
Universidad Politécnica de Valencia
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Abstract

Currently, clusters of PCs are considered a cost-effective alternative to large

parallel computers. In these systems, thousands of computing nodes are con-

nected through a high-performance interconnection network. The intercon-

nection network must be carefully designed, since it heavily impacts the per-

formance of the whole system. Two of the main design parameters of the

interconnection networks are topology and routing. Topology defines the in-

terconnection of the elements of the network among themselves, and between

them and the computing nodes. Routing defines the paths followed by the

packets through the interconnection network.

Performance has traditionally been the main metric to evaluate the in-

terconnection network. However, we have to consider two additional metrics

nowadays: cost and fault-tolerance. Interconnection networks have to scale

in terms of cost, in addition to scale in performance. That is, they not only

need to maintain their performance as the system size is increased, but also

without heavily increasing their cost. On the other hand, as the number of

nodes increases in cluster-based machines, the interconnection network grows

accordingly. This increase in the number of elements of the interconnection

network raises the probability of faults, and thus, fault-tolerance has become

mandatory for current interconnection networks.

This dissertation focus on the fat-tree topology, which is one of the most-

commonly used topologies for clusters. Our aim is to exploit its characteristics

to provide fault-tolerance; and a load-balanced routing algorithm that provides

a good cost/performance tradeoff.

First, we focus on the fault-tolerance of the fat-tree topology. Most of the

works in the literature provide fault-tolerance at the cost of adding resources

xvii



xviii Abstract

to the network, either switches, links or virtual channels. On the contrary to

these works, we provide the same degree of fault-tolerance without increasing

the resources of the network by taking advantage of the abundant plurality

of equivalent paths in the fat-tree. In particular, we define a mechanism

that avoids the use of those paths that lead to the faulty elements, in such a

way that packets that would cross the faults are deviated through non-faulty

paths to their destination. As all the non-faulty paths can be used without

any restriction, the mechanism presents a low performance degradation due

to faults while providing the maximum degree of fault-tolerance that can be

achieved without adding new resources to the network.

Next, we take the challenge of designing a deterministic routing algorithm

that can compete in terms of performance with the adaptive routing algorithms

that are used for the fat-tree topology. Although, adaptive routing algorithms

need more resources to be implemented than deterministic ones, they usually

outperform the latter ones. With our work, we present a deterministic routing

algorithm that obtains similar - or even better- performance than the best

adaptive routing algorithm, but at a lower cost, since it does not require the

use of a selection function in each switch. Furthermore, when in-order delivery

of packets is required, adaptive routing algorithms require the utilization of

additional mechanisms, since deterministic routing algorithms preserve the

delivery order of the packets by design. The results will show that our proposed

deterministic routing algorithm can clearly outperform adaptive routing when

in-order delivery of packets is required.

Finally, we take advantage of the particular characteristics of the proposed

deterministic routing algorithm to simplify the fat-tree topology. This topol-

ogy almost halves the resources required by the fat-tree topology, achieving

in many cases the same performance as the fat-tree. In general, the cost/

performance ratio of the new topology is almost half of the cost/performance

ratio of the fat-tree.



Resumen

Actualmente, los clústeres de PCs están considerados como una alternativa efi-

ciente a la hora de construir ordenadores con un alto grado de paralelización.

En estos sistemas, miles de nodos de computación se conectan mediante una

red de interconexión. La red de interconexión tiene que ser diseñada cuida-

dosamente, puesto que tiene una gran influencia sobre las prestaciones glob-

ales del sistema. Dos de los principales parámetros de diseño de las redes de

interconexión son la topoloǵıa y el encaminamiento. La topoloǵıa define la

interconexión de los elementos de la red entre śı, y entre éstos y los nodos de

computación. Por su parte, el encaminamiento define los caminos que siguen

los paquetes a través de la red.

Las prestaciones han sido tradicionalmente la principal métrica a la hora de

evaluar las redes de interconexión. Sin embargo, hoy en d́ıa hay que considerar

dos métricas adicionales: el coste y la tolerancia a fallos. Las redes de inter-

conexión además de escalar en prestaciones también deben hacerlo en coste.

Es decir, no sólo tienen que mantener su productividad conforme aumenta el

tamaño de la red, sino que tienen que hacerlo sin incrementar sobremanera

su coste. Por otra parte, conforme se incrementa el número de nodos en las

máquinas de tipo clúster, la red de interconexión debe crecer en concordancia.

Este incremento en el número de elementos de la red de interconexión aumenta

la probabilidad de aparición de fallos, y por lo tanto, la tolerancia a fallos es

prácticamente obligatoria para las redes de interconexión actuales.

Esta tesis se centra en la topoloǵıa fat-tree, ya que es una de las topoloǵıas

más comúnmente usadas en los clústeres. El objetivo de esta tesis es aprovechar

sus caracteŕısticas particulares para proporcionar tolerancia a fallos y un algo-

ritmo de encaminamiento capaz de equilibrar la carga de la red proporcionando

xix



xx Resumen

una buena solución de compromiso entre las prestaciones y el coste.

En primer lugar, nos centramos en la tolerancia a fallos en la topoloǵıa

fat-tree. Muchos de los trabajos dedicados a este tema proporcionan toler-

ancia a fallos a cambio de añadir recursos a la red; ya sean encaminadores,

enlaces o canales virtuales. Al contrario que estos trabajos, nuestra propuesta

proporciona el mismo nivel de tolerancia a fallos sin incrementar los recursos

de la red, aprovechando la abundancia de caminos equivalentes disponibles en

el fat-tree. En concreto, se ha definido un mecanismo que evita que se usen

aquellos caminos que lleven a los elementos fallidos, de forma que los paquetes

que fuesen a tomar uno de dichos caminos son desviados hacia su destino por

caminos que no contengan elementos fallidos. Dado que todos los caminos que

no han sufrido un fallo pueden ser usados sin ninguna restricción, el mecanismo

propuesto presenta una degradación de prestaciones mı́nima ante la presencia

de fallos, mientras que proporciona el máximo nivel de tolerancia a fallos que

se puede conseguir sin añadir nuevos recursos a la red.

A continuación nos centramos en el diseño de un algoritmo de encami-

namiento determinista que pueda competir en prestaciones con los algorit-

mos de encaminamiento adaptativos usados en la topoloǵıa fat-tree. Pese a

que los algoritmos adaptativos requieren más recursos que los deterministas

a la hora de ser implementados, los algoritmos adaptativos suelen tener unas

prestaciones mayores que los deterministas. En nuestro trabajo presentamos

un algoritmo de encaminamiento determinista que puede obtener prestaciones

similares, o mayores, que el mejor algoritmo de encaminamiento adaptativo,

pero a un coste menor, puesto que no requiere el uso de mecanismos comple-

mentarios, ya que los algoritmos de encaminamiento determinista proporcio-

nan entrega en orden de los paquetes por definición. Los resultados mostrarán

que el algoritmo de encaminamiento determinista propuesto puede sobrepasar

claramente las prestaciones de los algoritmos adaptativos cuando la entrega

en orden de los paquetes es obligatoria.

Finalmente, nos aprovechamos de ciertas caracteŕısticas de dicho algoritmo

de encaminamiento determinista para simplificar la topoloǵıa fat-tree. La

nueva topoloǵıa prácticamente reduce a la mitad los recursos necesarios para

construir un fat-tree, a la vez que proporciona en muchos casos las mismas

prestaciones. En general, la relación entre costes y prestaciones de la nueva
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topoloǵıa es casi la mitad que la del fat-tree.
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Resum

Actualment, els clusters de PCs estan considerats com una alternativa eficient

a l’hora de construir ordinadors amb un alt grau de paralelització. En aquests

sistemes, milers de nodes de computació es connecten per mitjà d’una xarxa

d’interconnexió. La xarxa d’interconnexió ha de ser dissenyada cuidadosa-

ment, ja que té una gran influència sobre les prestacions globals del sistema.

Dos dels principals paràmetres de disseny de les xarxes d’interconnexió són

la topologia i l’encaminament. La topologia definix la interconnexió dels el-

ements de la xarxa entre si, i entre aquestos i els nodes de computació. Per

la seua banda, l’encaminament definix els camins que seguixen els paquets a

través de la xarxa.

Les prestacions han sigut tradicionalment la principal mètrica a l’hora

d’avaluar les xarxes d’interconnexió. No obstant això, hui en dia cal con-

siderar dos mètriques addicionals: el cost i la tolerància a fallades. Les

xarxes d’interconnexió a més d’escalar en prestacions també han de fer-ho

en cost. s a dir, no sols han de mantindre la seua productivitat conforme

augmenta la grandària de la xarxa, sinó que han de fer-ho sense incremen-

tar en una gran medida el seu cost. D’altra banda, conforme s’incrementa el

nombre de nodes en les màquines de tipus cluster, la xarxa d’interconnexió

ha de créixer en concordança. Aquest increment en el nombre d’elements

de la xarxa d’interconnexió augmenta la probabilitat d’aparició de fallades, i

per tant, la tolerància a fallades és pràcticament obligatòria per a les xarxes

d’interconnexió actuals.

Esta tesis es centra en la topologia fat-tree, ja que és una de les topolo-

gies més comunament usades en els clusters. El nostre propòsit consistix

a aprofitar-nos de les seues caracteŕıstiques particulars per a proporcionar

xxiii
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tolerància a fallades i un algoritme d’encaminament capaç d’equilibrar la

càrrega de la xarxa que proporcione una bona solució de compromı́s entre

les prestacions i el cost.

En primer lloc, ens centrem en la tolerància a fallades en la topologia fat-

tree. Molts dels treballs dedicats a aquest tema proporcionen tolerància a

fallades a canvi d’afegir recursos a la xarxa; ja siguen encaminadors, enllaços

o canals virtuals. Al contrari que aquests treballs, nosaltres proporcionem

el mateix nivell de tolerància a fallades sense incrementar els recursos de la

xarxa, aprofitant-nos de l’abundància de camins equivalents disponibles en

el fat-tree. En concret, definim un mecanisme que evita que s’usen aquells

camins que porten als elements fallits, de manera que els paquets que anessen

a prendre un d’eixos camins són desviats cap al seu dest́ı per camins que

no continguen elements fallits. Atés que tots els camins que no han patit

una fallada poden ser usats sense cap restricció, el mecanisme presenta una

degradació de prestacions mı́nima davant de la presència de fallades, mentres

que provëıx el màxim nivell de tolerància a fallades que es pot aconseguir sense

afegir nous recursos a la xarxa.

Posteriorment, ens centrem en el disseny d’un algoritme d’encaminament

determinista que pot competir en prestacions amb els algoritmes d’encami-

nament adaptatius usats en la topologia fat-tree. A pesar que els algoritmes

adaptatius requerixen més recursos que els deterministes a l’hora de ser imple-

mentats, els algoritmes adaptatius solen tindre unes prestacions majors que els

deterministes. En el nostre treball presentem un algoritme d’encaminament

determinista que pot obtindre prestacions semblants, o majors, que el millor

algoritme d’encaminament adaptatiu, però a un cost menor, ja que no requerix

l’ús de mecanismes complementaris, ja que els algoritmes d’encaminament de-

terminista proporcionen entrega en orde dels paquets per definició. Els re-

sultats mostraran que l’algoritme d’encaminament determinista proposat pot

sobrepassar clarament les prestacions dels algoritmes adaptatius quan l’entrega

en orde dels paquets és obligatòria.

Finalment, ens aprofitem de certes caracteŕıstiques d’aquest algoritme d’en-

caminament determinista per a simplificar la topologia fat-tree. La nova

topologia pràcticament redüıx a la mitat els recursos necessaris per a con-

struir un fat-tree, al mateix temps que proporciona en molts casos les mateixes
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prestacions. En general, la relació entre costos i prestacions de la nova topolo-

gia és quasi la mitat que la del fat-tree.
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Chapter 1

Introduction

“You take the blue pill, the story ends, you wake up in your bed

and believe whatever you want to believe. You take the red pill,

you stay in Wonderland, and I show you how deep the rabbit hole

goes.”

Morpheus, The Matrix.

In this chapter, we describe the reasons that have motivated this disser-

tation (Section 1.1). Then, we briefly define the objectives aimed by the

dissertation (Section 1.2). Finally, we conclude this chapter by presenting the

structure of this thesis (Section 1.3).

1.1 Motivation

Nowadays, large parallel computers with hundreds of thousands of nodes [2,4,

126] are required to meet the computational requirements of a growing set of

applications. These applications need such computational capabilities mainly

due to two main reasons: the complexity of the application itself or the number

of concurrent users of the application. In the first group of applications, we

can include all the applications that help in resolving very complex problems,

such as, high definition multimedia encoding, protein sampling, simulations

of the universe, weather forecast, and so on. These applications for their own

1
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nature are very performance consuming; the more resources they can get, the

sooner they can end.

On the other hand, the applications that belong to the second group do not

need extremely high performance capabilities, but their concurrent utilization

boosts their requirements. For instance, a web page server that supports

dynamic pages with access to a database does not require a high-performance

computer to be executed. However, if the number of users skyrockets, the

requirements to be able to concurrently answer all the petitions from the

users in a reasonable time are also extremely increased. This is the case of

the Internet auction webpage eBay [83], or Google, that is powered by four

hundred thousand personal computers [89].

Most of the high-performance computers are cluster-based computers. Clus-

ter popularity is so high that 82% of the computers of the Top 500 list of June

2009 are clusters [12]. Due to this fact, this dissertation is focused on this

group of high-performance computers.

As it can be seen, high-performance computing is now widely spread and

it is involved in daily activities, like searching a web page on the Internet.

High-performance computing has suffered a tremendous growth, since at the

beginning it was only applied on scientific and military fields. Nevertheless,

this tremendous growth has brought several new challenges to this field that

in the beginning of high-performance computing did not seem so important.

These new challenges are mainly reducing the overall system cost and provid-

ing fault-tolerance.

Concerning the first challenge, a high-performance cluster may cost several

millions of dollars. For instance, the price of a single BlueGene/P [126] rack

is 4.5 millions of dollars [29], a full cluster with Intels Dual Core processors

costs 18.4 millions of dollars [29]. Hence, one of the goals that a designer of

a high-performance cluster must keep in mind is to reduce the system cost as

much as possible or at least avoid increasing it unnecessarily. System cost can

be broken down mainly in two components [68]: the cost of all the elements

that compose it and the development and design costs, both highly related to

the system complexity [68].

The first component may be high, due to the huge number of elements

that compose the whole system. In this cost, designers have to consider all the
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processing nodes; the interconnection network (that includes switches, links,

and network interfaces); disk servers; backup servers; and so on. Just to have

a glance on the number of elements in a cluster, lets consider the RoadRunner

cluster [10], jointly developed by IBM and LANL, that is composed by 12960

IBM PowerXCell 8i CPUs and 6480 AMD Opteron dual-core processors. The

cost of these processors by themselves is very high, but to this cost we have to

add the cost of the interconnection network, the shared disk system and the

managing servers. The interconnection network adds 26 288-port switches and

7488 quadruple links to the total number of elements [69]. As it can be seen,

the total number of components in a high-performance computer is enormous.

So, anything that helps in reducing the cost of the components will have a great

impact on the total system cost, since they are highly replicated. This is why

in the last years, many research works and developments have been focused on

reducing the cost of the clusters while keeping their performance [62, 92, 98].

The second component of the system cost is the development and design

cost. High-performance clusters are becoming so complex that development

and design costs can only be defrayed by hundreds of dollars projects. For

example, the RoadRunner cluster has been a 6 year project with an initial

budget of 100 millions of dollars, in which hundreds of people at LANL and

IBM have been working on. As it can be easily deduced, any step that helps in

reducing the complexity of such systems will have a direct impact on reducing

their development cost, and, therefore, in their final cost.

Moreover, these machines have another cost that is also very important,

the operational and maintenance cost [29, 92]. This extra cost includes the

power consumed by the cluster, the cooling system required to cool down the

computer, and several other issues related to the special facilities where it has

to be installed at. In total, this operational cost may be from 3 to 5 millions of

dollars per year [29]. Moreover, the power consumption problem in computers

is so extreme that 8% of the total power in the United States of the America

in 2007 was consumed by computers [92]. Due to this fact, in the last years,

research on reducing the power consumed by the system has become of great

interest. This can be done in several ways, but most of them are based on the

issues that have been aforementioned: reduce the complexity of the system or

some of its components, or decrease the number of elements without penalizing



4 Chapter 1. Introduction

the system performance [88, 92, 99].

As mentioned before, the second challenge of high-performance clusters is

to deal with their high fault probability due to the large number of compo-

nents that compose them. The global probability of suffering a single fault

in a cluster increases linearly with the number of its elements, since each of

them can independently fail. As it has been aforementioned, high-performance

clusters are built with a very large number of elements, so their global fault

probability is very high, and, therefore, fault-tolerance is a design key issue.

Moreover, the importance of fault-tolerance is increased if the cluster cost is

taken into account, since a cluster that costs several millions of dollars cannot

be stopped due to the presence of a single fault.

This dissertation is focused in the interconnection network of cluster ma-

chines since it covers a high percentage of the system hardware, as it has

been shown in the RoadRunner example. Furthermore, it plays a key role

in the overall system performance [33, 40, 41]. Moreover, failures in the in-

terconnection network may isolate a large portion of the machine containing

several processors that could otherwise be used. So, the improvements made

in the interconnection network will also benefit the rest of the system, in cost,

performance and fault-tolerance. Because of this fact, this dissertation is fo-

cused on the improvement of the cluster interconnection network from these

three points of view: cost, performance and fault-tolerance. In order to do

this, we focus on some of the classical design parameters of interconnection

networks [33, 40]: topology, routing and fault-tolerance.

Topology defines the way in which the processing nodes are connected.

In other words, topology defines the shape of the interconnection network.

This dissertation only considers clusters based on the fat-tree topology [76],

since fat-trees have risen on popularity in the past few years, and the fat-

tree topology has become the default or recommended topology for most of

the commercial cluster interconnect vendors (i.e., Myrinet [8], InfiniBand [7],

Quadrics [9]).

Routing determines the path that each packet follows between two process-

ing nodes through the interconnection network. Routing has a great impact

on the interconnection network performance, fault-tolerance and switch com-

plexity. In cluster-based computers, routing is usually distributed and based
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on forwarding tables. Distributed routing based on forwarding tables relies on

implementing a table at each switch that stores the output port that must be

used for each possible destination node. However, routing based on forwarding

tables suffers from a lack of scalability, as table size grows linearly with the

system size and the time required to access the table also depends on its size.

On the other hand, routing can be classified as deterministic or adaptive.

In deterministic routing schemes, an injected packet traverses a fixed, pre-

determined route between source and destination nodes. In adaptive routing

schemes, a packet may traverse any of the different alternative routes available

from the packet source to its destination. The route for a packet is usually

selected taken into account the status of the network. Adaptive routing usu-

ally better balances network traffic, thus allowing the network to obtain a

higher throughput. However, with adaptive routing, in-order packet deliv-

ery cannot be ensured, which is mandatory for some applications, like some

cache coherence protocols [84]. On the other hand, deterministic routing algo-

rithms usually do a very poor job balancing traffic among the network links,

due to the lack of path diversity. Nevertheless, they are usually easier to be

implemented and easier to be deadlock-free. Moreover, deterministic routing

guarantees in-order packet delivery by design. In general, an adaptive routing

algorithm should outperform a deterministic one.

Regarding complexity, it is usual that fault-tolerance increases the com-

plexity of the routing algorithm, and the whole system. A traditional approach

for fault-tolerant routing algorithms is to start with a non-fault-tolerant rout-

ing algorithm and modify it to tolerate faults. This modifications are usually

the addition of new routes for the packets, mechanisms to detect faults, mech-

anisms to switch the routes of the packets when faults appear, and mechanism

to deal with packets that are directly affected by the faults. As the fault-

tolerant version of a routing algorithm is usually an extension of the original

routing algorithm, it is usually more complex than the non-fault-tolerant ver-

sion.

Just to sum up, this dissertation will make a set of proposals intended for:

• Providing efficient routing in fat-trees, but, at the same time, trying

to reduce the network complexity and, therefore, its cost. This is done

by an efficient load-balanced deterministic routing algorithm that also
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eliminates the forwarding tables, in order to reduce the switch complexity

and the switch power consumption.

• Improving the fat-tree fault-tolerance without increasing the network

complexity by exploiting the rich connectivity of the topology.

• Reducing the hardware of the fat-tree topology in order to reduce the

network complexity and the network power consumption.

1.2 Objectives

This section presents the objectives of this dissertation. As commented in the

previous section, we pretend to provide simple solutions with low hardware

overhead to provide fault-tolerance and efficient routing in the interconnection

network of a cluster based on the fat-tree topology. In order to do this, we

pursue the following goals:

• To propose a fault-tolerant routing algorithm for fat-trees that is able to

tolerate the maximum possible number of faults, but considering several

restrictions about the required resources:

– The proposed fault-tolerant routing algorithm should not be based

on resource replication. Resource replication is the easiest way

to provide fault-tolerance in any system, but it highly increases

its cost. Our proposed fault-tolerant routing algorithm should not

require the inclusion of spare network resources, that is, it should

not need additional switches, links or virtual channels. In other

words, a cluster with our proposed fault-tolerant routing algorithm

should have the same cost than the same cluster without the fault-

tolerant routing algorithm in terms of network resources. This is

especially interesting for large machines, where introducing new

hardware will suppose an additional large cost.

– Furthermore, our proposal should have very low-memory require-

ments at the switches of the interconnection network. That is, the

amount of memory required to tolerate faults should be very low.
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– It should be able to respond to faults in a very short time.

– Additionally, it should be able to only nullify the strictly necessary

paths due to the faults, allowing fully adaptive routing through all

the non-faulty paths. This helps in maintaining the throughput of

the interconnection network as high as possible.

– Finally, it should not disconnect any node of the network due to

faults if there is still a non-faulty path that connects this node to

the rest of nodes of the network. This means that our fault-tolerant

routing algorithm will take advantage of all the available paths in

the topology.

• To develop a deterministic routing algorithm for the fat-tree topology

with the following features:

– Very simple implementation.

– Low-memory and hardware requirements.

– Very short routing time.

– Try to balance the traffic in the network. This will allow it to obtain

almost the same performance than the adaptive routing algorithms

usually used for fat-trees, but with the advantages of deterministic

routing.

In this way, we pretend to simplify the interconnection network, because

adaptive routing requires additional hardware in the network. The chal-

lenging point in this objective is trying to keep the same performance

results as adaptive routing.

• To simplify the fat-tree topology in order to reduce network resources

while maintaining similar performance results to the ones achieved by

the fat-tree topology. In this way, the cost (measured as the amount of

hardware and power consumption) of a cluster with the new topology is

highly decreased, and the cost/performance ratio is improved.
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1.3 Dissertation Outline

The rest of the dissertation is organized as follows. Chapter 2 describes the

fundamentals of interconnection networks and several works related to the

contributions of this dissertation. Chapter 3 presents the FT2EI fault-tolerant

routing strategy. Chapter 4 describes a load-balanced deterministic routing

algorithm for fat-trees. Chapter 5 presents RUFT, which is the resulting

topology of our proposed simplification of the fat-tree topology. The disser-

tation ends with Chapter 6, which summarizes our contributions and their

advantages.



Chapter 2

Background and State of the

Art

“I don’t know half of you half as well as I should like; and I like

less than half of you half as well as you deserve.”

Bilbo Baggins, The Lord of the Rings.

This chapter describes the basics and terminology for understanding the

main aspects of interconnection networks. We do not provide an in-depth view

of interconnection networks, since interconnection networks are very complex

systems, which have several aspects that are not of special interest for the

dissertation. For this reason, we provide a quick introduction to the intercon-

nection networks, and then, we provide a more extensive description of the

issues of interconnection networks that are required to fully understand the

contributions of this dissertation. We refer the reader to the established text-

books on this topic for further background and introductory material [33,40].

Finally, this chapter also summarizes the previous contributions that are re-

lated to the ones proposed in this dissertation.

This chapter is composed by two sections. Section 2.1 is devoted to the

aforementioned background on interconnection networks. Section 2.2 provides

the state of the art in fault-tolerance and routing in fat-trees.

9
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2.1 Interconnection Networks

Interconnection networks are an essential concept in high-performance com-

puting. High-performance computing relies on a high number of computers

working together towards the same objective. This notion implies that com-

puters are able to coordinate themselves, or be directed by specialized software.

In either option, computers need to communicate among them and/or with the

software layer that coordinate them. In order to support this communication,

there must be some kind of infrastructure capable of transporting information

among all the computers, that is, there must be an infrastructure that inter-

connects them all. This infrastructure is the interconnection network, which

is responsible of forwarding the information among the computers of a cluster

as soon as possible.

Interconnection networks have become an essential part of a high-performance

computers, in order to exploit the potential performance provided by the avail-

able high number of computers [40]. The importance of interconnection net-

works can be easily seen with a simple comparison. Imagine a system that

works with two potent engines, which need 10 liters of fuel per second to work

at their maximum power. They are connected to a fuel deposit of unlimited

capacity by a pipe that can deliver 2 liters of fuel per second. As it can be

seen, the engines would not be able to work at their maximum performance

due to the pipe low capacity. Indeed, they would only reach 10% of their

maximum potency. This is the same effect that can be identified in a high-

performance computer, the low capacity of the pipe, the low bandwidth of

the interconnection network in our case, can strongly limit the global system

performance.

Furthermore, the interconnection network does not only play a key role on

the computer performance. It has been shown by several works that it is a

critic point to support fault-tolerance in high-performance computers [28, 43,

70,74,90,94,115,117,128,129], since a fault in the interconnection network may

isolate a large part of the machine containing several expensive and healthy

processing nodes.

In order to fully understand our proposals and the related works, we should

provide a basic background about interconnection networks. For this, in this
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section we provide a small introduction to interconnection networks by pre-

senting their components and several interconnection network design consider-

ations. Then, the most important of these considerations for our contributions

are explained with more details in the following subsections.

2.1.1 Interconnection Network Basics

The interconnection network in a high-performance computer is the commu-

nication infrastructure that forwards the information among the devices that

compose it. These devices may be computers, processors or any other kind

of device. The transferred information is sent from a device, called sender or

origin, to another device, referred to as destination. The information that a

device needs to send to another device must be packetized in order to be trans-

ferred through the network, including all the required control information for

the interconnection network, like origin, destination and type of the packet.

All this control information is encapsulated in the header of the packet. This

work is usually done by a software protocol in the origin of the packet. Once

the packet is ready to be transferred, it is copied to the network interface card

(NIC) of the device. NICs are the first component of the interconnection net-

work that we are introducing. They are responsible of injecting the packets

into the network.

In order to inject packets, NICs must monitor the link of the network at

which they are connected to. When the link is not being utilized, the NIC

can inject a new packet into it, therefore NICs act as some kind of semaphore.

NICs also make the required electrical conversions between the network and

the device, since they may be implemented in different technologies. Notice

that the contrary operation, that is, ejecting the packet from the network, is

done by the NIC of the destination device, following a symmetric procedure.

The interconnection network is also composed by links that are the re-

sponsible of transporting the packets. They can be considered the fundamen-

tal part of the interconnection network, since they are the medium through

which packets traverse the network. We refer to link as the set of wires, or any

other medium, that are used to interconnect one device to another, and allow

sending packets between them. In the first interconnection networks, there

was only one link that connected all the NICs of the system. This kind of
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(a) Bus network. (b) Segmented bus network.

Figure 2.1: An example of shared-medium network (a), and a switch-based

network (b).

interconnection networks are called shared-medium interconnection networks,

and their typical and most widely-used implementation is the bus, which is

represented in Figure 2.1(a). In such networks, the NICs have to be snooping

the link in order to read all the packets, delivering to their corresponding de-

vice only the ones that were directed to it. Also, NICs have to ensure that the

medium is free when their attached device needs to send a packet to a desti-

nation. In case that the medium is free, it just sends the packet. Otherwise,

it has to store the packet while the medium is not free. This waiting time

was the main cause of abandoning the paradigm of shared-medium networks,

since it is proportional to the number of devices in the system, and in large

systems this limitation strongly diminishes the time that each node can use

the network, highly reducing the overall system performance [40,88,99]. This

kind of networks is represented by several well-known commercial networks:

Token Bus, Token Ring, and the first generations of Ethernet.

The most-widely adopted solution to avoid the growing waiting time in

shared-medium networks consisted on segmenting the bus like in Figure 2.1(b),

in which the bus has been segmented by inserting a switch per each node,

represented as small grey boxes. These switches break the medium in smaller

independent parts, thus avoiding the problem of the long waiting times in the

NIC of the shared-medium networks, since in each of those parts the medium

can only be accessed by a fixed number of devices, no matter the number of

total devices in the system. For instance, in the Figure 2.1(b), each of the

links can only be accessed by the switches that it directly connects. In most

cases, in high-performance computers, links are bidirectional, allowing to have

two packets using it at the same time, but each one traveling in an opposite

direction. Furthermore, this also allows to simplify the NICs, since they no
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Figure 2.2: Simplified view of a 4x4 switch.

longer need to snoop the medium to know if it is free or not. As there is only

one NIC per (vertical) link (see Figure 2.1(b)) the link will always be free if

that NIC is not using it. So, the logic to know the state of the link becomes

extremely simple.

Switches act as some kind of intelligent barrier. When a switch receives a

packet from one of its links, it has to route the packet to one of its possible

output links, preventing in this way to flood unnecessarily the entire network

with just a message. For example, in the Figure 2.1(b), when a switch receives

a packet from its right link, it has to check if the packet is directed to the device

this switch is attached at. If that is the case, it just forwards the packet to

the device, and the switches that are at the left of this switch will not see the

packet, thus the network is more efficiently used than in the case of shared-

medium networks.

Switches are composed by several elements. The most important ones

are highlighted on Figure 2.2. Each of the connections between the switch

and a link is made through a port of the switch. As we assume that links

are bidirectional, each of these ports can be split into two symmetric ports

with opposite directions. The input ports are the responsible of receiving
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the packets from the link, and sending the packets to the crossbar when the

arbitration logic indicates it. On the other hand, output ports have to receive

the packets from the crossbar of the switch, and have to forward the packets

out of the switch through their connected output link. Routing logic has to

decide which input port has to be connected to which output port through the

crossbar. Arbitration has to avoid contention of the packets in the crossbar,

allowing to connect only one input to each output port. As contention may

arise, input ports implement buffers to store the packets while they are waiting

to get an assigned port. On the other hand, output ports implement buffers

to decouple the transmission of packets through the output link and their

switch traversing. In this way, if a packet cannot be sent to the next switch,

the packet is stored in the output port and its corresponding input buffer is

released to be used by other packets. Crossbar is a configurable matrix of

connections between input and output ports, dynamically connecting input

and output ports as arbitration and routing logic demand it. Finally, we refer

to the links that connect the switch to the devices or computers as injection

and ejection links depending on their direction, and we refer as network links

to the links that interconnect the switches of the network.

2.1.2 Interconnection Network Design Parameters

As aforementioned, interconnection networks play a major role in the design of

modern high-performance computers. Nevertheless, they are not simple; there

are many factors that may affect the choice of an appropriate interconnection

network at design time. These factors include, but they are not restricted to,

the following:

• Performance. As commented, performance is a key point in intercon-

nection networks, not only from the point of view of raw throughput,

also from the point of view of latency. Latency is a critical design issue

in several systems such as real-time systems.

• Scalability. Scalability is the first design rule that an interconnect de-

signer should keep in mind. Scalability in interconnection networks im-

plies that the bandwidth of the network increases proportionally to the
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number of elements of the system. Otherwise, the interconnection net-

work would become a bottleneck, limiting the efficiency of the whole

high-performance computer. Scalability also implies that network cost

and resources are proportional to the network size.

• Reliability. An interconnection network should be able to deliver infor-

mation in a reliable way. Interconnection networks should be designed

for continuous operations in the presence of a limited number of faults.

• Cost. Cost is becoming one of the most important constrains for inter-

connection networks, as commented previously. Often, the best network

for a given design is too expensive, and the designers have to make

trade-offs between cost and performance.

• Simplicity. Not only for the sake of cost, also because simpler designs can

usually be implemented with higher working frequencies, thus, increasing

the system performance.

Interconnection network designers should reach all of these goals by ma-

nipulating several design parameters. In this chapter, we focus on the most

important ones: topology, switching, routing and fault-tolerance. Neverthe-

less, there are a lot of other design parameters that are not explained in detail

in the following sections because they are not directly related with our contri-

butions, but could also have a great impact on the system performance. As

aforementioned, if the reader desires more information about these issues we

refer him to the established books on this topic [33, 40].

2.1.3 Topology

Topology refers to the static connection of the nodes to the switches, and

the connection among the switches. That is, topology defines which nodes are

connected with which switches and the connections among the switches, defin-

ing the “roads” that packets can follow across the interconnection network.

Several examples of topologies are represented in Figure 2.3. Notice that each

of the lines that connect the nodes in the figure represent two channels, one

in each direction.
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(a) Bidirectional ring. (b) Totally connected. (c) Irregular topology.

Figure 2.3: Example of different topologies to interconnect four nodes.

Nevertheless, topology does not only define the shape, or the road-map,

of the network, it also sets the width of the channels, their length, and other

physical parameters concerning links [40]. In this way, topology defines the

maximum bandwidth of the links, their latency, and the bisection bandwidth

of the network. Therefore, it has a high impact over the interconnection

network performance. Topology can be considered the most important design

parameter since not only performance is highly dependent on it, but most of

the other design decisions of an interconnection usually also depend on the

chosen topology, i.e., the routing algorithm depends on the topology of the

network in most of the cases.

Topologies have been traditionally studied using graph-like representa-

tions, such as the ones presented in Figure 2.3. This is a very simplistic

representation because it does not consider implementation details that may

affect to the topology. Nevertheless, the graph representation of a network

helps to study several interesting properties of the interconnection network:

• Switch degree: The number of channels that connect a switch with its

neighbors1. For example, in the topology presented at Figure 2.3(a),

the degree of all the switches is two; in Figure 2.3(b), the degree of the

switches is three; and in Figure 2.3(c), we can see switches with degree

one, two and three. In case that the number of input channels and output

channels in a switch does not coincide, switch degree is defined as the

maximum value of input switch degree and output switch degree. Input

1Two switches are considered to be neighbors if they are directly connected by a channel.
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switch degree is the number of input channels that connect its neighbor

switches to a given switch. Output switch degree is defined in a similar

way but considering output channels. Switch degree is an important

factor when trying to determine the complexity and cost of the network,

since switches with high degrees are more expensive that switches with

a lower degree. Nevertheless, by using high-degree switches, the number

of switches in the network is reduced. So, designers of networks have

to reach a trade-off between the number of switches in the network and

their degree.

• Diameter: The maximum distance between two nodes in the network.

For instance, the diameter of the network represented in Figure 2.3(a)

is two; the diameter of the one shown at Figure 2.3(b) is one; and the

diameter of the network presented in Figure 2.3(c) is two. Usually, as

the diameter of a network is increased, the latency of the network is also

increased and, at the same time, the throughput of the network is also

reduced. For this, low-diameter networks are commonly the preferred

choice when designing a network.

• Average distance: The average distance between any pair of nodes in the

network. In other words, the average number of hops for a packet that

traverses the network from a source node to a destination node. Average

distance is a more realistic approach to calculate the packet latency in

a network than its diameter, since the diameter of a network represents

the worst possible case which may only eventually appear.

• Regularity: a network is regular when all the switches have the same

degree. From the topologies presented in Figure 2.3 only the topology

shown in Figure 2.3(c) is not a regular topology. Usually, regular topolo-

gies are preferred over irregular topologies, because in regular networks

the performance of the network can be more easily predicted in the de-

sign phase, and easier to implement by using commodity elements.

• Symmetry: a network is symmetric when it looks alike from every node.

From the topologies presented in Figure 2.3 only the topology shown in

Figure 2.3(c) is not a symmetric one. Nevertheless, the reader should
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not associate the regularity of a network and its symmetry, since there

are topologies that are regular and are not symmetric, and vice versa.

• Bisection bandwidth: If the network is segmented into two equal parts,

it represents the bandwidth between the two halves [65]. Bisection band-

width is an important parameter to estimate the throughput of a net-

work, since the throughput of the network is upper bounded by a factor

of this parameter. Commonly, topologies with a high bisection band-

width are preferred over topologies with a low bisection bandwidth.

Topology Types

Topologies are usually classified as direct or indirect. Direct networks are

the networks were all the switches of the network are directly connected to

a processing node [40]. Usually, in direct networks, the switch is integrated

inside the processing node [33], and they are represented like in Figures 2.3 and

2.4. This is the case of some processors in which the switch has been introduced

inside the chip, like in the Alpha 21364 [93]. However, dedicated switches are

commonly used for high-performance interconnection networks [40]. Figure 2.4

represents the most popular symmetric regular direct topologies: meshes and

tori. These topologies are usually represented for a 2D or 3D implementations,

but they can be defined for any number of dimensions. General n-dimensional

meshes and tori can be built by replicating the n − 1-dimensional design n

times, and by properly connecting the switches among them. For example,

a 3-dimensional mesh derived from the one shown at Figure 2.4(a) can be

constructed by replicating 3 times that network, having three 2-dimensional

meshes. In this meshes, we have to connect the switches that are located in

the same position in both networks.

The topologies depicted in Figure 2.4 are mesh-like topologies. All the

topologies that resemble a mesh have in common the interesting characteristic

of having their links arranged in several orthogonal dimensions in a regular

way. In fact, these topologies are particular instances of a larger class of

direct network topologies known as k-ary n-cubes, where k is the number

of nodes interconnected per dimension, and n is the number of dimensions

of the network. The symmetry and regularity of these topologies simplify
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(a) Mesh topology. (b) Torus topology.

Figure 2.4: Two examples of direct networks.

network implementation (i.e, packaging and cabling) and packet routing, as

the movement of a packet along a dimension does not modify the number of

remaining hops in any other dimension toward its destination. For example,

in the network shown in Figure 2.4(a), if a packet has to travel from the upper

right node to the lower left node, the packet would have to make two hops in

the vertical dimension, and two more hops in the horizontal one. If the packet

is forwarded first through the vertical dimension, moving down in the figure, it

would have to make one more hop in that dimension, but the number of hops

in the other dimension remains the same. The same happens if the packet

travels along the other dimension.

In direct networks, as the number of nodes in the system increases, the

total bandwidth and processing capabilities of the computer also increase [40].

Thus, direct networks have been a popular interconnection architecture for

constructing large-scale parallel computers. Nevertheless, as network size in-

creases direct networks have a serious drawback: in order to avoid being a

bottleneck for the system performance, they must be implemented using a

very high number of dimensions, increasing the complexity of the switches

and the wiring. Another possibility is to use a low-dimensional topology with

a large number of nodes per dimension , but in this case the bandwidth per

node is strongly reduced.
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(a) Tree topology.

(b) Fat-tree topology.

Figure 2.5: Two examples of indirect networks.

