with different capabilities, bringing new possibilities for mission accomplishment.

In order to characterize the mission execution, robot behaviors must be eval-
uated. Therefore, the behavior execution performance and its contribution to the
mission achievement must be analyzed. The implementation of Smart Resource
based behavior architecture allows taking profit of the quality measures provided
by the involved services to characterize the whole behavior performance.
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Along this chapter, it is going to be introduced the integration of the Smart Re-
source services within the robot behavior architecture. Furthermore, the details and
benefits of this implementation are also addressed. Next, a Hierarchal Finite State
Machine (HFSM) for mission establishment is presented. The mechanisms for het-
erogeneous robot collaboration and its main benefits are also addressed. Finally,
a validation mechanism is designed in order to check the coherence of a specific
mission. The structure of this chapter is depicted in Fig. 5.1

Figure 5.1: Chapter 5 layout.
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5.1 Individual Behavior
Robot Behavior is a layer of abstraction which is responsible of generating robot

commands. A behavior set the actions and the performance requirements. Fur-

thermore, the behaviors are established according to the mission and its progress.

Therefore, how robot behaviors are defined, and the mission establishment through

the composition of behaviors sequences is addressed along this section.

An individual behavior defines the robot commands for mission progress. In-

dividual behavior is defined by the mission and is carried out by one unique agent

that leads its actions in a certain lapse of time.

In most cases, individual behaviors can be composed by a set of actions of het-

erogeneous complexity. In order to ease the behavior definition process, complex

behaviors are related to a set of services (provided by Smart Resources) which

provides the required mechanisms for behavior execution. In Figure 5.2 is shown

an overview of the interaction between this mission, the behavior, and the Smart

Resource’s services.

Figure 5.2: Individual Behavior Architecture accesses the services provided by the
Smart Resources in the network. These behaviors provide complex task execution by
relying on multiple services which manages most of the computation tasks.

5.1.1 Behavior integrated services

Distributed services can provide the execution support to perform multiple actions.

As previously stated, Smart Resource for robotics provides sensor, control, actuator
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services. That services can be integrated into the behaviors structure. Therefore a

behavior can be easily defined as a combination of control services. Since the goal

of behaviors is to allow the mission to progress, most times the services will be re-

lated with the generation of behavior inputs and outputs that involves environment

interaction.

• Output features: A behavior output of a basic behavior must be designed in

order to generate or execute an action that allow the behavior to progress.

In the proposed architecture, a behavior output usually defines a request to

an actuation service. On physical robot these services offers different op-

tions like, for example, setting robot displacement speed or making the robot

effector reach a position.

• Characterization of input stimulus: Input signals provide mission-relevant

information. Inputs are characterized as high-level information as for ex-

ample robot position, environment objects recognition or shared information

between agents.

5.1.2 Behavior execution and Service Composition

As has been introduced behavior can be related with multiple services. One of the

main features of the services provided by the Smart Resources is the adaptation

mechanisms and the service quality monitor capabilities. Within a behavior, the

service configuration characterize their execution, as their quality measures char-

acterize the performance. Thus, the performance of the services required by the

active behavior also affects the global performance of the behavior. In order to

define the behavior execution next concepts are introduced: behavior progress, ser-

vice states and the performance composition function.

• Service state: This measure provides information about the service perfor-

mance (spi). First of all, the service state indicates if the service is run-

ning or not. Whenever the service is running, a performance measure is pro-

vided according to the average service qualities. Therefore, the contribution

of a certain service to the behavior progress can be rated by analyzing this
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service evaluation measure. Services within the expected performance val-

ues will promote a successful execution and progress of the behavior, while

poor evaluations warns about a possible stuck or decrement of the behavior

progress.

• Services Performance Composition Function: Evaluates the performance of

the active services in order to compose a global performance value for the

whole behavior. The service performance composition function is defined as

shown on equation 5.1. Given a service i, the composed performance Pi is

computed according to the performance evaluation of all its related services.

The relation factor between services is characterized by a weight parameter

as expressed on the Service Composition (SC) matrix. Composition weight

parameter sci,j is ranged as [0-1] and define the ratio of dependency between

services i and j, where 0 implies no relation and 1 a full dependence between

processes. The sum of every row and column in SC must be always 1.

SPC =
n∑
i=1

∑n
j=1 spi.sci,j

n
;SC =

sc1,1 . . . sc1,n
... . . . ...

scn,1 . . . scn,n

 (5.1)

• Behavior progress: Behaviors has been introduced to define a finite action.

Therefore, the progress factor provides a measure about the degree of accom-

plishment of that required action. This factor is expressed numerically in a

[0-1] range, where 0 means that the behavior is not started yet, and 1 express

that behavior action has been already accomplished. The progress factor is

updated periodically as long the behavior is executed. A constant positive

progress of this factor points out proper execution of the behavior. Stuck or

irregular evolution of factor warns the system from an erroneous behavior

execution or definition, which can lead to a robot operation fail.

According to the diagram showed in Fig. 5.1 the Behavior is evaluated through

their progress and the Performance composition. These two factors are managed in

order to detail the evolution of the behavior execution. As mentioned before, main

goal is to allow behavior to smoothly progress.
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Figure 5.3: Behavior performance is defined by its own progress and the Service
Quality Composition. This composition is computed by the relations between current
qualities of the services requires by the behavior.

Whenever behavior execution is proper working, performance composition can
be used as a parameter for monitoring the combined performance of the services.
Furthermore, some mission progress issues can be related to the Performance com-
position function. A low performance composition ratio implies a bad performance
and can warn about a bad configuration or combination of the services required
by the behavior. In spite of this, sometimes behavior progress stuck can not be
avoided (for example when waiting for object detection or for environment inter-
action). In these cases, performance composition can provide high values as ser-
vice are properly operating. Therefore, this behaviors should be defined as “non-
traceable progress” behaviors, and can be included a time-out for guaranteeing
mission progress.
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5.2 Mission
Is defined as a mission the complex task executed by an agent, both individual or

as a part of a group, in order to reach a certain objective assigned for the user or

any other upper coordination level. Missions objective may be executed as a finite

concrete goal or as a repetitive task. Along this work, missions are represented

by a HFSM (Hierarchical Finite State Machine). A HFSM is defined in [155] as

a formal model of agents whose behavior is described by an hierarchical graph

scheme [154]. This graphs are defined by two main types of elements: states and

transitions. Along the current proposal states are defined as individual behaviors

and transitions are defined as conditions which triggers state switch. HFSM also

allows nesting secondary state machines defined as sub-missions. Two examples

of simple state machines (single and nested) are introduced in Fig. 5.4.

Figure 5.4: Graphical representation of the states (implemented as behaviors) and
transitions of a simple HFSM (left) and a nested HFMS (right).

Every state is characterized as an individual behavior as introduced in last sec-

tion. One of the states will be marked as the initial state and will be the first to
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Figure 5.5: Agent executes a mission characterized by a HFSM. Behaviors in the
HFSM rely its execution on the services provided by the Smart Resources in the net-
work.

activate once the mission starts. Transitions between states are performed after the
evaluation of a set of sensory conditions, and can be traversed in one direction only.
Those conditions ensures that the objectives of the state has been successfully ac-
complished. It can be considered that the mission does not provide an output for
itself, but takes the output of the active state in the moment of the execution.

Consequently, as is depicted in Fig. 5.5, an Agent defines its mission as an
HFSM in which behaviors are executed by relying on the services provided by the
Smart Resources available in the system.
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5.3 Mission Group Coordination
Until this point it has been detailed how agent behaviors are defined, and how
behaviors are organized in a hierarchical architecture to establish robot missions.
Now is need to define how missions are assigned among the agents in the network.
It has also been defined how heterogeneous robot agents can cooperate in order
to solve mission related issues. Furthermore, the mechanisms for data exchange
and service distribution has been fully addressed. Now is needed to introduce the
planning layer. The layout of the proposed solution is depicted in Fig.5.6.

Figure 5.6: General System Overview: The plan establishes the mission of every
agent in the network. Missions are executed as a sequence of behaviors which relies
on the services provided by the Smart Resources in the system. Smart Resource’s
services and communication between agents is achieved through the RMPA network
communication.

As can be observed, the Plan describes the set of actions that the group of agents
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must perform for reaching the goal. This actions are grouped in Missions assigned
to every agent in the network. Therefore, the Plan aims to the achievement of
set of actions and the agent interrelations, executed in a determined order which
defines the mission. An HFSM describes the Plan in which each state defines the
missions that should be carried by the agents in the group. These missions are
based in behaviors which rely on the service provided by the Smart Resources in
the network. Services are accessed through the RMPA network. In the same way,
behaviors can exchange information and signals by means of the same network.
The application of a planning layer allows the group to achieve benefits such as an
increase in efficiency thanks to a good coordination between agents.
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5.4 Validation Mechanism
Mission validation is a critical step where experimental tests are usually character-

ized to be time-consuming and entail some risk to the robot integrity such as colli-

sions or falls. Thus, trial and error validation process must be reduced or avoided.

Because of this, it has been designed a validation procedure based on the method

described in [100]. The introduced modifications allow applying that validation

mechanism to a Smart Resources based mission definition. Therefore, the first step

is to formalize the system trough the definition of mission model and the Smart

Resource model, just as showed in the equation 5.2.

