PHD THESIS SEPTEMBER 2017

GESTUI: A MODEL-DRIVEN
METHOD TO INCLUDE
GESTURE-BASED INTERACTION
IN USER INTERFACES

I
BY OTTO PARRA GONZALEZ

Supervisors:
Oscar Pastor Lopez
Sergio Esparna Cubillo
Ignacio Panach Navarrete

UNIVERSITAT
POLITECNICA
DE VALENCIA

UNIVERSITAT
POLITECNICA
DE VALENCILA

PhD Thesis

gestUl: a model-driven method to include
gesture-based interaction in user
interfaces

Otto Parra Gonzalez

Supervisors:
Oscar Pastor Lopez
Sergio Espaiia Cubillo

Ignacio Panach Navarrete

September 2017

A thesis submitted by Otto Parra Gonzalez in partial fulfilment of the
requirements for the degree of Doctor of Philosophy in Computer
Science by Universitat Politécnica de Valéncia, Spain.

gestUl: a model-driven method to include gesture-
based interaction in user interfaces

This report was prepared by:
Otto Parra Gonzalez
otpargon@posgrado.upv.es, otto.parra@ucuenca.edu.ec

Supervisors

Oscar Pastor Lépez, Universitat Politecnica de Valéncia
Sergio Espafia Cubillo, University of Utrecht

Ignacio Panach Navarrete, Universitat de Valéncia

External reviewers of the thesis:

Antoni Granollers Saltiveri, Universidad de Lleida

Lourdes Moreno Lépez, Universidad Carlos Il

Victor Manuel Ruiz Penichet, Universidad de Castilla-La Mancha

Members of the Thesis Committee:

Jean Vanderdonckt, Université Catholique de Louvain

Antoni Granollers Saltiveri, Universidad de Lleida

Jose Antonio Macias Iglesias, Universidad Auténoma de Madrid

Centro de Investigacion en Métodos de Produccion de Software
Universitat Politécnica de Valencia
Cami de Vera s/n, Edificio 1F
46022, Valencia, Espafia D u [
Tel. (+34) 963 877 007 ext. 83533] |
Fax: (+34) 963 877 359 Centro de Inv
Web: http://www.pros.upv.es

] u ‘@
n W

r

Release date: september-2017

Comments: A thesis submitted in partial fulfilment of the requirements for the
degree of Doctor of Philosophy in Computer Science by Universitat Politecnica
de Valéncia.

Rights: © Otto Parra Gonzélez, 2017.

mailto:otpargon@posgrado.upv.es
mailto:otto.parra@ucuenca.edu.ec
http://www.pros.upv.es/

Acknowledgements

First of all, | would like to thank the supervisors Dr. Oscar Pastor Lépez,
Dr. Sergio Espafia Cubillo and Dr. Ignacio Panach Navarrete for their
support, rigor and guidance. | am very grateful for the trust placed in me.
It has been a pleasure to have the opportunity to learn from them.

| want to thank Oscar for the opportunity he gave me to be part of PROS
and because he was always ready to assist me when | needed it, with his
advice and guidance to do my work.

Sergio, for his valuable work since the beginning of the thesis, because
he was always ready to guide me along the long path of development of
the thesis.

Ignacio, thanks for all the work done in the final part of the thesis
corresponding to the evaluation of the process, for the review of the
thesis and for the constant support that has given me since its
incorporation to the "thesis supervisors team". In addition, for his help
in translating the thesis summary to the Valencian.

| want to thank PROS staff, especially Ana Cidad, Paco Valverde and
Verdnica Buriel because they were always willing to help me every time
| went to them, they always knew how to help me. To the friends | made
in this time of study in the UPV: José Reyes, Carlos Ifiguez, Julio
Sandobalin, Sonia Cardenas, Mauricio Loachamin, Nelly Condori-
Fernandez, and Alejandro Catald. To them, thank you for the support
given me in every moment.

This work has been supported by Universidad de Cuenca and SENESCYT
of Ecuador, and received financial support from the Generalitat
Valenciana under Project IDEO (PROMETEOII/2014/039) and the
Spanish Ministry of Science and Innovation through the DataMe Project
(TIN2016-80811-P).

Finally, thanks to my wife Maria Fernanda and our children Maria Paula,
Luis Felipe and Maria Emilia for their support and for being always close
to me. For having been our faithful companions in this journey and
adventure that has meant for them our permanence in Valencia.

Abstract

The research reported and discussed in this thesis represents a novel
approach to define custom gestures and to include gesture-based
interaction in user interfaces of the software systems with the aim of
help to solve the problems found in the related literature about the
development of gesture-based user interfaces.

The research is conducted according to Design Science methodology
that is based on the design and investigation of artefacts in a context. In
this thesis, the new artefact is the model-driven method to include
gesture-based interaction in user interfaces. This methodology
considers two cycles: the main cycle is an engineering cycle where we
design a model-driven method to include interaction based on gestures.
The second cycle is the research cycle, we define two research cycles:
the first research cycle corresponds to the validation of the proposed
method with an empirical evaluation and the second cycle corresponds
to the technical action research to validate the method in an industrial
context.

Additionally, Design Science provides us the clues on how to conduct the
research, be rigorous, and put in practice scientific rules. Besides Design
Science has been a key issue for organising our research, we
acknowledge the application of this framework since it has helps us to
report clearly our findings.

The thesis presents a theoretical framework introducing concepts
related with the research performed, followed by a state of the art
where we know about the related work in three areas: Human-computer
Interaction, Model-driven paradigm in Human-Computer Interaction
and Empirical Software Engineering.

The design and implementation of gestUl is presented following the
Model-driven Paradigm and the Model-View-Controller design pattern.
Then, we performed two evaluations of gestUl: (i) an empirical
evaluation based on ISO 25062-2006 to evaluate usability considering
effectiveness, efficiency and satisfaction. Satisfaction is measured with
perceived ease of use, perceived usefulness and intention of use, and (ii)

atechnical action research to evaluate user experience and usability. We
use Model Evaluation Method, User Experience Questionnaire and
Microsoft Reaction cards as guides to perform the aforementioned

evaluations.

The contributions of our thesis, limitations of the tool support and the
approach are discussed and further work are presented.

Resumen

La investigacién reportada y discutida en esta tesis representa un
método nuevo para definir gestos personalizados y para incluir
interaccion basada en gestos en interfaces de usuario de sistemas
software con el objetivo de ayudar a resolver los problemas encontrados
en la literatura relacionada respecto al desarrollo de interfaces basadas
en gestos de usuarios.

Este trabajo de investigacion ha sido realizado de acuerdo a la
metodologia Ciencia del Disefio, que esta basada en el disefio e
investigacion de artefactos en un contexto. En esta tesis, el nuevo
artefacto es el método dirigido por modelos para incluir interaccién
basada en gestos en interfaces de usuario. Esta metodologia considera
dos ciclos: el ciclo principal, denominado ciclo de ingenieria, donde se
ha disefiado un método dirigido por modelos para incluir interaccién
basada en gestos. El segundo ciclo es el ciclo de investigacion, donde se
definen dos ciclos de este tipo. El primero corresponde a la validacién
del método propuesto con una evaluacién empirica y el segundo ciclo
corresponde a un Technical Action Research para validar el método en
un contexto industrial.

Adicionalmente, Ciencia del Disefio provee las claves sobre como
conducir la investigacién, sobre cdmo ser riguroso y poner en practica
reglas cientificas. Ademas, Ciencia del Disefio ha sido un recurso clave
para organizar la investigacion realizada en esta tesis. Nosotros
reconocemos la aplicacién de este marco de trabajo puesto que nos
ayuda a reportar claramente nuestros hallazgos.

Esta tesis presenta un marco tedrico introduciendo conceptos
relacionados con la investigacion realizada, seguido por un estado del
arte donde conocemos acerca del trabajo relacionado en tres areas:
Interaccion Humano-Ordenador, paradigma dirigido por modelos en
Interaccion Humano-Ordenador e Ingenieria de Software Empirica.

El disefio e implementacion de gestUl es presentado siguiendo el
paradigma dirigido por modelos y el patrén de disefio Modelo-Vista-
Controlador. Luego, nosotros hemos realizado dos evaluaciones de
gestUl: (i) una evaluacién empirica basada en I1SO 25062-2006 para
evaluar la usabilidad considerando efectividad, eficiencia y satisfaccién.
Satisfaccion es medida por medio de la facilidad de uso percibida,
utilidad percibida e intencion de uso; v, (ii) un Technical Action Research
para evaluar la experiencia del usuario y la usabilidad. Nosotros hemos
usado Model Evaluation Method, User Experience Questionnaire y
Microsoft Reaction Cards como guias para realizar las evaluaciones
antes mencionadas.

Las contribuciones de nuestra tesis, limitaciones del método y de la
herramienta de soporte, asi como el trabajo futuro son discutidas y
presentadas.

Resum

La investigacié reportada i discutida en aquesta tesi representa un
metode per definir gests personalitzats i per incloure interaccié basada
en gests en interficies d’usuari de sistemes de programari. L'objectiu és
ajudar a resoldre els problemes trobats en la literatura relacionada al
desenvolupament d’interficies basades en gests d’usuaris.

Aquest treball d’investigacid ha sigut realitzat d’acord a la metodologia
Ciéncia del Diseny, que esta basada en el disseny i investigacié
d’artefactes en un context. En aquesta tesi, el nou artefacte és el métode
dirigit per models per incloure interaccioé basada en gests en interficies
d’usuari. Aquesta metodologia es considerada en dos cicles: el cicle
principal, denominat cicle d’enginyeria, on es dissenya un métode dirigit
per models per incloure interaccié basada en gestos. El segon cicle és el
cicle de la investigacié, on es defineixen dos cicles d’aquest tipus. El
primer es correspon a la validacié del metode proposat amb una
avaluacié empirica i el segon cicle es correspon a un Technical Action
Research per validar el métode en un context industrial.

Addicionalment, Ciéncia del Disseny proveeix les claus sobre com
conduir la investigacio, sobre com ser rigords i ficar en practica regles
cientifiques. A més a més, Ciéncia del Disseny ha sigut un recurs clau per
organitzar la investigacid realitzada en aquesta tesi. Nosaltres
reconeixem I'aplicacié d’aquest marc de treball donat que ens ajuda a
reportar clarament les nostres troballes.

Aquesta tesi presenta un marc teoric introduint conceptes relacionats
amb la investigacid realitzada, seguit per un estat del art on coneixem a
prop el treball realitzat en tres arees: Interaccié Huma-Ordinador,
paradigma dirigit per models en la Interacci6 Huma-Ordinador i
Enginyeria del Programari Empirica.

El disseny i implementacid de gestUl es presenta mitjancant el
paradigma dirigit per models i el patré de disseny Model-Vista-
Controlador. Després, nosaltres hem realitzat dos avaluacions de gestUI:
(i) una avaluacié empirica basada en ISO 25062-2006 per avaluar la

usabilitat considerant efectivitat, eficiencia i satisfaccié. Satisfaccio es
mesura mitjancant la facilitat d’ds percebuda, utilitat percebuda i
intencié d’Us; (ii) un Technical Action Research per avaluar I'experiencia
del usuari i la usabilitat. Nosaltres hem usat Model Evaluation Method,
User Experience Questionnaire i Microsoft Reaction Cards com guies per
realitzar les avaluacions mencionades.

Les contribucions de la nostra tesi, limitacions del meétode i de la
ferramenta de suport aixi com el treball futur sén discutides i
presentades.

Contents

Chapter 1. INtrodUCtionc.ceeiieiieei i 3
11 MOEIVATION .o 3
1.11 Human-computer interactioncccccevviiiiiiieeeeeninnnns 3
1.1.2 Software systems and development tools...................... 5

1.2 Problem Statementccceeieiiiiieiieneeeee 10
1.3 Research QUESHIONSc.ciiiiieriiiietee et 13
1.4 Thesis ObJeCtiVES ...cuuviiieiiieece e 14
1.5 Research Methodologyccccveeveiiiiiiiiiiee e 16
1.6 Expected Contributionscccccveeeeciiiieecccieee e 18
1.7 ThesisS CONTEXE c.ueevuieiieiieeieeteeeeee et 20
1.8 ThesisS OULINEooiuiiieieee e 20
Chapter 2. Theoretical Framework........ccccocvveiivcieieinciiie e 25
2.1 OVEIVIEW.....eeiiieiitiee ettt ettt et e e e e e s s e e s snreeeenans 25
2.2 A theoretical framework for Human-Computer Interaction.26
221 Gestures related definition.........cccooveveeneniinienieenenn. 26
2.2.2 Classification of gestures.........cccceccveeeeccvieeecccieee e, 27
2.2.3 Gesture recognition algorithms.........ccccccveeeeiiieeeecnneenn. 29
224 Gesture-based interaction........ccccceveveeneenienieeneenienns 30

2.3 A theoretical framework of Model-Driven paradigm............ 31
231 Model related definitionccoceevveriiiiineencrce 31
2.3.2 MDA Conceptual framework.........ccccoceeeeecieeeecciieeeenee, 33
2.33 Model Transformations......ccccceeeereerieeienneenee e 34
234 Transformation Language.......ccoceeeeecveeeeccieeeeecriee e 36

2.4 SUMMAIY ittt e e e e e s 37
Chapter 3. 5tate Of Art.....ooiiii e 41

3.1 MOTIVATION...oiiiiiiieeee e 41
3.2 Gesture representation.....cccooveeeeeeeeieeeiieeeee e 42
3.3 Gesture recognition toOIScveeeeeciieeiiciiee e, 50

3.4 The role of gesture-based interfaces in Information Systems
ENGINEEIING et e e e e e 53

3.5 Model-driven engineering in Human-Computer Interaction 56

3.6 Evaluation between model-driven paradigm and other

MEthOdOIOZIES ... 59
3.7 Technical action research to validate software systems 65
3.8 Range of Improvements.......ccueeeviieeeiiceee e, 66
3.9 SUMMANY ciiiiiiiieieieeeeeceeeeeeeeeeeeeeeee ereeeeeeeeeees 67
Chapter 4. gestUl: A Model-Driven Method..........ccccceeeecieeecciiee e, 71
4.1 OVEIVIEW ...eiiiiiiiii ittt 71
4.2 Why a Model-Driven method?cccceeeciieeicciiee e 73
4.3 Why a Model-View-Controller design pattern?........c.......... 74
4.4 Determining needed resouUrcescccvcveveeecieeeesiveeeesenen. 76
4.5 gestUL: our Proposal......cceeeeiecieee e 78
45.1 Features of gestUl........cccoeveeeiiiieccee e, 79
4.5.2 Metamodel of the gesture catalogue modelling language
80

453 Components of gestUlccuvviiviiiiiiiciieecciiee e 91
454 Model transformations.........cccceeeeeveeneeneeneeneeceeeees 95
4.6 Personalization of gesture definition..........cccccveeecieeeennnen. 99
4.6.1 INErodUCTION ..cooeeiiiieeeeee e 99
4.6.2 Enhancing the metamodel........ccccciieeiiiiiieeeenecns 100

4.7 Overview of gestUI to include gesture-based interaction in a
USEI INTEITACE 1ottt st st sbe e e 103

4.7.1 [[9Y 4o Ye [§ ot o] o FA TN 103

4.7.2 Including gesture-based interaction in a user interface
104
4.7.3 Redefining a gesture during the execution time......... 111
4.8 SUMIMAIY e 116
Chapter 5. gestUl TOOI SUPPOItccovcviiiiriiiieecciiee e 119
5.1 INErOdUCTION....ciiiiiiii e 119
5.2 Components of the tool SUPPOrt.....cccccveeeeciiieeeecieeeecieee, 120

5.2.1 Subsystem “Gesture Catalogue Definition Module”...121

5.2.2 Subsystem “Gesture-Action Correspondence Definition
Module” 122

5.2.3 Subsystem “Model Transformation Module” 125
53 Development methodology of the tool support................. 126
5.4 Implementation of the tool supportcccceeecvveeeeciieeeennnee, 126

5.4.1 Option 1: “Gesture catalogue definition” 127

5.4.2 Option 2: “Specific catalogue”.......cccceevvciieeivciiee e, 130

5.4.3 Option 3: “Gesture-action correspondence definition”

131

5.4.4 Module to redefine gestureccccocovveeeeciieeeeciieeens 134

5.5 Demonstration of the tool support.......ccccceeeeiveeieciieeennnee. 135

5.5.1 Applying the method and tool to testing a gesture
catalogue135

5.5.2 Applying the method and the tool to integrate gestUl

into user interface development........ccccovcieeiiiciiie e, 137
5.6 Summary and ConcluSIONScceccveeeeiiieeeeiieee e 140
Chapter 6. Empirical Evaluationccccceeveiiieeviciees e 145

6.1 [N oY [§ Lot (o] o F T 145

6.2 Experimental planningccccccoeveveiieii e, 146

6.2.1 GOl et 146
6.2.2 Research Questions and Hypothesis Formulation...... 147
6.2.3 Factor and Treatments.......cccceeeeieenienienneenee e 149
6.2.4 Response variables and metrics........ccccveeeeviieeeenneen. 149
6.2.5 Experimental Subjects......ccccocvevivvcieiiiiiiee e, 153
6.2.6 Experiment designccoceeevecieeiinciee e, 154
6.2.7 Experimental objectscccoecveviiiciee e, 157
6.2.8 Instrumentationcccoeceeiiiieiini e, 158
6.2.9 Experiment procedurecccvueeeeeciieeeecciee e, 159
6.2.10 Threats of validity........cccccvveiieciieeiceeeecee e, 168
6.2.11 Data analySis ...cccceevrcreeiieiiiee e e 172
6.3 RESUIES .ttt 174
6.3.1 RQ1: Effectiveness in the inclusion of gesture-based
INEEIaCtiON ... 174
6.3.2 RQ2: Effectiveness in the definition of custom gestures
177
6.3.3 RQ3: Efficiency in the inclusion of gesture-based
INEEIACHION .. 180
6.3.4 RQ4: Efficiency in the definition of custom gestures.. 182
6.3.5 RQ5: Perceived Ease of USeccceveerverniieneeneenncnns 185
6.3.6 RQ6: Perceived Usefulnesscccvvuereeeneeneenecnncnns 187
6.3.7 RQ7: Intention to USecoovvviiiiiiiiiiieeeeecee, 190
6.3.8 Effect-size calculationcccooeeiiiiiiiiniiincecs 192
6.4 DiISCUSSION. . eteeieireee et 195
6.4.1 EffeCtivVeness «o..eeieeeeeeceee e 195
6.4.2 EffiCiENCY voeee e 197

6.4.3 SatisTaCtioN ...coovvveeee i 199

6.5 CONCIUSIONS..cneiiiiiiieiee ettt 200
Chapter 7. Technical Action Research.......ccccceeecieeeeccieeccccieec e, 205
7.1 INErOAUCTION ..coiiiiiiiieee e 205
7.2 Background: Capability Design ToOl.......ccceeeevieeeeciieeeennee, 208
7.3 Validation using Technical Action Research........................ 210
7.3.1 GOoal of the TAR...coee e 211
7.3.2 Experimental SUbJECtSccuvveeivciiiiiicieee e 211
7.3.3 Research qUESTIONS........cocciveeieciiee e 212
7.3.4 Factor and Treatment.......cccoceeieeneeneeneenieeeeeeens 212
7.3.5 Response variablescccccviiiiiiiii e 214
7.3.6 Instruments for the TARcccooviiiriiiniicieceeeeee 214
7.3.7 Experimental Object.....cccccvvevivciieiiciiee e 214
7.4 Action Research Procedurecccoceneiniinienneenecnieneene 215
7.5 Analysis and Interpretation of results..........cccceeeeiieeennnen. 218
7.6 Threats to validity......cccoecveeiiiiiie e, 222
7.7 CONCIUSIONS....eiiiieiieieeriee et 223
Chapter 8. Conclusions, Contributions and Future Work 227
8.1 Summary of the thesis......cccocuvviiiiiiieci e, 227
8.2 Contribution of this thesis.......cccccevieriiniiniiiieeeee, 229
8.3 FULUIE WOIK ..ceniiiiiiiiieie ettt 231
8.4 CONCIUSION Lottt 232
8.5 PUBIICAtIONS ..eovveeiiiiiececeeeee e 233

Appendix A. A code-centric method for develop user interfaces with
gesture-based iNteractioncccceveeecciiiiie e 239

A0 A [4 oY [0 ot f o] o HPS TN 239

A.2 The code-centric Methodcooovviiiieeiiiiie s

References

List of Figures

Figure 1. Design science research iterates over two problem-solving activities

(taken from [30]) 17
Figure 2. Overview of the research methodology 19
Figure 3. Types of semaphoric gestures 28
Figure 4. MDA Layers 34
Figure 5. MDA Transformations 35
Figure 6 Model-to-Model Transformation 36
Figure 7. Model-to-text transformation 37
Figure 8. quill’s main interface 51
Figure 9. SN’s main interface 51
Figure 10. iGesture main interface 52
Figure 11. Software System with traditional interaction 75
Figure 12. Modifying the controller to support gesture-based interaction ___ 76
Figure 13. Metamodel of the gesture catalogue modelling language 81
Figure 14. States of a posture 87
Figure 15. Precedence relation between postures 88
Figure 16. Interval of time between postures 89
Figure 17. A general excerpt of any method for develop user interfaces ____ 91
Figure 18. gestUl method overview (Taken from [31]) 92
Figure 19. Platform-independent gesture definition 93
Figure 20. An excerpt of Figure 18 showing the M2M transformation 96
Figure 21. An excerpt for the M2M transformation 97
Figure 22. An excerpt of Figure 18 showing the M2T transformation to obtain

the gesture-based user interface 98
Figure 23. An excerpt of Figure 18 showing the M2T transformation to obtain

the test gesture 98
Figure 24. An excerpt for the M2T transformation 99
Figure 25. An excerpt of gestUl showing the redefinition of a gesture _____ 100
Figure 26. Enhanced version of the metamodel 101
Figure 27. Users defining their own gestures catalogue to apply it in the same

user interface 102
Figure 28. An excerpt of the map representation of gestU! 103
Figure 29. MAP representation of gestU/ 105
Figure 30. User defining a gesture 108
Figure 31. Platform-independent gesture catalogue 109

Figure 32. A specific-platform gesture catalogue 110

Figure 33. An excerpt of the source code of a user interface containing widget

definition and keywords 110
Figure 34. Map representation of the software system with the redefinition

feature included 114
Figure 35. gestUI tool support 121

Figure 36. An excerpt of Figure 35 showing the subsystem "Gesture Catalogue
Definition Module" 122
Figure 37. An excerpt of Figure 35 showing the subsystem "Gesture-action

Correspondence Definition Module" 123
Figure 38. Excerpt of Figure 35 showing the subsystem "Model
Transformations Module" 126
Figure 39. Main interface of the tool support 127
Figure 40. Screenshot of the interface of gestUI to sketch gestures 128
Figure 41. User sketching a gesture and storing it in a repository 129
Figure 42. Screenshot of the user interface to obtain the platform-independent
gesture catalogue 129
Figure 43. An excerpt of a rule of the M2M transformation 130
Figure 44. M2M transformation parameters 130
Figure 45. Interface for defining gesture-action correspondence and to
generate source code 131
Figure 46. SWT components to define actions 132
Figure 47. JFace and SWT components used to define an action in a user
interface 133
Figure 48. Interface to execute a model-to-text transformation 134
Figure 49. An example of the module to redefine custom gestures 135
Figure 50. Gesture catalogue defined by gestUI 136
Figure 51. Gesture description files: SN (left), quill (centre), iGesture (right) 136
Figure 52. Importing the gesture catalogue to the quill framework 137
Figure 53. Examples of multi-stroke gestures: SN (left) and quill (centre) and
iGesture (right) 137
Figure 54. UML class diagram of the demonstration case 138
Figure 55. Screen mockups (gestures are shown in red, next to action buttons)
138
Figure 56. Using gestures to execute actions on the interfaces 139
Figure 57 Software system supporting traditional interaction 157
Figure 58 Software system supporting gesture-based interaction 161

Figure 59 Gesture-action correspondence definition using tool support ___ 167
Figure 60 Box-and-whisker plot of PTCCI 175

Figure 61 Box-plot-whisker of PTCCG 178

Figure 62 Box-plot for TFTI 181
Figure 63 Box-plot of TFTG 183
Figure 64 Box-plot for PEOU 186
Figure 65 Box-plot of PU 188
Figure 66 Box-plot of ITU 191

Figure 67. An excerpt of User Experience Questionnaire (taken of www.ueq-
online.org) 207

Figure 68. An excerpt of the 118 positive and negative phrases of Microsoft
Reaction Cards 208
Figure 69. CDT with traditional interaction using keyboard and mouse 210

Figure 70. CDT with gesture-based interaction 210
Figure 71. Excerpt of a model defined in Everis 215
Figure 72. UEQ results: custom gesture definition interaction 219
Figure 73. UEQ results: inclusion of gesture-based interaction 219
Figure 74. Reaction cards positive results 221
Figure 75. Reaction cards negative results 222

Figure 76. A code-centric method for develop user interfaces with gesture-
based interaction 240

List of Tables

Table 1. Examples of application of gesture-based interaction outside the office

6

Table 2. Some software development kit including toolbox to design user
interfaces 8
Table 3. Objectives for the research questions 14
Table 4. Related areas in the thesis 25
Table 5. A summary related with gesture representation 47
Table 6. Summary of works related with role of gesture-based interfaces in
Information Systems Engineering 55
Table 7. Summary of works related with Model-driven engineering in Human-
Computer Interaction 58
Table 8. Summary of works related with Evaluation between model-driven
paradigm and other methodologies 62
Table 9 Detected problems vs. Benefits of model-driven paradigm to solve
them 80
Table 10. Business rules for the "Catalogue" class 81
Table 11. Business rules of the "Gesture" class 82
Table 12. Business rule of the "Action” class 83
Table 13. Business rule of the "Stroke" class 83
Table 14. Business rules for the "Posture" class 84
Table 15. Business rule for the "Precedence” class 84
Table 16. Business rule for the "Point" class 84
Table 17. Data structure of a gesture 86
Table 18. Constraints and business rules of gesture definition 90
Table 19. Business rules for the "User" class 101
Table 20. Business rules for the "Userinterface" class 102
Table 21. Strategies of gestUI 106
Table 22. Strategies of the software system with gesture-based interaction 115
Table 23. Platform-independent gesture catalogue definition 139
Table 24 Factor and treatments of the experiment 149
Table 25 Response variables to evaluate effectiveness and efficiency of gestUI

151
Table 26 Responses variables to measure satisfaction of use gestUI 152

Table 27 Summary of RQ's, hypotheses, response variables and metrics____ 153
Table 28 Summary of demographic questionnaire 155
Table 29 Crossover design 156

Table 30
Table 31
Table 32
Table 33

Table 34 An excerpt of the Task Description Document containing the

Operators and average time on KLM

Estimating time for the experiment

Instruments defined for the experiment

Gesture catalogue defined in the experiment

156
157
159
160

sequence of steps for custom gesture definition using the code-centric method

Table 35 An excerpt of the Task Description Document containing the
sequence of steps for gesture-based interaction inclusion using the code-

centric method

Table 36 An excerpt of the Task Description Document for custom gesture
definition using gestUl
Table 37 Gesture-action correspondence step-by-step definition

Table 38
Table 39

Non-parametric Levene's test for the variables in the experiment

Descriptive statistics for PTCCI

Table 40 Spearman's Rho correlation coefficient of PTCCI

Table 41
Table 42
Table 43

Table 44 Spearman's Rho correlation coefficient of PTCCG

Table 45
Table 46
Table 47

Table 48 Spearman's Rho correlation coefficient of TFTI

Table 49
Table 50
Table 51

Wilcoxon Signed-rank test for PTCCI

Wilcoxon Signed-rank test statistics for PTCCI

Descriptive statistics for PTCCG

Wilcoxon Signed-rank test for PTCCG

Wilcoxon Signed-rank test statistics for PTCCG

Descriptive statistics for TFTI

Wilcoxon Signed-rank test for TFTI

Wilcoxon Signed-rank test statistics for TFTI

Descriptive statistics for TFTG

Table 52 Spearman's Rho correlation coefficient of TFTG

Table 53
Table 54
Table 55

Wilcoxon Signed-rank test for TFTG

Wilcoxon Signed-rank test statistics for TFTG

Descriptive statistics for PEOU

Table 56 Spearman's Rho correlation coefficient of PEOU

Table 57
Table 58
Table 59

Table 60 Spearman's Rho correlation coefficient of PU

Table 61
Table 62

Wilcoxon Signed-rank test for PEOU

Wilcoxon Signed-rank test statistics for PEOU

Descriptive statistics for PU

Wilcoxon Signed-rank test for PU

Wilcoxon Signed-rank test statistics for PU

163

165

166
167
174
175
176
176
177
177
179
179
179
180
181
182
182
183
184
184
185
185
185
187
187
188
189
189
190

Table 63 Descriptive statistics for ITU

Table 64 Spearman's Rho correlation coefficient of ITU

Table 65 Wilcoxon Signed-rank test for ITU

Table 66 Wilcoxon Signed-rank test statistics for ITU

Table 67 Summary of the results obtained in the experiment
Table 68 Effect size of the metrics

Table 69. Instruments defined for the validation

Table 70. Gesture catalogue defined by the subjects

Table 71. A summary of the experiment procedure

Table 72. Results obtained from the UEQ

Table 73. Reaction cards positive results

Table 74. Reaction cards negative results

190
191
191
192
193
194
213
214
217
218
220
220

CHAPTER

INTRODUCTION

The topics covered in this chapter are:

1.1 Motivation

1.2 Problem Statement
1.3 Research Questions
1.4 Thesis Objectives

1.5 Research Methodology
1.6 Expected Contributions
1.7 Thesis Context

1.8 Thesis Outline

Chapter 1. Introduction

1.1 Motivation

Computers have evolved, in recent decades, since the advent of the
personal computer towards current mobile devices. Two factors have
contributed to the wide diffusion of computing devices [1]: (a) an
appropriate human-computer interaction which resulting in the ease

of use of services and software systems available for the devices, and
(b) the availability of a wide variety of services, software systems and

development tools. These two factors are analysed in this section.

1.1.1 Human-computer interaction

First of all, we analyse human-computer interaction (HCl). Since the
advent of the personal computer, HCI has changed, we first had a
simple interface using a command line (CLI) through which the user
entered orders that were based on operating system commands. The
interaction between computer and the user was complicated because
the number of commands and the complexity were increased in the
next years.

Then came the development of graphical user interface (GUI) that uses
keyboard and mouse, these two elements have been for many years
the devices employed by the user to entering information to the
computer [2]. The interaction between computer and the people was
improving. New operating systems were developed (e. g. Microsoft
Windows?!, Mac 0S?, Linux®) which helped to improve the human-
computer interaction. WIMP (Window, Icon, Menu, Pointer) appeared
in the scenario of the computers and the user interface design started
to include elements that helped to the users to interact in a better way
with the computers.

1 https://www.microsoft.com/en-gb/windows

2 http://www.apple.com/uk/osx/

3 http://www.ubuntu.com/

https://www.microsoft.com/en-gb/windows
http://www.apple.com/uk/osx/
http://www.ubuntu.com/

With the development of the mobile devices, besides of keyboard and
mouse, other elements appeared in the technology market, for
example a pointer that was used for data entry in Palm* devices [3],
then with the development of touch screens began to use the fingers
of the user’s hand, which led to the emergence of gesture as a natural
interaction, whose primary goal is better communication between the
user and the computer [4].

The next step was the development of hardware tools that the user
employs to perform actions with gestures using more than a finger.
Devices vary in their type and features, there are some types of
computers (e.g. desktop computer, notebook, netbook) that include
additional technologies to interact with the users. For instance, there
are computers such as desktop and notebooks supporting touch-based
interaction and the devices of reduced size (tablet, smartphone) have
included by default the touch-based interaction. Devices such as
Microsoft Kinect®, Nintendo Wii® were primarily aimed at allowing the
user to play using the body as an “instrument” for the movement to
be carried out in the games [4] [5]. This fact allowed the development
of tools that capture gestures made by users and process them to
perform actions on other activities in addition to the games. This leads
to the concept of natural user interface (NUI) [3].

NUI refers to interfaces that allow the user to interact with a system
based on the knowledge learnt from using other systems [6]. NUI
promises to reduce barriers to compute even more than GUI, while
simultaneously increases the power of the user and allows the
computing access to more niches of use [3].

The gesture which is an element used for interaction in NUI has caught
the attention of end users and developers. It is a movement made by
a user, either with his/her fingers, hand or with whole body [7], with

4 https://en.wikipedia.org/wiki/Palm (PDA)
5 https://developer.microsoft.com/es-es/windows/kinect
6 https://www.nintendo.es/Wii/Wii-94559.html

https://en.wikipedia.org/wiki/Palm_(PDA)
https://developer.microsoft.com/es-es/windows/kinect
https://www.nintendo.es/Wii/Wii-94559.html

the main objective of establishing a communication with an electronic
device to perform some action [8]. A gesture can be applied on a
touch-sensitive surface, or carried in front of a device that captures
the movements made by the user. The use of gesture has created a
type of interaction called gesture-based interaction.

The methods of gesture-based interaction that have been developed
in recent years are related mainly to two types of technologies: touch-
based and vision-based. Regarding the former, its development is due
to the great popularity of devices that support touch-based interaction
(smartphones, tablets, etc.). Also, researchers have developed a series
of investigations about this type of interaction. The second type of
interaction that is based on vision is considered like a type of more
natural interaction since the user “do not touch any element or
surface” to interact with the device.

The development of computing devices makes possible that two main
interaction styles are available in the field of user interfaces: (i) WIMP
[9] supporting traditional interaction based on keyboard and mouse
and using the graphical user interface (GUI) on desktop computers and
notebooks, and (ii) post-WIMP [3] supporting natural user interaction
with other interaction techniques, mainly gesture-based, gaze-based,
and voice-based. Post-WIMP is associated with non-conventional
interaction employing other interaction styles that are currently
available resulting in NUL.

The interest of this thesis is to consider the touch-based gesture as an
element of communication between the user and devices that
supports gesture-based interaction.

1.1.2 Software systems and development tools
The second aforementioned aspect is related to software systems and
development tools available on the diverse computing platforms.

In the most recent years, the requirements to include new interaction
techniques in user interfaces is increasing dramatically because new

devices come together with new types of interfaces (e.g. based on
gaze, gesture, voice, haptic, brain-computer interfaces) [3]. Their aim
is to increase the naturalness of interaction, although this is not
exempt from risks. Due to the popularity of touch-based devices,
gesture-based interaction is slowly gaining ground on mouse and
keyboard in domains such as video games and mobile apps.

The increasing scope of the application areas suggests the importance
of undertaking more work in gesture-based interaction research [10];
furthermore the gesture-based interaction has many applications in a
variety of fields in the society, too. The prevalence of gesture-based
commercial products has increased since five years ago, as the
technology has improved and become commercially viable. For
instance, gestures have been used in projects that attempt to create
novel or improved interactions for appliance control and home
entertainment systems [11]. Table 1 includes some examples about
the trend in supporting tasks performed outside the office by means
of gesture-based interaction.

Table 1. Examples of application of gesture-based interaction outside the office
Authors Description
Yang et al. [12] It describes the inclusion of gestures in the Building Information
Model (BIM) technology in order to make more intuitive its
manipulation. This research focuses on developing an interactive
interface for site workers to retrieve information from BIM models by
means of gestures.

Fujitsu It announces that they have developed a wearable device in the form
Laboratories of a glove supporting gestures for maintenance and other on-site
[13] operations.

Song et al. [14] It presents a unified framework for body and hand tracking in order
[15] to apply in the aircraft field.

Kim et al. [16] The authors describe a method for hand gestures recognition under

varying illumination conditions. The application is oriented to places
with different levels of illumination.

Cardoso et al. It describes the development of an application with a 3D sensor

[17] included, in order to implement the interaction based on swipe
gestures to navigate through options, menu and operations of
selection and deselection.

Weiss et al. [18] It describes a proposal to implement a service robot capable of safely
navigation in densely populated environments supporting hand
gestures to execute actions.

People need to interact with multiple mobile devices (e.g. notebook,
tablet, and mobile phone) at the same time using non-conventional
interaction, typically gesture-based interaction. This, in turn, implies
that the software engineers must be prepared for a major change in
user interfaces development considering diversity of platforms and
applications available in those devices. This situation involves that
software engineers require (i) tools to specify and to implement
custom gestures that people use in their daily tasks, and (ii) tools to
design and to implement user interfaces supporting custom gesture-
based interaction.

Nowadays there are many software development kits (SDK) that allow
the development of software systems for device platforms available in
the market. Many of these SDKs are specific to some manufacturers of
the device platform which allows developing software system specific
for that platform (proprietary software). There are others that allow
software system development for two or three platforms; but they
require to acquire licenses and the cost is associated with the number
of platforms/number of developers. Some SDK are free but they have
restricted access in relation to available characteristics of the tools and
target platforms. Finally, the free version of some manufacturers is a
trial version with a limited number of days.

The variety of SDK’s and platforms had forced the developers to focus
on a specific device platform with the aim of achieving a suitable
domain of programming languages and integrated development
environment (IDE) for developing software systems. Hence, the wide
range of SDK’s available in the technology market implies a wide range
of tools (programming languages, compilers, IDE’s, etc.) for the
construction of software systems.

Table 2 contains details about SDK’s for the most significant platforms
available in the technology market.

"

Q

o

iy

S

Q

-

£

S

Q

w

2 €550 yoddns

oo “dusgener uolsian Jap|ing aocepaju) 4a88ngag AN Y1 auoyduews

m “TNIH lenL SBA ON ‘Joje|nwisg ‘Joupl wuoped Auy ‘doysaq sdayewaAeM
) £S5 yoddns auoyduews

M ‘duogenEl uDISIEA Jap|ing aoepaqu) 4a83nga(g [*EJRRVIN 12|98l L[310wH0)
= ‘STNLH [eu] s ON “Ioje[nuIS ‘olp3 wiopeyd Auy ‘dopjsaq pinj4 Yoss|doad
.m YIS auoyduews

w 32uno0g ‘Jap|ing a2epa1u| xnury 12|98 L Jjlomawely
5 ener S3A oN ON ‘1888ngag “101e|NWIS J01P] DB SMOPLLAY ‘dopysaq asdijog
=]

.Im |043u0) plYanoL
H J-an8lq0 324n0g “Jap|ing 22epa1u| 2B EQ20]) pue
T HDDISNY SSA oN ON “42d8ngaq ‘Jole|nuig 101p3 SOl 3|ddy BpOD) + B0D0)
] |jonuo) auoydyews

m. 224N0§ ‘Jap|Ing 3Jepaiu| ploupuy 13|98l

m # S3A S3A oN 1288ngag ‘io1e|NWIS J01p] 217l ‘SO ‘domysag JUlewEY
e SO1 104

M J-2ana2lqo |jonuo) auoydyews

© ‘ploJpuy Jof UOISIIA 32UN0S IBp|INg 22eH33U| ploJpuy 121981

.M ener 'sTANLH leul 53N oN ‘1288nqaq ‘Jole|nwis 101p3 BN ‘SMOPUIAN ‘doyys2q SSNXauan
2 suoydyiews

m Jlseq [ensip |oJjue) 324n05 ‘Jap|ing “12|qeL oIpnig
.w B D S3h S30 oN acep=21u] 1388nga(Uoup3 SMOPUIM ‘dopys=(|ENSIA HOSOIDIN
I duoiuysp

3 afendum uoisian wiope|d saunysas

.m Sujuweidoag 3aiy [fasuson wo3sn) S3DNAIIS JISEY papn|ou)] aweu yas

With the increasing prevalence of computers and other related
technologies in many facets of today’s society, it becomes increasingly
important to create software systems capable of interacting with
humans properly [19]. One important aspect to consider is that,
depending on the device, there is a variety of operating platforms that
imply separate standards, programming languages, development
tools, and in some cases, even distribution markets (i.e. Web portals)
through which users can purchase and download applications [20].

However, some complications are present when software engineers
decide to implement user interfaces [9] with gesture-based interaction
by means of traditional software tools (e.g. Microsoft Visual Studio
Enterprise [21], Eclipse Window Builder [22]), for instance, software
engineers require additional knowledge and experience in: (i) the
specification and implementation of custom gestures, (ii) the design
and implementation of gesture-based user interfaces, (iii) the use of
software tools depending of the platform selected to implement
gesture-based user interfaces.

Therefore, building software systems with gesture-based interaction is
complicated yet due to the diversity of devices, software platforms
and development tools to design and to implement user interfaces
that supports custom gestures [9]. Typically, the software engineer
requires skills to implement custom gestures and to write the methods
required to support them in a user interface.

This thesis proposes a solution that helps to resolve this situation: the
inclusion of gesture-based interaction independently of the platform
in user interfaces of software systems. For this aim, we propose a
method to define custom gestures and to include gesture-based
interaction, which is independent of the technology of the devices.

The remainder of this chapter is organized as follows: Section 1.2
details the problem statement. Section 1.3 includes the research
questions proposed for this thesis. Section 1.4 introduces the
objectives of the thesis. Section 1.5 introduces the research

methodology that has been followed in the thesis. Section 1.6
describes the expected contributions of the thesis. Section 1.7 explains
the context in which the thesis has been performed. Finally, Section
1.8 gives an overview of the structure of this thesis.

1.2 Problem Statement

The development of user interfaces, ranging from early requirements
to software obsolescence, has become a time-consuming and costly
process in the software development life cycle (SDLC) [23]. In this
process, it would be more effective to include the interaction
specifications so that the software fulfils the requirements of users
and also provides an interaction according to the type of task to be
performed with the software.

During the SDLC, specifically in the code stage, the software engineers
have some software tools and software development paradigms to
implement user interfaces, typically, some of them use event-driven
programming to build the user interface (e.g. Microsoft Visual Studio’,
Eclipse Window Builder®). In this context, the process to obtain a user
interface is based on the selection, insertion and customization of each
component of the user interface from a toolbox included in the
software tool.

This situation forces developers to build software systems for specific
platforms, furthermore, developing an independent software product
for each platform requires conducting significant parts of the software
life cycle several times for each released software system, which may
become redundant and expensive [20]. This situation complicates the
work of software developers, as they are required to have a wide
domain of development tools, programming languages, and the
processes that comprise the software systems development life cycle
to be able to develop and maintain software systems to any platform.

7 https://www.visualstudio.com/

8 https://eclipse.org/windowbuilder/

10

https://www.visualstudio.com/
https://eclipse.org/windowbuilder/

Now, if the user requires using custom gestures to do tasks then the
process is more complicated. In this case, in order to obtain software
systems supporting gesture-based interaction, the software engineer
must have experience in two fields: (i) in the custom gesture definition
and (ii) in the inclusion of source code to manage custom gestures in
the user interface in different platforms. Complexity could be
increased if the users require custom gestures in user interfaces to
different devices and different platforms. Therefore, implementation
process of gesture-based user interfaces is complicated and costly.

Several concerns may delay the wide adoption of gesture-based
interaction in complex software systems. Gesture-based interfaces
have been reported to be more difficult to implement and test than
traditional mouse and pointer interfaces [24]. Gesture-based
interaction is supported at the source code level (typically third-
generation languages) [25]. This involves a great coding and
maintenance effort when multiple platforms are targeted, it has a
negative impact on reusability and portability, and it complicates the
definition of new gestures.

Some of the aforementioned challenges (e.g. complexity, cost,
expertise required, reusability, portability, and multiple platforms) can
be tackled by following a model-driven development (MDD) approach
[26] provided that gestures and gesture-based interaction can be
modelled and that it is possible to automatically generate the software
components that support them. If a model-driven development is
intended, it is essential that the models include complete
requirements to create the software product using model-
transformation and code-generation tools.

MDD has been fairly popular in the academic community [27] in recent
years, and a number of different proposals have been introduced to
develop software systems. MDD is a software development paradigm
which is based on models and model transformations in order to
obtain a final product by means of automatic code generation
considering some transformation rules.

11

In a field where technology changes rapidly, a model-driven
methodology is a valid option for some reasons:

e The domain of the knowledge is represented in models, which
are independent of technology [28],

e The solution for the development of a software system is not
affected by the evolution of the hardware platform.

e When a new technology is considered as a target platform to
develop software, it is not necessary to describe the whole
system again but only to generate a new platform-specific
model (PSM) including the changes in the target platform.

e Tasks related with the development life cycle (maintenance,
new versions, documenting process) are less complicated to
make them [29].

This thesis introduces an MDD method for development of gesture-
based user interfaces and a tools that supports it. The method aims to
allow software engineers focusing on the key aspects of gesture-based
user interfaces; namely, defining custom gestures and specifying
gesture-based interaction. Coding and portability efforts are alleviated
by means of model-to-text (M2T) transformations

In summary, the problem statement in this thesis is:

In the context of devices supporting gesture-based interaction, there is
a fast technological development of devices and there are SDK’s,
specific for each platform, to build software systems. This situation
makes difficult a better development of the software systems with
gesture-based interaction in aspects related with availability,
portability and their distribution.

The growing need for development methodologies for software
systems that are adaptable to new demands of service users, permits
that Model-Driven Development is presented as an alternative to meet
the need to develop software systems with gesture-based interaction,
in minimal time and for any hardware and software platforms.

12

Our work aims to define a method for improving the process of
defining custom gestures and the inclusion of gesture-based
interaction in user interfaces of software systems in an MDD
environment.

1.3 Research Questions
In this thesis, we aim at gathering new knowledge and producing
useful artefacts; thus, we opt for a design science approach [30].

The main goal of this thesis is to provide a methodological approach
to define custom gestures and to include gesture-based interaction
in software systems user interfaces.

In order to accomplish this goal, we must answer research questions
defined in this section. We classify these research questions as either
knowledge problems (KP) or design problems (DP), based on the
definitions by Wieringa [31]:

RQ1 (KP): What elements should be considered for the definition of a
method to include gesture-based interaction in user interfaces?

RQ2 (KP): What model-driven methods exist to include gesture-based
interaction in user interfaces with human--computer interaction based
on gestures?

RQ3 (DP): Is jt possible to define a model-driven method for the
inclusion of gesture-based interaction in software systems user
interfaces?

RQ4 (KP): What advantages and disadvantages has the model-driven
method for the inclusion of gesture-based interaction in software
systems user interfaces?

Section 1.4 describes how the tackle the answer for each research
guestion through the thesis.

13

1.4 Thesis Objectives

The main goal of the thesis is to define a method to help improving the
process of definition of custom gestures and the inclusion of gesture-
based interaction in user interfaces by means of a MDD environment.
Since MDD has proved to be effective in managing the complexity of
the software systems development process [32], we will apply it to the
particular domain of interest for this thesis.

The general objective and the specific objectives established for this
thesis are shown in Table 3.

Table 3. Objectives for the research questions
Research Objectives
Questions
Overall RQs Define a method to help improving the process of define custom gestures
and the inclusion of gesture-based interaction in user interfaces of software
systems in an MDD environment.

RQ1 Determine the elements that should be considered to define a method for
the inclusion of gesture-based interaction in user interfaces.

RQ2 Determine the existing methods to include gesture-based interaction in user
interfaces with included gesture-based interaction.

Define a model-driven method for the inclusion of gesture-based interaction
in software systems user interfaces.
In this case, we consider three sub goals:
i Determine which gesture characteristics are representative to be
RQ3 used as descriptors of human-computer interaction.
ii. Define a tool to represent a gesture in the specification of the
interaction in user interface.
iii. Establish techniques and tools to facilitate the use of the
proposed method.