The solution to this fact was the introduction of indirect topologies in

high-performance computers. The main difference between direct and indi-

rect topologies is that in indirect topologies there are some switches, at least

one, that do not have any processing node directly connected to it. Further-

more, some ports in switches from indirect topologies can be left unused [40].

Figure 2.5 shows two examples of indirect networks. On the contrary to di-

rect networks, indirect networks are always implemented by using dedicated

switches, as it can be seen in Figure 2.5 where switches are represented as

grey boxes and nodes are represented as black circles. Notice that, in both

networks, the upmost switch has half of its ports unused. These switches are

referred to as root switches in tree-like topologies.

In indirect networks, thanks to the switches that do not have any node

connected to them, the bandwidth per node scales with the number of nodes

in the system. If we want to double the number of nodes in the network in

any of the networks from Figure 2.5, we have to replicate the network and

add another layer of switches to connect both parts of the network. In this

way, the bandwidth per node remains constant. Nevertheless, notice that the

number of switches per node is usually higher in indirect networks than in

direct networks, increasing the network cost per node.
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(a) Omega topology. (b) k-ary n-tree topology.

Figure 2.6: Two examples of multistage interconnection networks.

This dissertation is focused on a subset of symmetric regular indirect net-

works known as multistage interconnection networks (MINs). The main char-

acteristic of multistage interconnection networks is that the switches of the

network are distributed in stages, the processing elements are only connected

to the lowest stage of the network, and the switches are only connected to some

of the switches from the previous stage and to some of the switches from the

following stage following a prefixed pattern. The resulting topology depends

on the chosen pattern. Two different MINs are presented in Figure 2.6, both

connecting eight nodes with twelve switches, but each one following a different

connection pattern. Notice that the network depicted in Figure 2.5(b) is not

a MIN since it is not a regular topology.

In MINs, switch ports are divided into up and down ports. The up ports

of a switch are the ports that connect a switch with switches that belong

to the next stage. On the contrary, down ports are the ones that connect a

switch with switches that belong to the previous stage. Usually, the stages

are numbered beginning from the processing nodes. So, the switches that are

directly connected to the processing nodes are considered to belong to the

stage number zero.

MINs are a parametric family of interconnection networks, as they are

defined by two parameters: k and n. k is the number of up or down ports

of every switch in the network. That is, the switch degree is 2 × k since all
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the switches have the same number of up and down ports. n is defined as

the number of stages of the network. In this way, a MIN can connect up to

N = kn nodes, being N the number of processing nodes of the system, by

using nkn−1 switches and nkn bidirectional links. This can be checked with

the topologies from Figure 2.6, where n is three and k is two.

Fat-Tree Topology

Among all the indirect interconnection networks, this dissertation is focused

on the fat-tree topology [76], presented in Figure 2.5(b). If we compare the

fat-tree with the complete tree topology presented in Figure 2.5(a), it can

be clearly seen that both topologies are very similar. Fat-tree was derived

from the tree topology to solve the bandwidth bottleneck problem of the tree

topology near its root. As it can be seen in Figure 2.5(a), in the tree topology

the links that connect the root switch with its neighbor switches can easily

become a bottleneck if more than one switch from one half of the network need

to communicate with some of the nodes from the other half of the network.

The difference between fat-tree and tree topology is that fat-trees get

thicker near the root of the tree by increasing the number of up links in each

stage. In this way, in the fat-tree topology the accumulated bandwidth of all

the channels that connect each stage with its following stage is the same at

all the stages. On the contrary to the tree topology, in the fat-tree topology

there is not a bandwidth bottleneck near the root of the tree. Furthermore, in

the fat-tree topology, all the switches from one half of the network can com-

municate with all the switches from the other half of the network at the same

time.

Nevertheless, this implementation of the fat-tree topology is not physically

feasible. As the network size increases, the number of stages in the network

is also increased, and switch degree is doubled at each stage. Considering

that the maximum number of ports in a switch is limited by technological

constraints such as the pin out of the switches, the depicted implementation

of the fat-tree becomes nearly impossible for current clusters. For this reason,

we focus on an equivalent topology to the fat-tree that only uses switches of a

fixed degree: the k-ary n-tree topology [101]. k-ary n-trees are a sub-family of

the MINs. Remember that, k represents the number of up links of the switches
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of the network, and n represents the number of stages of the network. A 2-ary

3-tree is represented in the Figure 2.6(b), being k equal to two and n equal to

three. We focus on this topology since it has risen in popularity in the last few

years, as it has become the suggested or the default topology for most of the

commodity high-performance interconnects vendors (Myrinet [8], Quadrics [9],

and Infiniband [7]).

In this dissertation, we make use of a specific nomenclature and a number-

ing for the nodes, switches, and links of the k-ary n-tree topology. An example

of a 2-ary 3-tree can be seen in Figure 2.7. On one hand, the numbering for

nodes and switches is very simple; both are numbered beginning from zero up

to the number of nodes, or switches, minus one. This numbering corresponds

to the red numbers that are above nodes and switches in Figure 2.7(a). In

addition to this identifier, nodes and switches are labeled in a more formal

way. Each processing node is represented as a n-tuple {0, 1, ..., k − 1}n, that

is, nodes are labeled with n components whose value vary between 0 and k−1.

This label is represented with black numbers inside the nodes in Figure 2.7(a).

Switches are defined as a pair 〈s, o〉, where s is the stage the switch is located

at, s ∈ {0..n-1}, and o is a (n−1)-tuple {0, 1, ..., k−1}n−1 which identifies the

switch inside the stage. This second component of the switch identifier is the

same than the one received by the nodes, but with one less component. This

formal labeling for switches can be observed inside the switches of the Figure

2.7(a).

In addition, we will use the following link numbering in the switches of a

k-ary n-tree: down links (highlighted in blue) are labeled from 0 to k− 1, and

up links from k to 2k − 1 (see Figure 2.7). So, down link labels are always

lower than k, and up links labels are always equal or higher than k.

By using this labeling, we can easily establish if two switches are connected

by performing a simple comparison. Formally, two switches 〈s, on−2, ..., o1, o0〉

and 〈s′, o′n−2, ..., o
′

1, o
′

0〉 are connected by a link, if s′ = s + 1 and oi = o′i for

all i 6= s. In other words, two switches are directly connected by a link if

they belong to consecutive stages of the network, and the components of the

second element of their labels are equal but the sth, this is the component

corresponding to the stage where the lower switch is located at.

On the other hand, we can establish a similar relation between processing



24 Chapter 2. Background and State of the Art

7

5

3

0

1

2

4

6

2,00

2,01

2,10

2,111,11

1,10

1,01

1,000,00

0,01

0,10

0,11

111

101

100

010

000

001

011

110

0

1

2

3

4

5

6

7

10

11

9

8

(a) Node and switch nomenclature.

.

.

.

0

k−1

k

2k−1

.

.

.Down links Up links

(b) Link numbering.

Figure 2.7: Used nomenclature and numbering for nodes, switches and links.



2.1. Interconnection Networks 25

nodes and switches from the first stage of the network. Formally, there is a link

between the switch 〈0, on−2, ..., o1, o0〉 and the processing node pn−1, ..., p1, p0

if oi = pi+1 for all i ∈ {n− 2, ..., 1, 0}. That is, a processing node and a switch

are connected, if the switch belongs to the lowest stage of the network, and all

the components of the second element of its label are equal to the components

of the processing node identifier discarding the least significant one.

2.1.4 Switching Techniques

The next main design parameter of an interconnection network is the switch-

ing technique. Switching techniques define the timing and conditions required

to allocate the resources of the network for the packets that cross it. These re-

sources may include the crossbar connection, switch buffer ports, flow-control

logic, and so on.

Switching techniques impose several aspects in the switch and network in-

terface cards that may have a high influence over the performance, fabrication

cost and power consumption of the elements of the network. As an example,

switch port minimum buffer size is fixed by the switching technique. As it

will be seen, packet switching forces the buffer size to be a multiple of the

packet size, whereas wormhole allows to use buffer whose size is smaller than

the packet size. Furthermore, switching techniques also fix the range of pos-

sible buffer sizes for the switch ports. In this way, switching technique has a

high impact on network cost and power consumption [88]. In addition, the

switching technique may force the delay before the routing and arbitration op-

erations when a packet reaches a switch. A switching technique that imposes

a long delay before the routing operation after the packet arrival to a switch

should obtain a low throughput and high average packet latency.

Switching techniques can be mainly distinguished by the relative timing of

the resource allocation operations. For the purpose of comparison, we consider

the computation of the base latency of an L-bit packet in an empty network

for each switching technique. Channels can transfer up to W bits per clock

cycle. The packet header is assumed to be of size W bits, being the total

packet size L+W . Switches can route packets in tr clock cycles, and channels

operate at a frequency of B Hz, which gives a channel delay of tw = 1/B.

Channel bandwidth is BW bits per second. Once, a path has been set up in
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a switch, the time that a packet needs to traverse a switch is ts. Finally, we

assume that the distance between source and destination nodes is d hops.

Circuit Switching

In circuit switching, the network establishes a reserved path between source

and destination nodes prior to the transmission of the packet. This is per-

formed by injecting in the network the header of the packet, which contains

the packet destination. The header of the packet acts as some kind of routing

probe that progress toward the destination node reserving the channels that

it uses. When the probe reaches its destination, a complete path between

destination and source nodes has been set up, and a acknowledgment is sent

to the source node to start with the transmission of the packet. As the path

has been reserved for this packet, it can cross the network avoiding colliding

with other packets. The circuit reservation is undone when the packet com-

pletely crosses each intermediate switch. Circuit switching has been employed

in several commercial products, like the Intel iPSC/2 processor [97].

Circuit switching can be very advantageous when packets are very infre-

quent and long. Nevertheless, this switching technique has several important

drawbacks. If circuit set up time is long compared to transmission time of the

packets, it will strongly penalize the performance of the network since channels

will be underused. Additionally, as channels are reserved for a given packet, no

other packets can use them despite that the packet that reserved the channel

may not be using it, thus channels may become even more underused.

Using the proposed values to compare base latency of packets, the base

packet latency of circuit switching is:

tcs = tsetup + tdata (2.1)

tsetup = d[tr + 2(ts + tw)]

tdata =

⌈

L

W

⌉

tw
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Store and Forward

This switching technique is also known as packet switching. On the con-

trary to circuit switching, there is not path set up phase on this switching

technique. Packet data is transmitted immediately after packet header trans-

mission. When the packet arrives to a switch, the switch waits to store the

whole packet in its input port buffer to read the destination of the packet and

perform the routing. So, input port buffers must be at least of size equal to the

maximum possible packet size, in order to be able to store the whole packet.

Opposite to circuit switching, base latency of packets is only composed by the

transmission time of the packet through the network, and it can be computed

as follows:

tps = d

{

tr + (ts + tw)

⌈

L + W

W

⌉}

(2.2)

As it can be seen, latency is dominated only by the packet size and the

distance between the nodes, which is a high reduction compared to circuit

switching. However, notice that store and forward relies on using buffers at

the switches, increasing the cost and complexity of switches compared to the

ones from circuit switching.

Virtual Cut-Trough Switching

Packet switching is based on completely receiving a packet before any routing

decision can be made. But, this is a very conservative, since packet header

contains all the required information to perform the routing at the switches,

and it is physically located at the beginning of the packet. So, packet routing

process can be started as soon as the packet header has arrived to a switch,

without waiting for the rest of the packet. This is what is done in virtual

cut-through (VCT) switching. Base latency is as follows:

tV CT = d(tr + ts + tw) + max(ts, tw)

⌈

L

W

⌉

(2.3)

In this case, the impact of the packet size is smaller than in packet switch-

ing, and the base latency for this switching technique is more influenced by

the distance between the nodes. Despite this, buffer requirements are the
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same for VCT and packet switching because, in VCT, when a packet cannot

advance through the network it has to be completely stored in the buffers

of the switches. This is the switching technique commonly-used in off-chip

high-performance interconnects [33, 40].

Wormhole Switching

The requirement to completely store a packet in the buffer of a switch makes

difficult to design a small, compact, and fast switch [40, 88]. For this reason,

in wormhole switching, packets are divided in smaller parts of fixed size called

flits. Buffers at the ports of a switch only have to provide enough space to store

one flit, instead of the whole packet. Thus, buffer requirements are strongly

reduced making possible to introduce high-performance networks in heavily

constrained environments like networks on-chip [88]. In wormhole, when a

packet cannot advance through the network, it is stopped and it does not

release the buffers and channels that the packet is using. The stopped packets

can be allocated in several switches and they resemble worms that are trying

to traverse the network. Wormhole packet base latency is the same than VCT

base latency, since the buffer size difference between both techniques only

influences when the number of packets in the network is enough to provoke

collisions among them [40].

2.1.5 Virtual Channels

Virtual channels [32] where introduced in the interconnection networks for

throughput improvement purposes. In [42], the authors showed that a typical

switch can only achieve an efficiency of 58.6% due to the effects of the Head

of Line blocking (HOL) effect. HOL is produced in the input buffers of the

switches when a packet in the head of the buffer is stopped for any reason, but

at least one packet in that queue could be forwarded through the crossbar,

since the output port it demands is free. However, this second packet cannot

be forwarded since the packet on the head of the queue is blocking its advance.

In a switch with virtual channels, there are several input and output parallel
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buffers per each port like in Figure 2.82. For example, in Figure 2.8(a), each

input port has two virtual channels, since the buffers of each physical port

have been duplicated. Each input and its corresponding output buffer act as

a virtual channel or port. Virtual channels are treated like physical channels.

That is, arbitration logic has to be extended to arbitrate among the different

virtual channels, and packets can only change from one virtual channel to

another one in the crossbar. By using virtual channels, as we have several

virtual networks, when a packet at the header of the queue is blocked, it only

affects to the packets of that virtual channel. Despite the benefits of virtual

channels, notice that they increase the switch complexity and cost.

Concerning buffer requirements, virtual channels can be implemented in

two ways. The first one is a very conservative scheme that departs from a

switch without virtual channels, and just split the buffers of the switch ports

to form the virtual channels. In this way, the buffer requirements at the ports

of the switch are not increased, since the total buffer capacity per port remains

the same. The second one, is mire aggressive; instead of splitting the buffers

at the switch ports, it fully replicates them. This approach obtains better

results than the previous one, but the buffer requirements per switch port are

multiplied by the number of virtual channels.

Despite the fact that virtual channels may be implemented without increas-

ing the buffer requirements of the switch by sacrificing network performance,

the use of virtual channels involves introducing several extra logic, as it can be

seen by comparing the Figure 2.2, which represents a typical switch without

virtual channels, and Figures 2.8(a) and 2.8(b), which show two different ways

to implement virtual channels in a switch. First, we focus on the multiplexed

crossbar implementation shown in Figure 2.8(a). As it can be seen, virtual

channels require a demultiplexer at their input ports to virtually split the sin-

gle physical channel into several virtual channels, two in this case. When a

packet reaches the input port, the switch logic stores it in the input buffer

corresponding to the virtual channel indicated in the packet header. In this

implementation, crossbar size is not increased, comparing it with the one from

2Notice that in the figure only one direction is represented for the sake of clarity, but the

number of multiplexers, demultiplexers and virtual channel connections inside the switch is

twice the one shown in the figures.
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a switch without virtual channels. Therefore, virtual channels have to be mul-

tiplexed to enter the crossbar, and demultiplexed when they have crossed it.

Notice that arbitration becomes a two-step process, since it has to decide to

which of the virtual channels per each port has to be granted the access to

the crossbar, and after that it has to perform the traditional channel arbitra-

tion. Arbitration phase is heavily increased since finding an optimal resource

matching in a non-multiplexed crossbar is not a trivial problem [37], and it

can decrease network throughput, also increasing packet latency [38]. Finally,

the packet is stored in the output port, and the switch has to perform an

additional arbitration process to decide which of the virtual channels can use

the output channel.

In the other hand, virtual channels can be implemented by using non-

multiplexed crossbars like the one shown in Figure 2.8(b). In this imple-

mentation, there are not multiplexers and demultiplexers between the virtual

channels and the crossbar, which considerably simplifies the arbitration pro-

cess. Nevertheless, notice that crossbar size has been multiplied by the square

of the number of virtual channels, since a N × N crossbar has become a

(CV × N) × (CV × N) crossbar, being N the number of ports of the switch,

and CV the number of virtual channels. Furthermore, this increase in the

crossbar size implies that arbitration phase becomes more complex and slower

since it has a higher number of resources to match.

To summarize, virtual channels has shown that they are a good approach to

improve switch effective throughput, but no matter how they are implemented

they have a significative impact on switch complexity and cost, in terms of

logic and buffer requirements.

2.1.6 Routing Technique

Topology defines all the paths that a packet can take along the network. Nev-

ertheless, there must be a mechanism that defines which route from all these

possible paths is going to be used by a packet when it tries to cross the network

from its origin to its destination. This is the role of the routing algorithm in an

interconnection network. The routing algorithm is the responsible of deciding

the path across the network for all the packets. The routing algorithm has a

great impact over the system performance. For instance, if the routing algo-
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rithm tends to use always the same channels, these channels will be overused,

creating a hot spot of traffic, while the rest of the channels of the network are

underused. In this way, the routing algorithm can become a bottleneck for

the system performance. So, from the point of view of the performance, the

routing algorithm should try to keep balanced the utilization of the links of

the network.

Another important aspect of routing algorithms shows up when we consider

the fact that packets may collide in the switches. It is very common that two

or more packets located at different input ports of the same switch, request to

use the same output port. In this situation, the port can only be granted to one

of the requesting packets. The chosen packet will be forwarded through the

output port, while the other requesting packets remain stored in the buffers

of the input port without progressing through the network. When the packet

that got the output port is completely transmitted, the port is granted to

another of the requesting packets, and in this way, all the packets from the

network can reach their destinations even in the case that they collide with

other packets in the switches.

Nevertheless, the packet that got the output port may not be able to com-

plete its transmission if it is involved in a deadlock. Deadlocks may arise

when a set of packets cannot advance through the network because the re-

sources that they need are being used by another packet from this set. In this

way, packets keep waiting in a cyclic-like way to the other packets to release

the resources that they need to progress through the network. This can be

better understood with the example presented in Figure 2.9. In the figure, we

can see a typical example of deadlock. The deadlocked packets are highlighted

in blue. These packets are stopped since the space they require in the next

switch of their route to store them is not available. The next switch for each

packet is indicated with a blue arrow. As it can be seen, packet labeled as 1 is

waiting to get space in the switch where packet labeled as 2 is stored. Indeed,

packet 1 is waiting that packet 2 leaves the switch to go on with its travel

through the network. In a more formal way, we say that packet 1 depends on

packet 2. In the same way, packet 2 depends on packet 3, packet 3 depends on

packet 4, and finally packet 4 depends on packet 1. None of the deadlocked

packets will be able to go on traversing the network, since they all are waiting
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Figure 2.9: Example of a deadlock of 4 packets in a mesh network.

in a cyclic dependency.

In order to avoid deadlocks, we have to consider the channel dependency

graph (CDG) of the routing algorithm. In the CDG, the channels are the nodes

of the graph, and the edges represent the dependencies among the switches.

That is, in the CDG, we will draw an edge between two nodes, if the routing

algorithm allows a packet at the first node arrives to the second one. In

this graph, deadlocks can be easily identified as loops. If there is a loop in

the CDG, then packets may deadlock. More formal and extensive information

about CDG and avoiding deadlocks in routing algorithms is available in [39,40].

Routing Algorithms Taxonomy

There are several criteria to classify routing algorithms, so we only explain the

most representative ones for the work presented in this dissertation.

In first place, routing algorithms can be classified according to the min-

imality of the routes that they provide. A routing algorithm is classified as

profitable, or minimal, if it only provides the shortest routes between the

source and destination routes for all the packets. In the other hand, if the

routing algorithm enables using larger routes for packets, we say that it al-

lows misrouting packets, and the routing algorithm becomes non-minimal. For

instance, consider the case shown in Figure 2.10, in which the node in dark
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Figure 2.10: Difference between non-minimal path (in red) and minimal path

(in light blue) between two nodes in a mesh.

blue requires to send a packet to the node in red. One of the minimal routes

between both nodes is highlighted in light blue. A minimal routing algo-

rithm would only provide that route or an equivalent route of the same length

between the source and destination nodes. On the contrary, if the routing

algorithm allows misrouting a packet through a longer route, such as the one

highlighted in red, the algorithm will be classified as non-minimal. Usually,

minimal algorithms are the preferred choice since they provide shorter routes

than non-minimal algorithm, thus lowering the average latency of the packets.

Despite of this fact, there are several scenarios where non-minimal algorithms

are very useful. That is the case of several congestion management techniques,

and fault-tolerant routing algorithms.

Notice that with the use of misrouting, packets may enter in a livelock.

Livelocks are very similar to deadlocks, since both imply that packets never

reach their destination after being injected in the network. Nevertheless, on

the contrary to deadlocks, in a livelock, packets are never stopped, they keep

moving through the network indefinitely without reaching the destination

node. Livelocks should also be avoided when considering to design a non-

minimal routing algorithm, as well as deadlocks.

In addition, routing algorithms can be also classified taking into account
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where the routing decisions are taken. If the routing decisions for all the

packets in the network are taken in a single place, the routing algorithm is

centralized. This central element that route the packets of the interconnection

network may be a dedicated computer, or a piece of software in any of the

computing nodes of the cluster. On the other hand, if the routing decisions

for each of the packets are taken in their source nodes, it is said that the

routing algorithm uses source routing. In source routing, the source node

computes the path prior to packet injection and stores it in the packet header,

which may noticeably increase the packet header length. Source routing has

been used in some networks because routers are very simple [8, 15]. In this

routing scheme, the switches of the network just read the stored route in the

packet header and forward the packet through the indicated output port, which

makes routing very quickly and switches very simple. Nevertheless, storing the

whole route in the packet header does not scale, since packet header size grows

with network size. For this, source routing is not usually used in high-scale

supercomputers. Finally, if the routing decisions are taken in the switches, the

routing algorithm becomes distributed. In distributed routing, source nodes

store the identifier of the destination node into the packet header instead of

storing the route for the packet, which makes shorter the packet header. In

distributed routing, the switches use the identifier of the destination from the

packet header to dynamically construct the route for each packet by computing

the next link that will be used by the packet while the packet travels across

the network. Distributed routing has been used in most high-performance

routers for efficiency reasons, since it allows more flexibility, as it allows to

exploit the fact that, at each switch, different ports can be available to reach a

given destination (distributed adaptive routing). Notice that with distributed

routing, switches require additional logic in order to take the routing decisions,

thus increasing the complexity of the switches.

Centralized routing was mainly used on the first interconnection networks.

Nowadays, is considered to be outdated, since centralized routing does not

scale with the network size. As the number of elements of the network in-

creases, the central element that performs the routing decision becomes a bot-

tleneck limiting the performance of the network. This is the case of the Cell

BE processor [16]. Distributed routing has become the common case for high-
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Figure 2.11: Difference between deterministic routing (in light blue), partially

adaptive routing (in red), and fully adaptive.

performance routing [7, 9], since it is more easily to assemble a cluster with

commodity components and provide adaptive routing. Nevertheless, source

routing is used in several high-performance networks where the complexity of

the switch is a key point [1, 8, 31].

The last way of classifying the routing algorithms is the most important

for the work presented in this dissertation. Routing algorithms may also be

classified depending in the number of alternative routes that they provide to

communicate two nodes of the network. A routing algorithm that only pro-

vides a single prefixed route for each source-destination pair is a deterministic

routing algorithm. For instance, in Figure 2.11, if all the packets sent from

the node S to the node D always follow the route highlighted in light blue,

the network is using deterministic routing. Packets between those two nodes

cannot deviate from this route, no matter if the route is being occupied by

other packet and all the other routes in the network are free. As it can be seen,

with deterministic routing the traffic of the network may make an unbalanced

use of the network links depending on the traffic pattern, thus limiting the

performance of the network.

For this reason, it was proposed to adapt the route of the packets to

the traffic conditions of the network, providing adaptive routing. Commonly,
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adaptive routing is implemented in conjunction with distributed routing schemes,

since adaptive routing does not easily fit in centralized and source routing

schemes. In a centralized adaptive routing scheme, the central routing ele-

ment would require to gather instantly information from the entire network in

order to optimally adapt the route for all the packets in the network, which

limits even more the scalability of this kind of schemes. On the other hand,

adaptive source routing is also quite limited since the only decision is taken

in the injection of the packet, and the conditions of the network may change

noticeably while the packet travels along the network.

In adaptive routing, there are several routes between the source and desti-

nation nodes. The decision of which route is going to be used for each packet

from all the possible ones is taken at each switch by the selection function. The

routing algorithm returns several useful output ports that can be used in the

current switch and the selection function decides which of the ports returned

by the routing algorithm will be finally used. This decision is based on local

information to the switch, using this local information as some kind of heuris-

tic to know the traffic status of the interconnection network. For instance,

the routing algorithm returns that the packet can be forwarded through two

different output ports; at this point the selection function looks to the buffers

of the candidate output ports, and chooses the one whose buffer has more free

space. This selection function chooses the output port whose buffer has more

free space, since it considers that this output port is less used than the other

one, so the packet would be able to arrive sooner to its destination than using

the other output port. This is only an example of selection function, as the

selection functions may use very different criteria to make the final decision,

as it can be seen in [50].

Adaptive routing algorithms may be subdivided into two groups depend-

ing on whether they allow using all the possible routes between source and

destination nodes or not. If the routing algorithm only allows using a set

from all the possible routes from source and destination nodes, the routing

algorithm becomes partially adaptive. On the contrary, if the routing algo-

rithm allows using all the routes provided by the topology from source and

destination nodes, the routing algorithm is a fully adaptive routing algorithm.

Figure 2.11 shows an example of partially adaptive routing in red. As it can
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be seen, the routing algorithm provides two different routes from node S to

node D, but they are only a subset from all the possible routes between these

nodes. A fully adaptive routing would provide all the routes from the network

indicated by an arrow no matter its color. That is, a fully adaptive routing

algorithm will allow using the blue, red and black routes.

As commented, adaptive routing usually provides a higher performance

than deterministic routing due to its capacity to adapt the routes of the packets

to the conditions of the network. Nevertheless, adaptive routing requires a

selection function at the switches, increasing their complexity. In deterministic

routing, a selection function is not required, since there is only one route for

all the packets. Furthermore, there are several applications that require in-

order delivery of the packets [84]. Infiniband technology also requires in-order

delivery of packets, dropping all the packets that arrive out-of-order to their

destination [7]. In deterministic routing, in-order delivery of the packets is

provided by default. As all the packets from a given node to another node

always follow the same route, there is no way that a packet can overtake a

previous packet. Whereas, in adaptive routing, as packets between two nodes

may follow different routes, the order of the packets may not be preserved since

the traffic conditions of the different routes may be different delaying more

some packets than others. In order to preserve in-order delivery of packets

with adaptive routing, the designer should apply additional techniques, which

increase even more the complexity of the network when we compare them

with deterministic routing, since these techniques are based on having large

buffers at the source and destination NICs that perform a reordering of the

packets that do not arrive in order [86], or on performing this reordering at

the switches by means of virtual channels and/or operations to move packets

in the buffers of the switches [23].

Routing in Fat-Trees

Fat-tree topology has a great diversity of routes between every pair of nodes,

as it can be seen in Figure 2.12. The figure shows all the possible paths from

node 1 to node 6 highlighted in red. As it can be seen, between these two nodes

there are four possible different, but equivalent, routes. This great diversity

of routes makes the fat-tree an excellent topology for adaptive routing. For
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Figure 2.12: All the possible routes for a packet from node 1 to node 6 in a

2-ary 3-tree.

this reason, we focus on minimal adaptive routing in fat-trees.

In order to perform minimal routing in fat-trees, we have to identify the

switches that are the nearest common ancestor of the packet source and des-

tination nodes. A common ancestor of two nodes is a switch that is able to

reach both nodes by utilizing only down links. For example, in the network

presented in 2.12, switch 7 and 11 are common ancestors of nodes 5 and 7, but

switches 2 and 5 are not common ancestors of these nodes since they cannot

reach both nodes only using down links. From the set of common ancestors

of two nodes, the nearest common ancestors are the ones that belong to the

lower possible stage. For example, in the same figure, the nearest common an-

cestor of nodes 5 and 7 are the switches 6 and 7, whereas the nearest common

ancestors of nodes 1 and 6 are the switches 8, 9, 10, and 11.

Minimal adaptive routing in fat-trees is performed in two phases. The first

phase is the ascending phase of the routing algorithm, since the packet travels

from one of the processing nodes located at the leaves of the tree upwards

to the root of the tree. This phase is fully adaptive, that is, at each switch

reached in this phase, any of its up ports can be used. Ascending phase ends
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when the packet reaches one of the nearest common ancestors between the

source and destination nodes of the packet. As this phase is fully adaptive,

it is enough to identify only the stage at where the nearest common ancestor

switches are located. There is no need of identifying them individually, since

all of them are located at the same stage and any of them can be reached

during the ascending phase of the routing algorithm.

In a formal fashion, the stage at which the packet must be forwarded up

to is obtained by comparing the source and destination identifiers compo-

nents beginning from the (n − 1)th, the most significant one. The first pair

of components that differs indicates the last stage to forward up the packet.

For instance, in order to send a packet from the node pn−1, ..., p1, p0 to the

node p′n−1, ..., p
′

1, p
′

0, the packet must be sent up to the stage i, if pj = p′j for

j ∈ {n − 1..i + 1} and pi 6= p′i. For example, a packet traveling from node 4

(〈100〉) to node 6 (〈110〉) has to reach the second stage of the network, since

this is the first different component between both identifiers beginning from

the most significative one.

Once the packet has reached the stage at where the common ancestors are

located, the second phase of the routing algorithm begins. In the second phase,

there is only one possible path from any of the nearest common ancestors to

the destination node. Hence, this second phase is deterministic. Once in the

descending phase, at each stage, the descending link to choose is indicated by

the component corresponding to that stage in the destination n-tuple. In the

previous example, from stage i, the packet must be forwarded through link p′i
at stage i, at stage i − 1 through link p′i−1, and so on.

For instance, in Figure 2.12, a packet generated at node 0 whose destination

is node 2 will be forwarded up to stage number one (through switch 〈0, 00〉

and choosing either path to 〈1, 00〉 or 〈1, 01〉). From any of these switches, the

remaining bits (bits 1 and 0) of the destination identifier (10 in our example)

correctly forwards the packet to node 2.

Notice that the deterministic path on this second phase completely depends

on the reached switch during the ascending phase, therefore, the decisions

made during the adaptive phase may be critical to balance the traffic in the

network. However, despite the reached switch in the ascending phase, the

combination of down ports that delivers the packet to its destination during
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the descending phase is always the same and is given by the destination n-

tuple.

Routing Implementation Schemes

In this section, we focus on the implementation of distributed routing algo-

rithms. As we intend to propose a fault-tolerant adaptive routing algorithm

and a deterministic routing algorithm for fat-trees both using distributed rout-

ing, we analyze the advantages and disadvantages of the most common schemes

to implement distributed routing algorithms.

The first presented routing implementation scheme is the logic-based one.

In this scheme, the switches have a dedicated hardware that performs all the

required operations to take the routing decision. Following with the example

of the previous section, this hardware in a fat-tree using adaptive routing has

to check whether the packet is in its first routing phase or in its second one; in

case the packet is the first phase, it must check whether the packet has to begin

the second phase or not. If the packet continues in its upwards phase, all the up

output ports are returned. If the packet has to begin the downwards phase, the

only link to return is the destination component corresponding to the current

stage. This implementation scheme is extremely fast and efficient since it is

fully implemented on hardware. Nevertheless, it lacks from flexibility, since

hardwired logic cannot be changed to adapt to the changes in the network.

Hence, this is not a good scheme for fault-tolerance.

Many of the large parallel cluster-based machines usually base their routing

on forwarding tables. In the forwarding tables routing scheme, there is a table

at each switch that stores, for each destination node, the output port that

must be used. Despite that this scheme was only first used with deterministic

routing, it can be extended to support adaptive routing by storing several

outputs in each table entry [85]. The main advantage of table-based routing is

that any topology and any routing algorithm can be used. So, it may seem a

good scheme for fault-tolerance. However, routing based on forwarding tables

suffers from a lack of scalability, as table size grows linearly with the network

size. Moreover, the time required to access the table also depends on its size,

so it is also increased with the system size.

Another alternative is the Interval Routing (IR) routing scheme [111]. IR
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is a scalable distributed routing scheme since its requirements do not grow

linearly with network size. IR is based on grouping the destinations that are

physically reachable from the same output port of a switch into an interval.

Switches route packets through the output port whose interval contains the

destination of the packet. To implement IR, it is sufficient to store the bounds

of each interval and perform a parallel comparison. Despite that routing with

intervals may seem very limited, hypercubes, n-dimensional meshes with de-

terministic routing, and multistage networks support IR [20]. Moreover, some

generations of the Quadrics network [9] have used IR. In addition, in [62], IR

was extended with the proposal of Flexible Interval Routing (FIR), a rout-

ing strategy for switch-based networks that allows to implement the most

commonly-used deterministic and adaptive routing algorithms in meshes and

tori.

2.1.7 Fault-Tolerance

Fault-tolerance is the capability of a system to keep working correctly in the

presence of faults. When a fault appears in a non-fault-tolerant system, it

may stop working at all or it may keep working but without ensuring that the

results of its operations are correct. In a fault-tolerant system, we can ensure

both properties under the presence of faults: the system keeps working and

its results are not corrupted by the fault.

In fault-tolerance, the most important terms are reliability, availability, and

dependability [104]. Reliability refers to the ability of the system to operate

continuously without failing. Reliability, in the most relaxed form, is defined

by the exponential distribution, which assumes that the probability of faults

is random, and they affect to random elements of the system:

R(t) = e−λt (2.4)

λ represents the failure rate of the system expressed as the percentage

of faults per time (usually expressed as faults per one thousand hours or as

faults per hour). The Mean Time Between Faults (MTBF) is derived from

the previous equation, as the average time a system will run between two

consecutive faults. MTBF is usually expressed in hours and it is defined by
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Table 2.1: MTBF of several large-scale high-performance computers.

Computer #CPUs MTBF

ASCI Q 8192 6.5 hours, 114 unplanned shutdowns/month

ASCI White 8192 5 hours (2001), 40 hours (2003)

Seaborg 6656 14 days

Lemieux 3016 9.7 hours

Google more than 100k 20 reboots/day

Abe 9600 6 hours

BlueGene 65535 6.16 days

the next equation:

MTBF =

∫

∞

0

R(t) =

∫

∞

0

e−λt =
1

λ
≈

1

1 − R(t)
(2.5)

Table 2.1 shows the measured MTBF for several real large-scale high-

performance computers. These values where obtained from [3, 11, 73, 91, 108,

114]. Notice that MTBF is expressed in hours in most of the cases, but complex

computational tasks on supercomputers often last for in days. For instance,

the complete simulation of the 50 models of the Hafnium Gate Material takes

approximately 250 days on a BlueGene/L cluster [14]. As it can be seen,

fault-tolerance is a must in cluster-based supercomputers.

Availability is defined as the probability that a system operates correctly

and is available at a given time. Availability differs from reliability in that

reliability involves an interval of time whereas availability involves an instant of

time. A system can be highly available despite experiencing frequent periods

of inoperability as long as the duration of these periods is extremely short.

In other words, availability depends not only on how often a system becomes

inoperable due to faults but also, how quickly it can be repaired. In particular,

in case of interconnection networks, availability defines the average fraction of

the total connection time that it is expected to be running. Availability can be

computed as a function of the MTBF and the Mean Time To Repair (MTTR):

A(t) =
MTBF

MTBF + MTTR
(2.6)
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Finally, dependability is used to encapsulate the concepts of reliability

and availability. Dependability indicates the quality of service provided by a

particular system [72].

Regarding to faults, they are commonly classified depending on their du-

ration. Permanent faults are the faults that affect a component of the system

forever. For example, the physical implementation of the adder of an ALU may

introduce a permanent fault that prevents the adder to activate its overflow

signal. However, they may not be present since the creation of the system, like

in the example. Permanent faults may appear during the normal operation of

the system, but once they appear they last forever. Usually, this kind of faults

can be more easily solved than the transient faults.

On the other hand, we have transient faults. Transient faults may appear

only during a period of time of the system operation, and they may be re-

peatable. A transient fault may appear under certain circumstances, so it is

repeated every time that these circumstances are met. A real example of tran-

sient fault was observed in the computers from a logistic company, everyday

from 7pm to 8pm their computers on the warehouse could not use the printer

located at the main office of the building. After investigating the case, they

realized that at 7pm the freezer was programmed to recycle all the air inside

it, which involved getting the cooling engines of the freezer to work at their

maximum potency. Unfortunately, the engines of the freezer were creating an

interference with the cable of the printer that was deployed near them. As it

can be seen, transient errors may be very tricky to track down and solve.

Another complementary classification of the faults comes out if we consider

the behavior of the faulty component. In on-off faults, the faulty component

just stops working; it does not response to the rest of the system, and does

not communicate in any way with it. A typical on-off fault in a cluster is a

processing node that stops working due to some hardware error. On the other

hand, we have byzantine faults. In this type of faults, the faulty element may

seem to work properly, but it is introducing wrong information in the system.

A typical example of byzantine fault in computers is a virus or malware that

tries to corrupt the file system of the machines.

Fault-tolerance may be achieved in several layers of a system. It may be

introduced at the hardware level, at the software level or at the data level.
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In hardware fault-tolerance, the hardware itself is the responsible of providing

fault-tolerance in the system. For example, most of the flight control pieces of

hardware in an airplane are developed in a redundant way to tolerate a limited

number of faults. In the same way, fault-tolerance may be introduced by the

software of the system. For example, the program that tracks the trains in a

subway system has several modules that check the results of the program to

avoid train collisions. The last type of fault-tolerance is the data-based fault-

tolerance. In this kind of fault-tolerance the data of the system provide enough

information to check its correctness. The typical example of data-based fault-

tolerance is the CRC checksum code in the packets of a network, since with

the CRC the receiver of the packet can know if the packet has suffered some

modification since it was injected into the network [100].

Finally, a fault-tolerant technique can be classified depending on the ad-

ditional elements that it requires to work. A wide range of fault-tolerant

techniques are based on replication. In this approach, we have several copies

of the system working in parallel. So, in case one of them suffers a fault, it is

switched off and the other copies of the system copies keep working. As it can

be seen, these techniques have a big cost overhead, not only in implementation

due to having several copies of the entire system, but also in power consump-

tion, as all the copies of the system are working in parallel all the time. A

more cost-effective approach consists on having spare resources, which usually

are switched off, and are only switched on to replace the main system when

it fails. In this case, the problem of power consumption is solved, since the

spare copies are not working, but the overhead on implementation cost is kept

high. Finally, the most cost-effective techniques do not require any kind of

replicated or spare element, since they are based on the reconfiguration of

the system. These techniques are able to reconfigure the system in order to

tolerate a fault without requiring any additional hardware. Nevertheless, the

scope of tolerated faults with the reconfiguration techniques is narrower than

the one from replication-based techniques.