Sys = Mission < U > (Quality, SRo)(Conf, SRi)|
SmartR < E > (Conf, SRi)(Quality, SRo)

(5.2)

Where SRi ⊆ SRsys and SRo ⊆ SRsys being SRsys defined as all the services

sri provides by the Smart Resources in the system:

sri ∈ SRsys = {sri, · · · , srn} (5.3)

Where:

sri = {Qi, · · · , Ri}
Qi = {Qi,1, · · · , Qi,m}Ri = {Ri,1, · · · , Ri,l}

(5.4)

The execution of the Smart Resources are constrained by the tuple G(C,QR)

where C specifies the Smart Resource configuration and QR the quality require-

ments for that one. Therefore:

{C1, {QR1,1}, · · · , Cn, {QRn,l}} (5.5)

In order to validate the mission, it will be analyzed the variable flow along the

mission process execution. In addition the quality measures associated with those

variables will also be analyzed trough the flow function.

fsys(SRk) = fsys(sr1,k)x · · ·x, fsys(srn,k)→ fsys(SRk+1)
fsys(sr1,k) = {fsys(Ri,k), fev(Ri,k, Qi,k)}

(5.6)

According to this restrictions the mission verification is established as:
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P (QR(Qk)|R1:k) > Pmin y k < Kmax (5.7)

The variable flow will be computed trough a modified version of the FlowGen
algorithm presented in [100]. This modification has been introduced in order to
deal with the definition of the Smart Resources. Therefore the data variables and
the quality measures will be traced along the process execution. The resulting algo-
rithm is called the SRFlowGen and can be reviewed in Algorithm 4. The graphical
representation of this algorithm is depicted in Fig. 5.7.

Algorithm 2 My algorithm
1: procedure SRFLOWGEN:
2: for fpi ∈ Fsys do
3: for vi ∈ fpi do
4: a← port variable v
5: q← police qualities for fpi
6: u← EvalFlow(a, q)

7: end for
8: end for
9: vi ← u

10: end procedure
11: procedure EVALFLOW:
12: u← process variable
13: a← port foor variable u fpi
14: if a 6=⊥ then
15: if u ∈ q then
16: q← f(u)

17: end if
18: return u
19: end if
20: return EvalFlow(a,q)
21: end procedure

Therefore the validation works as follows. Given each behavior fpi in the mis-
sion SRFi, each service related variables vi must be analyzed. These variables
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offers high level information which describes (fully or partially) the supplied ser-
vice. Every variable vi is computed according to the process a and can be affected
by the quality policies q. Thus, the evaluation mechanisms is designed to analyze
the process a within the quality policies q. This evaluation routine is executed re-
cursively since the process a is derived from one or many subprocess. Whenever,
an atomic process is reached the variable vi is computed.

Figure 5.7: Graphical description of the modified SRFlowGen algorithm. In that
algorithm Smart Resources services result and performance qualities are analyzed in
order to guarantee behavior progress and mission accomplishment.

According to this, mission specification can be evaluated in order to analyze the
mission progress sequence and design validation. Despite of theses, along mission
execution on real environment, external inputs and environmental conditions can
not be included in the validation model. Thus, mission validation allows to eval-
uate the suitability of the mission design before proceeding with the experimental
validation.
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5.5 Conclusions
Behavior architectures has been presented as a solution for robot tasks organiza-
tion. This architecture manages the access to the services provided by the Smart
Resources in order to perform the high-level actions required by each individual
behavior. The behavior performance can be evaluated as described through the
analysis of the performance composition and the behavior progress factor. The
proposed behavior architecture has established as a base for robot mission defini-
tion.

By organizing the behavior execution in a hierarchical way, robots mission de-
fines an action sequence for goal achievements. The performance analysis of each
individual behavior allows the characterize the behavior contribution and monitor
mission progress.

The behavior architecture has also been introduced to provided a suitable so-
lution for enabling robot mission cooperation. Therefore a group of robots with
an heterogeneous Smart Resource setup can establish a collaboration in order to
achieve a common goal.

Behavior architecture and a mission definition provides useful mechanisms for
allowing robots to operate autonomously. Robot operation within a behavior in-
volves many techniques according to their goal. Main operation for in-door service
robots are related with the environment interaction. Therefore, next chapter is fo-
cused on detailing the development of robot behaviors for environment interactions.
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CHAPTER

6
Environment Model,
Reconstruction and

Interaction

In contrast with other robot applications, in-door tasks requires of a precise and

constant knowledge of the robot surrounding and the objects within. Therefore,

an environment model allows characterizing the working area and its elements.

Complete model definitions are usually stored in large data a collection, which

contains information about the object definition and their interaction capabilities.

Every robot that aims to perform a service tasks autonomously requires of a

localization mechanism. This allows the robot to be aware of its position and nav-

igate along the area. Localization systems make use of the environment model to

estimate the robot position by matching the sensed environmental information.

In order to establish an interaction with the environment, robots make use of

their sensor arrangement to recognize and classify the surrounding objects. Through

the application of sensor fusion techniques, the information is merged to generate a

characterization of the sensed elements. Once the object is classified, its semantic

and interaction capabilities can be checked on the given model.
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According to this, the objectives of this chapter are detailed in Fig. 6.1. First of
all, it is introduced how to obtain a formalized definition of an in-door environment
that can be suited for any possible scene and to optimize its management. Next,
a localization method is presented in order to make the robot aware of its position
in the modeled environment. Finally, a feature-oriented sensor fusion method for
object recognition and classification is detailed.

Figure 6.1: Chapter 6 layout.
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6.1 Environment Model Formalization
A generic description of the environment guarantees its application in any possible

scenario, including a home environment. Furthermore, any robot can be able to

manage this representation despite of its capabilities. As has been detailed in Fig.

6.2, the hierarchy is set by the definition of the environment objects (including its

geometric and semantic definition), the global map.

6.1.1 Environment Object

As one of the most important elements of the environment, objects must be fully

detailed by providing a complete description. This description is set in terms of:

geometry/texture definition, and it semantic characteristics. Semantic character-

istics include information related with its interaction capabilities and affordances,

dynamic properties, and localization information.

Object must also include a time mark to provide information about current time.

This is specially critical for the management of dynamic objects, that may modify

its position along time, and for information sharing between other robots.

6.1.1.1 Object Topology

Object topology describes its physical characteristics. The geometry and texture

information of an object provides classifiable information that can be used for en-

vironment object recognition. Object geometric definition characterizes the volume

and shape of the environment objects. This definition can be specified 2D, 2.5D and

3D representations. The main difference between them is the type and the number

of elements that compose the object. The 2D objects can be formed by a single

2D atomic element or a combination of many. The 2.5 only can be define as a

2.5 atomic element, which bounds the whole real object. Finally the 3D object is

composed by one or many 2.5D atomic elements. The object texture defines the

physical appearance of the object. This information includes visual characteristics

such as the color or the pattern. When dealing with indoor environment is common

to find different kind of objects in the same geometry: boxes, cans, books, between
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many others. Therefore object texture classification allows to perform an object

discrimination.

6.1.1.2 Object Semantics

When operating in in-door environments, robots usually have to perform a certain

degree of interaction with its environment and with its objects. This interaction

requires a knowledge of the object characteristics related with their meaning which

are beyond the robot measuring capabilities.

Classified environment objects, defined by its geometry and texture, are related

with a semantic definition by specifying a semantic tag. This tag refers to an en-

try into the semantic meanings dictionary. In this data structure all the relevant

information about the semantic of each object is gathered and identified by a tag.

That way, non-measurable information about object characteristics can be easily

accessed and allows robot to establish an advanced object interaction.

The Semantic description of each object is organized within three main cate-

gories:

• Interaction Capabilities and Affordances: Here is described the information

about how the robot can interact with this object, as well as the possible

restriction or the conditions that have to been satisfied in order to establish

this interaction. This information can also be extended by relating the object

to a certain mission.

• Dynamic Properties: Provide information about the dynamism of the object.

This property points if a certain object is static or if is a mobile element. In

this last case it must also characterize the displacement capabilities of the

object like the speed or its displacement axis.

• Localization Landmarks: Some static objects can offer useful information for

the navigation system, therefore these kind of objects can be considered as

landmarks. Other objects, defined as restricted-area objects, can be located

in different places but always inside of the same room or area, regardless of

whether it is a static or a dynamic object. Finally, free objects can modify
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their position along all the environment and consequently do not provide any
kind of localization information.

6.1.2 Global Map
Global Map provides detailed information about the environment in which robots
must operate Map management is required for many critical mechanisms that en-
sures robot tasks execution such as the localization, the navigation or even the
group collaboration mechanisms. Therefore, as depicted in Fig. 6.2 Global Map
representation is the highest layer in the hierarchy of the environment definition.
Consequently this is strictly dependent on the characteristics of the environment
objects, defined by the atomic elements, and avoided areas. Global map also intro-
duces information about the geometrical characteristics of the map.

Thus, map is set by its bounds, a list of avoided areas (that are characterized
by their owns vertex lists), and finally a list of objects enclosed in the scene and
its semantic definition. Object classification of 2D, 3D or eventually a 2.5D rep-
resentation, according to its definitions. By allowing the coexistence of different
levels of representation, and its adaptation to the simplest geometry in each case,
the efficiency of the system is improved.

Avoided areas are characterized as bounding areas in the map that describes an
area which can not be physically accessed by the robot, such as columns or walls.
Avoided areas are defined by a 2D geometry which defines the avoided space. This
information helps the map management and allows to compute whenever a robot is
inside an avoided area or not [66].

6.1.3 Enviroment Management Enhancements
The presented formalization offers a common frame to describe the home envi-
ronment. Furthermore, the offered flexibility for characterizing the scene objects
allows to choose the most optimal representation of each one. Despite of this, large
scenarios and a big number of objects could increase costs for map management.
That way, the performance of a robot which performs a specific mission could be
compromised depending on the environment in which it operates. In order to re-
duce or avoid those situations, a Zoom Map structure implemented as an attention
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Figure 6.2: Environment hierarchy.

mechanism [2] is presented for narrowing the computational costs. The Zoom Map

data structure represents a subsection of the full map definition and collects all the

information within the area. By analyzing the density of objects in the environment

it can be specified an area size that guarantees a maximum number of managed

objects, and consequently the worst case execution time. Nevertheless other pa-

rameters could be taken into account in order to optimize the optimum size of the

interest area, and on future works can be considered the application of a dynamic

size according to several conditions.

To improve the flexibility of the system, the Zoom Map can be specified ei-

ther in 2D or in 2.5D. On one way, a 2D area of interest is focused only on a

2D projection of all the objects into the ground level, giving basic information for

an optimum performance of those tasks, which only requires avoiding obstacles.