Evaluate advantages and disadvantages of the method for the inclusion of

RQ4 . Lo .
gesture-based interaction in user interfaces.

First of all, with regard to research question 1 (What elements should
be considered for the definition of a method to include gesture-
based interaction in user interfaces?), one of the goals of this thesis is
determine which elements should be considered in the definition of
the aforementioned method. With the aim of determining these
elements, we perform a review of the related literature available on
Internet. Also, we do a bibliographic review of related topics in order
to know how to structure this type of method.

14

Regarding research question 2 (What model-driven methods exist to
include gesture-based interaction in user interfaces with human--
computer interaction based on gestures?), we need to do a review of
the related literature in order to know which methods have been
developed to include gesture-based interaction in user interfaces. We
are interested in methods that include concepts related with Human-
computer Interaction and Model-driven Development because there
is a variety of platforms of hardware and software involved in this
context. Since MDD claims to be independent of any technology
platform, it has been considered for the definition of a method that
helps in developing gesture-based software systems

With regard to research question 3 (Is it possible to define a model-
driven method for the inclusion of gesture-based interaction in
software systems user interfaces?), we consider the three sub goals
included in Table 1.3 to answer this question. The first sub-goal
(Determine which gesture characteristics are representative to be
used as descriptors of human-computer interaction) is related with
the study of the gesture representation because nowadays the gesture
is considered an important element of interaction between human
and computer. To achieve the mentioned goal, we propose performing
an analysis of the related literature to determine the features that we
need to be captured to use them as descriptors of the gesture.
Additionally, we use gestures in a software development environment
with the aim of capturing the data related with each gesture by means
of a debug process. Using this information, we establish the gesture
representation in a conceptual model and include it in the design
process of software systems with gesture-based interaction.

Regarding second sub-goal (Define a tool to represent a gesture in the
specification of the interaction in user interface), another goal of this
thesis is to define a tool that permits to represent a gesture based on
the conceptual model specified with the previously obtained
information. We consider MDD in this thesis as a solution to minimize
the problems of diversity of platforms that imply separated standards,

15

programming languages and development tools to develop gesture-
based interaction.

With regard to third sub-goal (Establish techniques and tools to
facilitate the use of the proposed method), it is necessary to define
techniques and a tool support in order to implement the proposed
method. In this case, we use Java programming language and Eclipse
Modelling Framework to define components of the proposed method.

Regarding research question 4 (What advantages and disadvantages
has the model-driven method for the inclusion of gesture-based
interaction in software system user interfaces?), we need to verify if
the proposed framework facilitates the inclusion of gesture-based
interaction in user interfaces of software systems. Empirical evaluation
helps us to validate the proposed method in the gesture-based
interaction field. Some mechanisms must be provided in order to
obtain valuable feedback regarding the user experience in the
developed process.

1.5 Research Methodology

The type of research of this thesis corresponds to the design science
framework since it aims to design a new artefact, by means of acting
and deciding on the basis of a systematic body of evidence [33]. Design
science is a methodology based on the design and investigation of
artefacts in a context. The artefacts we study are designed to interact
with a problem context in order to improve something in that context
[31]. In this thesis, the new artefact is the model-driven method to
include gesture-based interaction in user interfaces.

The two parts of design science, design and investigation, correspond
to two kinds of research problems in design science, namely, design
problems and knowledge questions (Figure 1) [30].

16

Artefacts and

contexts to |nve5t|gate> Answering knowledge

questions about the artefact
in context

Designing an artefact to
improve a problem context |

Knowledge and
new design problems

Figure 1. Design science research iterates over two problem-solving activities
(taken from [30])

This methodology proposes: (1) to perform an initial problem
investigation that characterizes the problem to solve; (2) to provide a
solution design suitable to solve those problems; and (3) to validate if
the proposed solution satisfies the problematic phenomena previously
analysed.

The research methodology is explained by means of regulative cycles
[30] that were conceived in order to answer the research questions
indicated above. Figure 2 presents the research methodology
described, where the regulatory cycle can be observed.

- The main cycle of the research methodology is an engineering
cycle (EC1: Design a model-driven method to include interaction
based on gestures) since this proposal focuses on the
development of a new artefact (method). Some tasks are related
with this cycle:

i Problem investigation, described in chapter 2
(“Theoretical Framework”), permits to obtain an answer
to RQ1 and RQ2 research questions,

ii. Solution design, described in chapter 3 (“State of art”),
chapter 4 (“gestUl, a model-driven method”) and chapter
5 (“A tool support”), this task permits to obtain an answer
to RQ3 research question.

Two research cycles have been defined:

- The first research cycle (RC1: Validation of the proposed method
with an empirical evaluation) describes the process that will be
developed to validate the proposed method by means of an
empirical evaluation, described in chapter 6 (“An empirical
evaluation of gestUl”). It permits to obtain an answer to RQ4
research question.

17

- The second research cycle (RC2: Technical action research to
validate the method in an industrial context) corresponds to the
process where the proposed method is applied to a case study
provided in the project “Capability as a Service” (CaaS), described
in chapter 7 (“Technical Action Research”). It permits to obtain an
answer to RQ4 research question.

1.6 Expected Contributions

Model-driven engineering (MDE) is a software development approach
that provides an environment that ensures the use of models
throughout the development process of software systems [34]. The
essential idea of MDE is to shift the centre of attention from code to
models [35] [36]. The software systems, or part of them, can be
automatically generated wusing an abstract description and
transformation rules. Using MDE is possible to abstract the
technological diversity that there is in the application level of devices
with gesture-based interaction.

In this thesis, a process to define custom gestures and to include
gesture-based interaction based on the foundations of MDE is
proposed. Specifically, this thesis provides as contributions:

Contribution 1: a model-driven method to define custom gestures and
to include gesture-based interaction in user interfaces of software
system. The process is carried out from the initial specification of
custom gestures, based on metamodels, and using model
transformations to obtain a gesture-based user interface by means of
automatic generation of source code.

18

Uil pRseq
-a4nysad g npaun o poylaw pasodosd Syl 31epleA TTTL

NDIS3IA HOYVY3S3Y IHL 40 NOLLYAIYA "TTL

poyiaw
pasodosd suyaEmen o) eweys e ulisag [T

NDIS3Q HOYV3S3Y 0LL

UO[IENEAS POUIBW Ul LB JO81BIS T 6L
m_mﬂm yugasal WE_UFWﬂ ﬁmn_-

NOILYSILSIANI INTI808d HOUVISTY 61
poyEw
pasodosd a3 jo uoiENEA] TRL
SLINS3Y 40 SISATYNY 8L ™~

Loldesa Ul paseq-2an3sa8 3pnjau /.r/r
0} poylsw pasodosd 313 232 pIjeA
01 BWR YIS pasododd ayl Ajddy 171

WDIIDEAS | _uwmmn_.w._j«mmm Spnjaul
0} poyiRw pasodosd 3y 31epea
0} ewayx peeodosd ayl Addy TFTL

H2dWV3I53d "TTL
poyiaw pasodod ayl (o uolEnEAg T'ETL

. \
// P S11NS3Y 40 SISATYNY "ETL

LXELMOD TVILENANI
NY NI GOHISIN FHL I 19aNYA
O1 HOHY353H NOLLDY TvJINHI3L

IDAI HOMYISIY -2

(TOd] vensessu) paseq-samsa 8

Lo v_.__u}__.m EM._UF _Wu_dm._ DU_.: e N_LCUG m..ﬁl_.
UOIIEIIU 035 EG-2an1saE aulap

0] POYISW e 40} paau 21 3pediEsal| 711
m—wom pue uoleAlOwW Jyd 2ulad TTL

NOISYHIINI A3578-3HN153D 3aNTINI NOILLYDLLSIANIT INFT130ud TL
Ol ONY STHNLSID WOLSND INE3a

0l QOHLINW NIAIET-1300OWN ¥ NDISIT

F1IAD ONIEIINIONT iTO3 .

HOHY353d L1 NOWLYNTYAI _
T2 IHIdING NY —u
uo| eI HLIM 03504044 AOHLITAN poyiaw pasodosd ay

paseq-alnisas apnjou) o1 poylaw

pasodosd 3yl 21ep|es 0L
NOISIA HIHVYIS™

FHL 4O NOILYAITYA "9 1

poyEw pasodord 317
=jEpien o} Ewaps & ulisag ')

NOIS3d HOYY3STY 'SL1

aleN|Ioe) 0] 5|00) puE sanhiuyla) ys)ges] 570
saumsaF wasa.das 01 001 B FUILLEIRA 2L

HL 40 NOILYdITvA

ITDAD HOYY3S3Y (1D aamsal E |0 S2I5|E10R JBYD B SUlLIEE £ 7L
[cDy) udissp popsw sy 1o esadelg 7L
{Z0Y) uopeajul

pasEg-sunEal jnoge Uy o 81e1s 771
NDIS30 NOLLNIOS "ZL

(¥Du) poypaw
pasodold ayl aep||en 03 UDAENEAS
anj1eledw o epdwa ve uF5E0 781
NSIS3d NOILNT0S
JHL 40 NOLLYQITYA "EL

UDHEN[ENE POLEW Ul 1E 0 S35)

feod

yaaeasaa aua Tl

NOILLY9LLSIANI IWTT90dd HOHVISTY vl

Figure 2. Overview of the research methodology

19

Contribution 2: a tool to support the model-driven method described
in Contribution 1.

Contribution 3: the validation of the method proposed by means of an
empirical comparative evaluation

Contribution 4: the validation in an industrial-context by applying a
technical action research (TAR).

A more wide description about the contributions is included in Chapter
8.

1.7 Thesis Context

This research work has been developed in the context of the PROS
Research Centre (Centro de Investigacién en Métodos de Produccion
de Software), and DSIC (Departamento de Sistemas de Informacién y
Computacidn) of the Universitat Politecnica de Valencia, Spain.

This work has been supported by the Universidad de Cuenca and
Secretaria Nacional de Educacién Superior, Ciencia y Tecnologia -
SENESCYT of Ecuador, and received financial support from the
Generalitat Valenciana under Project IDEO (PROMETEOII/2014/039)
and the Spanish Ministry of Science and Innovation through the
DataMe Project (TIN2016-80811-P).

1.8 Thesis Outline

The thesis comprises three parts, according to Design Science
Methodology: Part | (Problem Investigation), Part Il (Solution Design)
and Part Ill (Validation of the Solution). Therefore, this thesis has been
structured as follows.

Part I: Problem Investigation

Chapter 1 (Introduction). This chapter describes the problem
statement, objectives of the thesis, research questions, and research
goals. Additionally, we describe the research methodology applied to
the thesis, and the thesis context.

20

Chapter 2 (Theoretical Framework). In this chapter we include a
theoretical framework in order to establish a commitment about the
terminology defined in this thesis. This chapter includes a description
of the technologies and concepts in which is based the development
of this thesis.

Chapter 3 (State of Art). This chapter includes a review of the literature
to highlight relevant advances in respect of development of user
interfaces with gesture-based interaction considering the model-
driven paradigm. Additionally, this chapter facilitates a common
understanding around the topics of the thesis.

Part Il: Solution Design

Chapter 4 (gestUl: A model-driven method). In this chapter we
describe the model-driven method proposed to include gesture-based
interaction in user interfaces of system software. We specify the
model-driven method architecture considering details and formalisms
like metamodel, business rules applied in the model and the
constraints included in the method.

Chapter 5 (gestUl Tool Support). In this chapter we outline the tool
support that has been developed for gestUI. It includes a description
about the components of the tool support and a user guide explaining
their functionalities.

Part Ill: Validation of the proposal

Chapter 6 (Empirical evaluation). This chapter describes the validation
performed for the gestUl method. We detail the validation process
highlighting the use of empirical software engineering to formally
validate the proposed method. The empirical evaluation is performed
as a comparative process between a code-centric method and the
model-driven method.

21

Chapter 7 (Technical Action Research). This chapter presents the
process to follow in the validation of gestUl method performed using
Technical Action Research.

Part IV: Final Part

Chapter 8 (Conclusions, Contributions and Future Work). This chapter
summarizes the contributions of this work and presents the
conclusions of the thesis. Additionally, in this chapter we describe the
future work.

22

CHAPTER

THEORETICAL
FRAMEWORK

The topics covered in this chapter are:

2.1 Overview

2.2 A theoretical framework for Human-computer

interaction
2.3 A theoretical framework of Model-driven
paradigm

2.4 Summary

23

24

Chapter 2. Theoretical Framework

2.1 Overview

With the aim of maintaining a better comprehension with the people
that read this thesis, we need to obtain a same conceptual
commitment. Hence, a theoretical framework becomes vital.

Theoretical frameworks have been widely used and proposed aiming
at defining the concepts that relies on a certain theory in order to
facilitate conceptual commitment.

Since this thesis deals with the definition of a model-driven method to
define custom gestures and to include gesture-based interaction in
software systems user interfaces, we establish a theoretical
framework for model-driven development and we also provide a
theoretical framework for human-computer interaction. Therefore,
this work is placed in the intersection of three research areas that have
some aspects in common (Table 4):

Table 4. Related areas in the thesis

Included definitions Research Area

Model-driven method Model-driven Development
Gesture-based Interaction Human-Computer Interaction
Software system Software Engineering

This thesis is based on different concepts and technologies from these
areas. With the aim of clarifying the foundations in which this thesis
relies and to provide an adequate theoretical framework for
understanding the overall work, different concepts and techniques are
introduced in this chapter.

It is important to clarify that in this thesis the word software refers to
software systems and gesture refers to custom gestures.

The remainder of this chapter is organized as follows: Section 2.2
describes a theoretical framework about Human-Computer

25

Interaction, including a brief description about gesture and gesture-
based interaction. Section 2.3 includes a theoretical framework about
concepts related with Model-driven paradigm. Finally, the summary
of this chapter is included in Section 2.4.

2.2 Atheoretical framework for Human-Computer

Interaction
In this section we define a set of terms that describes how Human-
Computer Interaction is applied to obtain gesture-based interfaces.
This section includes definitions related with gestures, algorithms and
tools available to recognise gestures, which permit to have a better
comprehension about this topic.

Human-computer Interaction (HCI) is the study of the interaction
between users and computers [37]. The interaction is mainly done in
the user interface. According to Karray et al. [38], an interface mainly
relies on number and diversity of its inputs and outputs which are
communication channels that enable users to interact with computers
via this interface. There are three categories of modalities: visual-
based, audio-based and sensor-based. Considering types of interaction
that have been developed in the last years, we take into account two
of them: (i) traditional, using keyboard and mouse (sensor-based), and
(ii) gesture-based, using gestures sketched by the users with their
fingers or a pen/stylus on a touch-based surface.

2.2.1 Gestures related definition

A gesture is considered as a primary element in the architecture of
devices with support of gesture-based interaction. We consider two
definitions about gestures:

- Oxford English Dictionary [39] defines gesture as “a movement of
part of the body, especially a hand or the head, to express an idea
or meaning”.

- Gesture is referred as a motion of the body (o some part of the
body) that somebody does with the aim of communicating with
other person.

26

A gesture catalogue is a list of gestures including descriptive

information of each gesture.

Gesture description languages are significant for the correct execution

of interactions by end-users, the preservation of techniques by
designers, the accumulation of knowledge for the community, and the
engineering of interactive systems [40].

Gesture recognition: According to Gillian et al. [41], gesture

recognition is a powerful tool for human-computer interaction.
Gesture recognition in most systems has been done by writing code to
recognize the particular set of gestures used by the system [7].

2.2.2 Classification of gestures

Some classifications of gestures are reported in the related literature.
We consider those that help us to define a gesture representation to
use it in our work.

According to Kaushik et al. [42], a gesture can be classified as static or
dynamic. A dynamic gesture changes over a period of time while static
gesture is observed at the short interval of time.

Additionally, a gesture can be classified as discrete or continuous. A
gesture is considered as discrete if the start and stop of the gesture is
defined, usually with the press and hold of a widget while the gesture
is carried out [43], for example, a double tap. A gesture is considered
as continuous if it takes place over a period of time, for example, a
scroll or a custom gesture [44].

According to Nacenta et al. [45], there are three types of gestures that
can be included in a user interface: predesigned, stock and user-
defined (custom). They demonstrate that users prefer user-defined

gestures rather than stock and pre-defined gestures. Although user-
defined gestures offer better memorability, efficiency and accessibility
than pre-defined gestures, they have received little attention in the
literature [46].

27

According to the taxonomy of gestures proposed by Karam et al. [11],
semaphoric gestures refer to strokes or marks made with a mouse, pen
or finger. This type of gesture is further classified as single-stroke and
multi-stroke, according to the number of strokes required to sketch
them (Figure 3).

T T

(a) SINGLE-STROKE (b) MULTI-STROKE

Figure 3. Types of semaphoric gestures
According to Zhai et al. [47], a stroke gesture is commonly encoded as

a time-ordered sequence of two-dimensional points with coordinates
(x, y). Optionally, stroke gestures can also have time stamps as the
third dimension so the sampling points are encoded as (x, y, t) if the
temporal aspect of a gesture is to be preserved and used.

Karam et al. [11] propose a style-based gesture classification that
includes the next types: deictic,c manipulations, semaphores,
gesticulation, and language gestures.

(a) Deictic gestures involve pointing to establish the identity or
spatial location of an object within the context of the
application domain. The application domain can include
desktop computer, virtual reality applications or mobile
devices for example.

(b) A manipulative gesture is one whose intended purpose is to
control some entity by applying a tight relationship between
the actual movements of the gesturing hand/arm with the
entity being manipulated. Manipulations are mainly dynamic
and can occur either in a 2-D interaction using a device direct
manipulation, or in a 3-D interaction.

(c) A semaphoric gesture is any gesturing system that employs a
stylized dictionary of static or dynamic hand or arm gestures.
Semaphoric gestures can involve static poses or dynamic

28

movements. These types of gestures can be performed using
a hand, fingers, arms, the head, feet.

(d) The act of gesticulating is regarded as one of the most natural
forms of gesturing and is commonly used in combination with
conversational speech interfaces.

(e) Gestures used for sign languages are often considered
independent of other gesture styles since they are
linguistically based and are performed using a series of
individual signs or gestures that combine to form grammatical
structures for conversational style interfaces.

Many of the existing systems do not focus on a single style of gesture
interaction but rather employ a variety of gestures that are result of
combining two or more gestures.

In this thesis, we consider gestures defined as: dynamic, continuous,
user-defined and semaphoric (multi-stroke). We consider custom
gestures that can be performed on a touch-based surface using one
finger of the user or a pen/stylus. These gestures are used to issue
commands, which are the names of the executable computing
functions issued by the user.

2.2.3 Gesture recognition algorithms

The ways of recognizing the gesture can be considered as a significant
progress of the technology. Progress of image processing technology
has played an important role here. Gestures have been captured by
using infrared beams, data glove, still camera, wired and many inter-
connected technologies like gloves, pendant, infrared signal, network
server, etc., in the past [10]. Computer application operating was the
main target in the early stage. But now it is widely accepted for
ambient device and ubiquitous computing.

In our work, we consider algorithms for touch-based gesture
recognition because we use custom touch-based gestures to include
gesture-based interaction in user interfaces of software systems. This
section describes in a brief way, some of the well-known algorithms.

29

e Rubine algorithm: This algorithm was created in 1991 by D.

Rubine. It is one of the first algorithms developed to recognise
mouse and pen-based gestures [7]. An important feature of this
algorithm is that gestures are not described programmatically but
they are learned by examples. It employs a statistical method of
gesture recognition based on a set of 13 geometric features [48].
It has been used for recognising single-stroke gestures like the
unistroke or Grafitti alphabets [49]. It also allows the user to define
a gesture through demonstration.

e SN algorithm: The SN Multistroke Recognizer [50] is a 2-D stroke
recognizer designed for rapid prototyping of gesture-based user
interfaces. Simple geometry and trigonometry are used to
perform template matching between stored templates and
entered candidates, giving SN a deterministic quality whereby
candidates that look most like their templates are usually
recognised as such [50]. Other algorithms with a similar
philosophy are: $1 [51], SN-Protractor [52], SP [53].

e SiGeR: The SiGeR (Simple Gesture Recogniser) algorithm was
developed by W. Swigart for the Microsoft Developer Network
[54]. This algorithm classifies gestures based on regular
expressions and describes them according to the eight cardinal
points and statistical information. These regular expressions are
then applied to input gestures and, in the case that a class
description matches the input string, the corresponding gesture
class is returned as a result [48].

In this thesis we adopt SN as gesture recognition algorithm because it
is a simple algorithm that is a good solution to prototyping of user
interfaces. SN does not require many computer resources which is a
very important feature when the target device is a mobile one.

2.2.4 Gesture-based interaction

Natural User Interface is an emerging computer interaction
methodology which focuses on human abilities such as touch, vision,
voice, motion and higher cognitive functions such as expression,

30

perception and recall [55]. Facial expressions, posture, and gestures in
particular have been recognized as an important modality for non-
verbal communication [19].

Broadly speaking, there are two extremes of interaction: one in which
the user interacts consciously and explicitly with the system; and at
the other extreme, the user interacts unconsciously or implicitly. In
explicit interaction, a user interacts with a software application
directly by manipulating a GUI, running a command in a command
window or issuing a voice command. In short, the user intentionally
performs some action [56].

In this thesis, we consider the gesture as an element of communication
between the user and devices that support an explicit interaction by
means of gestures, because the interaction between user and
computer is done by the user in a manner explicit by means of actions
on the screen.

2.3 Atheoretical framework of Model-Driven paradigm

In this section we define a set of terms that describes how Model-
driven paradigm is applied to the work described in this thesis. This
section includes definitions related with models and model
transformations, which permit to have a better comprehension about
this topic.

As the MDD paradigm promotes to specify software systems by means
of models, we start this theoretical framework defining what a model
is. Then, we describe other basic concepts related with the model-
driven paradigm used in this thesis. The definitions are based on the
Object Management Group definitions [57].

2.3.1 Model related definition
A system is a collection of parts and relationships among these parts
that may be organized to accomplish some purpose [58].

31

A model is a description of a system or part of a system written in a
well-defined language [59]. A metamodel: A model of models [58].

A well-defined language: it is a language with well-defined form

(syntax), and meaning (semantics), which is suitable for automated
interpretation by a computer [59]. A model, both source and target, is
expressed in a language, for example, XML.

Model-driven: it describes an approach to software development
whereby models are used as the primary source for documenting,
analysing, designing, constructing, deploying and maintaining a system
[57]. In late 2000, the MDA (Model-Driven Architecture) initiative was
launched by OMG (Object Management Group) to promote using
models as the essential artefacts of software development. A new
paradigm in software development where models are the primary
software artefacts and transformations are the primary operation on
models [60] is available.

MDA is based on four principles [61]:

- The models expressed in well-defined notation are a key to
understanding software systems.

- The implementation of software systems can be organized around
a set of models making it necessary to carry out a series of
transformations between models, organized in an architectural
framework of layers and transformations.

- A formal basis for describing models in a set of metamodels
facilitates meaningful integration and transformation among
models, and is the basis for automation through tools.

- Acceptance and broad adoption of this method, based on models,
requires industry standards to provide openness to consumers
and fostering competition among providers.

There are two main flavours based on this paradigm: MDD (Model-
Driven Development) and MDE (Model-Driven Engineering).

32

- Model-Driven Engineering (MDE) describes software development

approaches in which abstract models of software are created and
systematically transformed into concrete implementations [62].
- Model-driven Development (MDD) focuses on the construction of

models, specification of transformation rules, tool support and
automatic generation of code and documentation [63]. In this
case, the software development process can be viewed as a
sequence of model transformations. Recent studies indicate that
the adoption of Model-Driven Development (MDD) is widespread
[64].

2.3.2 MDA Conceptual framework

OMG provides a conceptual framework and a vocabulary for MDA and
it defines a specific set of layers and transformations. In this schema,
it identifies four layers (see Figure 4) that raise the level of abstraction
of traditional platform dependent design [65]: Computation
Independent Model (CIM), Platform Independent Model (PIM),
Platform Specific Model (PSM) and Implementation Specific Model
(ISMm).

In this work, we use the following three layers:

- Platform Independent Model (PIM) is a model with a high level of
abstraction that is independent of any implementation technology
[59]. System developers use this language for precisely describing
the system using a technology independent view [66].

- Platform Specific Model (PSM) is a model that adds to the PIM the
technological aspects of the target platforms [67].

- Implementation Specific Model (ISM): that describe the last detail
of programming [67].

33

Computation Independent Model

(CIM)
I =

Platform IEd“ébendent Model
T (PIM) T~

J L J L

Platform Specific Model| [PlatformSpécific Model

(PSM) ~ _~, (PSM)
< 7 < 7 N
Impl Impl Impl
Specific Specific Specific Specific
Model Model Model Model
(ISM) (ISN) (ISM) (ISM)

Figure 4. MDA Layers
The definition of PIM and PSM is motivated by the constant change in

implementation technologies and the recurring need to port software
from one technology to another [68].

In summary, MDA is organized around a PIM which is a specification of
a system in terms of domain concepts. These domain concepts exhibit
a specified degree of independence of different platforms of similar
type. The system can then be translated towards any of those
platforms by transforming the PIM to a PSM. The PSM specifies how
the system uses a particular type of platform [69].

2.3.3 Model Transformations
Model transformation: It is a process consisting in to convert one or

more source models (input) to one target model (output) [59].

Transformation rule: It is a description of how one or more constructs

in the source language can be transformed into one or more constructs
in the target language [59].

A transformation is the automatic generation of a target model from a
source model, according to a transformation definition. A
transformation definition is a set of transformation rules that together
describe how a model in the source language can be transformed into
a model in the target language. A transformation rule is a description

34

of how one or more constructs in the source language can be
transformed into one or more constructs in the target language [59].

OMG has defined two transformations (see Figure 5):

- PIMto PSM transformation (it defines how a PIM can be converted
to a PSM)

- PSM to ISM transformation (it is the code generation from the
PSM). Due to the fact that PSM is expressed using technological
terms, transformation to ISM is immediate.

MODEL TO MODEL MODEL TO TEXT
TRANSFORMATION TRANSFORMATION
Transformation Transformation
definition definition
—> —>» —> o
PIM Transformation PSM Transformation ISM

Tool Tool

Figure 5. MDA Transformations

The mentioned transformations can be identified as:

- Model-to-Model transformation (M2M): A model transformation
is a mapping of a set of models onto another set of models or onto
themselves, where a mapping defines correspondences between
elements in the source and target models [36]. The important role
of model transformations motivates the effort that OMG took to
define the standard language for model transformations called
QVT MOF 2.0 Language [68].

- Model-to-text transformation (M2T) which generates source code
from models, thus lowering the abstraction level of modelling
artefacts and making them executable [70]. The standard MOF
M2T Language (OMG) [71] specifies the M2T transformation,
which is an important type of model transformation [72]. M2T is
used to implement code and documentation generation in
development of software systems [73]. In the transformation
process, the source is a PSM (platform specific model) and the
target is a source code, such as Java, C#, etc.

35

2.3.4 Transformation Language

In this thesis, we consider two types of transformation language: (i)
model-to-model transformation (MMT) language, and (ii) model-to-
text transformation (MTT) language.

MMT Language: ATL

ATL (ATLAS Transformation Language) is a MMT language specified as
both a metamodel and a textual concrete syntax. In the field of MDE,
ATL provides developers with a means to specify the way to produce a
number of target models from a set of source models (see Figure 6).

ATL

METAMODEL A I SCRIPT.ATL METAMODEL B
A

A

MODEL A I——

LEGEND

C) <> [

MODEL/METAMODEL M2M TRANSFORMATION SCRIPT

Figure 6 Model-to-Model Transformation

The ATL language is a hybrid of declarative and imperative
programming. Declarative style is the preferred of transformation
writing. In this thesis, we use ATL to write the model-to-model
transformation.

MTT Language: Acceleo

Acceleo is a MTT template-based language for defining code-
generation templates. The language supports OCL as well as additional
operations helpful for working with text-based documents in general.

36

GESTURE-BASED

INTERACTION INPUT
MODEL M2T SOURCE
TRANSFORMATION CODE
ACCELEO TEMPLATE INPUT OUTPUT
y 'NVOKE
ACCELEO M2T
SCRIPT
LEGEND
MODEL M2T TRANSFORMATION SCRIPT/TEMPLATE/
SOURCE CODE

Figure 7. Model-to-text transformation

A model-to-text transformation in Acceleo basically consists in a
mapping between each object in the input model and a string of
characters that represents the output (Figure 7).

In this thesis, we use Acceleo to write the model-to-text
transformation and to obtain the new version of the user interface
source code containing gesture-based interaction.

2.4 Summary

In this chapter, we have presented two theoretical frameworks to use
in this thesis: in first place, we introduce a theoretical framework for
Human-Computer Interaction including concepts related with human-
computer interaction including: concepts related with gestures, and
concepts related with gesture-based interaction (Section 2.2). In
second place, we introduce a theoretical framework for Model-driven
paradigm including concepts by describing standards related with
model-driven paradigm, proposed by the OMG (Section 2.3).

The terms defined in this section are used in Chapter 4 and Chapter 5,
where the model-driven method design is presented and the tool
support is described. Also Chapter 6 uses the terms for describing the
validations performed in this thesis.

37

These terms are included because these domains are related with the
objectives of this thesis and also with the aim of giving a better
comprehension about this work.

38

CHAPTER

STATE OF

ART

The topics covered in this chapter are:

3.1 Motivation

3.2 Gesture representation

3.3 Gesture recognition tools

3.4 The role of gesture-based interfaces in Information
Systems Engineering

3.5 Model-driven Engineering in Human Computer
Interaction

3.6 Evaluation between model-driven paradigm and

other methodologies

3.7 Technical action research to validate software
systems
3.8 Range of Improvements

3.9 Summary

39

40

Chapter 3. State of Art

3.1 Motivation

This chapter describes the most important approaches that support
the design and development of software systems with gesture-based
interaction. Once we have analysed in Chapter 2 the general
application domains in which this work is based, we analyse the
specific proposals in the domains that are closely related to our thesis.
This analysis allows us to determine the way in which each proposal
addresses the aspects that are central in our approach.

The work related to this thesis can be analysed regarding three
research areas mentioned in Chapter 2: (i) gesture representation
(research area: Human-Computer Interaction); (ii) the definition of a
model-driven method to generate user interfaces with gesture-based
interaction (research area: Model-driven paradigm in Human-
Computer Interaction) and, (iii) the type of method employed to
perform the verification (research area: Empirical Software
Engineering).

In this chapter we review the previous work regarding three
aforementioned dimensions.

The remainder of this chapter is organized as follows:

i. Regarding first dimension, Section 3.2 presents related works
about gesture representation and gesture recognition tools.
ii. Regarding second dimension, Section 3.3 describes the role of
the gesture-based interfaces in Information Systems
Engineering and, Section 3.4 details the related work about
Model-driven Engineering in Human-Computer Interaction.
iii. Regarding third dimension, Section 3.5 describes related work
about the evaluations between model-driven paradigm and
other methodologies and, Section 3.6 presents related work
about the use of technical action research to validate software
systems in an industrial context.

41

Section 3.7 describes the range of improvements to solve the
problems found in the related work. Finally, Section 3.8 presents the
summary of this chapter.

3.2 Gesture representation

Firstly, we decide consider in our work touch-based gestures to
perform actions on a touch surface of any device supporting this type
of interaction.

Techniques available in the literature for gesture representation are
important in our thesis because we are interested in to know the
different ways employed by other authors to describe touch-based
gestures in order to adopt the more adequate to our work. This
adoption depends of the simplicity and accuracy considered to define
a gesture.

Our work is not related with the definition of a gesture representation
nor with a method to recognize gestures. We are interested in find a
solution to the problems mentioned in Chapter 1 when the software
engineers decide to include gesture-based interaction in user
interfaces of software systems.

Hence, in this section, we take in account methods reported in the
related literature to represent this type of gestures. Three categories
are considered about this topic (Table 5):

(i) Based on regular expressions. A regular expression is an
expression formed by elements such as ground terms
(basic buildings blocks), operators, symbols, etc.

(ii) Based on a language specification. A gesture is
represented using a language specification, typically XML.
(iii) Based on a demonstration. A gesture is represented by

means of information obtained when it is sketched on a
touch-based surface. Then, the gestures are tested and
refined, and, once the users are satisfied with them,
include their definition in the applications.

42

In the next paragraphs, we describe works reported about gesture
representation using each aforementioned method.

Based on regular expressions.
There are several works reported in the related literature that

represent gestures by means of regular expressions:

Spano et al. [74] propose a compositional, declarative meta-model for
gesture definition based on Petri Nets. This proposal allows
constructing complex gestures from a well-defined set of building
blocks and composition operators. The definition starts with ground
terms representing the set of basic features observable through a
specific device. The user interface behaviour can be associated to the
recognition of the whole gesture or to any other subcomponent,
addressing the problem of granularity for the notification events.
Sample applications have been developed for supporting multitouch
gestures on i0S and full body gestures with Microsoft Kinect.

Lascarides and Stone [75] present a formal semantic analysis of iconic
gestures employing a multidimensional matrix whose rows contain
values that describe aspects of a gesture’s form. The contribution of
their work is to meet the challenge, implicit in descriptive work on
nonverbal communication, of handling gesture within a theoretical
framework that’s continuous with and complementary to purely
linguistic theories.

Giorgolo [76] has a complementary proposal of Lascarides [75] to
represent iconic spatial gestures based on formal semantic. Giorgolo
provides a more precise description of the mechanism of gesture
meaning determination.

Kin et al. [77] propose Proton, a framework which allows a declarative
and customised definition of multi-touch gestures using regular
expressions composed of touch event symbols. A gesture can be
represented as a regular expression describing a sequence of touch
events.

43

Kin et al. [78] describe Proton++, a declarative multi-touch framework
that allows developers to describe multi-touch gestures as regular
expressions such event symbols. Their work includes a custom
declarative gesture definition; it is based on the Proton framework.

Spano et al. [79] describe GestIT, a framework to represent a gesture
as a declarative and compositional definition for different platforms.
This framework shares with Proton++ the compositional and
declarative approach. A gesture is defined through an expression that
can be composed with a set of operators and a set of ground terms.

Swigart [54] developed SiGeR (Simple Gesture Recogniser) for the
Microsoft Developer Network to describe gestures with the eight
cardinal points (N, NE, E, SE, S, SW, W and NW) and some statistical
information. A regular expression is created out of this description
representing a gesture.

Based on a language specification

There are several works reported in the related literature that
represent gestures by means of some language specification:

Signer et al. [48] describe iGesture, a Java framework for the
development and deployment of stroke-based gesture recognition
algorithms. iGesture has two schemas to store the gesture definition:
(i) an open source object database as a primary storage container and,
(ii) XML which simply serialise the data object into a document based
on the x-stream Java library. Additionally, this framework has included
a functionality to import or export gestures definition written in XML.

Puype [80] extended the iGesture framework in order to include
support to multi-modal composite gestures. In this context, gestures
can be defined using XML and XML Schema.

Gesture ML [81] or Gesture Markup Language (GML) developed by
Ideum is an extensible language, based on XML, used to define multi-

44

touch gestures that describes interactive object behaviour and the
relationships between objects in an application.

Gorg et al. [82] in their work adapt Labeled Deductive System (LDS) to
represent a gesture. LDS provides a framework for expressing logics by
using a pair (label: formula). This schema permits define multi-touch
gestures by means of a parametrised formula.

Hachaj et al. [83] introduce a new approach for human body poses and
movement sequences recognition using Gesture Description Language
(GDL). This language consists of rules set, where each rule has the
logical expression and conclusion enabling the description of any
body’s poses and gestures with assumption that gesture can be
partitioned into sequences of poses. The description is contained in a
script using a proprietary language.

GDML (Gesture Definition Markup Language) allows a declarative
description of the sequence of events that the device senses for
recognising a custom touch gesture. GDML is a proposed XML dialect
that describes how events on the input surface are built up to create
distinct gestures [84].

Kammer et al. [85] describe GeForMT (Gesture Formalization for
MultiTouch) which is defined using semiotic with three components
and their scope: syntactic (symbols), semantics (meaning) and
pragmatics (interpretation). This language permits the representation
of multi-touch gestures.

Based on demonstration

There are several works reported in the related literature about
gesture representation by means of demonstration:

Ll et al. [86] describe Gesture Coder which is a tool for programming
multi-touch gestures by demonstration. Instead of writing code or
specifying the logic for handling multi-touch gestures, a developer can
demonstrate these gestures on a multi-touch device, such as a tablet.

45

Gesture Coder automatically generates user-modifiable code that
detects intended multi-touch gestures and provides callbacks for
invoking application actions. Gesture Coder allows to the developers
define a gesture by demonstration, test the generated code, refine it,
and, once they are satisfied with this definition, integrate the code in
their applications. Multi-touch gestures are defined using this
specification by means of information supplied by multi-touch
interaction on a two-dimensional Surface.

Ld et al. [87] describe Gesturemote, a technique for interacting with
remote displays through touch gestures on a handheld touch surface.
Gesturemote supports a wide range of interaction behaviours, from
low pixel-level interaction such as pointing and clicking, to medium-
level interaction such as structured navigation of a user interface, to
high-level interaction such as invoking a function directly (e.g.
shortcuts).

Wobbrock et al. [51] describe $1 that is easy, cheap, and usable almost
anywhere in about 100 lines of code. The $1 recognizer is a geometric
template matcher, which means that candidate strokes are compared
to previously stored templates, and the result produced is the closest
match in 2-D Euclidean space.

Anthony et al. describe SN-Protractor [52] and SN [50] to add support
for multi-stroke gestures. Specifically, SN gesture recogniser algorithm
is a lightweight, concise multistroke recogniser that uses only simple
geometry and trigonometry to perform template matching between
stored templates and entered candidates. SN is a significant extension
of the $1 unistroke recogniser by Wobbrock et al. [51].

46

Table 5. A summary related with gesture representation

‘uonewoul
sainisad Jd 19|ge| B Ul papnjaul | [B2I1sNE)S Swos pue syulod |euipied 1ySie

Jd128|9el yonol-yniy | seunisad asiufooas ol | 2yl Suisn paquasap aq ued ainisald e |yaols Buisn [#5] 11e8ims
suuope|d saunysald EEREITEAI T EL ‘sluJa] punoud Jo 19s e pue
uoiu8ooal | Apoq |ny pue | ajAis dNIAM Ul papnpul | siolesado jo 1as se yum pasoduwod uoissaldxa ue

SIVEIETI] yonol-iyniy | seunisad asiudooas o] | Suisn pajuasaudad aq ued aunisad e ‘| [1s90 Fuisn [6£] ‘|e 12 oueds

“++uolold Jo Aujigixaly

sainisaf | ay1 9lensuowsp 01 *5|0qWAs JuaA2 Yonol JO SUoIS

pauonuaw 10N yonol-niy | suoneoidde 2iseq awos | -saudxa sendaus se saunysad yonouynw Suiquosag [8£] 1212 Uy
saunysad | "uojoud Suisn suonieadde ‘suoissaidxa Jejn8al uo paseq sainysad

pauonuaw 10N yonoi-ninpy | 1dasuod-jo-jooud @24y | Jo uoIIULSPp PaSILOISNI PuB SAIlBJBRDEP Y [££] 1212 Uy
saunisald }lom sapliedse] ays jo |esodoud

pauonuaw 1oN

|eiieds J1u02|

pauonuaw JoN

Asejuswsa|dwod e si 3| "JIIUELISS [BWLID} U0 paseg

[97] ojo8i019

“lasn e Jo

yosads ayl yum ainisad

sainysad | puey Jjo uoneuiquod w0y s,81msag e Jo sdadse [6z] suo3g
pauonuaw 10N Jluod| | ayr asAjeue sioyiny | SQUISSP 1BYl XU1BW |EUOISUBWIPpIINW Y | pue sapliedse]
"s21n1528
123Uy sainisaf | Apoq Iny pue paseq "513N 18d U0 paseq uollulyap ainisad
50! yonol-ny | -yosnoi Suisn suonediddy | o} |epow-elaw aanelepsp ‘jeuciyisodwod v [¥£] |2 12 oueds

wuopeld

sainisagd

jo ELIY]

uonedddy

uonejuasaidal jo adA|

Joyany

suolssaldxa sen8ai uo paseg

AoSajey

47

sainysal 'saJinisafd yonol-1nw aquasap
pauonuall 10N yanol-nnpy p3UOnUaW JON | 01 Pasn si Yonol-Njn|jAl 10} UOIEZI|eWIOS 3un1sag | [§g] '|e 18 Jswwey
sainysad *sainlsal aquosap
pauoIuaLL 10N piepuels pauoiuaw JoN | 01 pasn s aden3ue] dmyel UoIUYSQ 3IN1SID) [#g8] dnouo 1NN
sainisad Suinem jo
‘2leMYOos saouanbas | uolyugooss pue Suidded
JJomalue. juswsaow | puey jo uoiyuSodal
__Z_._mao pue | pue sasod | QuUawWaAoW JO UWOI12313P ‘saouanbas Juswanow pue sasod Apog uewny
Jjosuas 1oauny | Apoq uewny | yum paiejas uonjedlddy | uondussap onoejuAs oy pasn st aSendue| 109 [£8] "|e 12 leyoey
(auoyg1 82
aJinep andul sainysal "21n1sa8 yonol-1jnw e pagquasap aq ued
yonol-njnw v Yyono3-iniy waisAs uoneSineu v | (sg1) waisAs aanonpaq pajagqe 1ewuoy ayl Suisn [¢g] "|le 1@ 8109
INN sainysad sawes g SMOpUIA aJe ‘paquasap
dWIM-1s0d yonol-iynja | uoneoidde jo ssjdwex3 | aq ued aimsad yonol-nw e J24n1san Suisn [18] wnap|
sainysad ‘|[ool
lepow-ninpy | uonejuasaud Juiodsaded
pue | ‘JaAeld eipswnynw :ale "BLUBYIS N X pue TINX Suisn pauljsp aq
sa|gel yono | aysodwo) | suonedidde jo ssjdwex3 | ued 3inN1s90 "3IN1S30)| JO UOISISN PIPUSIXa UR §1) [08] 2dAng
saJinisas axous
-[1|NW JO 195 PasIWOolsNd B
"581n1598 | pue sainisan uoiledlddy ‘aunleusis

pauoiuaLLl JON

ayous-1nw

pue 38uis

UOSODIN 2yl ‘slaguinu

pue sia11a| IMYeID Wied

paseq-pug B yum sainisad saquasap 2unisaol

ur pepnpul swyydoge Sunsixa swos Suisn

[8%] *|e 12 JausiS

uonedyads adendue| e uo paseg

48

$22B44NS Yyano |

saunysag

ayons-nny

sadAjoload aoepialul 1asn

‘(say0415 N) NS pue (qoiis
2u0) TS 2ie se ‘BU0 paseq-2y0Jis B JO pealsul
19z1ud02a1 paseq-juiod e s1 d$ "pnopp sjuiod

e se saunlsad a3 0J1s-N|NW auyap 01 pasn sl 4g

[£5] 'Ie 12 naelep

‘Anlawouosul pue
Aijpwoa8 sjdwis Ajuo sasn eyl 1aziugodald ayoas

saunysald -Inw as12u02 ‘yFemiysi| e st NS "saun1sa8 ayo.a1s [es]

saoepns yano) | ayoms-nnpy | sadAiojoud aoepiayuldasn | -1jnw auljap 01 pasn aq ued 1o1oea10id-Ns pue NS | [0s] ‘e 18 Auoyiuy
"saydlew
Aj@sopy 1sow u 1] swuod a1ejdwal peplolal
Ajsnoinald Jo 185 Yo1ym aululslap 1snw am pue ‘)

saunisad sjulod alepipued Jo 1as B Ul s}nsaJd ainisald s Jasn [ts]

$22B44NS Yyano |

ay0415-3|8u1S

sadAjoload aoepialul 1asn

W 'sainmsaf ayouis-s(Buls suysp o1 pasn sI IS

‘B 12 yo04qgqom

ERTIENT]]
AL B |oJu0d 01

|00 2141 Jo Aujigisea;

pasn aq p|nod sainisa8d | syl Slesisuowsp 01 '90B4JNS Yonol pjaypuey e uo sainisad
310WW31N1S30) yono] | suonedidde Diseq SwoS | Yyonol SJUPYSP 01 PaguUISIP S S10WIINISID [£8] 'le13 M
aoepung "10afoud
|euoisuswip sainisa8 | Juswdojanap auemlos ‘uoneslsuowsap Ag sainisad yonol-nynw
-0Mm | yonol-iyny | |eaidAy e jo sidwexs uy | SuiwwelsSoud 1oy 001 B S| YDIYM ISPOD 21N1520 [EEINERER

uoljeljsuowsp uo pasey

49

Vatavu et al. [53] describe SP as a gesture recognizer for user interface
prototypes. SP performs similarly to $1 on unistrokes and is superior
to SN on multistrokes. In this case, a gesture is defined as a points
cloud.

If we analyse the different representations of the gestures of each
category, we can see the diversity of proposals reported by the related
literature depending their application. Therefore, a solution to this
problem is to use a single representation to the different possible
scenarios where the gestures can be used.

Hence, in this thesis, we propose a model-driven approach in order to
represent gestures with a high-level of abstraction, enabling platform-
independence and reusability. By providing the proper
transformations, it is possible to target several gesture recognition
technologies. We focus on user-defined, multi-stroke, semaphoric
gestures according to the taxonomy proposed by Karam in [11]. Also,
we adopt SN [50] as the gesture recognizer algorithm to include in the
model-driven method proposed. Then, in this thesis we use XML to
represent gestures because it is a standard language and it permits get
multi-platform feature in the definition of gesture catalogue.

3.3 Gesture recognition tools

According Ruffieux et al. [88], gesture recognition precisely refers to
a subset of the human activity and action recognition field and can be
defined as the process by which specific gestures, intentionally
performed by a user, are recognized and interpreted by a machine.

Three of the most known gesture recognition tools are the following:

e quill [89]: It is a gesture design toolkit that supports Rubine gesture
recognition algorithm. quill allows to the user define a gesture by
demonstration. Figure 8 shows a screenshot of this tool which is
divided in three areas: (1) training set, containing the gesture
catalogue, (2) training example, containing the gesture sketched

50

by the user and, (3) the area showing the result of the gesture
recognition.

L&d singleStrokeCatalog_gestureCatalogitxt - quill - B “
File Edn View Gesture Debug Help

Human gocdniess 1030 [
Recognizer mmm 1000 D Paangle - Training Set g &

_|r_ﬂ

Training Set | Test 5215

[Traming Sat
2y Pringhs

1 3

Training exampls

|4

2 .

Figure 8. quill’s main interface
SN [50]. The goal of SN is to provide a useful, concise, easy-to-

incorporate multi-stroke recogniser deployable on almost any
platform to support rapid prototyping. SN is based on
demonstration to represent gestures.

[£] SM Multistroke Recognizer in Java - O x
left-click; draw middle-click: clear canvas right-click: recognize 1

|T}fpe name here... 3

Figure 9. $N’s main interface
In this case, SN main interface is divided in three zones (Figure 9):

has an area where the user sketches gestures: (1) area in the upper

51

side of the interface containing messages about the process (e.g.
messages for the user related with the sketched and recognised
gesture), (2) area in the middle side of the interface containing a
panel to draw gestures, and (3) area in the down side containing a
text field and a button to save the gesture.

e iGesture [48]: It is a framework which supports the SiGeR
algorithm and it is based on a set of modular components and
some common data structures. Figure 10 shows a screenshot of
this framework containing its components: (1) the input area
where the user sketches the gesture, (2) the algorithm
specification zone, where the user can specify the algorithm to use
in the process of gesture recognition and, (3) the area showing the
result of the gesture recognition.

iGesture Tool — O X
File Help
Test Bench | Admin | TestData Batch Processing
|=| Input Area | 28 | |£ Algorithm %5 | =) Algorithm (=

Result 2

@ Open Configuration

Figure 10. iGesture main interface
In this thesis, we use these gesture recognition tools in order to test

the gesture definition obtained through model transformation and
code generation. Additionally, we use SN as gesture recognition tool
adapting it in the user interface modified to support gesture-based
interaction.

