Testing-Based Conceptual Schema
Validation in a Model-Driven
Environment

| PhD Thesis
N Maria Fernanda Granda

UNIVERSITAT
POLITECNICA
DE VALENCIA

A\

\, ¢ Advisors:
Dra. Nelly Condori-Fernandez
Dra. Tanja E. J. Vos

Prof. Dr. Oscar Pastor Lopez

September 2017

Testing-Based Conceptual
Schema Validation in a
Model-Driven Environment

Maria Fernanda Granda Juca

A thesis submitted in partial fulfiiment of the requirements for
the Ph.D. degree by the Universitat Politecnica de Valéncia

Advisors:

Dra. Nelly Condori-Fernandez
Dra. Tanja E. J. Vos

Prof. Dr. Oscar Pastor Lopez

September 2017

This report was prepared by:

Maria Fernanda Granda
feranda@pros.upv.es

PROS Research Centre

Universitat Politecnica de Valéncia
Camino de Vera s/n, Edificio 1F, DISC
46022, Valencia, Spain

Advisors

- Dra. Nelly Condori Fernandez, Universidade da Corufia, Spain
and Vrije Universitei Amsterdam, The Netherlands

- Dra. Tanja E. J. Vos, Universitat Politeécnica de Valéncia, Spain

- Prof. Dr. Oscar Pastor, Universitat Politécnica de Valéncia,
Spain

External reviewers of the thesis

- Prof. Javier Dolado Cosin, University of the Basque Country,
Spain

- Prof. Haralambos Mouratidis, University of Brighton, United
Kingdom

- Prof. Jolita Ralyté, University of Geneva, Switzerland

Members of the Thesis committee

- President: Prof. Roel Wieringa, University of Twente, The
Netherlands

- Secretary: Prof. Jolita Ralyté, University of Geneva, Switzerland

- Speaker: Prof. Javier Tuya Gonzalez, University of Oviedo, Spain

mailto:fgranda@pros.upv.es

To God and my family,
For their love, care and support in all my experiencies.

ACKNOWLEDGEMENTS

| am grateful for nights that became mornings, friends who became
family and dreams that became true. Anonymous.

This thesis is the result of several years of hard work, during which |
have received the professional and personal support of many people.
My thanks to all of them.

First of all, | would like to thank my thesis supervisors, Nelly
Condori Fernandez, Tanja Vos and Oscar Pastor, for giving me the
opportunity to work with and learn from them. To Nelly, my diary
supervisor, thanks for the knowledge imparted on Requirements and
Empirical Evaluation, for the time dedicated to discussing my doubts
and advances, and demanding me to my utmost. To Tanja, for her
guidance and support in the area of Testing, for her enthusiasm at all
times. To Oscar, for believing in me from the beginning and pointing
me in the right direction in the world of Model-driven Development,
for his friendship and constant interest. To all three for their guidance
and support that have allowed me to get here.

Many thanks to all the people who have collaborated directly with
the development of this thesis. Special thanks to Sergio Espafia and
Marcela Ruiz for allowing me to use their Communication Analysis
method and tool. To the Spanish everis company for allowing me to
evaluate and validate my tool using one of their cases. To lvette Vilar
and Tania Gonzalez for their time and valuable comments. To Ignacio
Panach for translating the Abstract into the Valencian language.

To all the colleagues of the PROS research group specially José
Reyes, Carlos lfiiguez, Francisco Valverde, Urko Rueda, Didier Bueno,
Raul Soriano and Ana Cidad. Thank you for all the good moments.

I'm also going to thank all my friends who helped me disconnect
from work and inspired me with the motivation to move on: Sonia

Leén, Cristina Castillo, Gloria Mora, Sonia Cardenas, Mauricio
Loachamin, Julio Sandobalin, Alejandro Catala, Miguel Zudiga, Priscila
Andrade, Priscila Cedillo, Freddy Serrano and Angel Cuenca.

Special thanks to Patricia Lago and Nelly Condori-Fernandez for
allowing me to take part in their Software and Services group (S2) and
for the useful discussions we had during my stay in the Faculty of
Sciences at the Vrije Universiteit in Amsterdam. Also many thanks to
the rest of the people in the group particularly to Mojca, Maryam,
Damian and Giuseppe.

| also want to thank the reviewers of this thesis for agreeing to be a
part of the court and the external reviewers who will read a
preliminary version of the thesis and suggest improvements.

| want to thank my family for their love, prayers and constant
support, my mother, sisters, mother-in-law, father-in-law, sisters-in
law, brothers-in-law and my nieces and nephews. Finally, and very
important to me, many thanks to my husband Otto and our three
children Maria Paula, Luis Felipe and Maria Emilia for their patience
and understanding in hard times, for supporting me and encouraging
me in all the adventures undertaken, but especially for their
unconditional love and company.

This work has been supported by the Universidad de Cuenca,
and SENESCYT (Secretaria Nacional de Educacién Superior, Ciencia y
Tecnologia) of the Republic of Ecuador.

ABSTRACT

Despite much scepticism and problems for its adoption, the Model-

Driven Development (MDD) is being used and improved to provide
many inherent benefits for industry. One of its greatest benefits is the
ability to handle the complexity of software development by raising the
abstraction level. Models are expressed using concepts that are not
related to a specific implementation technology (e.g. Unified Modelling
Language -UML, Object Constraint Language —OCL, Action Language for
Foundational UML -ALF), which means that the models can be easier to
specify, maintain and document. As in Model-Driven Engineering
(MDE), the primary artefacts are the conceptual models, efforts are
focused on their creation, testing and evolution at different levels of
abstraction through transformations because if a conceptual schema
has defects, these are passed on to the following stages, including
coding. Thus, one of the challenges for researchers and developers in
Model-Driven Development is being able to identify defects early on, at
the conceptual schema level, as this helps reduce development costs
and improve software quality.

Over the last decade, little research work has been performed in
this area. Some of the causes of this are the high theoretical complexity
of testing conceptual schemas and the lack of adequate software
support. This research area thus admits new methods and techniques,
facing challenges such as generation of test cases using information
external to the conceptual schemas (i.e. requirements), the
measurement of possible automation, selection and prioritization of
test cases, the need for an efficient support tool using standard
semantics, the opportune feedback to support the software quality
assurance process and facilitate making decisions based on the analysis
and interpretation of the results.

The aim of this thesis is to mitigate some of the problems that
affect conceptual schema validation by providing a novel testing-based
validation framework based on Model-Driven Development. The use of
MDD improves abstraction, automation and reuse, which allows us to
alleviate the complexity of our validation framework. Furthermore, by
leveraging MDD techniques (such as metamodeling, model
transformations, and models at runtime), our framework supports four
phases of the testing process: test design, test case generation, test
case execution and the evaluation of the results, unlike traditional
testing approaches, which, in general, only support some of these
phases.

In order to provide software support for our proposal, we
developed the CoSTest ALF-based testing environment. To ensure that
CoSTest offers the necessary functionality, we first identified a set of
functional requirements. Then, after these requirements were
identified, we defined the architecture and testing environment of the
validation framework, and finally we implemented the architecture in
the Eclipse context. CoSTest has been developed to test several
properties on the executable model, such as syntactic correctness (i.e.
all the elements in the model conform to the syntax of the language in
which it is described), consistency between the structural and
behavioural parts (its integrity constraints) and completeness (i.e. all
possible changes on the system state can be performed through the
execution of the operations defined in the executable model). For
defective models, the CoSTest report returns a meaningful feedback
that helps locate and repair any defects detected.

The work involved in the thesis was validated by means of six
studies using cases found in the literature, as well as in a practical
industrial case. The first four studies were laboratory experiments to
validate and evaluate some CoSTest components such as mode-driven
generation of test cases, the mutant generator used to prioritize and
select test cases, as well as the generator of an ALF-based executable
conceptual schema. In the fifth study, the mutation analysis was

applied to evaluate the effectiveness and adequacy of CoSTest’ test
cases when detecting different defects in mutated CSs. In the last
study, CoSTest was assessed by means of the Technology Acceptance
Model (TAM) and the interview method. While the TAM allowed us to
subjectively measure usefulness and ease-of-use, the interview
method allowed us to identify its limitations and consider possible
improvements to be implemented in the tool. Overall, the results were
favourable. CoSTest was highly rated in perceived usefulness and ease-
of-use and also obtained positive results in the effectiveness of test
cases.

RESUM

A pesar de I'escepticisme i les dificultats en la seua adopcié, el

Desenvolupament Orientat per Models (MDD, segons les sigles en
anglés) esta sent usat i millorat per tal de proveir molts beneficis
potencials inherents a I’ induUstria. Un dels majors beneficis és la
capacitat de manejar la complexitat del desenvolupament del
programari elevant el nivell d’abstraccié. Els models s’expressen
mitjancant conceptes que no estan relacionats amb una tecnologia
d’implementacio especifica (per exemple, el Llenguatge de Modelat
Unificat — UML, Llenguatge de Restriccié d’Objectes —OCL, Llenguatge
d’Accio per al Foundational UML — ALF), el que significa que els models
poder ser més facils d’especificar, mantindre i documentar. A causa de
que en una Enginyeria dirigida per models (MDE), els artefactes
primaris son els models conceptuals, els esforgos es centren en la seua
creacio, prova i evolucié a diferents nivells d’abstraccié mitjangant
transformacions, perqué si un esquema conceptual té defectes,
aquestos es passen a les segiients etapes, inclosa la codificacid. Per
tant, un del reptes per als investigadors i desenvolupadors en MDD és
poder identificar els defectes des del principi, a nivell de esquemes
conceptuals, perquée aco ajudaria a reduir els costos de
desenvolupament i millora de la qualitat del programari.

Durant I'dltima década, pocs treballs d’investigacid s’han fet en
aquesta area. Algunes de les causes d’aquesta realitat son I'alta
complexitat teorica de provar esquemes conceptuals i la falta de suport
de programari adequat. Per tant, aquesta area d’investigacié admet
nous metodes i técniques, enfrontant reptes com la generacid de casos
de prova mitjancant informacié externa als esquemes conceptuals (es a
dir, requisits), la medicié de una possible automatitzacio, seleccio i
prioritzacié de casos de prova, la necessitat de una ferramenta de
suport rentable que utilitze una semantica estandard, la
retroalimentacio oportuna per suportar el procés d’assegurament de la

qualitat del programari i la facilitat per a prendre decisions basades en
I"analisi i la interpretacié dels resultats.

En aquesta tesi intentem mitigar alguns dels problemes que
afecten a la validacié dels esquemes conceptuals, proporcionant un
nou marc de validacié basat en proves que va ser construit mitjangant
un desenvolupament dirigit per models. L'ds de MDD permet un
augment en I'abstraccié, automatitzacio i reutilitzacié que ens permet
alleujar la complexitat del nostre marc de validacid. A més a més, al
aprofitar les técniques MDD (com el metamodelat, les transformacions
de models i els models en temps d’execucid), el nostre marc suporta
quatre fases del procés de prova: disseny, generacid i execucid de
casos de prova, aixi com |'avaluacié de resultats del procés de prova.
Aco és diferent als enfoques de proves tradicionals, que en general
només admiteixen algunes d’estes fases.