Reconfiguration techniques are usually classified depending on how they

model the faults. In reconfiguration techniques that follow a static fault model,

each time a new fault is detected, the system activity is stopped; appropri-

ate actions to handle the fault are taken and then, the system activity is
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resumed. It needs to be combined with checkpointing techniques to be ef-

fective [104, 125]. On the other hand, in the reconfiguration techniques that

follow a dynamic fault model, once a new failure is found, actions are taken in

order to appropriately handle the faulty component in parallel with the system

activity, avoiding the need for halting the network and checkpoint techniques.

Given a large network with a high fault frequency, static fault-tolerance may

be inefficient since the system will be stopped frequently and restarted from

the last performed checkpoint.

2.1.8 Network Metrics

When comparing different routing algorithms there are several parameters to

consider, depending in which ones we decide to compare the conclusions may

vary. For this, in this section, we summarize the network metrics that are

usually used when comparing routing algorithms, and some specific metrics

for fault-tolerant routing algorithms.

Performance

From the point of view of the performance, there are two main parameters to

consider when comparing different routing algorithms. These two parameters

are the average latency of the packets and the throughput of the network.

The latency of a packet is the elapsed time from the packet injection into

the network till its reception at the destination node. This latency is also

referred to as network latency, in opposition to latency from generation which

is the elapsed time from the generation of the packet to its reception in the

destination node. Latency from generation includes network latency plus the

waiting time at the NIC of the source and destination nodes. On the other

hand, network latency only includes the time introduced by traversing the

network. If no other thing is stated, from now on we will refer as latency

to the network latency. Usually, the best routing algorithm is the one that

provides the lowest average latency of packets.

Throughput is the amount of information that the network delivers to

the processing nodes per time unit. To make this metric independent of the

network size, throughput is measured as the total information delivered to
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all the processing nodes divided by the number of processing nodes per time

unit, decoupling the efficiency of the network in delivering information from

the network size. When comparing routing algorithms from the point of view

of the throughput, the higher throughput a given algorithm can reach, the

better the algorithm is considered.

Figure 2.13 shows the typical behavior of a network. The figure represents

the typical relation between average network latency of packets and the ac-

cepted traffic of the network. As it can be seen in the figure, average latency

of packets increases as the accepted traffic of the network increases. This

happens because as the accepted traffic of the network increases, the number

of packets traveling through the network also increases, raising the number of

packet collisions at the switches, thus increasing the waiting times of the pack-

ets at the switches of the network. This increase grows exponentially when

the network becomes congested; at this point the latency rises quickly. The

network becomes congested when the number of packets trying to traverse it

is so high that almost all its channels and buffers are occupied, so the wait-

ing time (latency) of the packets skyrockets. This situation highly resembles

to a traffic jam in a city. In a city, latency would correspond to the elapsed

time of the cars traveling along its streets. By its side, accepted traffic would

correspond to the number of cars that reach their destination per hour. As

the number of cars in the streets of the city raises, the number of cars that

reach their destination (accepted traffic) grows, but also the latency, since it

would be more frequent that cars make other cars to stop during their trips in

stop signals or narrow streets, for example. If the number of cars is increased

too much, a traffic jam happens, the city streets become congested of furious

drivers, and their traveling time may rise to infinity. This is exactly what

happens in a network when it becomes congested.

Notice that when congestion is reached accepted traffic cannot be longer

increased. This amount traffic is the upper bound for the accepted traffic in the

network and it is denoted as Θmax or throughput. Furthermore, it may happen

that accepted traffic decreases if the injected traffic into the network increases

beyond the saturation point. In addition, the figure also shows the minimum

possible latency or latency lower bound, denoted as T0; which represents the

average latency of packets in a network without collisions of packets (zero load
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Figure 2.13: Ideal performance graphics of a network.

latency).

Fault-Tolerance

Concerning fault-tolerant routing algorithms for high-performance intercon-

nection networks, there are several additional parameters to the previous ones

to consider. The first and, in most cases, the most important one is the

number of tolerated faults, which indicates the maximum number of tolerated

faults for an interconnection network. We say that an interconnection network

can tolerate n faults when all the combinations of n faults are tolerated. A

combination of faults is tolerated if the routing algorithm can accomplish the

two following conditions: it must be able to provide at least one path without

faults between all the origins and destinations, and it must not provide any

path that leads a packet to a fault. In this way, the routing algorithm pre-

serves the connectivity of the network, and at the same time, ensures that all

the packets are delivered to their destinations. Obviously, in a fault-tolerant

routing algorithm, it is desirable to have the highest possible number of tol-

erated faults. Notice that if a system tolerates n faults, it may tolerate a

combination of a higher number of faults, but it is not assured.

In Section 2.1.7, availability was defined as a function of the MTBF and the

MTTR. The MTTR in a reconfiguration technique is referred to as reconfigu-

ration time. Reconfiguration time defines the time required by a fault-tolerant

technique to completely reconfigure the system once a new fault is detected.

Reconfiguration time should be as short as possible to keep high the availabil-

ity of the system.
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Moreover, in a dynamic fault-model, the reconfiguration of the network

is performed without stopping the system activity. This implies that during

reconfiguration there could be several packets that are dropped due to en-

countering faults in their paths, since the reconfiguration process has not yet

been completed. The number of dropped packets is strongly related with the

reconfiguration time. If the reconfiguration takes a long time, there will be a

higher number of lost packets. Ideally, the number of lost packets should be

zero, but as this is not usually possible. The fault-tolerant algorithm should

keep the number of lost packets as low as possible.

Finally, we should also analyze the degradation on performance after recon-

figuration is finished. In a fault-tolerant system, it is assured that the system

will continue working after failing. Nevertheless, as the system is working with

fewer resources than in the case without faults, it is very common that the

system run in a degraded state. In this degraded state, it is not possible in

most cases to keep the same performance than in the case without faults. For

this, it is important to compare the performance degradation of the different

fault-tolerant techniques, since the degradation is an indicator of the efficiency

of the fault-tolerant technique. If the degradation of the performance is very

high, this indicates that despite the fault-tolerant technique can tolerate the

faults, it cannot efficiently utilize the remaining healthy resources.

2.2 State of the Art

In this section, we provide the results of our search along the literature in

the two fields that are mainly treated in this dissertation: fault-tolerance

and routing algorithms for fat-trees. First, we analyze the proposed works for

fault-tolerance in MINs. Following, we summarize the main proposals in fault-

tolerance for interconnection networks, not only for MINs. Finally, we focus

on the routing algorithms that either have been proposed or implemented in

MINs.

2.2.1 Fault-Tolerance in MINs

A large amount of work in fault-tolerance for MINs is based on using addi-

tional hardware to increase the number of alternative paths by either adding
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links between switches in the same stage, more links between stages, more

switches per stage or extra stages. All these techniques are based on replicat-

ing resources, and therefore they significatively increase the cost of the network

and complicate its design and implementation. Most of these techniques are

also based on a static fault-model, requiring the introduction of checkpointing

techniques. Checkpointing is a very time and resource-consuming procedure,

since it relies on maintaining a copy of the state of the machine, including

memory images, sent and received packets, and so on. As the reader may

notice, this involves a high amount of traffic, processing and storage capabil-

ities. Therefore, fault-tolerant techniques based on a static fault-model and

replication has a double overhead on cost, and may become very expensive,

specially if they are compared to techniques based on dynamic reconfiguration.

A good example of such techniques is [94], where the authors perform a com-

parative study of four fault-tolerant MINs. The study reveals that columnwise

redundancy (extra stages) is much more effective than the row-wise approach

(extra rows of switches along with extra links between switches). This con-

clusions are reflected on the Advanced Baseline topology [79], which basically

is a Baseline MIN with additional stages specifically added for the sake of the

fault-tolerance.

Another approach is to keep an static fault-model while using reconfigu-

ration techniques. One possibility consist of misrouting packets by routing

them in multiple passes [28, 74, 129], providing therefore longer paths and in-

creasing the average packet latency. The basis of these works are the analysis

performed at [66, 96], which show that under a certain high probability after

a fault appears, most MINs keep their connectivity. This kind of techniques

exploit a property that is usually accomplished by MIN networks, the dynamic

full access property [122]. In a network that accomplish such property, the

network is able to provide an alternative path for all the paths affected by

faults by routing the packets that would cross the faulty elements through

other nodes of the network, which involves injecting the packet into the net-

work several times. Indeed, Varma et al. [129] show that most of the fault

combinations can be avoided by reinjecting the packets log2 N − 2 times. In

a network with 64 nodes, a packet can be injected up to 6 times to avoid

the faults in the network. As it can be seen, the increase in the latency is
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significative, and highly decreases the performance of the network. In [121],

the author proposes a hybrid approach combining adding hardware elements

and multiple passes to forward packets in a faulty network.

An important work for reconfiguration techniques in a static fault model

is [46]. This contribution shows that reconfiguration techniques that rely on a

centralized element that perform all the reconfiguration process are not prob-

abilistically feasible, and provide an alternative approach allowing to disable

healthy elements of the network to keep the network fully reconfigurable. A

similar technique is presented in [75] where the authors propose to create a

new, but equivalent, topology from the faulty one, thus preserving the routing

algorithm at the cost of disabling some healthy nodes and network elements.

This works are supported by Chong et al. [30], where different choices in the

construction of multiple paths in MINs are analyzed, and the authors describe

methods for fault identification and network reconfiguration in MINs. They

found that to achieve a good computational performance, it is necessary to

eliminate nodes with poor network connectivity. Despite of the strengths of

the proposals, disabling healthy network elements and nodes is a prohibitive

waste of resources, since these nodes are not used despite the fact that they

are not faulty.

If we focus on fault-tolerant techniques that follow a dynamic fault model,

we should refer to [35]. The technique presented in this paper is based on

exploiting the high number of alternative paths of the MINs to provide fault-

tolerance. When a fault is detected, the network reconfigures the routing tables

of the nodes. In this way, paths that use any of the faulty network elements

are disabled. This provide a good fault-tolerance at almost no overhead in

cost. Nevertheless, this technique was proposed for source routing, and it

relies on several characteristics that are exclusive on that type of routing.

Moreover, as commented in Section 2.1.6, source routing cannot usually take

full benefit from adaptive routing. There are several works [43,70,71,128] that

mix this proposal with replication of links to increase the number of routing

options, increasing unnecessarily the cost of the network. In [117], the authors

use several parallel MINs to create redundancy without any interconnecting

links among them, highly increasing the hardware cost of the network. In

this technique, if a given destination is not reachable due to faults in one of
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the networks, packets to that destination are sent through any of the other

parallel MINs. In [116], a new topology that consists of two parallel fat-

trees with crossover links between the switches in the same position in both

networks is proposed. In this topology, when a packet encounters a fault in its

path, it is forwarded through the crossover link to the other parallel fat-tree.

This approach is able to tolerate only one faulty link with a very high extra

hardware cost. The same authors propose a much cost-efficient technique

in [115]. In this case, the technique does not require any additional hardware,

and it is based on misrouting the packets when they encounter a fault. The

authors provide a wide analysis to ensure that the misrouted packets cannot

form a deadlock. In this dissertation, we make use of a similar mechanism,

but only during reconfiguration time in order to avoid losing packets, since

making use of misrouting as the only technique to avoid faults incurs in a

non-desired latency increase. In [118, 127], like in the previous technique,

the switches are the responsible of providing equivalent routes to avoid faults.

Nevertheless, this technique relies on adding several links between the switches

of the same stage. From all the analyzed techniques, considering only the

ones that do not require extra network resources, the most powerful ones

can tolerate the maximum number of faults that can be tolerated without

increasing the resources of the network, which is k− 1. If k or more faults are

present in the network, the network can have become unconnected, therefore,

it is impossible to tolerate such number of faults without adding new resources.

In order to extend our analysis and search other alternatives for fault-

tolerance in interconnection networks, we extend the scope of our analysis to

all the topologies, not only the MIN topologies. Chalasani et al. [26,27] devoted

their work to create a fault-tolerant mechanism that allows packets to border

faulty blocks in meshes and tori networks by creating rings surrounding these

fault blocks. The technique requires that network faults are localized in blocks

to work at full potential without disabling healthy nodes, and requires the use

of five virtual channels. A similar approach is proposed in [105,106] for k-ary n-

cubes, where the network dynamically reconfigures itself creating rings around

arbitrary fault blocks. This proposal reduces the number of required virtual

channels to three. A different approach is exposed in [63], where the authors

propose to route packet avoiding faults by using intermediate nodes. This
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routing through intermediate nodes, may be done in several ways, requiring

at worst one virtual channel, and no virtual channels in the best case. In [103],

the authors propose to create two virtual networks, allowing to use one of them

while the other is being reconfigured due to faults. This technique can be used

in almost any topology with any routing scheme, but it require two virtual

channels. As it can be seen, the authors tend to reduce the number of required

virtual channels, since virtual channels increase the cost and complexity of the

switches of the network.

For meshes with deterministic routing, in [77], it was proposed a technique

that can tolerate a huge number of faults without needing virtual channels,

however, it is based on a static fault model. This work was extended to worm-

hole adaptive routing by using a static fault-model in [123]. This approach is

based on reconfiguring the routing tables of the switches near the faults, which

is the fundamental concept of the work presented in [82]. The work in [25]

describes a method of creating routing tables for irregular faulty networks in

order to avoid multiple faults. However, the method does not take advan-

tage of the topology to provide an optimum solution. Finally, Glass et al [52]

demonstrate that the maximum number of tolerated faults in a n-dimensional

topology is n − 1, which is the degree of the switches in those network. In

fat-trees, this result is equivalent to k−1, which is the limit of tolerated faults

without adding extra network resources.

2.2.2 Routing in Commodity Fat-Trees

The search for a good routing algorithm specific for fat-trees began with [24].

In that paper, the authors compare several wormhole adaptive routing algo-

rithms for several topologies including the fat–tree. However, the conclusions

could not be widely applied to current high-performance fat-trees, as most of

them are not wormhole-based. Indeed, a few years later, Petrini et al. [101]

proposed to recover the ascending and descending routing scheme from [112],

explained in Section 2.1.6. Furthermore, this scheme is the one used on the

immense majority of fat-trees. The main reason of its popularity is that this

scheme has several good features, like allowing to use deadlock-free minimal

path routing while providing at the same time several redundant paths be-

tween all nodes. This routing scheme was even more supported in [64], where
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the authors show that in fat-trees is not worth to implement topology agnostic

routing algorithms or to customize routing algorithms from other topologies

to the fat-tree one. Furthermore, they propose a random arbitration policy

for switches and NICs that try to deal with hot-spots and avoiding to satu-

rate the network, which have become two of the main problems in modern

high-performance multistage networks [101]. Nevertheless, as the proposed

mechanism relies on a fully randomized function its benefits are not clear, and

can even negatively affect the network performance, at worst.

Most of the research efforts on routing for fat-trees has been targeted to

a given high-performance network technology, since fat-trees have become the

default or recommended topology of several high-performance interconnects

vendors, such as Myrinet [8], Quadrics [9], and Infiniband [7]. These technolo-

gies provide very different characteristics. For example, Myrinet and Quadrics

provide adaptive routing, while standard Infiniband can only provide deter-

ministic routing. On the other hand, Myrinet uses source routing, Infiniband

only uses distributed routing based on forwarding tables, and some gener-

ations of Quadrics have used source routing and others have used adaptive

distributed routing [9, 102]. For this, some of the research efforts in this field

have been made to deal with the limitations of each of these technologies.

In [85], Martinez et al. propose an extension of Infiniband switches to

enable the use of adaptive routing, but it requires significant changes in the

switches and thus is not currently implemented. The purpose of introducing

adaptive routing in Infiniband switches was to balance the traffic along the

network. In [36], the authors try to achieve this traffic balance by proposing

an optimized routing algorithm that requires global information, which makes

this approach almost unfeasible. On other hand, Lin et al. [78] propose to

exploit the capacity of creating virtual destinations in Infiniband to develop a

deterministic routing algorithm that spread the paths for each physical desti-

nation among all the network. In other words, each source node has a different

and disjoint path for the same destination. Thus, in this deterministic rout-

ing algorithm, node i sends its packets to node d for a totally disjoint path

from the one used by node j (i 6= j) to send packets to node d. This routing

algorithm was finally implemented in [130], but it has several technical prob-

lems, for example the requirement of large routing tables in all the switches,
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which renders this approach rather impractical for medium and large networks.

Moreover, despite that it attenuates the negative effects of hot-spots for the

packets directed to the hot-spots, it does not consider the tremendous impact

of scattering the traffic of the hot-spot all over the network, affecting the traffic

that is not directed to the hot-spots. Another approach to deal with hot-spots

in Infiniband is presented in [45], where the authors propose a mechanism to

content the congestion of hot-spots by throttling the sender nodes.

Finally, Geoffray et al. [47] propose an adaptive routing strategy for Myrinet

networks. This strategy uses a deterministic routing algorithm when the net-

work is not congested. When a sender node detects a possible congestion

by using the backwards pressure information from the Myrinet flow control

mechanism, it switches to adaptive routing in order to avoid the congested

zones. In order to make a more accurate detection of congestion, the authors

propose to establish a threshold in the sender nodes before starting to use the

adaptive algorithm. In addition, the authors propose using a probing system

to detect which of the possible adaptive paths are also suffering from conges-

tion, in order to discard them. However, several nodes change may at the

same time from deterministic routing to adaptive routing. In this case, the

adaptive paths that are not suffering the congestion that caused the change

may become congested if all the nodes try to use them. In order to avoid

this effect, the authors propose that sender nodes may start the switch from

deterministic to adaptive routing with a random probability. This technique

present several weak points. For example, the authors state that the problem

with the algorithm is that it does not guarantee that packets are delivered

in order. Furthermore, they do neither establish which deterministic routes

are used, or which adaptive routes can be used, or how they select the prob-

ability of changing to adaptive, or which is the value of this probability, or

how they establish the threshold for this change. Moreover, they rely on spe-

cific mechanisms from Myrinet technology that may not be available in other

technologies, limiting the applicability of this technique. Finally, it results in

a complex system from the implementation point of view due to the probing

system, and the statistics that must be implemented at low level for thresholds.
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Chapter 3

FT2EI : Fault–Tolerant

Fat-Tree with Exclusion

Intervals

“We’re a bit of a specialized hospital. We generally only deal with

patients when they’re actually sick.”

House, House MD tv show.

Nowadays, high-performance computers have thousands of nodes [2,4,126].

In such systems, fault-tolerance in the interconnection network is an issue of

growing importance since the high number of components significantly in-

creases the probability of failure. Most of these high-performance computers

are clusters-based machines, and the fat-tree is the most frequently used topol-

ogy.

Fault-tolerance mechanisms proposed up to now for fat-tree-based high-

performance clusters are based on either adding new resources to the network

such as more stages, switches or links; eliminate healthy computing nodes from

the network; or increasing the length of the paths of the packets permanently

once a fault appears. All these techniques lead to increase the cost of the net-

work –in some cases it is even doubled– or to waste the investment made on the

nodes that are healthy but are not used due to the fault-tolerance mechanism.

57
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There exists another powerful technique to tolerate faults in interconnection

networks which is based on dynamically reconfiguring the routing tables. This

technique is extremely flexible but it may kill performance, since it is usually

based in the use of generic routing algorithms that achieve a lower performance

than a routing algorithm that takes advantage of the topology [113].

In cluster-based computers, routing is usually distributed and based on

forwarding tables. In the forwarding tables scheme, there is a table at each

switch that stores, for each destination node, the output port that must be

used. This scheme can be extended to support adaptive routing by storing

several outputs in each table entry [85]. The main advantage of table-based

routing is that any topology and any routing algorithm can be used. However,

routing based on forwarding tables suffers from a lack of scalability, as table

size grows linearly with the network size and the time required to access the

table also depends directly on the table size.

For these reasons, in this chapter, we propose a new mechanism for fault-

tolerance in fat-trees that does not require to add new resources to the network,

providing fault-tolerance without increasing the cost of the network. In ad-

dition, it never eliminates any healthy node from the network. Moreover, it

allows fully adaptive routing along the healthy paths of the network. And,

finally, the mechanism keeps the minimality of the paths followed by packets

under any number of faults. The mechanism is based on taking advantage on

the high number of alternative but equivalent paths provided by the fat-tree

topology. To deal with the scalability problem of the forwarding tables, we

propose to use Interval Routing (IR) instead of using table-based routing.

This chapter introduces in Section 3.1 several basic concepts about IR

implementation and configuration for adaptive routing in fat-trees. Following,

Section 3.2 describes our initial fault-tolerant mechanism for fat-trees based on

a static fault model, which relies on stopping the network each time a new fault

is detected. This mechanism is evolved to a dynamic fault model in Section

3.3, which can work without stopping the interconnection network activity.

On one hand, with the static fault model, we focus on detecting where our

mechanism should act for each fault. On the other hand, with the dynamic

fault model, we focus on how to distribute the fault-tolerance information

along the network. Both models are evaluated in Section 3.4. Finally, Section
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3.5 draws some conclusions.

3.1 Introduction

The objective of this chapter is to propose a new fault-tolerant adaptive rout-

ing algorithm for fat-trees that does not require to stop the network activity,

that scales with network size, and that has low storage requirements. For

this, our proposal is based on the fully adaptive routing scheme proposed

by Petrini for the fat-trees [101] and on Interval Routing [111] to provide a

scalable implementation of the routing algorithm.

Interval Routing (IR) is a scalable distributed routing scheme based on

grouping the destinations that are consecutive and physically reachable from

the same output port into an interval. Each packet is forwarded through

the output port whose interval contains the destination of the packet. To

implement IR, it is sufficient to store the bounds of each interval. That is,

all the ports of the switches have two registers that store the bounds of the

interval. We will refer to LIB (Lower Interval Bound) as to the register that

stores the lower bound of the interval of a port and to UIB (Upper Interval

Bound) as the register that contains the upper bound of the interval of a port.

Additionally, we refer to routing or inclusion interval of a port as the interval

formed by its LIB and UIB registers.

Usually, the upper bound of an interval has a higher value than its lower

bound. This is the case of a typical interval which includes all the destinations

that are between LIB and UIB. Nevertheless, IR does not require that the

upper bound of the interval has a higher value than the lower bound. In this

way, we can construct cyclic intervals, also called modulo N intervals, being

N the number of destinations. In cyclic intervals, the lower bound of the

interval is higher than its upper bound. This kind of intervals include all the

destinations that have a higher value than the one stored in LIB, and all

the ones that has a lower value than the one stored in UIB. For instance,

the interval [1..3] is not cyclic and it includes all the nodes between 1 and 3,

both included. On the other hand, the interval [3..1] is a cyclic interval and it

includes all the nodes that are higher than 3 and all the nodes that are lower

than 1. This cyclic interval is equivalent to the union of the intervals [0..1]
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Figure 3.1: IR hardware associated to each output port.

and [3..N − 1].

Taking into consideration the use of cyclic intervals, the condition that

a destination must meet to be inside the routing interval depends on the

relative values of UIB and LIB. If LIB ≤ UIB, the condition to meet is

Dest ≥ LIB ∧ Dest ≤ UIB, whereas if LIB > UIB (cyclic interval), then

the condition is Dest ≥ LIB ∨ Dest ≤ UIB.

The logic to check this condition is very simple, as can be seen in Figure

3.1. The logic only returns a value different to zero if the destination of the

packet that is being routed can be reached through the port at which the logic

is implemented. As it can be seen, the result of this comparison is stored

in the ith position of a register called Allowed ports Register (AR), being i

the port at which the logic is located. AR is unique per switch, and in k-ary

n-trees it has a size of 2k bits (2k is the number of switch output ports). This

register stores the result of the routing function. In IR, routing is performed

as a parallel comparison of all the output ports. In other words, each time

that a packet must be routed in a switch, its destination is compared with the

intervals of all the output ports at the same time. In this way, the routing time

does not depend on the switch degree. These operations introduce a very low

delay, much smaller than the one incurred by forwarding tables. Notice that,

as adaptive routing is supported, a given destination address may be inside

several intervals, and more than one output port can be allowed in the AR.

Finally, the selection function will select the output port of a packet from the

set of ports included in the AR of the switch.

As explained in the previous chapter, in a k-ary n-tree, minimal routing
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from a source to a destination can be accomplished by sending packets forward

to one of the nearest common ancestors of source and destination and then,

from this common ancestor, downwards to the destination [40]. When crossing

stages in the forward direction, several paths are possible, so adaptive routing

is provided. In fact, each switch can select any of its upwards output ports.

Once a nearest common ancestor has been reached, the packet is turned around

and sent downwards to its destination. Once the turnaround is crossed, a

single path is available to the destination node. That is, the upwards phase

is fully adaptive while the downwards phase is deterministic. The stage to

which the packet must be forwarded up is obtained by comparing the source

and destination components beginning from the the most significant one. The

first pair of components that differs indicates the last stage to forward up the

packet.

This routing algorithm can easily be implemented in IR. Figure 3.2 shows

the possible paths for a packet generated at node 0 whose destination is node

2. The figure also shows the routing interval that can be used along these

paths. As it can be seen, the routing intervals of the output ports of switch

0 are [0..0] for link 0, [1..1] for link 1, and [2..7] for links 2 and 3. In the

previous chapter, it was presented the following example in Figure 2.12: a

packet generated at node 0 whose destination is node 2 will be forwarded up

to stage number one (through switch 〈0, 00〉 and choosing either path to 〈1, 00〉

or 〈1, 01〉). From any of these switches, the remaining bits (bits 1 and 0) of

the destination identifier (10 in our example) correctly forwards the packet

to node 2. As it can be seen in Figure 3.2, the paths obtained by using IR

are the same ones that where obtained in that example. But, in this case,

the routing is not made by using the components of the destination node

identifier, it is done by comparing the routing intervals of the ports of the

switches with the destination identifier. Following the same example than in

the previous chapter but using IR, when a packet sent from node 0 to node

2 arrives to switch 0, the identifier of the destination of the packet (node 2)

is compared with all the routing intervals of the switch. The only output

links whose routing intervals contain destination 2 are links 2 and 3. So, the

packet can be forwarded through any of those links, reaching switch 4 or 5.

In any of these switches, the destination of the packet is compared with all
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Figure 3.2: A 8-node 2-ary 3-tree. Paths coming from node 0 to node 2 are

highlighted.

the routing intervals of the output ports, and the only one that contains the

destination node is the link 1. Finally, the packet reaches switch 1, where

again the destination identifier of the packet is compared with all the routing

intervals, and the only one that contains it is the one corresponding to link

0, through which the packet reaches node 2. Figure 3.2 shows that IR can be

used to provide fully adaptive routing in fat-trees, since it obtains the same

paths than the ones obtained in the previous chapter.

Obviously, the figure shows only a small subset of the routing intervals.

In IR, all the switches of the network have a routing interval per output

port, and these intervals have to be correctly filled in order to provide fully

adaptive routing in a fat-tree network. The procedure to fill the routing in-

tervals of a switch to provide fully adaptive routing in fat-trees is shown in

Figure 3.3. The prototyped switch represented in the figure is labeled as

〈s, on−2, on−3, ..., o1, o0〉. Notice that this switch is located at the stage s. In

order to fill the routing intervals of this switch, we have to identify all the

destinations that are reachable through all its output ports. First, we identify
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the destinations reachable through the descending links, and later the rest of

destinations reachable through all the ascending links.

The set of destination nodes (〈pn−1, ..., p1, p0〉) that are reachable by the

descending links can be easily computed from the switch components. In

particular, the set of destination nodes that can be reached by this switch

through its down output ports are the ones whose components accomplish

the following expression: pi = oi−1 for i ∈ {n − 1, .., s + 1}. This set of

destinations is split in several subsets with the same number of elements that

can be reached from each descending link depending on the ps component,

being s the switch stage. The subset of nodes whose ps is equal to 0 are

reachable through link 0, the subset of destinations whose ps is 1 are reachable

through link 1, and so on. As an example, link 0 of switch 〈s, on−2, ..o1, o0〉

forwards packets destined to nodes 〈on−2, ..., os, 0, X...X〉, that is, the routing

registers for link 0 of that switch are LIBdesc. = 〈on−2, ..., os, 0, 0...0〉 and

UIBdesc. = 〈on−2, ..., os, 0, k−1...k−1〉. Using the network depicted in Figure

3.2, switch 4, whose identifier is 〈1, 00〉, can reach through its down output

ports the nodes whose most significative component are equal to 0, that is

nodes from 0 to 3. This interval can be represented as [000...011], and has to

be split in two subintervals since the switch has two down ports. The routing

interval for link 0 is [000..001], that is it can forward packets to nodes 0 and

1. Finally, the routing interval for link 1 is [010..011], that is it can forward

packets to nodes 2 and 3.

Filling the routing intervals for the up output ports of the switch is very
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straightforward, since they only have to route packets to the destination nodes

that where not included in the routing registers of the down output ports.

Concretely, the destinations that are not reachable through the descending

links, so they are reachable through the ascending links are the ones that

do not meet pi = oi−1 for i ∈ {n − 1, .., s + 1}. Indeed, this set is reachable

through all the k ascending links, since all they have to route the same interval

to provide fully adaptive routing during the upwards phase of the routing

algorithm. The LIB register of the ascending output ports must store the

next destination to the largest one reachable through the descending links.

That is, the next destination to the one stored in the UIB register of the k−1

descending link. Likewise, the UIB register of the ascending links must store

the previous destination to the smallest one reachable through the descending

links. That is, LIBasc. = (UIBlinkk−1
+1) modkn and UIBasc. = (LIBlink0

−

1+kn) mod kn, being kn the number of nodes in the network1. This interval is

valid for all the ascending links of the switch and can result in a cyclic interval.

Finally, Figure 3.4 shows all the routing intervals of a 2-ary 4-tree.

3.2 Static Fault-tolerant Routing with Exclusion In-

tervals

The fault-tolerant routing methodology proposed in the following sections pro-

vides fault-tolerant adaptive routing for fat-tree networks. Concretely, we only

consider permanent on-off faults (see Section 2.1.7), because transient faults

can be handled by communication protocols, by means of CRC mechanisms

to detect faults and retransmitting the packets that are detected as incorrect

by the CRC mechanism. The methodology works with both link and switch

faults. However, a switch fault can be modeled by the fault of all the links

connected to it. Therefore, we focus only on link faults.

First, we use an approach based on a static fault model. In this first

approach, each time a new fault is detected, the system activity is stopped,

then the new routing information is computed and updated, and finally the

system activity is resumed from the last performed checkpoint. The proposed

1For UIBasc. we add k
n in order to avoid setting a negative destination value.
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Figure 3.4: Adaptive routing with IR in a 2-ary 4-tree.
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methodology in this section is focused only in the computation of the fault-

tolerant routing information. Fault detection can be done as proposed in [124],

where the faults are detected using timers. Concerning checkpointing, any of

the checkpointing techniques proposed in the literature can be suitable, for

example the ones proposed in [125].

As commented, our proposal uses Interval Routing (IR) for adaptively

routing packets in k-ary n-tree networks. Our basic idea is to extend IR with

exclusion intervals for the purpose of providing fault-tolerance. The original IR

uses an interval per output port to indicate the reachable destinations through

that output port. We associate a new interval called exclusion interval to each

output port. The exclusion interval indicates the destinations that become

unreachable through that output port after a fault. It contains some nodes

that belong to the inclusion interval, but due to a fault, they must be excluded.

Therefore, the nodes that are reachable through an output port are the ones

that are in its inclusion interval but are not in its exclusion interval. For

instance, assume that the routing interval associated to a given output port is

[0..11]. Assume also that, due to a fault, the interval [4..7] must be excluded

in this output port. Then, the set of reachable nodes is reduced to [0..3, 8..11].

In this way, we can avoid sending packets through paths that use faulty links.

In Section 3.2.1 we show an example of computing the exclusion intervals for

a faulty network. In order to maintain a notation similar to the one used in

IR, we refer to ELIB and EUIB as the registers that contain the bounds of

the exclusion interval associated to the output ports of the switch. As our

fault-tolerant mechanism relies on the use of exclusion intervals, we will refer

to it as FT 2EI (Fat-Tree Fault-Tolerant routing with Exclusion Intervals).

Figure 3.5 shows the hardware associated to each output port to imple-

ment FT 2EI. As it can be seen, it is an extension of the one presented

in Figure 3.1. Like in the implementation of IR, this hardware operates in

parallel in all the output ports of the switch. In the figure, the top half

corresponds to the comparison of the destination with the routing interval

of IR. The bottom half of the figure corresponds to the hardware required

to perform the comparison of the destination with the exclusion interval in

order to exclude some nodes from the routing interval. To perform this

comparison, the destination address is compared with ELIB and EUIB to
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know whether the destination is inside the exclusion interval or not. For-

mally, if (ELIB ≤ EUIB) ∧ (Dest ≥ ELIB) ∧ (Dest ≤ EUIB) or if

(ELIB > EUIB) ∧ ((Dest ≥ ELIB) ∨ (Dest ≤ EUIB)) then the desti-

nation is inside the exclusion interval. Notice that both comparisons (inclu-

sion and exclusion) are performed in parallel, so the delay of the logic for

FT 2EI is equal to the one from IR plus the delay of one logic gate. As it

can be seen, the hardware ensures that the output port is only selected if

the destination is inside the interval indicated by LIB and UIB, and is not

inside the interval formed by ELIB and EUIB. Formally, an output port

of a switch can be selected for routing a packet with destination d only if

d ∈ [LIB..UIB] ∧ d 6∈ [ELIB..EUIB]. Finally, as the exclusion interval only

has to be considered if there are faults in the network, a bit is used to enable

the use of the exclusion interval (labeled as Exclusion interval enable in Fig-

ure 3.5). As it can be seen, this implementation of fault-tolerant routing in

fat-trees is quite simple. It scales with the network size, since only two sets

of registers that store the inclusion and exclusion intervals plus some logic to

check whether the destination address is inside these bounds are required per

output port2.

Now that we have the basic infrastructure that allow us to perform the

routing algorithm taking into account the exclusion intervals, we have to de-

scribe the way to properly compute and update the exclusion intervals after a

fault, in order to avoid using those paths that traverse the fault.

3.2.1 Computing the Exclusion Intervals

In order to compute and distribute the routing intervals, we have to define

the element that has to start the reconfiguration process. In our proposal,

the element that has to detect and take the appropriate actions to tolerate the

fault, is the faulty switch. In order to identify this switch, we have to remember

that every link in the network goes from the output port of a switch to the

input port of a neighbor switch. From these two switches, we refer to faulty

switch as the switch that is connected to the link that fails through its output

port. So, the switch that detects that one of its output ports is faulty is the

2In fact, exclusion intervals are only required at up output ports (see section 3.2.1).
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responsible of starting the reconfiguration process.

The first step of the reconfiguration process consists on classifying the

fault. In a k-ary n-tree, we can consider two different types of link faults

from the point of view of the switch that will handle the fault: ascending (up)

link faults and descending (down) link faults, which correspond to links that

forward packets to upper or lower stages, respectively. The management of

both types of faults is completely different.

On one hand, the up link fault management is extremely easy. As all

nodes reachable through an up link of a switch can also be reached by any

of its ascending links, we just nullify the faulty up link. This is done by

associating to the faulty link an exclusion interval that includes all the nodes

in the network. That is, in the faulty link, we set ELIB=0 and EUIB=N−1,

N = kn being the number of nodes in the network. As the upwards phase is

fully-adaptive, all the network traffic that was to be sent through the faulty up

link, will be sent through any of the other up links of the switch. For instance,

Figure 3.6 presents a 2-ary 3-tree where the switch 4 has a fault in one of

its ascending links highlighted in red. To tolerate this fault, switch number 4

has set an exclusion interval that contains all the nodes of the network in the
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output port corresponding to the faulty link. As it can be seen in the figure,

if a packet from node 0 whose destination is node 7 arrives to switch 4, it can

forward it through the other output port. Moreover, the figure highlights in

blue all the healthy paths from node 0 to node 7, and in dark red the links

that can not be longer used due to the fault.

On the other hand, a fault in a down link of a switch requires the updating

of several exclusion intervals. Moreover, it involves updating the exclusion

intervals of switches that are not directly connected to the faulty switch. This

is due to the fact that in a k-ary n-tree the down routing phase is deterministic.

Once a packet has arrived to one of the common ancestors between source and

destination nodes, it has only one possible down path. So, our methodology

must avoid that packets arrive to any common ancestor whose down path to

destination goes through a faulty link. This requires updating the exclusion

intervals of the switches traversed in the ascending routing phase that can

deliver the packet to one of these common ancestors.

We will explain how to identify the switches whose exclusion intervals
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should be updated when a descending link fault is detected by using the ex-

ample shown in Figure 3.7. When a fault appears in a down link of a switch,

the nodes that were reachable through the faulty link become unreachable

from the switch, since the destinations that are reachable through a down link

of a switch cannot be reached through any other link of the switch. Figure 3.7

assumes that link 1 of switch 18 has failed and, as a consequence, nodes 4 to 7

are not longer reachable from switch 18. Therefore, packets with destination

4, 5, 6 or 7 should not arrive to switch 18 in their descending phase. In order

to identify the switches where the exclusion intervals should be updated, we

travel the tree upwards from switch 18. The first switches that we meet are

switches 26 and 30. As it can be seen, switches 26 and 30 should not receive

packets destined to nodes 4, 5, 6 and 7, since their unique path to reach these

nodes is through switch 18. To make this possible, switches that can directly

forward packets to switches 26 and 30 through, should exclude nodes from 4

to 7 in their associated output ports. Therefore, switches3 18 and 22 should

update the exclusion interval of their up output ports to exclude nodes 4, 5, 6

and 7. Switches 18 and 22 cannot send packets to destinations [4..7] through

any of its output ports after updating the exclusion interval, so switches from

the previous stage should avoid forwarding packets destined to those nodes to

switches 18 and 22. The switches from the previous stage that are directly con-

nected to switches 18 and 22 are switches 8, 12 and 14, which should exclude

nodes 4 to 7 in the exclusion interval associated to output port 3, since this is

the output port that connect them to either switch 18 or switch 22. Switches

8, 12 and 14 can route packets with these destinations through output port

2. So, it is not necessary to continue the process, since we have reached a set

of switches that can forward packets to destinations [4..7] without using the

faulty link.

Notice, though, that as long as the exclusion intervals of switches 8, 12 and

14 have been set, it is not longer necessary to update the exclusion intervals

of switches located at stage 2 (i.e. switches 18 and 22) since packets destined

to nodes 4, 5, 6 and 7 will never reach these switches, because switches 8, 12

and 14 already exclude those nodes in output port 3. Figure 3.7 shows the

3Notice that switch 18 will not actually send any packet to nodes 4-7 through its up

links.
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exclusion intervals that should be updated in the network. Notice that the

switches whose exclusion intervals has to be updated (switches 8, 12 and 14)

belongs to the previous stage to the one the faulty switch (switch 18) belongs

to. This property is always accomplished in the reconfiguration process of

descending link faults due to the connection pattern of the fat-tree topology.