52

3.4 The role of gesture-based interfaces in Information

Systems Engineering

Gesture-based interfaces can play two major roles in information
systems engineering, depending on whether we intend to incorporate
this natural interaction into (i) CASE tools or (ii) into the information
systems themselves. In the former case, the interest is to increase the
information systems developers’ efficiency, whereas in the latter the
aim is to increase information system usability, especially in operations
in the field, where the lack of a comfortable office space reduces the
ergonomics of mouse and keyboard. In both cases, gesture-based
interface development methods and tools are needed.

Some studies reporting on the definition of methods to generate a
user interface are described in the following paragraphs (Table 6):

UsiGesture, proposed by Beuvens et al. [90], allows a designer to
integrate gesture-based interaction in an interface considering 2D
pen-based gestures, but it lacks techniques to model, analyse or
recognise gestures. The authors applied the method to developing a
restaurant management tool.

Guimaraes et al. [91] proposes a process model for development of
gesture-based applications. The proposed development process is
defined in four steps inter-related and executed interactivity. The
steps are: requirements definition, design definition, implementation
and evaluation. The authors apply it to creating a puzzle game using a
3D coordinates system to move and fit the pieces of the puzzle using
the hand of the user.

Nielsen et al. [92] describe in their work a method with two variants
(technology-based and human-based) and provides guidelines for the
definition and selection of gestures, based on ergonomic principles.
The authors perform a study to decide which types of gestures are
required for arbitrary applications. Therefore, they define a gesture
vocabulary containing gestures performed by the hand of the user. The
process consists in the following steps: (i) find the functions to each

53

gesture, (ii) find logical gestures, (iii) process the data, (iv) benchmark
of the gestures.

Bragdon et al. [93] describes GestureBar embeds gesture disclosure
information in a familiar toolbar-based user interface. GestureBar’s
simple design is also general enough for use with any recognition
technique and for integration with standard, non-gestural user
interface component. The authors began the design process with a
simple mockup, using Windows Presentation Foundation (WPF). The
process consists of three steps: (i) prototype and iterative design, (ii)
final design, (iii) content development.

Bhuiyan et al. [10] report the development of a Gesture Controlled
User Interface (GCUI) prototype application called Open Gesture to
facilitate inclusive interface designs that are usable by the elderly and
disabled. Open Gesture uses simple hand gestures to perform diverse
range of tasks via a television interface. Therefore, authors apply it to
an interactive television project.

If we analysed the related works included in this Section (summarised
in Table 6), we can see the diversity of proposals reported by the
related literature depending of some factors such as: development life
cycle, methodology, type of gesture supported, application, tool
support and platform. Therefore, this scenario complicates the
process to define custom gestures and to include gesture-based
interaction in user interfaces in software systems.

Hence, in this work, we propose a similar flow to that described in [91],
but we define custom gestures by using models and we automate the
implementation of gesture-based interfaces by means of model
transformations.

54

Table 6. Summary of works related with role of gesture-based interfaces in

ineering

Information Systems Eng|

wawdinba pau

uolsiaa|a] |eusdip oluaw aun1sagd [oT] "1
a|qewweiSold 10N ainisag uadg | puey a|dwis pauonuaw 1oN pauonuaw 1oy | 12 uelinyg

sweiSelp swdojaaap Jualuod ‘udisep

a|dwis Melp sadepa1ul Jasn | |euly ‘ufisap aanesau pue
SMOPUIA leg | o1 uonednjdde 524n31538 | Jo ss2ooud Juswdojanap | adAjoload ‘sajdipuud uSisap [e6] "1e
YOsoDIN | 24n1san | ue ‘1awwesSoaur) | paseq-uad Q7 | |RUOIIUSAUOD ¥ | :pauyep aie sdaas 994yl | 12 uopdelg

1asn Jewyduaq ‘elep ayl

pau ay1 Jo puey ayl sadeia1ul Jasn | ssasoud ‘sainisad |eoiSo| puly
oluaw qndeu | yum pawaopad | jo ssasoud juswdojanap | ‘suonouny ayr puly :ssadoud [ze] "1
pauonusw 10N 10N | @sn 0] s1emyos Y $3UN1S29 | |EUOIIUSAUOD ¥ | 8yl ul papnpul a1e sdalsuno4 | 1@ u3as|aIN

waisAs 1asn ‘uonen|eas

pau $31eUIp100D | 3yl JO puey ayl ssaooud Juawdojanap | pue uoneluswsaldun ‘udisap
SAMOPUI onuaw | gg e Suisn | yum pawiopiad |euoiluaAuod | ‘uoniulap sjuawalinbau ONERE
oS0 10N | 2jzznd e ‘ajzzngry | saunisad ae | ay1 Jjo uoneidepe uy | :paijepisuod ale $dals Jno4 | SIEJRLUING

1011pa |ensia B
Suisn Ag (1n4) =22eps1U

lueinejsal e 1asn |euy uleigo ‘aJe 91Ul
1MX uo | ul nuaw e aSeuew aimsad | o} auiBua Suuspuals | 1asn paseq-ainisad e uielgo [oe] "I
pauonuaw 10N paseg | 01 walsAs y | paseq-uad Qg | eaef B U0 paseg | 01 pauyap aie sdals UaA3G | 13 suaanag

wione|d

uonedddy

peyoddns
8Jn3sa3 jo adA)

A3ojopoyiapy

s30EPUI J3sN
40 Juawdojanap ay3 ul sadels

55

3.5 Model-driven engineering in Human-Computer

Interaction
This section reviews the role of model-driven engineering (MDE) in
Human-Computer Interaction in which models are used to create a
user interface that includes user interaction. Several studies have
reported on the use of model-driven engineering in HCI to design user
interfaces with this type of interaction (Table 7).

Aquino et al. [26] emphasize the importance of interaction modelling
on the same level of expressiveness as any other model involved in the
development life cycle of an interactive application. They define the
presentation model of the 00-Method [94] as an abstract model from
which the model compiler can automatically generate a user interface
for different interaction modalities and platforms, although they do
not include an explicit reference to a type of interaction modality (e.
g., graphical, vocal, tactile, haptic, and multimodal).

Deshayes et al. [95] propose the use of MDE and model execution in
the context of human-computer interaction (HCI) by means of
heterogeneous models obtained with the ModHel’X modelling
environment for developing a simple HCl application for gesture-based
interaction. Their application makes it possible to browse a virtual
book using gestures (e.g., swiping, moving) in Microsoft Kinect.

Coutaz et al. [96] include a report regarding user interface plasticity
and MDE, in which three information spaces are defined: the user
model, environment model, and platform model. The platform model
considers the possible interactions that can be included in a user
interface. This report also includes a description of models that have
been defined with the aim of creating user interfaces. It also mentions
the variety of interaction modalities currently available thanks to the
diversity of technological spaces that can be included in the definition
of concrete user interfaces.

Calvary et al. in [97] describe the relation between MDE and HCl in
implementing user interfaces. In this context, they introduce the

56

models contained in a number of frameworks (e g., UsiXML [98], CTTe
[99]), one being the interaction model considered in the process of
defining user interfaces. However, the interaction modality is not
considered.

Valverde et al. [100], propose the Abstract Interaction Model that is
added to the Presentation Model in the 0O-Method. Two sub-models
are considered to define the Interaction Model: the user model and
abstract interface model. A set of interaction components is defined in
the abstract interface model that define its interface with the software
system. These components are conceptual modelling elements that
describe the interaction behaviour expected by the user but not how
it is implemented, so that this system does not include the interaction
modality in the process of user interface generation.

Vanderdonckt [101] describes a MDA-compliant environment which
considers a set of variables related to the development of user
interfaces, one of which is related with interaction devices and styles.
Interaction styles include the gesture recognition. However, he points
out that an abstract user interface is independent of any interaction
modality [102] so that an explicit reference to a specific type of
interaction style is not considered.

All the works cited above mention the importance of using MDE and
HCI to obtain user interfaces in a short time at a low cost. Although
they also point out the need for a specification of an interaction
modality, they do not include gestures in their proposals. We
considered gesture-based interaction in this proposal in order to
obtain a complete definition of user interfaces using MDE and HCI.

57

in Human-

iven engineering in

Table 7. Summary of works related with Model-dr

Computer Interaction

adAy uonoeiajul

pauonuaw | 01 ERIEIETEY] JuUaLWUoIIAUS [tot]
10N | uondxa ue papnjul JoN ueldwod-ya poylaw juendwod-yqa 20B13]U1 135N 10B11SqY Pjouopispuep
adA1 uonoesaul (Bl ERTIVEMT]
pauonuaw | 01 EMIEICIEY] ‘lepoN uoljejuasald
10N | uondxa ue papnjul JoN BAONBA|O poy1=N-00 [2POAN uonJelalu| 1085y | [00T] 2pianep
adA1 uonoesaul uoloela1u| [2poAl
0 EMIEICIEY] Jaindwo)-uewny pue | wioje|d ‘|SpojN uolloelalu] [goT]
saA | uddxa ue papnpul 10N pauonuaw 10N | Suuasulful usAUp-|2poA | ‘|SPOIN Ysel ‘|spolN 43sn | e 12 Adeae)
adAy uopoesaul
pauonuaw | 01 ERIEICIEYS poyiaw 21uad |Jepow wuope|d ‘(epow [96]
10N | uondxa ue papnjaul JoN paynads 10N | -2p0d Yum pauiquiod 3N | JusWwuolAug ‘|spoy 1asn | C|le 18 Zeino)
uonoelalu|
pauoijuaw uawuodiaua | Jaindwo)-uewny pue uonendwod [s6]
10N sauinsa8 qg | Suyepow ¥|aHpoN | SuusawiBul uaaup-jpo | 1o s|apoLu nels | °|e 12 sakeysag
uonesauad adAy uonoeiajul
|apod | 01 ERIIEIEIEY] [o¢]
Jnewolny | udidxa ue papnppul 10N poylaN-00 | SuusawBul uaaup-jEpoy Suljspow uonoesaqu| | e 1@ ouinby

fuonesauad

apo)

éadhy

uoporialul paydads

uoddng joo)|

ssasoud aya

ul pasn ASojopoyiayl

uonrezou Suljjapo

Joyany

58

3.6 Evaluation between model-driven paradigm and other

methodologies
The main goal of this section is to know how were performed other
comparative evaluation processes between two or more methods of
software development regarding the parameters defined for each
process (e.g. variables, metrics, instruments).

In this sense, we analyse the related work about comparative
evaluation between methodologies based on model-driven paradigm
and others existing methodologies (e.g. traditional software
development methodology) to develop software.

There are several works which report experiments to do this
comparison, some of them are described in the following paragraphs
(Table 8):

Kapteijns et al. [104], describe a case study of the development of a
small middleware application in order to do a comparison between
Model-Driven Development (MDD) implementation with regular third-
generation programming. The MDD framework used, which is called
XuWare, permits to generate “create-remove-update-delete” — CRUD
functionality for Web applications from UML models. Results obtained
show that MDD is well applicable to small-scale development projects
under easily satisfactory conditions.

Bunse et al. [105], in their work describe a case study in order to
compare MARMOT (based on MDD and CBD — component-based
development) with RUP and Agile Development. In this evaluation, the
subjects developed a small control system for an exterior car mirror.
The metrics employed in the evaluation are: model-size, amount of
reused elements, defect density, development effort. Their evaluation
reveals that model-driven, component-oriented development
performs well and leads to maintainable systems and a higher-than-
normal reuse rate.

59

Ricca et al. [106], describe in their work a controlled experiment with
the aim of investigating the effectiveness of Model-driven
development during software maintenance and evolution activities.
Participants (bachelor students) used two software systems (Svetofor
and Telepay) and by means of UniMod obtained two new versions of
these software systems. In this experiment, the results showed a
marked reduction in time to complete the maintenance tasks, with no
important impact on correctness, when UniMod is used instead of
conventional programming.

Papotti et al. [27] describe a quantitative study in order to evaluate the
impact of using model-driven code generation vs. traditional
development of software systems to implement a web application.
Results show that the development time to code generation is shorter
than time required using traditional development.

Condori-Fernandez et al. [107] describe an empirical approach for
evaluating the usability of model-driven tools. They propose a
framework to evaluate the usability applying it to INTEGRANOVA, an
industrial tool that implements a MDD software development method
called the O0O-Method. The authors report results about the usability
evaluation in terms of efficiency, effectiveness and satisfaction within
an experimental context.

Martinez et al. [108] describe a quasi-experiment in order to compare
three methods (Model-driven, Model-based and Code-centric)
developing the business layer of a Web 2.0 application. Results show
that MDD approaches are the most difficult to use but, at the same
time, are considered as the most suitable in long term. Additionally,
these authors in [109] report a quasi-experiment in order to evaluate
productivity and satisfaction when a group of Master students develop
a Web application using three methods: code-centric, model-based
(UML) and model-driven (OOH4RIA). Results show that the use of
Model-driven Engineering practices significantly increase both
productivity and satisfaction of junior Web developers, regardless of
the particular application. Other work reported by these authors [110]

60

is about an empirical study on the maintainability of the Web
applications. In this work, they compare Model-driven Engineering
with Code-centric method by using OOH4RIA and Visual Studio .NET
respectively. The results show that maintaining Web applications with
OOHA4RIA clearly improves the performance of the subjects.

Cervera et al. [111], in their work describe an empirical evaluation
using TAM and Think Aloud methods with the aim of assessing
usefulness and ease of use of MOSKitt4ME. In this evaluation the
results were favourable, that is, MOSKitt4ME was highly rated in
perceived usefulness and ease of use; the authors also obtained
positive results with respect to the users’ actual performance and the
difficulty experienced.

Panach et al. [112] describe in their work an experiment in order to
compare quality, effort, productivity and satisfaction of MDD and
traditional development. Participants (last-year master students) built
two web applications from scratch. Results obtained show that for
small systems and less programming-experienced subjects, MDD does
not always yield better results than a traditional method, even
considering effort and productivity.

All these works describe comparative evaluations in order to check
whether or not model-driven produces better results than other
methods (e.g. code-centric method, method based on RUP and Agile
methodology). The types of study used in these evaluations are mainly
case studies, empirical evaluations and quantitative studies. As far as
we know, there are no previous experiments that dealt with the
comparison of a model-driven versus a code-centric method in the
context of generating gesture-based interaction. So, this work is a step
forward in the process of covering this gap.

61

Table 8. Summary of works related with Evaluation between model-driven

paradigm and other methodologies

syuapnis

10 uoijoeysies

ay1 uawsa|du aa18ap uolloejsiies uoneddde pue Auanonpoad luswuadxa [g0T] "|B 32
015]001J0 185 Y sJa1sepy | pue Auaionpold 07 99M ay1 asedwod o] -Isenp ZT0T Zauipey
+hedsja| Suiwwerdoxd
pUE +10JO19AS | DJLIIUSI-3POD YlUMm
Aedaja] suapnis :Aedsja) SuiwwerSoud
pue 10JO13AS JO 93133p powIun puUE 10J013AS JO poIun uswadxa [g01]
SUDISISA POAIUN lojayoeg | JO SS3UDAINDSYT | SUOISIIA M3U OM | ssedwod o] p3|joJuo) ZT0Z | '|e 12 e201y
3215 |[apou
‘syuswala Juawdofanag
pasnai jo apdy
unowe ‘Alisuap “JOMIILL PUE dNy yum
109)9p ‘oIS 1eD JouaIXa (ggo+aaw uo
sjuapnis |2pow ‘uoys ue 10 waisAs paseq) JOWHYIN [s0T] "I®
1OWHYIN ajenpeln uawdojanag |0J43U0D ||Bws asedwod o] Apnis ase) 6007 3@ asung
“Auxajdwon SuiwwesSoud
uonesidde uonesauad
‘awn p4iya depndalr yum
siadojanap wswdojanap uoneddde uolejuswajduul
uadxa ‘Aunionpoud alema|ppiw aaw [+OT] "B 22
ale Ny pue aJlnoN uawdojanag ||lews v ue aledwod o] Apnis ase) 6007 suliaydey

Juswpadxs ayi

ul pafojdwa joo)

spalqns |e
juswisadxy

sa|qELIEA

p|2y uonediddy

62

‘uonedljdde gam e
o 1aAe| ssauisng

"$SaULIBIUN|OA
‘wiou
annoalgns
‘Aupqizedwoo
‘asn Jo

ases panediad

“2143Ua0
-apod pue paseq
-|]spow ‘usaup

3yl uswaduw sjuspnis ‘ssaunjasn -|apow :spoylaw uswLadxs [60T] e 3@
015|001 40135 a1enpelg paniadiad uonesidde gapy | 934y1 ssedwod o) -1senp £T0Z zauiuenl
wawdojanap
|euoilipel) ‘sa
uoneliauad apoo
uaALIp-|2pow
juswsa|dun | sjuapnis e awn Suisn jo yoedun Apnis [£2] 1
015|001J0135 Yy | npeidiapun uawdojaraq uonesidde gapp aylalen|eaa o] | aaneuueny £T0Z | 3@ modey

yoeoudde 3qQN

e 10 paseq-[apoLu
‘2111U32-3p0d
Spoylsw 284yl
Buisn uonedddy
0°cgqame

Jo 12he| ssauisnq
ay3 Suidojanap
siadojanap

gapn Jotun(

63

sjuapnis

aaidap ‘UoI1oBYSIyES "ad 4o syjsuaqg
s aisejy | pue Aunonpoad Pa112 150w ayl [eTT] "1
YAONYHOILNI Jeaf-jeuiq ‘poye ‘Aujenp uonesidde gapy }0 2wos Ajuan o Juawiiadxy ST07? 1@ Yoeueyd
si9audua
alemyos
|elasnpul
‘>op-1sod JNTHSON
e ‘sjuapnis asn jo JO 2sn jo asea
ayd pue | 2sea ‘ssaujnjasn pauonuaw pue ssau|njasn uolnen|eas [tTT] "I
FINFIASON s, 215/ paniadiad 10N 21en|ens o |eouidwy ST0Z | 3@ eaandm)
sluapnls | uoIDejSIIES pue Apnis [0TT] B 32
YINFHOO alenpei aouewIOMad uonesidde gapn Aljigeulelule|p |eoudwy ¥102 Zauley
uoI1dBSI1eS pue s|oo1 [£0T]|E 22
siayoieasay SSaUaNIDa] pauonusw USALIp-|3poL yoeoudde Zapueuiag
YAONVYOILNI AdN-S04d “housonyyq 10N jo Alljigesn [eoudwy | €702 -uopuo)

64

We will use an empirical evaluation to compare a model-driven
method and code-centric method in order to evaluate performance
and acceptance of our proposal. In this experiment, the participants
will define custom gestures and they will include gesture-based
interaction in an existing user interface with source code written in
Java.

3.7 Technical action research to validate software systems

In a similar way than the previous section, we include this section in
order to know how was applied the technical action research in the
industrial context to validate software products.

In this sense, some works related with the applicability of technical
action research in the field of software engineering are included in this
section. However, we found few reports about the application of TAR
to validate software systems:

Morales-Trujillo et al. [113] describe the validation of a software
engineering framework employing Technical-Action Research and case
study methods. They report that the combination of TAR and case
studies was a successful experience and that it is a feasible resource
for bridging the gap between academy and industry.

Morali et al. [114] report the use of TAR to validate a method to specify
confidentially requirements in an outsourcing relation. They used
CRAC++ to specify confidentially requirements that could be included
in an outsourcing SLA.

Abelein [115] describes in his work the application of technical action
research to validate iPeople Case Study applying the User-Developer
Communication-Large-Scale IT Projects (UDC-LSI) method. His
evaluation showed a positive effect of the UDC-LSI method on
effectiveness and efficiency.

Antinyan et al. [116] report a complementary empirical method for
validating software measures. The method is based on action research
principles and it can be combined with theoretical validation methods.

65

The industrial experiences reported in their work show than in many
practical cases the method is effective.

In this work, we will employ technical action research in order to
validate our proposal in an industrial context to determine its benefits
in the field of human-computer interaction related with gesture-based
interaction.

3.8 Range of Improvements

At the end of the revision of the related literature, we can describe
some problems found in the context of this thesis related with the
research areas identified in the beginning of this chapter:

Research area 1: Gesture representation

Our search on the related literature about gesture representation has
demonstrated that there are a variety of techniques to define gestures
that are platform-specific. This fact can represent a problem when the
software engineers have planned to develop software to several
platforms of devices because the engineers require have a good level
of skills and experience to develop software with quality and
efficiency.

Research area 2: Definition of a model-driven method to generate user
interfaces with gesture-based interaction

Currently, computing devices and their software systems are in great
demand. This creates a problem that needs attention: it is necessary
updated versions of software systems for the most number of
platforms as well as development methodologies of software systems
to allow the implementation of these systems in the shortest possible
time, at the least cost and with quality.

Another aspect that should be considered is the widespread use of
gestures to perform actions on the device, the application fields of
software systems with gesture-based interaction is growing and

66

software developers build software systems that do not allow easy
addition of new gestures or user-defined (custom) gestures.

The development of software systems for devices with gesture-based
interaction is largely based on the source code, forcing developers to
achieve mastery of a platform and its tools and learn to deal with all
the pros and cons that brings this trend, according to mentioned in
Chapter 2 of this research work.

Research area 3: the type of method employed to perform the
verification of the proposal

In this case, we analyse the works related with comparative evaluation
of two methods to develop user interfaces. Some works had used
empirical evaluation with the aim of validating the usability of a
solution to obtain software systems, but we do not find any work
related with the definition of custom gestures and the inclusion of
gesture-based interaction in user interfaces.

3.9 Summary
This chapter presents the state of the art of the disciplines that are
related to this thesis.

In the field of software systems development methodologies in this
thesis have described the model-driven development which has been
considerate to use in this thesis because it satisfies the requirements
specified in this document.

In the field of gesture-based interaction there is a series of works with
proposed techniques for gestural representation, a work that is closest
to the proposal of this thesis is presented in [74], which is based on
Petri networks, however work focuses on gesture recognition rather
than the representation of a gesture based on MDA, such as the
proposal for this thesis.

We will try to solve these problems with our work that is described in
this document.

67

68

CHAPTER

gestUl: A
MODEL-DRIVEN
METHOD

The topics covered in this chapter are:

4.1 Overview

4.2 Why a Model-driven method?

4.3 Why a Model-View-Controller design pattern?
4.4 Determining needed resources

4.5 gestUI: our proposal

4.6 Personalization of gesture definition

4.7 Overview of gestUI to include gesture-based
interaction in a user interface

4.8 Summary

69

70

Chapter 4. gestUl: A Model-Driven Method

4.1 Overview
Currently, there are two topics to consider regarding the development
of user interfaces supporting gesture-based interaction:

(i) The current tendency to adopt new human-computer
interaction techniques considering the development of the
technology, specifically the gesture-based interaction. In the
current technology market, there is a wide range of devices
platforms supporting gesture-based interaction.

(i) The high demand of gesture-based interaction in the software
systems. There is a variety of SDK’s to develop software
systems for these devices with gesture-based interaction.

However, when a software engineer employs a code-centric method
to include gesture-based interaction in user interfaces of software
systems, some of the following problems are involved [117] [118]
[119]: (i) the software engineer has two options to obtain the source
code: writing the methods required to implement the software from
scratch or adapting existing source code; (ii) the gesture specification
is not multi-platform; (iii) it is hard to reuse the source code to support
gesture-based interaction in other platforms; (iv) software engineers
require skills in the programming language of each platform employed
in the implementation of software systems user interfaces; (v) in some
cases, the integrated development environment (IDE) is not available
in all platforms required by users.

These facts allow the introduction of new challenges and opportunities
in the design and development of software systems with gesture-
based interaction for any platform as well as the ability to define
custom gestures in the design stage of a software system.

Considering this situation, we motivated to define a methodology that
allows improving processes to include gesture-based interaction in
user interfaces of software systems for any available platform in the

71

market, and a mechanism to simplify the definition of custom gestures
according to the needs of end users without requiring extensive skills
or knowledge of a programming language.

This chapter introduces a new model-driven method, called gestUI
that aims to overcome the limitations identified and described in this
thesis to implement user interfaces with gesture-based interaction.
Thus, to meet this challenge, our proposal advocates the use of Model-
Driven Engineering (MDE) techniques. We believe that the use of MDE
reduces the complexity of the implementation of gesture-based user
interfaces because it allows software engineers to work at a high level
of abstraction and it also increases automation and reuse.

In our work, the level of abstraction is raised by allowing software
engineers to design gestures as models. On the other hand,
automation is increased by means of model transformations.

The objectives of this approach are:

(a) To provide a methodology to include gesture-based interaction in
software systems user interfaces, which is platform-independent
of computing devices.

(b) To provide a mechanism that helps the developer to specify a
catalogue of gestures that can be included in a software system
user interfaces for devices with gesture-based interaction.

We apply gestUl in user interfaces of existing software system with the
aim of modifying the component related with the interaction to add
the possibility of using gestures to perform actions. Under this
situation, we consider the Model-View-Controller (MVC) design
pattern because it describes the logical components of a user interface
in an independent way of any technology.

In summary, the method proposed is based on Model-driven paradigm
and on the Model-View-Controller design pattern with the aim of
generating gesture-based user interfaces. Therefore, the reasons
about their use is given in the following sections: Section 4.2 gives an

72

answer about the use of Model-Driven paradigm in this thesis. Section
4.3 explains the use of Model-View-Controller design pattern in this
thesis. Additionally, Section 4.4 presents an explanation about the
needed resources to implement the method.

The subsequent sections of this chapter are organized as follows:
Section 4.5 introduces the method proposed called gestUI. Section 4.6
describes the personalization of the gestures. Section 4.7 includes the
summary of this chapter.

4.2 Why a Model-Driven method?

The major challenges that Software Engineering has to deal with are
represented by two questions: how sustainability can increase
productivity? And how you can shorten the period of time to have new
software or new versions of existing software? [34].

Unfortunately these questions do not have answers based on the
traditional methodologies of software development, they employ a
paradigm focused on the code and third generation languages, and its
role is defined to be in the field of the solution instead of in the field
of problem [34] [36]. This implies that software systems developers
require more effort in the process of implementing software systems
[94], consequently affecting their work performance, and time to have
new versions of software systems.

MDD is a software development approach that has the potential to
deal with the identified challenges of Software Engineering mentioned
above. MDD proposes the use of models to specify the desired details
of a system (requirements) and using transformations rules to
generate the source code automatically to the hardware platform
specified in the process [120]. MDD offers an environment that
ensures the use of models throughout the development process of
software systems [34]. Another feature of MDD is abstraction, a
fundamental feature for describing components of software system
development without considering the target technology platform
[121]. In our thesis, abstraction is an important feature since the

73

proposed framework is platform independent of hardware and/or
software of the devices.

In summary, in this thesis, techniques related with MDD are applied.
This help to raise the level of abstraction of the process, which
enhance the development process of software systems with gesture-
based interaction, and facilitate the definition of gesture-based
interaction in software systems. By applying these techniques, we get
improved productivity by managing the similarities and differences of
the devices with gesture-based interaction, promoting reuse and
automation in the software development process.

4.3 Why a Model-View-Controller design pattern?

The software systems must work on various types of devices, including
devices installed in different environments and devices that users
carry with them [122]. The aim is to improve the usability of a software
system [123] because they must provide convenient access to the
services offered, and allow users to learn the functionalities of the
application and to produce results in a short time. Software systems
must be adapted to interact with the user in an appropriate way based
on the context where the user is located.

In the specification of the architecture of these software systems, the
functional core should remain independent of the user interface. This
core, based on the functional requirements of the system, usually
remains stable. The user interface may need some change or
adaptation. For instance, (i) the software systems may have to support
different user interface standards, or be configured to suit the client’s
business process. This leads to the need of using architectures that
support the adaptation of user interface components without causing
significant impact on software system-specific functionality or data
model used [124]; (ii) the software systems that are based on
traditional interaction (using keyboard and mouse) could be migrated
to use a gesture-based interaction but maintaining the same

74

functionalities, that is, now the user employs a gesture to do an action
that before required using a keyboard or mouse.

The mentioned possibilities can be realized using a MVC design pattern
in two instances of the software system lifecycle:

a) When the software system is in the design stage. In this case, the
software engineers include features to specify the type of
interaction to use in the user interface.

b) When the software system is implemented. In this case, software
engineer can modify existing features in the user interface in order
to include other type of interaction in the user interface. We
consider this situation in this thesis.

Figure 11 shows the software system based on the MVC design pattern
where the controller of the software system receives signals done with
traditional interaction using keyboard and mouse to perform actions.

Display

L]

Input device

Keyboard,

mouse, efc.

—-> CONTROLLER "

Figure 11. Software System with traditional interaction
Figure 12 is shown the same software system based on the MVC design

pattern but with other controller that supports gesture-based
interaction where the user can employ gestures to perform actions on
the system (gesture-based interaction). In this latter case, the “new”
controller is prepared to receive actions by means of gestures instead
of actions by means of keyboard and mouse.

75

H“R\’/___--\
T { Y
—

| MODEL |
3 /‘

Figure 12. Modifying the controller to support gesture-based interaction
In this thesis, the MVC design pattern is used because it allows to treat

the logical components in an independent way of the technology
components in a device [123]; furthermore, from the logical point of
view, knowing the hardware platform which will operate the software
system resulting in the code generation process is not considered
essential. The independence in the components defined by this design
pattern is also complemented with platform independence achieved
using MDE in the process of definition of the methodological
framework.

4.4 Determining needed resources

In order to develop the method for including gesture-based interaction
in software systems for any device, it is necessary to consider some
questions that help us in the construction of the solution:

e What kind of gesture can be specified?

e What kind of gesture-based interaction will be supported?

e What kind of actions might be performed through gesture-
based interaction?

We consider that the following resources are required to obtain an
answer of each of these questions:

e An artefact to define the type of gestures that the user can
perform independently of target devices;

76

e The specification of the supported interaction type
independently of target devices;

e A mechanism to specify the actions that can be performed
through gesture-based interaction.

A brief explanation about these resources is included in the following
paragraphs:

e Regarding the type of gestures to use in the process, we consider
touch gestures because currently in the market there are devices
that support these types of gestures. The touch gestures are used
in devices with touch screen such as smart phones, tablets,
computers, and so on. It is needed to define the features that
characterize a gesture to include them in the artefact that allows
the gesture definition. Using the model-driven paradigm is
possible to specify some tasks to perform in the software
development life cycle: (i) to specify types of gestures, and even to
establish patterns of gestures so that information regarding
gestures is available for inclusion in software development
processes considering gesture-based interaction; (ii) to define the
relation between gesture and the command (or action) included
in the user interface.

e The task related with the specification of supported interaction
type involves two aspects: (i) the definition of the device because
the type of interaction is directly related to the type of device and
(i) the context of use because this feature defines how will be
specified the actions in a device. For instance, if the user has a
device with touch screen, he/she uses a touch gesture implying
touch gesture-based interaction. If the user has the hands and
eyes occupied with other tasks such as driving, then the speech
interaction is appropriate.

e Finally, regarding the action that can be performed with touch
gesture-based interaction, it is related with the definition of the
gesture-action correspondence. The actions are specified by
means of commands assigned to the widgets (image, text field,

77

button, etc.) included in a user interface. The type of actions
depends of the type of software system, if we consider a form-
based software system, the actions are related with typical
operations of a database (e.g. CRUD® operations), but if we
consider a CASE tool to draw diagrams, the actions are related with
sketching primitives of a diagram (e.g., using a finger to sketch a
rectangle and to obtain a class in a UML diagram). Therefore, the
gesture-action correspondence consists in the specification of a
gesture to perform any action when a user touches some widget
in the user interface. For example, if the item is an image then the
actions can be: reducing the size (zoom in), increasing the size
(zoom out), rotating right, rotating left, sending by e-mail, etc. If
the element is a button, it will only be possible to press the button
to execute some action specified in this widget (e.g. to save a
record in a database). Additionally, users can sketch custom
gestures on a touch surface to execute some action, e.g., a user
can sketch a gesture to print a document instead of select the
corresponding option in a menu.

In this thesis, the specification of these resources is performed using
metamodels and models that are employed as part of the proposed
methodology using MDE. A detailed description of the mentioned
resources (metamodels and transformations) in the scope of
aforementioned methodologies can be found in the following pages.

4.5 gestUl: our proposal

This chapter introduces a new model-driven method, called gestUI
that aims to overcome the limitations that are identified in Chapter 1,
in the implementation of user interfaces with gesture-based
interaction.

In order to obtain a better understanding about our proposal, this
section describes the following topics related with gestUl: (i) features
of gestUl, (ii) metamodel to represent a gesture catalogue modelling

9 CRUD operations are referred to Create, Read, Update and Delete.

78

language including the description of each class of the metamodel with
its business rules!®, (iii) components of gestUl and, (iv) model
transformations defined to obtain gesture-based user interface.

4.5.1 Features of gestUI

gestUl [125] is defined with the aim of helping in the definition of
custom gestures and in the inclusion of gesture-based interaction in
user interfaces.

gestUl is model-driven since its main artefacts are conceptual models
which are compliant with the Model-Driven Architecture, a generic
framework of modelling layers that ranges from abstract specifications
to the software code. gestUl is composed of three layers according to
the model-driven method: a platform-independent layer, a platform-
specific layer and source code.

gestUl is user-driven because the users are the main actors in the
definition of custom gestures and in the inclusion of gesture-based
interaction in information systems user interfaces.

gestUl is iterative because if the users are not satisfied with the
definition of the gestures or maybe they have problems sketching
some gesture, then they can repeat the process of gesture definition
to redefine such a gesture.

Through MDD, gestUl aims to tackle the problems indicated in Section
4.1, as Table 9 shows.

The scenario where gestUl can be included to implement gesture-
based user interfaces consists of the following steps:

Step 1: Stakeholders (e.g. software engineers, end-users, software
analysts) obtain the requirements specification of the software system

10 According to Kardasis et al. [163], business rules have been defined as
‘declarations of policy or conditions that must be satisfied’ in a software
system or in an organization.

79

containing human-computer interaction (gesture-based interaction)
to include in the user interface.

Step 2: The software system, including the user interfaces, is designed.

Step 3: The developers implement the software system, including user
interfaces.

Step 4: By using gestUI, the stakeholders include the gesture-based
interaction in the user interface and finally, by applying model
transformations they obtain the gesture-based user interface source
code. gestUl modifies the source code of the user interfaces in order
to include custom gesture definitions and gesture-based interaction
according to the requirements specified by the end-users. As a result
of this, a new version of the existing user interface is automatically
generated by using model transformations.

Step 5: By executing the software system, the user can perform actions
using this recently implemented user interface with gesture-based
interaction.

Table 9 Detected problems vs. Benefits of model-driven paradigm to solve them

Problems described in Benefit of model-driven paradigm [29]
Section 4.1

Problem (iv) Productivity

Problems (ii) Portability

Problem (v) Interoperability

Problem (iii) Reusability

Problem (i) Source code automatic generation

Then, considering this sequence of steps, gestUl permits also the
inclusion of gesture-based interaction in legacy systems with user
interfaces supporting traditional interaction using keyboard and
mouse. After the application of gestUl, such user interfaces will
support the gesture-based interaction.

4.5.2 Metamodel of the gesture catalogue modelling language
We consider that a user interface of a software system supporting
gesture-based interaction requires a gesture catalogue containing

80

custom gestures to execute actions (commands) specified in the user
interface. This type of user interface is called gesture-based user
interface.

In this thesis, we define a metamodel (Figure 13) to specify the gesture
catalogue modelling language. The description of the proposed
metamodel consists of the classes that define the gesture catalogue,
the business rules and constraints defining custom gestures. These
business rules will be applied in the definition of the gesture catalogue
using validation rules by means of OCL (Object Constraint Language)
sentences, which will be included in the stage of metamodel definition.

initial T0.7¢na To.4

B 0.1 g outgoing
Posture -
% ingoing 1 H Precedence
tar
g Catalogue target .
—— doing | 1. 1source 0.

having

1.* stores

. e
H Action |realizes| H Gesture | strokes [H stroke
o —

,

Figure 13. Metamodel of the gesture catalogue modelling language
A description of each class is included in the following paragraphs:

Catalogue: It represents a gesture catalogue which contains all the
gestures defined by the user, and that are available in a system or a
device. It has an attribute that describes the name of the gesture

catalogue.
Table 10. Business rules for the "Catalogue" class
Class Business rule OCL constraint
The name of the catalogue context Catalogue
must be unique inv: self.contains -> isUnique(Name)
Catalogue

A gesture catalogue hasat context Catalogue

least one gesture inv: self.stores -> size >0;

The business rules associated to this class are “The catalogue name

must be unique” and “A catalogue contains at least one gesture”.
These business rules are validated using OCL sentences as is shown in
Table 10.

81

Gesture: It represents the gestures that conforms a gesture catalogue.
It has some attributes to describe a gesture: (i) the name of a gesture,
(ii) if the gesture is discrete or continuous, (iii) the pressure applied on
a touch surface when a gesture is sketched and, (iv) the duration time
by sketching a gesture. The business rules associated to this class are:
“The gesture name must be unique”, “A gesture can be discrete or
continuous”, "A multi-stroke gesture is formed by a sequence of
postures”, “A touch-based gesture applies a pressure on the screen”
and, “A gesture has duration time > 0”. These business rules are

validated using OCL sentences as is shown in Table 11.
Table 11. Business rules of the "Gesture" class

Class Business rule OCL constraint

The names of the context Catalogue

gestures defined in the inv: self.stores ->

catalogue must be unique forAll(g|g.isUnique(Name));
Catalogue A gesture can be discrete context Catalogue

or continuous inv: self.stores ->

select(g|g.typeGesture=#discrete or
g.typeGesture=#continuous)

Gesture A multi-stroke gesture is context Gesture
formed by a sequence of inv: self.strokes>1 implies
postures self.strokes.doing -> size>1
Gesture A touch-based gesture Context Gesture

applies a pressure on the Inv: self. Pressure>0

screen
Gesture A gesture has duration Context Gesture
time > 0 Inv: self. duration Time>0

In this case, we define the enumeration “GestureType” containing the
values “Discrete” and “Continuous”. It permits to specify the type of
gesture according to the definition included in Chapter 2.

Action: It defines the action (command) to execute when the gesture
is sketched by the user and recognised by means of a gesture
recogniser algorithm. The business rule associated to this class is “A
gesture performs one or more actions”. This business rule is validated
using an OCL sentence as is shown in Table 12:

82

Table 12. Business rule of the "Action" class

Class Business rule OCL constraint
A gesture performs one or context Gesture

Gesture K i i i
more actions inv: self.realizes -> size>0

Stroke: It corresponds to the marks made with a mouse, pen or finger
to define a gesture or a part of it. According to the number of strokes,
a gesture can be single-stroke or multi-stroke. The business rule
associated to this class is “A gesture contains at least one stroke”. This
business rule is validated using an OCL sentence as is shown in Table
13:

Table 13. Business rule of the "Stroke" class

Business rule OCL constraint
A gesture contains at least context Gesture
Gesture . .
one stroke inv: self.strokes -> size>=1

Posture: It corresponds to the description of each posture that
conforms a gesture. The attributes are: name of the posture which is
used to identify it; the state of execution of the posture (initial,
executing, final). The business rules associated to this class are “A
stroke contains at least one posture” and “The state of execution of the
posture can be initial, executing or final”. This business rules are
validated using OCL sentences as is shown in Table 14.

In this case, we define the enumeration “State” that contains the
values “Initial”, “Executing”, and “Final”. It is used to specify the cycle
of execution of the postures of a gesture.

Precedence: It specifies the precedence relation between postures. It
has an attribute (name) to identify the precedence defined between
postures.

The business rule associated to this class is “If a stroke has two or more
postures then it is required to define a precedence relation”. This
business rule is validated using an OCL sentence as is shown in Table
15.

83

Table 14. Business rules for the "Posture" class

Class Business rule OCL constraint
A stroke contains at least context Stroke
Stroke)) .
one posture inv: self.doing -> size>=1
The state of execution of the context Posture
posture can be initial, inv: self.state ->
Posture executing or final select(g| g.state=#initial or

g.typeGesture=#executing or
g.typeGesture=#final)

Table 15. Business rule for the "Precedence" class
Class Business rule OCL constraint

If a stroke has two or more context Gesture

Strok postures then it is required inv: self.strokes -> size>=2 implies
roke
to define a precedence self.stroke.having -> size >0
relation

Figure: It defines the type of figure that can be drawn using the points
of a posture which is part of a gesture. In this case, we define two
additional enumerations which contains definition of values of some
attributes that complete the specification of a gesture: (i) Enumeration
called “Orientation” containing the orientation (up, down, left, and
right) in which a figure is drawn using the points defined in a posture;
(ii) Enumeration “FigureType” that defines the type of figure (e.g. line,
circle) that can be drawn between two points in order to obtain the
drawing of a posture, and finally, the drawing of a gesture.

Point: Itis related with the postures that conform a gesture. It contains
the definition of coordinates (X, Y) to trace a posture and locate a
gesture in a touch screen. The coordinates must take valid values in a
touch screen depending on its size and its resolution. The business rule
associated to this class is “In a touch-based gesture, the values of
coordinates (X, Y) must be greater than zero”. This business rule is
validated using an OCL sentence as is shown in Table 16:

Table 16. Business rule for the "Point" class

Business rule OCL constraint
In a touch-based gesture, context Posture
Posture the values of coordinates (X, inv: self. Initial.X >0; self. Initial.Y

Y) must be greater than zero >0;self.final. X>0; self.final.Y>0

84

The data structure that defines a gesture is described in Table 17.

Therefore, according to the proposed metamodel (its classes, the
business rules and the constraints specified with OCL sentences), we
consider that:

A gesture catalogue (Catalogue class) contains one or more gestures
(Gesture class) to execute actions (commands) (Action class) of a
software system. Each gesture is formed by one or more strokes
(Stroke class) defining single or multi-stroke gestures.

Each stroke is formed by postures (Posture class). A posture can be
sequentially divided into three states (Figure 14): initial, executing, and
final (State enumeration):

e The first state (Initial) occurs when the user begins sketching
the gesture, for example, in a touch-based system the user
puts a finger on the screen and the system detects it.

e The second state (Executing) can be formed by a set of
postures depending of the type of gesture that is being
sketched.

85

0<A 120]4 *Pa10212p SI YdNOo] B 343YM A S1BUIPIOOD 3Y1 JO anjeA 3yl salonads 1) Ab10oo)
0<X 120|4 ‘Pa12212p SI 4onol B 242y ¥ 21eUIPI00D 241 JO anjen 2yl saijinads 3| ¥p1oo) 1ul0d

Sy pue ya ‘umoq ‘dn wnug "ainisod e ul umelp aunSly e Jo UoIlRIUSLIO 3] Saldads angue ay | uonealQ
32410 Bur wnugy 'sjulod 0M] US3MISQ UMEIP 34 Ued 1eyl aundiy Jo adA| adA) aungi4
Surns "a1msas e ul saunisod usamiag paulap uonejal ajuapadald ayl Jo awen awen aJjuapadald

‘|eulq ‘Sunnoax3 ‘|eniu| wnu3 "ain3sod 2yl Jo uollnJaxa Jo alels ayl sainads) 21015
Suras ‘ainisod syl Jo awep awepn aun1sod
Surns 21n23axa 01 UOIID. 3yl 1O aweN awepn uonay

*SNONUIIU0D 10 81842510 wnu3 "aun1sad e jo adAy ayy sadads adA)
Suras ‘a4n1sal ayl Jo awen awepn ain1sag
Suing a1n1sa8 andoje1ed ayjy jo aweN awep anZojeie)

uonensasqo

uonduasag

anquuy

Table 17. Data structure of a gesture

86

e The third state (Final) occurs when the user finishes the sketch
of the gesture, for example, in a touch-based system occurs
when the finger of the user doesn’t touch the screen.

Fingerl

@ L) Initial

V& (2) Executing

: g ’ 3) Final

Finger2
Figure 14. States of a posture
If a gesture consists of two or more postures is necessary to specify
the order of execution of them. In this case, there are two possibilities
to consider:

e Using a sequential number to specify the order of the postures
that conform a gesture, or

e Using the concept of precedence relation to specify the order and
relation of the postures that conform a gesture.

In this thesis, we consider the concept of precedence relation
(Precedence class) because is more adequate to specify successor and
predecessor in a set of postures rather than assigning a number of
sequence to the postures. The precedence relation defines the order
of execution of a set of postures that conforms a gesture, therefore,
considering the concept of precedence relation between two postures
Pa and Pg, posture P must necessarily occur before posture Pg occurs
(see Figure 15).

Consequently, the sequence of strokes in the gesture is specified by
means of precedence order.

87

Additionally, the concept of precedence relation considers the
definition of source and target postures to specify the order and
relation of the postures that conforms a gesture. Also, in this concept
the definition of two states (ingoing and outgoing) is considered in
order to specify the input and output precedence in the execution of
a posture (see Figure 15).

Source Target

(\ i ‘] m POSTURE .| POSTURE .
P st PB 3
A .
Ingoing Qutgoing
] o
o o
R B

LEGEND

[j Posture P‘

g . Precedence relation

a
o
P, R,

Figure 15. Precedence relation between postures

Each posture is composed of two points, initial and final, and each
point (Point class) is described by coordinates (X, Y). Each posture
draws a figure (e.g. line, circle) (Figure class) with an orientation (up,
down, left, right) (Orientation enumeration). The set of postures
(points) conforms the gesture.

If a gesture has two or more postures, it is necessary to define the
precedence relations between postures in order to specify their order
and relation. In this definition, source and target postures must be
specified and, ingoing and outgoing precedence must be specified too.

During the trace of a multi-stroke gesture, it is necessary to consider
the time interval between strokes that are being executed. For
instance, if a gesture is formed by two strokes, then the time interval
between strokes must be specified in order to recognize that both
strokes belong to the same gesture.

88

In the process of definition of a gesture the elapsed time between
postures must be similar’! because the duration of one of them can
define a gesture different to the gesture that the user wants to define.
In Figure 16, a set of postures (A-B-C-D-E) that outline a gesture is
shown, each posture has a duration time t;, but the next posture (E)
has a duration time t; (t; # t2). In this example, we have two gestures
instead of one gesture: first gesture (postures: A-B-C-D), and the
second gesture (sequence E). If t; = t;, would have only a defined
gesture (postures: A-B-C-D-E). For instance, the action of pressing the
touch screen during a short time defines the tap gesture, but if the
time is greater the gesture can be traduced as “tap and hold”.

(‘WHWHY)Q? W

?:'e.':' d [

t ’ t ‘ t1 ‘ 2
I | | I
A B C D E

Figure 16. Interval of time between postures

Some of the constraints defined using OCL in the metamodel are
included in Table 18.

11 When the user sketches a multi-stroke gesture, which is represented by a
sequence of strokes, in the specification of the gesture, the user needs to
specify a value of time between strokes so that it can determine that the trace

of the gesture is complete, i.e., the execution of the gesture is finished.