Amb la finalitat de proporcionar suport de programari per a la
nostra proposta, hem desenvolupat un entorn de proves basat en el
llenguatge ALF que s’anomena CoSTest. Per tal d’assegurar que
CoSTest ofereix la funcionalitat necessaria, identifiquem un conjunt de
requisits funcionals abans de desenvolupar la ferramenta. Després
d’identificar aquestos requisits, definim I'arquitectura i I'ambient de
proves del nostre marc de validacio, i finalment, implementem
I'arquitectura en el context Eclipse. CoSTest ha sigut desenvolupat per
provar diverses propietats sobre el model executable com la correccioé
sintactica (és a dir, tots els elements del model s’ajusten a la sintaxi del
llenguatge en el que es descriu), consisténcia antre la part estructural i
el comportament (les seues restriccions d’integritat) i completitud (és a
dir, tots els canvis possibles en I'estat del sistema es poden realitzar
mitjancant I'execucid de les operacions definides en el model
executable). Per als models defectuosos, I'informe de CoSTest retorna
una retroalimentacid significativa que ajuda a localitzar i reparar els
defectes detectats.

El treball de tesi va ser avaluat mitjancant sis estudis usant casos
trobats a la literatura, aixi com un cas industrial. Els quatre primers
varen ser experiments de laboratori per validar y avaluar alguns
components de CoSTest tals com la generacié dirigida per models dels
casos de prova, el generador de mutants usat per prioritzar i
seleccionar casos de prova, aixi com també el generador d’un esquema
conceptual executable basat en ALF. En el quart estudi, es va aplicar
I'analisi de mutacions per avaluar I'efectivitat i 'adequacié dels casos
de prova de CoSTest al detectar defectes en esquemes conceptuals
mutats amb diferents tipus de defectes. En I'Ultim estudi, CoSTest va
ser avaluat amb la participacié d’usuaris finals mitjancant el Model
d’Acceptacié de Tecnologia (TAM) i el métode d’entrevistes. Mentres
gue el TAM ens va permetre mesurar |’ utilitat i facilitat d’ds d’una
manera subjectiva, el métode d’entrevistes ens va permetre identificar
les limitacions i possibles millores que es poden implementar en la
ferramenta. En general, els resultats varen ser favorables. CoSTest va
ser altament valorat en la utilitat percebuda i la facilitat d’ds; també
varem obtindre resultats positius amb respecte a I'efectivitat dels casos
de prova.

RESUMEN

A pesar del escepticismo y dificultades en su adopcién, el
Desarrollo Orientado por Modelos (MDD, por sus siglas en inglés) esta
siendo usado y mejorado para proveer muchos beneficios inherentes a
la industria. Uno de sus mayores beneficios es la capacidad de manejar
la complejidad del desarrollo de software elevando el nivel de
abstraccion. Los modelos se expresan utilizando conceptos que no
estan relacionados con una tecnologia de implementacién especifica
(por ejemplo, Lenguaje de Modelado Unificado -UML, Lenguaje de
Restriccion de Objetos -OCL, Lenguaje de Accion para el Foundational
UML - ALF), lo que significa que los modelos pueden ser mas faciles de
especificar, mantener y documentar. Debido a que en una Ingenieria
dirigida por modelos (MDE), los artefactos primarios son los modelos
conceptuales, los esfuerzos se centran en su creacidn, prueba vy
evolucién a diferentes niveles de abstraccion a través de
transformaciones, porque si un esquema conceptual tiene defectos,
éstos se pasan a las siguientes etapas, incluida la codificacién. Por lo
tanto, uno de los retos para los investigadores y desarrolladores in
MDD es poder identificar los defectos temprano, a nivel de esquemas
conceptuales, ya que esto ayudaria a reducir los costos de desarrollo y
mejorar la calidad del software.

Durante la ultima década, pocos trabajos de investigacidon se han
realizado en esta area. Algunas de las causas de esta realidad son la
alta complejidad tedrica de probar esquemas conceptuales y la falta de
soporte de software adecuado. Por lo tanto, este drea de investigacidn
admite nuevos métodos y técnicas, enfrentando retos como la
generacion de casos de prueba utilizando informacion externa a los
esquemas conceptuales (es decir, los requisitos), la medicidn de una
posible automatizacién, seleccién y priorizacidon de casos de prueba, la
necesidad de una herramienta de soporte eficiente que utilice una
semantica estdndar, la retroalimentacion oportuna para apoyar el

proceso de aseguramiento de la calidad del software y facilitar la toma
de decisiones basadas en el analisis y la interpretacion de los
resultados.

El objetivo de esta tesis es mitigar algunos de los problemas que
afectan la validacidon de los esquemas conceptuales, proporcionando
un nuevo marco de validacién basado en pruebas que fue construido
usando un desarrollo dirigido por modelos. El uso de MDD permite un
aumento en la abstraccion, automatizacidon y reutilizacién que nos
permite aliviar la complejidad de nuestro marco de validacidon. Ademas,
al aprovechar las técnicas MDD (como el metamodelado, las
transformaciones de modelos y los modelos en tiempo de ejecucién),
nuestro marco soporta cuatro fases del proceso de prueba: disefio de
pruebas, generacion de casos de prueba, ejecucidn de casos de prueba
y la evaluacién de los resultados. Esto es diferente a los enfoques de
pruebas tradicionales, que, en general, sélo admiten algunas de estas
fases.

Con el fin de proporcionar soporte de software para nuestra
propuesta, hemos desarrollado CoSTest, un entorno de pruebas
basado en el lenguaje ALF. Para asegurar que CoSTest ofrece la
funcionalidad necesaria, primero identificamos un conjunto de
requisitos funcionales. Luego, después de identificar estos requisitos,
definimos la arquitectura y el ambiente de pruebas de nuestro marco
de validacién vy, finalmente, implementamos la arquitectura en el
contexto de Eclipse. CoSTest ha sido desarrollado para probar varias
propiedades sobre el modelo ejecutable como la correccidn sintactica
(es decir, todos los elementos del modelo se ajustan a la sintaxis del
lenguaje en el que se describe), consistencia entre la parte estructural
y el comportamiento (sus restricciones de integridad) y completitud (es
decir, todos los cambios posibles en el estado del sistema se pueden
realizar a través de la ejecucién de las operaciones definidas en el
modelo ejecutable). Para los modelos defectuosos, el informe de
CoSTest devuelve una retroalimentacién significativa que ayuda a
localizar y reparar los defectos detectados.

El trabajo involucrado en la tesis fue validado mediante seis
estudios usando casos encontrados en la literatura, asi como un caso
industrial. Los cuatro primeros fueron experimentos de laboratorio
para validar y evaluar algunos componentes de CoSTest tales como la
generacion dirigida por modelos de los casos de prueba, el generador
de mutantes usado para priorizar y seleccionar casos de prueba, asi
como también el generador de un esquema conceptual ejecutable
basado en ALF. En el quinto estudio, se aplicé el analisis de mutaciones
para evaluar la efectividad y la adecuacién de los casos de prueba de
CoSTest al detectar defectos en esquema conceptuales mutados con
diferentes tipos de defectos. En el udltimo estudio, CoSTest fue
evaluado con la participacién de usuarios finales a través del Modelo
de Aceptacion de Tecnologia (TAM) y el método de entrevista.
Mientras que el TAM nos permitié medir la utilidad y facilidad de uso
de una manera subjetiva, el método de entrevista nos permitid
identificar las limitaciones y posibles mejoras que se pueden
implementar en la herramienta. En general, los resultados fueron
favorables. CoSTest fue altamente valorado en la utilidad percibida y
facilidad de uso; también obtuvimos resultados positivos con respecto
a la efectividad de los casos de prueba.

CONTENTS

PART . PREFACE ... e 1
1. INErOdUCTION....eiiiiieieeee e e 1
1.1 MOTIVAtioN ..ceiiiiiiii i 2
1.2 Problem Statementcc.eoveeiieiieieee e 4
RS 0] o =Yt {177 USRS 4
1.4 Thesis CONEXE .c.uviiiriieiiierieeete ettt ettt et es 5
1.5 Means of Achieving the Proposed Objectives..........ccccvevevveeennnnee. 6
1.6 Thesis OULHNE c..eeiiiiieiiieeeeee e 7
2. Research Methodologyccccveeeecciieecciiee e 11
2.1 Framework for the CoSTest Design Science Project.................... 12
2.2 Statement of Research Goals and the Design Problem 13
2.3 Research QUESTIONS......ccceeruerieeiieenieesee et 17
2.4 Engineering, Design and Empirical Cyclesccocveevveenierinneenns 18
2.5 SUMMAY i 28
PART II. PROBLEM INVESTIGATION ...t 31
3. Theoretical Frameworkcccevceeeieeenieeeiieeeeeeee e 33
3.1 Concepts of Requirements ENgiNEering.........ccceceveeeecvveeeecnnnnnnn 35

3.1.1 Modelling Requirements based on Communicational

ANAIYSIS .ttt e e a e e e e e e b raeees 37
3.2 Concepts of the Conceptual Schema Quality......cccceeevveeeennneenn. 38
3.2.1 Model Quality for Conceptual Schemas..........cccccveeeecineenns 39

3.2.2 Practices to improve the Quality of Conceptual Schemas ...40

3.3 Concepts of the Model-driven Environmentcccccceeeuvnnneeen... 44

3.3.1 MDA Definitions and Assumptionscccccoevcveeeeerceeeeeenneen. 45
3.3.2 Overview of the Metamodeling Architecture...................... 46
3.3.3 UML CD-based Conceptual Schemas........ccccccovveeverieeennnnenn. 47
3.3.4 Executable UML Conceptual Schema Under Test................ 48
3.3.5 Defect Types in UML-based Conceptual Schemas............... 50
3.4 Summary and CoNCIUSIONScccvveeeeiiiiee e erree e 53
4, Related Work of Conceptual Schema Validation.................. 55
4.1 Dimensions of the Related Workccoceereniiiiinneenicnicniee 56
4.1.1 DOMAIN.iiiiiiiiiiiee ittt 57
4.1.2 QUAlILY GOl ... 57
4.1.3 MethOdoviiiiiieee e e 58

4.2 Generation, Selection, Prioritization and Execution of Test Cases
61

4.2.1 Test Case GENerationcccceevveeeeeiiiiieeiiiiee e 61
4.2.2 Test Case Selection and Prioritization.........ccccoeceeveeneennene 62
4.2.3 Test Case EXECULIONc.covcveviviiiniiiiiiiiiicecnecec e 63

4.3 Comparison of Related WOrks........cccoevveeeevciieiicciiee e, 66
4.3.1 Dimension-Based COMParisON........cccccvvvveeeeeeeeccivinneeeeeeeenns 67
4.3.2 Testing feature COmMpParisON........ccccccveeeeecieeeeeciiee e 71

4.4 Summary and ConclUSIONS.........ueeeeeeiiiiciiiieee et 76
PART IIl. TREATMENT DESIGN......coiiiiiiiiienienieeeeieeieeiee e 79
5. Validation Framework for Conceptual Schemas................... 81
5.1 Framework OVEIVIEWcccceveerieriienieeieenee sttt siee e 82
5.1.1 Phases of the Methodological Framework......................... 83