On the other way, 2.5D deals with all the objects (in 2D or 3D) enclosed into the

bounding box defined as the area of interest. The Zoom Map have to update the

location of the area of interest in two different situations. The first one takes place

when the robot has reached a threshold distance from the center of the area. The

86



6.1 Environment Model Formalization

Figure 6.3: Zoom Map: 2D and 2.5D areas of interest.

second one is triggered by a time out that indicates the need to update the area.

In both cases the conditions can be parameterized according with factors like the

dynamic of the robot, the dynamic of the environment, etc.

In eq. 6.1 and eq. 6.2 are characterized the computation time of the whole and

the zoomed map respectively. In these equations ti and ti′ represents the respective

times for map management along n iterations, performed before map actualization,

while tm′ represents the cost for zoom actualization. Management times are related

with the number np of perceptions p and the number ne, or ne′, of map elements m

orm′ (in the full or the zoomed representation respectively). The map actualization

time tm′ is defined by the comparison between the robot position pos and the map

elements m. As is specified in eq. 6.3, the computational costs are determined

by the number n of executions of the algorithm with ti and ti′ costs in each case.

Without lack of generality ti will always be equal or greater than ti′ , and according

to the omega notation Tmap is bounded below by Tmap′ asymptotically.

TMap =
i=n−1∑
i=0

ti → ti =

j=np∑
j=0

k=noe∑
k=0

f(pj,mk) (6.1)
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TMap′ = tm′ +
i=n−1∑
i=0

t′i →
tm′ =

∑k=ne
k=0 f(pos,mk)

t′i =
∑j=np

j=0

∑k=ne′

k=0 f(pj,m
′
k)

}
(6.2)

TMap → O(n)
TMap′ =→ O(n)′

}
∀np ∈ N,∀ne ∈ N ·O(n) ≥ O(n)′

→ TMap′ ∈ Ω(TMap)
(6.3)
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6.2 Robot Localization
As has been introduce, localization mechanisms are crucial in order to execute

autonomous tasks by making the robot aware of its position in the environment.

Along the State of the Art chapter, the MCL localization algorithm has been in-

troduced as one of the most extended solutions. The MCL method uses a set of

particles xi with a weight wi, which express the probability of a certain robot posi-

tion. The belief of each particle is determined by a set of tuples:

Bel(x) ≈ {xi, wi} (6.4)

This belief distribution is expressed as the output of a Bayes filter that estimates

the robot position. As showed in Eq. 6.5, the belief distribution is computed ac-

cording to the particles xi, the environment landmarks ot and the last displacement

action at−1.

Bel(x) =
p(ot|xi, at−1, . . . , o)p(xt|at−1, . . . , o)

p(ot|at−1, . . . , o)
(6.5)

Normalizing with n as a constant:

n = p(ot|at−1, . . . , o)
−1 (6.6)

Bel(xt) = n.p(ot|xt)
∫
p(xt|xt−1, at−1)Bel(xt−1)dxt−1 (6.7)

The progression of these values in the PF is usually determined by a recursive

update through three steps:

1. Particle distribution update and resampling: in this step each particle xi(t−1)

on the set is updated according to the previous belief distribution and the

weights on that iteration:

xi(t− 1) ∼ Bel(x(t− 1)) (6.8)
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2. State update: the current set of positions xi(t) is computed by taking into

account the performed action a(t − 1), which usually correspond to a dis-

placement of the robot and the previous distribution x(t− 1):

xi(t) ∼ p(x(t)|x(t− 1), a(t− 1)) (6.9)

According to the sampling/importance resampling (SIR) method, described

in [143], the proposed distribution for the current iteration can be expressed

as:

qt := p(x|x(t− 1), a(t− 1))Bel(xt−1) (6.10)

3. Particle weighting: the proposed distribution qt expressed in Equation 6.10

is related with the distribution obtained in the Bayesian filtering procedure

expressed in Equation 6.7, which takes into account the sensor information

(including the observations). The weighting value wi of each particle in-

volved in the filter can be obtained through the equation 6.11. These weights

must be scaled, as the sum never exceeds 1.

wi = p(o(t)|xi(t)) (6.11)

Furthermore, UKF based implementations also provide suitable solutions for

robot localization. Typically, the belief of the position is calculated by a 2-step up-

date in which the first step must deal with ‘time update’, while the second performs

the ‘measurement update’. Both steps can be expressed as:

bel(xt) =

∫
p(xt|x̂t, xt−1)bel(xt−1)dxt−1 (6.12)

bel(xt) = ηp(ot|xt)bel(xt) (6.13)
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6.2.1 Localization Algorithm
This section describes the algorithm that has been developed for robot self-localization.
This method uses a modified version of a particle filter that takes into account some
features of the augmented filters and techniques inspired by the UKF. Current im-
plementation corresponds with the following description.

Given a distribution of a set of X particles where each element is defined as:

Xk = [x1...n] =

x1...n

y1...n

ϕ1...n

 (6.14)

Every filter iteration the values of the distribution are updated according the
translation and rotation movements carried out by the robot, which are expressed as
an increment in the odometry values. This action will be represented as action ak;
and a noise vk will be added to model the odometry error affected by the reliability
coefficient R which will be introduced below:

Xk = f(Xk−1) + vkR (6.15)

A new distributionZ is defined as the probability of making a correct estimation
of all the static features in the environment. Therefore, each value of probability
zi is associated with the probability of having a successful estimation S using the
particle xi included in the distribution.

Zk = [z1...n] (6.16)

zi = p(S|xi) (6.17)

The values of Zk are obtained as a function of the elements in Xk, the previous
estimation Ek−1, the perceptual observations ηk at time k, and the well-known
model of the environment M :

Zk = f(Xk, Ek−1, ηk,M) (6.18)

This procedure belongs to a coherence system that tries to find the common
elements from the global information perceived by the robot.
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Once the Zk distribution is available, the quality of the estimation can be ob-

tained by computing the probability of having a successful estimation using each

sample on the Xk distribution:

p(xi|S) =
p(xi)p(S|xi)∑n
x=1(p(x)p(S|x))

(6.19)

Consequently:

p(xi|S) =
n.zi∑n
x=1 zx

(6.20)

The set of probabilities of success will determine the value of the reliability R

as shown below:

R =
n∑
i=1

p(xi|S)

n
(6.21)

This coefficient will determine the accuracy of the estimation of the distribu-

tion Xk. It may also affect the amplitude of the odometry noise by adding more

dispersion to the actualization of the particle positions when required.

The next step is to obtain xref , which is defined as the ideal member for the

distribution Xk based on the perceptual observations n, the model a priori X , and

the previous estimation. In this way, xref represents the theoretical position that

makes the measured observations adjust to the known environment model:

xref = f(Ek−1, ηk,M) (6.22)

This new element will take part in a new distribution X ′ defined as:

X ′k = Xk ∪ xref (6.23)

The proposed estimation xref must always guarantee that:

zref = f(xref , Ek−1, ηk,M) = 1 = p(S|xref ) (6.24)

p(S|xref ) = 1→ p(xref |S) ≥ p(xi|S)∀xi ∈ Xk (6.25)
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The obtained reference particle is the most adequate location according to the
sensor information, and is obtained through the application of the ‘coherence sys-
tem’.

Before proceeding with the resampling phase of the filter it is necessary to
assign respective weights to each particle. These weights are represented by the
distribution W :

Wk = [w1...n] (6.26)

The value of each weight is obtained as the normalization of every probability
of success between the minimum and the maximum value in the estimation, which
corresponds to the xref probability.

wi =
p(xi|S)−min(p(xj|S)∀xj ∈ X)

p(xref |S)−min(p(xj|S)∀xj ∈ X)
(6.27)

For this implementation, the number of resampled particles is dynamically
modified according to theWthreshold value, which determines the minimum particle
weight to remain for the next iteration of the filter; otherwise it will be surrogated
with a copy of xref . This Wthreshold is obtained as a function of the reliability
coefficient R and the weight variance s.

Wtreshold = f(s, R) (6.28)

The variance s defined as:

s2
n =

1

n− 1

n∑
i=1

(Wi −W )2 (6.29)

Finally, the estimation of the pose Ek is obtained by performing a weighted
mean of the components of the distribution X ′k that offers the maximum weight
and the reference particle xref .

Ek =
xref+

∑
X′W∑
W

(6.30)

This procedure is reflected in the Algorithm 3. The main difference between
the presented implementation of the particle filter and others is that the weights be-
ing assigned are not based on the probability of each particle being in the supposed
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location, but rather on the closeness of each particle to the calculated reference
particle. The sensor reset is dependent on the size of the best error. If the error
value is low, most of the particle values must gradually reach the real position by
updating their position to locations near the reference position—which produces
the best error situation. If the best particle shows incoherence between sensor mea-
surements, the threshold value will be increased. This situation forces the filter to
generate new random particles and enable convergence to the real position. This
filter implementation is characterized by a fast response to each potential situation.

Algorithm 3 Modified particle filter
1: for i=1 to N do
2: xi ← prediction(xi, a, R)

3: zi ← probabilityCoherence(xi, n,M,E)

4: end for
5: for i=1 to N do
6: pSi ← calcProbability(x, z)

7: R← actualizeReliabity(probSi)

8: minP ← isMin(probSi,minP )

9: maxP ← isMax(probSi,maxP )

10: end for
11: (xref , pref )← referenceCoherence(E, n,M)

12: W ← scaleWeights(pS, pref ,minP,maxP )

13: s← calcV ariance(W )

14: (x′, w′)← addAndSort(x, xref, w)

15: wthresshold ← findThreshold(W, s)

16: while wi < wthreshold do
17: xi ← resample(xref )

18: i+ +

19: end while
20: E ← fuseBestParticles(x′)
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6.3 Sensor Service and feature analysis
When performing in an indoor environment, mobile robots have to deal with differ-

ent features and conditions that change dynamically. To develop their tasks, robots

usually deal with different types of sensors which provide heterogeneous informa-

tion of the environment. Using different types of sensors allows obtaining richer

information than using only a type of sensor. Therefore, data fusion techniques are

required in order to generate this kind of information.

According to this, along this section a method to obtain a reliable environment

features recognition method is addressed trough a distributed consensus for decou-

pled sensors. This method relies on three main steps, as graphically described in

Fig. 6.4. First step is designed to deal with sensor services in order to analyze and

classify environment features. Second step provides a classification match of the

same feature observations. Finally, a high-level fusion is performed for environ-

ment knowledge generation.