89

inition

Table 18. Constraints and business rules of gesture def

0 < AP100D'J|35 pUB (< XP400D'}35 AUl

‘013z ueyl lai1eald 3Q 1snW Ap100)

U104 1X31U0D pue ¥pJo0) $31NguU1Ie 2yl 01 paudisse sanjen ay | wiod
{Z=<9715<-5S30BIT"J|35 AUl
2in1s04 12102 aunmsaf e auyap o1 syulod omy 1sea| 1e pasinbau s1 ainisod
‘uoile|al sauapadaud e sulsp o1 palinbai
0 < 9715 <- SUINeY 33 0.415°}|2S S3l|dwWI g=<3ZIS <- S30J157J|a5 AUl 51 1 uayl sainjsod alow 1o oMl Sey ay0odis e | arons
‘0< 9715 <- ulop-y|as AUl
230415 1X21U02 ainisod U0 15ea| 1B SeY 2H0I1S Y arons
10=9715 <-52ZI|Bal J|as (AUl
2IN1590) IXaU0D uoloe ue suuopad aunysad y ainisag
{0<97IS <- S3H0JIS Y35 AUl
2IN15905) 1Xa1U0D 230415 U0 1583 3B Sey aunmisad y ainisag
{0< 9ZIS <- $21015°J|95 AUl
ango|eje) 1xa1u02 ain1sa8 auo 1sea| 1e sey anSojeied aunisad y angojeie)
{{(swen)anbiunsi 3| 8)||w10} <- $21015°}3s :AUL anbiun a3q 1snw anJojeied
anSoje1e) 1Xa1U0d 3yl ul paulap saun1sas ayl Jo saweu ay | an3ojeie)
(ewepn)anbiuns! <- suIRIU0D"}|3s :AUL
anSoje1e) 1Xa1U0d anbiun aq 1snw anSo|e1ed ay1 Jo aweu ay| an3ojeie)

JUIENISUOD 130

uondussag

90

4.5.3 Components of gestUI

Figure 17 shows an excerpt of the typical structure of an existing
method based on model-driven paradigm to develop user interfaces.
As is shown in Figure 17, a method defined by means of model-driven
paradigm has three layers: platform-independent layer, platform-
specific layer and source code layer. From the platform independent
model (PIM) using successive transformations we obtain the platform-
specific model (PSM) and then the source code is obtained. This source
code of the user interface includes traditional interaction.

PLATFORM INDEPENDENT LAYER PLATFORM SPECIFIC LAYER . CODE LAYER
i it
SPECIFY NTERACTION TNTERFAGE MODEL
INTERACTION REQUIREMENTS DESIGN IMPLEMENT INF&HSMrQEON
REQUIREMENTS INTERFACE INTERFACE HTERFACE
LEGEND: INPUT f QUTPUT g7y HOSTMETHOD OR
D ACTIVITY |:| PRODUCY —® ReLATIONSHIP f.-- EXISTING PRODUCT

Figure 17. A general excerpt of any method for develop user interfaces
In general, the activities and products included in the layers of any

existing MDD method are:

e In the platform-independent layer, the interaction requirements
are detailed (Activity “Specify Interaction Requirements”)
obtaining as a result the requirements specification to develop a
user interface (Product “Interaction Requirements”).

e Inthe platform-specific layer, the interaction requirements are the
input to perform the interface design (Activity “Interface Design”).
As a result, in this layer the interface model is obtained (Product
“Interface Model”).

e In the code layer, the interface model is the input to implement
the interface (Activity “Implement Interface”) and to obtain the
information system interface. As a result, in this layer the source
code of the user interface is obtained (Product “Information
System Interface”).

In order to obtain gesture-based interfaces, we propose including
gestUl in the layers of any MDD method. Figure 18 shows the resultant

91

method consisting of three layers that contain existing activities and
products, represented in grey colour and, activities and products

contained in gestUI, represented in white colour.

PLATFORM INDEPENDENT LAYER

PLATFORM SPECIFIC LAYER

CODE LAYER

SPECIFY
INTERACTION
REQUIREMENTS

INTERACTION
REQUIREMENTS

i
DESIGN
= INTERFACE

L
b
IMPLEMENT
INTERFACE

INFORMATION
SYSTEM
INTERFACE

A2. DESIGN

A1. DEFINE
GESTURES

GESTURE
CATALOGUE
MODEL

GESTURE-BASED
INTERACTION

124

|JGESTURE-BASED
INTERACTION

C?Aﬂ GENERATE
GESTURE-BASED
INTERFACE

Y

7* A3. GENERATE
GESTURE
SPECIFICATION

AN
SPECIFIC
GESTURE

[SPECIFICATION I

JGESTURE-BASED)|
INTERFACE

(A5, TEST)
GESTURES | *®

GESTURE
RECOGNITION
TooL

LEGEND: D |:|

ACTIVITY PRODUCT MULTI-PLATFORM INPUT/OUTPUT AUTOMATION

—_— 1 OURPROPOSAL

%

"% HOSTMETHOD OR EXISTING PRODUCT

CHOICES RELATIONSHIP

Figure 18. gestUl method overview (Taken from [31])

Each one of the modules contained in gestUl are described in the

following paragraphs according to Figure 18:

Platform-independent layer

1.

Activity Al (“Define gestures”) in which the developer
specifies the gestures in collaboration with representative
information system users. In our proposal, the gestures are
defined by sketching on a canvas, then they are stored in the
‘Gesture catalogue model’ which conforms to the metamodel
described in Section 4.5.2. Each gesture is formed by one or
more strokes defined by postures, which in turn are described
by means of coordinates (X, Y). The sequence of strokes of the
gesture is specified by means of precedence. Each posture in
a gesture is related to a figure (line, rectangle, circle, etc.) with
an orientation (up, down, left, and right) and a state (initial,
executing, final) qualifying the order of the strokes. The
gesture catalogue definition could be part of a larger
The
obtained in this activity is the gesture-catalogue model. Figure

‘Interaction requirements’ specification. product

19 shows an example of platform-independent gesture
definition using the gesture model.

92

o X platformi/resource/Thesis/Catalogarmi

44 Catalog MyCatalog
4 % Touch Gesture Tap

o 4 Finger Fingerd

< Posture tapPosturel
4 4 Posture tapPosture —J

4 Point1200
< P tapPosture3

% Precedence precedencel
4 Precedence precedencel

Properties

—.l Catalog Name MyCatalog

—

—| Finger Name Fingesl

Gesture Name Tap
Gesture Type [Dmg =0 v]

Duration 200
Friction 00

Outgeing Precedence precedencel E]

Posture Name tapPosturel

Posture uate [Inala0 ~]

Pressure 00
Speed 00
Duration 1500
Friction 00

Ingoing Preced: precedencel [;]
Qutgeing Precedence precedence? EI

Posture Name tapPosture

Posture State Enx\nng =1 v
o0

Pressure

Speed o0

Coord X 1200

CoordY 1100

Duration 200

Frction 00

Ingoing Preced preced) :]
Outgoing m

Posture Name tapPosture3

Posture State [_F_u_\ol =2 -

Pressure 00

Speed 00

Precedence Name precedencel

Source (Posture topPosturel _ ~|
Target (W
Precedence Name precedence2

Source [Posture tapPosture '1
Tuget (Posture tpposture |

Figure 19. Platform-independent gesture definition
In this figure, it is possible to check the classes and their

attributes included
chapter.

in the metamodel described in this

93

Platform-specific layer

In this layer, the activities A2 and A3 permit that the gesture catalogue

can be defined from a previously defined gesture repository. That is,

the gestures can be reused in other user interfaces in the same

software system or in other software system. The description of each

of these activities is as follows:

Activity A2, “Generate gesture-based interaction”, since the
user interface is designed in this layer, the gesture-based
interaction is also defined in this layer in collaboration with the
user by means of a code-centric method. The filename of the
user interface source code is inserted as attribute in the
“Gesture” class in the gesture catalogue model with the aim
of processing the source code to obtain the actions defined in
the user interface. In a model-based software system user
interface development, the actions are specified in the
interface model. In a code-centric interface development they
are implemented on the source code of the interface itself.
The procedure mainly consists of applying a parsing process
on the source code to obtain the components included in the
user interface, after which the correspondence between the
gesture and action/command included in the user interface is
allocated. This correspondence allows a set of sentences
(action/command) to be defined in the same programming
language as the source code of the user interface and enable
it to be executed by each gesture previously defined. The
product obtained in this activity is stored in the “gesture-
based interaction model”.

Activity A3, “Generate gesture specification”, consists in an
M2M transformation using ATL as model transformation
language. The gesture catalogue model is required as input
data and the result is the platform-specific gesture
specification. In this case, we consider the structure of the

94

gesture definition according to SN gesture recognition tool as
the target platform in the model transformation.

Source code layer

This layer contains two activities:

4. Activity A4, “Generate gesture-based interface” where the

4.5.4

gesture-based interaction model and the gesture catalogue
model are transformed into an executable and deployable
code of the wuser interface written in the selected
programming language. The tool generates components (e.g.,
Java code) that are embedded in the existing information
system interface. ‘Gesture based interface’ is automatically
generated by the platform-specific layer artefacts.

Activity A5, “Test gestures”, in this activity the gesture
catalogue model is transformed into language supported by
the gesture recognition tool (i.e. XML) so that both the
developer and the user can test the gestures using the gesture
recognition tool (we currently support three gesture testing
platforms: quill [89], SN [50] and iGesture [48]). We apply M2T
transformation with transformation rules written in Acceleo to
generate the platform-specific gesture catalogue for each
gesture recognition tool.

Model transformations

gestUl is a model-driven method to define custom gestures and to

include gesture-based interaction in user interfaces. Following a

model-oriented paradigm is possible to obtain user interfaces with

gestural interaction for any platform and other benefits related with

this paradigm.

A model-driven method includes metamodels, models and model

transformations [29]. The metamodel of the gesture catalogue is

described in Section 4.5.2. In this section, with the aim of completing

95

the description of gestUl we describe the model transformations
included in our work to obtain the gesture-based user interfaces.

In this thesis, we apply M2M and M2T model transformations in order
to obtain a user interface including gesture-based interaction. With
the aim of describing the model transformations we consider Figure
18 where the model transformations are represented by means of a
symbol (a gear) in the upper left corner of the A3 and A4 activities of
gestUI.

Firstly, a M2M transformation is performed during the activity A3
(Figure 18) to obtain the platform-specific gesture catalogue
specification. This specification contains the gesture catalogue model
according to the specification of the gestures to be used in the
definition of the gesture-action correspondence to include gesture-
based interaction in user interfaces. This specification is based on the
definition of gestures included in the gesture recogniser algorithm
considered in this thesis: SN gesture recogniser. The model obtained
in this model transformation conforms to the gesture catalogue
metamodel described in Section 4.5.2.

Figure 20 shows this aforementioned M2M transformation that is
executed by means of a transformation definition which contains the
transformation rules written in ATL. Gesture catalogue model which is
conforms to gesture catalogue metamodel is the input to the M2M
transformation. Platform-specific gesture specification (model) is the
output in this transformation.

PLATFORM INDEPENDENT LAYER PLATFORM SPECIFIC LAYER LEGEND.

O LI

ACTIVITY PRODUCT MULTI-PLATFORM
CHOICES

INTERACTION
REQUIREMENTS

CATALOGUE GESTURE

MODEL SPECIFICATION INPUT / QUTPUT

» RELATIONSHIP

GESTURE '(As GENERATE

‘~ AUTOMATION

¢ OUR PROPOSAL

M2M transformation .
t HOST METHOD OR EXISTING PRODUCT

Figure 20. An excerpt of Figure 18 showing the M2M transformation
An excerpt of the transformation rules written in ATL is included in

Figure 21 that contains the transformation rule to create the “Gesture”

96

class in the target model. In this transformation definition, the input is
the gesture catalogue model and the output is platform-specific
gesture specification.

-- rule to create Gesture in multiStrokeGesture
rule Gesture {
from
sl: MMMTG!Gesture(sl.employs-»size()=1)
to
tl: MMMSG!Gesture (
gestureName <- sl.gestureName,
gestureType <- sl.gestureType,
gestureDate <- sl.gestureDate,
gestureTime <- sl.gestureTime,
realizes <- thisModule.Action(sl.realizes),
strokes <- sl.employs-»collect(e|e.strokes
-»collect(d|thisModule.Stroke(d)))

Figure 21. An excerpt for the M2M transformation
Secondly, a M2T transformation is performed to obtain the source

code of the gesture-based user interface (Figure 22). With the aim of
supporting gesture-based interaction, this user interface source code
contains the relation between gestures and actions where the
gestures belong to the previously defined gesture catalogue and the
actions are obtained from the same source code. This M2T
transformation is included in the activity A4 of gestUIl, described in
Section 4.5.3. The filename containing the source code of the user
interface and the name of the gesture catalogue are input data for this
model transformation. In this case, the target platform is also specified
by the user to generate the source code of the user interface.

Additionally, using a second M2T transformation we obtain the
gesture catalogue to be included in each of the three frameworks
(gesture recognition tools) used in this thesis to test gestures (Figure
23): (i) quill [89] using GDT 2.0 to describe the gesture catalogue, (ii)
iGesture [48] using XML to describe the gesture catalogue and (iii) SN
using XML to describe the gesture catalogue. In each transformation,

97

the specification of the target platform is required; in this case, each
aforementioned framework.

PLATFORM SPECIFIC LAYER CODE LAYER LEGEND:
{ } |
e OO O
SYSTEM

INTERFACE ACTIVITY PRODUCT MULTI-PLATFORM

CHOICES

P
IGESTURE-BASED) ¥ A4 GENERATE INPUT / OUTPUT
INTERACTION Qesrua&»ws&o T) =% RELATIONSHIP
MODEL INTERFACE | .
% AUTOMATION
PLATFORM- [h)
SPECIFIC (i
GESTURE 3
SPECIFICATION. *‘_‘.. 1

M2T transformation

. OURPROPOSAL

.{ HOST METHOD OR EXISTING PRODUCT

Figure 22. An excerpt of Figure 18 showing the M2T transformation to obtain the
gesture-based user interface

These M2T transformations are executed via a script containing the
transformation rules written in Acceleo, applying a script that specifies
information such as the classes and components participating in the
generation, output folders, etc. The combination of the components
that support the code generation process is depicted in Figure 24. The
template definition, which drives code generation, constitutes the
most important part of the transformation process. Appropriate
templates have been defined for the platforms considered in our work:
XML (SN and iGesture), GDT (quill) and Java.

PLATFORM SPECIFIC LAYER . CODE LAYER ; |teceno
ACTIVITY PRODUCT MULTI-PLATFORM
P - CHOICES
SPECIFIC bV INPUT / OUTPUT
GESTURE A5, TEST GESTURE =% GELATIONSHIP
SPECIFICATION GESTURES RECOGNITION
TOOL {52 AUTOMATION

‘\"{ 7 OURPROPOSAL

=~
M2T transformation

-.{ HOST METHOD OR EXISTING PRODUCT

Figure 23. An excerpt of Figure 18 showing the M2T transformation to obtain the
test gesture

Figure 24 includes an excerpt from the template written in Acceleo, for
applying M2T transformation to obtain the gesture catalogue for the
SN gesture recognition tool. It also includes a header containing the
general information of the gesture (gesture name, date and time when
the gesture was sketched, number of strokes, number of points, etc.),
the strokes contained in the gesture, and the set of points which
conform the gesture.

98

In this thesis, the SN gesture recognition algorithm [126] is adopted in
order to apply it in the gesture recognize process. In this algorithm, the
description of each gesture is stored in a file using XML, therefore, the
transformation rules applied in the M2T model transformation
consider the structure of the file containing each gesture in order to
use it with the corresponding gesture recognize process.

[template public gestureM2T(aCatalog : Catalog)]

[comment @main/]

[for (g:TouchGesture|aCatalog.stores)]

[file (g.gestureName+'.xml', false, 'UTF-8')]

<Gesture Name = "[g.gestureName/]"

Subject = "test" Speed = "test" Milliseconds = "@" AppName = "NDollarRecognizer-java" AppVer =

"1.8" Date = "[g.gestureDate/]" TimeOfDay = "[g.gestureTime/]">

[for (f:Stroke|g.strokes)]

<Stroke index = "[f.strokeID/]"»
[For (p:Posture|f.doing)]
<Point X = "[p.initial.CoordX/]" ¥ = "[p.initial.CoordY/]" T="8"/>
<Point X = “[p.final.CoordX/]" Y = "[p.final.CoordY/]" T="8"/>
[/for]

</Stroke>

[/for]

<[Gesture>

[/file]

[/for]

[/template]

Figure 24. An excerpt for the M2T transformation
4.6 Personalization of gesture definition

4.6.1 Introduction

One of the main factors that could determine the success of gesture
sets in user interfaces is whether the gestures can be effectively
learned and remembered [45]. Personalization attempts to help the
users to remember the gestures available in a user interface because
the gesture is defined by the users themselves.

Personalization of gesture definition is related with a flexible gesture
definition with no or minimal decrease of accuracy [127]. It is often
desirable and necessary for users to create their own gestures, or
personalized gestures [128].

gestUl is designed to support personalization of gestures by means of
the definition of custom gestures, as described in Section 4.5.
Additionally, if we consider this feature with the aim of redefining an

99

already defined gesture using gestUl then the user has two possibilities
as is showed in Figure 25:

(i) When the gesture-based interaction model containing the
custom gesture definition is obtained.

(ii) When the gestures are tested using the gesture recognition
tools.

PLATFORM INDEPENDENT LAYER PLATFORM SPECIFIC LAYER CODE LAYER LEGEND

looga

ACTIVITY PRODUCT MULTI-PLATFORM
CHOICES
INPUT / QUTPUT
® RELATIONSHIP

SPECIFY
INTERACTION
REQUIREMENTS

INTERACTION
REQUIREMENTS

ESTURE-BASED)
INTERACTION
MODEL

GESTURE

CATALOGUE W A3, GENERATE
MODEL GESTURE
SPECIFICATION AS5. TEST
GESTURES

Figure 25. An excerpt of gestUl showing the redefinition of a gesture

A1. DEFINE
GESTURES

{3 AUTOMATION

PUATFORM-
SPECIFIC ||
GESTURE

SPECIFICATION

¢ OUR PROPOSAL

1 HOST METHOD OR EXISTING PRODUCT

We describe how gestUl supports this feature of custom gesture
redefinition by enhancing the metamodel described in Section 4.5.2.

In addition, the user has a third option to redefine custom gestures:
when the system software containing user interfaces with gesture-
based interaction is running. We have implemented a module that
must be included in the software system with the aim of redefining
custom gestures. This option is described in Section 4.7.

It is important to comment that by adding this feature in gestUl we
give support to the user-centered design in the process of
development of user interfaces including gesture-based interaction.

4.6.2 Enhancing the metamodel

With the aim of implementing the personalization feature so that each
user of gestUl can define/redefine custom gestures, we enhance the
metamodel including two classes in the metamodel described in
Section 4.5.2: User and Userlnterface (Figure 26). These classes permit
to complete the description of a user interface with gesture-based
interaction.

100

| Buser |

H Userinterface works = Uid : EString = figureMame : EString

i H - 1

= interfaceName : EString [~ + = password : EString
- 1

traces g 0.1

1" define o "’E“:D‘I:(”Oal 0.1 fina| E Posture source 1] 5 precedence
E GestureCatalogue : = name : EString | _target 1 | = name : Estring
= catalogueMame : EString 0.1 initial
- 1 . ingoing 1

‘[contains L omgolngl

ctores doing | 1.

H stroke

= gestureName : EString 1.» | © strokelD : EString
- 1

Figure 26. Enhanced version of the metamodel

H Adtion

having | 0.*

= actionName : EString
= actionCommand : EString | executes

The description of each class and its business rules are described in the
following paragraphs:

User: It represents a user of the user interface containing actions to
execute by using gestures. It has an attribute that describes the user
identification (UID) of the user. The business rules associated to this
class are “The user identification (UID) of the user must be unique” and
“The user can define at least one gesture in a gesture catalogue”. This
business rules are validated using OCL sentences as is shown in Table

19.
Table 19. Business rules for the "User" class

Class Business rule OCL constraint
The user identification context Userlnterface
(UID) of the user must be inv: self.contains -> isUnique(UID)
unique

User -
A user can define at least context Userlnterface
one gesture in a gesture inv: self.defines -> size >0;
catalogue

Userlnterface: It represents a user interface which contains widgets
(e.g. button, text field, canvas) containing actions to execute by the
user, and that are available in a system or a device. It has an attribute
that describes the name of the user interface.

The business rules associated to this class are “The name of the user
interface must be unique”, “A user interface is used at least by a user”
and “The user interface contains at least one action to execute”. This
business rules are validated using OCL sentences as is shown in Table
20.

101

Table 20. Business rules for the "UserInterface" class

Class Business rule OCL constraint
The name of the user context UserInterface
interface must be unique inv: self.contains -> isUnique(Name)

A user interface isused at context User
Userlinterface

least by a user inv: self.works -> size>0
A user interface has at context UserInterface
least one action inv: self.contains -> size >0;

The personalization feature is related with the enhanced version of the
gestUl metamodel in order to include the user’s definition, which
permits individual users to define their own gestures catalogue to
include gesture-based interaction in the user interface (Figure 27).

@ - - 6 ’E ~

userl gesture definition gesture catalogue 1

- */j.:_,;__(: - R -S user interface

VID

user2 gesture definition gesture catalogue 2

Figure 27. Users defining their own gestures catalogue to apply it in the same user
interface

In this metamodel, the class Userinterface denotes the link to an
existing user interface metamodel containing an element related with
the action to execute using gesture-based interaction. Then, a user
interface can be used by one or more users. Each user defines his own
catalogue containing one or more gestures; each gesture permits to
execute an action contained in the user interface. Each gesture is
formed by one or more strokes defined by postures, and in turn
described by means of coordinates (X, Y). The sequence of these
strokes has an order of precedence. Each posture is related to a figure
(e.g. line, circle) with an orientation (up, down, left, right), and is
qualified by a state (initial, executing, final).

102

4.7 Overview of gestUI to include gesture-based interaction
in a user interface

4.7.1 Introduction

In order to illustrate how to apply gestUI to include gesture-based
interaction in a user interface we use MAP, a representation system
which provides a non-deterministic ordering of intentions and
strategies to model the multi-faceted purpose of a system [129].

An intention is a goal that can be achieved by performing a process
[130]. For example, in the excerpt of the gestUl map shown in Figure
28 there are two intentions: “Define a gesture” and “Include the
gesture in a repository”. Additionally, in a map there are two special
intentions called ‘Start’ and ‘End’ to respectively start and end the
process.

A strategy is an approach, a manner to achieve an intention [130]. In
the same Figure 28 there is one strategy called “By storing the
gesture”, defining a transition from “Define a gesture” to “Include the
gesture in a repository”, is a manner to “Include a gesture in the
repository” in a context of gesture-based interaction definition.

Strategy
\ By storing

the gesture

Include a
gesture in the
repository

Define a

Figure 28. An excerpt of the map representation of gestUI
A map is graphically represented as a directed graph from Start to

Stop. Intentions are represented as nodes and strategies as edges
between nodes (see the map representation of the gestUl method in
Figure 29). Dashed arrows represent strategies that have

103

methodological support but are not completely supported by the
current version of the gestUI tool, described in the next chapter.

In Section 4.7.2 we explain the process to include custom gestures in
a user interface (Step 3) and in Section 4.7.3 we explain how to
redefine the existing custom gestures (Step 4).

4.7.2 Including gesture-based interaction in a user interface

In this section, we describe the process to include gesture-based
interaction in a user interface using gestUl. We use the metamodel
(Figure 26) and the map representation (Figure 29) to describe how is
the process to include gesture-based interaction in a user interface.

Hence, in the following paragraphs, we describe the set of steps by
means of intentions and strategies to include gesture-based
interaction in a user interface with gestUl:

i. A user opens a session in gestUl. gestUl has two ways to allow
users (e.g. developer, end-user, collaborative user) to establish a
connection in a device (e.g. computer, notebook, smartphone) in
order to define gestures:

e Intention: “Open a local session”. Users open a local
session directly on the device.
e Intention: “Open a remote session”. Users open a remote
session by means of an Internet connection.
The information of the user is stored in the “User” class.

ii. The user defines gestures. This definition can be performed by
three ways:
e Intention: “Directly sketching” a gesture on the device in a
local session and including it in the gesture catalogue (Figure
30).
e Intention: “By sharing an existing definition” of a gesture, that
is, by importing a gesture definition in the gesture catalogue.
e Intention: “By sketching a gesture” on the device in a
remote session, that is, by using an Internet connection users
sketch gestures and they are include in the gesture catalogue.

104

aied (uojoe-ainisas)
HuiuBisse Ag

wioped Sujpales Ag

@ouspuodsaiiod
uoipe
-ainsad auyaqg

wuope|d
128121 3U1l3Q

uoneRuad
Jiewaoine Ag

3po2 304nos
F0epIIU paseq
-2un1sad uleigQ

Fuixa Ag wioye _.n_

128121 3U113Qg

saunsad Buisooys
Ag

Funuiojsuey Ag

(Spuewwod)
S HERRIEH ik

suoljae fuisooya

g

{nsd)
anfojeie] ainisa9
214103ds ulelgO

(1d) ®n3ojeies
ainsan aulag

uuoyield Suldynads
g saunEaf fuipa)as Ag

Alousodal
3yl ul aunsad
e 3pn|ou|

=002 aDINos
SIep1=]uUl

PO FINOS 135N 103)25

Huisied Ag

apo3 aoInos
Suipajas Ag N
Jaudisap Ag
duiddo|
uolssas adojanap Ag

|e20]
e uadg

Buiddo| Jasn-|

\

aunysade —
Sunpiays Ag /
alnyadie
Fuueys Ag
~
-

—

ainysad
eaulaq

~
aumsad e uiyazays Ag
Te—

s

S
anjsad ay
Sunoys Ag

30w

/

pua Ag ‘___

/

'
Suiddo)1asn
anljeloqe||od Ag

/

uolssas

e uadp

T
aunysad e Buueys Ag_ -

f gestUI

ion o

MAP representati

Figure 29

105

Table 21. Strategies of gestUI

2p0d 32uNn0os ‘patinbal s1 apo2 apoo
20BUDIUL 13SN 1299 | 224105 32pf131ui 425N b fo UOI193[as Y1 UDIIDRISIUI paseq-ainisad spnpul ol apio u] | aounos Sundspes Ag | 7T
2ouapuodsaliod "82uU3pudsalIod uoiIn
uolpe-ainlsad aulaq | -aun1sab fo uonuifap syl Ul palapIsSu0d 3q 01 $a1n1sa8 asooyd 01 padinbal s11asn sy saun}sas Suisooyo Ag | TT
(sd) @n8ojeiea ‘pajessuad
ainjsa8 oyads uielqQ | st anboypina 24nisab aifizads-wiofipjd B uolleWIOjsSURI) [2pOoW-0l-[apow e Juisn Suiwuoysueni Ag | 0T
‘uonewuojsues]
uuojield 1981e1 suyaqg | |epow e SulA|dde jo wie syl yum wuofipid 126101 b saifizads aosn syl | wioped SuiAynads Ag 6
(1d) @n8oje1en anfiojpino aun}sab
ain)sald auyaq | wapuadapul-waofioid sulysp 01 Alonsodal ayl woly saunlsad 109)3s ULd 4asn ay | saunysa8 Bunos|as Ag 2
Aonsodau 1M1528 Aq paulap Aroyisodas ayl ur papnpour s| Aoysoday
e ul ainisad e apnjou| | [BUJSIX2 Ue WOl pateys Jo ysel Suiyoiays e Ag pauysp sl leyl 2unisa8 yoe3z | ainmisasd ayl Suuols Ag /
‘Aioysodal |eusalxs
21nysa8 & aULR] ue ul paiols st ydiym 2in1sad e Suueys Aq aunysab woisnd p aulfap ued 1asn yoel a1n1sas e Buueys Ag 9
aun1salf woisno saJinisa8
ayoJ3s-iyynw 4o afbuis o aulfap 01 snjAlsfuad e 1o s1a8uly Jay/sIy asn ued Jasn yoej | e Juiymnays Ag S
‘uoiulap anfojeled aunysad
uoIssas ajowai e uadg 241 ulelqo 01 Jasn yaea Jo uolulap sainisad ayl Ajiuspl o1 Japio ul paudisse
’ sI (gIn) uoneayiuapl Jasn e ‘ssatold SIY1 JO JNsal sy plomssed pue aweulasn 13sn aAneloqe||0d
e Buisn uo1PauUoDd 310wWal e Jo sueaw Ag |N1sa8 o1 ul So| ued Jasn jo adAy siy) | se ul Suig8oq v
1asn
‘uoilulap ando|eied 2un1sad ay) uIe1go 01 195N YIB3 JO uoiulap saun1sad | Jaudisap se ul Sui88o
uolssas |ejo] e uadQ | 2yl Ajiuapl o1 Jspio ul paudisse si (Q|n) uonedlyuapl 1asn e ‘ssadodd siyl Jo | 19sn-pua se ul Suiddo €
1nsal sy "piomssed pue aweu Jasn e 3uisn UoID3UUOD |BJ0| B JO sueaw Aq oddns J1adojanap 4
|00 3526 01 ul Boj ued (1asn-pua pue saudisap Jadojanap) siasn Jo sadAyaauylay) | se ul Suig8oq T

uonuau|

uondudsag

106

81

doig 1N1saF SUXS J9sn 3yl usym paysiuly si ssasoud ay | Sunns Ag
"aopfia1ul 4asn pasng-ainlsal ayl s 1 nsal ay| "uonesauad apoo
3p02 32JN0S 303Ul | 32JNOS pue S3|NJ uonewdojsuel] pauyap Aisnoiaaid Sulispisuod uolleLWAC)SURLY uonesaual
paseq-2unlsad uelqQ | 1x=21-01-]2pow e SuiA|dde Aq paulelgo S| 9p02 20UN0S 92BJ421U1 125N JO UDISIaA MaU Y | J1ewolne Ag | £1
P02 22JN0S 24} UIP1GO O} UCIIRWIOSURL]
wiopield 1@81e1 sulyaqg | wer-0l-jepow ue Adde o1 sepiro ul uuofioyd 126ip) a3yl s123(35 13asn ay| wuopne|d Sunosjas Ag | otr
Jied (uornpe
22uapuodsaliod ‘uolle[al uoIloe — aunisas syl saulyap Jasn ayy | -samisad) Suubisse Ag | GT
uonoe-aunisad auyag ‘uoI1oRIajUI paseq-21n1sad ayl apnjoul 01 Japdo Ul 32uapuodsaLiod Uoian
-34n1s3b 3y} sautfap 13sn 3yl saunisad pue suolloe palda|as Ajlsnoiaald Suisooyd Ag suoioe Suisooyo Ag | T
(spuewwod) ‘2P0 224N0S 22BL121UI 125N Y1 Ul apo2
suoloe uielqo | pspnjaul (spuewwod) sUoi1o0 3y uplgo o1 3jqissod s1 11 ‘sssooud Fuisied e SuiAjddy | sounos Suisied Ag | €T

107

Vi.

The information obtained is stored in the “Gesture” class.
Depending of the type of gesture (single-stroke or multi-stroke)
the “Stroke” class contains one or more instances. The additional
classes of the metamodel (Posture, Precedence, Figure, Point) are
filled with information when the gesture is multi-stroke.

2pe.. - o HEM

Figure 30. User defining a gesture

The user includes a gesture in the repository. A repository of
gestures contains the gestures defined by the users.

e Intention: “Include a gesture in the repository” by storing
each gesture defined by the users in a repository.

The user defines a platform-independent gesture catalogue.

e Intention: “Define gesture catalogue (PIM)” by selecting
gestures from the repository according to the
requirements specified by each user. The
“GestureCatalogue” class is filled with information of each
gesture included in the catalogue (Figure 31).

The user defines a target platform.

e Intention. “The user defines a target platform” to apply a
model transformation.

A platform-specific gesture catalogue (PSM) is obtained.

e Intention. “Obtain a specific gesture catalogue” as a result
of apply a model-to-model transformation. In Figure 32 is
described the user interface “DrawingDiagrams” with two
users “User1” and “User2”. Each user has defined a
gesture catalogue “GestureCatalogueUser1” and
“GestureCatalogueUser2”. Each catalogue contains
gestures defined for each user.

108

gesture catalogue [lrm e limes |t s
metamodel B
‘.‘_‘_‘ .
conforms to

€. CRUD_Cataleg semi 2 =2 M
¢ | X phtformresource/DvawmShapes CRUD Cxuyioganms
¢ 4 Caalog CRUD Caaiog
¢ ¥ Touch Gesture opticnt
< Acton gl
& Stroke Stigkel
4 ¥ Touch Getture opticn®
< Acton ral
& Strodos Stickel
& Stioke Sticke)
4 ¥ Touch Getture opticnll
4 Actonrul
& Stroke Yickel
4 4 Touch Gecturs cpbicnl

4 Actionrul

vhos Strokal

& Strcke Strckel

Figure 31. Platform-independent gesture catalogue

vii. User selects the source code of a user interface.

e Intention. “Select user interface source code” to include
gesture-based interaction. This source code contains
actions to perform the tasks involved with the user
interface of the software system.

The “Userinterface” class is used in this intention to
include the gesture-based interaction using gestUI.
viii. We obtain the actions (commands) included in the user interface
source code.

e Intention. Obtain actions (commands) included in a user
interface by applying a parsing process with the aim of
searching keywords related with actions (Figure 33). The
keywords depend on the programming language used to
write the source code. For example, in Java, elements such
as panel, button, label, etc. can be used to define actions
in a user interface:

109

v & platform:/resource/DrawShapes/metamodels/Userinterfacel.xmi
wv <4 User Interface DrawingDiagrams

& platform:/resource/DrawShapes/metamodels/ExtendedGestUIMetamodel.ecore

w4 User Userl
w 4 Gesture Catalogue GestureCataloguellser]
w < Gesture Userl_G
< Action drawGoal
4 Stroke 1
4 Stroke 2
w4 Gesture User]_C
< Action drawConstraint
4 Stroke 1
w4 User User2
w 4 Gesture Catalogue GestureCataloguellser2
w 4 Gesture Userd_C
< Action drawCause
4 Stroke 1
4 Stroke 2
4 Stroke 3
v e Gesture Userd A
4 Action And
4 Stroke 1

Figure 32. A specific-platform gesture catalogue

Widget
definition

—— JButton btnlpdate = new JButton("Update™);

btnUpdate.addActionlistener(new ActionListener() { —— Even! 1.1“9““
public void actionPerformed(ActienEvent e) { definition
if (jTable.getSelectedRow()!=-1)

Action perform | | controllerDepartment.GetDepartment(); Action definition

structure

try {

} catch (DAOExcepcion el) {
/! Auto-generated catch block
el.printstackTrace();

1

Figure 33. An excerpt of the source code of a user interface containing widget

definition and keywords

The “Action” class is filled with information about the actions
(commands) included in the user interface specified in the process.

ix. We define the gesture-action correspondence to apply in the user
interface.

X.

Intention. “Define a gesture-action correspondence” as a
one-to-one relation between a gesture of the gesture
catalogue and an action included in the user interface
source code.

The user defines a target platform.

110

e Intention. The user “defines a target platform” to apply a
model transformation.
xi. We obtain gesture-based interface source code as a result of the
model-to-text transformation.
e Intention. “Obtain the gesture-based interface source
code” corresponding to a user interface including gesture-
based interaction.

The strategies are a way of achieving an intention. In this case, we
specify the strategies that permit to achieve each intention described
in this section. Table 21 has four columns: “ID” column identifies the
number of strategy. “Strategy” column contains the name of the
strategy, the “Description” column includes a short explanation of
each strategy contained in the map representation of gestUl, and the
“Intention” column describes the intention related with the strategy.

4.7.3 Redefining a gesture during the execution time

If the user wants to change the initial specification of the gestures
(redefine them) because he/she has problems to remind them or
he/she has problems to sketch them, then it is needed to include some
tools to permit the modification of the initial gesture catalogue
specification in the user interface with the aim of improving the
human-computer interaction.

In this section, we explain how a user can redefine an existing gesture
directly in the software system during the execution stage (runtime).
As is mentioned before, the process to redefine an existing gesture
must be included in the software system containing the user interface
with gesture-based interaction.

In this case, we use a map representation (Figure 34) to demonstrate
how is the process to redefine custom gestures in the software system
containing the gesture-based user interface. Then, this map shows the
intentions and strategies to use custom gestures in the user interface
and to redefine existing custom gestures in the software system.

111

The redefinition process consists in that the user again sketches the
custom gesture according his/her preferences and then this gesture is
included again in the gesture catalogue to be used in the software
system to perform the same action defined in the beginning of the
process when this gesture was defined with gestUI (as is explained in
Section 4.7.2).

In the following paragraphs, we describe the set of steps by means of
intentions involved in the map representation (see Figure 34) and the
classes included in the metamodel (Figure 26) to redefine gestures
included in a user interface supporting gesture-based interaction:

i. The user log in to the software system. The software system
has one way to allow that users (e.g. developer, end-user,
collaborative user) establish a connection in a device (e.g.
computer, notebook, smartphone) to use a user interface with
gesture-based interaction included:

e Intention: “Log in to software”. Users (developer, end-
user) open a session directly on the software system.

e Intention: “Log in to software”. User (collaborative user)
opens a remote session on the software system.

When the user is logged in to the software system he/she
obtains a user identification (UID). This UID is related with the
previously defined gesture catalogue included in a user
interface to support gesture-based interaction.

The “User” class of the metamodel contains the information
required to log in to the software system.

ii. The user chooses a user interface according to the task to
perform in the software system:
e Intention. “Use gesture-based user interface” to perform
some task by means of gestures

The “Userinterface” class is referred to the user interface with
gesture-based interaction included.

112

iii. The user performs some actions by drawing gestures in the user
interface of the software system.
e Intention. “Use gestures in the user interface” to perform
some actions in the software system by means of gesture-
based interaction.

The “Gesture” and the “Action” classes define the gesture-action
correspondence to perform actions in the user interface by
means of gestures.

iv. If the user has problems with the gestures included in the user
interface, then he/she can redefine them.

e Intention. “Redefine custom gestures”. This redefinition
can be done by two ways: (a) by sketching gestures on a
canvas in the software system, or (b) by sharing gesture
definition trough an Internet connection. In this case, the
“Gesture” class is modified with the new information of
the redefined gesture. The other classes (“Stroke”,
“Posture”, “Precedence”, “Figure”, and “Point”) are also
modified with the new information of the custom gesture.

e Intention. “By including gestures”. When the redefinition
of the gesture is ready, it is needed to include again this
gesture in the gesture catalogue defined in the software
system. The “GestureCatalogue” class is modified with the
information of the recently redefined gestures.

The strategies included in the software system containing user
interface supporting gesture-based interaction are described in Table
22 that has four columns: “ID” column identifies the number of
strategy. “Strategy” column contains the name of the strategy, the
“Description” column includes a short explanation of each strategy
contained in the map representation of the software system, and
“Intention” column describes the intention related with the strategy.

113

uad e yum
Buiypiays Ag

uonnlisxa
dujysiuy Ag

saln}sad Buimelp Ag

aoepIaul
i3asn paseq
-34n31538 asn

E-TITER T
Jasn ay3 ul
s3dn31sa8 asn

daduy yum
Buiyaiays Ag

FIBUAIUIIFSN
Fuipaas Ag

Bujuyepas Ag

saunsad

sainisag
Buipnaul Ag

— Sainysald
Buueys Ag

sainsasd
wo3sna
suyspay

saunysad
Buiyaieys Ag

Ul ui#do|
Jasn-pua Ag

u1 Su8do|
“rasn anjesoge|joo Ag

Uy #u 8o
Jadojasap Ag

Figure 34. Map representation of the software system with the redefinition feature

included

114

Table 22. Strategies of the software system with gesture-based interaction

pug "Wa1sAs 24BAM1JOS 3] JO UOIINISXa SY] SaYSIUL 135N ay | uonndaxa ulysiuy Ag | €T
*90BJI33UI 135N Byl Ul 3unisad syl s|qe|iene
op 01 JapJo ul anSoje1ed aun3sad JUa.uNd Sy Ul 2un1sa8 31 JO UDIIIULBP MBU Yl
ajepa21ul | apnjoul o1 salinbal ays/ay ‘aun1sal ayl Jo uoIlIUIlBpal Y1 S3YSIUL 12sSN Ayl UayM, aimsad JuipnpulAg | ZT
1asn Ay ul -an8o|e1ed aunisas Jaylo
saun1sa8 asn | ul uoniuyap Sunsixa ue Suueys Ag auop aq ued 2in1sag ayy Jo uoniulapad Ayl aunysad Juueys Ag | TT
"snjfis/uad e 1o
J138uny e yum aun1sas ayl Suiyolays Aq suop aq ued ain1sas ayl Jo uoniulspal sy ainysas Suiyoias Ag | o1
s21n1s28
wolsnd "M 2uiapal ued ays/ay (yaiays 03 paey
aulapay | sl Y 40 pulwal 01 piey st 1 "3-3) aun1sad ayl yum wajqoud awos sey 1asn ayl §| sain1sad Suiulyapas Ag 6
"aJeIa1ul 135N 3yl ul seaued e uo snjAls/uad e Suisn aun1sad e sayoays Jasn ayl uad e yum Suiynays Ag]
1osh MM”M_E“" "20BJ121U1 Y3 Ul seaued e uo Ja3uly Jay /sy Sulsn 2un1sad e sayolays Jasn a2yl | J29uly e yum Suiyolays Ag I
S mm_a_ *90BJ43]UI 135N 31 Ul uonoe ue Sulwiopad
Jo wie ay1 yum anSojeled ainisad ayl ul pauleluod 2413536 B 421a3s UBD J3sn 3y sainisad Suimelp Ag 9
ERlIVENT]
BEL paseq
-aunisa8 asn "wa1sAs SUBM1JOS SY1 Ul }SE] SWOS Wiopad 0] 90BJ491U1 JSSN B 5109[95 Jasn ay] | 9Jeja1ul asn Suips|as Ag [
‘andoje1ed ainisad pauyap Ajsnoiaaad ayl Ajiquapl 01 Japlo ul paudisse
s {@In) uomedyiauap! J3sn e ‘ssadoud syl Jo 3 nsal sy "piomssed pue sweuwiasn Jasn
e Suisn uoIpauuod alowal e jo sueaw Aq |n1sa8 o1 ul So) ued uasn jo adAy siy] | aaineioqge|jod se ul SuiB8oq €
o3 M_LmBMM“ ‘an3o|ejed aunisas pauyap Ajsnoinaid
: ay1 AJipuapi o1 J3pJo ul paudisse si (g|n) uoieduapl 1asn e ‘ssatold siyl Jo
}nsau sy "piomssed pue sweu Jasn e Suisn uodauuod [e20] B Jo sueaw Aq walsds Jasn-pua se ul Sui8807 z
aipmyfos ayl o1 ur Boj ued (1asn-pua pue iadojanap) siasn Jo sadAl omy sy 1adojanap se ul SuiS8o T

uonuaju|

uondunsaq

115

4.8 Summary

This chapter presents an integral proposal for the development of user
interfaces of software systems with gesture-based interaction for any
device platform. This proposal is based on the application of concepts
(metamodel, model and model transformations) of model-driven
paradigm.

The application of a model-based approach is justified by two aspects:
the need to raise the level of abstraction of the process, and the
possibility of applying a methodological approach. This model-based
approach involves M2M and M2T transformations to convert PIM to
PSM, and models to source code.

This chapter has described the features of the method to develop, the
components and model transformations that comprise it and the
relationship between them. Finally, it has presented an overview of
the proposed method.

Additionally, we describe the gesture redefinition feature that permits
to redefine gestures according to the needed and preferences of the
users.

116

CHAPTER

gestUl

TOOL
SUPPORT

The topics covered in this chapter are:

5.1 Introduction

5.2 Components of the tool support

5.3 Development methodology of the tool
support

5.4 Implementation of the tool support
5.5 Demonstration of the tool support

5.6 Summary and Conclusions

117

118

Chapter 5. gestUIl Tool Support

5.1Introduction

Software development process is always a challenging activity,
especially because software systems are becoming more and more
complex with the introduction of the called natural user interaction in
the user interfaces. This situation permits that software development
process is shifting its attention towards MDD because it has
demonstrated positive influences for reliability and productivity of the
software development process.

The previous chapter first outlined a conceptual model for define
custom gesture catalogue and then defined the model-driven method
called gestUl to define custom gestures and to include the gesture-
based interaction in user interfaces. This method has been defined
following the MDD principles, as models drive its application, and the
gestUl tool support has been built to support its models and activities.
This method has been defined to guide the custom gesture definition
and the inclusion of gesture-based interaction in the user interfaces of
software systems.

In this context, the support of the tool is a valuable asset allowing the
definition of the gesture catalogue model and supporting the
necessary transformations to obtain the source code of the user
interfaces supporting gesture-based interaction.

The remainder of this chapter is structured as follows. After this
introduction, a description of each one of the components of the tool
support is presented in Section 5.2. Section 5.3 describes the
methodology adopted for the implementation of the tool support.
Section 5.4 contains the description of the implementation of the tool
support. Section 5.5 includes a demonstration of the applicability of
the tool support in a form-based software system and in a Case Tool.
Finally, Section 5.6 ends this chapter by presenting the conclusions.

119

5.2 Components of the tool support

The main idea behind the tool support is to facilitate a graphical
environment for the definition of custom gestures and the inclusion of
gesture-based interaction in user interfaces. Then, in order to
demonstrate the applicability of the proposed method we
implemented with Java programming language and Eclipse Modelling
Framework a prototype of the tool support structured into three
systems (Figure 35):

(i) The information system with interfaces where we aim to
include gesture-based interaction.
(ii) The gestUI tool to include the gesture-based interaction in

user interfaces.
(iii) A framework to test the gestures defined using gestUI (i.e.
quill, iGesture, SN).

Regarding the second system (gestUl tool), by using the Java
programming language and the Eclipse Modelling Framework we
implement it.

The main features of gestUl tool support are:

(i) The definition of custom gestures catalogue to execute
actions in the user interfaces.

(ii) The inclusion of gesture-based interaction in the user
interfaces of a software system by specifying the gesture-
action correspondence.

(iii) The definition and the execution of model transformations
to obtain PIM, PSM and source code of user interfaces of the
software system.

The user interface of the tool support is composed by three options.
Each option corresponds to one of the above main feature and it is
related with one of the three subsystems, as shown in Figure 35:
Gesture Catalogue Definition Module, Gesture-Action
Correspondence Definition Module and Model Transformation
Module. Next we describe these subsystems.

120

Each component of the tool support is implemented according to the

corresponding component of gestUl described in Chapter 4. The

implementation of each component is described in Section 5.4.