5.2 TeSt ANAIYSIS e e 83

5.2.1 Requirements Specification based on Communicational

F N QT 1Y [SR 84
5.2.2 Modelling Requirements based on Communicational
ANAIY SIS cettieeieiiiie ettt e e e e e aaeee s 85
5.3 TS DESIZN ceeiiieiiiieeeee et 90
5.3.1 Test Data.....cceeiiiiiiiiiiiiiiiiiiiccc 91
5.4 Test GENeration.....cccoocveiiiviiiiiiiieiccec e 91
5.4.1 Test Case Selection.......cccueereeriieiiieiieieeieeseesee e 91
5.4.2 Addressed Quality Goalscccouveeeeciiieicciiee e, 92
5.4.3 TeSt TYPES.citiiiiiiiiiiiiiiiiiiieieieetieeteeeeeerererererererererererererererraeree 92
5.4.4 Test Generation Criteria......cccecueeeiriiieeiiiieee e 94
5.4.5 Deriving test 80als.......cccoecvveiieiiiee e 94
5.4.6 Concrete and Executable Test Cases......cccceveereerieeriiennneene 95
5.5 Test Prioritizationcceeeiviiiieiniiieeeeecee e 106
5.6 Test EXECULION ..ceiiiiiiiiiiiiiciiiec e 111

5.6.1 Executable Conceptual Schema based on UML Class

D TF- =4 = o 1 111
5.6.2 Architecture and Testing Environmentccccceeeennnen. 116
5.6.3 EXECULION TracCe ...coviviiiiiiiiieieeieeeeeee e 118
5.7 Test Evaluationc.coceeiieieiniiiiineeeeeeeec e 119
5.7.1 Verifying the Syntaxis Correctness.......cccccceveeevcvveeeecnnennn. 119
5.7.2 Validating the Semantic Correctnesscccceceeecvveeeecvnennn. 120
5.7.3 Verifying the Unnecesary Elementscccceeeevveeeennneenn. 121
5.7.4 Validating the Completeness.....ccccceeecvviiieeeeeieccciiieeeeeen, 122
5.8 Overview of the CoSTest Testing Processcccccveeeeecuveeeeennnen. 126
5.9 Summary and ConClUSIONSc.ccveeeeiciieeeecieee e 127

Transformation RUIESueueeeeeeeee e 131

6.1 An Overview of the MDT Process........cceeeeveeiieiivviiieeeeeeeeevinnnnn, 132

6.2 Metamodels........cooveiiriiiiieeeee e 133
6.2.1 Test Metamodel.......coceeveeneeiiinienieeeeeeeeee e 134
6.2.2 Test Scenario Metamodel........ccocceeveriiiieeieniinieneeen, 136
6.2.3 Test Data Metamodelcooceeriiriiiiiniieneeneeeeeeeen 137

6.3 Transformationscocceveviierieeenieenee e 139

6.3.1 Transformation from Requirements Model to Test Model
139

6.3.2 Transformation from Test Model to Test Scenario Model147
6.3.3 Transformation from Test Model to Test Data Model 148

6.3.4 Transformation from Test Scenario Model to Test Scenario
Model with Abstract TSt CasesS........uuuuuererermrerereririrerererernnenenenns 148

6.3.5 Transformation from Test Data Model and Abstract Test
Cases to Executable and Concrete Test Cases........ccceeveeeeerenennnn. 150

6.3.6 Transformation from UML CD-based CS to Executable CS

(0 g o [Tl A=) ST PRROTR 151

6.4 Summary and CoNClUSIONS........ccueeeeiiieeececiee et 156
PART IV. TREATMENT VALIDATION....uutiiiiiieieeiieeee e 157
7. CoSTest Tool Implementation.........ccceeeeeciieeinciiee e, 159
7.1 General Overview and Architecturecccevveeveeneeneenieeenen. 159
7.2 The Test Model Manager........ccccveeeeiiieeeeiiieeeeccieeeeeceee e 162
7.2.1 Presentation Managercccccceeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee, 163
7.2.2 Test Model GeNerator......ccoccceeieeeiieeriieeesiee e 164
7.2.3 Graph and Tree Builder.......ccccceeeieeeciiiiieee e, 165
7.2.4 Element Report GENEratorccccecvvveeeeciieeeeecieeeeecieee e 165

7.3 The Test Scenario Model Manager........ccccccveeevcieeeeccieee e, 165

7.3.1 Presentation Managercccooeevveiiiiiiiiiieeeeeeeee, 166

7.3.2 Test Model Generator....cocoooveeevveeeeeeeeeeeeeeee e 167

7.3.3 Tree BUildercooiieeiieeeeeeeeeeeeee e 167
7.3.4 Element Report GENerator.......cccceeeecvveeeeciveeeeciveeeeeiveennn 167
7.4 The Test-Data Manager......ccueeeecuieeeecieeeecrtee e e e 167
7.4.1 Presentation Manager....cccccuuueeveererereeeeereeeeeeeerereeeeerereeeenee 169
7.4.2 Web-based Generator........ccocceeevieerieeenieeniee e 170
7.4.3 Requirement-based Generator........ccccceeeeciveeeviiveeescnnennn, 170
7.4.4 Database Managerccccecuieeeeiiiiieeeiiiee e esaee e sareee s 170
7.5 The CSUT PrOCESSOr....ueeteeieenieeriteeieeieesieesieesieesee e sreenveeneees 171
7.5.1 Presentation Manager......uueeeiereeieeeeeeeeeeeeeeeeeeeeeeeeeeneennnen 171
7.5.2 CSUT MaNQAEEN ccciviiiiiiieeeeieeeeeeeereeeeeeeeeeeeereeeseseseseseseermmsemems 174
7.6 The TSt PrOCESSONceiuieeeiiieiiee ettt ettt 174
7.6.1 Presentation Manager.....ccoccuvveeeeeiiiiiciiiieeeee e enriiieeeeeeeenn 175
ST A =15 A - T o - == PPN 178
7.7 The Mutant GeNnerator.....ccoccevueeieeiieenieenee e 179
7.7.1 Presentation Manager.......uuuuueeeeeeeeeeeeeeeeeeeeeeneeeeeeeeeenenenennns 180
7.7.2 Mutant Managercuuueeeeeeieierereeereeerirereeeeeeeeeeereeeeerereeen. 181
7.8 The Batch Testing ProCeSSOrccuvveeecuieeeecieeeeeieee e eeee e 182
7.8.1 Presentation Manager....ccccuueevveevereeeeereeeeeeeeeeeeereererneeenenen 183
7.8.2 Batch Test Managercceooeecviiiieee et 184
7.9 Summary and ConcluSioNSceeeeeiiicciiiieeeee e e 184
Validation and Evaluation of the CoSTest Tool 187

8.1 Validating the Effectiveness of CoSTest CSUT Processor.......... 190
8.1.1 Experimental DeSigN.....ccccccuveeeriiieieeiiieee et ecree e 190

8.1.2 Conclusions and Changes on the CoSTest CSUT Processor
194

8.2 Validating the CoSTest Transformation Rules.........ccccccceeunnnens 194
8.2.1 Definition of Basic and Derived Metrics with Rule Scope. 196

8.2.2 Definition of Basic and Derived Metrics with Transformation

scope 197
8.2.3 Experimental DeSigNccccuueiiriiiiriiiiieee e esiee e 201
8.2.4 Results and DiSCUSSIONceevueeeriieeiiieeniee e esree e 205
8.3 Evaluating the CoSTest Mutant Generator.........ccccceeeeeeeeecnnnnes 214
8.3.1 Experiment No 1: Evaluating the Mutation Operators
Implemented in COSTEST......ccuiiiiiiiie e e 215
8.3.2 Experiment No 2: Validating the Effectiveness and Efficiency
of Mutant Generator of COSTESTcevcvirviriiriiereereeee e 218
8.4 Validating of the Effectiveness of CoSTest’ Test Cases 222
8.4.1 Experiment Goal and QUEeSLioNSccceeevveeeeiiieeeccineenn, 222
8.4.2 Variablescooueriirieee e 223
8.4.3 MELIICS eviviiiiiiiiiiiicitc e 223
8.4.4 HYPOLNESES ..ottt 224
8.4.5 Experimental Materialccecovveeeiiiiieeeceeee e, 225
8.4.6 ProCeaUIe....cooviieiiie et 226
8.4.7 Analysis Of RESUIS.......cceecuiieiieiiiieeeceee e 230
8.4.8 DiSCUSSION....cciviriiiiiiiiiiiiiiii it 238
8.4.9 Analysis of the Threats to the Validity of the Results....... 240
8.4.10 Conclusions and Changes to the Toolcccceuunee. 241
8.5 Evaluating CoSTest User Perceptions.....ccccceeeeccviveeeeeeeeecccnnnns 242
8.5.1 Experiment Research Goal......ccccccoeccviveiiieiiieccciiieeee e, 242
8.5.2 Research Methodology........ccccceeeevcciiiiiieeee e, 242
8.5.3 Experiment Context: The everis’ Study Case 243

8.5.4 Experiment Reseach QUEestionscccceccvveeeeciveeeciineeenn, 244

8.5.5 Case SeleCtION....cciiiiiieeteee e 244

8.5.6 Methods of Data Collectioncccoceeevieinieiniieeniieeen, 245
8.5.7 Experimental SUbJECtS......ccceeeeiiiiiieiieee e, 246
8.5.8 Instrumentationccccovviiiiiniiiiiiii 246
8.5.9 Experimental Procedure.......ccccccouveeeiiveeeeiiiieee e, 247
8.5.10 Pilot TeSt.iiiiciiiiieiiie ettt 248
8.5.11 Analysis of the Threats to Validity.......ccccccevevvveevcnnneenn. 251
8.5.12 Answers to Experiment Research Questions 253
8.5.13 DISCUSSION c..eeviiiiiiiieiiiiec ettt 254

8.6 Summary and ConclUSIONScccveeeeeiiieee e e e 256
PART V. FINAL DISCUSSION ...cuutiiiiiiieiienieeieeeereesiee st 259
9. FiNal DiSCUSSION ...eiiiiiiiiiieiiieniee ettt 261
9.1 Summary of the Contributions of this Thesis..........c..ccccueeennnee. 261
9.2 Thesis IMPACE ..eccieiieee et e 265
9.2.1 PUBIICAtiONS ..ot 265
9.2.2 Academic Project Participationcccccvvveeeeiiiiicciiiieeeeen, 268
9.2.3 ReSEArCh Stay ..occuvviiiciiie et 268

9.3 A Work that Opens New Research Lines.........ccccecvveeeeevieeennnen. 268
9.3.1 DOMAIN ceeiiiiiiiiiiiiiiiiirinc e 268
9.3.2 QUAlILY GOl ..ciiiiiiiiiiiiie e 269
9.3.3 MEthOd ..o e 269
REFERENCES ...ttt ettt et e e e s e s e e e e 271
APPENDICES.coiitiittetteteeteeniee sttt ettt st 287
APPENAIX A .o e e e ae e s e narees 289
Mutation Operators for UML CD-based Conceptual Schemas 289