Let’s check if the faulty link from Figure 3.7 can be avoided by updating

to [4..7] the value of the exclusion intervals of output port 3 from switches 8,

12 and 14. For this, we travel along the network from several source nodes

to the nodes included in that exclusion interval. First, we focus on nodes

included on the exclusion interval. Nodes from 4 to 7 never use the faulty link

to send packets among them. It can be seen in the figure that the highest

stage that these packets reach is stage 1, concretely these packets can only

reach switches 10 or 11. Once these packets arrive to either switch, they are

forwarded downwards, so they cannot arrive to switch 18 and use the faulty

link.

Now, let’s deal with packets from nodes 0 to 3 that are delivered to nodes 4

to 7. As it can be seen, these packets have to reach the stage number 2 in order

to begin their downwards routing phase. If any of these packets reaches switch

18, they would have to use the faulty link in their path to the destination, since

that is the only path that the switch provides to arrive to nodes from 4 to

7. So, we have to check that switches from the previous stage cannot forward

those packets to switch 18. These switches are the switches 8 and 9. Switch

9 forwards packets to nodes from 4 to 7 through switches 17 and 19. From

these two switches, those packets would reach switch 11. Thus, packets that

reach switch 9 never use the faulty link. On the other hand, switch 8 forwards

packets to those destinations through switches 16 and 18. If a packet to those

destinations reaches switch 16, it would reach switch 10, and the faulty link

would not be used. However, if the packet reaches switch 18, it would use the

faulty link. But this is avoided by the exclusion interval set in the output link

3 from switch 8. This exclusion interval forces that all the packets destined to

nodes 4 to 7 that reach switch 8 are sent through link 2, thus reaching switch

16.

The same procedure can be followed from packets for nodes 8 to 15 whose

destinations are nodes that belong to the affected destinations by the fault. In
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this case, the exclusion intervals from switches 12 and 14 avoid that packets

sent to those destinations reach switch 22, that would forward them through

switch 18 and the faulty link.

Next, we show how to compute, in a general case, the switches and links

whose exclusion intervals should be updated, and the values to update them,

when a new fault appears in the network. Let 〈e, vn−2, ..., v1, v0〉 and l be the

faulty switch and link, respectively. As it can be seen, this switch belongs to

the e stage. As shown in the previous example, only some switches at the

stage e − 1 should be updated. The switches to be updated can be classified

according to their connection to the faulty switch as directly or indirectly

connected to it.

First, we identify the switches that are directly connected to the faulty

switch. In Figure 3.7, these switches are 8 and 10 (but switch 10 routes

packets to the affected destinations through its down links, so it is not ac-

tually necessary to update it). According to Section 2.1.3, the identifier of

the switches that are directly connected to the faulty switch can only differ

from the faulty switch identifier by the e − 1th digit of the second compo-

nent of their identifiers. Hence, the identifier of these switches is given by

〈e − 1, vn−2..ve, X, ve−2, .., v1, v0〉, being X any value between 0 and k − 1.

The port to update in them is the ascending one that is connected to the

faulty switch and is given by ve−1 (the value of the e less significant digit)

from the second component of the identifier from the switch that contains the

fault. According to our link numbering (where up links start from k), the

link to be updated is the k + ve−1 one. As it was stated above, there is a

switch (switch 10 in the example) from the previous stage that does not need

to be updated, despite the fact of accomplishing the previous equation. This

switch does not need to be updated because it never forwards through its

up links packets whose destination is included in the exclusion interval. This

switch is the one that is directly connected to the faulty switch through the

link in the opposite direction of the faulty link, and its identifier is given by

〈e − 1, vn−2..ve, l, ve−2, .., v1, v0〉.

The rest of the switches of the e − 1 stage to be updated are the ones

that are indirectly connected to the faulty switch, since they may forward

packets to the excluded destinations through the faulty link following any of
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the possible paths provided by the routing algorithm. The identifier of these

switches is given by 〈e − 1, X, .., X, ve−2..., v1, v0〉. Notice that this expression

also includes the switches directly connected to the faulty switch. Again, the

link to update in those switches is also given by k + ve−1.

Finally, the nodes to include in the exclusion interval should be computed,

that is, we have to compute the values that will be stored in the ELIB and

EUIB registers of the switches that should be updated. The exclusion inter-

val should contain the nodes included in the routing interval associated to

the faulty link, since those nodes are the ones that have become unreach-

able from the faulty switch. This interval is given by [vn−2, ..., vn−e, l, 0...0..

vn−2, ..., vn−e, l, (k − 1)...(k − 1)].

Let us apply these equations to the example shown in Figure 3.7 in order

to check if we get the same results as before. The link 1 of switch 18 〈2, 010〉

has failed. The switches to be updated are the ones whose identifier follows

the pattern 〈1, XX0〉, that is, switches 8 〈1, 000〉, 10 〈1, 010〉, 12 〈1, 100〉 and

14 〈1, 110〉. The link to be updated in these switches is k + ve−1, that is,

k + v1 = k + 1 = link 3. The values to fill in the exclusion intervals are

given by [0100..0111], which is the interval that includes nodes 4, 5, 6 and

7. Finally, the switch 10 〈1, 010〉 may not be updated, since it would never

forward packets to the excluded destinations through the faulty switch. These

are the same switches and intervals that where previously obtained on Figure

3.7.

Notice that in both, up and down link faults, it is only required to associate

exclusion intervals to up links, since what we do is to eliminate the ascending

paths that cross the faulty link. We modify the paths in the ascending routing

phase, no matter if the fault is in an ascending or in a descending link, since

this phase is the only one that provides alternative routes of minimal length.

Also, notice that only the paths that make use of the faulty link are elimi-

nated, allowing adaptive routing through all the remaining healthy paths. For

example, in Figure 3.7 up link 3 from switches 8, 12 and 14 can be adaptively

used by any packet whose destination is not in the exclusion interval, since

they would not cross the faulty link. As shown, by using one exclusion interval

per output link, the network is able to tolerate at least 1 fault (see Section

3.4.2 for more details). Nevertheless, a mechanism that is based on a model
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in which only one fault can be present in the network is very unrealistic. For

this, in the next section, we extend our proposal to a model that considers

more than one fault in the network.

3.2.2 Extension to more than one fault

In this section, we analyze the consequences of having more than one fault in

the network and we will explain how our methodology deals with them. When

considering multiple faults, we have analyzed two alternative approaches.

First, we will consider the existence of only one exclusion interval per out-

put port, as assumed up to this point. Second, we consider the possibility of

associating multiple exclusion intervals to each ascending output port.

The methodology could be directly applied to tolerate multiple link faults,

provided that these faults affect exclusion intervals associated to different out-

put ports. The only problem arises when two different faults require to update

the exclusion interval associated to the same output port. In order to tolerate

multiple faults regardless of the exclusion intervals to be updated, we have

designed a methodology to merge two exclusion intervals, the one previously

stored that avoids the previous faults, and the one required to tolerate a new

fault. The resulting merged exclusion interval should contain all the nodes

contained in both exclusion intervals, but it may also contain some nodes that

do not belong to any of the initial intervals. We will refer to these nodes as

victim nodes. Victim nodes are destination nodes that are actually reachable

through an output port, but are included in the exclusion interval of the port

due to the process of merging several exclusion intervals into a single interval4.

The inclusion of victim nodes is necessary if a single exclusion interval is

associated to each output port and the old and new intervals do not intersect.

As an example, consider the network status shown in Figure 3.7, with a faulty

link in switch 18. If, at this point, a new fault is found in link number 1 of

switch 22, the interval [12..15] should be excluded in link number 3 of switches

8, 10 and 12. These links already have their exclusion interval registers set to

[4..7]. The only possible way of avoiding the use of the faulty links for both

set of destinations is to merge both exclusion intervals to obtain a new one

4Notice that these nodes are still reachable through other paths, but not using this

output port. These nodes are not eliminated from the system.
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[4..15], which will include victim nodes from 8 to 11. As the inclusion of victim

nodes in the exclusion interval reduces the number of paths in the network to

these nodes, care must be taken to minimize the number of victim nodes in

the exclusion interval.

The methodology to obtain a single exclusion interval must try to minimize

the number of victim nodes taking into account that the exclusion intervals

may be cyclic intervals. For this, several cases must be considered when merg-

ing two exclusion intervals. First, there is a straight-forward case: when the

exclusion intervals that have to be merged overlap. In this case, the resulting

interval will merely be the union of the two intervals. Otherwise, either a

cyclic or non-cyclic interval can be chosen. The resulting interval is chosen

trying to minimize the number of victim nodes. The algorithm that allows

doing this is the following:

if [LIB1..UIB1] ∩ [LIB2..UIB2] 6= ∅ then

[LIBres..UIBres] = [LIB1..UIB1] ∪ [LIB2..UIB2]

break

end if

if (LIB1 < UIB1) ∧ (LIB2 < UIB2) then

LIBtemp1 = min(LIB1, LIB2)

UIBtemp1 = max(UIB1, UIB2)

LIBtemp2 = max(LIB1, LIB2)

UIBtemp2 = min(UIB1, UIB2)

if |[LIBtemp1..UIBtemp1]| ≤ |[LIBtemp2..UIBtemp2]| then

[LIBres..UIBres] = [LIBtemp1..UIBtemp1]

else

[LIBres..UIBres] = [LIBtemp2..UIBtemp2]

end if

break

end if

LIBtemp1 = min(LIB1, LIB2)

UIBtemp1 = min(UIB1, UIB2)

LIBtemp2 = max(LIB1, LIB2)

UIBtemp2 = max(UIB1, UIB2)

if |[LIBtemp1..UIBtemp1]| ≤ |[LIBtemp2..UIBtemp2]| then
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[LIBres..UIBres] = [LIBtemp1..UIBtemp1]

else

[LIBres..UIBres] = [LIBtemp2..UIBtemp2]

end if

In the previous pseudo-code, break instructions stop the algorithm. First,

the algorithm checks whether the exclusion intervals to merge are disjoint or

not. In case they are not disjoint, the resulting exclusion interval is the union

of both intervals and the algorithm ends. In case that the exclusion intervals

are disjoint, it checks if they are both non-cyclic intervals. In that case, the

algorithm must construct an exclusion interval that includes both intervals,

but it can be done in two ways, so the algorithm builds two auxiliary intervals.

The first one is built by using a non-cyclic interval, and the second one is built

by using a cyclic interval. Finally, the algorithm decides to choose one of

both auxiliary intervals by comparing the number of elements of each interval.

The one that has less number of elements would be chosen, and the algorithm

ends. Notice that the resulting merged intervals contain all the nodes from

the initial intervals by definition. So, the minimum number of elements in

the resulting interval is equal to the number of different nodes included in the

initial intervals, thus any additional node included in the resulting interval

is a victim node. Therefore, by minimizing the number of elements on the

resulting interval, we choose the option that introduces the lowest possible

number of victim nodes.

The last case is only reached when the exclusion intervals are disjoint and

one of them is a cyclic interval. In this case, the algorithm follows a similar

procedure to the one used in the previous case, but changing the way to build

the auxiliary intervals. Notice that if both exclusion intervals are cyclic, they

are not disjoint and the algorithm would enter in the first case.

Furthermore, after updating each exclusion interval (either by merging

with a previous one or by setting a new one), it must be checked if there is a

set of nodes that are now unreachable from the updated switch. These nodes

were reachable through some of its up links before updating the exclusion

interval, but due to multiple link faults they may have been excluded in all

the up links of the switch, and, therefore, the switch can not reach this set of

nodes. If this is the case, the switches of the previous stage that connect to the
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affected switch should also exclude that set of nodes in the links that connect

to it, in order to avoid sending to it packets whose destinations cannot be

reached by crossing the affected switch. Once the switches from the previous

stage are updated, they must perform the same checking, and so on. This

process is iterative, and it stops if the propagation of the exclusion interval

reaches the lowest stage of the network, or if the switch detects that it can

reach all the destinations of the network. For instance, using the scenario

shown in Figure 3.7, if a new fault is detected at link 1 of switch 16, link 2 of

switches 8, 12 and 14 should exclude the interval [4..7]. Now, these switches

would have the interval [4..7] excluded in all their up links, hence switches

of the previous stage directly connected to them should not forward packets

with destination between 4 and 7 to them. So, this interval should be also

excluded at link number 2 of switches 0, 1, 4, 5, 6 and 7. No more iterations

are needed, because these switches have other ports that can forward packets

to nodes [4..7]. Anyway, once the lowest stage of the network is reached, no

more iterations are possible.

The task of minimizing the number of victim nodes in a network with

several faults can be improved if more than one exclusion interval could be

associated to each output port. In this way, if merging two intervals introduces

some victim nodes, we could instead store them into two different physical

exclusion intervals associated to the same output port, thus, not excluding

any victim node. The routing function will now exclude those nodes that are

included in any of the exclusion intervals associated to the output port. So, no

healthy path is sacrificed and therefore we should get a better performance.

However, if we consider the possibility of having a higher number of faults

than the number of physical exclusion intervals associated to each output

port, victim nodes could be again included in the exclusion intervals associated

to output ports, but it is expected that the number of victim nodes will be

smaller than the one obtained with just one exclusion interval per output port.

In order to fill exclusion intervals in the output ports, the methodology follows

these steps when after a fault, a new exclusion interval must be associated to

an output port:

• Check if the exclusion interval associated to the new fault intersects with

any of the exclusion intervals already stored at the output port. If so, a
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new exclusion interval is obtained by merging them. In this case, it is

not necessary to use another physical exclusion interval, as there are no

victim nodes.

• If the new exclusion interval does not intersect with any of the intervals

already stored in the output port, and there are physical exclusion in-

tervals available, then a new one is used to store the exclusion interval

associated to the new fault.

• If there are not physical exclusion intervals available to assign to the

new non-overlapping one, it is merged with the exclusion interval that

leads to the minimum number of victim nodes following the algorithm

presented above.

As stated in the case with only a physical exclusion interval per output

port, once a physical exclusion interval has been updated at a switch, it must

be checked if there are nodes that have become unreachable from that switch,

accordingly updating the exclusion intervals in the previous stage. This pro-

cess should be repeated as many times as required.

Notice that the exclusion intervals do not induce new dependencies in

the channel dependency graph (CDG) associated to the routing function [40].

In fact, every time a exclusion interval is updated, the number of channel

dependencies is reduced, as the number of possible paths is reduced. Therefore,

the resulting fault-tolerant routing algorithm is deadlock free, since the routing

algorithm in which it is based on is deadlock-free and our methodology removes

some existing channel dependencies.

3.3 Dynamic Fault-tolerance Routing with Exclu-

sion intervals

In this section, a mechanism to dynamically spread the fault-tolerance infor-

mation in the network without stopping its activity is going to be presented.

Specifically, we enhance the fault-tolerant routing strategy presented in the

previous section to support a dynamic fault model. With a static fault-model,

we did not care about how the information is distributed in order to reconfigure
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the network after a fault, we just identified the switches and links that must be

updated after a fault, and the information to update them. In this section, we

take on the challenge of designing the dynamic version of the methodology to

reach the adequate switches and deliver them the fault-tolerance information.

Since a dynamic model is used, when a new fault is detected, the system

continues running the applications, and the mechanism that handles the fault

progresses simultaneously in the network with the traffic from the applications.

In this way, a dynamic fault model implementation of the methodology avoids

the disadvantages of the static fault model. These disadvantages are the need

of stopping the system while the reconfiguration is in progress, and the need

of checkpointing techniques. Checkpointing is undesirable because it usually

requires great quantities of system resources, such as processor cycles, network

bandwidth, storage capacity and so on. Moreover, applications are stopped

while reconfiguration is in progress, and later they are restarted from the

last performed checkpoint. Depending on checkpointing frequency, a lot of

computing made by these applications may be lost.

3.3.1 Informal Description

We are going to intuitively describe how the exclusion intervals can be dy-

namically updated by using the same example used in the previous section

(see Figure 3.7). Remember that a fault at link 1 of switch 18 has appeared,

so we must avoid packets to take the descending paths that traverse it. We

assume that a switch has the capability of realizing that one of its links has

failed as in [124]. So, in our methodology, switch 18 begins the exclusion inter-

val update, since the responsible of starting the reconfiguration process is the

switch that detects the fault. Switch 18 triggers the mechanism by notifying

either switch 26 or 30 that they must prevent sending it packets destined to

nodes 4 to 7. These are the switches of the upper stage that are connected

directly to the faulty switch. Since they can not route those packets through

other switches, they indicate to every switch of the previous stage connected

to them that they can no longer continue routing packets whose destination

is between 4 and 7. Notice that it does not matter which switch is chosen be-

tween switch 16 and switch 20, since they are connected to the same switches,

switches 18 and 22 in this case.



3.3. Dynamic Fault-tolerance Routing with Exclusion intervals 81

Switches 26 and 30 will notify switches 18 and 22, that they cannot forward

packets destined to nodes 4 to 7. Switches 18 and 22 can not route those

packets through any of its output ports, so they must notify switches of the

previous stage5 that they must avoid sending packets with those destinations

to them. These switches are 8, 12 and 14, which already have an alternative

path to reach the conflictive destinations. So, these switches must update the

exclusion interval of the output port corresponding to the input port through

which the notification has arrived. By doing that, no packets destined from 4

to 7 will arrive to the switches that are not able to reach those destinations.

Switches 8, 12 and 14 will route packets to these destinations through the

other up link, as these destinations are included in their inclusion intervals.

These switches will not longer propagate the notification to the previous stage.

Notice that these switches are the same switches where configuration was done

in the previous section when using the static fault model. Furthermore, the

link whose exclusion interval must be updated is the same as in the previous

section.

3.3.2 Formal Description

Now, we make a more formal description of our dynamic fault-tolerant mech-

anism. As stated above, we assume that the switches of the network have

the capability to detect link failures. In addition, we assume that switches

have the capability of generating fault-tolerance control packets and in case

they receive one of these packets, they are also able to interpret it and take

the appropriate actions. In order to spread the reconfiguration among the re-

quired switches, we define a new control packet that includes all the required

information to identify the switches at where reconfiguration must be done,

the exclusion intervals of which output port should be updated, and the value

to update them. We refer to this kind of packets as fault-tolerance control

packet and they are formed by three fields that contain the required informa-

tion for the reconfiguration process: FaultySwitch, ELIB and EUIB. In the

FaultySwitch field, the identifier of the switch that detects the faulty link is

indicated, and in ELIB and EUIB, the interval to exclude is indicated. As it

5Notice that, as switch 18 is the one that triggers the reconfiguration process, it will not

wait for upper switches to propagate the reconfiguration downwards.
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was shown in the static fault-model mechanism, to identify where to perform

the reconfiguration we do not need more information than the one provided

by these fields.

As commented, the dynamic mechanism begins when a switch detects that

one of its output links has failed. If it is an up link, its exclusion interval

corresponding to that up link is set to [0..N−1] and no more actions are needed

to tolerate the fault. If the faulty link is a down link, the switch generates

a fault-tolerance control packet. The interval to exclude corresponds to the

inclusion interval of the link that has failed. In other words, the switch fills

the fields ELIB and EUIB from the control packet with the routing interval

of the faulty link. The switch also fills the FaultySwitch field with its own

identifier. As observed in Figure 3.7, the fault-tolerance control packet must

arrive to the upper stage of the network, and then, it has to be forwarded

downwards to all the switches that are reachable by using only down links till

the previous stage to the one at which the fault is located. To do that, it

is enough that the switch that has detected a fault in one of its down links

generates a fault tolerance control packet that is sent only through one of

its up links. The choice of a given up link does not have any impact on the

result6. While the control packet is on its upwards routing path, the switch

that receives it, at each stage, must forward it through any of their healthy

up links. It is enough to reach one of the switches of the last stage in order

to reach all the switches that must be updated in the previous stage to the

one where the fault is located. Once the packet reaches the last stage of the

fat-tree, it begins its downwards path. In this down path, all switches that

receive a control packet must re-send it through all their down links, stopping

the process at the previous stage to the one where the fault was detected.

The stage at which the fault has been detected can be easily obtained from

the faulty switch identifier indicated in the control packet. The switches of

this stage that receive a fault-tolerance control packet will exclude the interval

indicated in the control packet in the up output port that corresponds to the

down input port through which the packet is received. Moreover, they could

obtain it by using the identifier of the faulty switch.

6In Section 3.3.3, we explain that this is not always true when multiple faults are con-

sidered.
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Therefore, the algorithm works as follows:

• A switch that detects a fault in some of its output links:

– If it is an up link, its exclusion interval is set to [0..N − 1].

– If it is a down link, it generates a control packet containing its

identifier and the inclusion interval of the faulty link.

1. If the switch is in the last stage, it sends the control packet

through all its down links.

2. If the switch is not in the last stage, it sends the control packet

through one of its up links, it does not matter which one is

selected.

• A switch that receives a fault-tolerance control packet:

– If it arrives in the upwards direction through one of its input up

links:

1. If the switch is not in the last stage, it re-sends the control

packet through just one of its up output links. It does not

matter which one is selected.

2. If the switch is in the last stage, it re-sends the control packet

through all its down output links.

– If the packet arrives in the downwards direction through one of its

input links:

1. If the switch is located at a stage different to the previous one

of the switch indicated in the packet (the faulty switch), then

it re-sends the control packet through all its down output links.

2. If the switch is in the previous stage of the switch indicated

in the control packet, then it updates the exclusion interval

of the up link corresponding to the input link through which

the packet is received with the interval indicated in the control

packet.
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Notice that fault-tolerance control packets must be received completely

in their downwards phase before routing them since the switch decides to

forward it or to update its intervals depending on the value of the fields of this

packets. Hence, independently of the switching technique used for the rest

of the packets, fault-tolerance control packets have to use store and forward

switching. By following this algorithm, all the remaining routes are fault-free.

This mechanism is designed for tolerating one fault. In the following section,

we present how to adapt it to tolerate multiple faults.

3.3.3 Multiple Faults Considerations

As in the static fault-model, when multiple faults are considered, it is possible

that several faults provoke to update the exclusion interval of the same output

port of the same switch. To deal with this issue, the techniques presented

in Section 3.2.2 to merge multiple intervals into one or to implement several

exclusion intervals per output port can be used in the dynamic model without

any modification, and providing the same fault-tolerance characteristics than

in the static fault-model.

Also, as in the static fault-model, every time an exclusion interval is up-

dated, the switch must check if it can still forward packets to all destinations.

In case that the switch can not reach some set of nodes, it should notify all

the switches of the previous stage connected to it to prevent that packets to

the unreachable destinations are forwarded to the switch. Dealing with this

case is easy with the dynamic fault model by considering that a new fault

have happened and it affects to the up links of the switch. Thus, the affected

switch generates a fault-tolerance control packet to update the switches of the

previous stage connected to it. The packet should contain as faulty switch the

current one and as exclusion interval the set of nodes that it can no longer

reach. As a result, the switches from the previous stage directly connected to

the switch will exclude that interval in the up link that connect them to the

switch that sent the control packet, and they should also check if there is a

set of unreachable nodes. This process must be repeated as many times as

needed (see Section 3.2.2 for more details).

Despite that multiple faults can be handled in a similar way to the one

used for the static fault-model mechanism, the dynamic mechanism requires a
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temporal restriction. Our dynamic mechanism can only guarantee the correct-

ness of the reconfiguration process provided that a new fault does not appear

before the reconfiguration of a previous fault has been completed. This can

be easily understood by the example presented in Figure 3.8 which represents

an incorrect reconfiguration process caused by the simultaneous appearance

of two faults in the network. In Figure 3.8(a), we can observe that two faults

have been detected simultaneously: one in the link number 1 of switch 6, and

the another one in the link number 0 of switch 8. The destinations that have

become unreachable due to these faults are nodes 6 and 7 in switch 6, and

nodes from 0 to 3 in switch 8. Therefore, as shown in Figure 3.8(b), these

switches generate a fault-tolerance control packet with the corresponding ex-

clusion interval following the algorithm presented above. In this example,

both switches send the fault-tolerance control packet to each other. Finally,

Figure 3.8(c) shows that switch 6 receives the fault-tolerance control packet

from switch 8, and updates the exclusion interval of the link that connects it

to switch 8. Therefore, switch 6 will not send packets to nodes 0 to 3 through

by crossing switch 8. The reconfiguration for the fault detected at switch 8 is

completed correctly. Nevertheless, this does not happen with the reconfigura-

tion for the fault detected at switch 6. Switch 8 receives the fault-tolerance

control packet from switch 6. As it belongs to the last stage of the network,

it spread the fault-tolerance control packet by forwarding it by its down links.

However, its link number 0 is faulty, and the fault-tolerance control packet

is lost without reconfiguring the exclusion intervals of the required switches.

Therefore, packets whose destinations are 6 or 7 may reach switch 6 and would

be lost.

As it can be seen, our mechanism cannot ensure that the fault-tolerance

control packets update the required exclusion intervals if the reconfiguration

due to another fault is still in process. To avoid this problem, the mechanism

requires that the mean time between faults (MTBF) of the system is several

orders of magnitude smaller than the time required to complete the reconfig-

uration process. This assumption is very realistic since fault handling time

is several orders of magnitude smaller than real systems MTBF7 (see Section

3.4.3).

7According to [126] the network failure rate is 0.129 failures per week.
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Figure 3.8: Step-by-step example of an incorrect reconfiguration due to two

simultaneous faults.
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Now, we want to show that our dynamic mechanism can ensure the cor-

rectness of the reconfiguration process even in the presence of previous faults

if the reconfiguration process due to these faults has ended completely. Figure

3.9(a) presents the initial scenario, in which switch 8 has detected a fault in

its link 0 and the reconfiguration process has ended by excluding the inter-

val of nodes [0..3] from port number 2 of switch 6. Later, switch 6 detects a

new fault in its link number 1 (Figure 3.9(b)). So, switch 6 starts the recon-

figuration process by generating a fault-tolerance control packet and tries to

forward it through its up links. At this point, switch 6 knows that through its

link 2, the nodes 0 to 3 are excluded due to a previous fault, so it decides to

avoid that fault by sending the fault-tolerance control packet through its link

number 3, as it can be seen in Figure 3.9(c). Once the fault-tolerance control

packet has arrived to switch 10, it continues with the reconfiguration without

any problem, as shown in Figure 3.9(d).

However, in order to perform the reconfiguration properly, switch 6 has

to be able to decide not to use the link with the exclusion interval. The

algorithm to spread the fault-tolerance packets has to be adjusted for the case

of multiple faults, since fault-tolerance control packets must avoid the different

faulty links in order to complete the reconfiguration process. Now, a switch

that must forward a fault-tolerance control packet during its upwards phase

has to guarantee that the packet is able to reach all the destination nodes

of the network. For this, when forwarding a fault-tolerance control packet, a

switch tries to use an up link whose exclusion interval registers are not used.

In case that the switch has several links whose exclusion intervals are not

being used, the switch can choose any of the up links to forwards the control

packet. If the switch does not have any up link whose exclusion intervals

are disabled, then the switch has to find a subset of up links that allows the

control packet to reach all the destinations. For example, if a switch with

arity 2 whose two up links have exclusion intervals set to [0..(N/2) − 1] and

to [N/2..N − 1], respectively, the switch would have to forward the fault-

tolerance control packet by both up links to reach all the destinations of the

network. Notice that, if this is not possible, then the switch has a subset of

destinations that are not reachable from it. In other words, the switch has lost

the connectivity with those destinations and therefore the fault combination
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Figure 3.9: Step-by-step example of the correct reconfiguration of a new fault

despite the presence of previous faults.
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is not tolerated by FT 2EI, so reconfiguration can not be completed. Notice

that if the switch has an exclusion interval set in all its up links, then the

network has suffered at least k faults, and our strategy can not tolerate such

a number of faults either on a static or a dynamic fault-model. More details

about these two issues are described on Section 3.4.2.

Additionally, instead of considering the bidirectional links as two separate

links in opposite directions, we assume that when a fault occurs in a link, this

link can not be used in any of its two directions and the fault is detected as an

ascending link fault by the switch of the lower stage and as a descending link

fault by the switch from the higher stage. This assumption was used in [61]

and it is a more realistic one, as bidirectional links are actually implemented by

using a single wire [33, 40]. In this way, we allow the mechanism to complete

the reconfiguration even when several down link faults appear in the same

sub-tree.

3.3.4 Avoiding Losing Packets during Reconfiguration

Despite that the mechanism is capable of reconfiguring the fault-tolerance

information of the network avoiding to use the faulty links, thus preventing

that packets are lost once the exclusion intervals have been updated, it can

happen that some packets are lost during the reconfiguration of the network,

since the computer activity is not stopped and the reconfiguration is still on

progress. The packets that are lost are directed to the destinations contained in

the exclusion interval and cross the output links where the exclusion intervals

should be updated.

This can be more easily understood with the example shown in Figure

3.10, which represents how a packet can be lost during reconfiguration. In

Figure 3.10(a), the node 0 sends a packet to the node 7. Concurrently, switch

6 detects that its link 1 is faulty. Later, as presented in Figure 3.10(b), switch

0 has routed the packet from node 0 and forwards it to the next switch of

its route. At the same time, switch 6 has started the reconfiguration process

and sends upwards the fault-tolerance control packet. Next, as presented in

Figure 3.10(c), the packet from node 0 reaches the last stage of the network

and starts its deterministic downwards phase. The reconfiguration process

progress simultaneously. Nevertheless, notice that the reconfiguration for the
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packet sent from node 0 has arrived too late, since the packet would be forced

to cross the faulty link, as it can be seen in Figure 3.10(d). In this figure, we

can see that the reconfiguration process ends correctly, but the packet from

node 0 reaches the faulty switch, and the only path to the destination of the

packet is through the faulty switch, as shown in Figure 3.10(e).

To deal with these packets, there are two alternatives. In the first approach,

no action is taken. So, these packets will be lost, and should be recovered by a

higher level protocol. Notice that fault-tolerance control packets should have

a higher priority than data packets to speed-up reconfiguration and minimize

the number of lost packets during reconfiguration. For the priority, we have

used a non-preemptive priority mechanism. That is, fault-tolerance control

packet have a higher priority than data packets when selecting an output

port. However, fault-tolerance control packets cannot use a port that is being

used by another packet, despite of the priority of the packet. For more details,

in section 3.4.3, we analyze the effect of such traffic priorization on the time

that takes to complete the reconfiguration.

As a better approach, we propose the use of an emergency path. An

emergency path can be used when a switch detects that the routing function

returns as unique output link a faulty link. With this technique, when a

packet is going to traverse a faulty link in a switch, the packet is deviated

to any of the other non-faulty down links of the switch. Notice that the

chosen down link will not include the destination of the packet in its routing

interval. Once in the next switch, the packet is forwarded one stage up by the

Interval Routing algorithm, and takes another down path to its destination,

thus avoiding the failure. In this way, when a switch is no longer able to reach

the destination of the packet, it provides a non-minimal path to the destination

of the packet. An example is presented in Figure 3.11. This figure provides

an alternative ending to the figures shown in Figure 3.10. Concretely, it starts

from the scenario presented in Figure 3.10(d), in which the reconfiguration is

completed, but the packet from node 0 has reached the faulty switch, and it is

going to cross the faulty link to reach its destination. Nevertheless, by using

an emergency path, the switch deviates the packet through its healthy down

link as shown in Figure 3.11(a). Once in the first switch from the emergency

path, the packet is routed normally by the routing intervals to its destination
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Figure 3.10: Step-by-step example of packet lost during reconfiguration.
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Figure 3.11: Step-by-step example of a deviated packet through an emergency

path.

as shown in Figures 3.11(b) and 3.11(c).

The deviated packets will go through a non-minimal path; but with this

simple technique we can prevent the loss of any packet while the reconfigura-

tion is in progress. Although the use of a down link followed by an ascending

one introduces a new channel dependency, it does not introduce a cycle in

the dependency graph, since in order to introduce a cyclic dependency, the

faulty link is needed. Therefore, the mechanism of the emergency path is

deadlock-free.

A similar mechanism to the emergency path was introduced in [115]. In
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that paper, the authors proposed to misroute packets down several hops as

unique fault-tolerant mechanism. That mechanism degrades throughput con-

siderably and increases latency due to the use of non-minimal paths contin-

uously after a fault appears. By using our emergency path, the paths of the

packets that should cross the faulty link are increased in two hops, which in-

creases their latency, but allow them to reach their destination. Nevertheless,

we do not consider it a good permanent strategy to deal with faults. We only

apply it temporarily, between the fault detection and the end of the reconfig-

uration period, which it is a short period of time, as it will be shown. Notice

that, when reconfiguration is completed, the packets that would use the emer-

gency paths if they reach the faulty switch are deviated through other switches

thanks to the exclusion intervals.

3.4 Evaluation

In this section, we evaluate FT 2EI. First, we focus on the fault–tolerance

properties of the proposal. Then we focus on some dynamic issues, such as

reconfiguration time. Next, we study the performance degradation of the

network, in both latency and throughput, when faults have been handled and

the exclusion intervals have been updated. Finally, we show a comparison of

the amount of memory required by our proposal against the memory required

by a system based on forwarding tables.

Before moving to the evaluation, we want to remark several important

concepts that we use during this section. We will say that the proposal is

n−fault tolerant, if it is able to tolerate any combination of n faults. Indeed,

we say that a given combination of n faults is tolerated if the methodology

is able to provide at least one path to communicate every source-destination

pair in the network completely avoiding the faults. A fault combination is not

tolerated, if there is at least a source-destination pair for which the method-

ology can provide a path that traverses a faulty link. When possible, we have

analyzed all the possible combinations for a given number of faults. This has

been possible for 2-ary 2-trees and 2-ary 3-trees. For networks with a larger

number of links, we have analyzed up to 10,000 randomly selected fault com-

binations. The error caused due to not analyzing all the cases is obtained by a
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statistical method that considers the total number of fault combinations and

the number of analyzed ones, and represents the maximum probability that

a fault combination is not tolerated. This probability is quite low (i.e. fault

combinations are likely to be tolerated). As an example, in the 4-ary 3-tree,

this probability is 0.0081 for 2 faults and 0.0098 for 15 faults.

3.4.1 Simulation Environment

For the fault–tolerance evaluation, we have developed an application that gen-

erates all or up to 10000 random fault combinations depending on the network

under testing. For each fault combination, it checks if our proposal can pro-

vide at least a fault-free path for each source-destination pair for each fault

combination. On the other hand, the dynamic issues that we want to analyze

are mainly the reconfiguration time, that is, how long it takes to update all

the exclusion intervals from the fault detection, and the number of packets

lost during the reconfiguration period. To evaluate these dynamic issues and

the performance of the network before and after reconfiguration, a detailed

event-driven simulator has been developed.

The simulator models a k-ary n-tree virtual cut-through network with

point-to-point bidirectional serial links. Routers has a non-multiplexed cross-

bar with queues only at the input ports. The queues can store up to five

packets. Packets are adaptively routed using the mechanism proposed in this

paper. Routing, switching and link time are assumed to be 1 cycle. We assume

that the packet generation rate is constant and the same for all the nodes. The

destination of a message is randomly chosen with the same probability for all

the nodes. The packet length is set to 16 bytes. We assume that the time

needed by a switch to detect that one of its links has failed is equal to 10

cycles. The time to generate and process a fault-tolerance control packet by a

switch is 1 cycle. The same value is used for updating the exclusion intervals

of an up link. Finally, the simulator ensures that each node of the network

receives an average of 100000 packets before ending each simulation to ensure

the stability of the results.

By using these tools, we have simulated a wide range of fat-trees for differ-

ent network loads. Concretely, we have evaluated from 2-ary 3-tree to 2-ary

6-tree, from 4-ary 3-tree to 4-ary 6-tree, and from 8-ary 3-tree to 8-ary 5-tree.
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The results for the topologies that are not shown follow the same trend than

the ones presented in here, but we only present the most representative ones

for the sake of simplicity.

3.4.2 Fault-Tolerance Results

In order to analyze the fault-tolerance capabilities of our mechanism, we ana-

lyze, for each network, the routes provided by FT 2EI after provoking several

combinations of randomly-chosen faults. As commented previously, for each

network and for each number of faults, we have analyzed 10000 fault combi-

nations. First, we analyze the capabilities of our mechanism by using only

one exclusion interval per output port. Next, the advantages of using multiple

exclusion intervals per output port are analyzed.

One exclusion interval

Table 3.1 summarizes the maximum number of tolerated faults with a single

exclusion interval per output port for the analyzed networks. As it can be ob-

served, the number of tolerated faults is k−1. By using FT 2EI, the networks

whose switches have k = 2 tolerate 1 fault, the networks whose switches have

k = 8 tolerate up to 7 faults, and so on. As commented previously, notice that

k − 1 is the maximum number of faults that can be physically tolerated in

the network without adding extra resources to the network. For example, in

Figure 3.12, we show two examples of a combination of two faults that breaks

the connectivity of a 2-ary 3-tree (k = 2). For example, Figure 3.12(a) shows

that if the k faults affect to the k up links of a switch of the first stage, then

the nodes attached to this switch will be isolated and the fault combination is

not tolerated. Moreover, notice that it is not needed that the faults affect to

all the up links of a switch from the first stage to lost the network connectivity.

For instance, in Figure 3.12(b), connectivity is lost since the faults cut all the

paths that go from node A to nodes B and C, but affecting links that belong

to different switches. As it can be seen, k faults can be enough to break the

connectivity of the network, and therefore, more than k − 1 faults cannot be

tolerated without adding new resources to the network.

Concretely, the non-tolerated fault combinations for more than k−1 faults
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Table 3.1: Number of tolerated faults for different k-ary n-trees.

Network # of tolerated faults

2-ary 2-tree 1

2-ary 3-tree 1

2-ary 4-tree 1

3-ary 3-tree 2

3-ary 4-tree 2

4-ary 2-tree 3

4-ary 3-tree 3

8-ary 3-tree 7

8-ary 4-tree 7

8-ary 5-tree 7

A

B

(a)

A

B

C

(b)

Figure 3.12: 2-ary 3-tree with two faults that break the network connectivity.
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in our methodology correspond to the fault combinations where there is at least

a switch at the first stage (stage 0) whose up links exclude a common subset

of destination nodes. In this way, source nodes attached to that switch have

no available path to the excluded set of nodes. When this happens in higher

stages different to stage 0, it is solved by propagating the exclusion interval

to the switches of the previous stage. However, this is not possible for stage

0. Next, we show that this case is the only one that our mechanism cannot

tolerate for combinations of k faults.

As can be seen in Section 3.2, when a single fault occurs in the network

the switches that have to update its exclusion intervals only have to update

the one associated to one of its up output ports. Therefore, the other k − 1

up output ports of these switches can still forward packets to the destination

nodes included in the exclusion interval. If one fault can only affect to one

output port of a switch, k − 1 faults would at most affect to k − 1 up output

ports of a switch, that is, k − 1 output ports of the switch would have to set

their exclusion intervals. In the worst case, the k − 1 exclusion intervals of a

given switch may share a set of nodes, but even in that case, there is still an

up output port that does not exclude any node. Therefore, the switch still can

forward packets to all destinations and, therefore, the combination of faults

is tolerated. On the other hand, if we consider combinations of k faults (or

more), two scenarios can be identified:

• The k faults have affected a subset, but not all, of the up output ports

of a given switch. This will not be a problem for our methodology. The

exclusion interval of these output ports will be updated, but the switch

can still forward packets destined to the nodes affected by the exclusion

intervals through any of the other up output ports of the switch that

have not excluded them due to the faults.