INFORMATION SYSTEM <<syslem>> 2]
IS INTERFACE <<subsystem>> {I
GESTURE-BASED <<components> @
INTERFACE
A
<<system>> gestUl TOOL =]
<<subsystem>> E
<<subsystem>> GESTURE-ACTION CORRESPONDENCE
GESTURESq_ GESTURE DEFINITION MODULE
| E—— CATALOGUE
] <<component>= <<component=>
! DEFINITION GESTURE-BASE GESTURE-BASE LEGEND:
' INTER- A= INTERACTION INTERFACE
| ACTION || | L _pestaner wea | | enerator e Qrote
] (M) R A |
T 1 " gestUl
Hq | Bttt 1 .-+' COMPONENT
H <<subsystem=>
DEVELDPER MODEL TRANSFORMATION MODULE £] s, EXTERNAL
ANDJUSER % oo~ TECHNOLOGY
[<<COMpOonents:: <<companen1>>§ <=components= e L
TN;K'SE_'I_“*' $N M2T quill M2T iGesture M2T
COMPOMENT
TECHNOLOGY | | [[RANSFORMATION| |[TRANSFORMATION | [TRANSFORMATION OMPO
(M3)
T — GENERATION
7
INFORMATION
<<system>> -—=
$N, quill OR iGesture ‘;ﬂs) PROVISION

Figure 35. gestUlI tool support
In the following sections are described each one of the subsystems

included in gestUl:

5.2.1
The “Gesture Catalogue Definition Module” subsystem (Figure 36)
provides functionalities for defining custom gestures and it is

Subsystem “Gesture Catalogue Definition Module”

responsible for the execution of the model-to-model transformation
to obtain the gesture catalogue model.

Therefore, this subsystem requires as input the custom gestures
sketched by the users on a touch-based surface. As output, the
subsystem produces the gesture catalogue model.

The subsystem contains the M1 activity described in the following
paragraphs.

121

<<subsystem==

GESTURE
Custom » CATALOGUE Gesture
gestures m DEFINITION catalogue
MODULE model

(M1)

Figure 36. An excerpt of Figure 35 showing the subsystem "Gesture Catalogue
Definition Module"

i. M1 Activity: Firstly, the subject draws custom gestures using a
finger (or a pen/stylus) on a touch-based screen (Table 21,
Intention “Define a gesture” and Strategy “By sketching a
gesture”). Each gesture is stored in a repository (Table 21,
Intention “Include a gesture in a repository” and Strategy “By
storing the gesture”). Then, in order to define the platform-
independent gesture catalogue (Table 21, Intention “Define
gesture catalogue (PIM)”), the subject chooses one or more
gestures from the repository (Table 21, Strategy “By selecting
gestures”) and then they are inserted in the gesture catalogue
model. This gesture catalogue model (conforms to the
metamodel described in Chapter 4) is the input for the “Model
Transformation Module” and the “Gesture-Action
Correspondence Definition Module” subsystems.

This subsystem gives as result the gesture catalogue model. This model
is used in the other subsystem as input.

5.2.2 Subsystem “Gesture-Action Correspondence Definition
Module”
The “Gesture-Action Correspondence Definition Module” subsystem
provides functionalities for defining the gesture-action
correspondence that consists in the relation between a custom
gesture of the gesture catalogue and an action contained in a user
interface.

122

We apply a parsing process (Table 21, Intention “Obtain actions
(commands)”) to obtain the actions included in the source code of a
user interface. The parsing process (Table 21, Strategy “By parsing
source code”) has as input the source code of a user interface. This
process is based on the search of keywords according to the syntax of
the programming language in which is written the source code and the
primitives (e.g. button, panel) that are included in the user interface.

This subsystem contains two components (Figure 37): Gesture-based
interaction designer (M2) and gesture-based interface generator (M4).
Each one of these components are described here:

<<subsystem== $:|
GESTURE-ACTION CORRESPONDENCE
DEFINITION MODULE
Gesture catalogue model m <<component>> <<component>> Gesture-based
- : GESTURE-BASEI GESTURE-BASE » .
Gesture-based interaction INTERAGTION INTERFACE user interface
DESIGNER (M2) GENERATOR (M)
inputﬁ
Gesture-action correspondence
User interface source cade

Figure 37. An excerpt of Figure 35 showing the subsystem "Gesture-action
Correspondence Definition Module"

Component: “Gesture-based Interaction Designer”. This component
provides the functionalities for defining the gesture-action
correspondence in order to include gesture-based interaction in a user
interface. The inputs for this component are: the gesture catalogue
model (from M1) and the user interface to include gesture-based
interaction. This subsystem contains the M2 activity (Figure 37):

ii. M2 Activity: This defines the gesture-action correspondence
through the following process: it begins selecting a user interface
source code (Table 21, Intention “Select user interface source
code” and Strategy “By selecting source code”) with the aim of
analysing it and finding the actions included in it by applying a
parsing process. The parsing process permits the discovery of a
set of actions by means of checking the source code to search
strings (or substrings) containing keywords (e.g. in the Java
programming language: JButton, JPanel) [131].

123

The process of defining gesture-action correspondence (Table
21, Intention “Define gesture-action correspondence”) takes as
input two arguments: (i) the previously defined gesture
catalogue model (Table 21, Intention “Obtain specific gesture
catalogue (PSM)”) with the aim of assigning each gesture with an
action; (ii) the source code of a user interface (Table 21, Intention
“Select user interface source code”) to search keywords related
with actions (Table 21, Intention “Obtain actions (commands)”)
contained in the structure of source code that is based on a
programming language such as Java (e.g. JButton to define a
button, JPanel to define a panel).

As a result of this process we obtain a set of actions included in
the user interface. Therefore, if any action is found, a one-to-one
relationship is defined between this action and a gesture.

Component: “Gesture-Based Interface Generator”. This component

has the functionalities to apply a model-to-text transformation with

the aim of generating the source code of the user interface with

gesture-based interaction included. The inputs for this component are:

gesture-action correspondence and the user interface source code.

The output of this component is the new version of the user interface

source code. It contains the M4 activity (Figure 37):

M4 Activity: This executes a model-to-text transformation in
order to apply a code generation process (Table 21, Intention
“Obtain gesture-based interface source code”) to obtain the new
version of the user interface source code containing gesture-
based interaction.

Considering the source code of the user interface, and by using
an automatic process, we insert each gesture-action
correspondence in the corresponding component of the user
interface. This process is iterative while any action is found in the
source code of the user interface. Finally, we apply a code
generation process obtaining the user interface with gesture-

124

The

based interaction included (Table 21, Strategy “By automatic
generation”).

5.2.3 Subsystem “Model Transformation Module”

“Model Transformation Module” subsystem provides the

functionalities required to apply the model-to-model transformation

and the model-to-text transformations included in the process for

obtaining gesture-based interaction. The inputs for this subsystem are:

gesture catalogue model and the target platform to perform each one

of the model transformations.

This subsystem contains the M3 activity (Figure 38):

iv.

M3 Activity: This includes the transformation rules and the
scripts written in ATL and Acceleo to apply M2M and M2T
transformations, respectively. This activity requires two inputs:
the gesture catalogue definition model and the target
technology.

Firstly, a M2M transformation (Table 21, Strategy “By
transforming”) is performed to obtain the gesture catalogue
model (Table 21, Intention “Obtain specific gesture catalogue”)
according to the specification of the gestures to be used in the
gesture recogniser algorithm. In this case, we consider as target
platform (Table 21, Intention “Define target platform” and
Strategy “By specifying platform”) the SN gesture recogniser and
we obtain the platform-specific gesture catalogue specification.
In a second place, an M2T transformation is performed to obtain
a gesture catalogue to be included in two frameworks to test
gestures (Table 21, Strategy “By selecting platform”): (i) quill [89]
using GDT 2.0 to describe the gesture catalogue and (ii) iGesture
[48] using XML to describe the gesture catalogue. Finally,
another M2T transformation (Table 21, Strategy “By automatic
generation”) is performed to obtain the user interface source
code including gesture-based interaction (Table 21, Intention
“Obtain gesture-based interface source code”).

125

<<subsystem>>
MODEL TRANSFORMATION MODULE gl XML-based gesture catalogue
Target technology for gesture test frameworks
SN M2T €] quill M2 2] iGesture M2T £ .
Gesture catalogue RANSFORMATION| [TRANSFORMATION| [TRANSFORMATION platform-specific
(M3) gesture specification

Figure 38. Excerpt of Figure 35 showing the subsystem "Model Transformations
Module"

5.3 Development methodology of the tool support
We followed a standard software development process and applied
various techniques encompassing the specification and validation of
software requirements, the modelling of the system architecture, the
design of the software and user interface, the use of standard
programming practices, and the validation of the resulting software
application [132].

In this thesis, we use Design Science methodology which supports a
pragmatic research paradigm promoting the creation of artifacts to
solve real-life problems [33]. As suggested by the design science
approach, we conducted an ongoing evaluation of the tool based on
its application to a concrete case to ensure its usefulness in a concrete
setting.

In order to give the reader a more concrete understanding of the
various artefacts used by our tool, we will illustrate their concrete
application to two cases: (i) in a framework to test gestures and (ii) in
a software system to manage information. Yet, this example is not only
intended to facilitate the understanding of the tool by showing its
application to a concrete case, but also to evaluate its applicability in
a real context to define (and to test) custom gestures and to include
gesture-based interaction in user interfaces of a based-form software
system.

5.4 Implementation of the tool support
According to our proposal described in Chapter 4, regarding the
components included in gestUl, the implemented tool support
requires three options (Figure 39):

126

(i) “New Catalogue” to define gesture catalogue model (Table 21,
Intention “Define gesture catalogue (PIM)”).

(i) “Specific Catalogue” associated with platform-specific gesture
specification (Table 21, Intention “Obtain specific-gesture
catalogue (PSM)”).

(iii) “Gesture-Action” to define gesture-action correspondence

and source code generation (Table 21, Intention “Obtain
gesture-based interface source code”).

Figure 39 shows a screenshot of the main interface of gestUl tool
support.

|| Model-driven gesture-based interaction definition = X

N\ UNIVERSIDAD
:”| POLITECNICA
DE VALENCIA UNIVERSIDAD DE CUENCA

New Catalogue
7 Spemﬁc Catalog
Gesture - Action

[Exit

PROS (hitp://Www.pros.upv.es
Figure 39. Main interface of the tool support
The options (i) and (ii) correspond to the implementation of the
“Gesture Catalogue Definition Module” subsystem described in
Section 5.2.1 and “Model Transformation Module” subsystem
described in Section 5.2.3.

The option (iii) corresponds to the implementation of the “Gesture-
Action Correspondence Definition Module” subsystem described in
Section 5.2.2.

5.4.1 Option 1: “Gesture catalogue definition”
This module supports the definition of new multi-stroke gestures by
means of an interface implemented in Java containing a canvas on
which the user sketches the gestures. Figure 40 shows a screenshot of
the interface implemented to sketch of multi-stroke gestures.

127

| £ Definition of Multistroke Gestures - o x

Gesture Name: | H Save | | Clear ‘ ‘ Next |

Figure 40. Screenshot of the interface of gestUIl to sketch gestures

We adopt SN as the gesture recognizer in this tool support. Then,
when the gesture is sketched on a canvas, the following data are
required: number of strokes specified during the sketching of the
gesture, the information of each stroke, number of points contained
in each stroke and the value of each point (X, Y) together with the
timestamp (t) of each point (Figure 41).

Therefore, each gesture sketched by the user (Table 21, Intention
“Define a gesture”) consists of one or more strokes, each stroke is
defined by a set of points described by coordinates (X, Y) and a
timestamp (t).

128

Pilog) + &1
Plog) + @

Plog) + &
Figure 41. User sketching a gesture and storing it in a repository
After capturing the data required by SN to analyse each gesture,

the data of each gesture are stored in a repository (Table 21, Intention
“Include a gesture in a repository”) containing the gestures of the users
registered in the software system (Figure 42, left), as is described in
Section 5.2.1.

) Generation of Platfom-Independent Gesture Catalogue - o x

Gestures directory: C:\thesis_gestUI\samples Select Folder

Enter the catalogue name: |Cata|ogue_for_Testing ‘

Select gesture to include in the catalogue: Gestures selected:
Userl_letrac_20161115163619.xml = Userl_letterC_20161115140831.xml| =
Userl_letrad_20161115163624.xml| Userl_letterD_20161115140852.xml
Userl_letterC.xml

Userl_letterC_20161115170312.xml
Userl_letterC_20161115172056.xml
Userl_letterD_20161115164523.xml
Userl_letterE_20161115164517.xml
Userl_letterP_20161115170320.xml L
Userl_letterR_20161115140841.xml
Userl_letterU_20161115140847.xml
Userl_number2_20161115172105.xml =

Repository of gestures

Gestures to be inserted
in the catalogue

A v

Kl

Opening: samples.

Generate Catalogue
Including gesture definition ... Userl letterC 20161
Including gesture definition ... Use1:17161:terD720161E

Transformation done. =l

I

Figure 42. Screenshot of the user interface to obtain the platform-independent
gesture catalogue

Then, by selecting gestures of the repository (Figure 42, left), the user
defines the gestures to be inserted in the gesture catalogue model. In
Figure 42, right, is shown the gestures selected for the

129

“Catalogue_for_Testing” gesture catalogue model. Finally, with the
“Generate Catalogue” button, the platform-independent gesture
catalogue is generated (Table 21, Intention “Define gesture catalogue
PIM”).

5.4.2 Option 2: “Specific catalogue”
This second option makes it possible to obtain the platform-specific
gesture catalogue by means of an M2M transformation. The
transformation rules are written in ATL. Figure 43 shows an excerpt of
the rule in the model-to-model transformation.

-- rule to create Gesture in multiStrokeGesture
rule Gesture {
from
s1: MMMTG! Gesture(sl.employs->size()=1)
to
tl: MMsG!lGesture (
gestureName <- sl.gestureName, gestureType <- sl.gestureType,
gestureDate <- sl.gestureDate,gestureTime <- sl.gestureTime,
realizes <- thisModule.Action(sl.realizes),
strokes <- sl.employs->collect(e|e.strokes->collect(d|thisModule.Stroke(d)))

Figure 43. An excerpt of a rule of the M2M transformation
With the aim of applying a model-to-model transformation required in

the process, we develop a module using Java programming language
to implement the user interface. Figure 44 shows a screenshot of this
interface.

B Generation of Gesture Catalog = =
Model-to-Model Transformation

Input Metamodel name: | | l:l
Output Metamodel name: | | I:l
Input Model name: | | I:l

Output Model name: | | | | | M2M Transformation

Exit

Figure 44. M2M transformation parameters
The user must specify the following parameters in this interface:

Log:

4

gesture catalogue model, gesture catalogue metamodel and the
platform-specific gesture specification. As a result we obtain the

130

platform-specific gesture catalogue (Table 21, Intention “Obtain
specific gesture catalogue (PSM)").

5.4.3 Option 3: “Gesture-action correspondence definition”
This module allows the developer to specify the action to be executed
when the gesture recogniser tool validates a gesture sketched by the
user on the user interface. We currently provide automated support
to code-centric developments made in Java, i.e. this module parses the
source code of the user interface to obtain a list of actions.

This module requires two inputs (Figure 45): the previously created
‘Gesture catalogue model’ that is specified in the “Gesture Source
Folder” text field in the interface and the user interface (e.g. a Java
source code).

[Defining gesture-action correspondence - o x

Gesture Source Folder: [C:\thesis_gestUT\samples |

User Interface File: src\presentationLayer\MyDepartment.javal | Load interface

Select a gesture: Select an action: Gesture-action correspondence:
Userl_letrac_20161115/~ (Create Userl_letterC_20161115140831->Cr
Userl letrad 20161115 | |Update Userl_letterD 20161115140852->D¢

Userl_letterC ~ Delete
Userl letterC_2016111% | Return
Userl_letterC 2016111
Userl_letterC 2016111
Userl_letterD_2016111
Userl_letterD_2016111

[v]

141

< I | D

Select the target platform: [Java Application [+]
panelGestures
Panel(s) available in the user interface: |panelScrollPane
[Bxit |

Figure 45. Interface for defining gesture-action correspondence and to generate
source code

The output of this module is the source code of the previously
specified user interface, but now it includes source code to support
the gesture-based interaction.

In order to apply the parsing process in the user interface source code
(Table 21, Intention “Select user interface source code”) we included
some methods in the implementation of the tool support to analyse

131

two types of Java applications: (i) a Java desktop application using
SWT, and (ii) Java desktop RCP application using JFace and SWT.

In the former type, SWT provides widgets (controls and composites) to
be included in the user interface with the aim of assigning actions [22]
(Table 21, Intention “Obtain actions (commands)”). The user interface
source code also includes other sections containing event listeners and
action-perform structures in order to specify the actions to be
executed when the user clicks on a widget (canvas, button, text field,
etc.) on the user interface (Figure 46). The parsing process then
searches for these actions in order to complete the gesture-action
correspondence definition (Table 21, Intention “Define gesture-action

7
Correspondence)
Widget [JButton btnUpdate = new JButton("Update™); .
definition btnUpdate.addActionListener(new ActionListener() { —| E“‘“.t !“t‘m"
public void actionPerformed(ActionEvent e) { definition

if (jTable.getSelectedRow()!=-1)

try {
controllerDepartment.GetDepartment(); Action definition
} catch (DAOExcepcion el) {
/ Auto-generated catch block

el.printStackTrace();

Action perform
structure

¥
Figure 46. SWT components to define actions

In the second type, in conjunction with SWT, JFace provides
actions to allow users to define their own behaviours and to assign

them to specific components, such as menu items, toolbar items,
buttons, etc. [22]. In this case, the user interface source code includes
structures to specify the actions to be executed when the user clicks
on a widget in the user interface. These actions are taken during the
parsing process in order to determine the gesture-action
correspondence (Figure 47).

132

@PostConstruct
public void createComposite(Composite parent) {
parent.setLayocut(new GridLayout(l, false));

Widget
txtInput = new Text(parent, SWT.BORDER); Event listener
definition

txtInput.addMouselistener(new MouseAdapter() {

@override
public void mouseDown(MouseEvent e) {
readData(); Action definition

Fs

Figure 47. JFace and SWT components used to define an action in a user interface

The parsing process analyses the user interface source code searching
for keywords corresponding to widgets available in Java language to
include elements of a user interface (text, buttons, image, etc.). Each
widget found in the process is stored in the table containing the
gestures selected to define the gesture-action correspondence.

When generating the user interface Java source code, many
references are included (e.g., to gestures management libraries, to
gesture-recognition technology libraries (e.g. SN)), and some methods
are added (e.g. to execute the gesture-action correspondence and to
capture gestures). Also, the classes’ definition is changed to include
some event listeners. Finally, the source code obtained from the
complete process should be inserted in the complete source code of
the user interface and, of course, be compiled again (Table 21,
Intention “Obtain gesture-based interface source code”).

Additionally, we implemented a second model-to-text transformation
to generate the gesture catalogue with the aim of testing the gestures
using a gesture recognition tool, as is explained in Section 4.5.3. In this
case, the following information is required: (i) the gesture catalogue
name, (ii) the target platform, (iii) a folder name to store the source
code generated.

Figure 48 shows a screenshot with the interface to apply the model-
to-text transformation described in this section.

133

Model-to-Text Transformation
Input Model name: C:\thesis_gestUl\Catalogue_for_Testing.xmi

Target folder: |C:\thesis_gestUI\src-gen

Target language: |xML ($N) - M2T Transformation

Log: Transforming and Saving in: C:\thesis gestUI\src-gen.
" Transformation done.

Exit

Figure 48. Interface to execute a model-to-text transformation

5.4.4 Module to redefine gesture
This module is not a component of gestUI tool support, however we
implement it with the aim of demonstrating the gesture redefinition
feature included in our proposal. This module is required in the
software system containing user interface supporting gesture-based
interaction.

We implement this module to be included in the software system with
the aim of redefining custom gesture in the runtime stage (execution
stage).

The interface contains two canvas to manage custom gestures (Figure
49): (i) it permits to show the current definition and (ii) it permits to
sketch the new definition of the custom gesture.

134

File Edit View Mavigate Search Project Sample Run File Help Gestures Patterns Window Help

- = (S Redefine Gestures

| £ Gestures Configuration _ O W

Select a gesture to redefine it: Draw a gesture:

User2_and -
User2_constraint
User2_problem
User2_cause.xml
User2_constraint.xml
User2_ContextSet.xml

showit | | Eraseit
Redefined gesture by the user
when he/she is using the CDT
Name:
cleanit | | save | | Ext
Original gesture specified in gestUl

Figure 49. An example of the module to redefine custom gestures

5.5 Demonstration of the tool support
We applied gestUl and the tool support in two scenarios: (i) we use
gestUl and the tool support to obtain a gesture catalogue to be used
in the SN, quill and iGesture frameworks; (ii) we used gestUl and the
tool support to integrate gestUl into a code-centric user interface
development method.

5.5.1 Applying the method and tool to testing a gesture
catalogue
Using the tool support, we define a gesture catalogue containing three
gestures to test them in the above frameworks: a triangle, a line and
the letter “S” (Figure 50).

135

[£] Definition of Multistroke Gestures - o x (£ Definition of Multistroke Gestures — O X || [& Definition of Multistroke Gestures - 0o x

I
Gesture Name: [gestureTrianale Gesture Name: [gestureLine Gesture Name: [gestureS

Figure 50. Gesture catalogue defined by gestUI
The gesture representation in each framework is contained in two

sections: (i) a header specifying general information on the gesture,
and (ii) the points specified by coordinates (X, Y) and a timestamp (t).
SN and iGesture employ XML for gesture definition and quill employs
GDT 2.0 for this purpose (Figure 51).

To test the gestures we use the second M2T transformation
described in Section 5.3.3, considering successively SN, quill and
iGesture as the target platform (Table 21, Intention “Define target
platform”), with the aim of obtaining the gesture catalogue in the
structure specified for each framework (Figure 51). In this case we
specified the transformation rules with Acceleo and then we ran the
M2T transformation for each framework.

= | e =G - |
0 - - 2 o] @oummon| KBNS o-cle ml < Eo CE
N gde 2.0 2l version="_.0" encoding=" .]
<?xml version="1.0"7> name catalogog? 7l verslon="1.0" encoding="UTF-&"7>
- <Gesture TimeOfDay="13:57:57" training " <:|m id="e173d39-1419-4ca1-9ab2-
name Training Set 4f730492€150" name="Thin">
category <class id="c88c2ef3- d-4b13-936¢-
name line 5b79337cca72” name="Delete’ >
dirsctionInvariant false <descriptor id- 182db85-d097-4c4a-
crientationInvarisnt false 8412-6be00fed5 312"
sizeInvariant false type="org.ximtec.igesture.core.SampleDescrip
gestures 1 - =sample id="671327f9-bdb4-4fa2-
d b2f0-7db201abdacl”
553020117104202 name="1168176312867'>
- <traces
04154 104202 - <point>
105154 104202 BT
105154 104202 <y>7.476635514018691 <y
108154 104202 <timestamp>1168176309413
116153 104202 _ <force>184.0</force>
116153 104202 </point>
120153 104202 + cpoint>
120153 104202 T hoints
<Point . : v G e - <point> v
ZPoint T="0" Y="164.0" X="163.0"> 12 1 . S22 anasanas yasannas i

Figure 51. Gesture description files: $N (left), quill (centre), iGesture (right)
In the next step, we use each framework to test the gestures. For

instance, we include some quill interfaces. The quill interface used to
import the gesture catalogue obtained in the model transformation is
shown on left side of Figure 52. On the right, the gesture catalogue
already included in the framework can be seen.

136

[E2) letterCatalogue_gestureCatalog.txt - quill = B

IFHe IEml View Gesture Debug Help

Training Set | Test Sets | |

B letterCatalogue_gestureCatalog.txt - quill

File Edit View Gesture Debug

Help

EE

Human goodness 1000
Recognizer goodness 1000

[5] I Open I Traiing Set | Test Sets
¢ [Training Set
D retterD
D ettercatatogue_gestureCatatog.txt [quitjar R letterR
[<T 1 I 0| et

Filename: [letterCatalogue

_gestureCatalog.bt

Figure 52. Importing the gesture catalogue to the quill framework

Recognition

In the last step the user sketches the gestures contained in the gesture
catalogue using the sketch area defined in the interface of each
framework. All the frameworks include the algorithm (not described
here) used to recognize the gestures sketched by the users. Figure 53
shows how the gesture catalogues are effectively recognised when
imported to SN, quill and iGesture frameworks.

Ontrveon of Wstimore Gesnres = EIN

Detivtion of Mutiose Genres = = HEND
—_——

Figure 53. Examples of multi-stroke gestures: SN (left) and quill (centre) and
iGesture (right)

o
¥ dwooestire ¢

5.5.2 Applying the method and the tool to integrate gestUI
into user interface development
For illustration purposes, we use a form-based information system, in
this case a simple fictional university management case and we narrate
the project as if it actually happened. Figure 54 shows the classroom
management diagram of a university. In this section, we consider an IS
with WIMP interfaces and for the sake of brevity, we only consider two
interfaces for the demonstration: the main interface and department
management interface. The form-based

developed in Java on Microsoft Windows.

information system is

137

Department < ———«++———] Classroom

o : contains 4 .
|= “Univaesity | -name : String 1 = |-IDClass: Sting
-name : String |-ocation : String -capacity : Integer
) | g isFomedby =
< }: String 1 Teacher
1 1.° |+setName(name : String) : void OL'W : String
| +getLocation() : String 1.* |-profession ! String

Figure 54. UML class diagram of the demonstration case
In the first iteration, the university tells the developers that it would

like the gestures to resemble parts of the university logo. They thus
use the Gesture catalogue definition module to create the first version
of the ‘Gesture catalogue model’ containing these three gestures: A
for departments, || for teachers and [for classrooms. However,
when the first user interface design is available (see Figure 55), they
soon realise that other gestures are needed.

Lo o222 [ClE][x]| | ceparTmenTs screen [CJOI<]| | peparTmenTs screen Lo
|
AN e R Y T e o]

D1 [PHYSICS Fa OTTO PASTOR
NAME [MATHEMATICS
[manaceTEAcHERs | | |[02]compuTess |62 0SCAR ESPAfIA S
|:| [-_—..l |b3|sTaTIsTICS |63 SERG) RA LOCATION |B4
LT MANAGE CLASSROOMS
XYT UNIVERSITY I MANAGER | M* FERMANDA
| meate HoeteTe | [view reackers| e
+ — Il | S x

Figure 55. Screen mockups (gestures are shown in red, next to action buttons)

After defining and testing new gestures, they decide that navigation
will be by means of the above-mentioned gestures, but that similar
actions that appear on different screens will have the same gestures
(e.g. the gesture + will be used to create both new departments and
teachers).

The developer assigns the gesture-action correspondence in
collaboration with the user, supported by the Gesture-action
correspondence definition module. The correspondences are
informally shown in Figure 55, next to each action button and are
described in Table 23.

The user can employ the model transformation option to apply an M2T
transformation and to obtain a platform-specific gesture catalogue.
We consider that if the Java source code of the user interface using
traditional keyboard and mouse interactions is available, then the
components that support the gesture-based interaction can be
generated. In this case, the underlying gesture-recognition technology
chosen is SN.

138

Table 23. Platform-independent gesture catalogue definition

Action ‘ Gesture ‘ Observations

Manage —/_E This gesture opens a department management

departments interface.

Manage ' k This gesture opens a teacher management

teachers interface. The same gesture permits teacher
information to be viewed.

Manage D This gesture opens a classrooms management

classrooms user interface.

Create a new This gesture creates a new department, a new

department + teacher or a new classroom.

Delete a —_— This gesture deletes a department, teacher, or

department classroom.

Save the 5 This gesture saves the information on a new

information department, teacher or classroom.

Cancel the >< This gesture cancels the process of creating a

action department, teacher or classroom.

As the users felt more comfortable with multi-stroke gestures
(especially when tracing certain letters and symbols) quill was
discarded. The final information system interface consists of several
screens for managing university information. The users can still
interact with the information system in the traditional way (i.e. by the
keyboard and mouse) but now they can also draw the gestures with

Mg Departrents

o

one finger on the touch-based screen to execute the actions.
LT

f A\

University XYZ Bat

Masge Teachers

2. Create a new
department
*®

1. Open the interface
to Manage Departments|

Figure 56. Using gestures to execute actions on the interfaces

B Cancel

3. Save the data in
a database

—
=

D HANE
vl oo
2 Mateng

MANAGER_D | LOCATION ID.
A]

201

Lw ;

1900

]

e Deete || vew Teschers

Figure 56 represents three interfaces from the information system:

139

(i) Left: The task starts with the main interface where the users
can select one of the options of the menu. For simplicity, the
menu is showed as an array of buttons.

(i) Centre: According to the aforementioned requirements, if a
user sketches the gesture “A” in the main interface of the
information system then he/she obtains a second user
interface containing the information on the existing
departments.

(iii) Right: In order to create a new department, he/she draws a
“4+" on this second user interface obtaining a third user
interface with the fields for entering information on a new
department. When the wuser finishes entering the
information, sketching “S” on this third interface saves the
information to a database.

5.6 Summary and Conclusions
In MDD is very important to provide tool support in order to promote
the application of methods and tools.

This chapter describes the tool support implementation for the gestUI
method. We applied Eclipse technologies since they have been applied
successfully for supporting MDD methods and techniques. As
programming language to implement the components of the tool
support we used Java.

After the implementation, we assessed the method and tool support
by applying them to a gesture testing case, generating the platform-
specific gesture specification for three existing gesture-recognition
technologies (quill, iGesture and SN) in order to verify the tool’s
multiplatform capability. All the gestures were successfully recognised
by the corresponding tools. When the proposed method was applied
to aform-based IS, the final gesture-based interface components were
automatically generated and successfully integrated into the IS
interface. This process was applied in both Microsoft Windows and
Ubuntu (Linux) systems to demonstrate its multiplatform capability.

140

The advantages of the proposed method are: platform
independence enabled by the MDD paradigm, the convenience of
including user-defined symbols and its iterative and user-driven
approach.

Further developments should be performed around this prototype to
make it more stable and usable.

141

142

CHAPTER

EMPIRICAL
EVALUATION

The topics covered in this chapter are:

6.1 Introduction

6.2 Experimental planning
6.3 Results

6.4 Discussion

6.5 Conclusions

143

144

Chapter 6. Empirical Evaluation

6.1 Introduction

The next step in our engineering cycle to develop gestUl method is the
design of the validation. The main objective is to validate gestUl in
certain context to analyze the effects on its application.

Moody [133] considers that the objective of the validation should not
be to demonstrate that the method is “correct” but that the method
could be adopted based on its pragmatic success which is defined as
“the efficiency and effectiveness with which a method achieves its
objectives”. According to I1SO 9241-210 [134] and ISO 25062-2006
[135], usability is defined as “the extent to which a product can be used
by specified users to achieve specified goals with effectiveness,
efficiency and satisfaction in a specified context of use”.

Additionally, ISO 25062-2006 establishes that usability evaluation
involves using (1) subjects who are representative of the target
population of users of the software, (2) representative tasks, and (3)
measures of efficiency, effectiveness and subjective satisfaction. The
ISO also defines that at least one indicator in each of these aspects
should be measured to determine the level of usability achieved [136].
In order to evaluate satisfaction, we consider the Method Evaluation
Model (MEM) [137] [133] which contemplates three primary
constructs: perceived ease of use — PEOU (“the degree to which a
person believes that using a particular system would be free of
effort”), perceived usefulness — PU (“the degree to which a person
believes that using a particular system would enhance his or her job
performance”) and intention of use — ITU (“the extent to which a
person intends to use a particular system”).

With the aim of validating gestUl, we have designed a comparative
empirical evaluation in which we consider two methods to define
custom gestures and to include the gesture-based interaction. We
evaluate efficiency, effectiveness and satisfaction (by means of PEOU,

145

PU and ITU) when the subjects apply gestUl (first method) in
comparison with a code-centric method (second method) to include
gesture-based interaction in existing user interfaces.

gestUl is described in Chapter 4. In Appendix A, we describe a generic
code-centric method to include gesture-based interaction in existing
user interfaces.

Results of this evaluation help to know to which extent the use of
Model-driven development (MDD) helps in the process to define
custom gestures and to include gesture-based interaction in user
interfaces.

The remainder of this chapter is organized as follows: Section 6.2
describes the experimental planning. Section 6.3 includes the results
obtained in the experiment. Section 6.4 includes the discussion about
the results obtained in the experiment considering effectiveness,
efficiency and satisfaction. Finally, the conclusions of the experiment
are included in Section 6.5.

6.2 Experimental planning
This section describes the design of the experiment according to the
guidelines of Wohlin et.al. [138].

6.2.1 Goal
According to the Goal/Question/Metric template suggested by
Moody [133], the research goal is:

Analyse the outcome of a code-centric and a model-driven
method for including gesture-based interaction into user
interfaces,

For the purpose of carrying out a comparative evaluation
With respect to their usability

From the viewpoint of researchers

In the context of researchers and practitioners interested in
gesture-based interaction

146

6.2.2 Research Questions and Hypothesis Formulation
The goal of our study is to compare the usability of a method to
deal with gesture-based interfaces through code-centric versus
model-driven. Since usability is an abstract concept, we need to
operationalize it through more measurable concepts. According to
ISO 25062-2006 [135], usability can be measured through
effectiveness, efficiency and satisfaction. Following the works of
Moody [133], satisfaction can be measured using perceived
usefulness, perceived ease of use and intention to use.

We consider two scenarios in the experiment, the first one is
related to the inclusion of gesture-based interaction (the subject
follows a set of tasks specified in the experiment to include gesture-
based interaction in a user interface) and the second scenario is
related to the definition of custom touch gesture (the subject
employs a finger or a pen/stylus to sketch a gesture on a touch-
based surface).

Therefore, in the evaluation of efficiency and effectiveness we
consider research questions (RQ1, RQ2, RQ3 and RQ4) to measure
usability within each scenario, since we are interested in evaluating
the subjects when they are including gesture-based interaction in
the user interface and when they are defining gestures. However,
for the evaluation of satisfaction (PEOU, PU and ITU) we consider
research questions (RQ5, RQ6 and RQ7) without differentiating
between scenarios, since we are interested in the global value of
the method (code-centric and gestUI) for usability.

Considering this perspective, the research questions and the
hypothesis proposed for the experiment are:

RQ1: Regarding the inclusion of gesture-based interaction in
user interfaces, is there any difference between the
effectiveness of the code-centric method and gestUI? The null
hypothesis tested to address this research questions is: Hoi:
There is no difference between the effectiveness of gestUI and

147

the code-centric method in the inclusion of gesture-based
interaction in user interfaces.

RQ2: Concerning the definition of custom touch gestures, is
there any difference between the effectiveness of the code-
centric method and gestUI? The null hypothesis tested to
address this research questions is: Hoa: There is no difference
between the effectiveness of gestUl and the code-centric
method to specify custom gestures.

RQ3: Regarding the inclusion of gesture-based interaction in
user interfaces, is there any significant difference between the
efficiency of the code-centric method and gestUI? The null
hypothesis tested to address this research question is: Hos:
There is no difference between the efficiency of gestUI and the
code-centric method in the inclusion of gesture-based
interaction in user interfaces.

RQ4: Concerning the definition of custom touch gestures, is
there any difference between the efficiency of the code-centric
method and gestUI? The null hypothesis tested to address this
research question is: Hos: When the subjects define gestures,
efficiency is the same independently of the method used.

RQ5: How do subjects perceive the usefulness of gestU! in
relation to the code-centric method? The null hypothesis
tested to address this research question is: Hes: gestU! is
perceived as easier to use than the code-centric method.

RQ6: How do subjects perceive the ease of use of gestU! in
relation to the code-centric method? The null hypothesis
tested to address this research question is: Hes: gestU! is
perceived as more useful than the code-centric method.

RQ7: What is the intention to use of gestUI related to the code-
centric method? The null hypothesis tested to address this
research question is: Ho7: gestUI has the same intention to use
as the code-centric method.

148

6.2.3 Factor and Treatments

Each software development characteristic to be studied that affects
the response variable is called a factor [139] (a.k.a. “independent
variable”). In this case, the factor detected in the experiment is the
method to use and it has two treatments: the code-centric method
and the model-driven method. Table 24 includes the description of the
factor and its two treatments.

Eclipse Framework is used as a tool to operationalize the code-centric
method. This tool is used to implement the source code in Java that
represents a user interface. gestUl operationalizes the model-driven
method. gestUl is used to include gesture-based interaction in a user
interface through conceptual models (without writing any lines of
code) [125].

Table 24 Factor and treatments of the experiment

Factor ~ Treatment. Description
ID Name P
Code- Subjects manually write the source code
| centric to define custom gestures and to include
gesture-based interaction in a user
method .
interface.

Method to use - - -
Subjects employ gestUl with the aim of
defining custom gestures and includin

1l gestUIl & 8 &

gesture-based interaction in a user
interface.

6.2.4 Response variables and metrics

Response variables are the effects studied in the experiment caused
by the manipulation of factors. In this experiment, we evaluate gestUI
with regard to: effectiveness, efficiency and satisfaction.

6.2.4.1 Response variables for effectiveness and efficiency

In this experiment, we are interested in the evaluation of the subjects
when they define custom gestures using a finger (or a pen/stylus) on a
touch-based surface, and we also are interested in the evaluation of
the subjects using gestUl to include gesture-based interaction.
Therefore, we need metrics to evaluate efficiency and effectiveness
for each scenario.

149

In this experiment, in order to answer the research questions (RQ1,
RQ2, RQ3 and RQ4), we define a metric per research question with the
aim of evaluating the effectiveness and efficiency of gestUl when the
subjects work in two scenarios: (i) they include gesture-based
interaction in a user interface and (ii) they define custom gestures
during the experiment. Table 25 shows the response variables
classified per scenario and research question. The columns of Table 25
describe the response variables, their metrics, definition and the
research question that they aim to answer.

6.2.4.2 Response variables for satisfaction

In this experiment, in order to answer research questions RQ5, RQ6
and RQ7, we define a metric for each one with the aim of measuring
satisfaction through PEOU, PU and ITU. We use a 5-point Likert scale
in order to measure ITU, PEOU and PU. In this case we are not
distinguishing between defining custom gestures and including
gesture-based interaction in a user interface during the experiment,
rather we are measuring satisfaction of the whole process. Table 26
describes response variables, their metrics, definition and the research
questions that we aim to answer.

150

"sain)sad
woisnd jo uoiluyap ayl Suunp sio2igns
ayl Aq pawuodai si sy “ysel [eluawiiadxa (9141) vomuyap 2in1sa8 woisna uoiuap a1nysad
¥y Y1 uo Juads SIINUIW JO Jaquinu Yl SISyl 2yl Suunp sel 2yl ysiuly 01 2wl wolsnd ayl ul Acualnuy3
sainisad woisno Jo uoniuyap
ayr Suunp sysel Jo Jaqunu |elo} Ayl (9221d) uouyap
pue A[1224102 1IN0 paLMJED $SE] JO JaQWNU uoluYap 24n1saf wolsnd Ayl ul 2un3sagd wolsnd
7oy ayr :usamiaq diysuole|al ayil SI SIY] N0 PallIed sySe} }021102 jo aSejuadiad 3y} Ul ssauaniioayy

NOILINIJ3d 34NLSID WOLSNI

"a0ep31uUl 135N Ayl

Ul Uonoela1ul paseq-a4n1sas Jo uolsnjoul Ayl “(1141) 20642101 135N AYL uol10BIIIUI paseq
Suninp s1oalgns ay1 Aq pauodal s s1y] sel Ul UOIIDRIIIUI paseq-21n1sag Jo uolsn|aul -ain1sag jo uoisnpoul
oy 42e3a Uo Juads SIINUIL JO JAQWINUAYISISIYl 24yl Buunp ysey 2yl ysiuy 01 awi| ay1 ur Asuaroiy3

20BLI21UL 135N
31 Ul UOI1DBISIUI PAse]-2.n1538 Jo uolsn|aul

2yl Suunp sysel Jo Jaqunu |el0l Ayl (1D21d) uonaeiaul UoI10BI3]Ul PIsEq
pue palsjdwod Aj1021102 ©jse) JO JaqWnu paseq-ain}sa8 Jo uolsnpul 3yl ul -24n3sa8 Jo uoisnpul
T0Y 2yl :usamiaq diysuone|al 3yl SI SIY] 1IN0 PalUed $3se) 1931102 jo afejuadiad 3y} Ul ssauanDayg

NOILIVHILNI A35vE-34N1S3ID 40 NOISNTINI
uonsanb

Yoseasay uonuyag ELTR TN sajqeneA asuodsay

Table 25 Response variables to evaluate effectiveness and efficiency of gestUl

151

Table 26 Responses variables to measure satisfaction of use gestUI12

‘35N 0] UOIIUAIUI YlM Pale|al SWwal aileuuoilsanb

10y W3 Jo sanjea ajeas WSyl 2yl JO ueaw dl2wWyide ayl sl syl (NL1) @sn 01 uonualu|
ssau|njasn paniaaiad yum pale|jad swall 24ieuuonsanb

9Dy N3N JO sanjen a|eds LSyl 2yl JO ueaw dil2wylle ayl sl syl (Nd) ssaunyasn paniadiad
35N JO asea panlaaiad Yum pale|al swall alleuuorlsanb (n03d)

sy WIIN JO sanjea 3[eds LSyl Syl JO UP3LW DI12WYLIe 3yl S| SIY| 3sSn JO 23sea Paniadiad

uonsanb

Yoaeasay

uoniuyag

TR ETT]

uoloe)SIIeS

2|qelLep
asuodsay

12 We are aware that Likert scales are qualitative data but some studies
propose converting them to quantitative to work with statistical tests [164].

152

Table 27 shows a summary of the research questions, hypotheses,
response variables and metrics used to test these hypotheses.
Table 27 Summary of RQ's, hypotheses, response variables and metrics

Response Variables Metric RQ Hypotheses
Effectiveness in the inclusion

.) PTCCI RQ1 Ho1
of gesture-based interaction
Effectiveness in the custom
o PTCCG RQ2 Ho2
gesture definition
Efficiency in the inclusion of
. . TFTI RQ3 Hos
gesture-based interaction
Efficiency in the custom
. TFTG RQ4 Hoa
gesture definition
Perceived ease of use PEOU RQ5 Hos
Perceived usefulness PU RQ6 Hos
Intention to use ITU RQ7 Ho7

6.2.5 Experimental Subjects

The experiment was conducted in the context of the Universitat
Politécnica de Valéncia (Spain). We had 21 subjects (15 males and 6
females) who are master (M. Sc.) and doctoral (Ph.D.) students in
Computer Science. The experiment is not part of a course and the
students are encouraged to participate on a voluntary basis.

The background and experience of the subjects are found through a
demographic questionnaire handed out at the first session of the
experiment. This instrument consists of 15 questions on a 5-point
Likert scale. According to the questions included in the demographic
questionnaire, the results are:

e Most of the subjects are between 25-29 (33%) and 30-34 years
(24%).

e Regarding the computing platform, two of the most used are:
Microsoft Windows (52% of the subjects) and MacOS (33%).

e All subjects indicated that they had taken a Java programming
course. 62% of the participants had taken a model-driven

153

development (MDD) course and 52% of the subjects had taken
a human-computer interaction (HCl) course.

e Regarding the software development experience using Eclipse
IDE and Java, 43% of the subjects reported that they have
“Average” self-rated programming expertise on a 5-point
Likert scale, where 3 was “Intermediate” and 5 was “Expert”.

e Furthermore, the subjects reported their experience in model-
driven development. The “Average” self-rated model-driven
development expertise was 33% on a 5-point Likert scale
where 3 was “Intermediate” and 5 was “Expert”. Also, in this
field, 29% have a “Poor” level and 14% have a “Very Poor”
level.

e Regarding experience using gestures on a device/computer,
71% of the subjects occasionally use gestures in their daily
activities. Additionally, 43% of the subjects would like to
define custom gestures to use them in their daily activities.

Table 28 summarizes the information about the subjects extracted
from the demographic questionnaire. We conclude that subjects have
some experience in the context of software development related with
this experiment, but they do not have experience in the definition of
custom gestures and the inclusion of gesture-based interaction in user
interfaces.

6.2.6 Experiment design

In this experiment, we use a crossover design [138] (a.k.a. a paired
comparison design). This is a type of design where each subject applies
both methods, that is, the subjects use one method (the code-centric
method) and then they use a second method (gestUl, a model-driven
method) or vice versa. The order of use of each method depends on
which group the subject was assigned to at the beginning of the
experiment in such a way that each treatment is balanced among all
the subjects. This design has the advantages that we are using the
largest sample size to analyse the data, hence we avoid the learning
effect and the problem is not confounded with the treatments.

154

Table 28 Summary of demographic questionnaire

No. of subjects %
Average age
25-29 years 7 33.0
30-34 years 5 24.0
35-39 years 4 19.0
>39 years 5 24.0
Gender
Male 15 71.4
Female 6 28.6
Computing platform
Microsoft Windows 11 52.0
MacO0S 7 33.0
Other 3 15.0
Courses taken
Java 21 100.0
HCI 11 52.0
MDD 13 62.0
Software development
experience
Average experience 9 43.0
Experience using gestures 15 71.0
Model-driven development
experience
Average experience 7 33.0
Poor experience 6 29.0
Very Poor experience 3 14.0

With the aim of comparing both methods against each other, each
subject uses both methods (treatments) on the same object; to
minimise the effect of the order in which subjects apply the methods,
we balanced the treatment applied in the first term. As Table 29
shows, the experiment is carried out with the subjects separated into
two groups (G1 and G2). Each group is composed of subjects that are
assigned according to a random value obtained by means of a random
numbers calculator available on the Internet
(https://www.random.org/). Therefore, the 21 subjects were

randomly split into two groups following a process known as
counterbalancing: (a) 11 subjects first apply gestUl and then the code-

155

https://www.random.org/

centric method, whilst (b) the other 10 subjects start with the code-
centric method and then apply gestUl.

Table 29 Crossover design

ID Treatment Subjects
| Code-centric method G1 G2
Il Model-driven method (gestUI) G2 G1

Even though there was no time limit to perform the experiment, the
expected time to fulfill the tasks was around two hours. This value was
estimated based on two factors: (i) a previous pilot test and (ii) using
the KLM method (Keystroke Level Method) [140] [141]. KLM is a model
for predicting the time that an expert user needs to perform a given
task on a given computer system. KLM is based on counting keystrokes
and other low-level operations, including the user’s mental
preparations and the system’s responses [141]. Using this model, we
estimate the time required to input the lines of code required in the
code-centric method considering the operators and their average time
proposed in [142] and shown in Table 30.

Table 30 Operators and average time on KLM

Operator Description Average Observations
Time
Mental Operation 1.2 sec. Mentally prepare
H Home 0.4 sec. Home in on keyboard or mouse

(change of device).

Point 1.1 sec. Point with mouse

Keystroke 0.28 sec. Keystroke or mouse button
press

R(t) System t sec. Waiting for the system to
responsive become responsive (t)

The values of K operator is defined according to type of user: expert
typist, average skilled typist, average non-secretarial typist, worst
typist [140]. In this experiment, we consider the average of a non-
secretarial typist. R(t) operator (t indicates the time in seconds that the
user has to wait) defines the time when the computer is busy doing
some processing, and the user must wait before they can interact with

156

the system. The estimated values of time to perform the experiment
are shown in Table 31.
Table 31 Estimating time for the experiment

Treatment Previous pilot By using
test KLM

Code centric method 1h 08 min. 0Oh 57 min.

Model-driven 0Oh 24 min. 0Oh 21 min.

method

Total time 1h 32 min. 1h 18 min.