6.3.1 Sensor services access and feature analysis

In order to obtain a high-level knowledge about spotted features, the information is

obtained by accessing the distributed services provided by the available Smart Re-

sources among a sensor-decoupled network. In this case, Smart Resources services

are implemented to provide environment classified information based on sensor

perceptions. To achieve this, perceptions are matched with the formal model of the

environment features as described above.

As a result of this classification, the Smart Resources supply high-level envi-

ronmental information through the distribution of network services. Once these

services are accessed, the provided information is characterized in the next way:

S(γ) ≈ {χ(γ), F}
F = {(f0, r0), (f1, r1), . . . , (fn, rn)} ∀ri ≥ rth

fx = {θ, ψ} ;ψ = g(γ)
(6.31)

Where S(γ) defines a service S based on an observation χ(γ) of the magnitude

γ. And the set F classifies the information as a possible feature fi with a classifi-

cation reliability ri from 0 to 1. Each feature classification fi is characterized by
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Figure 6.4: Proposed Architecture for Environment Knowledge Generation.

the given feature model θ and a feature knowledge ψ, which has been computed

as g(γ). The reliability ri must always be greater than a threshold value rth, and

it depends on the classification method implemented by the Smart Resource ser-

vice. As defined in eq. 6.32, observated magnitude can be represented in the R3

or the R2 space according to the characteristics of the sensor. For the first case,

an observation is placed as a set of points P , which are located in the 3D space.

This information is provided by sensors like lasers, ultrasounds, depth cameras,

etc. In the second case, an observation is bounded by a 2D plane. This information

is managed when dealing with sensors like RGB or thermal cameras. However,

Smart Resources transform the 2D plane observation in a 3D space in order to ease

the information fusion of the proposed method. For this purpose, Smart Resource

characterizes each 2D observation as a projection 3D line L whose parameters are

obtained by means of eq. 6.33.
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χ(γ)


(γ, P ) γ ∈ R3 ... P = (x, y, z)

(γ, L) γ ∈ R2 ... L


x = x0 + at
y = y0 + bt
z = z0 + ct

(6.32)

t = x−x0
a

= y−y0
b

= z−z0
c

a = x1 − x0|b = y1 − y0|c = z1 − z0
(6.33)

In order to provide a graphical representation, both the placement of 3D feature

points and the 3D projection lines for the 2D observations are depicted in Fig.6.5.

In order to compute the line parameters, this method must deal with an extra di-

mension that is not provided by the initial observation. Uncertainty can be solved

by knowing the 3D position f ′ of the Smart Resource, the feature position fi, and

the angle α that is composed by the orthogonal plane projection vector v′ and ~f ′fi

vector just as presented in eq. 6.34.

Figure 6.5: Sensor data placement into the 3D space. Left: 3D Projection Lines of 2D
sensor information. Right: 3D points from 3D sensors.

c = b
sin(π/2− α)

sin(α)
→ α = acos( ~oy1. ~oz1) (6.34)

As a result both types of information can be represented into a 3D space, pro-

viding a suitable source for information matching. How to deal with the result

of those services, in order to match the information and generate an augmented

knowledge of the environment features is detailed along the next subsection.
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6.3.2 Classification matching

The resulting information from a set of n services Si that provides a same clas-

sification of an environment feature θ are stored in a collection C(θ) as S(θ)i as

expressed in 6.35. Where S(θ)i contains the observation xi = χ(γ), and the re-

liability ri associated to the feature classification fj provided by the service Si as

introduced in 6.31, which contains the model θ. Elements in the collectionC(θ) are

organized by its reliability measure, always being S1 the most reliable classification

among the n services.

C(θ) = {S(θ)1, . . . , S(θ)n}
S(θ)i = {xi, fi,j} : fi,j ∈ Fi ∩ θ ∈ fi,j

(6.35)

Given the observation x1 related to the most reliable classification of θ, pro-

vided by the service S(θ)1, it is computed the maximum likelihood estimation pa-

rameter θ̂MLE [180][115], where unbiased estimation is characterized as asE(θ̂MLE =

θ). As expressed in eq. 6.36, the observation χ(γ) is affected by an error emodeled

as a Gaussian distribution ei ∈ N(0, σ) (being σ the standard deviation) with Σi

covariance.

θ̂MLE = (ATΣ−1A)−1ATΣ−1x1 (6.36)

The relation parameter A is chosen according to the spatial domain of the observed

magnitude. Let eq. 6.37 define the correspondence that relates the sample and the

parameters θ of the spatial feature.
∀γ ∈ R3 A =

[
ROO′ ∈ R3x3 TOO′ ∈ Rx

[0, 0, 0] 1

]
∀γ ∈ R2 A =

xo + a∆y
b

0 0
0 yo + b∆x

a
0

0 0 zo + a∆x
a

 (6.37)

In order to match the information stored in the collection C(θ), it is computed

the Mahalanobis distance between the computed parameter θ̂MLE and the observa-

tion xi, provided by service S(θ)i for i = 2, .., n.

d(xi, θ̂MLE, Ai,Σi) =
√

(xi − θ)TΣ−1
i (xi − θ)

=
√

(Aiθ + ni − θ)TΣ−1
i (Aiθ + ni − θ)

(6.38)
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Whenever the computed distance is not exceed a threshold value dThreshold the

classification provided by the service S(θ)i is matched with S(θ)1. If not, the clas-

sification S(θ)i is stored in a subset C(θ′). Once all the classifications has been

evaluated, the environment knowledge about the feature theta is generated as de-

tailed in next section. The process is repeated with the collection C(θ′) which clas-

sifies a different feature θ′ which model is identical to θ. This process is repeated

until no new subset is generated.

6.3.3 High-level fusion: Environment Knowledge Generation

All the matching classifications stored in C(θ) must be fused in order to provide a

final feature classification f̂ as detailed in 6.39, where ψ̂ integrates the heteroge-

neous knowledge provided by the matched classification, and the r̂ offers a classi-

fication reliability enhanced by reinforcement.

{f̂ , r̂}; f̂ = {θ, ψ̂}
ψ̂ = {g(γ0), g(γ1), . . . , g(γN)}
γi 6= γj : ∀ {γi, γj} ∈ ψ, i 6= j

(6.39)

Whenever, a service Si within the collectionC(θ) provides a feature description

knowledge ψi derived from a magnitude γj different of the analyzed magnitude in

the service S1, both descriptions are combined as expressed in next equation:

ψ̂ = {g(γ1), . . . , g(γj)}|ψ̂ ⊃ g(γi)→ ∀g(γi) ∈ ψi ∧ g(γi) /∈ ψ1 (6.40)

Single environment features are assigned to an initial reliability value r as re-

flect of an disaggregate feature definition in order to form the tuple (f, r) presented

in eq. 6.31. When two or more service classification are stored in the collection

C(θ) the reliability is increased by reinforcement independently of the measured

magnitudes. Therefore, the final classification reliability r̂ is updated as follows:

r̂ = r +

{
1

1+d(xi,x1,Σ′)
if g′(γ) ∈ ψ

1

1+d(xi,θ̂′MLE ,Σ′)
if g′(γ) /∈ ψ (6.41)
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6.3.4 Fusion Algorithm
Actual implementation of this method has been designed as detailed in the algo-
rithm 4.

Algorithm 4 Service-based Knowledge Generation Algorithm

1: Feature[ψ̂, r̂][MAX FEATURES]

2: S[] = access2services()

3: θ[] = extractFeaturesList(S[])

4: for θ[i] ∈ θ[] do
5: C[] = extractFeatureCollection(θ[i], S[])

6: repeat
7: θMCLE = featureEstimation(C[0])

8: Feature[ψ̂][j] = extractKnowledge(C[])

9: Feature[r̂][j] = extractReliability(C[])

10: for C[j] ∈ C[] & C[j] 6= C[0] do
11: d = calcDistance(θMCLE, C[k])

12: if d < dThreshold then
13: Feature[ψ̂][i] = aggregateKnowledge(Feature[ψ̂][i], C[k])

14: Feature[r̂][i] = updateReliability(Feature[r̂][i], C[k])

15: else
16: C ′[]← addElement(C[k])

17: end if
18: end for
19: C[] = C ′[]

20: j + +

21: until C ′[] == ∅
22: end for
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6.4 Heterogeneous Robot Interaction Cooperation
As stated before, any robot group cooperation among agents improve the perfor-

mance of their individual execution. Some works like [5] introduce an environment

model generation by a consensus phase where agents which also has been explored

this area. Some other cooperation are intended to perform efficient area explo-

ration, as is widely used in mobile robot and UAV networks [72]. Nevertheless, this

section is focused on introducing the benefits of heterogeneous robot collaboration

for environment interaction. When dealing with heterogeneous robot groups main

improvements are related with: operation complement and augmented knowledge

generation.

Agents with different operation capabilities must compliment their execution in

order to be able of achieving mission accomplishment. This collaboration aims to

supply an interaction lack or limitation of a member agent. Common lacks or limi-

tations are related with the capabilities of feature classification and actuation tasks.

These tasks are directly related with the available sensor and actuator arrangement.

Whenever environment need to be modeled, agents can provide environment-

related information according to their capabilities. Despite of this, the information

provided by a single agent can be partial or insufficient for fully characterize the

environment and their elements. Therefore, new information in terms of magnitude

can be added to a previously spotted environment feature. As result an augmented

knowledge of the environment is generated. In case of the environmental informa-

tion that has been already classified can improve its reliability by redundant obser-

vations from different sources. Multiple observations can also help to improve the

precision of the classification. Augmented Knowledge generation can be computed

by means of the techniques previously detailed in section 6.3.

In order to clarify, Fig. 6.6 introduces examples for operation complement and

augmented knowledge. The first one shows a collaboration between an aerial and

a ground robot scenery. As, an aerial robot provides high mobility and can provide

information among a wider area. Despite of this, its actuation capabilities usually

are very restrictive. On the other side, ground robot, even that it has more limited

perception area, provides more dexterous actuation capabilities, thanks to actuators

such as robotic arms and precision grippers. Therefore, a collaboration among two
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robots with heterogeneous capabilities, each one with its own strengths, enables
the execution of more complex tasks.