• The k faults have affected all the k up output ports of a switch. In this

case, there are two possible sub-cases:

– The k exclusion intervals that have been set in the switch do not

have any common node. Despite the fact that some destinations

cannot be reached through some of the up output ports, for each
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destination there exists at least an up output port at which the

destination is not excluded.

– The k exclusion intervals that have been set in the switch have

some common nodes. In this case, the switch cannot reach these

destinations through any of its up output ports. In this situation,

FT 2EI tries to tolerate the fault by spreading the exclusion infor-

mation to the switches of the previous stage that are connected to

the affected switch. This is possible for all the stages, but not for

the switches of the lowest stage (stage 0) of the network. Therefore,

some subset of nodes become unreachable from the switch, and the

k faults are not tolerated.

Therefore, despite that the mechanism cannot tolerate more than k − 1

faults, it can tolerate certain combination of k faults or more. Indeed, Figure

3.13 shows the percentage of non-tolerated fault combinations for two network

sizes (2-ary 3-tree and 4-ary 3-tree) when varying the number of faults. As it

can be seen, in a 2-ary 3-tree, all the combinations of 1 faults are tolerated, and

for 2 faults there is a 6% of non-tolerated combinations. In a 4-ary 3-tree, all

the combinations of 3 faults are tolerated, and for 4 faults, there is only a 0.23%

of non-tolerated combinations. Notice that, for more than k − 1 faults, the

percentage of non-tolerated combinations decreases as we increase the network

size. If the fat-tree has more stages (n), there is a larger percentage of fault

combinations that can be tolerated by propagating to the previous stages the

exclusion interval information before arriving to stage 0. If the switch arity (k)

is increased, a larger number of faults are tolerated by design. Nevertheless,

as the network size increases, either by having more stages or a higher switch

arity, more possible paths are available in the network, so it is easier to provide

alternative paths between a source-destination pair no matter the number of

faults.

Despite that this analysis have been performed for a static model, the same

degree of fault-tolerance can be achieved when considering a dynamic fault–

model. However, it must be taken into account that reconfiguration of each

fault must be finished before the appearance of the following one, as stated on

Section 3.3.3.
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Figure 3.13: Percentage of non-tolerated combinations versus number of faults.

Multiple exclusion intervals

The fact of having multiple exclusion intervals per output port does not in-

crease the number of tolerated faults as can be seen in Table 3.2. Table 3.2

shows the number of tolerated faults for the same networks presented in Table

3.1 varying the number of exclusion intervals per output port. That is, the

methodology remains k − 1 fault-tolerant. Using multiple exclusion intervals

helps to reduce the number of victim nodes. However, reducing the number

of victim nodes does not increase the number of tolerated faults by our mech-

anism, since with k faults or more the worst-case scenarios are those in which

the network is not connected, as commented before.

Nevertheless, using multiple exclusion intervals helps to reduce the number

of non-tolerated combinations for k and more faults. That is, the percentage

of non-tolerated combinations gets smaller as the number of exclusion inter-

vals increases. Therefore, fault combinations that do not disconnect any node

(no worst-case fault combinations) are easier to be tolerated, since there is

a lower number of victim nodes. As an example, Figure 3.14(a) shows the

percentage of non-tolerated fault-combinations for a 4-ary 3-tree for different

numbers of exclusion intervals per output port. As it can be seen, adding

a second exclusion interval has a large influence, specially when more than

15 faults are present in the network. This magnification on the advantage

of using several exclusion intervals when the number of faults is increased is

logical, since as the number of faults increases, the probability of including

victim nodes also increases and, therefore, the usefulness of having multiple
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Table 3.2: Number of tolerated faults for different k-ary n-trees varying the

number of exclusion intervals per output port.

Tolerated faults

Network 1 excl. int. 2 excl. int. 3 excl. int.

2-ary 2-tree 1 1 1

2-ary 3-tree 1 1 1

2-ary 4-tree 1 1 1

3-ary 3-tree 2 2 2

3-ary 4-tree 2 2 2

4-ary 2-tree 3 3 3

4-ary 3-tree 3 3 3

8-ary 3-tree 7 7 7

8-ary 4-tree 7 7 7

8-ary 5-tree 7 7 7

exclusion intervals per output port. The availability of a third exclusion in-

terval also gets improvements but adding more exclusion intervals has a lower

impact. For small networks (2-ary 3-tree) and a limited number of faults, as

it can be seen in Figure 3.14(b), it is not interesting to support more than

two exclusion intervals. Nevertheless, for large networks (4-ary 3-tree) and

considering a very high number of faults (see Figure 3.14(b)), it can be worth

to have more exclusion intervals (up to 6 in this case). Hence, we can state

that two exclusion intervals are enough, except for large systems with a high

number of faults in the network.

In order to show that having multiple exclusion intervals per output port

actually helps in reducing the number of victim nodes, we show in Table 3.3

the average number of victim nodes for 10 faults in a 2-ary 3-tree and in a

4-ary 3-tree varying the number of exclusion intervals per output port. Each

row shows the mean number of victim nodes in the network for 1000 random

fault combinations. As it was expected, when we increase the number of

exclusion intervals, the number of victim nodes is reduced. Adding the second

exclusion interval strongly reduces the number of victim nodes, but adding

more intervals gives diminishing returns. This confirms the results shown in
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Figure 3.14: Percentage of non-tolerated combinations.

Table 3.3: Number of victim nodes for various k-ary n-trees with 10 faults.

Network # of exclusion intervals mean # of victim nodes

2-ary 3-tree 1 40.76400

2-ary 3-tree 2 34.51600

2-ary 3-tree 3 33.72000

4-ary 3-tree 1 134.79199

4-ary 3-tree 2 54.27200

4-ary 3-tree 3 46.52800

4-ary 3-tree 4 46.33600

Figure 3.14(a).

3.4.3 Dynamic Issues

In this section, we focus on the issues concerning the dynamic fault model. As

commented, the dynamic issues are mainly the reconfiguration time, that is,

how long takes to update all the exclusion intervals starting to count from the

time at which the fault is detected, and the number of packets lost during the

reconfiguration period. Remember that reconfiguration time is an important

issue because, in our mechanism, another fault can not occur during the recon-

figuration due to a previous fault. In the cases where we have decided to use

emergency paths, we have analyzed how many packets are deviated through
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those paths in addition to analyze the number of lost packets, and the path

length increase.

For analyzing these issues, for each network, we found its throughput sat-

uration point (the maximum traffic accepted by the network). Then, we have

chosen three different traffic points: the one that saturates the fat-tree (high

traffic), its sixth part (low traffic), and the mean value between both of them

(medium traffic). For each of those traffic load points in each network, we have

introduced a link fault considering a significant number of different faulty link

locations. Moreover, as we expected that the stage of the fault could also have

some influence on the results, these fault combinations have been grouped de-

pending on the stage in which the faulty link appears. In particular, we made

25 different simulations for each network stage, each of them corresponding to

a different single down link fault combination8.

We do not show any result concerning the number of control packets re-

quired by the strategy because it is extremely low compared to the number of

simulated packets and their lifetime is very short, as it will be shown in this

section. Notice that FT 2EI only uses one control packet during its upwards

reconfiguration phase, whereas in the downwards phase, the affected switches

forward only one control packet through all their down links. Switches receive

just one control packet, no matter they belong to the upwards or the down-

wards reconfiguration phase. At worst, FT 2EI will generate as much control

packets as half the number of switches plus one, which is negligible compared

with the number of packets that have been simulated.

Reconfiguration Time

Figures 3.15 and 3.16 show how the reconfiguration time is affected by the

injected traffic and the stage at which the fault is located for four networks

sizes. In both figures, we show the average reconfiguration time classifying

the faults by the stage at which they are located. Reconfiguration time is

expressed in network cycles. As it was expected, reconfiguration time grows

with the injected traffic. When the traffic is high, there are more packets in

the network, so it is more likely that a link is busy when a control packet

8Since some of the networks have less than 25 links per stage (2-ary 3-tree and 2-ary

4-tree), we repeated some fault links appearing in the network at different times.
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Figure 3.15: Reconfiguration time classifying the faults by the stage at which

they are located for different traffic loads.

needs to go through it. Also, it can be observed that the reconfiguration time

is higher when the fault is located in lower stages of the fat-tree and it is

lower when the fault is located in the higher stages. As we have explained

before, the fault-tolerance control packet must go up from the stage where

the fault was discovered to the highest stage of the network, and then it must

go down to the previous stage to the one where the fault was discovered.

So, it is justified that the reconfiguration of faults in the lower stages of the

network takes more time, since fault-tolerance control packets have to cross

more stages. The reconfiguration time in the worst case is around 760 cycles.

This time is noticeably smaller than the meantime between faults (according

to [126] the network failure rate is 0.129 failures per week.).

Furthermore, it can be observed by comparing both figures that the arity of

the switches also influences on the reconfiguration time. For instance, in Figure

3.15(a), the worst reconfiguration time is approximately 210 cycles, whereas

the worst reconfiguration time is close to 375 cycles in Figure 3.16(a). The

networks used in these figures have the same number of stages, but the arity

of the switches of the second one is doubled with respect to the switches of the

first one. This seems logical if we consider that in the downwards phase of the

proposed mechanism, to spread the fault-tolerant information, the switches

has to send a copy of the packet through all their down links. Therefore,

as we increase the number of down links by increasing the switch arity, the
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Figure 3.16: Reconfiguration time classifying the faults by the stage at which

they are located for different traffic loads.

probability of finding that one of these links is being used by another packet

is also increased. Nevertheless, notice that the increase of the reconfiguration

time increases in a sub-linear way, so it is expected to be several orders of

magnitude lower than the MTBF of large clusters no matter the arity of the

switch.

Finally, we have performed an approximation for the availability that our

mechanism would reach on the worst case (where reconfiguration takes 760

cycles) in the large-scale high-performance computers presented in the Table

2.1. The results of such approximation were obtained applying Equation 2.5,

and are presented in Table 3.4. In the table, the network frequencies were

obtained from [5, 13, 18, 120, 126]. In the two cases where we could not find

documentation about the network frequency, we have approximated it by the

frequency of the most common network technology according to [12], which is

Gigabit Ethernet. For Gigabit Ethernet, we have used the working frequency

of the implementation from Cisco [95]. As it can be seen, our mechanism can

keep those systems available most of the time.

Number of Lost Packets

We have also analyzed the number of packets that are lost during the recon-

figuration period. As commented previously, these packets are lost because

they traverse the switches where the exclusion intervals will be set after the
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Table 3.4: Availability of our mechanism applied in several large-scale high-

performance computers. Computers marked with a ∗ are approximated by

using Gigabit Ethernet characteristics.

Computer #CPUs MTBF Net. Freq. Availability

ASCI Q 8192 6.5 hours 250 MHz 0.99999999916

ASCI White 8192 40 hours (2003) 500 MHz 0.99999999958

Seaborg 6656 14 days 125 MHz 0.99999999831

Lemieux∗ 3016 9.7 hours 1.062 GHz∗ 0.99999999980

Google more than 100k 20 reboots/day 100 MHz 0.99999999789

Abe∗ 9600 6 hours 1.062 GHz∗ 0.99999999980

BlueGene 65535 6.16 days 1.4 GHz 0.99999999985

appearance of the fault, but before the control packet has arrived, so in their

down phase, they would have as unique path the one that traverses the faulty

link.

Figure 3.17 presents the number of lost packets for the simulations from

Figure 3.15(b) and Figure 3.16(b). As it was expected, the number of lost

packets grows with the reconfiguration time. Hence, the number of lost packets

increases directly with the traffic load of the network and the switch arity.

Additionally, it is increased as the stage where the fault is located at decreases.

In the worst case, we only lost an average of 12 packets. This value is negligible

if it is compared with the total number of packets that have been simulated.

Results with Emergency Paths

We have also performed simulations enabling the emergency path to test the

effectiveness of this technique to avoid packet losing during the reconfiguration

of the exclusions intervals. Contrary to the previous section, packets that have

to cross a faulty link before the exclusion intervals have been updated are sent

through a non-faulty down link of the faulty switch following an emergency

path. As it was expected, the reconfiguration time keeps almost equal to the

case where the emergency path is not used, but there are no lost packets. All

the packets that would be lost are deviated through a non-minimal path that

allows them to reach their destination without encountering a fault during
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Figure 3.17: Number of lost packets classifying the faults by the the stage at

which the fault is located for different traffic loads.

their travel along of the network. This can be seen in Figure 3.18, where the

number of deviated packets is almost the same as the number of lost ones in

Figure 3.17.

We have also measured the increase of the path length for the packets that

are deviated. The deviated packets suffer a path size increase of two hops,

since they are deviated sending them to a switch of the previous stage to the

one at where the fault is located, increasing the length in one hop, and then

they have to go up another stage to return to their path to the destination

node, increasing in another hop the total length of the path.

Impact of control Packets Priority

Finally, we have also run several simulations to analyze the impact of not giving

priority to control packets on the reconfiguration time, since reconfiguration

time is a critical issue in our mechanism.

The most representative results can be seen in Figure 3.19. It shows the

results for the same simulation whose results where shown in Figures 3.15(b)

and 3.17(a), but without giving priority to fault-tolerance control packets over

data packets. As expected, the reconfiguration time grows more quickly with

the injected traffic. When the traffic load of the network is increased, the colli-

sions between packets are more frequent. If priority is given to fault-tolerance

control packets, these collision would be resolved favoring to the fault-tolerance
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Figure 3.18: Number of deviated packets depending on which stage the fault

is located at for a 4-ary 6-tree with emergency path.

control packets. Hence, by removing the priority of the fault-tolerance control

packets, the waiting time due to collisions of these packets rises directly with

the network traffic load. Nevertheless, reconfiguration time keeps being several

orders of magnitude smaller than the failure rate occurrence in a supercom-

puter [126]. As reconfiguration time increases, the number of lost packets also

increases, if no emergency path is used.

3.4.4 Impact on Network Performance

Now, we focus on the performance analysis of the network once the exclu-

sion intervals have been updated, for a single exclusion interval and multiple

exclusion intervals per output port.

One exclusion interval

It is expected that network throughput after reconfiguration would be lower

than the one before the fault appearance, since some paths of the network

have been lost due to the fault. Due to this fact, we analyze how network

performance is degraded when some faults are produced and are solved by

FT 2EI using only one exclusion interval. Figure 3.20 shows the throughput

degradation for several k-ary n-trees9 when varying the number of faulty links

9For a 2-ary 2-tree and 5 faults, there are not tolerated combinations.
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Figure 3.19: Results for a 4-ary 6-tree without giving priority to the fault-

tolerance control packets.

from 0 to 5. Each point represents the mean of 500 simulations, each one

of them corresponding to a different randomly selected fault combination tol-

erated by our methodology (if there is a smaller number of tolerated fault

combinations, a simulation is performed for each one of them). The error bars

are always smaller than 0.05, so, for the sake of clarity, they are not shown.

For one fault, the performance degradation varies from 6% to 14%10; for five

faults the performance goes down between 8% and 25%. Again, the larger

the network, the lower performance degradation due to the higher number

of alternative paths10. Furthermore, as it can be seen, in the networks with

lower arity (k = 2) the first introduced fault has a higher impact over perfor-

mance than the following faults. Nevertheless, in the networks with k = 4,

the performance degradation of each consecutive fault is very similar.

In an intuitive way, we can say that the lower stage the fault is located,

the higher number of paths that are affected by the fault. For this, we have

also analyzed the throughput degradation depending on the stage at which

the fault appears. The results can be seen at Figure 3.21. We represent some

networks with different number of stages and a faulty link, varying the stage

at which the fault appears. In networks with low arity (k=2, Figure 3.21(a)),

10Notice that this is the smallest performance degradation that can be achieved since with

one exclusion interval; no victim node is excluded and only the physical paths invalidated

by the fault are not used.
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Figure 3.20: Network throughput degradation for one exclusion interval.
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Figure 3.21: Network throughput degradation depending on the which stage

the fault is located at for several networks.

throughput is strongly affected when a fault happens at the first stage, but it

keeps constant in the rest of the stages. In networks with larger arity (k=4),

throughput degradation keeps nearly constant, independently of the stage at

which the fault happens, even for stage 0.

This not-expected behavior can be actually explained by the number of

paths that have been nullified when a fault is handled. Table 3.5 shows the

number of paths that have been nullified and the percentage that they repre-

sent over the total number of them, depending on the stage at which the fault

is located. We observe that, for networks that keep a constant performance

degradation wherever the fault is located at, the percentage of nullified paths
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Table 3.5: Number of lost paths due to a fault in some k-ary n-trees depending

on the stage at which the fault is located.

Network Stage # of paths # of lost paths % of lost paths

2-ary 3-tree first 168 20 11.90%

2-ary 3-tree second 168 16 8.52%

4-ary 3-tree first 52416 816 1.56%

4-ary 3-tree second 52416 768 1.46%

relative to the number of total paths is quite constant (see the 4-ary 3-tree).

On the other hand, for the networks in which the performance degradation

is higher in low stages, these percentages are quite different (see the 2-ary

3-tree).

Multiple exclusion intervals

Just to end with the evaluation of the performance of the FT 2EI mechanism,

we also consider the case of having multiple exclusion intervals per output port.

Figure 3.22 shows, as an example, the performance degradation of several

networks whose k is 2 or 4 for 4 faults11 when considering several exclusion

intervals, from 1 to 4. As it can be seen, from 1 to 2 exclusion intervals,

the performance degradation is reduced in almost all the cases, but for more

intervals, no additional improvements are obtained. This could be expected

from the results shown in Table 3.3, as the percentage of lost paths due to the

faults was really small in most of the cases. Notice that with 4 faults and 4

exclusion intervals no victim node is excluded and, therefore, the performance

degradation is the lowest that can be achieved without adding new links,

switches or virtual channels to the network.

Nevertheless, again, when considering a larger network and a very high

number of faults (see Figure 3.23), additional improvements are obtained when

increasing the number of exclusion intervals to tolerate faults. In this case, as

it can be seen, up to 3 exclusion intervals per output port is worth to be used.

Notice that as we increase the number of faults, we increase the number of

victim nodes that are introduced in the exclusion intervals of the network. As

11The error bars are again smaller than 0.05, so they are not shown for the sake of clarity.
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Figure 3.22: Network throughput degradation for 4 faults and multiple exclu-

sion intervals.
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Figure 3.23: Network throughput degradation for multiple exclusion intervals.

4-ary 3-tree with 40 faults.

it was shown in Table 3.3, having more exclusion intervals helps in reducing

the number of victim nodes. So, the extra exclusion intervals help in reducing

this increase in the number of victim nodes, and therefore less healthy paths

are eliminated from the network.

3.4.5 FT
2
EI Memory Requirements

Finally, we analyze the amount of memory required at each switch by FT 2EI

and by a routing algorithm based on forwarding tables.

On one hand, routing based on forwarding tables requires a table with as

many entries as the number of destination nodes (N). Each entry must contain
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a node identifier and the port, or ports for adaptive routing, returned by the

routing function. Switches have 2 × k ports. The length of the identifiers of

the destination nodes is log(N), and the number of bits required to represent

the output is log(2 × k). Hence, the cost of this alternative is CFTdet
=

N × (log(N) + log(2 × k)) bits in each switch, for deterministic routing. In

adaptive routing, the routing function of a fat-tree can return up to k results.

Therefore, the routing table must be able to store k output ports for each

destination of the network. The cost of implementing adaptive routing in fat-

trees with forwarding tables is CFTadap
= N × (log(N) + k × log(2 × k)) bits

in each switch. Clearly, both, for adaptive and deterministic routing, cost is

O(N), which is not scalable with the network size. Indeed, the fault-tolerant

mechanism used in a table-based network could require additional memory.

On the other hand, we have FT 2EI that is based on IR. As before, we

assume that the network is composed by N nodes, built with switches with

2 × k ports. IR associates two routing registers to each output port, each

of size log(N). So the total number of bits per switch for IR intervals is

2×k×2×log(N). Additionally, FT 2EI needs to associate additional registers

to each ascending output port for the exclusion intervals. In particular we

need two registers per each exclusion interval. So, being nei the number of

exclusion intervals, our proposal needs 2 × nei × k × log(N) bits per switch

for the exclusion intervals. Therefore, considering also the required inclusion

interval (2 registers), the total amount of memory per switch is CFT 2EI =

(2+ nei)× 2× k× log(N), which is O(log(N)) and is clearly scalable with the

network size. Moreover, FT 2EI relies on a low number of exclusion intervals

per output port, since having more intervals only makes sense in very non-

reliable large networks.

Finally, Figure 3.24 shows the required total memory per switch as the

number of nodes in the network is increased, for a routing scheme based on

forwarding tables and one that is based on FT 2EI with 2 exclusion intervals.

We show the results up to 1M nodes to show how both schemes could handle

the expected number of nodes in next-generation supercomputers. For this, we

set k = 32 to reflex the trend of using high-radix switches. Despite this high

value of k, which increases the memory required by FT 2EI, it stays several

orders of magnitude smaller than the one required by forwarding tables. For
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Figure 3.24: Memory requirements per switch for a routing scheme based on

forwarding tables and one based on FT 2EI with 2 exclusion intervals in a

network with k = 32.

this value of k, forwarding tables are not worth for any system size in adaptive

routing. Furthermore, notice that the high-radix trend on high-performance

interconnects enhances the fault-tolerance provided by our mechanism, as it

would be able to tolerate a higher number of faults.

3.5 Conclusions

In this chapter, we have proposed an efficient fault-tolerant distributed adap-

tive routing strategy (FT 2EI) for k-ary n-tree interconnection networks. The

FT 2EI methodology does neither need complex hardware, nor replicating any

network component, nor a large amount of memory. It is based on enhancing

the well-known Interval Routing scheme with exclusion intervals. Each output

port is provided with an exclusion interval, that represents the set of nodes

that become unreachable from the output port after a fault. We have also pro-

posed a simple algorithm to calculate the exclusion intervals of the affected

switches, avoiding penalizing those nodes that are not affected by the fault

and allowing adaptive routing in all the healthy paths. Also, a very efficient

mechanism to dynamically spread the exclusion interval information without

stopping the network is proposed, thereby avoiding the disadvantages of using

a static fault model. Moreover, we have proposed a mechanism to avoid packet

losing while reconfiguration is in progress.
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The evaluation results show that the FT 2EI methodology is able to com-

pletely tolerate all the fault combinations of k−1 links. Moreover, for medium

and large networks, FT 2EI is able to tolerate a large number of fault combi-

nations with a very high probability (98.05% of probability for 8 faults in a

4-ary 3-tree network). The price paid is some performance degradation, which

depends on the number of faults and the network size. We have also analyzed

the impact of using several exclusion intervals per output port to improve our

mechanism. Although associating several exclusion intervals per output port

does not help in increasing the number of tolerated faults for a given topology,

the percentage of non-tolerated combinations of faults is strongly reduced, and

also the performance degradation of the network. We have obtained that two

exclusion intervals per output port is enough for reliable networks. More than

two exclusion intervals only makes sense for networks in which the faults have

eliminated a high percentage of the paths of the network.

Finally, the time required to make the reconfiguration of the exclusion in-

tervals is several orders of magnitude lower than real systems MTBF, which

assures the correct behavior of the proposed dynamic fault handling mecha-

nism.



Chapter 4

DESTRO: Effective

Deterministic Routing in

Fat-Trees

“You step into the Road, and if you don’t keep your feet, there is

no knowing where you might be swept off to.”

Frodo Baggins, quoting Bilbo Baggins, Lord of the Rings.

Routing is a key design issue in interconnection networks, since network

performance is greatly influenced by the chosen routing algorithm. There are

several classifications for routing algorithms, the most common one differen-

tiates between deterministic and adaptive routing algorithms. Deterministic

routing algorithms always provide the same unique predefined path for the

packets from a given source node to a given destination node. On the other

hand, adaptive routing algorithms can adapt the paths that they provide to

the traffic conditions of the network.

Adaptive routing usually obtains a higher performance than deterministic

routing. However, it may introduce out–of–order packet delivery, if no ad-

ditional mechanisms are used. In-order delivery of packets is mandatory for

several applications, like some cache coherence protocols [84], and network

technologies, like Infiniband [7]. The only way of keeping the delivery order of

115
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packets in adaptive routing is by using specific mechanisms. However, these

mechanisms increase the complexity of the network and may reduce significa-

tively its performance.

Furthermore, the required logic to implement adaptive routing is composed

of a routing function that provides a set of output ports for each routed packet,

and a selection function that selects the one that would be used as output port

for the packet that is being routed. In deterministic routing algorithms, the se-

lection function is not necessary since a deterministic routing function always

returns only one output port. Therefore, the complexity of the implementa-

tion of an adaptive routing algorithm is further increased if it is compared

to the one of a deterministic routing algorithm, since they require the use of

selection functions and in-order delivery mechanisms. Nevertheless, determin-

istic routing algorithms usually achieve a lower performance compared with

an adaptive routing algorithm, since they cannot react to the changes in the

conditions of the traffic in the network.

Concerning topology, as previously commented, most of the commercially

available interconnects are based on fat-trees. In the previous chapter of this

dissertation, we took advantage of the huge path diversity of the fat-tree topol-

ogy to provide several alternative routes to use when a fault is detected in

the network. In this chapter, we take on the challenge of proposing a de-

terministic routing algorithm that is able to efficiently exploit the available

rich connectivity of the fat-trees. In this way, we pretend to propose a new

deterministic routing strategy with low complexity that preserves in–order de-

livery of packets and at the same time providing a similar performance as the

adaptive routing algorithms. The proposed routing mechanism is very simple

but at the same time very powerful, since it is able to balance network traffic.

Indeed, opposite to previously–proposed approaches, it allows to retain con-

tention as much as possible, leading to a deterministic routing algorithm that

can outperform previously–proposed deterministic routing algorithms and the

commonly–used adaptive routing algorithm while keeping all the advantages

of deterministic routing such as in–order packet delivery and a simple imple-

mentation.

The rest of the chapter is organized as follows. Section 4.1 briefly intro-

duces the motivation of the chapter, and explains several basic points about
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adaptive and deterministic routing. Our proposed deterministic algorithm is

presented in Section 4.2, providing in addition an efficient way of implement-

ing it. Next, Section 4.3 provides an exhaustive evaluation of our proposal

against adaptive routing using several selection functions and other determin-

istic routing algorithms proposed for fat-trees. Finally, some conclusions are

drawn in Section 4.4.

4.1 Introduction

As commented, the main difference between adaptive and deterministic rout-

ing algorithms is the number of possible routes for the packets. In deterministic

routing schemes, an injected packet traverses a fixed predetermined path be-

tween source and destination; while in adaptive routing schemes, the packet

may traverse any of the different alternative paths available from the packet

source to its destination.

As adaptive routing algorithms can provide several different routes for the

packets, they are very flexible and can adapt to changes in the conditions of

the traffic in the network to provide better routes for the packets that are

traversing the network. For example, Figure 4.1 presents a network using an

adaptive routing algorithm. In this network, the node labeled Origin sends a

packet to the one labeled Destination, as seen in Figure 4.1(a). This packet

is sent to a switch that is heavily congested, and gets stopped, see Figure

4.1(b). At the same time, the same node sends a second packet to the same

destination node. However, as depicted in Figure 4.1(c), the adaptive routing

algorithm has detected that the switch at which it forwarded the first packet

is heavily congested, and it deviates this second packet, avoiding in this way

that the packets traverse the congested zone that would likely speed it down,

increasing its latency. In this way, the packet can reach its destination using

a less congested path, see Figure 4.1(d). This flexibility is the great advan-

tage of adaptive routing algorithms over deterministic ones, since it usually

allows them to achieve better performance results than deterministic routing

algorithms.

However, this flexibility increases the complexity of the implementation of

the adaptive routing algorithms, since they require to use a selection function
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in addition to the routing function [40]. In adaptive routing algorithms, the

routing function supplies a set of one or more routing options, so there must

be another function that selects one of these routing options according to the

conditions of the network traffic to provide the best possible routes for the

packets, and this is the selection function.

Moreover, the flexibility of adaptive routing algorithms can further increase

the complexity of the implementation of the network, because adaptive routing

algorithms cannot ensure to preserve packet ordering by themselves due to this

adaptivity. An example of packet disorder provoked by the adaptivity of the

network is shown in Figure 4.1. As commented, in this example, there is a

switch in the network that is suffering from heavy congestion. Any packet that

tries to cross this switch would likely be stopped for a long time before being

able to continue its travel. As commented, in the first figure, the node labeled

as Origin sends a packet to the node labeled as Destination. This packet is

routed by the switch attached to the node, that decides to forward the packet

through its first up link, directly to the congested switch. Immediately after

the first packet, the same node sends another packet to the same destination.

But, this time, the switch attached to the node decides that the second packet

is going to be forwarded through its second up link, avoiding the congested

zone, as explained previously. As it can be seen, the first packet would take a

long time to traverse the congested switch, while the second one has avoided

the congested zone and continues its travel to the destination node. At the

end, the second packet reaches the destination before the first one. Thus,

the delivery order of the packets is broken. For this reason, when in-order

delivery of packets is mandatory like in certain cache coherence protocols [84]

and some communication technologies [7], adaptive routing algorithms require

to use complementary techniques to keep the packet delivery order, increasing

the global complexity of the network.

On the other hand, deterministic routing algorithms are considered to

achieve a lower performance than adaptive routing algorithms due to their

lack of adaptivity. However, thanks to their lack of flexibility they are more

simple to implement than adaptive routing algorithms. For example, they do

not require the use of a selection function, because the routing function always

return only one routing option.
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Figure 4.1: Step-by-step example of two consecutive packets that follow dif-

ferent paths in a fat-tree with adaptive routing.
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Furthermore, deterministic routing algorithms always preserve packet de-

livery order, independently of the traffic conditions of the network. Let’s check

this with the same example as before. Figure 4.2 presents the same scenario as

before, but using deterministic routing instead of adaptive routing. As before,

we have a switch that is heavily congested, and the node labeled as Origin

sends a packet to the node labeled as Destination. Again, the switch attached

to the node forwards the packet through the link that connects it to the con-

gested switch. As in the previous example, the same node sends a second

packet to the same destination immediately after the first packet. However,

in deterministic routing the paths are fixed, and cannot be changed. So, if

the first packet has been forwarded to the congested switch, the second packet

would also be forwarded to that switch. After being stopped in the congested

switch, both packets would reach their destination in the same order that they

were injected into the network. As it can be seen, deterministic routing al-

gorithms preserve the packet delivery order no matter the traffic conditions

of the network. However, in deterministic routing algorithms, if the path tra-

verses a congested zone like in the example, all the packets would be delayed

by the congestion. Nevertheless, in adaptive routing algorithms, at least one

of the packets was able to reach the destination avoiding the congestion. No-

tice that this situation with just one switch that is heavily-congested is very

unrealistic, since congestion is usually spread around the congested switch.

That is, in adaptive routing algorithms the deviated packets would also be

delayed by the congestion and the differences in the increase of packet latency

due to congestion between deterministic and adaptive routing algorithms are

not as important as they can seem.

As commented in Chapter 2, routing strategies can also be classified ac-

cording to the place where the routing decisions are made as source or dis-

tributed routing. Concretely, in Section 2.1.6, we explained that distributed

routing is usually implemented either by a fixed hardware, specific to a given

routing function on a given topology which lacks of flexibility; or by using

forwarding tables that are very flexible but suffer from a lack of scalability. In

the previous chapter, we presented a scalable distributed implementation of

the commonly used adaptive routing algorithm in fat-trees based on Interval

Routing (IR). In this chapter, we use the implementation showed in Section
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Figure 4.2: Step-by-step example of two consecutive packets that preserve

their order despite the network conditions with deterministic routing.
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3.1 to implement the routing function for adaptive distributed routing.

4.2 Description of the Deterministic Routing algo-

rithm

Our work to propose a new deterministic routing algorithm for fat-trees is

based on the aforementioned adaptive routing algorithm. We have decided to

use this algorithm as the base of our study since it is widely-used and it is

established as the default routing algorithm in fat-trees. As commented in the

previous chapter, this adaptive routing algorithm is composed of two phases.

The first one is an upwards phase that it is fully adaptive, followed by a de-

terministic downwards phase. In the upwards phase, at each traversed switch,

there are k output ports returned by the routing function. A selection func-

tion is used to select the output port finally used. This phase is fully adaptive

since all the ascending ports can be used in order to reach the destination of

the packet. In this phase, the packet travels upwards from the nodes located

at the leaves of the fat-tree to the root of the tree. When the packet reaches

a switch that is one of the nearest common ancestors between source and des-

tination nodes, the packet enters in the downwards phase. In this phase, the

packet travels downwards from the switches of the fat-tree to its destination

node located at the bottom of the tree. This phase is deterministic, that is,

only one path is provided. This downwards path is completely determined

by the switch reached in the upwards phase, as it can be seen in Figure 4.3.

The figure shows all the possible routes from the source node labeled as Ori-

gin to the node labeled as Destination, each highlighted in a different color.

As it can be seen, each ascending adaptive path leads to a different common

ancestor switch, and the descending path towards the destination is different

for each ancestor switch. That is, the path of the downwards phase depends

completely by the path that was used during the upwards adaptive phase. So,

notice that the decisions taken during the upwards phase may be critical later

during the downwards phase.

In order to propose a deterministic routing algorithm from the adaptive

one, we have to reduce all the routes between the nodes of the network to

just one route per source–destination pair. In the adaptive routing algorithm
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Origin

Dest.

Figure 4.3: The different adaptive routes from node 0 to node 7 in a 2-ary

3-tree highlighted in different colors.

for fat-trees, since only one of its phases is adaptive. The downwards routing

phase is deterministic, so nothing must be done in this phase to reduce the

number of paths for each pair of nodes. Therefore, we have to reduce all the

possible paths on the upwards phase to a unique path for each pair of nodes,

but this reduction must be made with the aim of making an efficient use of

the available rich connectivity of the topology. In order to avoid saturating

some links that would limit the performance of the network, the selection

of the paths for the deterministic routing algorithm should be done trying

to balance network link utilization. That is, all the links of the same stage

should be used by a similar number of paths. This is easy to obtain in the

ascending phase. For example, an alternative to do that is to divide the set

of reachable destinations through the k up links of a switch into k sub-sets

of the same size. Each of these sub-sets should be associated to each up link

to determine which one is used to reach each destination. However, the way

to create these sub-sets is not straightforward, since balancing the number of

paths that use a link in the ascending phase does not ensure that the utilization

of the links of the down phase is also balanced. Remember that the paths used

during the upwards routing phase determines the one used in the downwards

routing phase. So, we must balance the paths that use each links in both
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stages. A first approach to group the destinations is to associate consecutive

destinations to each up link in the first stage. Nevertheless, as it can be seen

in Figure 4.4(a)1, this approach is very naive since it balances the number of

routes in the up links of the first stage, but it cannot balance the number of

routes in the up links of the switches of the second stage. Anyway, these same

groups of destinations per port can be arranged in a proper way, as shown in

Figure 4.4(b). As it can be seen, with this second grouping, upwards paths

are equally used by the same number of paths, but down links utilization is

still unbalanced. As all the down links route packets to the same number of

destinations, it may seem that they are used by an equal number of routes,

but that is not true. For instance, in Figure 4.4(c), we have highlighted all the

paths that lead to node 0. In the figure, the down link that connects switches

4 and 0 is used by two routes; on the other hand, the down link that connects

switches 5 and 0 is used by four routes. As it can be seen, one of the down

links is used by twice the number of routes than the other. Notice that those

two links are only used by routes to nodes 0 and 1, and routes to both nodes

suffer from the same unbalance. Furthermore, the same fact happens with the

routes to the rest of nodes, not only with the ones that lead to node 0 and

1. This is an example of even utilization in the up links, but not in the down

links.

We have analyzed several approaches, trying to balance both routing phases,

and found that a good alternative is to shuffle, at each switch, consecutive des-

tinations in the ascending phase. In other words, consecutive destinations are

distributed among the different ascending links, reaching different switches in

the next stage. In this way, both routing phases are balanced. Moreover, the

down phase becomes exclusive for each destination avoiding the Head-of-Line

blocking effect and collisions between packets directed to different destinations.

In order to help to understand the mechanism, we will explain our proposed

deterministic routing algorithm by using an example. Figure 4.5 shows the

destination node distribution in the ascending and descending links of a 2-

ary 3-tree using our proposal. In the first stage, consecutive destinations are

shuffled between the two up links. To do that, the least significant component

1In the figure, each link has been labeled (in dark blue bold–italic font) with the desti-

nations whose packets will be forwarded through it.
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Figure 4.4: Two possible groupings of destinations for deterministic routing.
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with our proposal.

of the packet destination address (the least significant bit in this example)

is used to select the ascending output port. That is, packets that must be

forwarded upwards select the ascending output port indicated by the least

significant component of the packet destination (p0). Therefore, consecutive

destinations are sent to different switches in the next stage. For example,

switch 0 forwards through its up links packets to the destinations from 2 to

7. This switch sends through its first up link the packets whose destination

identifier ends in 0, that is, packets with destinations 2 〈010〉, 4 〈100〉, and 6

〈110〉; and it sends through its second up link the packets whose destination

identifier ends in 1, that is, packets with destinations 3 〈011〉, 5 〈101〉, and 7

〈111〉.

At the second stage, we cannot use the least significant component of the

destination address to route the packets since the destinations of all the packets

that reach a given switch in this stage share the least significant component.

Let’s check this in Figure 4.5. For example, switch number 5 can only receive

packets in the upwards phase from switches 0 and 1. As it can be seen in the

figure, switches 0 and 1 only forward packets with destinations 1, 3, 5, and
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7 to switch number 5. The least significant component of these destinations

is 1. As the least significant component can not be used in this stage, the

component to consider in the selection of the up output port is the next one

from the destination address. For instance, as shown at switch 5, only packets

destined to nodes 1, 3, 5 and 7 reach that switch, and only packets destined

to nodes 5 and 7 must be forwarded upwards. Packets destined to node 5

(〈101〉) select the first up link since its second least significant component is

0, and packets destined to node 7 (〈111〉) the second one since its second least

significant component is 1.

Considering all the switches that belong to stage 1 (the second stage),

packets destined to nodes 0, 1, 4 and 5 use the first up output port of the

switches and those packets destined to nodes 2, 3, 6 and 7 use the second

output port. That is, the second least significant component of the packet

destination is used in the second stage to route packets.

In the general case, the selection of the output port made by our mechanism

is based on the destination identifier and the stage of the switch that is routing

the packet. For this, we will refer to this deterministic routing algorithm as

Deterministic dEstination and STage based ROuting in fat-trees (DESTRO).