6.2.7 Experimental objects

The object used in the experimental investigation is a requirements
specification created for this purpose. It contains the description of a
problem related with the definition of custom gestures and the
inclusion of gesture-based interaction in user interfaces of a software
system supporting traditional interaction using a mouse and keyboard.
Figure 57 shows this software system containing a main user interface
to manage information of departments, teachers and classrooms in a
university by means of CRUD (Create, Read, Update, and Delete)
operations. Each option opens a new interface to specify information
required by the university.

n x

1. Click on "Manage e [_Hanage Deparimentz _ | =2 20
4. Creat
Departments"” button — dej ::tamee:tnew e smosvaen | 5 Enter the data of
P Manager: a0 the department

= Locaton: - v
= = = \
2.0pen the interface
to Manage Departments 6. Save the data in
a database
L3 NAME MANAGER_ID LOCATION_ID
v [l aovwinsir | 5200 1700 uu

0 |Maketng | 201 = 3. Click on "Create™
- button

Create Doiete || view Teachers

Figure 57 Software system supporting traditional interaction

Using traditional interaction, when the subjects click on the ‘Manage
Departments’ button a new interface is opened, which contains the
information of each previously defined department in a grid included

157

in the user interface. Next, clicking on the ‘Create’ button, a new
interface is opened to enter information concerning a new
department. Finally, when the information is complete, the ‘Save’
button saves the information in a database.

The user must perform the same CRUD operations but using custom
gestures, that is, by means of gesture-based interaction. If gesture-
based interaction is included in user interfaces, the subjects can sketch
gestures on the touch-based display of the computer in order to
execute some actions (the CRUD operations). One gesture can contain
the definition of one or more actions, but the gesture-action
correspondence must be unique per interface. Gestures are defined
during the specification of the gesture-based interaction in each user
interface. In this case, the ‘D’ gesture contains two actions (each one
in a different interface): (i) it can be used to open the user interface to
manage departments, and (ii) it can be used to delete one previously
selected record in the database.

Even though the problem is small, it contains the necessary elements
to validate the method: (i) a gesture catalogue definition containing
the aforementioned six gestures, and (ii) the process to include the
gesture-based interaction in the existing user interface source code.
The inclusion of a greater number of user interfaces or gestures in the
catalogue during the experiment would mean repetitive work for the
subjects.

6.2.8 Instrumentation

All the material required to support the experiment was developed
beforehand, including the preparation of the experimental object,
instruments and task description documents for data collection used
during the execution of the experiment. The instruments used in the
experiment are described in Table 32.

158

Table 32 Instruments defined for the experiment

Instrument
Demographic
Questionnaire

Description

Questionnaire to assess the subjects’ knowledge and
experience of the technologies and concepts used in the
experiment. This document includes questions
containing Likert-scale values ranging from 1 (strongly
disagree) to 7 (strongly agree)

Task Description
Document for the
code-centric method

Document that describes the tasks to be performed in
the experiment using the code-centric method and
containing empty spaces to be filled in by the subjects
with the start and end times of each step of the
experiment. This document contains guidelines to guide
the subject throughout the experiment and the source
code to be included in the user interface.

Task Description
Document for the
model-driven method
(gestUl)

Document that describes the tasks to be performed in
the experiment using the model-driven method and
containing empty spaces to be filled in by the subjects
with start and end times of each step of the experiment.
This document contains guidelines to guide the subject
throughout the experiment.

Post-test
Questionnaire for the
code-centric method

Questionnaire with 16 questions containing Likert-scale
values ranging from 1 (strongly disagree) to 7 (strongly
agree) to evaluate satisfaction of the whole process
when the subjects use the code-centric method to
define custom gestures and to include gesture-based
interaction.

Post-test
Questionnaire for the
model-driven method
(gestUl)

Questionnaire with 16 questions containing Likert-scale
values ranging from 1 (strongly disagree) to 7 (strongly
agree) to evaluate satisfaction of the whole process
when the subjects use the model-driven method
(gestUl) to define custom gestures and to include
gesture-based interaction.

6.2.9

Experiment procedure

This section describes the procedure used to conduct the experiment.
Prior to the experiment session, a pilot test was run with one subject
who finished the Master’s degree in Software Engineering in the
Universitat Politécnica de Valéncia. This pilot study helped us to
improve the understandability of some instruments.

In this experiment, we consider a user interface of the existing
software system mentioned in Section 6.2.7. In this user interface,
users perform CRUD operations to manage information by means of a

159

traditional interaction with a mouse and a keyboard. We are
interested in including gesture-based interaction in the user interfaces
of a software system. So, the experiment addresses a real problem, i.e.
the definition of custom gestures and the inclusion of gesture-based
interaction in an user interface the

existing to perform

aforementioned operations.

Table 33 Gesture catalogue defined in the experiment

Action Gesture Description User interface
Open user sketches this Main user
“Managing _D gesture to open the user interface
Department” user interface to manage
interface departments in the
university.
Create a new C The user sketches this Managing
department gesture to open the user departments
interface to create a new
department.
Read a Q The user sketches this Managing
department gesture to open the user departments
record interface to read the
previously selected record of
adepartment
Update the u user sketches this Managing
information of the gesture to open the user departments
existing interface to update the
department previously selected record of
adepartment
Delete a record of user sketches this Managing
a department D gesture to open the user departments
interface to delete the
previously selected record of
a department.
Save the S The user sketches this Department
information of a gesture to save the Information

department

information of a department
in the database.

160

Prior to the experiment, we define the gesture catalogue (see Table
33) that the subjects require to apply both treatments in the
experiment.

The gesture catalogue consists of four gestures to execute each CRUD
operations action and one additional gesture to save the information
in the database ('S’ gesture). Observe that the gesture ‘D’ has an
overloaded meaning; that is, it triggers two distinct actions. However,
note that the gesture is interpreted differently in the context of two
distinct application windows (see the right-most column). Also,
potential usability issues regarding this gestures are not relevant to the
purposes of this experiment. This gesture catalogue is included in the
Task Description Document of each treatment.

Hence, the user interface must contain the definition of gestures to
perform CRUD operations. For instance, Figure 58 shows three
gestures defined in the user interface: (i) ‘D’, to open the user interface
to manage departments; (ii) ‘C’, to create a new department, by
opening the user interface to enter the information of a new
department; (iii) ‘S’, to save the information in the database.

L) - =l L] Department Management - oIEN
% anags Gesirent. Departrentcode a0
Manage Teachers
2. Create a new Jv
pat department
1. Open the interface
to Manage Departments 3. Save the data in
a database

Department Management

[WARAGER_ID | LOCATION.ID
; 7 e y\ /1
Z = L
m

Figure 58 Software system supporting gesture-based interaction
We consider two versions of the “Task Description Document”, as

explained in Table 32. We use a sub-index ‘c’ when naming the task
ID to express the treatment “Code-centric method” and we use a
sub-index ‘g’ to express this treatment gestUl when naming the
task ID. The subjects apply both treatments designed in the
experiment with the aim of managing the input of gestures
sketched by the users to execute actions in the software system.

161

Task Description Documents were delivered to the subjects before
starting the experiment.

The steps in the procedure of the experiment are:

Step 1: The goal of the experiment was introduced to the subjects
and guidelines on how to conduct the process were given to them.

Step 2: Each subject filled in a Demographic Questionnaire before
starting the experiment where the subjects were asked about age,
gender, courses taken, experience in software development,
experience in model-driven development, and experience using
gestures (Table 28). Results of this questionnaire are described in
Section 6.2.5.

Step 3: The subjects did the experiment divided into two groups
(G1 and G2) following the instructions given in the Task Description
Document of each method. In this experiment, for each method,
we separately evaluate two processes: (i) custom gesture definition
and (ii) inclusion of gesture-based interaction, since we are
interested in evaluating effectiveness and efficiency of the subjects
when they specify gestures on a touch-based device and when they
include gesture-based interaction. The evaluation of effectiveness
and efficiency, taking in account PTCCG, PTCCI, TFTI, and TFTG (see
Section 6.2.4) is performed based on the information registered in
the Task Description Document. Next, we evaluate each method
(code-centric and gestUl) in a global way with regard to PEOU, PU
and ITU. The sequence of steps for each group is the following.

- G1 group. G1 subjects applied the code-centric method to
complete Treatment I.

Treatment 1 (code-centric method). In this case, the subjects
received the Task Description Document containing instructions to
apply the code-centric method with the aim of adding new source
code to define custom gestures. Following the instructions
included in the Task Description Document, the subjects perform

162

a sequence of steps (see Table 34 that contains an excerpt of the
Task Description Document) to define the catalogue of gestures
described in Table 33. The definition of a gesture using the code-
centric method consists of the creation of an XML file whose
structure, in this case, is based on the gesture specification
according to SN gesture recogniser [126].

Table 34 An excerpt of the Task Description Document containing the sequence of

steps for custom gesture definition using the code-centric method

No. TaskID Task Description Observations

1 TG1c Definition of The subject sketches the “C” gesture using
gesture “C” a finger or a pen/stylus

2 TG2c Definition of The subject sketches the “R” gesture using
gesture “R” a finger or a pen/stylus

3 TG3c Definition of The subject sketches the “U” gesture using
gesture “U” a finger or a pen/stylus

4 TG4c Definition of The subject sketches the “D” gesture using
gesture “D” a finger or a pen/stylus

5 TG5¢ Definition of The subject sketches the “S” gesture using
gesture “S” a finger or a pen/stylus

6 TG6c Save gesture The subject saves the gesture catalogue
catalogue

We provided the subjects with an Eclipse project containing
existing source code of the user interface. The subjects had to
include additional lines of code in order to add functionalities
related with gesture-based interaction. In a real industrial setting,
in the worst case scenario, the developers would have to write
such lines from scratch using the editor of the Eclipse IDE; in the
best case scenario, they would copy them from another project or
from a repository of software patterns and paste them in the
current project. We opted for providing the subjects with the
actual code they had to copy; we included the code and clear
instructions in the Task Description Document.

The rationale for providing them with the source code is the
following. On the one hand, it is true that this decision benefits the
code-centric method because it reduces the time needed to

163

complete the task. On the other hand, we indeed needed to
reduce the duration of the experiment. If the subjects had been
forced to write the source code to define gestures from scratch
and then include gesture-based interaction in the existing user
interface, they would have probably required a greater number
of hours (or maybe days!). We could not run such a long-term
experiment without running into serious threats to the validity of
the results (demotivation and exhaustion of the subjects
potentially leading to an unacceptable mortality rate, loss of
control over their activities outside of the laboratory leading to
unreliable outcomes, etc.). We therefore consider that providing
the source code was a good trade-off between relevance and
rigour. Also, based on the pilot experiments we had evidence-
based expectations that, nonetheless, the code-centric method
would be less efficient than the model-driven method. If the
difference between the efficiency of both methods is significant
and in favour of gestUl, then we can still claim with confidence
that, in a real setting where developers would even take longer to
write the code, adopting gestUl would still benefit them in terms
of gained efficiency.

An excerpt of the sequence of steps to perform in the experiment
to include gesture-based interaction using the code-centric
method is included in Table 35.

Tasks Tl1c, TI2¢ and TI3c allow the adaptation of the source code
of SN gesture recogniser in the source code of the user interface
with the aim of adding a gesture recogniser in the software system
to recognise the gestures sketched by the users. Tl4c includes a
panel in the user interface where the gestures are sketched by
using a finger or pen/stylus. TI5¢ and Tl6¢ permit the inclusion of
listeners to sense the finger that is sketching a gesture. These
listeners capture the information produced on the user interface
when a gesture is sketched. TI7¢c and TI8c manage the process to
draw the gesture on the user interface. TI9c implements a method

164

to define the gesture-action correspondence. In this case, the
subject needs to execute a process to search actions included in
the source code. We use a user interface where the actions are
related with buttons definition (e.g. ‘Manage Departments’,
‘Create’, ‘Save’). Subjects define the action—gesture relationship
using the specification of gestures described in Table 33.

Table 35 An excerpt of the Task Description Document containing the sequence of
steps for gesture-based interaction inclusion using the code-centric method
Task Task Description

ID
Tl1c To include SN as gesture recogniser in the software system

TI2c To implement methods and attributes required to use $N as
gesture recognition

TI3¢ To implement the method to read gestures sketched by the user.

Tl4c To add a new panel in the user interface to draw gestures.

TI5c To write a method to implement a listener sensing the finger (or
pen/stylus) that is drawing a gesture.

TI6c To write a method to implement a listener sensing that the
gesture definition is complete.

TI7¢ To implement a method to manage graphics in Java.

TI8c To implement a method to paint a gesture on the user interface.

TI9¢ To implement a method containing the gesture-action
correspondence

TI10c To compile the new version of the source code and to run the
software system

As a final result, the subjects obtain a new version of source code
containing gesture-based interaction in the user interface in order
to execute actions indicated in the requirements specification
using gestures. Then, in TI10c, the subjects must compile the
source code of the software system in Eclipse IDE, and then they
can execute the software system in order to test the gestures
defined in the process to execute the previously specified actions
in the experiment.

- G2 group. G2 subjects employed gestUl to complete Treatment 1.

165

Treatment Il (gestUI). In this procedure, we consider the same user
interfaces of the software system shown in Figure 57. G2 subjects
received the Task Description Document containing instructions to
apply gestUl to define custom gestures and to include gesture-
based interaction in the user interface. This treatment consists of
the definition of the gesture catalogue, and the specification of
data to apply model transformations in order to generate the
source code of the user interface containing the gesture-based
interaction.

Firstly, the subjects define the gesture catalogue by means of a
pen/stylus or a finger on a touch-based surface. These gestures are
stored in a repository, as described in Section 4.5 of the Chapter 4,
and then the platform-independent gesture catalogue (gesture-
catalogue model) is obtained. The tasks to perform this step are
included in Table 36, which shows an excerpt of the Task
Description Document for this treatment.

Table 36 An excerpt of the Task Description Document for custom gesture
definition using gestUI

Task ID Task Description

TG1g Definition of gesture “C”
TG2¢ Definition of gesture “R”
TG36 Definition of gesture “U”
TG4s Definition of gesture “D”
TG56 Definition of gesture “S”
TG6g Executing model-transformation to obtain a platform-

independent gesture catalogue

Secondly, with the aim of obtaining the platform-specific gesture
specification, subjects apply a model-to-model transformation
that requires as input the gesture catalogue model.

Thirdly, the subject selects the user interface and the platform-
specific gesture specification to design the gesture-based
interaction by defining the gesture-action correspondence. This
correspondence is defined with the aim of assigning each gesture

166

to an action. Figure 59 shows the interface of the tool that contains
the process to define this correspondence consisting of steps 1 to

4 shown in red.

2] Defining gesture-action correspandence - [u] X
Gesture Source Folder: |C \gestUlsamples | Load gestures
User Interface File: [reipres entationLayerDepartments.java Load interface
Select a gesture: -I Select an action: 2 Gesture-action correspondence: 3

User1_letterC_20160503112700 |~} } |Create User1_letterC_20160503112700->Create

User1_letterD_20160503113328 Update Userd_letterR_20160503113304->Return

Userl_letterR_20160503113304 Delete User1_letterU_20160503113316->Update

Usert_letterS_20160503113339 Return User1_letterD_20160503113328->Delete

Usert letterl 20160503113316

] 1 | DN

Select the target platform: Java Application ﬂ 4
Paneins

Panel(s) available in the user interface:

liPanelDer
panelGestures

Figure 59 Gesture-action correspondence definition using tool support

Table 37 contains the description of the steps shown in Figure 59.

Finally, gestUl generates the code with a new version of the user

interfaces including gesture-based interaction. Then, the subjects
use Eclipse IDE to compile the source code of the software system
and afterwards they test the gestures defined in the process.

Table 37 Gesture-action correspondence step-by-step definition

No. Description Explanation

1 It selects a gesture from the This contains the gesture
gesture catalogue selected by the subject.

2 It selects an action from the listof This contains the actions
actions included in the wuser selected by the subject.
interface

3 It contains the gesture-action The subject confirms the
correspondence definition gesture-action correspondence.

4 It generates the new version of This contains the process to

the source code of the user
interface

generate the source code of the

user interface containing

gesture-based interaction.

167

At the end of this process, the result is the generated source code
of the user interface of the software system supporting gesture-
based interaction to execute actions, according to the definition of
gesture-action correspondence. Figure 58 shows the same
software system described in Figure 57 but supporting gesture-
based interaction.

Step 4. Subjects filled in the corresponding Post-Test Questionnaire
according to the treatment employed in the experiment.

According to Table 29, in Section 6.2.6, after the G1 subjects
employed the code-centric method they must employ gestUl to
complete Treatment Il, repeating steps 1 to 3 again. In similar way,
after the G2 subjects employed the gestUl method they must
employ the code-centric method to complete Treatment I.

The data to evaluate PEOU, PU and ITU in this experiment were
obtained from the post-task and post-test questionnaires. After the
data were gathered, they were checked for correctness and the
subjects were consulted when necessary. The data obtained of the
aforementioned questionnaires filled in by the subjects are used to
measure the response variables defined in Section 6.2.4.

6.2.10 Threats of validity
In this section we discuss the most important threats to the validity of

this evaluation. We have classified the threats according to Wohlin

et.al. [138], each of which is discussed below.

Internal validity: The main threats to the internal validity of the

experiment are:

(i)

Subject’s experience in defining gesture-based interaction: this
threat was resolved since none of the subjects had any
experience in tasks related to the topic of custom gesture
definition included in the experiment, according to the pre-
test questionnaire. So, the subjects’ experience in both
treatments is the same.

168

(ii)

(iii)

Subject’s experience in software development: there are some
factors that can influence the experiment:

a. Some of the subjects could have more experience than
others in the development of software. Although we used
the pre-test questionnaire in order to find out their
experience in this field, this threat could not be resolved
since we designed the groups in a random way. This threat
could affect the evaluation of the effectiveness and the
efficiency because the time required to perform the
experiment depends on the experience level of the
subjects.

b. In some cases, subjects without an adequate level of
experience in managing source code could produce syntax
errors in the source code when inserting the additional
source code. This threat could be resolved, since the
subjects received adequate information and printed
source code without errors included in the Task
Description Document with the aim of obtaining a new
version of the existing source code of the user interface.

Information exchange among subjects: this threat was
resolved since the experiment was developed in one session,
and it was difficult for the subjects to exchange information
with each other;

Learning effect: this threat could not be resolved in both
treatments (described in Section 6.2.9) since the process to
define custom gestures is identical to the five gestures
included in the experiment. Therefore, the definition of the
first gesture required more time and effort compared to the
following gestures. This threat could affect the evaluation of
efficiency and effectiveness because the time needed to
perform the experiment depends on the experience level of
the subjects.

169

External validity: The main threats to the external validity of the
experiment are:

Duration of the experiment: there are some factors that can
influence the duration of the experiment.

Since the duration of the experiment was limited to 2
hours, only one interface, six actions (CRUD
operations + save the information + open the interface
to manage departments) and five gestures were
selected. However, repetitive tasks could permit a
reduction of time since the subject already knows the
process to perform. This threat could not be resolved
since these tasks, even though repetitive, were
necessary to build the system.

Since the subjects receive source code that has not
been written by them or known before the
experiment, then they require time to analyse the
structure and the logic of the existing source code
before the inclusion of the additional source code.
This threat could be resolved by including adequate
instructions in the Task Description Document in order
to perform the experiment.

If any subject requires the maximum amount of time
to perform the experiment, which is 2 hours
(according to what is specified in Section 6.2.6), the
information is considered not valid to process because
this situation can represent some of the following
situations: (i) the subject writes source code slowly
using the keyboard and mouse, (ii) a subject does not
have the same experience in the use of software tools
for software development in relation to other subjects
and he/she requires more time to complete the
experiment probably performing additional tasks (e.g.

170

checking if the source code was completely
transcribed from the Task Description Document to
the Eclipse project, checking for syntax errors in the
source code).

d. Total time required to perform the experiment
depends of the typing speed and the experience of the
subject in managing source code. This threat could not
be resolved in Treatment | (it contains more lines of
code to write than Treatment Il) since we do not check
each subject’s typing ability on the computer.

e. Time required to check whether the inclusion of the
gesture-based interaction was successful varies
depending on the experience of the subjects. This
threat could be resolved since the subjects answered
a question in the pre-test questionnaire about
experience in the use of an IDE to develop software in
a positive way (43% have an “average” self-rated
expertise and 38% have an “experienced” self-rated
experience).

Representativeness of the results: despite the fact that the
experiment was performed in an academic context, the results
could be representative with regard to novice evaluators with
no experience in evaluations related with the gesture
interaction definition and inclusion. With respect to the use of
students as experimental subjects, several authors suggest
that the results can be generalised to industrial practitioners
[143] [144].

Construct validity: The main threat to the construct validity of the
experiment is:

(i) Type of measurements to consider in the experiment:
measurement that are commonly employed in this type of
experiment were used in the quantitative analysis. The

171

reliability of the questionnaire was tested by applying the
Cronbach test, the obtained value is higher than the
acceptable minimum (0.70).

Conclusion validity: The main threats to the conclusion validity of
the experiment are:

(i) Validity of the statistical tests applied: this was resolved by
applying Wilcoxon Signed-rank test, one of the most common
tests used in the empirical software engineering field.
According to Wohlin et al. [138] if we have a sample whose
size is less than 30 and we have a factor with two treatments,
we can use non-parametric statistical tests such as the
Wilcoxon Signed-rank test. In Section 6.2.11 the non-
parametric tests used in this experiment are detailed.

(ii) Low statistical power: this happens when the sample size is
not large enough. The power of any statistical test is defined
as the probability of rejecting a false null hypothesis.
According to G*Power [145] the sample size needed for an
effect size of 0.8 is 20 subjects, which is the number of subjects
we have. So, this threat has been minimized.

6.2.11 Data analysis

The calculated values are checked to see the p-value (significance
level). An important issue is the choice of significance level which
specifies the probability of the result being representative. Generally
speaking, the practice dictates rejecting the null hypothesis when the
significance level is less than or equal to 0.05 [139].

The first step is to analyse the reliability of the data obtained in the
experiment: we start by calculating the Cronbach coefficient (alpha).
In this case, the result obtained is 0.736. According to Maxwell [146] if
the Cronbach coefficient is greater or equal to 0.7 then the reliability
of the data is assumed.

172

Boone et al. [147] recommend some data analysis procedures for
Likert scale data: (a) for central tendency: mean, (b) for variability:
standard deviation, (c) for associations: Pearson’s r, and (d) other
statistics using: ANOVA, t-test, regression. According to Juristo et al.
[139], if we have a sample whose size is less than 30 and it follows a
normal distribution, then we employ t-distribution (Student’s), but if
the sample does not follow a normal distribution then we can apply
the Wilcoxon Signed-rank test in order to analyse the data obtained in
the experiment. A normality test using the Shapiro-Wilk test is
required in order to verify if the data is normally distributed. We use
this test as our numerical means of assessing normality because it is
more appropriate for small sample sizes (< 50 samples). Then, using
Shapiro-Wilk we obtained the result that the data is not normally
distributed. In this case, we cannot apply the t-distribution test
because this test requires normally distributed data. So, we apply the
Wilcoxon Signed-rank test.

The next step is verifying whether the data satisfy the sphericity
condition and whether they are homogeneous:

- In order to check the sphericity condition, Mauchly’s test can be
used. However, in this work, there are only two levels of repeated
measures (with the gestUl method and with a code-centric
method), which precludes a sphericity violation and the test is
unnecessary.

- Non-parametric Levene’s test is used to test if the samples have
homogeneity in their variances. In the result of this test we can
observe in column “Sig.” in Table 38, that the non-parametric
Levene’s test for homogeneity of variances provides a
p_value>0.05, allowing us to assume that the data have
homogeneity in their variances.

173

Table 38 Non-parametric Levene's test for the variables in the experiment

Variable F dfl df2 Sig.

PEOUg 0.353 1 19 0.560
PEOUC 0.004 1 19 0.948
PUg 0.042 1 19 0.840
PUc 0.754 1 19 0.396
ITUg 0.147 1 19 0.706
ITUc 0.416 1 19 0.527

In Section 6.3, we report the quantitative results of the experiment
based on the statistical analysis of the data using (i) descriptive
statistics (mainly arithmetic mean), (ii) box-and-whisker plot, (iii)
Spearman’s Rho correlation coefficient to study the correlation
between both treatments, and (iv) the Wilcoxon Signed-rank test
with the aim of addressing the research questions. The results of
applying Wilcoxon Signed-rank test are described grouped by
variables (PTCCI, PTCCG, TFTI, TFTG, PU, PEOU and ITU).

Additionally, at the end of Section 6.3, we include the results of the
effect size calculation in order to check the meaningfulness of the
results and allow comparison between studies.

A significance level of 0.05 was established to statistically test the
obtained results with subjects in the experiment. The analysis has
been performed using the SPSS v.23 statistical tool.

6.3 Results

In this section, the subscript ‘g’ located at the end of each variable
means “using the gestUl method”, and the subscript ‘c’ means
“using the code-centric method”. Next, we analyse the results for
each research question.

6.3.1 RQ1: Effectiveness in the inclusion of gesture-based
interaction
According to Section 6.2.4, in the inclusion of gesture-based
interaction, effectiveness (represented by PTCCI) was defined as

174

the percentage of correctly carried out tasks during the process of
inclusion of gesture-based interaction in the user interface. We
consider two treatments to analyse PTCCI in the inclusion of
gesture-based interaction: PTCClg and PTCClc.

Table 39 Descriptive statistics for PTCCI

N Min. Max. Mean Std.
Dev.
PTCClg 21 50 100 82.1429 17.9284
PTCCIc 21 50 100 77.3810 15.6220
Valid N 21

According to Table 39, the mean of PTCCIg (82.14%) is greater than
the mean of PTCClc (77.38%), that is, the subjects achieved a
greater percentage of correctly carried out tasks using gestUl than
when they employed the code-centric method.

.6
100+ 817
90
6 80
o -
&
704
60
13
507 — 2, 9
PTCCI g PTCCI
METHOD

Figure 60 Box-and-whisker plot of PTCCI
Figure 60 presents the box-and-whisker plot containing the

distribution of the PTCCI variable per method. The medians of
PTCClg and PTCClc are similar, but the third quartile is better for
PTCClg, since the percentage of correctly carried out tasks achieved

175

by the subjects using gestUl is greater than the percentage
achieved when the subjects use the code-centric method. This
means that gestUI is slightly more effective than the code-centric
method when the subjects include gesture-based interaction in
user interfaces.

Using Spearman’s Rho correlation coefficient, we obtained the
result shown in Table 40. The samples of PTCCI have a positive
correlation (0.638). So, we can conclude that PTCCIg and PTCClc are
strongly correlated, that is, when the percentage of correctly
carried out tasks using gestUI increases, the percentage using the
code-centric method also increases.

Table 40 Spearman's Rho correlation coefficient of PTCCI
Correlations

PTCCIg PTCCIc

Correlation Coefficient 1,000 ,638%*

PTCClg Sig. (2-tailed)) ,002

Spearman’s N 21 21
rho Correlation Coefficient ,638%* 1,000
PTCCIc Sig. (2-tailed) ,002)

N 21 21

**_ Correlation is significant at the 0.01 level (2-tailed)

In order to check whether the observed differences were significant
we ran the Wilcoxon Signed-rank test. We obtained the results shown
in Table 41 and Table 42.

Table 41 Wilcoxon Signed-rank test for PTCCI

Ranks
N Mean Sum of
Rank Ranks
Negative Ranks 6° 4,50 27,00
PTCClc Positive Ranks 20 4,50 9,00
- Ties 13¢
PTCCIg Total 21

a. PTCCIc<PTCClg b.PTCClc>PTCClg c.PTCClc =PTCClg

176

Table 42 Wilcoxon Signed-rank test statistics for PTCCI
Test statistics 2

z -1,414b
Asymp. Sig. (2-tailed) ,157
a. Wilcoxon Signed Ranks Test b. Based on positive ranks

They show that two subjects (2/21) have obtained a greater number
of correctly carried out tasks using the code-centric method compared
to gestUI to include gesture-based interaction in the experiment. Six
subjects (6/21) have obtained a greater number of correctly carried
out tasks using gestUl compared to the code-centric method.
However, thirteen subjects (13/21) have obtained the same number
of correctly carried out tasks for both methods.

The 2-tailed p-value obtained with this test was p=0.157>0.05,
therefore, according to this result, we cannot reject the null hypothesis
and can conclude that “There is no difference between the
effectiveness of the gestUl and the code-centric methods in the
inclusion of gesture-based interaction in user interfaces” .

6.3.2 RQ2: Effectiveness in the definition of custom gestures
According to Section 6.2.4, in the definition of custom gestures,
effectiveness (represented by PTCCG) was defined as the percentage
of correctly carried out tasks in the custom gesture definition. We
consider two treatments to analyse PTCCG in the custom gesture
definition: PTCCGg and PTCCGc.

Table 43 Descriptive statistics for PTCCG
N Min. Max. Mean Std. Dev.

PTCCGg 21 75 100 91.6667 12.0762
PTCCGc 21 25 100 71.4286 19.8206
Valid N 21

According to Table 43, the mean of PTCCGc (71.43%) is less than the
mean of PTCCg (91.67%), that is, the subjects achieved a relatively

177

greater percentage of correctly carried out tasks using gestUl than
when they employed the code-centric method.

Figure 61 presents the box-and-whisker plot containing the
distribution of the PTCCG variable per method. The median, the first
quartile and the third quartile are better for PTCCGg, since it achieved
a greater percentage of correctly carried out tasks. This means that
gestUl was more effective than the code-centric method when the
subjects define custom gestures.

1007

80—

PTCCG
T

40

204

PTCCGg PTCCGc
METHOD

Figure 61 Box-plot-whisker of PTCCG

Using Spearman’s Rho correlation coefficient we obtained the results
shown in Table 44. The samples of PTCCG have a positive correlation
(0.456). Then, we can conclude that PTCCGg and PTCCGc have a
moderate correlation, that is, when the percentage of correctly carried
out tasks with PTCCGg increases, there is a moderate increment in the
percentage of PTCCGc.

178

Table 44 Spearman's Rho correlation coefficient of PTCCG
Correlations

PTCCGg PTCCGc

Correlation Coefficient 1,000 ,456*

PTCCGg Sig. (2-tailed) . ,038

Spearman’s N 21 21
rho Correlation Coefficient ,456* 1,000
PTCCGc Sig. (2-tailed) ,038 .

N 21 21

*_ Correlation is significant at the 0.05 level (2-tailed)

In order to to check whether the observed differences were significant
we ran the Wilcoxon Signed-rank test. We obtained the results shown
in Table 45 and Table 46.

Table 45 Wilcoxon Signed-rank test for PTCCG

Ranks
N Mean Sum of
ET] Ranks
Negative Ranks 142 7,50 105,00
PTCCGc Positive Ranks ob 0,00 ,00
- Ties 7¢
PTCCGg Total 21

a. PTCCGc < PTCCGg b. PTCCGc >PTCCGg c. PTCCGc = PTCCGg

Table 46 Wilcoxon Signed-rank test statistics for PTCCG
Test Statistics 2

PTCCGc - PTCCGg

z -3,556°

Asymp. Sig. (2-tailed) ,000

a. Wilcoxon Signed Ranks Test
b. Based on positive ranks

It shows that fourteen subjects (14/21) have obtained more correctly
carried out tasks using gestUl compared to using the code-centric
method, zero (0/21) subjects have obtained more correctly carried out
tasks using the code-centric method than using gestUI, and there are

179

seven (7/21) subjects that have obtained the same percentage using
both methods.

The 2-tailed p-value obtained with this test was p=0.000<0.05,
therefore, according to this result, we reject the null hypothesis and
can conclude than “gestU!l is more effective than the code-centric
method in the definition of custom gestures”.

6.3.3 RQ3: Efficiency in the inclusion of gesture-based interaction
According to Section 6.2.4, efficiency (represented by TFTI) was
defined as the time to finish the task during the inclusion of gesture-
based interaction in the user interface. We consider two treatments
to analyse TFTl in the inclusion of gesture-based interaction: TFTlg and
TFTlc.

According to Table 47, the mean of TFTIc (28.38) is greater than that
of TFTlg (19.71), that is, the time required to include gesture-based
interaction in the experiment using the code-centric method is greater
than the time needed to perform this task using gestUlI.

Table 47 Descriptive statistics for TFTI
N Min. Max. Mean Std. Dev.

TFTIg 21 9.00 33.00 19.7143 7.0224
TFTIc 21 18.00 49.00 28.3810 7.8834
Valid N 21

Figure 62 presents the box-and-whisker plot containing the
distribution of the TFTI variable per method. The medians, first
quartile and third quartile are better for TFTIg, since the time needed
to conduct the experiment is less when the subjects use gestUl rather
than when the subjects use the code-centric method. This means that
the time to finish the task with gestUl is better than with code-centric.

180

50- g

|

]
il

10+ l

TFTI

TFTlg TFTIC
METHOD
Figure 62 Box-plot for TFTI
Using Spearman’s Rho correlation coefficient we obtained the

results shown in Table 48. The samples of TFTI have a positive
correlation (0.210). Then, we can conclude that TFTIg and TFTlc
have a weak correlation, that is, between TFTIlg and TFTlc there is
not a significant relationship (Sig. (2-tailed)>0.05) in the process of
including gesture-based interaction.

Table 48 Spearman's Rho correlation coefficient of TFTI
Correlations

TFTlg TFTlc

TFTlg Correlation Coefficient 1,000 ,210

Sig. (2-tailed) . ,361

Spearman’s N 21 21
rho TFTIc Correlation Coefficient ,210 1,000

Sig. (2-tailed) ,361 .

N 21 21

In order to check whether the observed differences were significant
we ran the Wilcoxon Signed-rank test. We obtained the results shown
in Table 49 and Table 50. They show that eighteen subjects (18/21)
have employed more time using the code-centric method compared
to gestUl to include gesture-based interaction in the experiment.
Three subjects (3/21) have employed less time using the code-centric

181

method than gestUl to include gesture-based interaction in the
experiment.

Table 49 Wilcoxon Signed-rank test for TFTI

Ranks
Sum of
N Mean Rank RENS
TFTIc - Negative Ranks 32 7,17 21,50
TFTIg Positive Ranks 18b 11,64 209,50
Ties oc
Total 21

a. TFTIc < TFTIg b. TFTlc >TFTlg c. TFTlc=TFTIg

Table 50 Wilcoxon Signed-rank test statistics for TFTI
Test Statistics ®

TFTlc - TFTIg
z -3,269°
Asymp. Sig. (2-tailed) ,001

a. Wilcoxon Signed Rank Test
b. Based on negative ranks

The 2-tailed p-value obtained with this test was p=0.001<0.05,
therefore, according to this result, we reject the null hypothesis and
we can conclude than “gestU! is more efficient than the code-centric
method in the inclusion of gesture-based interaction in user
interfaces”.

6.3.4 RQ4: Efficiency in the definition of custom gestures
According to Section 6.2.4, efficiency (represented by TFTG) was
defined as the time to finish the task during the custom gesture
definition. We consider two treatments to analyse TFTG in the
definition of custom gestures: TFTGg and TFTGc.

According to Table 51, the mean of TFTGc (154.67) is greater than the
mean of TFTGg (31.89), which means that the time required to define
custom gestures in the experiment using the code-centric method is
greater than the time to do this task using gestUI.

182

Table 51 Descriptive statistics for TFTG
N Min. Max. Mean Std. Dev.

TFTGg 21 12.75 66.75 31.8929 16.8301
TFTGc 21 60.50 346.25 154.6786 66.5967

Valid N 21
400 4
14
o
300 1
o
&
E 200 -
-

100 i
TFTGg TFTG

METHOD
Figure 63 Box-plot of TFTG

C

Figure 63 presents the box-and-whisker plot containing the
distribution of the TFTG variable per method. The median, first
quartile and third quartile are better for TFTGg, since TFTGg needs
less time to complete the task. This means that gestUl was more
efficient than code-centric method regarding the time required by
the subject to define custom gestures during the experiment.

Using Spearman’s Rho correlation coefficient, we obtained the
result shown in Table 52. The samples of TFTG have a positive
correlation (0.216). Then, we can conclude that TFTGg and TFTGc
have a weak correlation, that is, when the time required to define
custom gestures using code-centric method increases, the time
using gestUl method also has a weak increment.

183

In order to check whether the observed differences were
significant, we run Wilcoxon Signed-rank test. We obtain the results
shown in Table 53 and Table 54. It shows that twenty-one subjects
(21/21) have employed more time using the code-centric method
than gestUI to define custom gestures in the experiment.

Table 52 Spearman's Rho correlation coefficient of TFTG
Correlations

TFTGg TFTGc

TFTGg Correlation 1,000 ,216
Coefficient 21 ,346
Sig. (2-tailed) 21
Spear
K N
man’s
tho TFTGc Correlation ,216 1,000
Coefficient ,346 .
Sig. (2-tailed) 21 21
N

The 2-tailed p-value obtained with this test was p=0.000<0.05,
therefore, according to this result, we reject the null hypothesis and
we can conclude than “When the subjects define gestures, gestUl is
more efficient than the code-centric method”.

Table 53 Wilcoxon Signed-rank test for TFTG
Ranks

TFTGc - Negative Ranks 0 ,00 ,00
TFTCe Positive Ranks 21° 11,00 231,00
Ties 0°
Total 21

a. TFTGc < TFTGg b. TFTGc >TFTGg c. TFTGc = TFTGg

184

Table 54 Wilcoxon Signed-rank test statistics for TFTG

Test Statistics?
TFTGc — TFTGg
Z -4,015°
Asymp. Sig. (2-tailed) ,000

a. Wilcoxon Signed Ranks Test
b. Based on negative ranks

6.3.5 RQ5: Perceived Ease of Use

According to Section 6.2.4, the variable PEOU is defined as perceived
ease of use of the method. We consider two treatments to analyse
PEOU: PEOUg and PEOULc.

Table 55 presents the results obtained through questions related to
PEOU within Post-task and Post-test questionnaires. In this case, the
mean is above 3.0 in both cases. There is a difference of 0.042 between
the mean of PEOUc and the mean of PEOUg, that is, the PEOU of gestUI
is relatively greater than the PEOU of the code-centric method.

Table 55 Descriptive statistics for PEOU
I\ Min. Max. Mean Std. Dev.

PEOUg 21 1 5 3.2857 0.2154
PEOUC 21 1 5 3.3280 0.5073
Valid N 21

Table 56 Spearman's Rho correlation coefficient of PEOU
Correlations

PEOUg PEOUc

PEOUg Correlation coefficient 1,000 ,408

Sig. (2-tailed) . ,066

Spearman’s N 21 21
rho PEOUc Correlation coefficient ,408 1,000
Sig. (2-tailed) ,066 .

N 21 21

Using Spearman’s Rho correlation coefficient we obtain the next
result (Table 56). The samples of PEOU have a positive correlation

185

(0.408). So, we can conclude PEOUg and PEOUc have a moderate
correlation, that is, when the perceived ease of use with gestUI
increases, PEOU using the code-centric method also increases.

Figure 64 shows the box-and-whisker plot containing the
distribution of the PEOU variable per method. The medians of both
treatments are the same. The first quartile is slightly better for
gestUl and the third quartile is slightly better for the code-centric
method. This means that there are no differences between both
treatments.

In order to check whether the observed differences were
significant, we ran the Wilcoxon Signed-rank obtaining the results
shown in Table 57 and Table 58. They show that eight subjects
(8/21) perceive that gestUIl is easier to use than the code-centric
method, eight subjects (8/21) perceive than the code-centric
method is easier to use than gestUl and, five (5/21) perceive that
both methods are easy to use.

5,0 1
7

4,5 °

4,0 . 8 _
5
-
Ay

i 3
3,0 2o
16
251 1
2,0 A
PEOUg PEOU,

METHOD
Figure 64 Box-plot for PEOU

186

Table 57 Wilcoxon Signed-rank test for PEOU
Ranks

PEOUC - Negative Ranks 82 8,25 66,00
PEOUs Positive Ranks 8 8,75 70,00
Ties 5¢
Total 21

a. PEOUc < PEOUg b. PEOUc > PEOUg c. PEOUc = PEOUg

Table 58 Wilcoxon Signed-rank test statistics for PEOU
Test Statistics®

PEOUc — PEOUg

Z -,104b

Asymp. Sig. (2-tailed) ,917

a. Wilcoxon Signed Ranks Test
b. Based on negative ranks

The 2-tailed p-value obtained with this test was p=0.917>0.05,
therefore, according to this result, we cannot reject the null
hypothesis and we can conclude than “gestUl is perceived as easier
to use than the code-centric method”.

6.3.6 RQ6: Perceived Usefulness
According to Section 6.2.4, the variable PU is defined as perceived
usefulness of the method. We consider two treatments to analyse
perceived usefulness: PUg and PUc.

Table 59 presents the results obtained through questions related
to PU in Post-task and Post-test questionnaires. In this case, the
mean of PUc is less than PUg, that is, perceived usefulness of gestUI
(mean=3.82) is greater than the perceived usefulness of the code-
centric method (mean=3.28).

187

Table 59 Descriptive statistics for PU
N Min. Max. Mean Std. Dev.

PUg 21 1 5 3.8176 0.3451
PUc 21 1 5 3.2786 0.5762
ValidN 21

Figure 65 presents the box-and-whisker plot containing the
distribution of the PU variable per method. The median, first
quartile and third quartile of PUg is better than PUc. This means
that the subjects perceived gestUl to be more useful than the code-
centric method.

Using Spearman’s Rho correlation coefficient, we obtain the next
result (Table 60). The samples of PU have a positive correlation
(0.310). So, we can conclude that PUg and PUc have a weak
correlation, that is, when the perceived usefulness of the code-
centric method increases, the perceived usefulness using the
gestUl method also increases.

4,57
4,01 T
3,54

-]

&
3,01 —
2,5 i
2,0

PU PUC
METHOD

Figure 65 Box-plot of PU

188

Table 60 Spearman's Rho correlation coefficient of PU
Correlations

PUg PUc
PUg Correlation Coefficient 1,000 ,310
Sig. (2-tailed) . ,172
Spear N 21 21
man’s
rho PUc Correlation Coefficient ,310 1,000
Sig. (2-tailed) ,172
N 21 21

In order to check whether the observed differences were
significant, we ran the Wilcoxon Signed-rank obtaining the results
shown in Table 61 and Table 62. This test shows that fifteen
subjects (15/21) perceive gestUl to be more useful than the code-
centric method in the experiment. Three subjects (3/21) perceive
the code-centric method to be more useful than gestUI, and three
(3/21) consider that both methods have the same level of
perceived usefulness in the experiment.

Table 61 Wilcoxon Signed-rank test for PU
Ranks

PUc- Negative Ranks 152 10,63 159,50
e Positive Ranks 3k 3,83 11,50
Ties 3¢
Total 21

a.PUc<PUg b.PUc>PUg c.PUc=PUg

The 2-tailed p-value obtained with this test was p=0.001<0.05,
therefore, according to this result, we reject the null hypothesis and
we can conclude than “gestU! is perceived as more useful than the
code-centric method”.

189

Table 62 Wilcoxon Signed-rank test statistics for PU
Test Statistics®

PUc — Pug

z -3,239°

Asymp. Sig. (2-tailed) ,001

a. Wilcoxon Signed Ranks Test
b. Based on positive ranks

6.3.7 RQZ7:Intention to Use
According to Section 4.4, the variable ITU is defined as the intention
to use of the method. We consider two treatments to analyse ITU:
ITUg and ITUc.

Table 63 presents the results obtained through questions related
to ITU in Post-test and Post-task questionnaires. In this case, the
mean of ITUg (3.74) is above 3.0 while the mean of ITUc (2.93) is
below to 3.0.

Table 63 Descriptive statistics for ITU
\ Min. Max. Mean Std. Dev.

ITUg 21 2 5 3.7381 0.7179
ITUc 21 1 4 2.9286 0.6761
ValidN 21

Figure 66 presents the box-and-whisker plot containing the
distribution of the ITU variable per method. The median, the first
and third quartile are better for ITUg. This means that gestUl has a
greater intention to use than the code-centric method when the
subjects use it to define custom gestures and to include gesture-
based interaction.

Using Spearman’s Rho correlation coefficient we obtain the next
result (Table 64). The samples of ITU have a positive correlation
(0.080). So, we can conclude that ITUg and ITUc have a very weak
correlation, that is, when the intention to use of gestUl (ITUg)
increases, the intention to use of the code-centric method (ITUc)
increases very little compared with ITUg.

190

gesltUI Code-centric method
METHOD

Figure 66 Box-plot of ITU

Table 64 Spearman's Rho correlation coefficient of ITU

Correlations

ITug ITUc

ITUg Correlation Coefficient 1,000 ,080
Sig. (2-tailed) . ,731
Spe N 21 21
arm ITUc Correlation Coefficient ,080 1,000
an’s
rho Sig. (2-tailed) ,731
N 21 21

Table 65 Wilcoxon Signed-rank test for ITU
Ranks

ITUc — Negative Ranks 13° 8,65 112,50
'TUg Positive Ranks 25 3,75 7,50
6
21
a.ITUc< ITUg b. ITUc>ITUg c. ITUc=1TUg

191

In order to check whether the observed differences were
significant, we ran the Wilcoxon Signed-rank obtaining the results
included in

Table 65 and Table 66. They show that gestUl has greater intention
to use than the code-centric method (13/21 subjects), the code-
centric method has two (2/21) subjects with intention to use, and
six (6/21) subjects have an intention to use for both methods.

Table 66 Wilcoxon Signed-rank test statistics for ITU
Test Statistics®

ITUc - ITUg

V4 -3,005°
Asymp. Sig. (2- ,003
tailed)

a. Wilcoxon Signed Ranks Test
b. Based on positive ranks

The 2-tailed p-value obtained with this test was p=0.003<0.05,
therefore, according to this result, we reject the null hypothesis,
and we can conclude that “gestUl has an intention to use greater
than the code-centric method”.

In summary, the result of each hypothesis is shown in Table 67.

6.3.8 Effect-size calculation

According to Kotrlik [148], effect size measures focus on the
meaningfulness of the results and allow comparison between studies,
furthering the ability of researchers to judge the practical significance
of results presented. We use means and standard deviations of the
metrics defined in this experiment to calculate Cohen’s d and effect-
size correlation r. The calculation was performed using the effect size
calculator provided by the University of Colorado (Colorado Springs),
available at http://www.uccs.edu/~lbecker/.

192

http://www.uccs.edu/~lbecker/

snjels

poyisw 2111us2-apo2d 3y} uey) Jeyeausd asn 0] uonualul ue sey |Nises payalay Nl
-
m "pPoyiaw 2113U82-8p0I SY1 UBYY [NjOsn aiow se panisdiad si |nisad pa1alay nd
w. "Poy1aW d1I1u22-2p02 2yl UeYl @sn 0] JaIsea se panledlad s| |n1ses palalal 10N noid
x
)]
2 -poylaw dLIUS2-8pOD BY] UBY] JUBIDIYS Slow si |N1s98 ‘saunisad aulyep s1slqns syl usyp pa1alay 0141
e
[=
S poylaw d1usd-apod ayl asn Aayl uaym ueyl 1aylel |nised asn s3oalgns syl usym sssa| ale
@
£ paulelqo s1nsal 8y "S8deSIUI 1SN Ul UOIIIRISIUI PASE]-81N1sas JO uolisnpul 8y} ul poylaw
m JLue-8pod syl pue |Msaf jo Adusdiye syl usemiaq sdusiaylp uedusis e si aiay| palalay 141
£
m 9221d
o Ueyr aa1eaid st 89D 1d ‘sl 18yl ‘pOYIaLU J11IUSI-8p0d Byl ueyl Jayied |Misad asn s1oalgns
=
..M aUl uaym 19118q 8JE paulelqo S}Nsay "seunises wolsnd Jo uonedynads syl ul poylaw
> 21IU2-8p0D Byl pue |N31sa8 JO SSOUBAIDBYS BYl UDIMIa] SdUaIBIp edjiudis e si a1ay] pa1alay oy)1d
©
£
£ "S92BJI9IUI J8SN Ul UOI}deIa]Ul pased-ainisad Jo uolsn|pul ay3 ul poyiaw
=]
Y 5113u82-9p0od Byl pue |31sa8 Jo SSaUBAIIIBYS Bl UsaMIaq aduslaip uedudis ou s a1y pawalal jop 1D01d
~
©
2
e}
(T
-

uoisnjpuo)

sisayjodAy
IINN

a|qelep

193

Based on the work of Lakens [149], we can see that the effect size is
“Large” if d>0.8, “Medium” if d<=0.5 and d>0.2, and “Small” if d<0.2.
In Table 68, we present the results of the effect size calculation of the
metrics included in this experiment and this shows the equivalences
applied to the results obtained.