The second example, focused on augmented knowledge, introduces two robots
with an heterogeneous arrangement of sensors that can be able to spot the same
environment feature by analyzing different measures. While first one is recogniz-
ing the feature by the RGB information of a camera, the second one analyzes the
geometry by means of a depth sensor. Originally, first robot will not be able to
recognize the 3D geometry of the feature, and the distance could not be precisely
calculated. In the second case, the robot can not distinguish between two objects
with same shape and different colors. Therefore, as a result of its collaboration
can be generated an augmented knowledge of the feature in which, both robots can
dispose of the RGB and 3D information enhancing their operation capabilities.

Figure 6.6: Operation Complement (left) aims to cover the limitations of a robot by
being helped by other robot in the network. The Augmented Knowledge collabora-
tion (right) allows robot to improve their knowledge of the environment in terms of
magnitude or area.

In each one of the introduced collaboration mechanisms it is necessary to ex-
change information within a required constraints. This communication is charac-
terized as a RMPA implementation that can be established between robot agents
(as presented in Section 4.4), but also between an agent and any Smart Resources
available in the network.
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6.5 Conclusions
Common service robot tasks involves an environment interaction. Therefore, along
this chapter main techniques related to environment model, management and inter-
action have been detailed.

A standard formalization of the environment and its features has been set. By
sharing a common description, Smart Resources, robots, and others devices can
exchange mission related information in a understandable way.

Mechanisms for environment interaction operation have been introduced. These
mechanisms have been designed offering a service-oriented approach, in which
low-level operation is delegated to the Smart Resources execution. As a result,
presented interaction mechanisms can be executed as individual behaviors in the
proposed architecture.

At this point, all the requirements for mission robot achievement have been
meet. Presented solution includes from the lowest level of design until the highest
level commands that defines a mission goal. Therefore, next chapter is established
to provide a full evaluation of the proposal in order to validate its suitability.
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CHAPTER

7
Experiments and Results

Once the proposed system has been fully detailed a complete analysis of its

performance is required. Therefore, along this chapter it is introduced a set of

experiments which has been designed in order to provide the required results for

characterizing the system execution.

Figure 7.1: Chapter 7 layout.
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Since the presented work addresses many different aspects, the result section
has been organized as detailed in Fig. 7.1. First of all, experimental framework
is introduced by presenting the used robots and the test environment. Next, the
adaptation mechanisms of the Smart Resources implemented by the used robots
are evaluated. The services provided by the Smart Resources are accessed for
robot behavior design. Furthermore, robot behaviors are organized within a test
mission. Through the execution of the mission, the behavior evaluation character-
izes its composed performance and its contribution to the mission. Next, a group
robot mission is defined to establish a cooperation between heterogeneous robots
for common goal achievement. In order to characterize the robot capabilities, the
environment model management for robot localization and object classification and
interaction is detailed. Finally, the mission execution is evaluated in order to check
the suitability on both, off-line and on-line execution.
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7.1 Experiment Framework
In order to provide a full explanation of the performed tests, the robotic platforms

in addition with the distributed system setup are fully detailed along this section.

It is also introduced the characteristics of the experimental environment as well as

the objects within.

The Turtlebot robot [60] is the main platform that has been used along all the

experiments. Turtlebot robot is a well-known platform for ROS developers which

can be easily upgraded by adding sensors and actuators on its stacked modules. As

can be observed in Fig. 7.2 the current Turtlebot setup is composed by a Asus Xtion

Pro, which includes a Depth and a RGB camera, a Hokuyo laser range sensor, and

a Turtlebot arm with a gripper.

Figure 7.2: Designed Turtlebot setup includes: a Kobuki base for mobility, a Hokuyo
LIDAR and an Asus Xtion camera as main sensors, and a Turtlebot arm for object
manipulation.

Each one of the arranged devices is managed as a Smart Resource, which is

accessed through the interface previously defined. Thanks to the RMPA, this infor-

mation can be accessed easily distributed among the network. In order to distribute

the tasks an external PC will access the Smart Resources in order to compute some

of the tasks required for the robot mission execution. In Fig. 7.3 the setup of the

Smart Resources network and the offered services are fully detailed. Therefore, the

robot relies on the Smart Resources’ services for mission execution. In Table 7.1
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can be reviewed the description of each service, including the information about
the Smart Resource which provides it, the quality measures, and the configuration
capabilities. The available setup of Smart Resources as well as the provided ser-
vices has been designed to fulfill the requirements of the mission execution, that
will be defined along this section. Nevertheless, due to the scalability of this pro-
posal, new Smart Resources and services can be added to the network to provide
further capabilities.

Figure 7.3: Turtlebot experimental setup: Hardware-Based Smart resources are phys-
ically mounted on the Turtlebot platform. Agent mission execution and Smart Re-
sources which operates exclusively as a cybernetic component can be distributed
among network devices. RMPA network provide access to local or distributed ser-
vices which are accessible by other Smart Resources or mission behaviors.

Figure 7.4: Experimental environment setup.

All the experiments are performed inside of a laboratory in the Polytechnic
University of Valencia as show in Fig. 7.4. This environment mostly static, despite
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of this workers might walk around and some light furniture as chairs might can be

displaced during the tests.

Table 7.1: Smart Resources in the network and provided services description.

Smart
Resource

Service
Quality
Measure

Configuration Function

Robotic
Arm

MoveIt! Active Speed
Executes kinematics
for robot arm cntrl

Laser
Sensor

Scan Scan time Resolution
Provides Laser Scan

distance values
RGB-D
Camera

RGB
Recog.

Reliability Resolution
Detect object from

RGB images
RGB-D
Camera

Depth
Recog.

Reliability Resolution
Detect objects from

Depth images

Mobile
Base

Displacement
Odometry
Dispersion

Speed
Execute robot

displacement and
computes odometry

Navigation AMCL
Localization
Dispersion

Goal
Executes Augmented

Montecarlo Localization
Global
Recog

Fusion Reliability Max sensors
Fuse recognition

information from SR

Once the environment has been defined, then it is required to describe the ob-

jects within in order to be able to establish an interaction. Since this work is not

focused on dealing with object recognition or dealing with large object collections,

it has been previously defined a set of objects which can be easily recognized. Ob-

jects will be recognized trough the information obtained from Depth Sensor and

RGB Camera. According to this the selected set og objects has been choose among

different shapes and texture pattern as is shown in Fig. 7.5.

In order to being able to perform group collaboration experiments a second

robot is required. Being the Turtlebot robot defined as a mobile robot, the chose

partner has been characterized as an humanoid robot in order to set a clearly hetero-

geneous group. Selected platform is the humanoid robot Nao [156] from Softbank

robotics. This robot is two-legged robot with 25 degrees of freedom and a complete
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Figure 7.5: Set of interaction objects. This set include shape-discriminative objects
(box and cylinder) and pattern-discriminative textures for same shape objects.

arrangement of sensors that includes an IMU, sonar, two CMOS cameras, micro-

phone and foot-plant FSRs. Nao robot makes use of its own middleware, called

NaoQi, that provides an interface to manage robot actuators and sensors. In order

to interact with the environment Nao robot makes use of the built-in CMOS cam-

eras which are displayed on his head as described in Fig. 7.6. This cameras are

characterized as pan-tilt cameras as are affected by the position of the robot neck

joints, being able to cover a larger area without requiring a robot displacement.

Figure 7.6: Humanoid platform Nao is introduced as the Turtlebot partner for collab-
orative mission execution. Nao robot is endowed with 25 degrees of freedom servo
configuration and two CMOS cameras mounted on the head as pan-tilt cameras.

As new robot has been added into the system the network setup must be con-

sequently modified as depicted in e in Fig. 7.7. Nao Robot provides an Smart
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Resource which wraps the NaoQi calls to be accessed through ROS topics, so they
can be reached through the RMPA network. Once the Nao resources are available,
a new Smart Resource is designed to allow its pan-tilt camera to detect and track a
certain environment object.

Figure 7.7: Extended experimental setup for collaboration: Network is extended by
adding the Nao hardware accessible through the NaoQi services. Agent 2 Mission and
Nao camera managing resources are introduced as remote Smart Resources.

Table 7.2: Introduction of the new Smart Resources added into the network and pro-
vided services information.

Smart
Resource

Service
Quality
Measure

Configuration Function

Nao NaoQi Available -
Provide interface
for NaoQi calls

Pan-Tilt
Camera

Track Moving Speed
Tracks spotted

Object
Pan-Tilt
Camera

Recog. Reliability Resolution
Recognize object
from RGB image
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7.2 Smart Resource Quality Adaptation Test
Along this section it is designed a set of tests in order to validate the performance

of the Smart Resources here presented. For this validation it is analyzed the service

quality and adaptation mechanisms performance on a dynamic Smart Resource

execution where the number of clients and provided services are fluctuating.

For this purpose, in these tests up to four different clients are accessing to the

distributed services offered by the RGBD-Camera Smart Resource as has been de-

scribed in Fig. 7.3. In order to test the limitations, of the Smart Resource each client

is requesting a different service, in order to increase the resource consumption and

provide a more exhaustive analysis. For simplicity all the requested services are

replicated copies of the ’RGB Recognition Service’. This clients are being con-

nected and disconnected along the experiments as is showed in Fig. 7.8. As can be

also observed, as long as the number of active clients variates, it has been recorded

some alarms that triggers the need to switch between the active profile of the ser-

vice.

Figure 7.8: Number of active clients along the experiments and activation of the qual-
ity alarms.