In particular, DESTRO considers the component of the packet destination

corresponding to the stage at which the switch is located at, (i.e., a switch

located at stage s considers the sth component of the destination address).

That is, at the switch 〈s, on−2, ..., o1, o0〉, the selected output port for a packet

that must be forwarded upwards whose destination is given by pn−1, ..., p1, p0

will be k+ps. k is added to the component of the destination address because

up links start at k in our link numbering. In this way, we use the up port

corresponding to the component of the destination address.

Notice that we only change the allowed paths during the upwards phase

from the adaptive routing algorithm, therefore we do not make any change in

the routing of the downwards phase as this phase was already deterministic.

Also, notice that the packets would transit from the upwards phase to the

downwards phase in the same stage than in the adaptive routing algorithm.

However, instead of being able of starting it in any of the nearest common

ancestors between the source node and the destination node of the packet, the

packets can only reach one of these nodes since the upwards routing phase is
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Figure 4.6: DESTRO downwards routing paths for each destination are high-

lighted in different colors in a 2-ary 3-tree.

no longer adaptive.

As it can be seen, the mechanism is very simple and easy to implement,

since in the upwards phase a single component of the destination address

indicates the output port to use. Despite this simplicity, the resulting deter-

ministic routing algorithm has two very important features. First, DESTRO

evenly distributes the traffic destined to different nodes, as shown in Figure

4.5. The bottom of Figure 4.5 shows the number of paths (source–destination

pairs) that use each link at each stage. Both, the ascending and descending

links of a given stage are used by the same number of paths. So, traffic in

the network is completely balanced. This traffic balance is also achieved by

another previously-proposed routing algorithm [78].

The difference between our proposal and previous proposals like [78] is that

our proposed routing algorithm retains the congestion into the congested paths

without blocking traffic that is not directed to the congested point, opposite

to what is done in [78]. In DESTRO, as it can be seen in Figure 4.5, packets

whose paths from their source node to the destination have the same length

and are destined to the same node begin their downwards routing phase in the
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same switch, sharing the same descending path to their destination. This can

be easily seen in the switches of the last stage. Each switch of the last stage

receives packets addressed only to destinations whose identifiers differ only by

the most significant component, and those packets are forwarded through a

different descending link depending on their most significant component. In

this way, each destination has a different descending path that does not share

any link with packets with other destinations. Figure 4.6 highlights all the

down links of a 2-ary 3-tree coloring the links depending on the destination

to which they forward packets to in DESTRO. As it can be seen in the figure,

all the down links are only used by packets belonging to one destination, com-

pletely avoiding the HOL blocking effect, avoiding merging packets destined

to different nodes. Furthermore, in order to reach the same switch to start

the downwards routing phase, in DESTRO, the paths to the same destination

during the upwards phase become grouped inside a sub-tree, converging to the

switch at which they begin their downwards routing phase, as it can be seen

in Figure 4.7(b). As a consequence, the congestion of one destination does not

affect packets destined to other destinations.

On the contrary, in [78] packets destined to the same destination that have

different source nodes use almost disjoint ascending and descending paths,

collapsing the whole network if a single destination node becomes congested.

This can be seen in Figure 4.7, where all the paths to destination 7 from

all the other nodes (nodes 0 to 6) are shown, for a source-based routing like

the one proposed in [78] (Figure 4.7(a)) and for our proposed mechanism

(Figure 4.7(b)). As can be seen in Figure 4.7(a), 16 network links are used to

communicate only with destination node 7 and a single hot-spot can saturate

almost all the network links; whereas in Figure 4.7(b), 6 network links are

used, and the traffic of a single hot-spot only saturates one of the sub-trees of

the network, not the whole network. In the routing algorithm proposed in [78],

if a destination becomes congested, the packets to this destination would be

spread over most of the switches of the network, and packets directed to non-

congested destination would be blocked by the Head-of-Line blocking effect.

Notice that the congestion is extended all over the network in the same way

with adaptive routing, as adaptive routing algorithms try to balance the traffic

load by using the output links that are free when their preferred one can not
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Figure 4.7: Routes from all the source nodes to destination node 7 in source-

based routing and DESTRO.

be used.

4.2.1 Implementation of DESTRO by using Flexible Interval

Routing

In the previous chapter, we showed how the commonly-used adaptive routing

algorithm for fat-trees can be implemented by using IR in a very simple and

compact way. Now, in this section, we show how DESTRO can be also im-

plemented in a very simple way by using Flexible Interval Routing (FIR) [62],

an extension of IR that allows using different routing algorithms by adding

only two additional registers per output port. In order to allow the reader to

understand FIR without any additional document, we briefly first introduce

FIR.

FIR

FIR was initially proposed to implement the most commonly–used routing

algorithms in meshes and tori. Most of these routing algorithms could not be

implemented by using IR due to its lack of flexibility in the interval definition.

In FIR, as in IR, each output port has an associated interval that can be

cyclic, which is implemented with the LIB and UIB registers, like in IR. But,
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direction address of the packet and comparing it with the routing interval.

in order to add flexibility, additional registers are associated to each output

port. In particular, each output port has a Mask Register (MR) that indicates

which bits of the packet destination address will be actually compared with the

routing interval (provided by the LIB and UIB registers). An implementation

of this logic is depicted in Figure 4.8, in which the destination of packet is

masked with the MR and then compared with the LIB and UIB registers.

As in IR, the result of this comparison is stored in the allowed output port

register (AR), that stores which output ports can be used by packet that is

being routed. As can be seen, this implementation is very similar to the IR

implementation shown in Figure 3.1. The main difference is the presence of

the MR in Figure 4.8.

Additionally, FIR allows to apply some routing restrictions by means of an

additional register associated to each output port, the Routing Restrictions

Register (RRR), which defines, for each output port, which other output ports

of the switch should be selected prior to this one. This register has one bit

per output port. For a given output port i, the j bit in the RRR of the port

i indicates whether the output port j has more preference (bit set to 1) or

not (0) than output port i. Thus, the final routing decision for an output

port i is obtained not only by comparing the masked destination with the

interval bounds, but also by checking the bits in its RRR. The logic for the

RRR checking is shown in Figure 4.9. The RRR was introduced in FIR to

introduce an order in channel usage, thus ensuring deadlock-freedom of the
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routing algorithm. However, the up/down routing algorithm used in the fat-

trees is deadlock-free by default. Nevertheless, we still use this register for

other purposes, as it can be seen below.

Implementation of DESTRO

With these basic notions about FIR, we can show how these few registers per

switch can be configured to route packets in fat–trees following the proposed

deterministic routing algorithm. Notice that the adaptive routing algorithm

described in Section 3.1 can be also implemented with FIR, since IR is a subset

of FIR.

We begin explaining how to configure the ascending links registers. They

are configured in a very different way than in the adaptive routing case, since

the number of ascending paths is reduced to one for each source–destination

pair. At each switch, the ascending link to use is obtained from the packet des-

tination component corresponding to the stage at which the switch is located

at. A given packet can only be forwarded upwards through that up link. To

obtain the proper component from the destination identifier corresponding to

the switch stage, we use the Mask Register (MR). The MR of each ascending

link sets to 1 the bits corresponding to the component associated to the switch

stage. Figure 4.10 shows the FIR register configuration for a 2–ary 3–tree. As

k is 2, the components of the destination address are composed by only one

bit. In the figure, each output port shows three lines of numbers: the first

one (in red italic) shows the destination nodes that are reachable through that
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output port, the second one shows the values of the LIB and UIB registers of

that output port, and the third one shows the value of the MR associated to

the output port. As it can be seen, the MR is set to 001 in the up links of all

the switches of the first stage, as only the least significant bit is selected and

compared with LIB and UIB in this stage. Packets are forwarded through the

ascending output port depending on the least significant component of its des-

tination. For this, the LIB and UIB registers are set to their order inside the

up links of a switch. In other words, the LIB and UIB of the first up link are

set to route packets whose component that correspond to the stage at where

the switch is located at is 0, and the ones that belong to the second up link of

the switches only route packets whose component is 1. At the second stage,

the next bit or component is considered, so MR is set to 010, but LIB and

UIB values are equal to the ones from the first stage shifted one component

to the left. The same procedure is used for filling the routing intervals of the

switches from the rest of stages. In k–ary n–trees with k > 2, the components

will have more than one bit and, thus, more than one bit will be set to 1 in the

MR to select the component corresponding to the stage at which the switch

is located at.

Descending links have the same values stored in LIB and UIB than the ones

used with adaptive routing in Section 3.1, since the path reduction is only done

in the upwards phase. As the MR is not used in the downwards phase, we

set to 1 all the bits belonging to a down link, in order to select all the bits

in the destination address. Notice that, despite the same downwards paths

valid in the adaptive routing case are also valid in the deterministic case, only

one is actually used because the packets only reach one of the nearest common

ancestors switches between source and destination during the upwards routing

phase.

In Figure 4.10, the reachable destinations through the descending links

of a switch are also included in the routing intervals of the up ports. For

instance, destination 0 in switch 0 can be reached through link 0 and link 2

according to the information obtained from their LIB, UIB and MR registers.

So, packets destined to nodes that should only be reachable through the down

links of the switch could be incorrectly forwarded through the upwards links.

To avoid this problem, the RRR register is used to give preference to the
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Figure 4.10: DESTRO routing in a 2-ary 3-tree with FIR registers.

descending links over the ascending ones and guarantee a minimal path. In

the RRR, the half lowest significant bits correspond to the descending links

and the half most significant ones to the ascending links. Therefore, in the

ascending links (links 2 and 3) the RRR stores 0011, to give preference to links

0 and 1 over the ascending links. In this way, as an example, when routing a

packet to destination 0 〈000〉 at switch 0, both output ports, 0 and 2, may be

allowed, since this destination, after being masked, is included in the intervals

associated to both output ports. In link 0, LIB and UIB are equal to 000, as

the MR of this port is 111, we compare the whole identifier of the destination

with the routing interval. As it can be seen, 000 is included in the routing

interval, thus link 0 can be used to forward packets to destination 0. On the

other hand, in link 2, LIB and UIB are also set to 000. However, MR is set to

001. Hence, we just compare the least significant component of the destination

identifier with the routing interval, and the destination is again included on

it. Nevertheless, as output port 2 gives preference to output port 0, output

port 2 is not finally returned. As commented above, we use here the RRR
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being

k = arity of the switch
n = number of stages

n*r = bits in destination identifiers
r = log(k); (* bits used by each stage in the destination addresses *)

RRR={0}  {1}
k k

s*r
{0}

link L

(* the bits of the registers corresponding to the current stage are given by
the link identifier *)

(* they must be equal to L−k, being represented by r bits *)

(* selection of the bits of the packet destination corresponding to the current stage *)

stage s

MR={0}
n*r−(s+1)*r

{1} {0}
s*rr

L−kLIB..UIB={0}
n*r−(s+1)*r

{0}{0}
s*r n*r−(s+1)*r

L−k..

Figure 4.11: Register configuration in the ascending links with deterministic

routing.

register not to provide deadlock-freedom, we use it to restrict the possible

paths provided by the masked routing interval, therefore providing minimal

routing.

Figure 4.11 presents an algorithm to configure the FIR registers of the

ascending links. First, the algorithm sets the half least significant bits of

the RRRs to 1 and the half most significant bits to 0, to give preference to

the descending links. Following, the algorithm sets the MR registers. MRs

are always set as a sequence of zero or more zeros, at least a one, and a

final sequence of zero or more zeros. Notice that, with k 6= 2, the MRs will

have as many bits set to 1 as the bits needed to represent a component in

the destination address, that is log(k) bits. These 1s must be located at the

position corresponding to the switch stage. For this, these ones are displaced

s× log(k) bits to the left, s being the stage of the switch. The rest of the MR

will be all set to 0.

Finally, the LIB and UIB registers of an ascending link (L) will select the

destinations that have the identifier of the ascending link in the position of the

component given by the switch stage (s in Figure 4.11). Since ascending links

are labeled from k to 2k− 1, the value in the destination identifier component
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will be L−k, L being the link identifier. The configuration for the descending

links is not shown because it is very simple. The LIB and UIB registers are

the same as the adaptive routing case, and the MR is set all to 1s to select all

the bits in the destination address for being compared with the LIB and UIB

registers. The RRR is set to all 0s, since no preference is given to the other

output ports in the down links of the switches.

Despite that we actually use this implementation, DESTRO can be imple-

mented by using any routing scheme. It can implemented by using forwarding

tables, hardwired specific logic, source routing, centralized routing, and so on.

4.3 Evaluation

In this section, we perform the evaluation of DESTRO focusing mainly on

network performance. To perform this evaluation, we compare our determin-

istic routing algorithm with the adaptive routing algorithm commonly-used on

fat-trees with different selection functions and with the deterministic routing

algorithm proposed in [78]. First, we perform this evaluation without enforcing

packet in-order delivery. However, as packet in-order delivery is mandatory

on several systems, we also perform the comparison by enhancing the network

with a reordering mechanism that preserves packet delivery order.

4.3.1 Adaptive Routing Issues

In adaptive routing, each time that a switch routes a packet, after applying

the routing function, the selection function has to choose which of the routing

options provided by the routing function is going to be actually used. With

the proposed implementation (Figure 3.1), the routing function stores all the

possible output ports in the AR register, and from this register, the selection

function chooses the output port that will use the packet that is being routed.

The selection functions can be classified in two main groups: the ones that

consider the status of all the possible output links to choose the final output

port, and the ones that prioritize one output port and depending on the sta-

tus of this output port they use it or use another possible output port. The

selection functions from the first group try to equitably use the output ports

of the switches, while the ones from the second can unbalance the utilization
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of the network links, creating bottlenecks, if they are not designed carefully.

However, as the selection functions from the first group require the global sta-

tus of the switch to take their decision, their implementation is more complex.

That is, they have a higher implementation cost and may be slower than the

ones from the second group.

The selection functions of the second group are implemented in two steps,

as it can be seen on Figure 4.12. The first step calculates the preferred output

port for the packet that is being routed. This step is usually performed in

parallel with the routing function, therefore, this step does not slow down the

switch. The second step takes the result from the first one and the results of

the routing function stored in the AR register and performs the selection of the

output port. This logic first check if the preferred output port is available, that

is, it is included in the AR register, and then checks if this output port meets

the criteria for selecting the output port. This criteria may be implemented

in several ways, for example, it can check if the available space in the buffer

of the port or the number of credits is higher than certain threshold, or the

last time that the port was used, or any other criteria that can be built up

from the switch status. Independently of the used criteria, if the preferred

output port meets it, then it is chosen. On the other hand, if the preferred

output port does not match it, the second step tries to use another output port

from the AR that meets it. This is usually implemented by means of a cyclic

rotator that begins to search in the next output port to the preferred one till

it completes a round or till it finds a suitable output port. For example, let’s

suppose that the preferred output port for a given packet is the port number

i. When the second step checks the availability of this port, it notices that the

port is not free as it is being used by another packet. Then, the cyclic rotator

begins to search from the port i + 1 for a suitable output port.

As commented, we are going to compare our deterministic routing algo-

rithm against the adaptive routing algorithm based on up/down that is com-

monly used on fat-trees. In adaptive routing, it is necessary to use a selection

function. In order to perform a fair comparison, we are not going to compare

our deterministic routing algorithm against a single selection function. Indeed,

we perform such comparison against several selection functions explained be-

low, some of which are presented and compared in [50]. All these selection
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Figure 4.12: Basic implementation of a selection function with prioritization.

functions, but the last one, can be implemented as indicated above. That is,

they can be implemented by a circuit that calculates the preferred choice and

a rotative search starting in that link:

• First Free (FF). The FF selection function selects the first physical link

which has free space. It uses a linear search, starting at the first as-

cending physical link (the kth, link according to our notation). In other

words, the preferred link is always the link labeled as k.

• Static Switch Priority (SSP). At a given stage of the fat-tree, the SSP

selection function assigns the highest priority to a different ascending

link at each switch of that stage. So, a given switch has always the

same preferred link, regardless the packet destination. The idea is to

create a disjoint high priority ascending path for each switch of the first

stage. Hence, packets coming from different switches at the first stage

will reach different switches at the last one, thus balancing the traffic

in the upwards phase. The highest priority physical link for the switch

〈s, on−2, ..., o1, o0〉 is the ascending link labeled as k + os.

• Static Destination Priority (SDP). The SDP selection function assigns

priorities to physical links at each switch depending only on the packet

destination. The preferred physical link is given by the least significant

component of the packet destination. That is, a packet sent to processing

node pn−1, ..., p1, p0 has as the preferred link the k + p0 link in all the

stages of the fat–tree.

• Static Origin Priority (SOP). The SOP selection function assigns priori-

ties to physical links depending only on the packet source. The preferred
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physical link is given by the least significant component of the packet

source. That is, for a packet sent from processing node pn−1, ..., p1, p0,

it is k + p0.

• Cyclic Priority (CP). The CP selection function uses a round robin algo-

rithm to choose a different physical link each time a packet is forwarded.

In this case, the preferred link is the link that was provided by the se-

lection function the last time it was executed.

• Stage And Destination Priority (SADP). The SADP selection function

takes into account both the stage at which the switch belongs to and the

component of the packet destination corresponding to that stage, (i.e., a

switch located at stage s considers the sth component of the destination

address). That is, at the switch 〈s, on−2, ..., o1, o0〉, the highest priority

physical link for a packet with destination pn−1, ..., p1, p0 will be k + ps.

As it can be seen, this selection function has as preferred link the link

that would be used in our deterministic routing algorithm.

• More Credits (MC). Since we use credits to implement the flow control

mechanism, the MC selection function selects the link which has the

highest number of credits available. MC is the most complex one, as it

needs several comparators to select the link with more available credits.

• Adap-Lin. We also compare our proposal against the selection function

resulting from using as preferred link the one that would be used by the

deterministic routing algorithm proposed in [78], explained in Section

2.2.2. That is, the highest priority physical link for a packet with origin

pn−1, ..., p1, p0 will be k + ps.

Notice that the preferred links for all the selection functions are only up

links, because selection functions are only used in the upwards routing phase,

since the downwards one is deterministic.

Additionally, when in-order delivery is required, we have implemented a

basic approach to enforce in-order delivery with adaptive routing algorithms.

It is similar to the one proposed in [86]. This approach uses a reorder-buffer

(different buffer sizes have been used) at the destination node Network Inter-

face Card (NIC) to store packets that have arrived out of order. Every time a
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packet is sent, its sequence number is included in its header. When a packet

arrives out of order at the destination, it is stored in the reorder-buffer to wait

for all packets with smaller sequence number. If a packet is received out-of-

order and it has no free space in the reorder-buffer, it should be discarded and

retransmitted. On the other hand, to prevent these unnecessary packet re-

transmission, the source node does not inject packets if the destination buffer

does not have enough free space to store all the packets that have been sent

previously and have not been delivered to the processing node. For this, an

end-to-end flow control mechanism is implemented.

As it can be seen, guaranteeing in-order delivery of packets complicates

the adaptive routing implementation, as a reorder-buffer is required at the

destination and an end-to-end flow control is needed. Our implementation of

the reorder mechanism for adaptive routing is ideal, as it does not consider

any reordering costs. For example, we assume that the acknowledge control

messages do not consume network bandwidth and cannot be affected by packet

contention or network congestion; the bandwidth between the reorder buffer

and the node is unbounded, thus the reorder buffer can forward any number

of packets to the node in just one clock cycle; the source nodes know the

available free space of all the reorder buffers of all the other nodes without any

access time and without consuming network bandwidth. Thus, the obtained

performance results could be considered as optimistic and the differences that

we obtained in the results are produced only by the delay introduced by out-

of-order arrived packets, not by the reordering mechanism itself. Notice that

deterministic routing do not require the use of additional mechanisms, since

packet delivery order is preserved by design.

4.3.2 Traffic Patterns

In order to make a deep analysis of our proposed routing algorithm, we have

performed the evaluation using a wide range of traffic patterns. The used

traffic patterns can be classified in two categories: synthetic traffic patterns

and I/O traces.
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Synthetic Traffic Patterns

In the evaluation with synthetic traffic patterns, four different traffic patterns

have been used: uniform with and without hot-spot traffic, bit-reversal and

complement traffic.

• In uniform traffic, message destination for each message is randomly

chosen among all the processors.

• In hot-spot traffic, a percentage of the total traffic of the network is

sent to a single node and the rest of the traffic is distributed like in the

uniform traffic pattern.

• In bit reversal traffic, each node sends packets to the destination obtained

by taking its components but in reverse order. That is, the node whose

identifier is 〈100〉 would send all its packets to node 〈001〉.

• In complement traffic, each processor sends all its messages to the oppo-

site node. Thus, in a network with N processors, the processor i sends

messages to the processor N − i − 1. The complement traffic pattern

has two interesting properties in fat-tree networks. The first one is that

all the packets have to reach the upper stage in order to arrive to their

destination, hence, the up link selection mechanism must be applied

several times. The second one is that each processor node only sends

messages to one destination, so the network should not be congested due

to hot-spots.

Packet size has been fixed to 8 KB for all the traffic patterns.

We have evaluated a wide range of k–ary n–tree topologies, k being 2, 4,

8, 16 and 32 and n being up to 8. For the sake of simplicity, we show here

only a subset of the most representative simulations.

I/O Traces

In order to analyze the performance of our proposal using a more realistic

traffic pattern, we have used a set of I/O traces provided by Hewlett Packard

Labs. They include I/O activity generated in the early 1999 at the disk in-

terface of the cello system. The cello system is a timesharing system with
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a storage subsystem of 23 disks. They provide information for the requests

generated by the hosts and the answers generated by the disks. A detailed de-

scription of similar traces of 1992, collected in the same system, can be found

in [110]. We will use packets with a payload equal to the size specified in the

trace for the I/O accesses, but if the message is larger than 8 KB, we split it

into several packets generated at the same time with a payload of at most 8

KB.

In the evaluation with traces, we have simulated a 2–ary 7–tree. As the

cello system, it has a storage subsystem with 23 disks that we have attached

to 23 randomly selected leaves of the 2–ary 7–tree. The remaining 105 leaves

have been used to attach processing nodes.

4.3.3 Simulation Environment

To evaluate our deterministic routing algorithm and compare it against the

routing algorithms and selection functions proposed above, a detailed event-

driven simulator has been implemented. The simulator is a modification of the

base simulator used in most of the works of the Parallel Architecture Group

(GAP [6]) of the Technical University of Valencia (Universidad Politécnica de

Valencia), as the one used in the previous chapter.

The used simulator models a k-ary n-tree with FIR routing and virtual cut-

through switching. Each switch has a full crossbar with queues of two packets

both at the input and output ports. We assumed that it takes 20 network

clock cycles to apply the routing algorithm; switch and link bandwidth has

been assumed to be one flit per network clock cycle; and fly time has been

assumed to be 8 network clock cycles. We apply these values because they

were used to model Myrinet networks in [44]. Finally, the simulator uses

credit-based flow control. When in-order delivery is required, the simulator

uses the in-order delivery mechanism proposed above.

The simulator allows to work with auto-generated traffic patterns or with

external traces. If the simulator is working in trace mode, it generates the

packets at the times and with the sizes indicated in the used trace file. How-

ever, if the simulator is working with synthetic traffic then the simulator gen-

erates the packets on its own. To do this, the simulator allows to change the

traffic pattern with all the required parameters for each traffic patter, if any,
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and the average injection rate. In this way, we can simulate several traffic

loads with several traffic patterns.

4.3.4 Performance Results

In order to perform the performance evaluation of our proposed deterministic

routing algorithm, we compare it with the aforementioned adaptive routing

algorithms with and without preserving the delivery order of packets. When

in order delivery of packets is not preserved, we want to analyze the relative

performance of DESTRO against the best adaptive routing algorithms, tak-

ing only into account the selection function alone. We also want to analyze

the relative performance of DESTRO versus the best adaptive routing algo-

rithms for fat-trees when packet in-order delivery is a must, and the impact

on performance of enforcing in-order delivery of packets in adaptive routing

algorithms.

Results without enforcing in-order delivery of packets

First, we compare DESTRO with the adaptive routing algorithm commonly

used in fat-trees with all the aforementioned selection functions. First, we

perform the comparison by using only synthetic traffic patterns. In this way,

we want to explore the impact of network size, varying the k and n parameters

of k-ary n-trees for different traffic patterns [33, 40]. Next, we compare the

different routing algorithms with a more realistic traffic pattern by using the

aforementioned traces.

Synthetic Traffic Patterns. Figure 4.13 shows the performance results

for several networks with k = 4 and k = 8 for the uniform traffic pattern.

Figure 4.13(a) presents the average packet latency versus traffic for a very

small network (a 4-ary 2-tree that has 16 nodes). The behavior of the selection

functions is not very different, with the exception of FF, which achieves a

higher average latency than the other selection functions. FF always returns

the same preferred ascending link, therefore it saturates an ascending path

before selecting another one. Hence, FF tends to make an unbalanced link

utilization, as those links that belong to the preferred ascending paths always
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have a higher utilization than the others, resulting in a larger latency.

On the other hand, due to the fact that there are only 2 stages in the

network, the rest of selection functions have almost the same performance,

because there is a low number of different paths that can be chosen to reach

any destination. In fact, with only two stages, the selection function is only

performed once. Indeed, it is not performed for all the packets, it is only

performed for the packets that require to travel upwards in the first stage.

Therefore, the influence of the selection function for networks with such a

small number of stages is heavily lessened. A similar behavior can be observed

in Figure 4.13(d) where a network with a larger k and two stages is analyzed.

Nevertheless, in this case, the differences in network latency are larger. Notice

that, with k equal to 8, there is a higher percentage of packets that require to

go up to the last stage of the network, so the influece of the selection function

is higher than in a network whose k is 4. Thus, SADP and SDP obtain a

higher throughput than the other selection functions.

Notice that with two stages SOP and Adapt-Lin provide the same routes

for all the packets, so the results for such selection functions are almost the

same, the same happens with SDP and SADP. Concerning DESTRO, the

results are very positive, since it obtains a slightly higher throughput than

the adaptive routing algorithms. Moreover, at the highest injection rates,

average packet latency in DESTRO is lower than the one from adaptive routing

algorithms.

Figures 4.13(b) and 4.13(c) show results for a higher number of stages

(4 and 6) and k = 2. As it can be seen, the more stages in the network, the

differences among the average packet latency of the different selection functions

get more significative. This is due to the fact that, with more stages, there

are more different ascending paths to choose from. Therefore, there are more

opportunities to balance traffic since the selection function is applied more

times. Despite SOP, MC and SDP achieve a better performance than FF,

they still have a high network latency due to the fact that they do not balance

link utilization as much as possible. Moreover, since they select paths based

only on the p0 component of the packet origin (SOP) or destination (SDP)

or on the number of available credits at the output ports, the probability

of obtaining disjoint paths for different destinations and, thus, retaining the



4.3. Evaluation 145

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 0  0.1  0.2  0.3  0.4  0.5  0.6

A
v

er
ag

e 
M

es
sa

g
e 

L
at

en
cy

 (
cy

cl
es

)

Traffic (flits/cycle/node)

CP
FF

MC
SADP

SDP
SOP
SSP

Adap-Lin
DESTRO

(a) 4-ary 2-tree.
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(b) 4-ary 4-tree.
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(c) 4-ary 6-tree.
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(d) 8-ary 2-tree.
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(e) 8-ary 3-tree.
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Figure 4.13: Average packet latency versus accepted traffic for uniform traffic.
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congestion due to congested nodes is very low. Notice that the difference

of SDP and SOP with respect to FF is that FF always prioritizes the same

output port for all the packets, so this port tends to be overloaded, whereas in

SSP and SDP, the preferred link depends on the packet destination or origin,

so they are more prone to distribute the packets between the ascending links

of the switches than FF. On the other hand, CP and SSP achieve almost

the same performance. However, in these selection functions, there is not any

mechanism that tries to avoid that the ascending paths of different destinations

have disjoint links to retain congestion. Adap-Lin obtains also similar latencies

that the previous selection functions, but SADP achieves the best performance

because, assuming that the preferred ascending path for each packet is free,

the links shared by different destinations are as few as possible.

For this same reason, our deterministic routing algorithm can achieve al-

most the same performance than SADP. DESTRO classifies the packets ac-

cording to their destination, concentrating packets to the same destination in

the same links and only in those links. In this way, when the network reaches

saturation, packets to different destinations do not have to compete between

them, reducing the large penalization on latency provoked by the HOL block-

ing effect.

We have also analyzed the impact of the arity (k) of the fat-tree on per-

formance and we have observed that the number of stages (n) is the most

important parameter in the differences among the studied routing algorithms.

In the case of the selection functions, this is due to the fact that the im-

pact of any selection function is greater when there is a higher number of

stages, since it is applied more times as packets need more hops to reach

their destination. Figures 4.13(d), 4.13(e), and 4.13(f) show results for three

networks with k = 8. Comparing the figures with k = 4 and the ones with

k = 8, it can be observed that increasing k tends to increase the differences

among selection functions, but the relative behavior remains the same. Notice

that the best adaptive routing algorithm (SADP) tends to obtain a slightly

higher throughput than DESTRO as the number of stages is increased, that

is, as the number of different routing options is increased. However, notice

that DESTRO obtains a higher throughput than most of the adaptive routing

algorithms despite being a deterministic one. Furthermore, SADP only gets
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6,25% higher throughput in the best case, which is not a big difference, making

DESTRO competitive in terms of throughput. In terms of latency, DESTRO

always has a higher latency than the best adaptive routing algorithm for low

and medium injection rates, but has a lower latency for high injection rates in

most of the cases. This can be explained by the fact that in low and medium

injection rates the adaptivity of the adaptive routing algorithms allows packets

to be deviated from more used paths to less loaded paths; however, for high

injection rates, this adaptivity suppose a drawback since there is not any path

that is not heavily loaded, increasing in this way the effects of HOL blocking.

Figure 4.14 shows the performance of the selection functions for the same

networks, but using the complement traffic pattern. Concerning the selection

functions, the results remain similar to the ones obtained with the uniform

traffic pattern. Again, FF has the worst performance. But, in this case,

Adap-Lin and SADP have the best performance. Both selection functions

have a similar behavior with complement traffic because each source node

only sends packets to the same destination node. Remember that Adap-Lin

tries to have disjoint paths for different source nodes and SADP tries to do

that for different destinations, which for this traffic pattern is the same.

Concerning DESTRO, it obtains similar results than SADP, which can

be easily explained since SADP tries to use the same routes than DESTRO.

Taking into account that a source only sends packets to a single destination,

both algorithms classify the packets avoiding that packets to different desti-

nations collide. However, when the injection rate is close to the saturation

point of the network, SADP begins to use alternative routes to forward pack-

ets, since it is an adaptive routing algorithm, which makes that the number

of collisions in the network completely saturates the network due to the high

injection rates. Nevertheless, DESTRO keeps using the same routes in this

situation, contenting the congestion, and outperforming the adaptive routing

algorithms in all the studied topologies. In the best case, DESTRO obtains

10,7% higher throughput than the best adaptive algorithm. Notice that with

complement traffic the number of routing options tends to reduce the perfor-

mance of adaptive routing algorithms due to the effects of HOL blocking, so

DESTRO outperform them as we increase k or n.

As we have evaluated a traffic pattern that unintentionally favors DE-
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Figure 4.14: Average packet latency versus accepted traffic for complement

traffic.
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Figure 4.15: Average packet latency versus accepted traffic for bit reversal

traffic.
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STRO, we want to analyze the worst traffic pattern for DESTRO. In that

traffic pattern, messages from all the nodes attached to the same switch of the

first stage are sent to processing nodes whose id has the same least significant

component. For instance, in a 2-ary 2-tree, if all the nodes from a switch want

to send their packets to destinations that have the last component equal to

0, the possible destinations should be 0 and 2. For this traffic pattern, the

effective bandwidth is half the total bandwidth with our deterministic routing,

because only the links labeled as 2 (k in general) will be used in the ascending

phase. In a general case, the effective bandwidth of the network would be 1/k,

since only one up link of the switches of the first stage would be used. An

example of such traffic pattern is the bit reversal traffic pattern. For instance,

in a 8-ary 3-tree with bit reversal traffic, the nodes attached to the switch 0,

nodes 〈0, 0, 0〉, 〈0, 0, 1〉, 〈0, 0, 2〉, ..., 〈0, 0, 7〉, send all their messages to nodes

〈0, 0, 0〉, 〈4, 0, 0〉, 〈2, 0, 0〉, ..., 〈7, 0, 0〉, respectively. As it can be observed,

all the destinations share the two last components, so packets will share the

same link during all their ascending paths. So, the performance of DESTRO

is expected to very low compared to the adaptive routing algorithms.

Figure 4.15 shows the performance of the same networks than before with

bit reversal traffic. As it was expected, the performance of the deterministic

routing algorithm is poorer than the one obtained by all the adaptive algo-

rithms, since it only uses one of the k up links of the switches of the first

stage. However, as it can be seen, the two selection functions that define their

preferred link based on the source node of the packets (SOP and Adap-Lin)

obtain also a lower performance than the other selection functions. Bit re-

versal for this selection functions behaves similar to a hot-spot traffic pattern

obtaining that they can not exploit the adaptivity of the network since most

packets get congested in the lower stages of the network.

Finally, we have also analyzed a traffic pattern that negatively affect all the

routing algorithms: the hot-spot traffic pattern. In Figure 4.16, we present the

performance results for some networks where a hot-spot receives the 5% of all

the packets of the network. As it can be seen, DESTRO is able to cope better

with congestion since it provides a much smaller latency and slightly higher

throughput. We can see that the network suffer two saturations. For instance,

in Figure 4.16(a), at 0.48 flits per cycle per node, the hot-spot get saturated
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Figure 4.16: Average packet latency versus accepted traffic with a 5% hot-spot.
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Figure 4.17: Simulation time in cycles for each routing algorithm using the

same trace.

and it can not absorb more packets, but the network can still deliver packets

to other nodes of the network till the point at 0.6 flits per cycle per node

where the network gets completely saturated. Between these two saturations,

DESTRO strongly diminishes the average packet latency by a factor of 2,5 on

average, which remarks the capability of DESTRO to content the congestion

without spreading it all over the network.

I/O Traces. In order to provide a more exhaustive comparison between

the studied routing algorithms, we have also performed several simulations

with traffic traces from the disk interface of the cello system, as commented

above. For this, we first compared the simulation times for all the routing

algorithms, as this time gives the time required to deliver all the injected

packets. Figure 4.17 shows the simulation time that each routing algorithm

required to complete a single trace. As it can be seen, most of the algorithms

take almost the same number of cycles to completely deliver all the messages

in the trace with just small differences of few clock cycles. Considering these

results, all the routing algorithms seem to be equally efficient.

However, analyzing the trace file, we observed that the used trace has a

bursty behavior till near the end. The last part of the trace is composed of

several small packets very spaced on time, which could be hiding the ineffi-

ciencies of some of the routing algorithms. For this, we have also measured the

average packet latency from generation for all the routing algorithms. These

results are presented in Figure 4.18(a). As it can be seen, considering the av-
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Figure 4.18: Evolution of the average packet latency from generation for all

the routing algorithms with a trace.

erage packet latency brings to light that there actually are differences among

the routing algorithms. As it was expected from the results with synthetic

traffic, FF is the worst selection function when using adaptive routing, and

SADP is the best one, closely followed by SSP and Adap-Lin, that get an

average latency from generation that is 47 clock cycles higher than the one

from SADP. The important point of the figure is that DESTRO is the routing

algorithm with the lowest average latency from generation, despite the fact

that it is a deterministic routing algorithm that tends to content the packets

in the nodes when congestion arises.

The reason of this low latency can be seen in Figure 4.18(b) that presents

the average packet latency from generation zooming on the beginning of the

trace. As commented, and as it can be seen in the figure, the trace is very

bursty. The bursts correspond to the peaks on the latency in the figure. In the

beginning, all the routing algorithms can deal with the burst, even DESTRO

shows a higher latency than SADP, Adap-Lin and SSP. Nevertheless, when

the next burst is injected into the network, the adaptive algorithms start

to spread the packets of the burst all over the network, congesting it, highly

increasing the latency of the packets. This effect is even more pronounced with

each consecutive burst. But, DESTRO does not suffer from this effect. As it

can be seen, DESTRO contents the congestion in the nodes without affecting

the network. In this way, it can deal with the bursts while achieving a low
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packet latency. Of course, each burst increases the average packet latency, but

DESTRO is able of lowering the latency before the next one is produced.

However, the reader may think that the results from the total simulation

time and the average packet time may be inconsistent, since a higher packet

latency would delay packets and this would likely make that the simulation

time should be larger since a disk node cannot answer a request that it has

not yet received through the network, for example. Nevertheless, the used

trace files do not provide any information about the correspondence of the

packets, so we cannot simulate such request/answer behavior, and therefore,

the simulator generates the packets at the times indicated by the trace without

considering the arrival of any other packets. Therefore, total simulation time

is not an accurate metric in this case.

Results enforcing in-order delivery of packets

As commented during this chapter, deterministic routing algorithms always

guarantee that packets are delivered to their destination in the same order

that they were injected in the network, which is mandatory for several ap-

plications. However, adaptive routing algorithms cannot provide in-order de-

livery of packets by themselves. They must use additional mechanisms like

the one commented in Section 4.3.1. In order to perform a fair comparison,

we have also analyzed the performance of the adaptive routing algorithms

when in-order delivery of packets is guaranteed by means of a complementary

mechanism, considering several buffer sizes for the reordering buffer of the

mechanism.

As we did in the previous section, first, we compare the routing algorithms

using synthetic traffic patterns, and, next, we analyze them using traces. How-

ever, for the sake of legibility, we will only consider the adaptive routing al-

gorithm with FF and SADP selection functions. We have chosen these two

selection functions since they are in general the worst and the best selection

functions. In this way, we want to establish the boundaries between which all

the selection functions would behave in the general case. Also, we want to

directly compare DESTRO with the deterministic routing algorithm proposed

in [78], that is going to we referred as DET-Lin.

In the figures of this section, we refer as FF-NOORDER and SADP-
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NOORDER as FF and SADP that do not guarantee in-order delivery of pack-

ets; FF-20 and SADP-20 stand for FF and SADP that guarantee in-order

delivery of packets using a reorder buffer at each destination that can store

up to 20 packets for each origin node; similarly, FF-200 and SADP-200 stand

for FF and SADP with a reordering buffer at each destination that can store

up to 200 messages for each origin node.

Synthetic Traffic Patterns. Figure 4.19 depicts the performance results

for the aforementioned routing algorithms with uniform traffic, but guaran-

teeing the delivery order of packets. We could not perform the simulations of

the largest networks since the reordering mechanism requires a high amount

of memory, so we restricted our simulation to the small and medium-sized

topologies. As it can be seen in the figure, guaranteeing the delivery order

of packets by using the reordering-buffer mechanism does not seem to have a

relevant impact on the performance, because uniform traffic pattern does not

deliver packets out of order in low and medium traffic loads, it only tends to

deliver packets out of order in high traffic loads. The adaptive algorithms that

guarantee in-order delivery of packets have a slightly higher latency than the

corresponding algorithm without in-order delivery of packets, but this latency

increase is almost negligible in all the topologies.