Table 68 Effect size of the metrics

Response Metric Mean St.Dev. Cohen’s Equivalence
variable d
Effectiveness in PTCCI
the inclusion of PTCClg 82.1429 17.9284 .
0.2832 Medium
gesture-based PTCClc 77.3810 15.6220
interaction.
Effectiveness in PTCCG
the custom PTCCGg 91.667 12.076
1.233 Large
gesture PTCCGc 71.428 19.821
definition.
Efficiency inthe TFTI
inclusion of TFTlg 19.714 7.022
1.161 Large
gesture-based TFTlc 28.381 7.883
interaction.
Efficiency inthe TFTG
custom gesture TFTGg 31.893 154.678 2.5279 Large
definition. TFTGc 16.8301 66.5967
PU
PUg 3.8176 0.3451 1.1349 Large
PUc 3.2786 0.5762
PEOU
Satisfaction PEOUg 3.2857 0.2154 0.1085 Small
PEOUC 3.3280 0.5073
ITU
ITUg 3.7381 0.7179 1.1609 Large

ITUc 2.9286 0.6761

According to this classification, the results obtained for effect size
show that:

(i) In the case of PTCCG, TFTI, TFTG, PU and ITU, the effect size
calculated through Cohen’s d is greater than 0.8, which means
that it is classified as “Large”. So, there is a significant

194

difference in the application of each method in this
experiment related to: effectiveness in the definition of
custom gestures (PTCCG), efficiency in the inclusion of
gesture-based interaction (TFTI), efficiency in the definition of
custom gesture (TFTG), perceived usefulness (PU) and
intention to use (ITU).

(ii) In the case of PTCCI, the effect size calculated through Cohen’s
d is equals to 0.2832 (d>0.2), which is classified as “Medium”.
So, the difference in the application of each method to include
gesture-based interaction in a user interface considering the
effectiveness in the inclusion of gesture-based interaction, is
not important.

(iii) In the case of PEOU, the effect size calculated through Cohen’s
dis less than 0.2 (d=0.1085), which is classified as “Small”. So,
there is a minimum difference in the application of each
method in this experiment related to the perceived ease of use
(PEOU).

In the next section, we analyse the results obtained in this experiment.

6.4 Discussion

In this section, we discuss the results of the experiment described
in Section 6.3 in order to draw some conclusions regarding the
comparison of gestUl (a model-driven method) and the code-
centric method (traditional software development). In order to
validate gestUI, three aspects are considered in this experiment:
effectiveness (using PTCCI, PTCCG), efficiency (using TFTl and TFTG)
and satisfaction (using PU, PEOU and ITU). The discussion about the
results obtained in the experiment is performed according to the
aforementioned research questions.

6.4.1 Effectiveness
RQ1: Effectiveness in the inclusion of gesture-based interaction

RQ1 is related to the PTCCI metric that is defined as the percentage
of task correctly carried out in the inclusion of gesture-based

195

interaction in a user interface. Regarding PTCCI, the results
obtained by applying statistical tests show that:

- Through the Wilcoxon Signed-rank test, there is no significant
difference between the results obtained when the subjects
applied gestUl and when the subjects applied the code-centric
method to include gesture-based interaction in an existing user
interface. We consider that the small difference obtained
(approximately 4%) by applying both methods to calculate PTCCI
is because (i) the subjects used existing source code (included in
the Task Description Document) instead of writing the source code
from scratch as is done in a typical development process [119].
This context helped to obtain better results with the code-centric
method and the difference was less than expected; (ii) the subjects
were not familiar with the process defined in gestUl to apply a
model-driven method (i.e. by using model transformations to
include gesture-based interaction); (iii) the subjects did not have
experience in the inclusion of gesture-based interaction and when
they applied gestUI, the process was not very intuitive to follow.

RQ2: Effectiveness in the definition of custom gestures

RQ2 is related with the PTCCG metric that is defined as the
percentage of task correctly carried out in the custom gesture
definition (PTCCG). Values obtained applying statistic tests for
PTCCG show that:

- Through the Wilcoxon Signed-rank test we found that gestUl is
significantly more effective than the code-centric method in the
definition of custom gestures. The percentage obtained with
gestUl is greater than the percentage obtained with the code-
centric method. In this case, the difference between the
percentage of task correctly carried out in the custom gestures
definition using gestUI or using the code-centric method is almost
20%. This difference is due to subjects using gestUIl having a more
intuitive process to follow to define gestures and to obtain a XML
file containing the description of the gesture. Using the code-

196

centric method, the process of defining gestures is more complex
because it includes additional tasks (e.g. analyse the shape of the
gesture, draw it and define it using XML, among others) requiring
more effort.

6.4.2 Efficiency
RQ3: Efficiency in the inclusion of gesture-based interaction

RQ3 is related with the TFTI metric that is defined as the time to
finish the task during the inclusion of gesture-based interaction in
the user interface. Values obtained for TFTI show that:

- Through the Wilcoxon Signed-rank test we found that gestUIl is
significantly more efficient than the code-centric method in the
inclusion of gesture-based interaction in user interfaces. When the
subjects did the experiment using gestUl, they required less time
than when they used the code-centric method. The difference of
time between both methods is moderate (8.67 min.), this could be
related to the ability to type the source code in a correct way,
probably because the subjects had experience developing
software (according to the demographic questionnaire, the
average self-rated programming expertise was 43%). Also, they
required less time to type source code since they had experience
using the integrated development environment used in the
experiment (according to the demographic questionnaire 38% had
an “experienced” level and 43% had a “medium experienced” level
with Eclipse Framework).

RQ4: Efficiency in the definition of custom gestures

RQ4 is related with TFTG that is defined as the time to finish the
task during the custom gesture definition (TFTG). Obtained results
show that:

- Through the Wilcoxon Signed-rank test we found that the time
required to define custom gestures using gestUl is less than the
time required using the code-centric method. The difference is
high (122.7857) since some subjects had some problems with the

197

definition of gestures using XML language as they were not
familiar with the syntax of XML. Another aspect that could have
increased the time required with the code-centric method is
related to syntax errors generated during the process of gesture
definition. If the subjects run the experiment first with gestUl and
then with the code-centric method, they require a longer time that
those subjects that run the experiment first with the code-centric
method and then with gestUl. In this case, there were some
problems when the subjects employed SN to recognise some
gestures sketched by them. This could have had some influence in
the duration of the process of custom gesture definition.

In summary, regarding effectiveness and efficiency, we can say
that:

- The result obtained in the experiment permit one to say, in
general, that the effectiveness and efficiency of gestUl are greater
than those of the code-centric method.

- Considering the metrics PTCCG, TFTG and TFTI, the results
obtained with Cohen’s d value (d>0.8, i.e. “Large”) suggest a high
practical significance for the results obtained. Also, Cohen’s d
value (d= 0.2832 for PTCCl) suggested a moderate practical
significance for the results obtained.

- Concerning the values of TFTG and TFTl obtained in the
experiment, we think that if the subjects had written the source
code from scratch, the difference in time would have been greater.
In general, the overall results lead us to interpret that gestUl has
achieved better effectiveness and efficiency for the subjects in
almost all the analysed statistics in comparison with the code-
centric method.

- Finally, considering effect size, we can conclude that in
comparison, effectiveness and efficiency of gestUl are better than
those obtained with the code-centric method in the custom
gesture definition.

198

6.4.3 Satisfaction
RQS5: Perceived ease of use

RQ5 is related with PEOU that is defined as perceived ease of use
(PEOU). Obtained results show that:

- Through the Wilcoxon Signed-rank test we found that the
difference between PEOUg (3.286) and PEOUc (3.328) is minimal
(0.0423). So, we can say that the subjects perceive that both
methods are easy to use. However, in the case of the code-centric
method, this result could be influenced by the inclusion of source
code in the Task Description Document as was explained in Section
6.2.8. This decision was taken with the aim of reducing the
complexity of the code-centric method and the time required to
do the experiment.

RQ6: Perceived Usefulness

RQ6 is related with PU that is defined as perceived usefulness (PU).
Obtained results show that:

- Through the Wilcoxon Signed-rank test we found that there is
difference (0.539) between the values of PUg (3.8176) and PUc
(3.2786). So, we can say that the subjects perceive gestUl to be
more useful than the code-centric method. The subjects perceive
the usefulness of gestUl by noting that if gestUl is easy to use they
may find gestUl more useful, and hence, have some motivation to
use it. Specifically, the subjects perceive the usefulness of gestUI
when they use it to automatically obtain source code to include
gesture-based interaction in a user interface based on a
specification of gestures and actions to define the gesture-based
interaction.

RQ7: Intention to use

RQ7 is related with ITU that is defined as intention of use. Obtained
results show that:

199

- Through the Wilcoxon Signed-rank test we found that there is a
difference (0.8095) between the values of ITUg (3.7381) and ITUc
(2.9286). So, we can say that the subjects have an intention to use
gestUl greater than the code-centric method. This conclusion is
based on the fact that the subjects considered gestUl as easy to
use and useful compared to the code-centric method.

In general, the results of our work indicate that gestUl is accepted
by the subjects since the results obtained for effectiveness,
efficiency and satisfaction with gestUl are better that the results
obtained with the code-centric method. With these results we
could say that gestUl is a hopeful approach and justifies further
investigation.

6.5 Conclusions

This validation process compares a model-driven method (gestUl)
versus a traditional software development method (the code-centric
method) in terms of (i) effectiveness in the custom gesture definition,
(ii) effectiveness in the inclusion of gesture-based interaction, (iii)
efficiency in the custom gesture definition, (iv) effectiveness in the
inclusion of gesture-based interaction,) and satisfaction (PEOU, PU and
ITU) through an experimental investigation. Results show that, in
general, gestUl has a greater effectiveness, efficiency and satisfaction
level than the code-centric method, and gestUl was also perceived by
the subjects as easier to use than the code-centric method.

Some aspects that must be contextualised according to the type of
experiment are:

(i) The sample size is small, twenty-one (21) subjects.

(i) The subjects were M.Sc. and Ph.D. students and they do not
have enough experience in the topics included in the
experiment: tasks related with the custom gesture definition
and the inclusion of gesture-based interaction.

200

(iii) The subjects have experience in software development using
the Java programming language, which could have influenced
the results obtained with the code-centric method.

(iv) We consider that the decision to include source code in the
Task Description Document to reduce the time for the code-
centric method has reduced the differences in terms of
efficiency between treatments, since subjects only had to
transcribe the source code specified in the document.

Gesture definition is interesting for the subjects since they can
specify their own gestures with the aim of executing actions in a
user interface. In this context, each subject defined four gestures in
order to use them in the user interface doing CRUD operations in a
database. The subjects could define their own gestures according
to their preferences.

Even though the experimental results are good for the usefulness of
gestUl, we are aware that more experimentation is needed to confirm
these results. Existing results must be interpreted within the context
of this experiment. In general, the subjects considered gestUl a good
solution since they defined custom gestures and they included the
gestures in the user interface in a short time compared to the time
required when they used the code-centric method

201

202

CHAPTER

TECHNICAL
ACTION
RESEARCH

The topics covered in this chapter are:

7.1 Introduction

7.2 Capability Design Tool

7.3 Validation using Technical Action Research
7.4 Action Research Procedure

7.4 Analysis and Interpretation of results
7.5 Threats to validity
7.6 Conclusions

203

204

Chapter 7. Technical Action Research

7.1 Introduction

In this chapter, we describe the validation of gestUl through
Technical Action Research (TAR). We conduct this evaluation with the
purpose of knowing the experience of subjects in the industry when
they apply gestUl in a tool they use to carry out their activities. This
evaluation is complementary to that described in Chapter 6.

TAR can be seen as a research method that starts from the opposite
side of traditional research methods. TAR starts with an artefact, and
then tests it under practical conditions by using it to solve concrete
problems [30].

According to Wieringa [150], TAR is related with the use of an
experimental artefact to help a client and to learn about its effects in
practice. The artefact is experimental, which means that it is still under
development and has not yet been transferred to the original problem
context. In a validation process with TAR, the researcher uses an
artefact (e.g. method and a tool) in a real-world project to help a client,
or gives the artefact to others so they can use it assisted by the
researcher [150].

In this chapter, we report the validation of gestUl in real-world
conditions through TAR. During the validation process, we aimed to
discover just how gestUl can help stakeholders (e.g. software
engineers, end-users) to define custom gestures and to include
gesture-based interaction in existing user interfaces. We also aimed to
obtain practical interpretations of the system from industry
practitioners. We use TAR in the context of the CaaS Project (FP7 ICT
Programme Collaborative Project no. 611351). The main outcomes of
Caas are: (i) the Capability-Driven Development (CDD) methodology
[151] and (ii) the CDD environment. The Capability Design Tool is a
CASE tool in the CDD environment that supports capability modelling
according to the CDD meta-model [152]. Everis, a multinational firm

205

offering business consulting, as well as development, maintenance
and improved information technology, collaborated in the evaluation.
Everis’s CaaS-project team is developing an e-government platform by
applying the whole CDD methodology and environment.

We report on a user evaluation that involves business consultants
using gestUI to include gesture-based interaction in a user interface
and then carrying out a modelling task by means of gestures. We base
the empirical validation on well-known frameworks and techniques,
such as:

(i) The Method Evaluation Model (MEM) [133] to relate
subjects’ performance, perceptions and intentions. MEM is
described in Chapter 6.

(ii) The User Experience Questionnaire (UEQ) [153] to
measure user experience with gestUl.

(iii) Microsoft Reaction Cards (MRC) to obtain desirability level
and user experience [154] with gestUI.

The main goal of the User Experience Questionnaire (UEQ) is to
obtain a fast and immediate measurement of user experience of
interactive products [155]. The questionnaire format supports the user
response to immediately express feelings, impressions, and attitudes
that arise when they use a product [156]. The questionnaire consists
of bipolar contrasting attributes on a seven-scale ranking. Figure 67
shows an excerpt of the user experience questionnaire.

The subjects express their agreement with the attributes by ticking
the circle that most closely reflects their impression. The seven-scale
ranking is converted into a positive and a negative scale, where +3
represents the most positive and the -3 represents the most negative
value [157]. The user experience questionnaire contains six scales with
26 items in total: attractiveness, efficiency, perspicuity, dependability,
stimulation, novelty [158].

206

arnoyng W L 0 O O W U enjoyvabla
notundarstandable = © O O O O 2 wundersiandable
creaglive & O O O O O O dull
aasyielearn = O O O O QO dificult to leam
vahablke O O O Q0 QO imferir
baing = O D O D O O aexciling
matinderesing & O D 0 O O O inleresing
unprdicisble = O O O O O O prodctabie
sl © O O 0O O O O sow
nventne » conwanhonal
obstiudiive & O D 0 O O O supportive
good © O © O O O O bad
complicated O O O O 0 O O essy
unfikable O I & T & T O pleaasing
mgal & O O QO O O leadng edpa
unpleasanl = O O O O O phEant
Secune 2 Qo 3 nol secire
mativaing = O O O O OO demcteating
meals aepeciaions & O 0 O O O O does nol mesl cpectalions
imefcient < O O 0 O QO afcent
cear O O O QO O O O confusing
impractical &] O O O practical
ciganized 2 O O O O O O clutledsd
atvacive O O O 0 O O O unatirachive

fiendly & © O O O O O wniiendly
mnsarvatve O 0 0 O O Q0 QO innoealive

Figure 67. An excerpt of User Experience Questionnaire (taken of www.ueq-
online.org)

Product reaction cards (PRC) are called Microsoft Reaction Cards
(MRC) since they were developed by Microsoft [154] as part of a
“desirability toolkit” created to get the quality of desirability, a key
component in user satisfaction [159]. MRC consist of a pack of 118
cards with 60% positive and 40% negative or neutral adjectives, from
which subjects choose the words that reflect their feelings toward
their interactive experience with a product [154]. Assessment based
on PRC has been recognized as one of the preferred methods for
measuring the perceived desirability of visual designs [159]. Figure 68
shows an excerpt of the 118 positive and negative phrases of Microsoft
Reaction Cards.

The remainder of this chapter is organized as follows: Section 7.2
describes the Capability Design Tool. Section 7.3 (Validation using
Technical Action Research) describes the experimental planning.

207

Section 7.4 includes the action research procedure. Analysis and
Interpretation of the TAR results are detailed in Section 7.5. Section
7.6 includes the discussion about the threats to validity of the results
obtained in the experiment. Finally, the conclusions of the experiment
are included in Section 7.7.

accessible Creative meaningful Slow
Sdvanced Customizahle Motivating Sophisticated
Annoying Cuftingedge Mot Secure Stable
Appealing Dated Mot valuable Sterile
Approachabls Desirable Hovel Stimulating
Attractive Difficult Old Straight Forward
Boring Discomnectsd Optimistic Stressful
Boxy Disruptive Ordinary Time-Consuming
Business-like Distracting Organized Tirme-5aving
Busy Dull Owerbearing TooTechnical
Confident Enthusiastic Reliable Unrefined
Confusing Essential Respansive Usahle
Connected Exceptional Rigid Useful
Consistent Exciting Satisfying valuable
Controllable Expected Secure

*Dewelopad by and D 2002 Microsoft
Convenient Familiar Simplistic Carporation. Al righis reserved *
Complex Engaging Professional Undesirable
Comprehensive Entertaining Relevant Unpredicteble

Figure 68. An excerpt of the 118 positive and negative phrases of Microsoft
Reaction Cards

7.2 Background: Capability Design Tool

CDD is a novel paradigm in which services are customised on the
basis of the essential business capabilities and delivery is adjusted
according to the current context [160]. The CDD methodology for
capability-driven design and development consists of various
components addressing different modelling aspects, such as context
modelling, business services modelling, pattern modelling or capability
modelling.

The CaaS project developed three components to support CDD
[152]:

(i) CDD methodology, is based on agile and model driven

information systems development principles and consists
of the CDD development process, a language for

208

representing capabilities according to the CDD meta-
model, as well as modelling tools.
(i) Capability delivery patterns, representing reusable

solutions for reaching business goals under different
situational contexts. The context defined for the capability
should match the context in which the pattern is applicable
in. Patterns will represent reusable solutions in terms of
business process, resources, roles and supporting IT
components (e.g. code fragments, web service definitions)
for delivering a specific type of capability in a given context.
(iii) CDD _environment providing a modelling tool called
Capability Design Tool (CDT). The CDT (Figure 69) is
designed as an integrated development environment built

using Eclipse Modelling Framework (EMF) technologies®?
and Graphiti'* on top of Eclipse’s Graphical Editing
Framework-GEF'®>. CDT supports capability modelling
according to the CDD metamodel, including context
modelling and goal, process and concept models.

We modified the source code of CDT to include gesture-based
interaction such a way it supports two modes of operation:

(i) The traditional interaction mode already existing in the
tool, in which the user can manipulate the primitives and
connectors contained in a diagram using mouse and
keyboard.

(ii) The gesture-based interaction mode is added in the CDT by
using gestUl, in which the user can draw diagrams by
means of gestures sketched by a finger or pen to obtain a
primitive.

13 http://www.eclipse.org/emf
14 http://www.eclipse.org/graphiti/

15 http://www.eclipse.org/gef

209

http://www.eclipse.org/emf
http://www.eclipse.org/graphiti/
http://www.eclipse.org/gef

File Edit View Novigate Search Project Run File Help Pattems Window Help
N HREIN eI A i e e

5P 82 = B | I: otherCasSDiagram | I: *secondDiagram 53
=R=3 ‘ - »» Palette

(& eample -
(=& MyFirstProject Goal 1 (+) &

Description

[} Marquee

(= Connections
Supports
Hinders
Contradicts.
Refinement Link
Relationship
CDD Relationship

g=0 = = B8

= Goal Relationship

An outline is not available. Binary Relaticnship

Goal 1.2 Goal 1.1
Description Description (= Goals Madel
(= Context Model
(= CDD Model
(= Concept Model

Figure 69. CDT with traditional interaction using keyboard and mouse

=] ‘Graphiti - platform:/resource/MyFirstProject/secondDiagram.diagram#/0 - Eclipse Platform = E

e | | | | e @ 150% v Quick Access ||| 5% | [y Resource |23 Graphit

Symbolic Relationship Link

= d
b

Figure 70 shows the CDT interface with gesture-based interaction.

In this case, we have included two new elements: (i) the palette (

right)

allows changing the operation mode between traditional and gesture-

based interaction; (ii) the main menu (up) has a new item (“Gesture”)

to redefine custom gestures based on our approach.

& Graphiti - platform:/resource/MyFirstProject/example.diagram#/0 - Eclipse Platform - a
File Edit View Mavigate Search Project Sample Run File HeIpPat‘tems Window Help

x

R - —n ~

L T | I “oample #2 | Ix testDiagram T testl

= <«:==(> | = .2 Palette
= example s Select

== MyFirstProject -
i Marquee

=N - Goal?
hd => 3 = Connections

An outline is not = Goals Model
available,

= Context Model
(= CDD Model
(= Concept Model

Figure 70. CDT with gesture-based interaction

7.3 Validation using Technical Action Research
The foundations of this TAR [150] are supported by mea

= O

[

ns of

setting up a theoretical framework, which allows the definition of

research questions, response variables and their measures.

210

7.3.1 Goal of the TAR
The goal is to validate gestUl in real-world conditions in relation to two
parameters:

i. its acceptance by means of:

- Perceived Ease of Use (PEOU), its definition is included in

Section 6.1. According to Davis [137], when a software system
is perceived as easier to use than another, it is more likely to
be accepted by users;

- Perceived Usefulness (PU) by the subjects, its definition is

included in Section 6.1. According to Davis [137] if a user
perceives the system as an effective way of performing the
tasks, then there is a positive user-performance relationship.

ii. The user experience by using the User Experience Questionnaire
(UEQ) and the Microsoft Reaction Cards (MRC).

In this validation, we wanted to know if gestUl can help software
engineers in defining custom gestures and including gesture-based
interaction in existing user interfaces of a CASE tool used in an
industrial context. Then, with the purpose of knowing how gestUI is
perceived in this context we measure PEOU and PU with subjects who
use the CDT tool in their daily work. That is, in this second evaluation,
we are interested in knowing how is perceived gestUl when it is used
to include gesture-based interaction in the aforementioned CASE tool.

In the first evaluation described in the previous chapter, PEOU and PU
were measured within a different context and applying gestUl to
include gesture-based interaction in a form-based software.

7.3.2 Experimental subjects
The TAR was conducted in collaboration with two technical analysts
from Everis, a partner in the Caa$ Project.

211

The technical analysts were women computer engineers with at least 5
years of experience in software development. They also had experience
in using CDT with the traditional interaction. They are currently working
on a CaaS project using the CDT tool with traditional interaction
(keyboard and mouse) and had never seen gestUl before the TAR
session. The background and experience of the subjects were found
through a demographic questionnaire handed out at the first session of
the experiment. This instrument consists of 15 questions on a 5-point
Likert scale.

7.3.3 Research questions
We focused on four research questions:

RQ1: Do the subjects consider that gestUI is easy to use and useful in
defining custom gestures?

RQ2: Do the subjects consider that gestUI is easy to use and useful for
gesture-based interactions on user interfaces?

RQ3: What is the subject’s experience when performing the process of
obtaining gesture-based interfaces with gestUI?

RQ4: What is the desirability level of subjects when they use gestUI to
generate gesture-based interfaces?

7.3.4 Factor and Treatment

In this case, the factor detected in the experiment is the CDT
interaction method. This factor has only one treatment: the use of
gesture-based interaction. We chose only this treatment since it was
the goal of the experiment and the subjects already had knowledge of
the process using the traditional interaction (mouse and keyboard).

212

Table 69. Instruments defined for the validation

(2n3enOUUL/aAIIRAIRSUOD ‘28pa Bulpea)/jensn
‘leuoiiusauos/anuanul ‘|Inp/annessn) Aysaon {(Suneanowsp/Suneanjow pue ‘Sunsaisiul/Sunssiaiul
1ou ‘BunoxafSuuog ‘Jousguifsjgenien) uonenwnig {(suonelpadxs 199w lou saop/suoilelnadxa
‘a|qeldipaid/a|qeldipaidun)
{(Buisnyuon/iean ‘Aseafpaleddwod ‘ules] 01 ynoyyp/uiel] o1 Asea ‘Ijgepuelsiapun/ajgepuelsiapun

s1aaw ‘aindas 10u/aundas ‘anioddns/anoniisqo Augepuadag
10N) Aunoidsiad {(pasaunp/paziuesdio pue ‘eanoesd/jeonoerdwi ‘uadiya/uaniyaul ‘mofs/iseq) Acuaioiyy
(Mpuampun/Ajpuaiy pue ‘aanoemieun/emoeie ‘peq/poof ‘quesesjd/iueseajdun ‘Suiseald/s|gedjiun
‘ajgeAolua/Sulhouuy) ssauaAIIDRINY ISW2L g7 JO [R101 B YUM SIS g Suleluod aJieuuonsanb

siy] "s1onpoud aA1loeIalul JO 90USLIAdXS 135N JO JUSLLISINSEALW a}BIpawWl pue 1se} U[B}o 01 a1IPUUOIISAND

(D3n) asneuuonsany
22uauadx3y 19sM

‘IN3s28 yum [T91] souauadxa

J12y1 aquosap 01 s1oalgns ayl Ag padojdwsa ‘sanndalpe aanefSau pue saisod gTT Suluizluod alleuuoIISaIND

poylaw
pied uoideal JPnpoiy

uolioeIalul paseq
-3Jn1s528 JO uoIsnjoul 3yl Ul pue saunlsaf woilsnd Jo uoiiuap ayl ul asuewlopad |N1sa8 alenjeas o0 (aa.8e
A|Suons) 7 01 (2a18esip AjBuons) T woly SuiSues sanjen a|eas-1ay Suiuieluod suonsanb 9T yum aneuuolsany

Sa1leUUOIIS3ND
1591-150d

Juawadxa ayl JO awI] pua pue awil Hels yum s1oalgns ayl Aq ul paj|i} 29 03 saoeds Ajdwa Suluiejuod

pue poylaw |MIse8 ayy Suisn yoseasas uoIdE Syl Ul psuuopad aq 0] sl 8yl s3QUISIP 1Byl JusSwniog

uzwinaog

uonduasag yse|

Juswnadxa

33 ul pasn s3dasuod pue saidojouydal syl Jo asusuadxa pue agpajmouy ,5193[qNs ay} ssasse 03 S1IPULOIISIND

alleuuonsanp

JiydesSowsag

sain3saf Suisn sweiSelp melp 0} Y1 2yl Ul pasn ag 03 sain3isal ayl paulyap 5322lgns ayl yaiym ul wio4

uonduasag

wio4 uoruyag
angoje1e) ainisag

juswinaisuj

213

7.3.5 Response variables

Response variables are the effects studied in the experiment caused
by the manipulation of factors. In this experiment, we have four
response variables (PEOU, PU, UEQ and MRC) to analyse the
acceptance of the Everis technical analysts.

7.3.6 Instruments for the TAR

All the material required to support the experiment was developed
beforehand, including the preparation of the experimental object,
instruments and task description documents for data collection used
during the execution of the experiment. The instruments prepared to
perform the TAR are described in Table 69.

7.3.7 Experimental Object

With the aim of performing the TAR, we considered CDT as an
experimental object in this validation. Using this experimental object,
the subjects must sketch an excerpt of a diagram defined in Everis (see
Figure 71), with the primitives included in Table 70. This diagram is an
example of work related to a project on the development of an e-

government platform.
Table 70. Gesture catalogue defined by the subjects

Primitive Symbol Gesture

Context Set Context Set 1 I E
1

Context Element Context Bement 1.1 O
1.1

Context Element ontext Element Range 1.

Range 12

Capability Capability 2 .

Goal Goal 3 /
3

KPI KPI 2 (—\

214

Context Set1
KP1 11 1

kP12 Goal 7 Context Hement 5
< 5 Context Element
| 7
requires Range 3
—t—] 3
requres
KP113 Goal 8 Context Element
L 8 Range 2
Supports
2
TEQUITes
Supports Context Element
KP114 o Capability 6 ____‘--ﬁ‘: - Range 4
T T 9 s required by -

Figure 71. Excerpt of a model defined in Everis

7.4 Action Research Procedure

This section describes the TAR procedure used to conduct the
experiment performed in a meeting room in Everis offices. Previous to
the TAR session, a pilot test was run with a researcher from the PROS
Research Centre in the Universitat Politécnica de Valencia. This pilot
test helped us improve the understandability of the instruments.

The steps of the experiment procedure are:

Step 0: The first step is related to the gesture catalogue definition,
which was completed for the subjects before the TAR session. In a
previous session, the subjects filled in the Gesture Catalogue
Definition Form with the gestures to be used in CDT to draw the
aforementioned diagram. The subjects defined custom gestures for
each primitive of the aforementioned diagram according to their
preferences (Table 70).

Step 1: Before the experiment each subject filled in a Demographic
Questionnaire in which they were asked about their experience in
tasks related with CDT, experience with gesture-based interaction,
experience in software development, and experience in model-driven
development.

Step 2: The planned action research procedure was described to the
subjects with a verbal explanation.

215

Step 3: By means of a live demo, the subjects were instructed to use
gestUl in gesture definition and inclusion of gesture-based interaction
on the user interface of CDT.

Step 4: Subjects used gestUl to define the gestures previously specified
in the Gesture Catalogue Definition Form (Table 70) following the
process defined in Chapter 4 to define a gesture. Subjects used the
Task Description Document to follow the required instructions in order
to obtain the gesture catalogue, and to include gesture-based
interaction in the interface of CDT.

Step 5: Subjects filled in the Post-Task Questionnaire on their opinion
of gestUl regarding custom gesture definition and inclusion of gesture-
based interaction in CDT.

Step 6: Subjects employed CDT to draw the diagram shown in Figure
71. They used the Gesture Catalogue Definition Form to help them
with the previously defined gestures.

Step 7: Subjects redefined three gestures using the module to
redefinition included in CDT.

Step 8: Subjects filled in the Post-Task Questionnaire to assess gestUI
capacity to define custom gestures and to include gesture-based
interaction.

Step 9: Subjects filled in the User Experience Questionnaire on their
experience with custom gesture definition and the inclusion of
gesture-based interaction.

Step 10: Subjects filled in the Microsoft Reaction Cards on the
desirability level of using gestUl to define custom gestures and include
gesture-based interaction.

Table 71 contains a summary of the steps performed in the
experiment, the instruments used in each step and the time estimated
to perform each step.

216

Table 71. A summary of the experiment procedure

ID Description Instrument used Time
1 Subjects filled in the Demographic Demographic 8 min.
Questionnaire on their experience in questionnaire
related topics.
2 The planned action research Verbal explanation 10 min.
procedure was described to the
subjects.
3 Subjects were instructed to use Live demo 10 min.
gestUl in gesture definition and
inclusion of gesture-based
interaction on the user interface of
the CDT.
4 Subjects employed gestUl to define Task Description 15 min.
the gestures previously specified in Document
the gesture catalogue. They
employed the Task Description
document to follow the required
instructions.
5 Subjects filled in the Post-Task Post-Task 5 min.
Questionnaire on their opinion of Questionnaire
gestUI.
6 Subjects employed the CDT to draw Task Description 20 min.
the diagram shown in Figure 71. They Document and
used the Gesture Catalogue Gesture Catalogue
Definition Form to help them with the Definition Form
previously defined gestures.
7 Subjects redefined three gestures Task Description 10 min.
using the module to redefinition Document
included in the CDT
8 Subjects filled in the PEOU and PU Post-Task 5 min.
Post-Task Questionnaire to assess Questionnaire
gestUl capacity to define custom
gestures and include gesture-based
interaction.
9 Subjects filled in the User Experience User Experience 5 min.
Questionnaire on their experience Questionnaire
with custom gesture definition and
the inclusion of gesture-based
interaction.
10 Subjects filled in the reaction cards Microsoft Reaction 8 min.
on the desirability level of using Cards
gestUI to define custom gestures and
include gesture-based interaction.
Total time 96 min.

217

7.5 Analysis and Interpretation of results

Since there were only 2 subjects involved in the TAR we did not
apply any statistical test to analyse and interpret the information. We
analysed the responses of each subject regarding each research
question obtained from the aforementioned instruments containing
the questionnaires filled in by the subjects:

Regarding RQ1, the results obtained through the questionnaires
show that both subjects think that the feature to define custom
gestures implemented in gestUl is perceived as both easy to use and
useful.

Regarding RQ2, the results obtained from the questionnaires show
that both subjects think that the feature to include gesture-based
interaction implemented in gestUl is perceived as both easy to use and
useful.

Regarding RQ3, after completing the tasks, the subjects filled out
the UEQ, obtaining the results shown in Figure 72 and Figure 73. The
values vary from -3 to +3. The six scales, their description [156], the
values obtained and their corresponding percentages in the TAR are
shown in Table 72.

Table 72. Results obtained from the UEQ
Value obtained

Description Custom gesture Gesture-based
definition interaction

Attractiveness Overall impression of the 2.42 (81%) 2.25 (75%)
product

Perspicuity Is it easy to get familiar with 2.75(92%) 2.75 (92%)
the product?

Efficiency Can users solve their tasks 1.38 (46%) 1.63 (54%)
without unnecessary effort?

Dependability Does the user feel in control 1.63 (54%) 2.00 (67%)
of the interaction?

Stimulation Is it exciting and motivating 2.25 (75%) 2.50 (83%)
to use the product?

Novelty Is the product innovative 2.38 79%) 2.63 (88%)

and creative?

218

The results obtained show that efficiency and dependability scales
in custom gesture definition had values lower than 67%. The efficiency
scale in gesture-based interaction also had a value lower than 67%. In
both cases, efficiency is related to items such as: fast/slow,
inefficient/efficient, impractical/practical, and organized/cluttered.

%}

[

&

[
Q.:Qé

A

&

Figure 72. UEQ results: custom gesture definition interaction

3
2
0
-1
-2
-3
& R EPG’* & & e
‘iQ.- Q"E" e} &F Q\fb lﬁ"
&5 I & o =
& @ < & o
IS *

Figure 73. UEQ results: inclusion of gesture-based interaction

Regarding RQ4, we applied MRC to study positive and negative

aspects related with the inclusion of gesture-based interaction (blue

line) and

custom gesture definition (orange line). With the aim of

219

reporting these results, we use two figures: (i) Figure 74 shows positive
results and Figure 75 shows negative results. Values showed in Figure
74 represent the frequency of use of each positive adjective for the
subjects in the experiment (e. g. “simplistic” was selected two times,
one time per subject). These values correspond to the values included
in the "Value" column in Table 73, which shows the most frequently
used positive adjectives on the gestUl experience.

Table 73. Reaction cards positive results

Process Positive Adjective Value
Simplistic 2
Custom Gesture I - ———" ol 1
Definition nnovative, Customizable, Useful,
Clear, Easy to use.
. Innovative, Useful 2
Inclusion of Gesture- - -
Comfortable, Creative, Attractive, 1

based Interaction . - e
Time saving, Simplistic, Easy to use.

From Figure 75 we obtained the negative results related with the
inclusion of gesture-based interaction and custom gesture definition
shown in Table 74. The meaning of the values included in this figure is
the same as in Figure 74.

Table 74. Reaction cards negative results
Process Negative Adjective Value

Custom Gesture Definition Too technical
Time consuming, Unattractive
Inclusion of Gesture-based Slow
Interaction Sensible, Annoying, Fragile

RIN|RL N

In the case of custom gesture definition, the subjects described the
custom gesture definition as simplistic but also too technical and time
consuming. This opinion could have been related with the null
experience of the subjects in custom gesture definition in using CDT
and also because the Ul of gestUl to define gestures could have been
better designed to obtain an attractive gesture definition process. In
the case of the inclusion of gesture-based interaction, the subjects
defined it as innovative and useful, but also that the inclusion of
gesture-based interaction is slow, sensitive and annoying. This opinion

220

could have been due to the null experience of the subjects in the use
of gestures to draw diagrams.

Customizable

Time saving 2

Attractive L5

..
Creative rye -’.Sfmplistrc
’4\'
Comfortable Clear
Inviting Easy to use
Controllable Motivating
Businesslike Usable
LEGEMND

== Inclusion of gesture-based interaction

=@= Custom gesture definition

Figure 74. Reaction cards positive results
The subjects considered the new proposal to redefine gestures as

useful and thought that it helped them to solve memorizing or
sketching problems.

221

Too technical
28

15

Sensible Slow
1

05
0

L
Annoying Fragile

Time consuming Unattractive

LEGEMD

== |Inclusion of gesture-based interaction

Custom gesture definition

Figure 75. Reaction cards negative results

7.6 Threats to validity
This section deals with the most important threats to the validity of this
evaluation, classified according to Wohlin et al. [138]:

(A) Internal Validity: the main threats to the internal validity of the
experiment are: (1) Subject experience in tasks performed in the
experiment: this threat was eliminated since none of the subjects had
any experience in tasks related with custom gestures definition or the
inclusion of gesture-based interaction in user interfaces. (2) Subject
experience in the use of CDT with gesture-based interaction: this threat
was eliminated since none of the subjects had any experience in the
use of CDT with gesture-based interaction.

(B) External Validity: the main threat to the external validity of the

experiment was: (1) Duration of the experiment: since the duration of
the experiment was limited to 96 minutes, only one diagram was
selected with six primitives and six gestures. However, experience in
the use of CDT in traditional interaction and repetitive tasks could have

222

affected the duration of the experiment, since the subjects already
knew the process to be performed. This threat could not be ruled out
since they were familiar with the repetitive tasks required to build the
diagram. (2) Representativeness of the results: the experiment was
performed in an industrial context on subjects with no experience in
the tasks related with the experiment. This means the results could only
be representative for novice evaluators with no experience in custom
gesture definition and in the inclusion of gesture-based interaction.

(C) Validity Conclusions: The main threat to the validity of the

experiment was: (1) Validity of the statistical test applied: In this case,
we did not apply any statistical tests to obtain answers to the research
questions because the sample size was too small. However, we
considered the results obtained with other methods, such as MRC and
UEQ.

7.7 Conclusions

This chapter describes the validation of gestUl in industry by means
of a TAR, studying (i) PEOU; (ii) PU; (iii) the desirability level with MRC;
and, (iv) user experience with UEQ.

To validate the performance of gestUl in industrial settings, we
included gesture-based interaction in the CDT tool from the Caa$
Project. The subjects were two business analysts from a consultancy
firm who defined custom gestures by either fingers or pen/stylus and
also redefined some gestures from the gesture catalogue considered
in the experiment.

The main findings of the study are: (1) gestUl helped the business
analysts to define custom gestures and include gesture-based
interaction in user interfaces. (2) The subjects considered gestUl easy
to use and useful for defining custom gestures and including gesture-
based interaction in CDT. (3) Although the subjects did not enjoy
defining custom gestures and applying the automated
transformations, they did feel motivated while using this version of the
CDT.

223

224

CHAPTER

CONCLUSIONS,
DISCUSSION
AND FUTURE
WORK

The topics covered in this chapter are:

8.1 Summary of the thesis
8.2 Contribution of this thesis
8.3 Future Work

8.4 Conclusion

8.5 Publications

225

226

Chapter 8. Conclusions, Contributions and Future
Work

This chapter summarizes the thesis, discusses its findings and
contributions, points out limitations of the current work, and also
outlines directions for future research.

The purpose of this thesis is to develop a methodological framework
based on MDA for the development of user interfaces with gesture-
based interaction of software systems.

The chapter is divided into five sections. Section 8.1 is a summary of
the thesis. Section 8.2 presents a discussion of the contributions of the
current work. Section 8.3 discusses the future work. Section 8.4 brings
the thesis to a conclusion and finally, Section 8.5 describes the
publications that emerged during the development of this thesis.

8.1 Summary of the thesis

This thesis has introduced gestUl, a model-driven method to define
custom gestures and to include gesture-based interaction in user
interfaces of software systems.

Chapter 1 contains the introduction of the thesis. It describes the
motivation, the problem statement, the research questions and the
thesis objectives. Also, it describes the research methodology, the
expected contributions and the thesis context.

In Chapter 2, a theoretical framework has been presented where a
series of concepts related to the work developed in this thesis have
been included. It is considered that the thesis is framed in two areas:
model-driven development and human-computer interaction. In this
sense, this theoretical framework has been divided into two parts
including in each one concepts that help to explain and to understand
the work done.

Chapter 3 includes the State of the Art in the two aforementioned
areas. We describe the results of the search in the related literature

227

regarding gesture representation and the gesture recognition tools
with the aim of knowing the different techniques used to describe the
gestures and the tools developed for their recognition. Then, we
describe the results of the search in the related literature with respect
to the Model-driven Engineering in the Human-Computer Interaction,
where we review works that consider models to create a user interface
that includes user interaction. Finally, we include the results of the
search in the related literature in relation to two evaluations
techniques: empirical evaluation and technical action research with
the aim of knowing how are used these techniques in the evaluation
of methods.

In Chapter 4, we describe our proposal called gestUIl. In this chapter
we explain why we consider the model-driven paradigm in the design
of gestUl. Also, we explain why we consider the Model-View-
Controller design pattern to design the method. Then, we describe the
needed resources to obtain gesture-based user interfaces. The
description of gestUl comprises features, metamodel description,
components of the method and model transformations used in the
process to include gesture-based interaction in user interfaces. Also,
we explain the process to personalize the gesture definition from
scratch and from an existing definition of custom gestures. Finally, we
include an overview of gestUI to include gesture-based interaction in
user interfaces.

Chapter 5 describes the tool support that has been built to support the
models and activities of gestUI. This chapter includes the description
of its components and how have been implemented using Eclipse
Modelling Framework and Java programming language. The chapter
concludes with a demonstration of the applicability of the tool support
in a form-based software system and in a Case Tool.

In Chapter 6 the empirical evaluation performed to evaluate the
usability of gestUl is described. The usability was measured with
effectiveness, efficiency and satisfaction. The chapter includes the
design of the experiment and the analysis of the reliability of the data

228

obtained in the experiment. Then, it describes the results obtained
applying Wilcoxon Signed-rank test and Shapiro-Wilk because the data
is not normally distributed. Finally, we include the discussion of the
results regarding effectiveness, efficiency and satisfaction.

Chapter 7 includes the description of the technical action research
applied to evaluate gestUl in an industrial context. This chapter
describes the Capability Design Tool that has been modified to include
gesture-based interaction using gestUl. Also, the design of the
experiment, the analysis and interpretation of the results are included.
Finally, the threats to validity of the experiment are described.

8.2 Contribution of this thesis

As a result of the development of this thesis various contributions can
be highlighted. These contributions are the evidence of achieving the
research goals, as well as the answers of the established research
questions. The main contributions are presented below:

- With regard to research question 1 (What elements should be
considered for the definition of a method to include gesture-
based interaction in user interfaces?), we contribute with a
theoretical framework to establish a common knowledge about
the model-driven paradigm and gestUI (Chapter 2). In this chapter,
we define the most important concepts related with the elements
required to define a method to include gesture-based interaction
in user interfaces of software systems.

- Regarding research question 2 (What model-driven methods exist
to include gesture-based interaction in user interfaces with
human--computer interaction based on gestures?), our
contribution is centred in Chapter 3 (State of Art) where are
describe the results of a search of related literature regarding
methods that permit to define user interfaces.

- With regard to research question 3 (Is it possible to define a
model-driven method for the inclusion of gesture-based
interaction in software systems user interfaces?), we can say that
it is possible to define a method based on the model-driven

229

paradigm that permits the inclusion of gesture-based interaction
in user interfaces of software systems. Our proposal (gestUI,
described in Chapter 4) is a model-driven method designed to
define custom gestures and to include gesture-based interaction.

By following the model-driven paradigm, gestUl is contained in
three layers: platform-independent layer, platform-specific layer
and source code layer where are defined the elements that permit
to define custom gestures and to include gesture-based
interaction. Therefore, our contribution is related with the
definition of these elements: conceptual model definition
(metamodel described in Section 4.5.2), model transformations
(model-to-model and model-to-text transformations described in
Section 4.5.4), transformation rules that permit to obtain the user
interface with gesture-based interaction and the additional
feature to redefine existing gestures of a user interface (described
in Section 4.6).

Also, we define a tool that permits to represent a gesture based
on the conceptual model specified with the previously obtained
information (included in Section 4.5.2). We include a gesture
recognition algorithm that permits to recognise custom gestures
sketched by the users. In this case, we adopt an existing gesture
recognition algorithm known as SN.

We use Java programming language and Eclipse Modelling
Framework to define components of the proposed method in a
tool support (Chapter 5) to demonstrate its applicability.

Regarding research question 4 (What advantages and
disadvantages has the model-driven method for the inclusion of
gesture-based interaction in software system user interfaces?),
two demonstrations have been performed (described in Chapter
5) with gestUl to evaluate its feasibility before to apply it in
empirical tasks. We apply gestUI to test custom gestures in three
gesture recognition tools (quill, iGesture and $N) obtaining good
results. Also, we apply gestUI to include gesture-based interaction
in a form-based software system. In this case, we define a gesture

230

catalogue and we include gesture-based interaction in a user
interface of this software system.

We perform an empirical comparative evaluation to validate
gestUl (described in Chapter 6). We measure the usability of gestUlI
based on efficiency, effectiveness and satisfaction obtaining
positive results.

Additionally, we perform a technical action research of gestUl in
everis with the aim of evaluating our method in an industrial
context (described in Chapter 7). This evaluation was performed in
the context of the “Capability as a Service” - CaaS Project (FP7 ICT
Programme Collaborative Project no. 611351). We measure
usability of gestUl and user satisfaction when they use gestUl to
perform tasks associated with a project related with Caa$S Project.
We obtain positive results of this evaluation.

8.3 Future work

The research that is presented in this thesis is not a closed work; it can
be improved and extended in several ways. The following paragraphs
summarize the research directions that are planned for the near
future. The main goal of this future work will be to overcome some of
the limitations of the work that has been developed thus far.

- We consider that is necessary to extend the solutions of the tool
to include mobile devices as target platform in the application of
gestUL. In this way, users will be able to define custom gestures
and to include gesture-based interaction via gestUl on mobile
devices, overcoming the current difficulties when the developers
use the traditional tools for these tasks. Therefore, we need to
include in the tool support some model transformations to
consider the mobile devices as an additional target when we apply
gestUl.

- Weplanto apply gestUl in the user interface development process
of software systems for disabilities people. The main goal is to help
to these people to improve the communication with other people
and to improve the access to public services requiring technology.

231

This is an application of gestUl in mobile devices that will help us
to evaluate the additions in gestUl to include a new target
platform.