This alarms are raised by analyzing the QoS and QoC measures that charac-

terized the provided service. This experiments it has been designed to analyze the

communication deadline as QoS and the CPU usage as QoC. The set of available

System Profiles and the quality bound of each one is defined in Table.
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Figure 7.9: Result graph

Therefore in Fig. 7.9 is detailed the evolution of the test execution. In the first

row of graphs is shown the evaluated qualities and the established limits for each

value. As can be observed, the deadline and the CPU measurement are the most

critical qualities, due to existence of outline values beyond the specified bound in

each case. These events have triggered a change in the resolution of the plugins,

as can be spot in the next row of graphs. In these graphs is detailed the change

between image resolution according to the requirements of the system. Focusing

on this dynamic, certain number of plugins leads to an stable configuration of plu-

gins, but at the same time are always evaluating the resources in order to increase

again the resolution. This resource evaluation is conditioned by the evolution of the

penalization factor as depicted in the respective graph. In section 4.2.1 has been

theoretically introduced the function of this penalization value, which in this test

proves to suit the dynamic of the system, encouraging a resolution change only

when context meet the requirements. In the final graph can be appreciated hot the

number of event and alarm s takes place according to the active number of plug-

ins. Defining events as each change in the system profile, and alarms as unreached

required qualities levels.
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N. Clients Resolution Activation Events Alarms QoS QoC Penalty
VGA 0.4637%

1 QVGA 0.5631% 0 0 0.011s 34.2% 0.24
QQVGA 0.0000%

VGA 0.0321%
2 QVGA 0.6877% 4 0 0.017s 39.1% 0.54

QQVGA 0.2800%
VGA 0.016%

3 QVGA 0.186% 4 0 0.019s 43.9% 0.69
QQVGA 0.798%

VGA 0.022%
4 QVGA 0.109% 4 13 0.022s 48.3% 0.76

QQVGA 0.866%

Table 7.3: Smart Resource adaptation results

Summarizing the results of this execution Fig. 7.3 gathers a quantitative anal-

ysis of the evolution of the system variables according to the number of active

clients, which reflects in turn the number of active plugins. As the number of

clients are augmented the activation time of higher resolutions decreases while the

deadline and CPU usage measures are augmenting. Once the system resources are

employed to the edge of its capabilities, the number of alarms produced by the

system is increased. As the number of alarms raises the global penalization of the

system augments. A significant increase on the alarms, and consequently the penal-

ization can be interpreted as an approach to the maximum system resource usage

according to the specified quality bounds.

Active Resolution QoS(Deadline) QoC (CPU)
Variance 0.0078 0.00000025 0.007799
Deviation 0.0709 0.00047322 0.00728
Skewness 0.2717 03023 0.1310
Kurtosis 1.5 1.5 1.5

Table 7.4: Statistical analysis of the adaptation tests
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Figure 7.10: Scatterplot

In order analyze the global performance of the systems in Fig. 7.10 is depicted
a scatterplot in which the mean resolution of the provided measures at each time
during this test is compared with its correspondent usage of system resources. Al-
though the point dispersion is significant, it can be set a lower limit which can be
interpreted as a the minimum usage of resources that can be obtained with a spe-
cific data resolution. According to the point dispersion, the deterministic behavior
of the system must be studied. In order to test, the repeatability of its execution an
specific test will be repeated for a previous analysis of its statistical characteristics.

In Table 7.4 are analyzed the variance, deviation, skewness and kurtosis for
global measure resolution and qualities between all the performed executions.
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7.3 Behaviour and Mission Design
Robot behavior makes use of the Smart Resource services in order to provide com-

plex robot operation. Furthermore, behaviors are organized in a HFSM to define a

robot mission. Along this section it is detailed the behavior and mission design for

both individual robot and group approaches.

7.3.1 Individual Robot Mission Design

First, robot individual behaviors are defined in Table 7.5. This table describe the

Smart Resource services (defined in Fig. 7.3) required for every individual behavior

and offers a brief description of its operation.

Table 7.5: Definition of all the Turtlebot individual behaviors required for mission
accomplishment. Accessed Smart Resource services are described for each behavior.
These behaviors are characterized as states within the designed the mission HFSM.

Individual
Behavior

Related Service Description

INIT - Initializes structures for mission.

NAV AMCL (Navigation SR)
Configure navigation goal and
establish a path.

WAIT
AMCL(Navigation SR)
Scan (Laser Sensor SR)
Displacement (Mobile B. SR)

Executes navigation and waits
until the goal position is reached.

SPOT
RGB recog. (RGB-D SR)
Depth recog. (RGB-D SR)
Fusion (Global Recog. SR)

Recognize environment objects
by fusing the information from
recognition services.

APPR
Displacement (Mobile B. SR)
MoveIt! (Robotic Arm SR)

Move arm to required position and
displace robot to the spotted object.

PICK MoveIt! (Robotic Arm SR) Grabs spoted object.
PLACE MoveIt! (Robotic Arm SR) Place grabbed object.
BACK Displacement (Mobile B. SR) Move backwards to a safe distance.
END - Close system execution
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Table 7.6: Composition matrix for all the services involved in the Turtlebot mission
behavior execution. Matrix parameters characterizes the service composition.

1 2 3 4 5 6 7
MoveIt! - 1 1 0 0 0 0 0 0

Scan - 2 0 1 0 0 0 0 0
RGB recog. - 3 0 0 1 0 0 0 0

Depth recog. - 4 0 0 0 1 0 0 0
Displacement - 5 0 1 0 0 1 0 0

AMCL - 6 0 1 0 0 1 1 0
Fusion - 7 0 0 0.5 0.5 0 0 1

As has been explained along Chapter 5, services which characterizes an in-
dividual behavior has to be composed in order to compute behavior performance
measure. For that purpose it needs to be applied the Performance Composition
Function described in eq. 5.1, being the composition matrix defined in Table 7.6.

Figure 7.11: Smart Resource services performance analysis for individual and com-
possed behavior execution quality.

According to Composition Matrix previously showed in Table 7.6 most of the
Services are not being composed with other ones. When dealing with behaviors
that make exclusive use of these services, the behavior performance factor is af-
fected by the quality of each services in the same way. Despite of this, some other
Services need to be composed. Consequently, services affects the composed per-
formance in an non-uniform way according to their composition parameters. In
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order to check the behavior performance it has been analyzed the quality of the re-

lated services specified in Table 7.5 and its composed performance when required.

MoveIt! services has been omitted since quality measure is a binary value which

indicate if there is any error, so statistical study is not required. The quality of the

rest of service and its composition on required behaviors can be reviewed in Fig.

7.11.

Figure 7.12: Agent 1 Missions (left) is executed by three nested HFSM (right) which
are related to each mission step: navigation, object interaction and placement.

Next, step is to organize behavior in order to design the HFSM which define the

desired mission. In the proposed implementation HFSM is implemented by means

of the SMACH library [19], which allows to rapidly define states and transitions

and allows state machine nesting. Turtlebot mission is designed to navigate to a cer-

tain place of the laboratory, spot an object, pick it up and bring it back to the original

position. For mission achieving it has been defined three main sub-missions that

are required to define the full mission. These sub-missions are: ¨Navigation¨ for

Turtlebot displacement to a goal position, ¨Object Interaction¨ for object recogni-

tion and pick-up, and ¨Object Place¨ (for object retrieval). These sub-missions has

to be nested, in addition to an Init and End states in order to define the full mission
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HFSM. In Fig. 7.12 can be reviewed the designed mission as well as the three sub-

mission. Fig. 7.12 also details sub-mission HFSM in order to check the required

individual behaviors as has been defined in Table 7.5.

7.3.2 Robot Cooperation Experiments

In order to test the robot cooperation performance, it has been modified the Turtle-

bot mission to establish a dependency between the Turtlebot and the Nao robot.

As has been introduced along Section 6, this collaboration is characterized as an

¨operation complement¨ collaboration. This is collaboration is established since

there is a dependency between robots to achieve a mission accomplishment which

is not possible by single operation. This modification affects two main steps of the

original mission. First modification, redefines ¨NAV¨ individual behavior to wait

for the Nao robot to spot the required object and communicate its position to the

Turtlebot to be able to compute the navigation path. Second modification affects

the ¨SPOT¨ behavior which now requires to match information from at least three

resources to validate an object classification. Third classification must be provided

by the PanTilt Smart Resource which manages the Nao camera information. Mod-

ified behaviors (Turtlebot behaviors) and new designed ones (Nao behaviors) are

described in Table 7.7. According to the new requirements Mission 1 is modified

and Mission 2 is created. Therefore, in Fig. 7.13 both HFSM and its dependences

are fully depicted.

As can be observed in 7.13 the communication between both robots is critical

for proper mission execution. Therefore, it is required to analyze the performance

of the RMPA network. To characterize this communication it is going to evaluate

the communication delay and effective period. For this purpose it has been ana-

lyzed the communication performance between the robot and the remote services

executed in a distributed device. As has been depicted in Fig. 7.7, this services

are: Pan-tilt Camera, Navigation, and Global Recog. The results of this experi-

ment have been gathered in Table. 7.8. As can be noticed, the transport delay is

around 5ms, with a low deviation, that reflects the stability of the communication.

It can also be observed how the average rate is supplied according to the set rates.

Despite of this, the dispersion of this measure for the “Pan-tilt camera” and the
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Table 7.7: Definition of all the Nao individual behaviors and Smart Resource ser-
vices involved in the Agent 2 mission HFSM and modification of some of the Agent 1
mission states for the collaborative approach.

Individual
Behavior

Related Service Description

OBJ TRACK
(new)

Recog. (Pan-Tilt SR)
Track. (Pan-Tilt SR)
NaoQi(Nao SR)

Recognize environment objects
and track them with the
pan-tilt camera

OBJ FIX
(new)

Recog. (Pan-Tilt SR)
NaoQi(Nao SR)

Recognize environment objects
and fix the camera position

NAV
(modified)

AMCL(Navigation SR)
Track. (Pan-Tilt SR)

The navigation goal can be set
according to the Nao recognition

SPOT
(modified)

RGB recog. (RGB-D SR)
Depth recog. (RGB-D SR)
Recog. (Pan-Tilt SR)
Fusion (Global Recog. SR)

Recognize environment objects
by fusing the information from
recognition services.