APPENIX B et e e e a e e e e e 291

Case Study: The Incident Management Systemccccoeeveeeeenneen. 291

B.1 TeSt ANAlYSiS...uuiiiiiciiiiiieiiiee et snre e e 291
B.1.1 Event Description Templates.......cccceeeecveeeeccieeeeciiee e, 291
[T A V=T o1 £ D IT-T = - o N 307

B.2 TEST DESISN.cciiiiiiiiiiiiiiiiiiiiiieieieeeeereeeeeee e e eeeeeeeeeeeesesesesesseeeesen 307
B.2.1 TeSt MOdeleoeiiiiiiieieeeee e 309
B.2.2 Test Scenario Modelccoceveriiiniieiinieeniee e 309
B.2.3Test Data....ccccuviiiiiiiiiiiiciiec e 315

B.3 Test Case Generation.......cccoocveeiiiiiiieiiieeciece e 315

B.4 Mutant Generationcccvveieiiiiiiiiiiiicccc e 320

B.5 TeSt EXECULION ...cciiiiiiiiiiiiitee e 323

B.5.1 Generation of the Executable Conceptual Schema Under

Test 323
B.5.2 Generation of the Execution Trace.......c..cceeeeveeeneeneeneenns 327
B.6 Test EValuation.......ccceeiueeiieniiiiieieeeeeesee e 328
B.7 CONCIUSIONS ...coneiiiiiiieeieeieeee et 330
Yo7 o 1=] o Vo [G SRR 331
Supplementary Material on the Evaluation Study...........c..ccceuu..ee. 331
C1. Characterization FOrmMccccooeeriiniiniieieeeeeee e 331
C2. CoSTest Tool Installation Guideccceeceeeviieiieeiiieeneene 334
C3. Guideline with Task Template for VideoClub Case............... 336

C4. User Acceptance FOrM ..oouvvvveeiieieiiieieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeenn 336

LIST OF TABLES

Table 3.1 Quality Goals based on 6C quality model from Mohaghehi et

= I 2) PR 40
Table 3.2. Validation relevant methods for Conceptual Schemas........ 42
Table 3.3. Defect types in a UML-based model (excerpt taken from
[83]) coreeeeeeeeeeeee e et e et eeee et e et et e et e e e ee et e et eeeeeeeeeeeeereeenaees 52
Table 4.1. Related approach comparison.........cccovveeeeeeeeecciiineeeeeeeeeeenns 68
Table 4.2. Testing features COMPAriSONcccueeeeciieeeeiiieee e, 72
Table 5.1. Example of an Event Specification Templatecccceuueeee. 88
Table 5.2. Test generation criteria for UML CD-based Conceptual
Yol 1 T=] o - PSRRI 94
Table 5.3. Mutation operators for CS FOM taken from [116]............. 109
Table 5.4. Relationship between fault and reported defect............... 125

Table 6.1. Transformation rules for generation of the Test Model141
Table 6.2. Transformation rules for generation of the Test Cases...... 141
Table 6.3. Transformation rules for generation of the Precedence
(] = 14T TSR PR 142
Table 6.4. Transformation rules for generation of the test items
ASSEITIONS .ttt e e e e e e e e 142
Table 6.5. Transformation rules for generation of the test items
7<= <] ST U PP ROPPPPT 142
Table 6.6. Transformation rules for generation of the test items
Y] V[0l TP PO PPPPPUPPTPTOS 143
Table 6.7. Transformation rules for generation of the test items Links

Table 6.8. Transformation rules for generation of the test items
Parameters ... 144
Table 6.9. Requirements Metamodel constructs used in this
TraNSTOrMAtioN ...cociie e 145
Table 6.10. Transformation rules for generation of the Test Scenario

Table 6.11. Transformation rules for generation of the Test Scenario

.. 147
Table 8.1. Elements of the Subject Conceptual Schemas................... 191
Table 8.2. Basic metrics for Semantic and Syntactic Correctness of a
RUIE <ttt ettt st e e be e s st e s te e sbae e s beeenes 197
Table 8.3. Derived metrics for Semantic and Syntactic Correctness of a
RUIE ettt e e e e e e e e e e e e e s e e rnnraaaeeaeeeennns 197
Table 8.4. GQM for M2M transformation validationc.cccceeveens 202
Table 8.5. Elements of the CSs.....cccvvvivieiiiiieriee e 203
Table 8.6. Elements of the requirements model included in the five
3= 1 10] o] LTSRS 206
Table 8.7. Elements of the Test Model generated for the five example
.. 206
Table 8.8. Results of SyC_T1 and SeC_T1 for the five cases............... 208
Table 8.9. Elements of the Test Scenario Model generated for the five
o3 11101 o] LTSRS 211
Table 8.10. Results of SyC_T2 and SeC_T2 for the five cases.............. 212
Table 8.11. Specification of hypothesesccceecveeiiicieiiicieeeeen, 224
Table 8.12. Elements of the Subject Conceptual Schemas................. 225
Table 8.13. Faults and Fault Types detected by Mutant type 231
Table 8.14. Shapiro-Wilk Normality Tests.......cccecieeeriiieeeniieee e, 232
Table 8.15. Mann-Whitney U Test for Rate of Fault Detection by
YUy =T o) A Y o T TP 233
Table 8.16. Tests of Normality of Shapiro-Wilkcccccevvvirieennnneen. 233
Table 8.17. Mann-Whitney U Test for Rate of Fault Type Detection? 234
Table 8.18. Mutation Score by Mutant type.......cccccceeeiieecciiieeeeeceenn. 235
Table 8.19. Mutation Score of CoSTest Test Suites for First Order
IMIUTANTS et e e e 236
Table 8.20. Mutation Score of CoSTest Test Suites for High Order
IMIUTANTS et e e 237
Table 8.21. Shapiro-Wilk Normality Tests.......cccceccveeeiviieeeeiieee e, 238
Table 8.22. Mann-Whitney U Test for Mutation Score by Mutant Type?
.. 238

Table 8.24
Table A.1.
from [115]
Table B.1.
Table B.2.
Table B.3.
Table B.4.
Table B.5.
Table B.6.
Table B.7.
Table B.8.
Table B.9.

Table B.10.
Table B.11.
Table B.12.
Table B.13.
Table B.14.
Table B.15.
Table B.16.
Table B.17.
Table B.18.
Table B.19.
Table B.20.
Table B.21.
Table B.22.
Table B.23.
Table B.24.
Table B.25.

Table B.26.

Table B.27

. Specification of hypotheses........ccccovveiirciiiiiiiciieciiiee, 253
Mutation Operators defined for a UML CD-based CS taken
.. 289
Communication Structure for TECH1cccocvvvviviiienennen, 292
Communication Structure for USRLccocvvvevieeiceninneenns 293
Communication Structure for PLANTLcccccceevieeriieinieenns 293
Communication Structure for INC1.......cccccevvvveeiniieee e, 294
Communication Structure for INC2..........cccevvvevieeeceeenneenns 295
Communication Structure for INC3.........cccovvevveeeceeenieenns 295
Communication Structure for INC4.........cccovvveeivcieee e, 296
Communication Structure for INC5.......cccceevvvevieeeceeenieenns 297
Communication Structure for INC6.........ccceeevveeeicieeeeenee, 297
Communication Structure for INC7cccceeevveevecieeennen 298
Communication Structure for INC8..........cccccvvvveevcieeennen. 298
Communication Structure for INC9........ccccecvvvvevecveeennen, 299
Communication Structure for INC10.........cccocevevevveeeennee. 300
Communication Structure for INC11.......ccccccvvvveveceennnen. 300
Communication Structure for INC12.......cccccevvieeriieennnnen. 301
Communication Structure for INC13.......ccccceeevieerieennnen. 302
Communication Structure for INC14.......cccccceevveeecveeenen. 302
Communication Structure for INC15.......ccccceevieerieennnen. 303
Communication Structure for INC16........cccceevveerveennnnen. 303
Communication Structure for INC17.......cccccvevvveeecveeenen. 304
Communication Structure for INC18........cccceevcveeriieennnen. 305
Communication Structure for INC19.......ccccvevveerieennnnen. 305
Communication Structure for INC20.......ccccccvevveeecveeennen. 306
Communication Structure for INC21.......cccccvevieerieennnen. 306

List of First Order Mutants generated for the case study 322
. Testing results for the mutants of Table B.26................... 328

LIST OF FIGURES

Figure 1.1 Context of research Work.........cccoecveeeeciieiiccieec e, 6
Figure 2.1. Framework for design science of the CosTest project........ 13
Figure 2.2 Goal Structure of the design science research project for
(610 1Y =T PSP PPUPPPPPPPP 16
Figure 2.3. Design cycle for the CoSTest project (part 1)......ccccovveeunennes 19
Figure 2.4. Design cycle for the CoSTest project (part 2).......cccoveeeunennes 20
Figure 2.5. Design cycle for the CoSTest project (part 3)c.ccccvveeenneee. 21
Figure 3.1. Research areas involved in this Workccccccceeeveiierennnnee. 34
Figure 3.2. Communication Analysis requirements levels and workflow
22 SRR 37
Figure 3.3. Excerpt of the Metamodel of an UML Class Diagram [40]..47
Figure 3.4. Excerpt of UML-CD-based CS for Video Club case 49
Figure 3.5. Example of constraints for the Video Club system 50
Figure 3.6. Relationships among conceptual entitiescccccvveeenneee. 51
Figure 4.1. Related Work dimensionscccccccueeeeeciieeccciiee e 56
Figure 5.1. Overview of the validation Framework..........cccccccccvverennneen. 83
Figure 5.2. Excerpt of a CA model for the Video Club case................... 86
Figure 5.3. Examples of test goals generated for Video Club CS........... 95
Figure 5.4. Test Case StruCtUIe.....cccoivieiiieicieiececcc e 96
Figure 5.5. UML class diagram for Video Club CS...........cccovveiviiierennnne. 97

Figure 5.6. VideoClub CS with examples of pre, post-conditions and
INVAITANTS <.ttt e e e e e e e e e s eeeeeeeeas 102
Figure 5.7. Example for validating pre-, post-conditions and invariants

... 102
Figure 5.8. Example of an invariant........ccccccoeceeiiciiee e, 103
Figure 5.9. Example of test case for asserting the non-occurrence of
BVENTES 1ttt e e e et e e e e e s bt e e e e e e e e e reeeas 104
Figure 5.10. Example of test vase validating a derivation rule 106

Figure 5.11. Selection process of the mutation operators................. 108

Figure 5.12. Excerpt of the Metamodel of an UML Class Diagram [40]