8.4 Conclusion

Interfaces with new techniques of interaction play an important role
in the field of software engineering that mainly includes software
systems supporting gesture-based interaction. At present, there are
more and more devices that support gesture-based interaction,
however, certain tasks make difficult the process of development of
software system with this type of interaction. Developers of such
software systems are faced with the following challenges:

i. Manage high complexity: Developing software systems that
support gesture-based interaction across multiple
heterogeneous devices represent a complex process.

ii. An increase of efficiency of multi-platform software
development across heterogeneous computing platforms
(Windows, i0S, Android, Windows Phone etc.).

iii. An integration of user centered design into the development
process, extending the existing methods to cover the necessary
adaptation options.

The aim of this PhD thesis is to propose a model-driven method that
helps to solve these challenges with the capability to be integrated into
different model-driven processes to develop user interfaces.

Our proposal described in this thesis has the following benefits:

e |t is based on MDA which has in its favour the advantages of the
methodology.

e It is independent of target device platform. The target platform
may be decided by the developer in the PSM definition stage.

e It does not require the developer to learn a set of SDK’s or some
programming languages.

232

e Time to develop is reduced when the source code of gesture-
based user interface is automatically generated.

e Definition of the new gestures is performed through a
specification of features, without the necessity of a developer or
user.

Empirical evaluation was performed and it showed that gestUl is
perceived more efficient than the code-centric method considered in
the evaluation. Regarding effectiveness, this got similar results in the
empirical evaluation.

Then, we apply a Technical Action Research in an industrial context in
collaboration with the company “Everis” (Valencia, Spain) in order to
know the usability level by means of UEQ and MRC. The results are
described by means of positive and negative phrases as shown in
Chapter 7.

Its main current limitations are related to the target interface
technologies (currently, only Java) and the fact that multi-finger
gestures are not supported. These limitations will be addressed in
future work.

8.5 Publications
Papers

- Parra, O.
“A model-driven method for gesture-based interface requirements
specification”, 20th International Working Conference on
Requirements Engineering: Foundation for Software Quality
(REFSQ 2014). Doctoral Symposium. Publication: On-line
http://ceur-ws.org/Vol-1138/. ISSN: 1613-0073, Essen, Germany,
2014.

- Parra, O,, Espafa, S., Pastor, O.,
“Including multi-stroke gesture-based interaction in user interfaces

using a model-driven method”, XVI International Conference on
Human Computer Interaction — Interaccion 2015, Publication:
Online http://dl.acm.org/citation.cfm?doid=2829875.2829931,

233

http://ceur-ws.org/Vol-1138/
http://dl.acm.org/citation.cfm?doid=2829875.2829931

ISBN: 978-1-4503-3463-1, DOI: 10.1145/2829875.2829931.
Vilanova | la Geltrq, Spain, 2015.

Parra, O., Espaiia, S., Pastor, O.,

“A Model-driven Method and a Tool for Developing Gesture-based
Information System Interfaces”, CAiSE Forum at the 27"
International Conference on Advanced Information System
Engineering — CaiSE 2015, Publication: Online http://ceur-
ws.org/Vol-1612/. ISSN: 1613-0073, Stockholm, Sweden, 2015.
Parra, O., Pastor, O.,

“gestUl: Un método dirigido por modelos para incluir interaccion
gestual multi-trazo en interfaces de usuario”, XVIll Iberoamerican
Conference on Software Engineering (CIbSE 2015), Poster.
Publication: Print ISBN: 978-1-5108-0387-9. Lima, Peru, 2015.
Parra, O., Espafia, S., Pastor, O.

“Including Gesture-based Interaction in Capability Design Tool”,
2" International Workshop on Capability-oriented Business
Informatics. Publication: Online http://ceur-ws.org/Vol-1408/.
ISSN: 1613-0073. Lisbon, Portugal, 2015.

Parra, O., Espaia, S., Panach, J., Pastor, O., Buriel, V.

“gestUl tool: A tool to include gesture-based interaction in user
interfaces through model-driven”, Tool Demonstration on 35t
International Conference on Conceptual Modeling —ER 2016, Core
Index: A. Publication: On-line
http://er2016.cs.titech.ac.jp/assets/papers/ER2016-tool-
parra.pdf, Gifu, Japan, 2017.

Parra, O., Espafia, S., Pastor, O.,

“Tailoring user interfaces to include gesture-based interaction with
gestU!”, 35" International Conference on Conceptual Modeling —
ER 2016, Core Index: A. Publication: On-line
https://link.springer.com/book/10.1007%2F978-3-319-46397-
1?page=3#toc, Proceedings part of the Lecture Notes in Computer
Science (LNCS, volume 9974). DOI: 10.1007/978-3-319-46397-1,
Gifu, Japan, 2017.

Parra, O., Espafia, S., Panach, J., Pastor, O.

234

http://ceur-ws.org/Vol-1367/paper-07.pdf
http://ceur-ws.org/Vol-1367/paper-07.pdf
http://ceur-ws.org/Vol-1408/
http://er2016.cs.titech.ac.jp/assets/papers/ER2016-tool-parra.pdf
http://er2016.cs.titech.ac.jp/assets/papers/ER2016-tool-parra.pdf
https://link.springer.com/book/10.1007%2F978-3-319-46397-1?page=3#toc
https://link.springer.com/book/10.1007%2F978-3-319-46397-1?page=3#toc

“Extending and validating gestUI using Technical Action Research”,
IEEE 11" International Conference on Research Challenges in
Information Science — RCIS 2017, Core Index: B, Brighton, UK,
2017.

Journals

- Parra, O,, Espaia, S., Pastor, O,,
“gestUl: A Model-driven Method and a Tool for Including
Gesture-based Interaction in User Interfaces”, Complex Systems
Informatics and Modeling Quarterly — CSIMQ, Vol. 6, Publication:
Online https://csimg-journals.rtu.lv/article/view/csimq.2016-
6.05. ISSN: 2255-9922. DOI: 10.7250/csimq.2016-6.05. 2016.

- Parra, 0., Espaia, S., Panach, J., Pastor, O.

“An empirical comparative evaluation of gestUI to include gesture-
based interaction in user interfaces”, Under Review in Journal of
Systems and Software, July 2017.

235

https://csimq-journals.rtu.lv/article/view/csimq.2016-6.05
https://csimq-journals.rtu.lv/article/view/csimq.2016-6.05
http://dx.doi.org/10.7250/csimq.2016-6.05

236

APPENDIX

A CODE-CENTRIC A
METHOD FOR

DEVELOP USER
INTERFACES WITH
GESTURE-BASED
INTERACTION

The topics covered in this chapter are:

A.1 Introduction
A.2 The code-centric method

237

238

Appendix A. A code-centric method for develop user
interfaces with gesture-based interaction

A.1 Introduction
This appendix presents the description of a code-centric method for
develop user interfaces with gesture-based interaction.

Figure 76 shows the user interface development life cycle for this
method. In this case, we start from existing activities and products
(represented by means of colour grey) used to develop interfaces that
must be enhanced to support gesture-based interaction and a set of
new activities and products (represented by means of the colour
white) that deal explicitly with the gesture-based interaction. In the
following section we describe proposed activities and products of this
method.

A.2 The code-centric method

The code-centric method consists in a set of tasks [29] (e.g.
conceptualization and requirements gathering, analysis and functional
description, design, coding, testing and deployment) related with the
implementation of a software system using a programming language
and a tool where software engineers work entirely by editing source
code (e.g. Microsoft Visual Studio, Eclipse Window Builder, NetBeans,
etc.).

An example of this method is the process to develop a user interface
by means of Eclipse SWT Designer (Window Builder) [162]. This toolkit
does not include components to define custom gestures nor to include
gesture-based interaction. SWT works under the assumption that the
user interface is already implemented and the developer writes
additional source code containing gesture-based interaction.

239

The set of activities to perform with the aim of including gesture-based
interaction in an existing source code through the code-centric

method (Figure 76) is detailed in the following paragraphs:

/

SPECIFY INTERACTION REQU IREMEN}S‘

C1. DEFINE
\\ GESTURES /|

/

-

Y INTERACTION REQUIREMENTS
GESTURE
CATALOGUE
DEFINITION
I
C2. IMPLEMENT C3.IMPLEMENT
GESTURE-BASED GESTURE INTERFACE DESIGN
INTERACTION SPECIFICATION
v Y INTERFACE DESIGN
GESTURE-BASED GESTURE
INTERACTION CATALOGUE
CODE SPECIFICATION

C4. IMPLEMENT
GESTURE-BASED
INTERFACE

IMPLEMENT
INTERFACE

C5. TEST GESTURES

JL

1T

INFORMATION SYSTEM |NTERFACE
GESTURE
GESTURE-BASED RECOGNITION
INTERFACE TOOL
LEGEND
INPUT/QUTPUT
RELATIONSHIP E> EXISTING FLOow () ACTIVITY
[4 #~. HOST METHOD OR
I \ v
prOPUCT _s OURPROPOSAL “_/ EXISTING PRODUCT

Figure 76. A code-centric method for develop user interfaces with gesture-based
interaction

Activity C1: this activity allows software engineers to define the
gestures requirement specification (by means of a language to
specify requirements, e.g. text) which makes up the gesture

1.

240

catalogue and the actions to be performed using said gesture
catalogue. The product obtained in this process is a requirements
document containing the specification of the interaction between
gestures and actions included in a user interface.

Activity C2: this activity permits software engineers to select the
user interface to include the gesture-based interaction according
to the aforementioned requirements specification, then he/she
analyses the source code of the selected user interface with the
aim of determining the actions included in the user interface
source code. The software engineer defines the gesture-action
correspondence by specifying the gesture that allows the
execution of an action included in the user interface.

Activity C3: this activity allows software engineers to specify, by
means of XML language each gesture included in the requirements
document of the gesture catalogue. This gestures specification is
required in order to be supported by the gesture recognizer
algorithm. In this work we use SN [126] as the gesture recognizer.
The product obtained in this step is the gesture catalogue
specification written in XML.

Activity C4: in this activity the software engineer implements the
methods needed to execute the actions specified with the
previously defined gestures, that is, the software engineer
combines two products (i) gesture-based interaction source code
and (ii) gesture catalogue specification in order to obtain the
gesture-based user interface. The product obtained in this last
step is the user interface source code including gesture-based
interaction.

Activity C5: this permits testing gestures using existing frameworks
(e.g. quill, iGesture, SN). The gesture catalogue is generated
according to the gesture definition of each framework, hence the
users sketch gestures in order to test them.

There are activities represented in Figure 76 (e.g. “Implement

interface”, “Interface design”) whose functionality is included in the

process of development of user interfaces using some tools available.

These activities are not described in this Appendix because we

consider that these activities belong to traditional development

241

methods for obtaining user interfaces by using typical development
tools.

When a software engineer employs a code-centric method to include
gesture-based interaction some of the following problems are
involved [117] [118] [119]: (i) the software engineer has two options
to obtain the source code: writing the methods required to implement
the software from scratch or adapting existing source code; (ii) the
gesture specification is not multi-platform; (iii) it is hard to reuse the
source code to support gesture-based interaction in other platforms;
(iv) software engineers require skills in the programming language of
each platform employed in the implementation of IS user interfaces;
(v) in some cases, the IDE is not available in all platforms required by
users.

This thesis proposes a method that pretends to help to solve these
problems.

242

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

(12]

J. v. Biljon and P. Kotzé, “Modelling the Factors that Influence Mobile
Phone Adoption,” Proceedings of the 2007 annual research
conference of the South African institute of computer scientists and
information technologists on IT research in developing countries, pp.
152-161, 2007.

G. Dapper and P. Egbert, “A gestural interface to free-form
deformation,” Proceedings of Graphics Interface, pp. 113-220, 2003.

D. Wigdor and D. Wixon, Brave NUI World: Designing Natural User
Interfaces for Touch and Gesture, UK: Morgan Kaufmann Publishers -
Elsevier, 2011.

E. v. d. Hoven and A. Mazalek, “Grasping gestures: Gesturing with
physical artifacts,” Artificial Intelligence for Engineering Design,
Analysis and Manufacturing, vol. 25, no. 3, pp. 255-271, 2011.

T. Schlomer, B. Poppinga, N. Henze and S. Boll, “Gesture Recognition
with a Wii Controller,” in Proceedings of the Second International
Conference on Tangible and Embedded Interaction, Bonn, Germany,
2008.

J.Yao, T. Fernando and H. Wang, “A multi-touch natural user interface
framework,” International Conference on Systems and Informatics
(ICSAl), pp. 499-504, 2012.

D. Rubine, “Specifying gesture by example,” ACM SIGGRAPH
Computer Graphics, vol. 25, no. 4, pp. 329-337, 1991.

D. Saffer, Designing Gestural Interfaces, USA: O'Reilly Media Inc.,
2009.

P. Kortum, HCI Beyond the GUI: Design for Haptic, Speech, Olfatory,
and Other Nontraditional Interfaces, USA: Morgan Kaufmann
Publishers, 2008.

M. Bhuiyan and R. Picking, “A Gesture Controlled User Interface for
Inclusive Design and Evaluative Study of Its Usability,” in Journal of
Software Engineering and Applications, 2011.

M. Karam and M. C. Schraefel, “A taxonomy of Gestures in Human
Computer Interaction,” ACM Transactions on Computer-Human
Interactions, pp. 1-45, 2005.

J. Yang, Y. Xu and C. S. Chen, “Gesture interface: modeling and

learning,” Proceedings of the 1994 IEEE International Conference on
Robotics and Automation, vol. 2, no. 4, pp. 1747-1752, 1994.

243

(13]

(14]

[15]

(16]

(17]

(18]

(19]

[20]

[21]

Fujitsu Laboratories Ltd., “Fujitsu Laboratories Develops Ring-Type
Wearable Device Capable of Text Input by Fingertip,” 13 01 2015.
[Online]. Available:
http://www.fujitsu.com/global/about/resources/news/press-
releases/2015/0113-01.html. [Accessed 22 10 2016].

Y. Song, D. Demirdjian and R. Davis, “Continuous body and hand
gesture recognition for natural human-computer interaction,”
Journal ACM Transactions on Interactive Intelligent Systems (TiiS) -
Special Issue on Affective Interaction in Natural Environments, vol. 2,
no. 1, pp. 1-25, 2012.

Y. Song, D. Demirdjian and R. Davis, “Tracking body and hands for
gesture recognition: NATOPS aircraft handling signals database,” in
Face and Gesture 2011, Santa Barbara, CA, 2011.

S. Kim, Y. Ban and S. Lee, “Tracking and Classification of In-Air Hand
Gesture Based on Thermal Guided Joint Filter,” Sensors, vol. 17, no. 1,
pp. 1-20, 2017.

P. Cardoso, J. Rodrigues, S. L., A. Mazayev, E. Ey, T. Correa and M.
Saleiro, “A Freehand System for the Management of Orders Picking
and Loading of Vehicles,” Universal Access in Human-Computer
Interaction. Access to the Human Environment and Culture. Lecture
Notes in Computer Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 9178,
pp. 422-431, 2015.

A. Weiss, M. Bader, M. Vincze, G. Hasenhiitl and S. Moritsch,
“Designing a service robot for public space: an action and
experiences-approach,” in Proceedings of the 2014 ACM/IEEE
international conference on Human-robot interaction - HRI '14,
Bielefeld, Germany, 2014.

S. Tan and A. Nareyek, “Integrating facial, gesture, and posture
emotion expression for a 3D virtual agent,” in Proceedings of the 14th
International Conference on Computer Games: Al, Animation, Mobile,
Interactive Multimedia, Educational & Serious Games, 2009.

L. Corral, A. Sillitti and G. Succi, “Mobile multiplatform development:
An experiment for performance analysis,” Procedia Computer Science
- Elsevier, vol. 10, pp. 736-743, 2012.

J. Folks, “Using Microsoft Visual Studio to Create a Graphical User
interface,” 03 04 2015. [Online]. Available:
http://www.egr.msu.edu/classes/ece480/capstone/spring15/group

11/doc/AppNote/ECE480_AppNotes_JoshuaFolks.pdf. [Accessed 17
01 2017].

244

[22]

(23]

(24]

[25]

(26]

(27]

(28]

[29]

(30]

(31]

(32]

(33]

D. Gallardo, E. Burnette and R. McGovern, Eclipse in Action. A guide
for Java developers, Greenwich: Manning Publications Co., 2003.

G. Meixner, G. Calvary and J. Coutaz, “Introduction to Model-Based
User Interface,” December 2013. [Online]. Available:
http://www.w3.0rg/2011/mbui/drafts/mbui-intro/. [Accessed 21 02
2014].

M. Hesenius, T. Griebe, S. Gries and V. Gruhn, “Automating Ul Tests
for Mobile Applications with Formal Gesture Descriptions,” Proc. of
16th Conf. on Human-computer interaction with mobile devices &
services, pp. 213-222, 2014.

S. H. Khandkar, S. M. Sohan, J. Sillito and F. Maurer, “Tool support for
testing complex multi-touch gestures,” in ACM International
Conference on Interactive Tabletops and Surfaces, ITS'10, NY, USA,
2010.

N. Aquino, J.Vanderdonckt, J. I. Panach and O. Pastor, “Conceptual
Modeling of Interaction,” in Handbook of Conceptual Modeling.
Theory, Practice, and Research Challenges, Springer , 2011, pp. 335-
358.

P. E. Papotti, A. F. do Prado, W. Lopes de Souza, C. E. Cirilo and L.
Ferreira Pires, “A Quantitative Analysis of Model-Driven Code
Generation through Software Experimentation,” Proceedings of 25th
International Conference CAISE 2013, vol. LNCS 7908, pp. 321-337,
2013.

S. Beydeda and V. G. M. Book, Model-Driven Software Development,
Springer, 2005.

A. Kleppe, J. Warmer and W. Bast, MDA Explained: The Model Driven
Architecture: Practice and Promise, Boston, MA, USA: Addison-
Wesley Longman Publishing Co., Inc., 2003.

R. J. Wieringa, Design Science Methodology for Information Systems
and Software Engineering, Enschede, The Netherlands: Springer-
Verlag New York Inc., 2014.

R. Wieringa, “Design science methodology: principles and practice,”
in Proceeding of the 32nd ACMY/IEEE International Conference on
Software Engineering - Volume 2, Cape Town, South Africa, 2010.

F. Paternd, “Model-based tools for pervasive usability,” Interacting
with Computers, vol. 17, no. 3, pp. 291-315, 2005.

A. Hevner, S. March, J. Park and S. Ram, “Design science in
information systems research,” MIS Quarterly, vol. 28, no. 1, pp. 75-
105, 2004.

245

(34]

(35]

(36]

(37]

(38]

(39]

[40]

[41]

(42]

(43]

[44]

(45]

[46]

T. Lukman and M. Mernik, “Model-Driven Engineering and its
Introduction with Metamodeling Tools,” in 9th International PhD
Workshop on Systems and Control, Slovenia, 2008.

B. Selic, “The Pragmatics of Model-Driven Development,” IEEE
Computer Society, vol. 20, no. 5, pp. 19-25, 2003.

S. Sendall and W. Kozaczynski, “Model Transformation: The Heart and
Soul of Model-Driven Software Development,” Software IEEE, vol. 20,
no. 5, pp. 42-45, 2003.

K. Tripathi, “A Study of Interactivity in Human Computer Interaction,”
International Journal of Computer Applications, vol. 16, no. 6, pp. 4-6,
2011.

F. Karray, M. Alemzadeh, J. Saleh and M. Arab, “Human Computer
Interaction: Overview on State of the Art,” INTERNATIONAL JOURNAL
ON SMART SENSING AND INTELLIGENT SYSTEMS, pp. 137-159, 2008.

Oxford University, Oxford Paperback Dictionary and Thesaurus,
London, UK: Oxford University Press, 2009.

B. Altakrouri and A. Schrader, “Describing movements for motion
gestures,” in 1st International Workshop on Engineering Gestures for
Multimodal Interfaces - EGMI 2014, Rome, Italy, 2014.

N. Gillian and J. Paradiso, “The Gesture Recognition Toolkit,” Journal
of Machine Learning Research, vol. 15, pp. 3483-3487, 2014.

M. Kaushik and R. Jain, “Gesture Based Interaction NUI: An
Overview,” International Journal of Engineering Trends and
Technology (IJETT), vol. 9, no. 12, pp. 633-636, 2014.

Apple, “Event Handling Guide for i0S,” 28 01 2013. [Online].
Available:
https://developer.apple.com/library/ios/documentation/EventHand
ling/Conceptual/EventHandlingiPhoneOS/EventHandlingiPhoneOS.p
df. [Accessed 26 04 2014].

Z. Fitz-Walter, S. Jones and D. Tjondronegoro, “Detecting Gesture
Force Peaks for Intuitive Interaction,” in Proceedings of the 5th
Australasian Conference on Interactive Entertainment - IE '08,
Brisbane, Australia, 2008.

M. Nacenta, Y. Kamber, Y. Qiang and P. Kristensson, “Memorability of
Pre-designed & User-defined Gesture Sets,” in Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems - CHI
2013, Paris, France, 2013.

U. Oh and L. Findlater, “The challenges and potential of end-user
gesture customization Factors in Computing Systems,” in Proceedings
of the SIGCHI Conference on Human , Paris, France, 2013.

246

[47]

(48]

[49]

(50]

(51]

(52]

(53]

(54]

(55]

(56]

(57]
(58]
(59]

(60]

S. Zhai, P. Kristensson, C. Appert, T. Andersen and X. Cao,
“Foundational Issues in Touch-Screen Stroke Gesture Design - An
Integrative Review,” Foundations and Trends in Human-Computer
Interaction, vol. 5, no. 2, pp. 97-205, 2012.

B. Signer, U. Kurmann and M. Norrie, “iGesture: A General Gesture
Recognition Framework,” in 9th Conf. on Document Analysis and
Recognition, Brazil, 2007.

D. Willems, R. Niels, M. van Gerven and L. Vuurpijl, “Iconic and multi-
stroke gesture recognition,” Pattern Recognition, vol. 42, no. 12, pp.
3303-3312, 2009.

L. Anthony and J. O. Wobbrock, “A Lightweight Multistroke
Recognizer for User Interface Prototypes,” Proceedings of Graphics
Interface (Gl '10), pp. pp. 245-252, 2010.

J. Wobbrock, A. Wilson and Y. Li, “Gestures without Libraries, Toolkits
or Training: A $1 Recognizer for User Interface Prototypes,” in
Proceedings of ACM Symposium on User Interface Software and
Technology - UIST 2007, Newport, Rhode Island, USA, 2007.

J. Wobbrock and L. Anthony, “SN-protractor: A fast and accurate
multistroke recognizer,” in Proceedings of the 38th Graphics Interface
Conference, Gl 2012, Toronto, ON, Canada, 2012.

R. Vatavu, L. Anthony and J. Wobbrock, “Gestures as Point Clouds: A
SP Recognizer for User Interface Prototypes,” in ICMI'12, Santa
Monica, California, USA, 2012.

S. Swigart, “Easily Write Custom Gesture Recognizers for Your Tablet
PC Applications,” 11 2005. [Online]. Available:
https://msdn.microsoft.com/en-us/library/aa480673.aspx.
[Accessed 25 03 2016].

W. Liu, “Natural user interface- next mainstream product user
interface,” IEEE 11th International Conference on Computer-Aided
Industrial Design & Conceptual Design (CAIDCD), vol. 1, pp. 203-205,
2010.

P. Zheng and L. Ni, Smartphone and Next Generation Mobile
Computing, San Francisco, USA: Elsevier, 2006.

J. Miller and J. Mukerji, MDA Guide version 1.0.1, OMG, 2003.
O. DRAFT, “The MDA Foundation Model,” FRI Camb AB Edits, 2010.

A. Kleppe, J. Warmet and W. Bast, MDA Explained: The Model Driven
Architecture: Practice and Promise, USA: Addison Wesley, 2003.

P. Mohagheghi, V. Dehlen and T. Neple, “Definitions and Approaches
to Model Quality in Model-Based software development - A review of

247

(61]

(62]

(63]

(64]

(65]

(66]

(67]

(68]

(69]

[70]

[71]

[72]

literature,” in Information and Software Technology Journal,
Butterworth-Heinemann Newton, MA, USA, 2009.

S. Mellor, S. Kendall, A. Uhl and D. Weise, MDA Distilled. Principles of
Model-Driven Architecture, Addison-Wesley Professional, 2004.

R. France and B. Rumpe, “Model-driven Development of Complex
Software: A Research Roadmap,” in Future of Software Engineering
(FOSE'07), Minneapolis, MN, 2007.

N. Koch, “Transformation techniques in the model-driven
development process of UWE,” in Proceedings of the sixth
international conference on Web engineering - ICWE '06, Palo Alto,
California, USA, 2006.

J. Tolvanen and S. Kelly, “Model-Driven Development Challenges and
Solutions - Experiences with Domain-Specific Modelling in Industry,”
in Proceedings of the 4th International Conference on Model-Driven
Engineering and Software Development (MODELSWARD 2016), 2016.

M. Asadi, M. Ravakhah and R. Ramsin, “An MDA-based System
Development Lifecycle,” IEEE Computer Society - Second Asia
International Conference on Modelling & Simulation, pp. 836-842,
2008.

N. Chungoora, R. Young, G. Gunendran, C. Palmer, Z. Usman, N.
Anjum, A. Cutting-Decelle, J. Harding and K. Case, “A model-driven
ontology approach for manufacturing system interoperability and
knowledge sharing,” Computers in Industry Journal, vol. 64, no. 4, pp.
392-401, 2013.

A. Kriouile, T. Gadi and Y. Balouki, “CIM to PIM Transformation: A

criteria Based Evaluation,” International Journal on Computer
Technology & Applications, vol. 4, no. 4, pp. 616-625, 2013.

I. Kurtev, “State of the Art of QVT: A Model Transformation Language
Standard,” Applications of Graph Transformations with Industrial
Relevance, vol. 5088, pp. 377-393, 2008.

S. Deelstra, M. Sinnema, J. v. Gurp and J. Bosch, “Model Driven
Architecture as Approach to Manage Variability in Software Product
Families,” in Proceedings of the Workshop on Model Driven
Architectures: Foundations and Applications, 2003.

J. Gray, Y. Lin and J. Zhang, “Automating Change Evolution in Model-
Driven Engineering,” Computer, vol. 39, no. 2, pp. 51-58, 2006.

0. M. G. -. OMG, “MOF Model to Text Transformation Language,
v1.0,” Object Management Group Inc., 2008.

A. Manoli, J. Mufioz, V. Pelechano and O. Pastor, “Model to Text
Transformation in Practice: Generating Code from Rich Associations

248

(73]

(74]

[75]

(76]

[77]

(78]

[79]

(80]

(81]

(82]

(83]

Specifications,” Lecture Notes in Computer Science - Springer -
Advances in Conceptual Modeling - Theory and Practice, vol. Volume
4231, pp. pp 63-72, 2006.

L. Rose, N. Matragkas, D. Kolovos and R. Paige, “A Feature Model for
Model-to-Text Transformation Languages,” in MISE 2012, Zurich,
2012.

L. D. Spano, A. Cisternino and F. Paterno, “A Compositional Model for
Gesture Definition,” Proceedings of the 4th International Conference
HCSE-2012, pp. 34-52, 2012.

A. Lascarides and M. Stone, “Formal Semantics for Iconic Gesture,” in
Proceedings of brandial'06, the 10th International Workshop on the
Semantics and Pragmatics of Dialogue (SemDial10), 2006.

G. Giorgolo, “A Formal Semantics for Iconic Spatial Gestures,” Logic,
Language and Meaning, Vols. Lecture Notes in Computer Science, vol
6042 , pp. 305-314, 2010.

K. Kin, B. Hartmann, T. DeRose and M. Agrawala, “Proton: Multitouch
Gestures as Regular Expressions,” Proceedings of the SIGCHI
Conference on Human Factors in Computing System - CHI'12, pp.
2885-2894, 2012.

K. Kin, B. Hartmann, T. DeRose and M. Agrawala, “Proton++: A
Customizable Declarative Multitouch Framework,” Proceedings of
UIST 2012, pp. 477-486, 2012.

L. Spano, A. Cisternino, F. Paternd and G. Fenu, “GestIT: A Declarative
and Compositional Framework for Multiplatform Gesture Definition,”
in Proceedings of the 5th ACM SIGCHI symposium on Engineering
interactive computing systems - EICS '13, London, United Kingdom,
2013.

B. Puype, Extending the iGesture Framework with Multimodal
Gesture Interaction Functionality, Vrije Universiteit Brussel, 2010.

Ideum, “GestureML,” 13 12 2016. [Online]. Available:
http://www.gestureml.org/doku.php. [Accessed 05 07 2017].

M. Gorg, M. Cebulla and S. Rodriguez, “A framework for abstract
representation and recognition of gestures in multi-touch
applications,” in 3rd International Conference on Advances in
Computer-Human Interactions, ACHI 2010, 2010.

T. Hachaj and M. Ogiela, “Semantic Description and Recognition of
Human Body Poses and Movement Sequences with Gesture
Description Language,” in Computer Applications for Bio-technology,
Multimedia, and Ubiquitous City, 2012.

249

(84]

(85]

(86]

(87]

(88]

(89]

[90]

[91]

[92]

(93]

[94]

[95]

N. Group, “wiki.nuigroup.com/Gesture_Recognition,” 27 10 2009.
[Online]. Available: wiki.nuigroup.com/Gesture_Recognition.
[Accessed 10 07 2016].

D. Kammer, J. Wojdziak, M. Keck, R. Groh and S. Taranko, “Towards a
formalization of multi-touch gesture,” ACM International Conference
on Interactive Tabletops and Surfaces - ITS'10, vol. 3/94, pp. 49-58,
2010.

H. Lu and Y. Li, “Gesture Coder : A Tool for Programming Multi-Touch
Gestures by Demonstration,” in CHI 2012: ACM Conference on Human
Factors in Computing Systems, 2012.

H. LU, M. Negulescu and Y. Li, “Gesturemote : Interacting with Remote
Displays through Touch Gestures,” in Proceedings of the 2014
International Working Conference on Advanced Visual Interfaces - AVI
'14, Como, Italy, 2014.

S. Ruffieux, D. Lalanne, E. Mugellini and O. A. Khaled, “Gesture
recognition corpora and tools: A scripted ground truthing method,”
Computer Vision and Image Understanding, vol. 131, pp. 72-87, 2015.

A. C. Long, J. A. Landay and L. A. Rowe, “quill: A Gesture Design Tool
for Pen-based User Interfaces,” 2009.

F. Beuvens and J. Vanderdonckt, “Designing Graphical User Interfaces
Integrating Gestures,” Proceedings of the SIGDOC'12, pp. 313-322,
2012.

M. Guimaraes, V. Farinazzo and J. Ferreira, “A Software Development
Process Model for Gesture-Based Interface,” in IEEE International
Conference on Systems, Man, and Cybernetics, Seoul, Korea, 2012.

M. Nielsen, M. Storring, T. Moeslund and E. Granum, “A Procedure
for Developing Intuitive and Ergonomic Gesture Interfaces for Man-
Machine Interaction,” Aalborg University, Aalborg, Denmark, 2003.

A. Bragdon, R. Zeleznik, B. Williamson, T. Miller and L. J., “GestureBar:
Improving the Approachability of Gesture-based Interfaces,” in
Proceedings of the 27th international conference on Human factors in
computing systems - CHI 09, Boston, MA, USA, 2009.

0. Pastor and J. C. Molina, Model-Driven Architecture in Practice. A
Software Production Environment Based on Conceptual Modeling,
Spain: Springer, 2007.

R. Deshayes, C. Jacquet, C. Hardebolle, F. Boulanger and T. Mens,
“Heterogeneous modeling of gesture-based 3D applications,” in
Proceedings of the 6th International Workshop on Multi-Paradigm
Modeling, 2012.

250

[96]

[97]

(98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

J. Coutaz and G. Calvary, “HCI and Software Engineering for User
Interface Plasticity,” in The Human-Computer Handbook -
Fundamentals, Evolving Technologies, and Emerging Applications,
Julie, A. Jacko ed., CRC Press Taylor and Francis Group, 2012, pp.
1195-1220.

G. Calvary, D.-P. A., A. Occello, R.-G. P. and M. Riveill, “At the Cross-
Roads between Human-Computer Interaction and Model-Driven
Engineering,” ARPN Journal of Systems and Software, vol. 4, no. 3, pp.
64-76, 2014.

Q. V. J. M. B. B. L. F. M. T. D. Limbourg, “UsiXML: A User Interface
Description Language for Context-Sensitive User Interfaces,” in
Proceedings of the ACM AVI'2004 Workshop "Developing User
Interfaces with XML: Advances on User Interface Description
Languages", 2004.

G. Mori, F. Paternd and C. Santoro, “CTTE: Support for Developing and
Analyzing Task Models for Interactive System Design,” [EEE
TRANSACTIONS ON SOFTWARE ENGINEERING, vol. 28, no. 8, pp. 797-
813, 2002.

F. Valverde, J. I. Panach and O. Pastor, “An Abstract Interaction Model
of a MDA Software Production Method,” in Twenty-Sixth
International Conference on Conceptual Modeling - ER 2007 -
Tutorials, Posters, Panels and Industrial Contributions, Auckland, New
Zeland, 2007.

J. Vanderdonckt, “A MDA-Compliant Environment for Developing
User Interfaces of Information Systems,” Advanced Information
Systems Engineering LNCS in Computer Science, vol. 3520, pp. 16-31,
2005.

J. Vanderdonckt, “Model-Driven Engineering of User Interfaces:
Promises, Successes, Failures, and Challenges,” in ROCHI'08, lasi,
Romania, 2008.

G. Calvary, J. Coutaz, D. Thevenin, Q. Limbourg, L. Bouillon and J.
Vanderdonckt, “A Unifying Reference Framework for multi-target
user interfaces,” Interacting with Computers, vol. 15, no. 3, pp. 289-
308, 2003.

T. Kapteijns, S. Jansen, S. Brinkkemper, H. Houét and R. Barendse, “A
Comparative Case Study of Model Driven Development vs Traditional
Development: The Tortoise or the Hare,” in 4th European Workshop
on "From code centric to model centric software engineering:
Practices, Implications and ROI, Enschede, The Netherlans, 2009.

C. Bunse, H. Gross and C. Peper, “Embedded System Construction -
Evaluation of Model-Driven and Component-Based Development

251

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

Approaches,” in M. R. Chaudron (Ed.) Models in Software Engineering:
Workshops and Symposia at MODELS 2008, Heidelberg, Springer,
20009, pp. 66-77.

F. Ricca, M. Leotta, G. Reggio, A. Tiso, G. Guerrini and M. Torchiano,
“Using UniMod for Maintenance Tasks: An Experimental Assessment
in the Context of Model Driven Development,” in Proceedings on 4th
International Workshop on Modeling in Software Engineering (MiSE),
Zurich, Switzerland, 2012.

N. Condori-Fernandez, J. I. Panach, A. I. Baars, T. Vos and O. Pastor,
“An empirical approach for evaluating the usability of model-driven
tools,” Science of Computer Programming, vol. 78, pp. 2245-2258,
2013.

Y. Martinez, C. Cachero and S. Melia, “Evaluating the Impact of a
Model-Driven Web Engineering Approach on the Productivity and the
Satisfaction of Software Development Teams,” Proceedings of 12th
International Conference Web Engineering - ICWE 2012, vol. LNCS
7387, pp. 223-237, 2012.

Y. Martinez, C. Cachero and S. Melia, “MDD vs Traditional Software
Development: a practitioner subjective perspective,” Information and
Software Technology, vol. 55, no. 2, pp. 189-200, 2013.

Y. Martinez, C. C. and S. Melia, “Empirical study on the maintainability
of Web applications: Model-driven Engineering vs Code-centric,”
Empirical Software Engineering, vol. 19, pp. 1887-1920, 2014.

M. Cervera, M. Albert, V. Torres and V. Pelechano, “On the usefulness
and ease of use of a model-driven Method Engineering approach,”
Information and Software Technology, vol. 50, pp. 36-50, 2015.

J. 1. Panach, S. Espafia, O. Dieste, O. Pastor and N. Juristo, “In search
of evidence for model-driven development claims: An experiment on
quality, effort, productivity and satisfaction,” Information and
Software Engineering, vol. 62, no. C, pp. 164-186, 2015.

M. Morales-Trujillo, H. Oktaba and M. Piattini, “Using Technical-
Action-Research to Validate a Framework for Authoring Software
Engineering Methods,” in Proceedings of the 17th International
Conference on Enterprise Information Systems, 2015.

A. Morali and R. Wieringa, “Risk-based confidentiality requirements
specification for outsourced IT systems,” in Proc. 2010 18th IEEE Int.
Requir. Eng. Conf. RE2010, 2010.

U. Abelein, “User-Developer Communication in Large Scale IT
Projects,” Heidelberg University, 2015.

V. Antinyan, M. Staron and A. Sandberg, “Validating Software
Measures Using Action Research A Method and Industrial

252

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

Experiences,” in Proceedings of the 17th International Conference on
Enterprise Information Systems, 2016.

A. Milicevic, D. Jackson, M. Gligoric and D. Marinov, “Model-based,
Event-Driven Programming Paradigm for Interactive Web
Applications,” in OnWard! 2013, Indiana, USA, 2013.

S. Sim and R. Gallardo-Valencia, “Introduction: Remixing Snippets and
Reusing Components,” in Finding Source Code on the Web for Remix
and Reuse, New York, Springer Science+Business, 2013, p. 348.

J. Farrell, An Object-Oriented Approach to Programming Logic and
Design, Boston: Course Technology, 2013.

S. Mellor, A. Clark and T. Futagami, “Guest Editor'Introduction:
Model-Driven Development,” IEEE Software, vol. 20, no. 5, pp. 14-18,
2003.

C. Atkinson and T. Kuhne, “Model-Driven Development: A
Metamodeling Foundation,” IEEE Software, vol. 20, no. 5, pp. 36-41,
2003.

D. Plakalovic and D. Simic, “Applying MVC and PAC patterns in mobile
Applications,” JOURNAL OF COMPUTING, vol. 2, no. 1, pp. 65-72,
2010.

S. S. Hasan and R. K. Isaac, “An integrated approach of MAS-
CommonKADS, Model-View-Controller and web application
optimization strategies for web-based expert system development,”
Expert Systems with Applications, vol. 38, pp. 417-428, 2011.

F. Buschmann, R. Meunier, H. Rohnert and P. Sommerlad, Pattern-
oriented Software Architecture. A System of Patterns, England: John
Wiley and Sons Inc., 2001.

O. Parra, S. Espafa and O. Pastor, “Including multi-stroke gesture-
based interaction in user interfaces using a model-driven method,” in
Proceedings of the XVI International Conference on Human Computer
Interaction - INTERACCION '15, Vilanova i la Geltru (Barcelona), 2015.

L. Anthony and J. O. Wobbrock, “A Lightweight Multistroke
Recognizer for User Interface Prototypes,” Proc. of Graphics Interface,
pp. 245-252, 2010.

M. Teimourikia, S. Comai, H. Saidinejad and F. Salice, “Personalized
Hand Pose and Gesture Recognition System for the Elderly,” in
Universal Access in Human-Computer Interaction. Aging and Assistive
Environments, Springer, 2014, pp. 191-202.

J. Liu, Z. Wang, L. Zhong, J. Wickramasuriya and V. Vasudevan,
“uWave: Accelerometer-based personalized gesture recognition and

253

[129]

[130]

[131]

[132]

[133]

[134]

[135]

[136]

[137]

[138]

[139]

[140]

[141]

[142]

its applications,” in IEEE International Conference on Pervasive
Computing and Communications, Galveston, TX, 2009.

C. Rolland, “Capturing System Intentionally with Maps,” Conceptual
Modeling in Information Systems Engineering, pp. 141-158, 2007.

P. Soffer and C. Rolland, “Combining Intention-Oriented and State-
Based Process Modeling,” in Proceedings Conceptual Modeling -
ER2005, 2005.

K. Krugler, “Krugle Code Search Architecture,” in Finding Source Code
on the Web for Remix and Reuse, New York, USA, Springer
Science+Business, 2013, p. 348.

I. Sommerville, Software Engineering, Boston, USA: Addison-Wesley,
2011.

D. Moody, “The Method Evaluation Model: A Theoretical Model for
Validating Information Systems Design Methods,” in ECIS 2003
Proceedings, Naples, Italy, 2003.

ISO/IEC, “Ergonomics of human-system interaction,” 28 09 2015.
[Online]. Available: https://www.iso.org/obp/ui/#iso:std:is0:9241:-
210:ed-1:v1:en. [Accessed 10 11 2016].

ISO/IEC/JTC 1/SC 7, ISO/IEC 25062:2006, Software engineering -
Software product Quality Requirements and Evaluation (SQuaRE) -
Common Industry Format (CIF) for usability test reports, Geneva: ISO,
2006.

E. de AQueiroz, J. Fechine and A. Barbosa, “Towards a
multidimensional approach for the evaluation of multimodal
application user interfaces,” in Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics), 2009.

F. D. Davis, “Perceived Usefulness, Perceived Ease of Use, and User
Acceptance,” MIS Quarterly, vol. 13, pp. 319-339, 1989.

C. Wohlin, P. Runeson, M. Host, M. Ohlsson, B. Regnell and A.
Wesslen, Experimentation in Software Engineering, Berlin: Springer,
2012.

N. Juristo and A. Moreno, Basics of Software Engineering
Experimentation, Springer US, 2001.

D. Kieras, “Using the Keystroke-Level Model to Estimate Execution
Times,” University of Michigan, Michigan, USA, 2001.

S. Card, A. Newell and T. Moran, The Psychology of Human-Computer
Interaction, Hillsdale, NJ, USA: L. Erlbaum Associates Inc., 1983.

J. H. Kim and R. C. Miller, “6.813/6.831 User Interface Design,” MIT,
02 09 2009. [Online]. Available:

254

[143]

[144]

[145]

[146]

[147]

[148]

[149]

[150]

[151]

[152]

[153]

http://courses.csail.mit.edu/6.831/2009/handouts/ac18-predictive-
evaluation/klm.shtml. [Accessed 28 10 2015].

P. Runeson, “Using Students as Experiment Subjects — An Analysis on
Graduate and Freshmen Student Data,” Proceedings 7th International
Conference on Empirical Assessment & Evaluation in Software
Engineering, pp. 95-102, 2003.

M. Svahnberg, A. Aurum and C. Wohlin, “Using students as subjects -
an empirical evaluation,” in Proceedings of the Second ACM-IEEE
international symposium on Empirical software engineering and
measurement, Kaiserslautern, Germany, 2008.

F. Faul, E. Erdfelder, A. G. Lang and A. Buchner, “G*Power3: A flexible
statistical power analysis program for the social, behavioural, and
biomedical sceinces,” Behavior Research Methods, vol. 39, pp. 175-
191, 2007.

K. Maxwell, Applied Statistics for Software Managers, Prentice-Hall,
2011.

H. Boone and D. Boone, “Analyzing Likert Data,” Journal of Extension.
Sharing Knowledge, Enriching Extension, vol. 50, no. 2, 2012.

J. Kotrlik, “The Incorporation of Effect Size in Information Technology,
Learning, and Performance Research,” Information Technology,
Learning, and Performance Journal, vol. 21, no. 1, pp. 1-7, 2003.

D. Lakens, “Calculating and reporting effect sizes to facilitate
cumulative science: a practical primer for t-tests and ANOVAs,”
Frontiers in Psychology, vol. 4, no. Article 863, pp. 1-12, 2013.

R. Wieringa and A. Morali, “Technical Action Research as a Validation
Method in Information Systems Design Science,” in 7th International
Conference - DESRIST 2012, Las Vegas, USA, 2012.

S. Bérzisa, G. Bravos, T. Cardona, U. Czubayko, S. Espania, J. Grabis, M.
Henkel, L. Jokste, J. Kampars, H. Kog, J. Kuhr, C. Llorca, P. Loucopoulos,
R. Juanes, O. Pastor, K. Sandkuhl, H. Simic, J. Stirna, F. Valverde and J.
Zdravkovic, “Capability Driven Development: An Approach to
Designing Digital Enterprises,” in Business & Information Systems
Engineering, 2015.

S. Espafia, T. Gonzalez, J. Grabis, L. Jokste, R. Juanes and F. Valverde,
“Capability-driven development of a SOA platform: a case study,” in
First International Workshop on Advances in Services DEsign based on
the Notion of CApability (ASDENCA 2014), 2014.

M. Schrepp, A. Hinderks and J. Thomaschewski, “Applying the User
Experience Questionnaire (UEQ) in Different Evaluation Scenarios,”
Proceedings of the Third International Conference, DUXU 2014, Held
as Part of HClI International 2014, vol. 8517, pp. 383-392, 2014.

255

[154]

[155]

[156]

[157]

[158]

[159]

[160]

[161]

[162]

[163]

[164]

C. Barnum and L. Palmer, “Tapping into Desirability in User
Experience,” in Usability of Complex Information Systems: Evaluation
of User Interaction, Boca Raton FL, CRC Press, 2011, pp. 253-279.

H. Santoso, M. Schrepp, R. Kartono Isal, A. Yudha Utomo and B.
Priyogi, “Measuring User Experience of the Student-Centered e-
Learning Environment,” The Journal of Educators Online-JEQ, vol. 13,
no. 1, pp. 58-79, 2016.

M. Rauschenberger, M. Schrepp, M. Pérez Cota, S. Olschner and J.
Thomaschewski, “Efficient Measurement of the User Experience of
Interactive Products. How to use the User Experience Questionnaire
(UEQ).Example: Spanish Language Version,” International Journal of
Artificial Intelligence and Interactive Multimedia, vol. 2, no. 1, pp. 39-
45, 2013.

A. Nawaz, J. L. Helbostad, L. Chiari, F. Chesani and L. Cattelani, “User
Experience (UX) of the Fall Risk Assessment Tool (FRAT-up),” in IEEE
28th International Symposium on Computer-Based Medical Systems,
Sao Carlos, 2015.

B. Laugwitz, T. Held and M. Schrepp, “Construction and Evaluation of
a User Experience Questionnaire,” in HCl and Usability for Education
and Work USAB 2008. Lecture Notes in Computer Science, Berlin,
Heidelberg, 2008.

S. Adikari, C. McDonald and J. Campbell, “Quantitative Analysis of
Desirability in User Experience,” in Australasian Conference on
Information Systems , Adelaide, 2015.

J. Stirna, J. Grabis, M. Henkel and J. Zdravkovic, “Capability Driven
Development — An Approach to Support Evolving Organizations,” in
PoEM 2012, 2012.

T. Mercun, “Evaluation of information visualization techniques:
analysing user experience with reaction cards,” Proceedings of the
Fifth Workshop on Beyond Time and Errors: Novel Evaluation Methods
for Visualization, pp. 103-109, 2014.

L. Vogel, Eclipse Rich Client Platform. The complete guide to Eclipse
application development, Lars Vogel, 2015.

P. Kardasis and P. Loucopoulos, “Expressing and organising business
rules,” Information and Software Technology, vol. 46, pp. 701-718,
2004.

S. Jamieson, “Likert scales: How to (ab)use them,” Medical Education,
vol. 38, pp. 1217-1218, 2004.

256

VALENCIA, SPAIN

The research reported and discussed in this thesis represents gestUI, a novel
approach to define custom gestures and to include gesture-based interaction in
user interfaces of the software systems with the aim of help to solve the problems
found in the related literature about the development of gesture-based user
interfaces.

The design and implementation of gestUI are presented following the Model-driven
Paradigm. Then, we performed two evaluations of gestUI: (i) an empirical
evaluation and (ii) a Technical Action Research.

Finally, contributions of our thesis, limitations of the tool support and the approach
are discussed and further work are presented.

CUENCA, ECUADOR