Figure 7.13: Definition of the Agent 2 Missions HFSM and the dependences between
this one and the previously defined Agent 1 mission.
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“Global Recognition” services shows a high deviation, that is produced because of
the dependence between services. “Pan-tilt camera” requires of the NaoQi service,
while “Global Recog” requires of the “Depth Recognition” and “RGB Recogni-
tion” services. Therefore, experiments show the need to restrict the dependency
between Smart Resources during the design step in order to bound the average rate
dispersion.

Table 7.8: RMPA test results offer an analysis of average value and deviation of the
transport delay values. This results also provide a comparative analysis between the
required rates and the obtained measures.

Smart
Resource

RMPA Avg.
Transport
Delay (sec)

RMPA
Std.

Deviation

Set
Rate
(sec)

Avg.
Rate
(sec)

Rate
Std.

Deviation
Pan-Tilt
Camera

0.0047 0.0039 0.5 0.5637 0.7365

Navigation 0.0057 0.0055 0.8 0.8002 0.094
Global Recog. 0.0033 0.0057 0.8 0.847 0.1412

121



7. EXPERIMENTS AND RESULTS

7.4 Environment Model, Reconstruction and Interac-
tion
In order to execute the mission defined, robots must be able to characterize its

environment and interact with it. Developed mechanisms described in Chapter 6

has been defined as a suitable tool to describe, manage, reconstruct and interact

with the environment. This section the proposed mechanisms are analyzed in order

to evaluate the advantages of the addressed solutions. First of all the experimental

environment model is introduced. Then, a robot localization method is tested along

the mission map. Next, a feature the recognition and interaction is characterized in

order to achieve the assigned goals.

7.4.1 Environment Model

The selected environment for this experiment is the laboratory previously presented

in Fig. 7.4. The previous requirement before starting the test is to get ready the map

environment and the classification of its objects. Therefore, a 2D representation

map of the environment has been generated through SLAM techniques. Map con-

struction has been created by the Turtlebot robot according to the Hokuyo LIDAR

scan information and the robot wheel odometry.

Figure 7.14: Experimental environment setup: Real world environment (left) and
SLAM generated map (left).

In Fig. 7.14 can be compared the real environment a the registered 2D map.
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Once robot has a environment map available it can be used by the navigation mod-

ule to compute a path to reach a goal position in the environment.

As stated in Chapter 6 objects can be characterized in terms of shape and tex-

ture. Therefore it is required to make a classification of this two parameters in

order to be able to discriminate between two different objects. In this proposal the

shape classification is performed by analyzing the characteristic pointcloud that

defines the object shape. while the texture classification makes use of a set of key-

points according to its visual pattern. But types of classification can be reviewed

in Fig. 7.15. The recognition method of classified shapes and textures will be also

addressed in this section.

Figure 7.15: Texture and shape classification of the environment feature.

Once the system has the information related with the map and its objects, the

next step is to offer an optimal management of this information. In order to solve

this problem it has been introduced the area of interest. This area determines the

amount of managed objects, and consequently the amount of data, to deal with.

Therefore the size will be established according to several factors as: the size of

the whole environment, the density of objects in every area or the robot capabilities.

Once the size of the area of interest is defined, it is required to test the proposal.

For this test it has been set a group of goal positions within the environment

that must be reached by the Turtlebot robot in a sequential order. This experiments

is designed in order to study two main factors: the ability of the Turtlebot to ac-

curately reach a goal position and the evolution of the area of interest along its

displacement. The area of interest is updated according to the triggering condition.

In this tests, the trigger condition indicates that the distance between the robot and
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the border of the area of interest is below the 10 % of the area size. Therefore, the
robot path and the evolution of the areas of interest along the performed trajectory
can be checked in the Fig. 7.16.

Figure 7.16: Evolution of zoom map areas during the performed trajectory.

The set of objects gathered in each area of interest, and its interaction capabil-
ities, will define the range of actions that the robot can perform. The interaction
capabilities of each object can be listed by analyzing the semantic definition of each
object. These definitions are stored in the semantic dictionary, and each object is
marked with a semantic tag which points to its own definition. Thus, the available
actions in each case can be related with the behavior selection and the execution
of the mission-oriented tasks. Furthermore, missions can be assigned according to
different areas.

Once the system robot is able to move and manage the environment information
is required to recognize and interact with their surrounding objects. According
to this, a set of recognition and interaction experiments are approached. Along
this experiments it is going to be tested the fusion method described in Section 4.
This method requires of an initial object classification provided by two different
sensors at least. When dealing with Turtlebot the classification will be provided by
the ¨Depth recognition¨ and ¨RGB recognition¨ services provided by the RGB-D
camera Smart Resource.

In order to have a best understanding of this classification the applied methods
are fully explained. First of all, it should be remarked that the purpose of all these
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tests is not to present a new recognition mechanism but providing an initial clas-
sification to work with. Therefore, the ¨Depth recognition¨ algorithm use the 3D
perceived pointcloud to compute the point clusters that defines different features
in the environment, and classifies the point distribution or shape of these clusters.
For that purpose it will be applied a method similar to the one presented in [125].
A K-neighbors search into a previously trained KD-tree classification will provide
the K more similar features that should be thresholded in order to be accepted as
a positive matching. The point cloud clusters recognized as learned features are
registered in the 3D space as shown in Fig. 7.17.

Figure 7.17: Environmental objects set detection: Objects displayed in the real world
(top-left) are classified according to its texture pattern keypoints (top-right) and its
depth pointcloud shape (bottom-left) by its respective Smart Resource services. Intro-
duced fusion mechanisms is used by a distributed Smart Resource to join the previous
classified information (bottom-right), solving classification ambiguity and increasing
the recognition reliability joins detected process.

At the same time, the¨RGB recognition¨ service analyzes the provided image
in order to extract some texture keypoints that will be matched with the previ-
ously learned ones. Keypoints are extracted by applying a SURF detection [77].
If matching keypoints are enough it will be computed as a positive recognition as
is depicted in Fig. 7.17. Keypoints are projected as 3D lines by being connected
with the focal point. Once 3D space information has been provided by two dif-
ferent sensors, a spatial information match is performed according to the method
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described in Section 4.2. As a result, matched 3D clusters and 3D keypoint projec-

tions are displayed in Fig. 7.17. Even that the box can be unequivocally classified

by both sensors, cylinders recognition must rely on both classifications in order to

discriminate the objects since the 3D shape is identical for more than one object in

the learned set.

Figure 7.18: The result classification reliability for each object in the set and every
classification method is compared. Fusion recognition is directly affected by the reli-
ability of the keypoint and depth pointcloud classification

At this point system is able to obtain a classified information based on two

different magnitudes (3D shapes and 2D texture pattern) and matched in the 3D

space. Next, the initial recognition reliability provided by each sensor would be

updated as a result of the fusion process method introduced along Section 4. In

order to quantify the reliability improvements Fig. 7.18 shows a detailed statistical

study about the distribution of the reliability values for the recognition of each

object from the set of learned objects. In these graphs can be compared the initial

recognition and the fusion result reliabilities from over 1000 measures in each case.

As can be observed in the graph, in most cases the 3D cluster shape classifi-

cation is characterized by a high detection reliability but a wide dispersion, as the

pattern keypoints classification offers a lower reliability but with less dispersion.

As a result the fusion reliability r̂, defined by the Eq. 6.41 is affected by both r

measures of each single classification. The resulting values are characterized by

a higher reliability and a lower dispersion, consequently the robot perception is

improved.
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Figure 7.19: Object recognition reliability (top) along a robot displacement for ob-
ject alignment in distance (mid) and angle (bottom). Dynamic recognition reliability
results is evaluated for proper object interaction during mission execution.

Next, is analyzed the dynamic performance of the proposed method. During
this test the robot is following one object from the set and tries to align with it
at a distance of 0.6 meters. The position and alignment of the robot according to
the object can be checked on the first and second graph in Fig. 7.19. The third
graph shows the reliability factor for the estimation of the Depth information, the
keypoint extraction and finally the fused one. The displayed values are coherent
with the information showed in 7.18.

7.4.2 Object Interaction
In order to be able to interact with the recognized objects, Turtlebot has been en-
dowed with a robotic arm. The Turtlebot Arm is managed through the motion
planning framework MoveIt! [161]. This framework allows to solve the robot arm
kinematics. Since the goal of this work is not to offer a method for dexterous object
manipulation it has been established a set of predefined positions that are required
for simple pick and place routines. As shown in Fig. 7.20 predefined positions
which has been organized in two main groups: arm and gripper.
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Figure 7.20: MoveIt! Turtlebot arm Configuration allows to reach predefined posi-
tions organized in two main motion groups (arm and gripper) to be able to perform
basic object pick and place tasks required for mission achievement.
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7.5 Mission Execution and Validation
At this point it has been developed a set of Smart Resources which services are

accessed for individual behavior execution. Services performance and behavior

composition has been analyzed experimentally. Behaviors has been organized hier-

archically in a HFSM which defines the robot mission. Next, environment formal-

ization and interaction capabilities have been tested a long a set experiments. Now,

the mission execution and validation for individual robot and group approaches are

detailed along this section. As a result, the suitability of the proposal is detailed in

a quantitative and qualitative way.

7.5.1 Individual Robot Mission Execution

First of all, it is going to be evaluated the execution of the individual mission.

As has been presented in Fig. 7.12 Agent 1 (turtlebot) has to set a navigation

goal, search for a certain object in the reached area, grab it, and bring it back

to its original position. This task has been choose because of the requirement of

all the mechanisms addressed along this work. Required services and behavior

composition were tested in previous Section so whole mission execution can be

evaluated now.

Figure 7.21: Off-line mission evaluation access simulated services in order to check
the behaviors and mission coherence. This test allows to detect erroneous mission
design and unreachable states by forcing all possible state transitions to reach the final
mission state.
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As stated before, in terms of safety, the off-line evaluation has to be success-

fully evaluated before involving real robot operation. Despite of this, some services

will trigger transitions between states according to some environmental conditions.