Regarding DET-Lin, it can be observed that it outperforms FF in all the

cases, but it can not achieve the performance of SADP. It has a lower through-

put and a higher average latency no matter the load of the network. This

results are very impressive from perspective, since DET-Lin is a deterministic

routing algorithm whose performance is between the boundaries that define

the best and worst case for adaptive routing algorithms. However, if we com-

pare it with DESTRO, we can clearly see that DESTRO in the same scenarios

can achieve the same performance than the best adaptive algorithm and in

some networks, like the ones with two stages (n = 2), it can even outperform

the adaptive routing algorithms while lowering the average packet latency.

Figure 4.20 presents the performance results for the same networks but

using complementary traffic. In this case, we start to see the impactof the

reordering mechanism on the performance of the network, specially in Figure

4.20(d). In this figure, we can see that FF with in-order delivery of packets
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Figure 4.19: Average packet latency versus accepted traffic for uniform traffic

guaranteeing in-order delivery of packets.
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Figure 4.20: Average packet latency versus accepted traffic for complement

traffic guaranteeing in-order delivery of packets.

obtains a higher average latency than the one that does not guarantee in-order

delivery of packets. The increase in latency due to the arrival of out-of-order

packets in some case is close to a 43.5%. However, as it can be see, SADP does

not suffer any penalization for using a reordering mechanism. This different

behavior is provoked by the fact that FF tends to overuse the same link no

matter the destination of the packets. So, when this link gets congested, FF

starts to scramble all the packets favoring that they reach their destination

out of order. However, as SADP tends to classify packets depending on the

destination, it requires to use a more stressing traffic pattern to start delivering

most of the packets out of their delivery order.

Regarding the deterministic routing algorithms, both obtain the same re-

sults since for this specific traffic pattern the routes provided by them are
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Figure 4.21: Average packet latency versus accepted traffic for bit reversal

traffic guaranteeing in-order delivery of packets.

equivalent. In order words, as in the case in which in-order delivery of packets

was not guaranteed, both deterministic algorithms outperform the adaptive

ones. In the best case, the deterministic routing algorithms have an improve-

ment of 14% in throughput over the adaptive ones.

Figure 4.21 shows the same results for bit reversal traffic pattern. As

commented, DESTRO obtains a very low performance with this traffic pattern

since it is its worst corner case traffic pattern. However, a positive point for

DESTRO is that DET-Lin suffers from the same situation, obtaining similar

results. In the worst case, the deterministic routing algorithms obtain a 89%

lower throughput than the adaptive ones.

Another interesting point of these figures is that we can observe the impor-

tance of the reordering mechanism and the size of the used reordering-buffer.
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For this traffic pattern, we can observe that the latency is increased when

packet in-order delivery is ensured for all the topologies. Furthermore, this

difference in latency is increased, as the network load rises. Moreover, we

can see that the reorder-buffer size is important. In all the topologies, but

the smallest one, we can observe that FF-20 obtains a lower throughput than

the other configurations. This difference in throughput ranges from 4% lower

throughput to 51% lower throughput.

Concerning SADP, we can observe that it can preserve the delivery order

of packets more efficiently than FF. However, we can observe that the SADP

configurations that preserve the delivery order of packets have a slightly higher

latency near saturation than the one that does not preserve the packet delivery

order. Furthermore, in Figures 4.21(b) and 4.21(d), it can be observed that

SADP-20, the one with the smallest reordering-buffer, can not achieve the

same throughput than the SADP that does not preserve the ordering of the

packets. Nevertheless, this lost of throughput is clearly smaller than the one

suffered by FF. In the worst case, this lost of performance reaches the 12%.

Finally, Figure 4.22 presents the results for the same topologies, but having

a hot-spot that concentrates the 5% of the total traffic of the network. In this

case, the bottleneck is not the inefficiency of the routing algorithm at keeping

the order of the packets, it is the ejection link that extracts the packets from the

network to the hot-spot node. For this, there are not great differences between

most of the routing algorithms, no matter if they preserve the ordering of

packets, or they do not do it. We can observe that DET-Lin obtains almost the

same performance than the adaptive algorithms, which confirms that DET-Lin

spread the congestion of a single node to the whole network. In this way, most

of the packets are blocked due to the effects of HOL blocking. As commented

in the previous section, DESTRO is able to keep the congestion provoked by

the hot-spot into the links that are assigned to that node, favoring that packets

destined to other nodes are not heavily disturbed due to the hot-spot. For this,

the latency after the congestion of the hot-spot is very small compared to the

one observed in all the other routing algorithms.

I/O Traces. Again, in order to provide more realistic results, we have per-

formed the comparison of the analyzed routing algorithms by using traces.
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Figure 4.22: Average packet latency versus accepted traffic with a 5% hot-spot

guaranteeing in-order delivery of packets.
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Figure 4.23: Simulation time in cycles for each routing algorithm using the

same trace guaranteeing in-order delivery of packets.

Figure 4.23 shows the simulation time for the analyzed routing algorithms

normalized to the simulation time of DESTRO. As it was expected, most of

the configurations obtain the same simulation times due to the small disperse

packets at the end of the trace, and the lack of relationship between packets

in the trace. Nevertheless, we can observe that the configurations of both

adaptive routing algorithms that preserve the delivery order of packets with

the smallest reordering-buffer take more time than the other configurations

to fully process the trace. Despite that these differences are very small (near

2% in both cases), it may indicate that we can expect a higher difference on

average latency of packets.

Indeed, as it can be observed in Figure 4.24, the differences in average

latency are very significative. Notice that the figure is using a logarithmic

scale in the y-axis (average packet latency from generation). As the figure

presents several significative points that should be commented, we want to

start by analyzing the impact of preserving the order of the packets in the

adaptive algorithms and then we will move to compare the different routing

algorithms with DESTRO.

Concerning the adaptive algorithms, it can be seen in the figure that the

bursty behavior of the traces has a great impact on their performance when

in-order delivery of packets is required. For example, SADP-20 obtains worse

results than FF without ordering restrictions. It even obtains a higher latency

than FF-200 for the first half of the trace. Just to show the influence of the out-
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Figure 4.24: Evolution of the average packet latency from generation with a

trace guaranteeing in-order delivery of packets.

of-order arrived packets, the FF configurations that preserve the ordering of

the packets obtain a 54% higher average latency when using the large buffer,

and a 947% higher latency when using the small buffer. In SADP, we can

observe the same trend. When using the large reordering-buffer, SADP obtains

a 37% higher latency than in the case when packet ordering is not preserved,

and a 977% higher latency when using the small reordering-buffer.

Regarding DESTRO, it can outperform all the adaptive routing algorithm

by using less resources since it does not require to use neither a selection func-

tion nor a reordering mechanism for out-of-order arrived packets. It obtains

a 42% lower latency than the SADP that does not preserve packet ordering.

Moreover, the latency obtained by the SADP configuration that preserves the

order of packets and uses the small buffer is 16.46 times the one obtained by

DESTRO; this difference is reduced to 1.16 times when using the large buffer.

Finally, as it can be seen in the figure, DESTRO also obtains a significatively

smaller latency than DET-Lin due to its capability of not congesting the net-

work. In average, DET-Lin obtains a 11,2% higher latency than DESTRO.

4.3.5 DESTRO Memory Requirements

Finally, as we did in Section 3.4.5, we compare the amount of memory required

by the DESTRO implementation based on FIR and by a routing algorithm

based on forwarding tables.
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In order to provide an easy reading, we remind that the memory required

to implement an adaptive routing algorithm based on forwarding tables is

CFTadap
= N × (log(N) + k× log(2× k)) bits in each switch. However, as DE-

STRO is a deterministic routing algorithm, in order to perform a fair compar-

ison, we just compare it with the cost of implementing a deterministic routing

algorithm with forwarding tables, which is CFTdet
= N × (log(N)+ log(2×k))

bits per switch.

On the other hand, we have FIR that is based on IR. In Section 3.4.5, we

showed that the cost per switch of implementing IR in a network composed

by N nodes, built with switches with 2 × k ports, is 2 × k × 2 × log(N).

Additionally, FIR uses two other registers per switch port, the Mask Register

and the Routing Restrictions Register. MR size is equal to the size of LIB and

UIB, that is, log(N) bits which are the bits required to represent a destination

identifier. Remember that MR has as many bits as the destination identifiers

because it is used to mask destinations before comparing them with the routing

interval. On the other hand, RRR only requires one bit per port in the switch,

that is, it requires 2 × k bits. Therefore, the cost per switch of implementing

FIR is CFIR = (2 × k) × (3 × log(N) + 2 × k) bits.

Figure 4.25 shows the required total memory per switch as the number of

nodes in the network is increased, for a deterministic routing scheme based

on forwarding tables and one that is based on FIR. As we did on Section

3.4.5, we show the results up to 1M nodes to show how both schemes could

handle the expected number of nodes in next-generation supercomputers. We

again set k = 32 to reflex the trend of using high-radix switches. Again, the

memory required to implement the forwarding tables schemes stays several

orders of magnitude higher than the one required by the interval based one

(FIR). Forwarding tables are only interesting on very small supercomputers

with less than 100 nodes.

4.4 Conclusions

In this chapter, we have presented DESTRO, which is a deterministic routing

algorithm for fat-trees that balances network traffic as much as possible and

what is more important can hold the congestion of the network as near the
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Figure 4.25: Memory requirements per switch for a deterministic routing

scheme based on forwarding tables and one based on FIR in a network with

k = 32.

origin nodes as possible. In this way, the rest of the network remains free

of the congestion and it can be used by the packets that are not directed to

the congestion. Indeed, DESTRO tends to classify the packets according to

their destinations in such a way that the number of destination that share a

link in the ascending routing phase is minimum, and it is reduced to only one

destination per link in the downwards phase.

Thanks to this packet classification, DESTRO has shown to be able to ob-

tain almost the same performance than the best adaptive routing algorithms,

even outperforming them in some cases. However, when considering using disk

traces, DESTRO has shown to be able to deal with all the traffic in the traces

obtaining a markedly lower latency than the other routing algorithms.

Additionally, we have shown that the adaptive routing algorithms do not

preserve the injection order of the packets, which is mandatory in several ap-

plications. They require to use additional mechanism in order to preserve the

order of the packets. When considering this fact, the evaluation has shown

that the adaptive routing algorithms are penalized when they must guaran-

tee that packets are delivered in-order, specially when the simulation with

traces are considered. In these simulations, the adaptive routing algorithms

that guarantee the delivery order of the packets are clearly outperformed by

DESTRO. This difference is more important that it could seem, since DE-

STRO does not require a selection function like adaptive routing algorithms,
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and it does not require the use of additional mechanism to preserve the or-

dering of packets, since deterministic routing algorithms preserve it by design.

So, DESTRO can outperform or achieve the same performance than the best

adaptive routing algorithms using less resources than them. Remember that

adaptive routing requires the implementation not only of the routing function

but also of a selection function, whereas deterministic routing only requires to

implement the routing function. Moreover, adaptive routing requires a mech-

anism to guarantee in-order delivery of packets. In addition, we have shown

that DESTRO can be easily implemented with FIR with O(log(N)) storage

requirements.
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Chapter 5

RUFT: Simplifying the

Fat–tree Topology

“Do or do not. There is no try.”

Yoda, The Empire Strikes Back

In current supercomputers, the hardware cost, power consumption and

developing cost are becoming main concerns when developing a new system

[19, 21, 29, 92, 98]. Furthermore, there are other fields where metrics such as

energy consumption and development cost are as important as performance

[88]. This is the case, for example, of Networks-on-Chip (NoCs), which are

interconnection networks specifically developed to be fitted inside a chip. For

this, they have very severe restrictions on space and power consumption.

A lot of works have been made in order to reduce the costs of the inter-

connection network for off-chip interconnection networks [17, 62, 68, 119] and

for NoCs [22, 51, 53, 87, 107, 132]. Some of these works rely on developing

mechanism that dynamically can switch on and off the links of the intercon-

nection network [17], or adjusting the working frequency or voltage of the

system [53, 119], or reducing the amount of memory at the switches [62], or

designing new flow-control mechanisms [107], and many other changes on the

structure of the elements of the network.

However, there are few works that are focused on exploring the benefits

of simplifying the topology in terms of hardware cost, power consumption, or

167
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developing costs. In this chapter, we take on this challenge by deriving the

fat-tree topology to a new topology, that can achieve almost the same level

of performance than the fat-tree, but with a markedly smaller cost than the

fat-tree.

5.1 Introduction

In the previous chapters of this dissertation, we have shown that interconnec-

tion networks play a key role to achieve performance and fault-tolerance on

parallel computers. In particular, in Chapter 4, we showed how to maintain,

even improve, the fat-tree performance while keeping the simplicity of the

network, specially for systems that require in-order delivery of the packets.

Concretely, we showed how to simplify the network with a new deterministic

routing algorithm (DESTRO) for fat-trees that can outperform the more com-

plex adaptive routing algorithms while ensuring in-order delivery of packets.

The aim of this chapter is to simplify even further the switch architecture

and to decrease the required network resources, while keeping, or even im-

proving, network performance. The basic idea of this work is to simplify the

fat-tree topology by reducing the complexity of the downwards phase, taking

advantage of some particular properties of the DESTRO routing algorithm.

In this way, we can design faster, lighter and more compact switches, while

providing some interesting power-saving capabilities. The benefits of this pro-

posal seem clear and applicable to a wide field of interconnection networks,

ranging from cluster-based machines to NoCs.

There are some other works that progress in the same direction. For in-

stance, in [67,68] the authors introduce the flattened butterfly topology. In this

new topology, the fat-tree is flattened into a single stage. In other words, all

the switches from different stages that belong to the same row are compacted

into a single high-radix switch. In order to preserve network connectivity, a

high number of longer links are necessary among the flattened switches. In

this way, the network is simplified, since the number of switches and wires are

reduced. Nevertheless, switch complexity is considerably increased.

Another example of compacting topologies is presented in [21]. In this

work, the authors present a strategy to compact the mesh topology, by at-
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taching several processing nodes to a single switch. However, in order to

preserve the bisection bandwidth of the topology, express channels [34] are

added along the perimeter of the mesh. Again, the number of switches of the

network is reduced at the cost of increasing switch radix and complexity.

On the contrary to these two proposals, in our approach, both network

and switch architectures are considerably simpler than the ones used in the

fat-tree topology.

The rest of the chapter is organized as follows. First, we introduce our new

topology in Section 5.2. Next, in Section 5.3, we enumerate the advantages and

disadvantages of our topology. In Section 5.4, we evaluate our proposed topol-

ogy according to several criteria. In particular, we perform a cost comparison

between our proposal and the fat-tree topology in Section 5.4.1, a performance

evaluation in Section 5.4.3, and a comparison of the cost/performance ratio of

the studied topologies. Finally, some conclusions are drawn in Section 5.5.

5.2 Description of the RUFT Topology

As commented in Chapter 4, by using a deterministic routing algorithm, switch

architecture complexity is reduced, compared to an adaptive one, since nei-

ther selection function, nor additional hardware resources to ensure in-order

delivery of packets are required. This can be easily seen in Figure 5.1 that

shows the steps that usually are performed during the routing of a packet in

a fat-tree. Figure 5.1(a) shows that a switch that uses an adaptive routing

algorithm implemented by fixed logic identifies in first place if the packet has

to start its downwards routing phase; then, it calculates the routing options of

the packet and performs the selection function. Figure 5.1(b) depicts the rout-

ing steps for an adaptive routing algorithm implemented with IR. As it can be

seen, the implementation with IR does not require to check if the packet has

to start its downwards phase, since this has been pre-calculated before setting

the routing intervals to the correct values to provide minimal routing.

Figure 5.1(c) represents the routing steps in a deterministic routing algo-

rithm like DESTRO implemented by dedicated logic. As it can be observed,

first, the switch identifies if the packet has to start its downwards phase, cal-

culating the output port after that. As it can be seen, deterministic routing
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(d) DESTRO implemented with FIR.

Figure 5.1: Steps to route a packet in a fat-tree.



5.2. Description of the RUFT Topology 171

algorithms implemented in logic are simpler, take less steps, than adaptive

ones also implemented in logic. In addition, in DESTRO, the output port for

each packet can be calculated by just looking up a single component of the

destination identifier, both in the upwards and downwards phases, which helps

in simplifying and speeding up the routing logic. Finally, in Figure 5.1(d), we

show the routing steps performed by FIR to route the packets using DESTRO.

In this case, the routing logic calculates all the possible routing options by us-

ing the routing intervals of the output ports of the switches, and then the RRR

registers are taken into account to provide only minimal routing. Despite that

the adaptive routing algorithm implemented with IR has the same number of

steps than the deterministic algorithms, the implementation of the selection

function is much more complex than the second step of the deterministic rout-

ing algorithms. This can be easily observed by comparing Figure 4.12, which

presents the steps to implement a selection function, and Figure 4.9, which

presents the logic required to check the RRR of a port in a switch with FIR.

However, despite that DESTRO routing is very simple, there are some

physical design issues concerning the routing logic at the switches that can

still be addressed. In DESTRO, choosing the output port can be very simple,

but specific logic is still required to decide when to start the downwards phase.

As commented, the output port to use for a given packet is provided by the

component of the destination address corresponding to the stage of the switch

(i). During the downwards phase, the output port to use is always i, but

during the upwards phase the output port can be either k + i or i depending

on the output direction of the packet. If the packet continues traveling upwards

it would be forwarded through link k + i, whereas if packet has to start the

downwards routing phase it would use the port i. In the implementation of

DESTRO shown in Figure 5.1(c), the decision of starting the downwards phase

involves comparing up all the bits of the destination address with the switch

identifier. This large comparison may delay the routing decision. Moreover,

in the implementation with FIR, RRR are only used to indicate which packets

must start their downwards routing phase at each switch. So, to check if the

downwards phase must be started does not only takes time, but also it requires

an additional register per output port. That is, it also increases the cost of the

implementation. Next, we pretend to remove such decision from the routing
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Figure 5.2: A 2-ary 3-tree with deterministic routing. All the routes to node

7 have been highlighted.

steps and study its consequences.

As a first attempt to remove this comparison from the routing logic, in

order to perform a quicker and simpler routing decision, we propose to use

non-minimal routing. To help understanding the consequences of this change,

in Figure 5.2, we show all the reachable destinations at each output port for

DESTRO with minimal routing and with non-minimal routing, highlighting

in both cases the routes for all the packets whose destination is node 7. As it

can be seen, with non-minimal routing, all the packets are enforced to reach

the last stage of the network before starting the downwards phase.

In this way, contention in the downwards phase is fully removed, since the

only point where packets can begin their downwards routing phase is at the

last stage. On the contrary, in the original algorithm, packets may begin their

downwards routing phase at any stage of the network, creating a potential

contention point at every stage in the downwards phase (see Figure 5.2(a)).

In addition, in the non-minimal scheme, the number of hops of all the paths

along the network is the same, as all the packets are forced to reach the last

stage of the network before starting the downwards phase. Concretely, the

length of the routes for all the packets always is n× 2, n being the number of

network stages. Thus, non-minimal routing helps to obtain the same latency
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for every source–destination pair. Nevertheless, there is a very important

drawback in this approach: the average packet latency is increased, as all the

packets are enforced to reach the last stage, using routes that are longer than

the ones that they would use in minimal routing.

In the previous chapter, in Figure 4.6, we showed that all the descending

links are only used by the packets directed to one destination. With this

property in mind and using the presented naive solution to remove the decision

of starting the downwards phase from the routing logic, we can observe a very

interesting property in the network with non-minimal routing: all the conflicts

between packets can only appear in the upwards phase. Indeed, in Figure

5.2(b), each descending output port only receives packets from the same input

port. As it can be seen in Figure 5.2(b), at switch < 1, 11 > packets received

through link 2 are always routed to link 0, while the ones received through

link 3 always go through link 1. Moreover, output port 0 can only receive

packets from port 2, and output port 1 only receives packets from port 3.

In fact, all the switching activity in the downwards routing phase is com-

pletely unnecessary. So, our proposal is to remove all the hardware associated

to the downwards phase from the switches, reducing the required resources, as

it can be seen in Figure 5.3. A block diagram of a fat-tree switch is depicted in

Figure 5.3(a). The figure depicts a simplified structural view of a switch with

the crossbar in the center which is connected to the buffers of the ports of the

switch. Notice that the switch is bidirectional, so most elements are replicated

to provide service to ascending and descending packets at the same time. By

removing the hardware associated to the downwards routing phase, the switch

architecture can be considerably reduced, as shown in Figure 5.3(b). As it can

be observed comparing both figures, buffer requirements and the number of

ports are reduced by a half, while crossbar complexity is reduced by a factor

of four, as the switch has became unidirectional.

Furthermore, as switches no longer need to check if packets have to begin

their downwards routing phase during the upwards phase, routing function

is simplified. So, the first step from Figure 5.1(c) or the RRR checking in

Figure 5.1(d) are no longer necessary. In addition, as the number of ports

have been reduced to the half, arbitration is also simplified. This two facts

will likely speed up the switch. As shown in Figure 5.3(a), in conventional
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Figure 5.3: Switch comparison.

switches, arbitration has to perform a 2k × 2k matching, being k the switch

arity; whereas in the simplified version (Figure 5.3(b)), it has to perform a

k×k matching. Additionally, as links are unidirectional, we have also reduced

switch port complexity, and the number of total links in the network.

In this way, since packets destined to a given node always follow the same

descending path and the switching activity is not necessary in the descending

phase, we propose to introduce a single long link connecting the output ports

of the switches of the last stage with the input port of the corresponding

destination, eliminating the downwards phase hardware from all the network.

Figure 5.4 shows the resulting topology which will be referred to as RUFT:

Reduced Unidirectional Fat-Tree. Paths going to node 7 are highlighted. This

points out possible issues related to the delay of the long links, although it

can be compensated by the reduced delay derived from the simplified switch

architecture, as we will show on the evaluation section. The resulting topology

resembles an unidirectional butterfly, with a permutation on the reachable
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Figure 5.4: The RUFT topology derived from the 2-ary 4-tree. All the routes

to node 7 have been highlighted and each switch port shows its reachable

destinations.

destinations from the last stage. A similar topology is presented in [133],

whose topology has a different permutation in the last stage. Notice that due

to this permutation, the routing algorithm of RUFT differs completely from

the proposed ones in the aforementioned topologies.

Finally, RUFT has the same number of switches than the fat-tree, since it

is designed in the same parametrical way and it has the same number of stages

(n) and switch arity (k). RUFT is able to connect N = kn processing nodes

using nkn−1 unidirectional switches and (n+1)kn unidirectional links. Notice

that the fat-tree topology requires to use bidirectional switches and links. The

cost comparison between both topologies is performed in Section 5.4.1.

5.3 Advantages and Disadvantages

RUFT has several advantages that can be exploited for a very wide range

of configurations. First, the routing delay is reduced since just a destination

component must be looked up. No routing decision or calculation must be
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made, the switch just uses the corresponding component as output port. In

this way, the routing of RUFT obtains the benefits of both distributed and

source routing. On one hand, it does not have to create a large header to

store the route of the packet through the network, since the route is directly

indicated by the destination identifier. So, the size of the packet header is

as small as in distributed routing. On the other hand, the switch can work

at the same speed as with source routing, since it does not require to take

any routing decision. The switch just tries to forward the packet through the

output link corresponding to the component of the stage at which the switch

is located.

In systems like clusters that are typically wire-constrained, RUFT may

present a lower wiring density depending in the final implementation. This

can be observed by comparing Figure 5.2(a) and Figure 5.4. This lower wiring

density involves that RUFT can be more easily encapsulated in a cabinet, in

off-chip systems; whereas in on-chip networks, this involves that RUFT would

likely have less crosspoint in its layout, reducing in this way the number of

metal layers used by the network which reduces the cost of the chip [88, 99].

Additionally, the proposed topology helps in addressing some emerging con-

straints in system design due to the increasing density of nodes, such as power

consumption, heat dissipation, packaging weight and size limitations. RUFT

can reduce or lessen all these constraints due to the fact that it completely

removes the downwards phase, reducing the resources of the network to almost

the half, as it can be seen in Section 5.4.1.

On the other hand, since NoCs are mainly constrained by power and area

requirements (mostly driven by buffers and crossbar [22, 131]), the reduction

in buffer requirements and crossbar complexity directly impacts on these is-

sues, as RUFT relies in unidirectional switches instead of using bidirectional

switches. Additionally, the reduction in switch complexity provides smaller

routing and arbitration times, thus allowing to decrease switch input-to-output

cross-time.

However, RUFT has its own weak points. For example, spatial locality can

no longer be exploited. Packets have to cross the whole network no matter

their origin and destination. This could be considered a very important weak

point since there are several applications that are optimized to take advantage
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of spatial locality in parallel computers. Anyway, the lack of locality has

some advantages, for example, techniques to efficiently map tasks into the

system are no longer needed, since all nodes are equally distant. Moreover,

as all the packets must perform the same number of hops, latency is more

uniform and less sensitive to changes, reducing the jitter experienced by the

applications. Finally, notice that the maximum packet latency is reduced since

the downwards phase is less time-consuming as no hops are necessary, only a

link must be traversed. In the worst case, in a fat-tree, a packet would have

to cross all the stages in its upwards phase and again in its downwards phase.

In RUFT, all the packets have to cross all the stages only once no matter

their origin or destination. As it can be seen, the highest number of hops that

a packet can make in a fat-tree doubles the maximum number of hops for a

packet in RUFT.

Finally, the reduction of the switch hardware opens the doors to explore

several ways of reusing the removed hardware from the downwards phase. For

instance, larger buffers can be introduced, doubling switch storage capability,

thus keeping the same buffer resources of the fat-tree. Another possibilities

are to replicate the network to deal with higher traffic loads like in [21], or to

provide fault-tolerance like in [116].

5.4 Evaluation

In this section, we perform the evaluation of the topology taking into account

both: cost and performance. In the fist part of this section, we compare the

cost of implementing RUFT against the cost of a fat-tree. Next, we study

the performance of the new topology against the fat-tree using adaptive rout-

ing with the two most significative selection functions shown in the previous

chapter of this dissertation (FF and SADP), DESTRO, and the non-minimal

version DESTRO presented in Figure 5.2(b). Also, we analyze the conve-

nience of using the same buffer space in RUFT as in a fat-tree. Finally, we use

the results obtained in the two previous sections to compare the topologies

considering the cost/performance ratio.
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5.4.1 Cost Comparison

Despite that we can not offer a real economical cost analysis, we can provide

the relative cost of RUFT over the fat-tree topology using both, adaptive and

deterministic routing. For this purpose, we assume that network cost mainly

depends on two factors: switch and link cost.

Switch cost (cS) can be approximated as the number of ports (np) of the

switch multiplied by the cost of a port (cp) plus the cost of the switch control

logic hardware (ccl), which is also indirectly influenced by the number of ports.

That is cS = np × cp + ccl. However, these components of the switch cost can

be broken down to have a more detailed look of the switch cost. On one hand,

cp can be broken down into the cost of the buffers located at the switch port

(cb), the contribution of each port to the cost of the crossbar (ccr), and other

additional costs related to the switch ports (cpo), like connector interfaces.

On the other hand, ccl includes the routing logic cost (cr), selection function

cost (csf ), and other costs related to control logic (cclo). Substituting in the

previous expression, we obtain:

cS = np × (cb + ccr + cpo) + cr + csf + cclo (5.1)

Total link cost (cL) can be more easily approximated. cL can be established

as the total number of links in the network (nl) multiplied by the cost of the

connectors (ccn); plus the total network cable length (ll) multiplied by the cost

of each meter of link (cml). That is:

cL = nl × ccn + ll × cml (5.2)

For this cost comparison, we are considering for the sake of simplicity that

the fat-tree topologies are composed by unidirectional links like RUFT. In

this way, the links from both topologies are composed by the same number of

wires, and the logic at the switches per port for each topology is also the same.

Notice that this approach is completely equivalent to consider that fat-trees

are composed by bidirectional links, and RUFT by unidirectional links that

have half the number of wires than the ones used in the fat-tree.

Table 5.1 shows the values of the different parameters for the approxi-

mated network cost of several topologies normalized to the adaptive fat-tree.



5.4. Evaluation 179

Table 5.1: Parameters of the relative network cost for the analyzed topologies

normalized to the adaptive fat-tree.

Adaptive Deterministic RUFT

Fat–tree Fat–tree

Switches

np 1 1 0.5

cb 1 1 1

ccr 1 1 1

cpo 1 1 1

cr 1 1 0.6

csf 1 0 0

cclo 1 1 1

Links

nl 1 1 0.5+d

ccn 1 1 1

ll 1 1 [0.5 − 1.25]

cml 1 1 1

Restricting the scope to the fat-trees, the only significant difference between

both adaptive and deterministic-routed networks is that the deterministic fat-

tree does not require using a selection function, so csf is 0 for this network.

All the other parameters are equal since both of them use the same links and

the same switches, and we have separated the costs from the selection function

and the routing function.

From the point of view of the switch cost, our proposal halves the total

number of ports (np), as we assume that links are unidirectional in all the

topologies. In this way, as it can be deduced from Equation 5.1, RUFT reduces

by half the total cost per switch related to the buffers, crossbar1, and other

additional costs related to the switch ports, despite that individual cost per

port is the same (cb + ccr + cpo) than in the fat-tree2. Additionally, routing

1Indeed, crossbar size and cost increase quadratically with the number of ports, so the

reduction in the crossbar cost would be higher than in other switch components.
2Notice that this approach is equivalent to consider that the fat-tree and RUFT have

the same number of ports per switch, but the cost per port in RUFT would the half, since
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control logic cost (cr) is also decreased, due to the reduced crossbar size3. On

the other hand, RUFT, as the fat-tree, that uses deterministic routing does

not require a selection function, so its cost is non-existent (csf ).

By applying the normalized costs from Table 5.1 to Equation 5.1, we obtain

that the cost for the adaptive switch is 3np +3; for the deterministic switch is

3np + 2; and for the reduced one is 1.5np + 1.6; being np equal to 2k. Hence,

RUFT reduces the cost of a switch almost by a half. As can be seen in Section

2.1.3 and Section 5.2, all three topologies have the same number of switches,

so RUFT halves the total cost of the switches in the network since it halves

the cost of each switch.

From the point of view of the links, RUFT uses a single unidirectional

link per physical link whereas the fat-trees use two unidirectional links per

physical link. Therefore, RUFT almost halves the total number of links of the

fat-tree. The number of links in RUFT is not exactly half the number of links

in a fat-tree because we have to consider the links that connect the switches

from the last stage to the nodes. In RUFT, each destination only receives

an input link. So, the total number of links in RUFT is equal to half the

number of links of the fat-tree plus one additional link for each destination.

This over-cost is represented in Table 5.1 by the variable d. The value of d

can be obtained from the total number of links of both topologies presented in

Sections 2.1.3 and 5.2. In particular, d is approximately equal to 1

2×n
. That is,

it is inversely proportional to the number of stages in the network. Therefore,

d is always smaller than 1 for all the possible network sizes. In the worst case,

for a network with just one stage4, d would be equal to 0.5, and RUFT would

have the same number of links than the fat-tree topology.

In the fat-tree, total link length is composed by the accumulated length

of the ascending links and the descending links. Since a fat-tree has the same

number of ascending and descending links, and they are of the same length,

we can state that half of the total link cost of the fat-tree is derived from its

ascending links, and the other half from its descending links.

For the links of the upwards phase in RUFT, we consider the same length

it is using half the number of wires per link than the fat-tree.
3We have assumed a 40% reduction in the routing control logic cost.
4Notice that this network would be composed by a single switch, and it is very unlikely

that a supercomputer would be built up with a single switch.
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than in the fat-tree topology, since the length of the links in the upwards phase

of RUFT and the fat-tree is exactly the same independently of the packaging

constraints. Nevertheless, the descending phase in RUFT is very different from

the one in a fat-tree. The descending phase in RUFT is only composed by the

links of the last stage that connect them to the destination nodes. Link length

in a cluster is heavily dependant on the final packaging of the topology. In

order to provide a wide comparison between the fat-tree topology and RUFT,

we have considered both extremes: the ideal and the worst case. In the ideal

case, we assume that switches belonging to the last stage are placed very near

to the destinations, so the length of the links that connect the switches of the

last stage to the destinations is negligible. On the worst considered case, we

assume that those switches are placed far away of the destinations and the

wiring of the long links is quite complex, so total link length of downwards

phase is increased by 50%. So, the total link length of RUFT is 0.5 in the

ideal case, and 1.25 in the worst case.

By applying the normalized costs from Table 5.1 to Equation 5.2, we obtain

that the link cost for the adaptive and deterministic network is 2; for RUFT in

the ideal case is 1+d; in the worst considered case, RUFT link cost is 1.75+d.

To summarize, RUFT almost halves switch cost, and link cost in the ideal

case, in relation with classical fat-trees. At worst, link cost is a bit lower than

in a fat-tree.

5.4.2 Simulation Environment

To evaluate RUFT, we have modified the event-driven simulator described in

Section 4.3.3. The simulator can model a k-ary n-tree with DESTRO and

adaptive routing, or a RUFT, always using virtual cut-through switching. As

commented, each router has a full crossbar with queues both at the input

and output ports. We assumed that it takes 20 clock cycles to apply the

routing algorithm in the fat-tree and 12 clock cycles in RUFT5; switch and

link bandwidth have been assumed to be one flit per clock cycle; and fly time

has been assumed to be 8 clock cycles. Long link delay is also parameterized

5As aforementioned, we have assumed a 40% improvement in the arbiter due to the

simplified switch architecture. Taking into account that this time depends on the number of

switch ports, it is a consecutive approach.
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(see below).

In order to analyze the relative performance of our proposal, we have

defined six different network configurations: adaptive fat-tree with FF and

SADP, the fat-tree using DESTRO, the fat-tree using non-minimal DESTRO

that forces packets to reach the last stage of the network before starting

the downwards phase, RUFT and the aforementioned double-buffered RUFT.

Each port link has a two-packet buffer, but for the double-buffered configura-

tion, whose ports have a four-packet buffer. For both RUFTs, length of long

links varies from ideal length (same delay as regular links) up to the addition

of the delays of the equivalent links crossed in the downwards phase in the

fat-tree topology.

When adaptive routing is used, we use the most significative selection

functions (both the worst and the best) from the previous chapter: First Free

(FF) and Stage And Destination Priority (SADP). For more details about

these selection functions see Section 4.3.1.

As in the previous chapter, we have evaluated several synthetic traffic

patterns: uniform, hot-spot, bit-reversal and complement. In uniform traffic,

packet destinations are randomly chosen with the same probability for all the

nodes. Hot-spot concentrates a fixed percentage of the traffic in a particular

destination, and the rest of the traffic behaves like in uniform traffic. In

complement traffic pattern, each processor sends all its packets to its opposite

node. Finally, bit-reversal forces that each processor send all its packets to

the node resulting from inverting the origin label (i.e. node < 100 > only

sends packets to < 001 >). For more details, see Section 4.3.2. Also, we have

performed the simulations using the I/O traces from the disk interface of the

cello system described in Section 4.3.2.

As we have done in the previous chapter, in order to perform a fair compar-

ison, we have implemented a basic approach to ensure in-order packet delivery

with the adaptive routing algorithm. As commented in Section 4.3.1, this

mechanism is based on a reorder-buffer and our implementation of the mecha-

nism is very unrealistic, so the differences in performance that can be observed

are not induced by the in-order delivery mechanism, but they are introduced

by the packets that arrive out of their order.
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5.4.3 Performance Results

In this section, we evaluate the performance of RUFT and compare it with

the one obtained with the fat-tree using adaptive routing and DESTRO. In

first place, we evaluate the influence of the delay of the link that connects

the switches of the last stage to the destinations nodes on the performance of

RUFT. Next, we compare RUFT against the fat-tree using the same simulation

methodology used in the previous chapter.

Impact of Long Links

As we have already pointed out, the influence on the performance of the delay

of the links that connect the switches of the last stage to the destination nodes

must be studied, since we do not know whether the delay of these links may

be a bottleneck for RUFT or not. In this section, we refer to the links that

connect the switches of the last stage to the destination nodes as long links,

since they could be markedly larger than the other links of the network.

Figure 5.5 presents the performance results for several 4-ary 4-trees with

different long link delays for uniform and complement traffic. In both figures,

those delays are represented as the required clock cycles to cross zero or more

stages of the network6. The delay of these long links varies from the ideal

latency (0 stages) to the worst considered case (3 stages). As it can be seen,

network throughput is unaffected by the delays of the long links, since all the

configurations for both traffic patterns achieve exactly the same throughput.

On the other hand, concerning average packet latency, we can observe that

this delay is directly added up to the average packet latency. This can be more

clearly observed in Figure 5.5(b).

This behavior has been checked with several traffic patterns and networks

configurations, going from 2-ary 3-tree to 2-ary 8-tree, from 4-ary 2-tree to

4-ary 6-tree, and from 8-ary 3-tree to 8-ary 4-tree and the results are qualita-

tively the same. For this reason, in the following sections of this chapter, we

only consider the worst long link delay for the sake of clarity.

Now, that we clearly know how the delay of the long links affects to the

6This is approximated as the addition of the fly time through a link, the required time

to perform the routing, and to cross the switch.
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Figure 5.5: 4-ary 4-RUFTs varying the delay of the links that connect the

switches of the last stage to the destination nodes.

performance of the network, we pretend to analyze if this delay and the lost of

the minimality of paths is compensated by the reduction in latency expected

by removing all the descending phase in RUFT.

Results for Synthetic Traffic Patterns

As commented above, in this section, we compare the two representative selec-

tion functions for adaptive routing (FF and SADP), minimal and non-minimal

DESTRO, RUFT and a version of RUFT that doubles the size of the buffers

of the switches. In the previous chapter, we showed that enforcing in-order

delivery of packets impacts on the performance of adaptive routing. For this

reason, we present the figures including the curves for adaptive routing algo-

rithms that preserve the order of the packets by using a reorder-buffer of 200

packets per node in each destination NIC in addition to the ones which do

not preserve the packet order. Results for lower reorder-buffers are not shown

for the shake of clarity. We include results for both FF and SADP to show

the performance range in which we expect that all the adaptive routing algo-

rithms are included. We also compare RUFT with DESTRO, since we showed

in the last chapter that DESTRO was able to outperform the adaptive rout-

ing algorithms in several scenarios. Finally, we include the comparison against

non-minimal DESTRO since it was the starting point for RUFT, and the only

difference between them is that all the hardware associated to the downwards
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phase has been completely substituted by some links from the switches of the

last stage to the destination nodes in RUFT. Thus, we expect that RUFT

obtains a similar performance to this version of DESTRO, but with a lower

latency, and eventually a lower throughput.