Figure 5.13. Textual definition for the package VideoClub by using ALF

YT ={U = = PP 114
Figure 5.14 Overview to generate an executable CSUT 114
Figure 5.15. Testing environment to test Conceptual Schemas......... 116
Figure 5.16. Example of an execution trace for Video Club CS........... 119
Figure 5.17. Excerpt of the CS with a syntactically incorrect code..... 120
Figure 5.18. Example of a CS with the corrected Alf code.................. 120
Figure 5.19. Excerpt of the VideoClub CS with a semantic incorrect
(o =] =T o PR 121
Figure 5.20. Example of the VideoClub CS with the corrected semantic
Lo 1Y ot AR SRR 121
Figure 5.21. Example of comparison of elements used in a coverage
ANAIYSIS 1o iettiee ettt e e e e e s ra e e e s aaeeeeraeeeeaares 122
Figure 5.22. Excerpt of the CS with a missing defect.........cccueeennnen. 123
Figure 5.23. Excerpt of a corrected CS........ccoveeeeciiieeeeciiee e, 123
Figure 5.24. Example of the test caseccccocvvevvvciieeiecciee e, 124
Figure 5.25. Example of execution tracecccevvveeevcieeeeviiiee e, 124
Figure 5.26. Extended UML class diagram for Video Club CS............. 125
Figure 5.27. Overview of the testing processcccceeevvveevvveeeeennnen. 126
Figure 6.1. An overview of our MDT approach.......cccccceeeeeviieeeennnen. 132

Figure 6.2. Overview of the sequence of proposed transformations. 133
Figure 6.3. Metamodels for the first transformation adapted from [121]

.. 135
Figure 6.4. OCL Constraints for Test Metamodel.........c..ccccecuveeeenneen. 136
Figure 6.5. Test Scenario Metamodel adapted from [121]................. 137
Figure 6.6. Test Data Metamodelcccceeeuvveeeiiiieiicciececee e, 138
Figure 6.7. Structure of T1 Transformationccccceeeevieeeeciieecennen. 140
Figure 6.8. Examples using graphical concrete syntax of (a) RM, (b) TM,
and () MOAIfIed TMo.uueiiiiieei et eree e 146
Figure 6.9. Example of the first rule of the ATL transformation CA2TM
.. 146

Figure 6.11. Structure of T3 transformationcccecceevveeeiieeniieennnen. 148

Figure 6.12. Partial Acceleo code of transformationccccoec.....e. 149
Figure 6.13. Test Scenario with abstract test casesccccceeecvveeeenneee. 150
Figure 6.14. Example of a concrete and executable test case for
VIdEOCIUD €S ...ttt st st esbee e sabee e 151
Figure 6.15. Acceleo transformation rule for UML package 151
Figure 6.16. Partial definition for the class VideoClub by using ALF
JANBUAEE «.eeeee ettt e et e e et e e e e bae e e et e e e e ree e e e arees 152
Figure 6.17. Association and Aggregation of Order example using ALF
JANBUAEE «.vveee ittt ettt e et e s e e s s e e e e e e e e ree e e e arees 152
Figure 6.18. Partial view of the ALF unit including an inheritance
FEIATION 1t e 153
Figure 6.19. Example of a constraint translated to ALF code.............. 154
Figure 6.20. Example of a derived association using ALF code............ 155
Figure 6.21. An example of class associationcccceevecvveeevcieee e, 155
Figure 7.1. Screenshot of the CoSTest tool support.......ccccceeevvereneee. 162
Figure 7.2. The CoSTest tool architectureccccoecveeeeecieececciiee e, 162
Figure 7.3. Test Model Manager design........ccccceeeeciveeeeccieeeeecciiee e 163
Figure 7.4. Screenshot with a test configuration example of the CoSTest
Lo o] PSSR 164
Figure 7.5. Screenshot with a test model example of the CoSTest tool
... 165
Figure 7.6. Test Scenario Model Manager designcccceeeecvveeeenneee. 166
Figure 7.7. Screenshot of a test scenario model example in the CoSTest
LOO! e sttt e e sbaeesabeena 168
Figure 7.8. Test Data Manager design......ccccceeeeeeecivieeeeeeeeecccirieeeee e, 168
Figure 7.9. Screenshot for the data concretization in the CoSTest tool
... 171
Figure 7.10. CSUT Processor deSignccccceeeeeeeeecirieeeeeeeeecciineeeeeeeennn 172
Figure 7.11. Screenshot for editing an executable CSUT in the CoSTest
LOO! st st st e e s baeesabee e 172

Figure 7.13. Screenshot for showing the CSUT elements in the CoSTest

Figure 7.14. Test Processor deSigNccccceeecveeeeciveeeeeivieeeesveeeeeeveens 175
Figure 7.15. Screenshot of the test configuration in the CoSTest tool175
Figure 7.16. Screenshot of a test suite management example in the

(60 1Y =1 o o | [P T 176
Figure 7.17. Screenshot of a test execution report in the CoSTest tool
.. 176
Figure 7.18. Screenshot of the Summary Generation tab of the CoSTest
{0 o SRR 177
Figure 7.19. Screenshot of a log and coverage report in the CoSTest
Lo o | RPN 178
Figure 7.20. The Mutation UML tool architecture........cccccoeeuvveeennnnenn. 180
Figure 7.21. Application of five mutation operators for our CS example
.. 182
Figure 7.22. Batch Testing Processor design........cccceeeecuveeeeniveeeeennnnen. 183
Figure 7.23. Screenshot for Batch Testing of the CoSTest tool 184
Figure 8.1. i-th iteration of the experiment applying the CoSTest tool
.. 193
Figure 8.2. Example of the calculation of the metrics SyC T1 and
S T Lttt ettt ettt be e st eeaae e sabaeeaes 200
Figure 8.3. Process to evaluate a M2M; in our proposalc.......... 204
Figure 8.4. Structure of T1 Transformation with the identified problems
.. 210
Figure 8.5. i-th iteration of the experiment applying the CoSTest tool
.. 217
Figure 8.6. i-th iteration of the experiment applying the CoSTest tool
.. 220
Figure 8.7. Steps taken in experimental process.....c.ccccoeeevvvveeeeeeennne 227

Figure 8.8. Application of five mutation operators on Video Club CS 229
Figure 8.9. Excerpt of a Constraint mutated by WCO8 operator 230
Figure 8.10. Box-plot for Rate of Fault Detection by Mutant Type 232
Figure 8.11. Box-plot for Rate of Fault Type Detection by Mutant Type

Figure 8.12. Box-plot for Mutation Score by Mutant Type.................. 235

Figure 8.13. Example of an assertion conditionalc.ccccuveenneee. 239
Figure 8.14. Experimental Procedure..........ccccoveeiecieeeeecieeeeeciee e 247
Figure B.1. Partial view of the message structure in the GREAT tool
[0 USRS 307
Figure B.2. Event Diagram using Communication Analysis................. 308
Figure B.3. Test Model for IM case study........ccecceeerieeniieernienniieeennnen. 309
Figure B.4. Test cases of the test scenario #2cccceeeeciveeecieee e, 320
Figure B.5. Excerpt of the Conceptual Schema for Incident
Management SYSTem ... 321
Figure B.6. ALF unit for PMO Classcccoeeeieiieeeeciee e 323

Figure B.7. ALF unit for Incident_external_company association....... 323
Figure B.8. ALF unit for EXTERNAL_COMPANY_ANALYSYS class......... 324
Figure B.9. ALF unit for incident_resource_allocation association.....324
Figure B.10. ALF unit for technician_resource_allocation association324

Figure B.11. ALF unit for INCIDENT ClassS......cccvceverrviveeesiiieeeeseiieee e 325
Figure B.12. ALF unit for RESOLUTION_PLAN clasS........ccceveerrrreennnnen. 326
Figure B.13. ALF Unit for RESOURCE_ALLOCATION class.........cceen.... 326
Figure B.14. ALF unit for TECHNICIAN classccccccvevevviieeesiiiee e 326
Figure B.15. ALF unit for USER Classcccceeeecieeeicciiee e 326
Figure B.16. ALF unit for user_incident association..........c.cccccvevennee. 327

Figure B.17. Example of Execution Trace for the MAS_2 mutant....... 327
Figure B.18. Defect report obtained in the testing process for MAS_2 CS

... 329
Figure B.19. Coverage report obtained in the testing process for MAS_2
£ et e — e —e e te e teeateesaeateate e te e teenreenrees 329
Figure C.1. Characterization form: Demographic data...........c............ 331
Figure C.2. Characterization form: Experience (1)ccccocvevvvrercreeennen. 332
Figure C.3. Characterization form: Experience (2)cccoceeeeecveeeennee. 333
Figure C.4. Characterization form: Experience (3)ccccoeeeveeecreeennen. 334
Figure C.5. Guideline for VideoClub case (1)......cccceeeeervireevieencreeennen. 337
Figure C.6. Guideline for VideoClub case (2).....ccccocveeeeeiieeeecciieeeenee, 338
Figure C.7. User Acceptance Form: Perceived Usefulness.................. 338

Figure C.8. User Acceptance Form: Perceived Ease-of-Use................. 339

PART I
PREFACE

CHAPTER 1. INTRODUCTION

Chapter 1

INTRODUCTION

A wide range of software engineering methods supports the
development of information systems (IS) by considering requirements
engineering as an essential activity, which specifies general knowledge
about the IS domain and the functions it has to perform. In the
Information Systems field, this knowledge is called a conceptual
schema! [1]. According to Johnson and Henderson [2] a Conceptual
Schema or Conceptual Model is “a high-level description of an
application. It enumerates all concepts in the application that users can
encounter, describes how those concepts relate to each other, and how
those concepts fit into tasks that users perform with the application”.

In Model-Driven Development, the main artefacts are conceptual
schemas (CS) or models, and efforts are focused on their creation,
testing and evolution at different levels of abstraction through
transformations. If a conceptual schema has defects, these are passed
on to the following stages, including coding. Therefore, techniques for
improving the quality of conceptual schemas must be implemented to

"o«

1In this thesis the terms "conceptual schema", “conceptual model” and
"model" are considered similar.

CHAPTER 1. INTRODUCTION

ensure the correct generation of final software products. One of the
challenges of Model-Driven Development is to be able to generate test
cases from the requirements, not only to identify defects, as well as to
validate requirements early on, at the level of conceptual schemas, so
that appropriate decisions can be taken based on the results of the
validation process, to help reduce development costs and improve
software quality. In this work we designed an approach for testing-
based conceptual schema validation in order to improve quality.

The rest of this chapter is organized as follows: Section 1.1 gives an
explanation of why this research is important. Section 1.2 summarizes
the problem resolved in the present thesis. Section 1.3 details the
defined thesis objectives. Section 1.4 presents the context of this work.
Section 1.5 summarizes the means of achieving the main objective.
Finally, Section 1.6 gives an overview of the structure of this document.

1.1 Motivation

Despite much scepticism and many problems [3], Model-Driven
Development (MDD) is being used and improved in order to provide
multiple inherent potential benefits for industry [4], [5]. One of its
greatest benefits is the ability to handle the complexity of software
development by raising the abstraction level. Models are expressed
using concepts that are not related to a specific implementation
technology (e.g. Unified Modelling Language -UML, Object Constraint
Language —OCL, Action Language for Foundational UML -ALF), which
means that the models can be easier to specify, understand, maintain
and document. As in Model-Driven Engineering (MDE), the primary
artefacts are the conceptual models, and ensuring their quality at an
optimum level is still challenging for researchers and developers.