Since off-line execution aims to simulate the full mission sequence these environ-

mental conditions will be never fulfilled. For this reason it has been developed a

“fake interaction” module which simulate these inputs in order to force Services to

trigger the state transitions. Thanks to this module it is possible to test all the states

and transitions along the designed mission. Main purpose of the off-line evalua-

tion is to check the continuity and terminality of the HFSM. Therefore possible

breaks or non-handled transitions between states are avoided. The results of the

off-line evaluation can be review in Fig 7.21. In this Figure is show the progress

of each states, the active state and the whole mission progress along time. Because

of dealing with simulation execution time duration is not representative, but state

sequence and mission progress is validated.

Figure 7.22: Frame sequence of the mission execution: Turtlebot executes its mis-
sion successfully by navigating to ans initial goal area, recognizing and grabbing the
required object, and placing it in the required destination area.

Once the mission is validated off-line the mission can be executed on the real

robot. As can be observed in the sequence of images showed in Fig.7.22 the robot

performs successfully during the mission achieving the final goal. In order to pro-

vide quantitative results, Fig. 7.23 shows the mission performance analysis as pre-
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viously presented for the off-line validation. In this case, the state progress and

global mission progress must be studied, since provides useful information about

the execution. Since off-line validation provides information about coherence and

state flow, these test aims to characterize the state execution along the time. These

analysis allows to analyze how long it takes the execution of each state and its

contribution to the mission progress. Ideal state execution must provide a constant

progress along time, which is also directly reflected on the global mission progress.

According to this, it can be easily differentiated the states which slows the mission

execution and consequently could be further improved.

Figure 7.23: On-line mission evaluation provides temporal information about the be-
haviors execution and mission achievement. This test allow to characterize the mission
execution and to identify most time consuming behaviors for further improvements.

7.5.2 Group Mission Execution

Next, it is going to be introduced the validation of the group mission. As stated be-

fore, mission is extended by adding the Nao robot to the network. This robot com-

municates goal object location in order to trigger the previously validated mission.

Therefore, the object recognition increases its reliability by fussing the information

from a third sensor. The mission execution sequence is similar to the one depicted

in Fig. 7.22, new steps which includes Nao collaboration are showed in Fig. 7.24.

Since the Agent 1 mission provides slight modifications from the one validated

in Fig and Agent 2 mission is composed just by two states, a time-based state
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Figure 7.24: Nao and Turtlebot interaction sequence.

Table 7.9: Collaborative mission behavior characterization. This analysis provide
useful information for collaboration improvement by both behavior quality increase or
time usage reduction.

State
(Inv. Beh.)

Execution
Time (sec)

Contribution
to mission (%)

Avg.
Performance

NAVIGATION 56.676+52.856 0.29+0.27 0.89
SPOT 18.651 0.096 0.74

APPR-PICK 58.713 0.30 0.93
PLACE-BACK 26.121 0.13 0.95
SPOT TRACK 23.57 0.24 1
SPOT FIX 75.327 0.76 0.62

progress graph is not presented. Instead of this, results are quantified in Table.7.9.

This Table shows the information about the states of both, Agent 1 and Agent 2

missions. Each state is characterized by the amount of time that remains active, the

used percentage of the whole mission and the average performance quality during

that time. This allows to differentiate the most critical states as those that takes

the highest percentage of the execution time. The average performance quality

provides information about the service qualities and behavior progress during the
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mission. Registered performance measures has proved the system to work in the
expected way as all the measures are quantitatively high. Furthermore, future mis-
sion improvements will aim to increase this quality values, especially for those
states which uses a higher percentage of the whole mission.
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7.6 Conclusions
This chapter has introduced a set of experiments designed in order to characterize
the performance of all the developments addressed along this proposal. Experi-
ments involves the analysis of individual and collaborative robot operation within a
real environment. Along these tests, assigned robot missions are achieved by rely-
ing on the Smart Resource service execution. Therefore, the suitability of a Smart
Resource based architecture is evaluated.

According to the presented results, this proposal is established as a suitable so-
lution for robot mission achievement. The integration of Smart Resources provides
a high-level interface for behavior and mission design or evaluation. This integra-
tion allows the system to optimize the resource management by distributing the
operation among a devices network which can adapt its performance according to
the execution context. Task distribution over the Smart Resource network provides
several advantages such as: system scalability, service reuse, problem isolation, etc.
According to this, next chapter summarizes the achievements of this proposal and
detail its main advantages. Furthermore, the lacks and limitations of this proposal
lead to the establishment of future enhancements and related developments.
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CHAPTER

8
Conclusions

According to the presented work and the detailed experiments and results, the

final conclusions can be established. First, the introduced developments are sum-

marized, while a comparison between the initial goals and the obtained achieve-

ments characterizes the degree of success of this proposal.

Figure 8.1: Chapter 8 layout.

Next, the future work derived from this contribution is presented in order to im-

prove the actual performance and bring new functionalities to the system. Finally,
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a list of published articles is related to the chapters and sections introduced along
this work. Furthermore, the research projects, which frame the development of this
thesis, are presented. The layout of the conclusion chapter is depicted in Fig. 8.1.
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8.1 Developments and Achievements
Along this work all the required developments that involves a robot mission exe-
cution have been presented. As a result, a fully functional solution for developing
robot tasks is provided. These solutions have been based on the services provided
by the Smart Resources in the system. As a result, the following achievements have
been addressed:

• Mission execution mechanisms have been abstracted from low-level opera-
tion and physical resources management through the integration of the Con-
trol Kernel Middleware (CKM) framework. Furthermore, the CKMultiPeer
has been introduced as a useful communication framework for peer discovery
and real-time data exchange.

• Smart Resources have been designed to make use of the CKM framework
capabilities to implement a quality-aware mechanism for adapting the ser-
vice execution to the performance requirements. This allows providing an
optimum resource usage, and allowing clients to request a service within a
performance bounds. Furthermore, the Smart Resources can implement a
ROS execution core in order to provide a robot-oriented services, which can
be integrated among most of the commercial platforms. The ROS commu-
nication interface has been integrated into the CKMultiPeer framework by
establishing a ROS MultiPeer Architecture (RMPA). As a result, the func-
tionalities of the CKMultiPeer can be also exploited on ROS communication
networks.

• A robot behavior architecture has been defined based on the Smart Resources
services execution. In this solution, services are accessed in order to support
the execution of the required tasks. When multiple services are accessed, a
composed performance measure is computed in order to characterize the be-
havior execution. Furthermore, the behavior execution progress allows defin-
ing the contribution of the accessed services to the behavior goal achieve-
ment. Individual behaviors are organized in a hierarchical way in order to
establish a robot mission. Therefore, complex missions can be executed as
a sequence of individual behaviors that rely on Smart Resource services for
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low-level tasks execution and complex processing. Moreover, a plan estab-
lishment allows robots within a group to organize its mission execution to
achieve a common goal in a collaborative way. The development of a mis-
sion validation procedure allows checking the coherence and performance of
the designed robot missions in order to characterize its suitability.

• The establishment of environment formal definition allows robots to man-
age the knowledge of their surrounding. In addition, a localization algo-
rithm provides the robots the capability to be aware of its own position in
the map and perform displacements along all the area. As this knowledge
is available, a Smart Resource oriented environment interaction is promoted
through a service-based object classification fusion. This fusion method al-
lows the system to deal with heterogeneous and distributed sensor arrange-
ments. This method also provides mechanisms for object classification, relia-
bility enhancement, and object knowledge aggregation. Furthermore, within
a heterogeneous robot group, partners can enhance the mission execution by
providing heterogeneous environment interaction capabilities.

• Along a set of experiments, all the previously described developments are
analyzed in detail. Thanks to this experiments, it can be analyzed how every
piece of the mission execution system is working in order to achieve the final
goal. It must be remarked that the final purpose of this work is not to provide
a high performance mission execution but to offer a Smart Resource based
architecture that support all the required steps for mission achieving. As
a result, the proposed architecture relies on a distributed services execution,
which promotes a high-level mission and behavior definition, and encourages
reusing the designed Smart Resources on multiple applications.

An overview of the full system development is depicted in Fig. 8.2.
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Figure 8.2: Developed system overview
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8.2 Future Work
Even though the main objectives have been achieved along this thesis, there are
still many possible enhancements and extensions. Consequently, first step for the
future work aims to enhance the global performance of the system by improving the
Smart Resource services. Robot behaviors have been introduced as a composition
of the accessed services. Therefore, an improvement of the individual services can
be reflected in the behavior execution, and consequently it is also reflected in the
mission. Furthermore, the contribution of each Smart Resource to the mission ac-
complishment must be analyzed in order to differentiate the most critical services.
This way, mission-critical services must be prioritized for improvements.

The current mission architecture can only activate one individual behavior at
a time. Because of this, future works will aim to introduce new mechanisms for
multiple behavior execution. Therefore, the robot operation will be characterized as
an emergent behavior as a result of a composition of several individual behaviors.
These mechanisms must offer an optimum management of the Smart Resource
services, especially on those cases where composed behaviors are simultaneously
accessing at the same service.

Finally, future work must aim to characterize this proposal on larger robot
groups. For this purpose, it must be established a set of collaboration tests that
involves well-differentiated robots such as UAVs, humanoids, and mobile robots.
These tests must also include a wider range of sensors (LIDAR, depth sensors, ther-
mal cameras, ultrasounds, etc.) and actuators (motors, arms, different kind of grip-
pers, soft actuators, etc.), larger application scenarios (multiple rooms and floors),
and bigger object collections. Furthermore, the advantages of the RMPA commu-
nication network have to be exploited in order to provide mechanisms for efficient
data sharing among the robot group, and environmental information persistence.

An overview of the future developments is depicted in Fig. 8.3.
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Figure 8.3: Future developments overview
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A
Projects and Publications

Fig. A.1 relates the published articles with the contribution chapters of this
document.

Figure A.1: Publications related with this thesis
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Authors: Eduardo Munera , José Luis Poza Luján, Juan Luı́s Posadas Yagüe,
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Luján, Eduardo Munera , Raul Simarro Fernández

Conference: XXXV Jornadas de Automática
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DE SERVICIO Y DE CONTEXTO PARA UN SENSOR RGBD

Authors: Eduardo Munera , Antonio Terrada , José Luis Poza Luján, Juan
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Figure A.2: Publications over time and related projects
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