As in the previous chapter, we start by comparing the different networks

with uniform traffic. In Section 4.3.4, we showed that FF was clearly the worst

selection function because it obtained a lower throughput and a markedly

higher latency than the other selection functions. On the contrary, SADP was

the best selection function because it was the one that obtained the highest

throughput and the lowest average latency. On the other hand, we showed

that DESTRO obtained a higher throughput than all the adaptive routing

algorithms in the networks with few stages, and this difference was reduced as

the number of stages was increased.

Figure 5.6 shows the results for uniform traffic for different k-ary n-trees.

As it can be seen, in all the cases, RUFT is not able to achieve the same

throughput than DESTRO. Indeed, it obtains 8.3% lower throughput in the

4-ary 2-tree case and 15% lower throughput in the 4-ary 4-tree. Concerning

adaptive routing, RUFT clearly obtains a lower latency than FF in all the

cases and a slightly higher latency than SADP. In terms of throughput similar

conclusions can be drawn. RUFT can not outperform SADP, but it outper-

forms FF. These results where expected, since in uniform traffic any node can

send packets to any node of the network with the same probability for each

destination. Therefore, in this traffic pattern, the minimality of the paths is

exploited by the network configurations that provide minimal paths. Indeed,

as it can be seen, the non-minimal version of DESTRO, referred to as NO-

MIN, obtains similar results as RUFT, but with a higher average latency of

packets.

Nevertheless, the average packet latency of RUFT for low injection rates is

lower than the one of DESTRO and SADP. Indeed, it obtains a latency at zero

load 8.7% and 5.7% lower than DESTRO and SADP, respectively. This is due

to the fact that packets traverse a lower number of stages. However, as the

traffic in the network increases, the minimal algorithms could deliver packets

to near nodes in less hops, avoiding that these packets are highly affected by

the congestion, whereas in RUFT packets have to cross the whole network.
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Figure 5.6: Average packet latency versus accepted traffic for uniform traffic

guaranteeing in-order delivery of packets.
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Therefore, for high injection rates, RUFT can not cope with the same amount

of packets than networks that use minimal routing algorithms.

On the other hand, the double-buffered version of RUFT, which is indicated

in the figure as RUFT-DB, behaves similarly to RUFT for low and medium

injection rates, but for high injection rates, it outperforms the single-buffered

version of RUFT, obtaining even a higher throughput than SADP for all the

cases though the difference is very small. Moreover, RUFT-DB reaches a

higher throughput than DESTRO for all the networks but the smallest one,

being the difference around 1-2%. Despite that the difference in throughput

is almost negligible, we have to remark that RUFT-DB has almost half the

resources in the network than the fat-tree topologies.

Next, we show in Figure 5.7 results for complementary traffic. In the

previous chapter we have presented this traffic pattern, in which all the packets

are always sent from a node to its complementary node in the tree, forcing

that all the packets reach the last stage of the network. This provoked that the

adaptive algorithms were outperformed by DESTRO since it can contain the

packets for each destination into a single path, while the adaptive algorithms

tend to spread them all over the network, increasing the HOL blocking effect

and as consequence increasing the packet latency.

As expected, with this traffic pattern, non-minimal DESTRO obtains ex-

actly the same results than DESTRO. Since all the packets are forced to reach

the last stage of the network by the traffic pattern, the minimal version of

the routing algorithm provides the same paths to the packets than the non-

minimal one. However, the most important point of the figure is that RUFT

obtains a higher performance than the other networks. As commented above,

in a network without collisions, RUFT obtains a lower latency than the other

networks. Moreover, with this traffic pattern the average latency of RUFT is

always lower than the one from adaptive routing algorithms and DESTRO.

With complement traffic, RUFT provides the same routes than DESTRO in

the upwards phase to all the packets. However, in the downwards phase, de-

spite that DESTRO does not suffer any delay related to HOL blocking, it

requires to route the packets in each stage increasing the average packet la-

tency. On the other hand, in RUFT, packets only need to traverse a link to

reach their destination once the ascending phase has finished. For this reason,
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Figure 5.7: Average packet latency versus accepted traffic for complement

traffic guaranteeing in-order delivery of packets.
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Figure 5.8: Average packet latency versus accepted traffic for bit reversal

traffic guaranteeing in-order delivery of packets.

the difference in latency increases with the number of stages.

Concerning throughput, we can see that RUFT obtains a higher through-

put than DESTRO as the size of the network is increased. It obtains the same

throughput than DESTRO in the 4-ary 2-tree, and it obtains 2,7%, 16,2%,

and 17,9% higher performance than DESTRO in the 4-ary 4-tree, 8-ary 2-

tree, and 8-ary 3-tree, respectively. Furthermore, RUFT reaches exactly the

same throughput for all the network sizes with this traffic pattern, indicating

that the network is not a bottleneck in RUFT when this traffic pattern is used.

Finally, RUFT-DB obtains the same results than RUFT since in this traffic

pattern RUFT can deal with all the traffic. So, adding new buffers does not

provide any additional advantages.

Following, Figure 5.8 presents the results for bit reversal traffic pattern.
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Figure 5.9: Average packet latency versus accepted traffic with a 5% hot-spot

guaranteeing in-order delivery of packets.

As commented in the previous chapter, this traffic pattern is the worst case for

DESTRO because it reduces the effective bandwidth of the network by a factor

of k, since switches only use a single up link in the ascending phase for all the

packets. Since the reduction of the bandwidth appears in the upwards phase, it

is expected that bit reversal traffic pattern represents also the worst corner case

for RUFT. As it can be seen in the figure RUFT, RUFT-DB, and non-minimal

DESTRO obtain almost the same performance as DESTRO. Therefore, for this

traffic pattern RUFT, at best, obtains 53% lower throughput than SADP, and

87,7% lower throughput, at worst.

Finally, Figure 5.9 shows the performance results for a traffic pattern with

a hot-spot node that receives the 5% of the total traffic of the network. As we

commented in the previous chapter of this dissertation, hot-spot traffic pattern
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negatively affect all the routing algorithms. But, DESTRO and RUFT obtain

a lower latency than the adaptive routing algorithms. However, RUFT always

has a bit higher latency than DESTRO, and a slightly lower latency than

non-minimal DESTRO. For this traffic pattern, we can see that RUFT-DB

always obtains a higher latency than the single-buffered one. This effect is

fully explained in the following section.

To sum up, RUFT is able to obtain similar performance than DESTRO

for the worst traffic patterns, that is, bit reversal and hot-spot traffic pat-

terns. It also is able to outperform it and the adaptive routing algorithms

for complementary traffic, and obtains lower performance for uniform traffic.

Nevertheless, we want to remark that despite having lower performance for

that traffic pattern, it obtains such results with half the resources than the

other networks.

Results for I/O Traces

In order to thoroughly evaluate RUFT, we extend the evaluation to the I/O

traces obtained from HP (see Section 4.3.2). However, in order to compact

the presentation of these results, we summarize all of them in Table 5.2, which

presents for each trace the time required to fully process it, the average network

latency, and the average latency from generation. All of them are normalized

to the ones obtained by DESTRO. Also, we do not present results for FF

because the behavior of this selection function is clearly the worst by a large

difference with SADP, and we want to focus on the networks and routing

algorithms that obtain similar results. As in the previous chapter, the cello

system has been mapped to a 2-ary 7-tree.

As expected, differences on the time required to deliver all the messages of

each trace are not very representative, since we also observed in the previous

chapter that all the routing algorithms required almost the same time to fully

process the trace. As we have already explained, this is due to the fact that

the traces do not include any information about which packet is a response

to which other packet, and inter-burst idle periods hide the effectiveness of

the network. Only in Trace #5 and Trace #6 (the most demanding ones in

terms of bandwidth) it is possible to observe a difference of 8.6% and 10.7%

between SADP and Deterministic, respectively. In these two traces, inter-
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burst idle periods are so short that bursts of traffic are too close to each other,

and the most inefficient configuration (SADP) is not able to cope with all the

traffic from the bursts on time. As we commented in the previous chapter,

total required time on its own is not a good metric to compare the different

configurations, as it is heavily influenced by the idle periods included in the

traces. For this, we also consider average network latency and average latency

from packet generation. Network latency is the time from packet injection

into the network until its reception at the destination. On the other hand,

latency from generation is the time from packet generation until its reception

at the destination. Notice that this includes the waiting time at the source

NIC and the network latency. Commonly, a high network latency implies that

the network is heavily congested. In addition, a high difference between both

latencies indicates a high level of packet contention at the sources.

In Table 5.2, SADP obtains a markedly higher network latency than DE-

STRO, ranging from 2.16 to even 44.98 times the network latency of DESTRO.

On the other hand, latency from generation goes from 1.04 to 5.86 times the

one of DESTRO. Even when SADP achieves a much higher latency from gener-

ation than DESTRO, this difference is noticeably smaller than the difference

in network latency. These results confirm the trend shown in the previous

chapter. With adaptive routing, congestion is spread along the network, in-

creasing network latency. On the contrary, with DESTRO, network congestion

is contented near the sources, providing a lower network latency, but a larger

waiting time prior to injection into the network. Anyway, in DESTRO the

reduction of the congestion alleviates this effect and even latency from genera-

tion is lower than in SADP. Notice that the lowest differences in both latencies

are obtained in Trace #4, which indicates that trace is not very bandwidth

demanding.

Table 5.2 also shows the results for the Non-minimal DESTRO. As it can

be seen, this routing algorithm obtains almost the same latency than DE-

STRO in most of the traces. These results were very unexpected, since using

non-minimal routing should involve increasing packet latency, as packet route

length is highly increased. For this, we analyzed the I/O traces, and we ob-

served that the average packet route length is 12 hops in the case of minimal

routing, and it is only increased to 14 hops for non-minimal routing. Such a
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Table 5.2: Results for different traces normalized to DESTRO.
Trace #1 Trace #2 Trace #3

T. TimeNet. Lat.Gen. Lat. T. TimeNet. Lat.Gen. Lat. T. TimeNet. Lat.Gen. Lat.

Non-minimal 1 1.029 1.013 1 1 1.004 1 0.969 0.999

RUFT 1 0.946 1.008 1 0.939 1.003 1 0.939 0.996

Double Buff. 1 1.938 1.003 1 1.85 0.999 1 1.871 0.988

SADP 1 44.98 2.229 1 20.83 1.035 1 35.577 1.239

Trace #4 Trace #5 Trace #6

T. TimeNet. Lat.Gen. Lat. T. TimeNet. Lat.Gen. Lat. T. TimeNet. Lat.Gen. Lat.

Non-minimal 1 1.068 1.004 1 1.074 0.906 0.998 1.025 0.995

RUFT 1 0.876 0.997 1 1.02 0.805 0.998 0.997 0.959

Double Buff. 1 1.068 0.997 1 1.986 0.803 0.998 1.954 0.95

SADP 1 2.164 1.037 1.086 15.711 2.651 1.107 19.224 5.864

small difference in route length enforces minimal DESTRO to perform very

similar to non-minimal one. The most confusing results can be observed for

Trace #5. In this trace, non-minimal DESTRO increases the network latency

by 7.4%, whereas it decreases latency from generation by a 9.4%. As com-

mented, Trace #5 is one of the most congested traces, it is very bandwidth

demanding. As commented, DESTRO deals with congestion by contenting it

on the source nodes, increasing the waiting of the packets before injecting them

in the network (that is, latency from generation) while decreasing network con-

gestion and therefore decreasing network latency. In non-minimal DESTRO,

as packet routes have been lengthened, network latency is increased. Neverthe-

less, longer routes can use a higher number of buffers, therefore source nodes

are able to inject more packets before stopping injection due to congestion.

This allows packets that do not follow congested routes to have a reduced wait-

ing time at the source NICs, so latency from generation is decreased. These

results can be also observed in the other highly congested trace (Trace #6),

but at a lower extent.

The most interesting issue of Table 5.2 is RUFT behavior. As expected,

RUFT follows the same trend than non-minimal DESTRO, but with lower net-

work and generation latencies. RUFT obtains similar results to non-minimal

DESTRO, because both follow identical routes in the upwards phase. How-

ever, it reduces the packet latency because it totally removes the downwards

routing phase. Despite the length of the long links, packets do not suffer any
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delay related to switches and congestion in the downwards phase of RUFT.

In general, RUFT obtains slightly lower latencies than DESTRO. Partic-

ular differences between DESTRO and RUFT depend on the specific commu-

nication pattern of each trace. For instance, RUFT decreases network latency

over DESTRO by 12.4% in Trace #4, while in Trace #5, it increases network

latency by 2%. Regarding latency from generation, RUFT improves the one

from DESTRO by 3% and 19.5% in Trace #4 and in Trace #5, respectively.

With these results, we can state that the elimination of the downwards routing

phase in RUFT highly compensates the lost of minimal paths and the addi-

tional delay introduced by the links that connect the switches from the last

stage of the network to the destination nodes. Furthermore, notice that RUFT

halves the resources of the interconnection network while obtaining the same

performance than DESTRO and SADP, even outperforming them in latency

in some cases.

Finally, we have also analyzed double-buffered RUFT. As commented, in

this version of RUFT, we have reused the buffers that have been taken from

the downwards phase to double the buffers in the input and output ports of

the upwards phase. This version of RUFT always obtains a higher network

latency than single-buffered RUFT (i. e. network latency is increased by a

factor between 85% and 98% for all the traces, but the most relaxed one).

On the other hand, it slightly reduces latency from generation. Latency from

generation is a 0.9% lower in the double–buffered RUFT than in regular RUFT.

This behavior is due to the higher number of buffers available in double-

buffered RUFT. As switches can store more packets, sources can inject them

quicker, therefore packets spend less time waiting at the source nodes, but

more time in the network since the queues of the buffers of the switches are

longer, finally having a similar latency from generation.

5.4.4 Cost and Performance Comparison

In order to provide a cost/performance comparison of the different networks

analyzed in this chapter, we present in Table 5.3 the cost of each studied

network normalized to the fat-tree with deterministic routing. The values

in the table have been obtained by applying the equations and parameters

presented in Section 5.4.1. From the table, we can observe that the fat-trees
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Table 5.3: Cost of each network for the analyzed network sizes without in-order

delivery mechanism normalized to DESTRO.
k n Adaptive DESTRO RUFT Ideal RUFT Worst

4 2 1.04 1 0.53 0.56

4 4 1.04 1 0.53 0.55

8 2 1.02 1 0.52 0.53

8 3 1.02 1 0.51 0.53

2 7 1.06 1 0.54 0.59

with adaptive routing has a slightly higher cost than DESTRO, since they

use the same topology and almost the same switches, the only difference is

that switches for deterministic routing do not require the use of a selection

function. Concerning RUFT, we can observe that RUFT halves the cost of

the network in the ideal case for all the switch and network sizes that have

been analyzed. Furthermore, we can observe that the difference between the

best and the worst case for RUFT, in which the cables from last stage to

destination nodes are extremely long, is not as big as could be expected. At

worst, RUFT cost is 59% the cost of the deterministic fat-tree. This reduction

is produced for the 2-ary 7-tree, which is the network with the highest number

of stages, since in this network the number of links that connect the last stage

to the destination nodes is also the highest one from all the studied networks,

and therefore the penalization for having long links is higher. Nevertheless,

notice that even in this case, RUFT requires to use 41% less resources than a

fat-tree with deterministic routing.

Once the relative cost of each topology is clear, we want to analyze the

cost of each topology in conjunction with its performance. As we have com-

mented several times along this dissertation, performance has been the main

and unique metric in interconnection networks till few years ago. Nowadays,

cost is a metric of growing importance in interconnection networks. Even,

there are fields of the interconnection networks where cost is considered at the

same level of importance than performance. For this, in order to evaluate a

new topology, we need to define a new metric that combines both. We will use

the cost of delivering the maximum possible number of flits per node and cycle

in each topology as this new metric. This metric is calculated as the resources
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that each topology requires divided by its throughput. In other words, this

metric indicates the cost to deliver a flit per node per cycle in the network. So

the lower it is, the better. In this way, if a topology is very expensive and has

the same throughput than another more cheaper one, this metric would be

lower in the second one, indicating that the second topology is more efficient.

On the other hand, if two topologies have the same cost and one of them has

a higher throughput, the metric would favor this one, indicating again that

this topology is the most efficient one.

In order to compare the different topologies with this new metric, we use

the normalized cost presented in Table 5.3 and the throughput results shown

in Section 5.4.3. First, we show the results for uniform traffic in Figure 5.10.

The figure presents this new metric for FF, SADP, DESTRO and RUFT for all

the studied network sizes without additional mechanisms to provide in-order

delivery of packets in the adaptive algorithms. In Section 5.4.3, we showed

that the ordering of the topologies in descending order of performance was

DESTRO, SADP, RUFT, and FF. With the new metric, FF still is the worst

network configuration. In addition, we can observe that the cost per flit of

FF is increased as the network size is increased, since the resource cost of the

topology is the highest and its throughput gets even worse as the size of the

network is increased. In particular, FF increases the SADP cost per flit in

3.8% for the 4-ary 2-tree, 6.1% for the 8-ary 2-tree, 7.6% for the 4-ary 4-tree,

and 15% for the 8-ary 3-tree.

On the other hand, SADP cost per flit is the second worst one. SADP

reaches a very good throughput for this traffic pattern, but requires too much

resources. DESTRO has a slightly lower cost per flit than SADP, but the

difference between them is almost constant because they require almost the

same resources and obtain similar throughput. Nevertheless, on the contrary

to the results that only consider performance, the best network configuration

is RUFT. Despite that RUFT can not reach the same throughput than SADP

and DESTRO, it strongly reduces the resources required to build the network,

resulting in the lowest cost per flit of all the analyzed topologies. Compared

to RUFT, DESTRO has a 60.6% higher cost per flit for the 4-ary 2-tree. This

difference even increases to 76.8% in the 8-ary 3-tree.

Figure 5.11 presents similar results but using complement traffic. In this
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Figure 5.10: Cost required in each network to deliver a flit per node per cycle

for uniform traffic without in-order delivery of packets.

traffic pattern, RUFT was the network configuration that reached the highest

throughput, followed by DESTRO, SADP, and FF. In terms of cost per flit,

FF is clearly the worst network configuration again. It even has a cost per

flit that is more than twice the cost for SADP in the 4-ary 4-tree. The differ-

ences between SADP and DESTRO are equivalent to the ones observed in the

performance evaluation due to their similar cost. But, again, RUFT can be

considered the best network configuration, since it does not only achieve the

best performance, it also achieves it with the lowest cost per flit. For example,

the cost per flit of DESTRO is 80% higher than the one of RUFT one for

the 4-ary 2-tree, this difference grows to 85%, 121%, and 125% for the 4-ary

4-tree, the 8-ary 2-tree, and the 8-ary 3-tree, respectively.

However, as we have commented previously, complement traffic supposes

one of the best cases for RUFT and DESTRO. In order to make a more

complete and fair comparison, we also analyze the worst traffic pattern for

RUFT, that is, bit reversal. The results for the bit reversal traffic pattern

are presented in Figure 5.12. As expected, the worst network configurations

are DESTRO and RUFT. This is due to their very poor performance with

this particular traffic pattern. As can be seen, the cost per flit of DESTRO is

112.3% higher than the cost per flit of SADP in the best case. Furthermore,

in the worst case, the cost per flit of DESTRO is 659.2% higher than the cost

per flit of SADP.
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Figure 5.11: Cost required in each network to deliver a flit per node per cycle

for complement traffic without in-order delivery of packets.

RUFT also shows a very bad cost/performance ratio for this traffic pattern.

However, its low cost reduces significatively the cost per flit, specially when

we compare it against DESTRO. Nevertheless, instead of comparing RUFT

against DESTRO, we compare it against the best network configuration, that

is, SADP. Concretely, the cost per flit of RUFT is 18.1% in the best case,

which corresponds to the 4-ary 2-tree. At worst, the cost per flit of RUFT

is 327.6% higher than the one from SADP, corresponding to the 4-ary 4-

tree. However, as commented, these differences are for this particular traffic

pattern. So, in order to provide a more realistic comparison, we also show the

cost/performance results for the traces used in Section 5.4.3.

Nevertheless, as we have commented previously, using the time required

to deliver all the messages that contain the trace is not a good metric because

the traces do not indicate the correspondence between the packets, so our

simulator injects the packets at the timestamps indicated in the trace file

without knowing if a packet is a response to another packet which has not

arrived yet. For this same reason, we can not rely on throughput, which is

calculated as the total number of delivered data units divided by the total

time. However, the average latency of the packets can be used to compare the

different network configurations. For this reason, we use a different metric in

the cost/performance evaluation for the traces. Instead, of using the cost per

flit per node per cycle like above, we use the product of the normalized cost
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Figure 5.12: Cost required in each network to deliver a flit per node per cycle

for bit reversal traffic without in-order delivery of packets.

Table 5.4: Normalized cost multiplied by total simulation and latency for

different traces.
Trace #1 Trace #2 Trace #3

T. TimeNet. Lat.Gen. Lat. T. TimeNet. Lat.Gen. Lat. T. TimeNet. Lat.Gen. Lat.

DESTRO 1 1 1 1 1 1 1 1 1

RUFT 0.59 0.55814 0.59472 0.59 0.55401 0.59177 0.59 0.55401 0.58764

SADP 1.06 47.6788 2.36274 1.06 22.0798 1.0971 1.06 37.71162 1.31334

Trace #4 Trace #5 Trace #6

T. TimeNet. Lat.Gen. Lat. T. TimeNet. Lat.Gen. Lat. T. TimeNet. Lat.Gen. Lat.

DESTRO 1 1 1 1 1 1 1 1 1

RUFT 0.59 0.51684 0.58823 0.59 0.6018 0.47495 0.58882 0.58823 0.56581

SADP 1.06 2.29384 1.09922 1.15116 16.65366 2.81006 1.17342 20.37744 6.21584

of the network and the average packet latency. In this way, if two networks

have the same cost, but one has a lower latency, the product will indicate that

the network with the lower latency is the most efficient one. In the same way,

if the average packet latency of two networks is the same, the product will

indicate that the most efficient one is the network whose cost is the lowest

one. Notice that this metric is the product of the cost of the network and its

average latency, so the lowest it is, the better because the ideal network is the

one with the lowest cost and the lowest latency. Finally, we have followed the

same procedure with the total time.
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This metric can be explained as the latency or time to deliver all the mes-

sages that each network configuration would have if they are built up with

exactly the same amount of resources. On the other hand, it can be also

approximated as the cost that each network configuration would require to

achieve the same latency or simulation time. Using this second approach, we

can clearly see in Table 5.4 that SADP would always require to use more re-

sources to achieve the same simulation time than DESTRO, as it achieves the

same time than DESTRO for traces from 1 to 4, but using more resources (the

ones corresponding to the selection function). In the other two traces, SADP

could not achieve the same simulation time than DESTRO, so it requires to

use even more resources than in the other traces to be able to complete the

traces in the same time than DESTRO. Concretely, at least 17% more re-

sources for trace 6. Furthermore, we can see that SADP requires to use 130%

more resources than DESTRO to achieve the same network latency in the

most relaxed trace, and would require to use 46.7 times more resources than

DESTRO to achieve the same network latency in the worst case. Regard-

ing latency from generation, the resources required by SADP to obtain the

same results than DESTRO at worst are only 5.2 higher. This huge difference

between the resources required by SADP to obtain the same results than DE-

STRO in terms of network latency and latency from generation was expected

since they follow the same trend than the results shown in Section 5.4.3.

Finally, we can observe in Table 5.4 that RUFT requires approximately

40% less resources than DESTRO to obtain the same trace processing time.

Moreover, in order to achieve the same network latency than DESTRO, RUFT

only requires between 40% and 49% less resources. And, approximately the

same results can be observed for latency from generation. The cost×latency

ratio of RUFT almost doubles the ones from the different fat-trees. Hence,

RUFT is the most efficient topology when dealing with the traces. As com-

mented in Section 5.4.3, RUFT does not only reduce the average latency of

the packets in most of the traces, it obtains such results with almost half the

resources than a fat-tree, as has been seen in this section.
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5.5 Conclusions

In this chapter, we have presented a new topology derived from the fat-tree

topology that reduces to the half its resources providing slightly smaller per-

formance results. This topology has been created taking in mind simplifying

the routing logic of the switches that implement DESTRO. This new topology

is referred to as RUFT, Reduced Unidirectional Fat-Tree, since it completely

removes the downwards phase of the fat-tree, becoming an unidirectional MIN.

RUFT replaces the downwards phase of the fat-tree by a set of links that di-

rectly connect the switches of the last stage of the network to the correspond-

ing destination nodes. Moreover, routing in this topology is very simple, since

only a component of the packet destination gives the switch output port. In

this way, packet headers are as small as in distributed routing, and routing

logic at the switches is as fast and simple as in source routing.

The evaluation has shown that RUFT can obtain similar performance to

the fat-tree with DESTRO when using synthetic traffic patterns. It reaches

15% lower throughput than DESTRO at worst in uniform traffic, but reduces

the latency at zero load by a 8.7%. For complementary traffic, RUFT outper-

forms all the other network configurations, and the difference grows with the

network size. For this traffic pattern, RUFT is always able to deal with the

injected traffic. Finally, bit reversal is the worst case for RUFT, as happened

with DESTRO. In this traffic pattern, the effective bandwidth of the network

is reduced by a factor of k, being k the number of up links of the switches.

Regarding the evaluation with traces, RUFT achieves the same results than

DESTRO, and clearly outperforms the adaptive algorithms.

However, we have to take into account that RUFT obtains these results by

using half the resources of the fat-tree configuration. For this, the results that

take into account the cost of the network increase the differences in benefit of

RUFT. In particular, the results for the cost/performance ratio in synthetic

traffic has shown that DESTRO (the best network configuration in the per-

formance evaluation) has even a 76.8% higher cost/performance ratio than

RUFT in uniform traffic, and 125% in complement traffic. Finally, the traces

has shown that RUFT halves the cost/performance ratio of the other topolo-

gies in the worst case. So, RUFT is the most efficient topology in terms of
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cost/performance ratio.

To conclude, we must remark that these results are not only applicable to

RUFT. We have compared RUFT against the fat-tree topology because this

unidirectional MIN has came up of our previous research. From non-minimal

DESTRO, it was clear that the downwards phase was not necessary. However,

these results may be also applicable to other similar unidirectional MINs like

the unidirectional butterfly. That is, this chapter can help in comparing the

effectiveness of bidirectional MINs against unidirectional ones.



Chapter 6

Conclusions

“The truth may be out there, but the lies are inside your head.”

Terry Pratchett, Hogfather.

In this final chapter, we present the conclusions of this dissertation and a

brief list of points that will be addressed in the future. Finally, we also expose

the results in terms of scientific publications and other contributions derived

from the work presented in this dissertation.

6.1 Conclusions

In this dissertation, we have focused on proposing different techniques to im-

prove fault-tolerance, performance and cost in the fat-tree topology, one of

the most-commonly used topologies for cluster-based machines. The proposed

techniques rely on very simple solutions that require none or low hardware

overhead.

First, we have developed a dynamic fault-tolerant routing strategy (FT2EI)

that can tolerate the maximum number of faults that preserves the connectiv-

ity in a fat-tree topology. It is based on extending the Interval Routing scheme

by introducing exclusion intervals, therefore it requires minimum hardware

cost, only two registers per ascending output port, contrary to previous works

based on switch and link replication. Moreover, this strategy introduces the

203
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minimum performance degradation since it is based on exploiting the rich con-

nectivity available in the fat-tree topology and only the paths that traverse

the faults are eliminated, allowing minimal fully adaptive routing through all

non-faulty paths. Additionally, a dynamic mechanism has been developed in

order to update the exclusion intervals dynamically without losing packets

and without stopping the machine activity. Moreover, its reconfiguration time

is several orders of magnitude smaller than the mean time between faults of

current systems.

Next, we have developed a deterministic routing algorithm for fat-trees

(DESTRO) that can achieve similar performance results to the ones obtained

with the adaptive routing algorithm commonly-used in fat-trees, but with

the advantages of being a deterministic algorithm, that is, a simple hard-

ware implementation, reducing routing time and preserving in-order delivery

of packets. Moreover, it is able to obtain even better performance results than

the best adaptive routing algorithm if the packet in-order delivery is manda-

tory. The proposed deterministic routing algorithm is based on using at each

switch the ascending output port given by the destination component of the

packet that is being routed corresponding to the switch stage. This routing

algorithm is able to evenly balance network traffic and, more importantly, it

reduces to the minimum the number of paths that share each link, and as

a consequence, it reduces network contention. Moreover, we have presented

a compact implementation of the routing algorithm using Flexible Interval

Routing (FIR).

Finally, we have developed a simplified topology derived from the fat-tree

(RUFT) by taking advantage of the particular characteristics of the determin-

istic routing algorithm. This topology almost halves the resources required

by the fat-tree topology. In terms of performance, the new topology obtains

similar results or slightly lower ones than the fat-tree. But if we consider the

cost/performance ratio, the new topology almost halves the one of the fat-

tree. Moreover, routing in this topology is very simple, only a component of

the packet destination gives the switch output port. In this way, the routing

mixes the good properties from distributed routing (small packet headers) and

the ones from source routing (fast routing times and simple routing logic at

the switches).
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Summing up, this dissertation has made three proposals focused on the fat-

tree topology directed to provide fault-tolerance and high performance, but

with low hardware and developing costs. These proposals are especially con-

venient for the large-scale machines that are being developed nowadays whose

sizes reinforce the need of fault-tolerance while keeping high performance and

a scalable cost.

6.2 Future Work

Despite our yearning for completeness, as the given time to develop the work

presented in this dissertation is finite, there are a few points for each of our

proposals that could not be addressed and will be addressed in the future.

Regarding FT 2EI, the points that can be addressed in the future are:

• When the reconfiguration of the exclusion intervals has been completed,

the utilization of the up links of the switches can be unevenly distributed

due to the destinations whose packets cannot be longer routed through

some ascending links, so we pretend to develop a mechanism to balance

the traffic in the network after the reconfiguration of the exclusion in-

tervals. For example, the uneven utilization of links can be observed

in a switch with two up links, one of them does not have any active

exclusion interval, while the another one does. In this switch, packets

whose destination are included in the exclusion interval can only use the

link without exclusion intervals, while packets whose destinations are

not included in the exclusion interval can use any of them. In this way,

the link without exclusion interval has a higher utilization than the link

with exclusion interval.

• The strategy has been developed to work with distributed routing, but

it can be adapted to other routing paradigms like centralized and source

routing.

Regarding DESTRO, the pending points that can be addressed in the

future are:

• We pretend to provide a deterministic fault-tolerant routing algorithm

that can achieve the same degree of fault-tolerance than FT 2EI.
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• DESTRO has been designed specifically for the fat-tree topology. How-

ever, we think that it can be extended to work with any other MIN

providing the same performance results.

Finally, regarding RUFT:

• As commented in Section 5.5, we think that the conclusions of Chapter

5 can be applicable to other unidirectional MINs. For this, we pretend

to extend the evaluation to comprise other unidirectional MINs like the

unidirectional butterfly.

• We would like to create a more accurate model of the influence of the final

cluster packaging on the length of the links that connect the switches of

the last stage to the destination nodes.

6.3 Contributions

While conducting the research necessary for the work presented in this disser-

tation, we have the opportunity to publish several papers in scientific confer-

ences and journals, having the chance of receiving very useful feedback from

many reviewers. Following, we present the list of published papers for each of

the proposals of this dissertation.

The publications in conferences corresponding to FT 2EI are [58–60]:

• C. Gómez, M.E. Gómez, P. López, and J. Duato. “An Efficient Fault-

Tolerant Routing Methodology for Fat-tree Interconnection Networks”.

Fifth International Symposium on Parallel and Distributed Processing

and Applications (ISPA07). August 2007. ISBN 978-3-540-74741-3.

Pages 509–522. Awarded with the best student paper.

• C. Gómez, M.E. Gómez, P. López, and J. Duato. “A Dynamic and

Compact Fault-Tolerant Strategy for Fat-tree”. IFIP International Con-

ference on Network and Parallel Computing (NPC06). October 2006.

• C. Gómez, M.E. Gómez, P. López, and J. Duato. “FT2EI: A Compact

Fault-Tolerant Routing Strategy for Fat-trees with Exclusion Intervals”.

XVII Jornadas de Paralelismo. September 2006. ISBN 84-690-0551-0.
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In addition, there is a published paper in a journal corresponding to FT 2EI

[109]:

• C. Gómez, M.E. Gómez, P. López, and J. Duato. “FT2EI: A Dynamic

Fault-Tolerant Routing Methodology for Fat Trees with Exclusion Inter-

vals”. IEEE Transactions on Parallel and Distributed Systems. Vol. 20.

2008. ISSN 1045-9219. Pages 802-817. IEEE Computer Society.

The publications in conferences corresponding to DESTRO are [48, 54]:

• C. Gómez, F. Gilabert, M.E. Gómez, P. López, and J. Duato. “De-

terministic versus Adaptive Routing in Fat-Trees”. Workshop on Com-

munication Architecture on Clusters (CAC’07), as a part of IPDPS’07.

March 2007. ISBN 978-1-4244-0909-9.

• F. Gilabert, C. Gómez, M.E. Gómez, P. López, and J. Duato. “A New

Deterministic Routing Algorithm for Fat-Trees”. II Congreso Español

de Informatica - XVIII Jornadas de Paralelismo. October 2007. ISBN

978-84-9732-593-6.

In addition, there is a submitted journal:

• C. Gómez, F. Gilabert, M.E. Gómez, P. López, and J. Duato. “A New

Mechanism for Selecting the Output Port in Fat-trees Topologies”. pend-

ing of acceptation on IEEE Transactions on Parallel and Distributed

Systems. IEEE Computer Society.

There are also two other international contributions regarding DESTRO:

• C. Gómez, F. Gilabert, M.E. Gómez, P. López, and J. Duato. “Fat-Trees

for HyperTransportTMInterconnects”. White paper for the HyperTrans-

port Consortium.

• USA patent under review with number US 11/845,813.

Finally, we have published the following articles in conferences regarding

RUFT [49, 56, 57, 80, 81]:
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• C. Gómez, F. Gilabert, M.E. Gómez, P. López, and J. Duato. “RUFT:

Simplifying the Fat-Tree Topology”. 14th IEEE International Confer-

ence on Parallel and Distributed Systems (ICPADS’08). December 2008.

ISSN 1521-9097.

• D. Ludovici, F. Gilabert, S. Medardoni, C. Gómez, M.E. Gómez, P.

López, G.N. Gaydadjiev, and D. Bertozzi. “On the feasibility of fat-tree

topologies for Networks-on-chip”. Design, Automation & Test in Europe

Conference & Exhibition (DATE ’09). April 2009. ISSN 1530-1591.

• C. Gómez, F. Gilabert, M.E. Gómez, P. López, and J. Duato. “RUFT:

Reduced Unidirectional Fat–Tree”. XX Jornadas de Paralelismo. Septem-

ber 2009. ISBN 84-9749-346-8.

• F. Gilabert, C. Gómez, M.E. Gómez, P. López, and J. Duato. “On the

feasibility of fat-tree topologies for Netowrks-on-chip”. XX Jornadas de

Paralelismo. September 2009. ISBN 84-9749-346-8.

• D. Ludovici, F. Gilabert, C. Gómez, M.E. Gómez, P. López, and G.N.

Gaydadjiev. “Buttery vs. Unidirectional Fat-Trees for Networks-on-

Chip: not a Mere Permutation of Outputs”. 3rd Workshop on Intercon-

nection Network Architectures: On-Chip, Multi-Chip, The 4th Inter-

national Conference on High Performance and Embedded Architectures

and Compilers. January 2009.

We have also published a journal article regarding RUFT [55]:

• C. Gómez and F. Gilabert and M.E. Gómez and P. López and J. Du-

ato. “Beyond Fat-tree: Unidirectional Load–Balanced Multistage Inter-

connection Network”. IEEE Computer Architecture Letters. July-Dec.

2008., vol. 7, number 2. ISSN 1556-6056.
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fat–tree: Unidirectional load–balanced multistage interconnection net-

work. Computer Architecture Letters, 7(2):49–52, July-Dec. 2008.
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[60] C. Gómez, M.E. Gómez, P. López, and J. Duato. An efficient fault-

tolerant routing methodology for fat-tree interconnection networks. In

Fifth International Symposium on Parallel and Distributed Processing

and Applications (ISPA07), pages 509–522, August 2007.
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P. López, G.N. Gaydadjiev, and D. Bertozzi. Assessing fat-tree topolo-

gies for regular network-on-chip design under nanoscale technology con-

straints. In Design, Automation and Test in Europe Conference and

Exhibition, 2009. DATE ’09., pages 562–565, April 2009.
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sidad Politécnica de Valencia, July 2008.

[91] J. Morrison. The asci q system at los alamos. In 7th Workshop on

Distributed Supercomputing(SOS7), 2003.

[92] Trevor Mudge. Power: A first-class architectural design constraint.

IEEE Computer, pages 52 – 58, Abril 2001.

[93] Shubhendu S. Mukherjee, Peter Bannon, Steven Lang, Aaron Spink,

and David Webb. The alpha 21364 network architecture. IEEE Micro,

22(1):26–35, 2002.

[94] Y. Mun and H. Y. Youn. On performance evaluation of fault-tolerant

multistage interconnection networks. Proc. of the 1992 ACM/SIGAPP

Symp. on Applied Computing, 1992.

[95] Cisco Networks. Introduction to gigabit ethernet. Avail-

able online: http://www.cisco.com/en/US/tech/tk389/tk214/tech_

brief09186a0080091a8a.html.

[96] Sotiris E. Nikoletseas, Grammati E. Pantziou, Panagiotis Psycharis, and

Paul G. Spirakis. On the fault tolerance of fat-trees. In Euro-Par ’97:

Proceedings of the Third International Euro-Par Conference on Parallel

Processing, pages 208–217, London, UK, 1997. Springer-Verlag.

[97] S. F. Nugent. The ipsc/2 direct-connect communications technology. In

Proceedings of the third conference on Hypercube concurrent computers

and applications, pages 51–60, New York, NY, USA, 1988. ACM.



Bibliography 219

[98] Sunish Parikh and Thomas E. Martinez. Dual processors, hyper-

threading technology, and multi-core systems. Available at http:

//www.intel.com/cd/ids/developer/asmo-na/eng/200677.htm.

[99] Sudeep Pasricha and Nikil Dutt. On–chip communication architectures:

System on chip. Morgan Kauffman, 2008.

[100] W.W. Peterson and D.T. Brown. Cyclic codes for error detection. Pro-

ceedings of the IRE, 49(1):228–235, Jan. 1961.

[101] F. Petrini and M. Vanneschi. k-ary n-tress: High performance networks

for massively parallel architecture. IEEE Micro, 15, Feb. 1995.

[102] Fabrizio Petrini, Wu chun Feng, Adolfy Hoisie, Salvador Coll, and Ei-

tan Frachtenberg. The quadrics network: High-performance clustering

technology. IEEE Micro, 22(1):46–57, 2002.

[103] Timothy Mark Pinkston, Ruoming Pang, and José Duato. Deadlock-free
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