Although verification? and validation® (V&V) are highly related to
the concepts of quality and software quality assurance, very few MDD

2 Verification is to check that the conceptual schema meets its stated
functional and non-functional requirements [1].

2

CHAPTER 1. INTRODUCTION

tools incorporate these activities into their development process. The
00-Method (OOM) [6], a Model Driven Architecture (MDA) approach,
is a model-driven initiative with a technical multi-view (structural
model, dynamic model, functional model and presentation model),
where the structural view is the basis for the automatic derivation of
the other views, and this feature helps to minimize problems such as
multi-view specifications and synchronization, integration and change
propagation. The O0-Method has been successfully implemented in
industry through the Integranova* commercial tool (previously known
as OLIVANOVA). This tool manages the syntactic verification of
conceptual schemas (e.g. syntactic correctness) [6], but it still does not
validate whether the model built meets the requirements and
expectations of the stakeholders.

With the ever-increasing complexity of software systems, the
ability to identify the vast majority of defects early on at the model
level is a challenge that if met could help to reduce development costs
and improve software quality [7]. The list of open problems presented
in [8] by Olivé includes the Complete and Correct Conceptual Schemas.

However, to assess the quality of a conceptual schema, we need a
quality model. In the literature, we can find several proposals, e.g. [9],
[10]. Although, Genero et al. [11] suggest that more work is needed on
model quality assessment. We will aim to set the quality properties
that can be improved using testing techniques.

Testing is part of a process of V&V, where the conceptual schema
operates under controlled conditions, (1) to verify that it behaves as
specified; (2) to detect defects, and (3) to validate user requirements
[12]. Therefore, (i) the close integration between model and code in a
model-driven development, (ii) the development of high-level

3 validation is to ensure that the conceptual schema meets the

customer's expectations [1].
4 http://www.integranova.com/

CHAPTER 1. INTRODUCTION

languages suited for modelling CS (like UML/OCL with the ALF
language), generate the need to develop verification and validation
strategies to be applied early in the software life cycle (e.g. at CS level)
and to locate and point out defects in realistic schemas with minimum
cost.

This work aims to define a testing-based validation framework for
multi-view conceptual schemas (i.e. structural and behavioural). We
will focus on adapting testing techniques for Model-driven
environments, such as the 00-Method approach, because we believe
that testing can be a very effective and efficient way to identify defects
early on, and can play an important role in the validation of conceptual
schemas.

1.2 Problem Statement

Requirements errors are the most common cause of defects in
system development projects [13]. This suggests that it would be more
effective and efficient to focus quality assurance efforts on the early
phases, in order to catch defects as soon as they occur. In MDD, the
ability to identify defects early on is still a challenge that, if it were met,
could help to reduce development costs and improve the quality of
delivered software systems [7] [8]. Lightweight testing techniques for
improving the quality of the conceptual schemas must be
implemented. These techniques should be able to find defects with
minimum effort, and without the need for a strong testing background.

The starting point of this PhD Thesis begins with the statement of
the research problem “Improve the quality of the conceptual schemas
built in a model-driven environment in order to reduce the
development costs and improve the quality of delivery software
systems”.

1.3 Objectives

The main objective of this PhD thesis is to “Design a testing-based
validation framework to improve the quality of conceptual schemas

CHAPTER 1. INTRODUCTION

built in a Model-driven environment”. This main objective is dependent
on the achievement of the following specific objectives:

e Define the conceptual framework related to the conceptual
schema validation by using testing techniques in a Model-driven
environment.

e Design a framework for testing-based validation of conceptual
schemas integrated into a Model-driven environment.

e Validate the contribution of the testing-based framework in
ensuring the quality of conceptual schemas.

1.4 Thesis Context

This thesis aims to validate conceptual schemas by using model-
based testing techniques. Our approach contributes to improving the
quality of conceptual schemas built in a Model-driven environment, by
detecting and correcting defects at an earlier phase than traditional
testing techniques used successfully at code level.

Figure 1.1 shows an overview of the design of the proposed
solution, which is based on a series of model transformations for
automatically generating test cases from a requirements model. These
test cases are used for testing the conceptual schema, previously
prepared for use as a testing artefact (conceptual schema under test).
Then, the output will be the list of defects properly classified, which
will serve as feedback for relevant stakeholders like the analyst,
modeller or project manager.

This thesis has been developed in the context of the STAQ
(Software Testing and Quality) research group of the PROS Center
(Centro de Investigacién en Métodos de Producciéon de Software),
Department of Information Systems and Computation (DSIC:
Departamento de Sistemas de Informacion y Computacion) of the
Universitat Politécnica de Valencia, Spain.

The work has been supported by Universidad de Cuenca and
Secretaria de Nacional de Educacidn Superior, Ciencia y Tecnologia -
SENESCYT of Ecuador, and has been received financial support from

5

CHAPTER 1. INTRODUCTION

the SHIP (SMEs and HEIs in Innovation Partnerships, ref:
EACEA/A2/UHB/CL 554187), PERTEST (TIN2013-46928-C3-1-R),
European Commission (CaaS project) and Generalitat Valenciana
(PROMETEOII/2014/039).

Clients %‘)
‘/@ Requirements
_,\‘M Engineer

Requlremerﬂs
_ Model

O

A—— TestCases
é}ob Model J
Conceptual l
_ Schema / ¥ @
=5=—
1§
A el

Conceptual 1 Abstract Test
Modeler
=

Feedback Cunce:tual r_\ﬁ l

Schema UnderTest) ¥
ATester ‘ w-:“] ‘

— ConcreteTest
Y . Cases /
Defects .

[61 |je&—r= Testing

| | Cnewa
Schema

Cases

Figure 1.1 Context of research work

1.5 Means of Achieving the Proposed Objectives

In order to achieve the main objective, we identify three means:

a) Software resources. Software tools and standards will be
required to perform the proposed approach through the
process such as 1) generate a test cases model from user’s
requirements, 2) generate concrete test cases, 3) specify and
transform the conceptual schema to an executable form, 4)
execute the testing, 5) report the results of this process and 6)
validate the solution design.

CHAPTER 1. INTRODUCTION

b) Expert support. Due to the multidisciplinary nature of this PhD
project proposal, it is supervised by three senior researchers,
who are respectively experts in Requirements Engineering,
Model-Driven Engineering and Software Testing & Quality.
Their advice and valuable feedback will be very helpful to
accomplish the research goal of this work.

c) Financial resources. This work is being supported by the
Secretary of Higher Education, Science and Technology
(SENESCYT: Secretaria Nacional de Educacién Superior, Ciencia
y Tecnologia), and University of Cuenca, both public bodies of
the Republic of Ecuador. Additionally, the work is being
developed at the STAQ (Software Testing and Quality) research
group of the PROS Center (Centro de Investigacién en Métodos
de Produccién de Software), Department of Information
Systems and Computation (DSIC: Departamento de Sistemas de
Informacién y Computacion) of the Universitat Politécnica de
Valéncia, Spain.

1.6 Thesis Outline

We have divided the thesis into five parts and three appendices.
Part | is the preface, Part Il presents the problem investigation, Part llI
provides the treatment design, Part IV presents the treatment
validation, and finally, Part V provides the final discussion. Here we
describe the outline of the thesis.

Part | - Preface

Chapter 1 presents an overview of the research including the
motivation, problem statement, hypothesis and objectives addressed
in this PhD thesis as well as the context and means to achieve the
proposed objectives.

Chapter 2 describes the framework for the design science project
applied in this thesis, as well as the research goals, research questions
and the methodology followed.

CHAPTER 1. INTRODUCTION

Part Il — Problem Investigation

Chapter 3 provides the reader with the theoretical framework
(knowledge) that is required for understanding the overall work.

Chapter 4 summarizes the main research efforts that have been carried
out in Validation of Conceptual Schemas.

Part Ill -Treatment Design

Chapter 5 describes the phases of the construction process of a model-
driven validation framework for conceptual schemas.

Chapter 6 details the metamodels and transformations rules used to
generate the test scenarios model from the requirements models,
which contains the test suite with the abstract test cases.

Part IV — Treatment Validation

Chapter 7 presents the tool support that has been developed to
support the methodological detailed in Chapters 5 and 6 as well as its
validation. This chapter presents the architecture and functionality of
the CoSTest tool.

Chapter 8 summarizes (1) a validation study of the two first model-to-
model transformations for the purpose of validating them with respect
to their syntactic and semantic correctness, (2) two laboratory
experiments for the purpose of evaluating the mutation operators and
the effectiveness and efficiency of CoSTest to generate mutants that
are used to evaluate the effectiveness of CoSTest’ test cases and that
also served to prioritize the test cases; (3) a comparative experiment
for the purpose of measuring CoSTest’ test cases in terms of
effectiveness; and (4) evaluation of user perceptions during the defect
correction process using the CoSTest’ report in an industrial case.

Part V- Final Discussion

CHAPTER 1. INTRODUCTION

Chapter 9 draws some conclusions about the present thesis and
summarizes the main contributions and publications that we obtained.
It also discusses future lines of research, which are the in line with the
limitations of the present work.

Appendix A includes the list of mutation operators used during the
build of the CoSTest’ mutant generator (Chapter 7) and during the
validation and evaluation of CoSTest described in Chapter 8.

Appendix B describes a case study aimed to exemplify our model-
driven validation framework. The appendix applies the CoSTest tool to
an example of a conceptual schema that represents an excerpt of the
Incident Management system defined by the everis company.

Appendix C includes material used during the evaluation study
described in Chapter 8 (see Section 8.5).

CHAPTER 2. RESEARCH METHODOLOGY

Chapter 2

ResearcH METoDOLOGY

The nature of this research work lends itself to the use of the
design science framework [14] in the form of a new artefact, the
CoSTest framework.

Design science is the design and investigation of artefacts in context
[15]. In this PhD thesis, we design CoSTest to support stakeholders (e.g.
modellers and testers) in their tasks of modelling and validating
conceptual schemas in the requirements, analysis and design stages
during the development of an information system. CoSTest is therefore
an artefact in the context of validating the stakeholder’s requirements
at the conceptual schema level.

In this chapter, we introduce the Design Science Research
framework and describe the methodology applied. The chapter is
organized as follows: Section 2.1 presents the methodological
framework used in this thesis. Section 2.2 defines the research goals.
Section 2.3 describes the research questions. Section 2.4 presents the
methodology followed by summarizing and grouping the activities in
the design cycle and empirical cycle applied. Section 2.5 gives a
summary of the entire chapter.

11

CHAPTER 2. RESEARCH METHODOLOGY

2.1 Framework for the CoSTest Design Science

Project

Since we conceived this PhD Thesis as a design science project, it
consists of two activities (i.e. design and investigation). It iterates over
two issues involved in solving design problems (e.g. related to the
design of artefact CoSTest to improve a problem context) and
answering knowledge questions (e.g. related to knowledge of CoSTest
and the interation between CoSTest and the context in which it is
applied). However, these problems can create new problems (e.g.
building a prototype of the artefact, simulating its context, or designing
a measurement instrument) because an artefact may interact
differently in different contexts.

These interations may even contribute to stakeholder goals in one
context but create obstacles to goal achievement in another.
Therefore, a design science project is never restricted to one kind of
problem only and the design researcher should therefore study the
interaction between artefacts and contexts rather than artefacts alone
or contexts alone [15].

Figure 2.1 shows the framework for the design science of the
proposed testing framework, in which the interations between design
and investigation are extended to the social and knowledge contexts.

CoSTest’s social context consists of stakeholders, who may either
affect or may be affected by the project, potential users like modellers,
testers, researchers, etc. who are part of organizations that need to
validate conceptual schemas during the development of an
information system, and sponsors that provide the financial support for
this PhD thesis.

In the knowledge context, CoSTest is involved with very diverse
theories, such as model-based engineering, particularly founded on the
model-driven development paradigm, requirements engineering for
analysis of information systems from a communicational perspective

12

CHAPTER 2. RESEARCH METHODOLOGY

supported by the Communication Analysis method, software quality
for defining the test automation framework, lessons learned from the
experience of researchers in earlier design science projects, practical
knowledge in Eclipse Modelling Framework for implementing model-
driven and model-based tools, and several conceptual schemas taken
from different testing domains.

SOCIAL CONTEXT FOR COSTEST PROJECT

Stakeholders: Modellers, testers, reseachers, etc.
Organisations and sponsors: PROS research center, Universitat Politécnica de Valéncia, SENESCYT and University
of Cuenca

Goals, budgets Designs: the CoSTest
framework, mutation
v operators
DESIGN SCIENCE APPLIED TO COSTEST PROJECT
. DESIGN INVESTIGATION
Design a testing-based CoSTest and its context to investigate—|
validation framework (CoSTest)
to improve the quality of Find knowledge about
conceptual schemas builtin a Knowledge and new design problems: CoSTest in context
Model-driven environment
o A o A
Existing problem- New problem- Existing answers to New answers to
solving knowledge, solving knowledge, knowledge knowledge
Existing designs new designs questions questions
) 4 \ 4

KNOWLEDGE CONTEXT FOR COSTEST PROJECT

Model-based engineering, requirements engineering, quality software, empirical software engineering,
design science, communicational analysis, 00-Method, UML/OCL, Alf, Eclipse modelling framework, etc.

Figure 2.1. Framework for design science of the CosTest project

This framework is used to define the thesis’ research goals.

2.2 Statement of Research Goals and the Design

Problem
In this work, we can distinguish research goals from the external
stakeholder’s goals (sponsors and potential end-users).

In addition to our intrinsic motivation as researchers to answer the
knowledge questions, as well as to design and test the new artefact
(CoSTest), we want to improve the way in which the quality assurance
of conceptual schemas is performed in an early phase of the software
lifecycle.

13

CHAPTER 2. RESEARCH METHODOLOGY

We therefore promote the use of conceptual schemas as a high
level analysis of information systems to specify the functionality of an
IS and to generate the respective test cases.

The use of different artefacts by requirements analysts, modellers,
testers and developers is avoided, thus making their work easier. By
using models it is possible to automate the testing process and reduce
the cost, increase the effectiveness of the tests and optimize the
testing cycle.

In addition, the Software Engineering community (potential
external stakeholder) proposes the use of testing techniques as a
mechanism to contribute to ensuring the software product quality [12].
Following this proposal, our motivation is to define a testing-based
validation approach to support quality assurance process of conceptual
schemas in a Model-driven environment.

The sponsors (academics) of this PhD thesis supported our
research, which is not a market-oriented project (with a well-defined
possible utility of the designs and knowledge that will come out of this
project).

This thesis is thus an exploratory project in which the aim of the
researchers was to explore the possibility of a model-driven testing
framework for conceptual schemas.

This exploratory research is therefore motivated by the research
goals regardless of whether or not it satisfies a set of specific
stakeholders or end-user needs.

Figure 2.2 shows the goal hierarchy of the CoSTest design science
research project. Since this project is an exploratory research, we focus
on the design science research goals.

However, we have also included some speculative social context
goals. Starting from the bottom up in Figure 2.2 the lowest level goals
(instruments design goals) are to define the requirements for the

14

CHAPTER 2. RESEARCH METHODOLOGY

model-driven testing framework (G1), and build prototypes of the
CoSTest testing framework (G2).

These instruments were used to answer knowledge questions such
as: (a) how can available treatments detect defects in conceptual
schemas? (G3), (b) what is the effectiveness and quality of test suites
generated by the CoSTest prototype? (G4) and (c) what are the effects
of the prototype’s implementation as regards stakeholder’s
perceptions of its usefulness, user experience and user satisfaction?
(G5).

This knowledge is generalizable and could be used to predict the
effectiveness and efficiency of the CoSTest framework to detect
defects in conceptual schemas (G7). Answering these questions also
contributed to the artefact design goal of designing a model-driven
testing framework to improve conceptual schema quality in a Model-
driven environment (G6). This in turn contributes to the goal of
problem context improvement.

The CoSTest framework will be part of a software testing lifecycle
to be used in model-driven/based software development projects.

The sponsor’s goal (speculative) is to reduce development costs
and improve the quality of the delivered software system (G8). G7 and
G8 are high-level goals (speculative) that would be achieved in the
future.

However, we include these goals in this document because the
social and prediction goals are part of the goal structure of the CoSTest
framework.

15

CHAPTER 2. RESEARCH METHODOLOGY

Social context goals

EXTERNAL STAKEHOLDER GOALS
requirements analysts testers odellers

\‘;/"
GE&: Reduce the dewvelopment costs and

improve the quality of delivered software
systems {speculative)

A

ARTEFACT DESIGN GOAL
GE: Design a testing-based validation
framework that satisfies a model-driven
enviranmeant in order to improve
conceptual schemas quality

INSTRUMENT DESIGN GOALS

PREDICTION GOAL
G7: Predict how the validation framework
will improve the performance of
stakehalders in their tasks of testing of
conceptual sheemas (speculative].

KNOWLEDGE GOALS

G5: Know what are the effects produced by
the protatype implementation of CasTest in
the sense of stakeholders perceptions
about of usefulness, user experience and
user satisfaction,

G2: Develop a prototype for supporting the
model-driven testing framework

G1: Make a literature review in arder to [
define the requirements for the maodel-
driven testing framework

G4: Know to what extent will our testing-
based wvalidation approach contribute to
ensuring the quality of conceptual schemas

Design science research goals

G3: know how conceptual schemas can ba
validated by using testing techniques in an
MDD environment

Figure 2.2 Goal Structure of the design science research project for CoSTest

The goal structure has various challenges (design problems and
knowledge questions) that need to be overcome.

Below we introduce the main design problem statement (a.k.a.
technical research problem -TRP) derived from the artifact design goal
(G6):

Improve the quality of the conceptual schemas by designing a
testing-based validation framework that satisfies a model-driven
environment in order to reduce the development costs and improve
the quality of delivery software systems.

16

CHAPTER 2. RESEARCH METHODOLOGY

2.3 Research Questions

In order to provide a solution to the technical research problem
mentioned above, we present the list of research questions (RQ)
derived from design goals (DP) and knowledge questions (KQ).

RQ; (KQ): What are the testing-based validation techniques that can be
used on conceptual schemas in an MDD environment? This research
guestion is related to G1. In order to answer this question, we have
considered the following sub-questions:

— RQu: (KQ): Which testing techniques can be effectively used or
adapted for conceptual schemas?

— RQu,(KQ): What kind of defects can be detected in the conceptual
schemas using a testing strategy?

— RQu3 (KQ): Which Model-driven environment requirements should
be considered when developing the testing-based approach?

— RQu4 (KQ): How can an approach for testing-based validation of
conceptual schemas be integrated into a Model-driven
environment?

— RQus (KQ): Which of the existing quality assurance frameworks is the
most suitable for use in Model-driven environments?

— RQu6(KQ): What quality properties can be improved using testing
techniques in conceptual schemas?

If conceptual schema testing is feasible, as implied in the first

question of this research work, then another main research question
arises:

RQ; (TRP): How to build a testing framework that detects defects at
conceptual schema level so that it contributes to the achievement of
the quality of software systems in a Model-driven environment? This
research question is related to G6, which refers to the main research
goal. In order to answer RQy, the following specific research questions
must be addressed:

— RQz.: (DP): How to build a prototype tool that supports the CoSTest
framework so that researchers can validate the proposed treatment
on UML-CD based conceptual schemas? This research question is
based on G2.

17

CHAPTER 2. RESEARCH METHODOLOGY

— RQz:; (KQ): How can the treatment detect defects in conceptual
schemas? This research question is related to G3.

RQs (KQ): To what extent will our testing-based validation approach
contribute to ensuring the quality of conceptual schemas? In order to
answer this question, we have considered the following sub-questions:

— RQs1 (KQ): What is the effectiveness and adequacy of test suites
generated by the CoSTest prototype? This is an empirical research
guestion related with G4.

— RQs: (KQ): What effects are produced by the prototype as regards
stakeholder’s perceptions about its usefulness, user experience and
user satisfaction? This is an empirical research question related with
G5.

2.4 Engineering, Design and Empirical Cycles

Since the development of CoSTest (RQ1) is a design science
research project, it follows the design cycle proposed by Wieringa [15]
to describe design and research activities.

For tasks related to the design problem, Wieringa’s design cycle
describe the activities related to the following three tasks: problem
investigation (T1), treatment design (T2) and treatment validation (T3).
The design cycle is part of the engineering cycle, in which a designed
and validated treatment is implemented in the problem context, and
the implementation is evaluated [15] (see Figures 2.3 -2.5).

In problem investigation, we seek to understand how to validate
and verify conceptual schemas by using testing techniques, and the
what current approaches that have been proposed to achieve this. To
do this, from the existing surveys and systematic reviews concerning
software testing, we select some testing strategies as possible
candidates to implement our approach (RQ1.1, RQ1.2).

18

CHAPTER 2. RESEARCH METHODOLOGY

W 3y uaisag - 4y
sasalodiy aujjag -
sIUlawW pue s3jqeuen ‘Apnis jo 513a8(go wajuod eluawuade ayl auyag - i
{g 423dey2) NDISIO IINIHIINI B HIHWISIY " TL
uoiiendod pue suonsanb youeas=a jeod Yiomalel) [enidaiuod S0 ys)|qe1ss -
(8 493deL) SISATYNY INTTHOE HOUYISTY ,,TL
uyssed jpy uisn pue
SUBIPUO? UIEWE3 13pun £ [esanas Buipuoad Ag 50 ajgeinaaxa U jo AZalens uonesap syl AediA|Eue a1epl e, -
(g 423deya) NOILYANYA LNIINLYIHL " EL
50 3jqenazxa ue Funesauzd 10y poyiaw e udisag -
SIUBLINESS) 3|0e| eaE aredisanu) -
UBLIIESS] MmBU 0y sjuswannbas Ajoeds -
(8 Jaadeya) NDISIO LNINLYIYHL 7L
UONENUER [2pow 3yl Joddns 03 papaau sa2UN05a) PUE SINSIMIRIEYD Ayl Anuap)
afenBue) 2yl pue ewy2s en1dazuod JO SIUIUS|A UIIMIAY SN UGIIBWLECISUEIL 3Y) AYjIuap]
SEWaYDSE [enidaund paseq —n Joy 23enfue| jgeInIaxs ve AJauap)-

553

TUBWIESI] MU 24 0] JJomawely [enidacuod 3yl auag- NF7LNIIN INIWNOYIANI
Juauwnesly pasodosd ays a3pnl 0} eusgus 2yl pue 51208 Sus auyag- D._.m%w_w_umwzn_
| Jaadeya) NOLLY SILSIANI 1808 " TLD v NOIS3d 70 QJOW ¥ NI d1INg
wromawesy pasodosd ay) Juk dde soy sauapind adesn iypads: ' SYWIHIS T¥NL43INCD

suodad pue 2eqPasy 104 UDIETIENS|A SN2 Y SUYS0-
Adajens Sunsay ayl auyaa-
$a%ED §53] 31} ajeiauald 0] $5a00.d WAL p-[apoLl & ubisag -
3581 J=pun ewsyos [enjdaouod e anusp o) sEa00ad B SUYSg-
(35 stadeya) ualieal) mau) JIomaliesy Uonepen mau e uiisag -
[t sondey) sjuawneau ajge)iene anednsany) -
It Jasdeys) spuawadinbag Ayads -
NSISIa ININLYIYL ZL
sjeod ai) Poddns 0] papaau $a0INeSal PUE S 5IB1IEIEGD BUY AJuap) -
JUSWUDNALR OOW B Ul NG SEWSYIs |Enjdacund Joy pRUapisund aq o3 paau yxym saidadoud Apjenb juesajza jsouws ayy Apguap)-
|23 BEWaYas [enydacuad 18 33yap jo pury pue sanbeyaa) Sunsay Aynuap) -
(£ 133deya) JUALIEALY MaU BU O} YIoMBLWEL) [EN}dacuod ay} aulyag -
|z saadeys) Juawneas pasodosd ayl a8pnf o) a1 ay) pue sjeod ayl auyag -
(7 J=1dey]) Juzwuonauz Qo e) seway2s jenidasuod oy yreoadde uogepes e jo paau 343 pue s12poya5els ayl 2iedgsanu) -
(€-z sua3deyd) NOILYLSIANI WITE0Hd 'TL

JLYHINID 0L

NOILYanyh

SYIIHDS
T¥N1dIDINOD

JEA JuZLadEE 31 ud S1eSUyl Ish ey -

udisap |ejuswpades auy) manay -
Aisap [EBWISHNE 31} 3IENEAT -

(g saadeya) NOILYQITYA ".EL BiEp 12307 -

(g saadey3) NOILNDIXT HOHYISIY " vl

SU0NSEND AEPS|MOLY L) O) JBMSUY -
suanezijelauad pue suoiyeug)d] -
53531 [BISNEYS Jo uopedddy -
SuInsa Byl jo suonduasac -

(8 seqdeyd) SISATYNY WAVO 5L

1nsa

20¥d 40

e |

40 ALIYND FHL IACH NI
01 NOILVaIT¥A a3svd
“ONILSIL Y NDISIA -2a

o
(8 J23deyD} NOILYAITYA INIWLYIHL ‘€L

Figure 2.3. Design cycle for the CoSTest project (part 1)

19

CHAPTER 2. RESEARCH METHODOLOGY

sk 1581 Buessusd o) sseood uanup-ppow e ulisg -
SUBLLIESD B|qE|IEAE 21ednsany| -
uopeausET uaspsjapow a0y siuswanbe Aypaeds -
(9 sadenp) NDIS3O INFALYIHL " 2L
vopelausd [Bpow s poddns o1 papaPU SEUNDES) PUE SINSUSIIEIEYD S41 AJauap) -
S[AOLL DU 40 SO UDBMLG SN UOIBWADSUEL] 31 AJuap) -
[BEOU DJIEURI5 1550 PUE [S0AU 1531 AU 4o 53JLIUR 341 Ayauap) -
JUBLULEEUL WAL S O3 HIOMBLUE) [EN1H3IU0T Y} 3ulad -
ausea pesodod syt s8pnl e eden g pae siecl syl sugeg -
(5 Jmdeys) NGILYSILSIANI WTTB0H " T1S

nsy

ALWHINTD 0L
S50 40
NOILETITE A

3

$35VD 1831
3LVdINID
01 §53204d
¥ NDIS3Q 120

SWWNIHDS
TRML4IIN0D
3TEVLNIIXI
ELLE]
0L 5532044
W NENE3T 3D

NOIS30 LNIWLVTHL TL
LININNOYIANT QAN ¥ NIETTING

SYWAHIS TWNLdIINDD 40 ALNYND
JFH1 IA0HANI OL NOILYaNYA
QISVE-ONILSIL ¥ NDISIT 20

e

(-2 2i2adey) NOILYDLLSIANI NFT80H "TL

o
{2 =deD) NOWWAITYA INSWLYIHL EL

545V0 1531

JUFHINID

01 553004d 40
NOLLYOITeA

L1531 IZILIHOd

¥ NDI$3d 20

g S=deyp) MO LLYOIMEA LNIWLYINL EL
o

ualERdod pUE SUBHSINB YAIEasa
[—y R
|20 Yyiomaue.y. [En1dacucs syl :nim.ﬁu MWSwyste 1 URESE -
(g s2denp) SISKTYNY WITEOH] HIUVISIH 1L i —
FHLEW PUE S2|OEUEA PRS0 93300 ‘WEIuen |Flusw | sada 3yl auea -
o - [1mden)) N9ISIO 3INIHIING B HOUVISIY 2L
A2Ip)|EA JUBW PatE BU U SIERIL SEA[ELN -
UBISHE [BMALLAdRD DU MO ADY -
[T T ETTEL PEETER L B
O (g smdeys) NOILYOMYA ", £L
Ejep P -
(8 =1dEYD] NOLLNDANE HIWWISTY 0L
suogsanb adpajaous Bl 0y JBWsLYy -
SUSRED||IUDE PUE SUDIELEK] -
1531 [EMISIELS Jo NonEX ey -

o, SUNSA D) 0 SUG IS -
(& s2adey) SISATWINY wIYD 5L
uoiRIn &) sy poddns
01 pagaaU Sa0UN0s2d PUE SUCNIISa) 3yl AAnuap)-
57 PRSEG TIN UE 40 PLELL
B0 UED 1EY1 5IN1EE) JUaWaE weide|p ssep nuap-
£ BSEG0D NN UD AM000 JEW) S840 Ayl Aynuap)-
WUIILLOED M DAL O RIOMHULIELY [ENIEI0L00 L DUYN]-
Jueady
pasodold oy aEpal 0) BUDILO DU PUE S|E0H 4L DUyN]-

(5 +=deup) NOLLYDLLSIANI NG 180k T
0

23

£7) BRSEG-C1Y TN 404 SI01EIa00 UoIIBINM U3 DU -
SIUEIUIERI] HGE|RaR sledisanu) -
[IULOERI] MaU] UIEIIW §7 1y SiuEwalnbag Ajads -
“ {5 amdewp) NDISIO INIINLYIYL 21
7 (8 Jmdeya) NOILYaYA INFINLYIEL " EL

AOMEUEL [Erdanund auyl uys||gelsd -

(g Ja1dey 3] SISATYNY (N TTH0Hd HIHWISTY . TL
O FIUEIWI S 0 uDpEIuaE AU1 Sewonne ol |00y 1ejEuE ue ulsag -
ssaa0ud uonexdde ayy ullisag -
AR “Apns 4o 5138000 ‘HEIun Ay au)ea -
o [Jmdeya) NDIS30 IINIHTINI R HIWESTH L FL
AypiEs JuRW LSS 341 UD SIEIIL 54 EUY -
(g J=1dbey3) NOILYOITYA ", EL

S35%0

52 HOd
SHOLYHIL0
NOILLYLNWN S0
NOILWONeA 33

QL aOHLIW

|8 soodewp | NOLLMIAXT HOWYISTH " bL
S1|NS3 JO UOISEIES] -
5 nsad 3yl Jo m_.__uz.n_ WI5aq -
g sdey) SISATYINY YIYD "L

._cn—«u__uc_ TR IS LOIRINU IOTIR) UOTNGIILNOD SRR 1] -

Figure 2.4. Design cycle for the CoSTest project (part 2)

20

CHAPTER 2. RESEARCH METHODOLOGY

HBI530 INFWLYIEL 7L &

e~ 1mdng] NOWYDLSIANI INTIBO0EA TL o

SN2 3Y3 |0 UCISITOsI0
SuUCHTRANE AApapMoLT 311 O) IAMELY -5

Iz 1mdeyn| SIEATYNY WAV 5L
Fuapoossd Jsaucipacad ‘Eep oagon
| =qdey) pa0I LN AN HIHY 353 L

AUpIeR uawades Jy] U syesuL asieuy

a5en FUTI|03 10§ FUSMLAISLE AL M A -
sa330)d e S isap Eumauscio Syl Jen|es

I u n__un_hn-n_n - Hi e .m O Jusiausde sy uisag -

3] NOULWIITen. Y EL spspy gy suygag -

SILAL PUE SFORLEA HONS §0 DAk

SYIIHDS TN Ld3oN0D
0 ALMTSMD IHL IR0 NI
0L NOILYOITes d35wE
“DNULEIL Y NDI53T 20

LNFNNCH IANT
JaW Y NI dng

1530900 40
ERELLE U SRR E
3HL 30
HOILw]ITeA 223

23

0 y
wageyndod pue suogsanb o I HEHEE 2 ua ey
yensn) EOE pomsuE)

FUONETIAIAIET pUF SRR -

Rjrsad AL 0 Lo du g -

(g smdengd] NOWWTYA LNIWLYIHL EL

uciiRdnd puE suciiEank aEasa
o ‘yiomawmey [Enpdanund FyL yEpgess
|5 amsdeya) SESA TN WA VED HIMWISIY "\ TL
I A Ay bR -
SIETACANY Juld
A=l QiR SR AR .._._.__._un i .m._.ru._._.__...
“JHII UL DD 4 DUl
o IR Rl NSIEI0 JINIEIING B HIEISTH 2L
AP RA Roda W aclie AL U FlERI) aRiauyg -
uBysap |epaswssctin ayy mapeay
[T EETAT [TETRTEN R ET AT
|5 sepdey3) WOoILYOI TR EL

aucs oy “uapaEEp sk ey pa

“pEguos jeruswnades ayg suyag - & FEIARRIED 3 yEEEL - 18 Sy 3] SISATUNY WARD L L, ARG IE] |0 BIEN BIED 155 -

[§4apdey>] NDIS30 IDNTHIINI T HIHYIEE "7

(R adeyn| §IRATWNY
WIATADEL HIEW3A53H " TL

R =adey) pOLLNXT HXHY 3534 " FL

Figure 2.5. Design cycle for the CoSTest project (part 3)

21

CHAPTER 2. RESEARCH METHODOLOGY

We also identify the most relevant quality properties which need to
be considered for conceptual schemas built in a Model-driven
environment (RQ1.5, RQ1.6) as well as the characteristics and
resources needed to support the testing-based validation approach
(RQ1.3). By considering these identified quality properties, we can
analyse and identify the properties that are affected by defects that
have so far been detected in conceptual models.

Based on the relationships between quality properties and defects,
we can thus evaluate the selected testing techniques in order to
identify those that can be effectively used or adapted for our purpose
(RQ1.4). One of the outcomes of this phase will be a conceptual
framework that should aid our understanding of the proposed
approach, as well as identify the stakeholders, their goals and any
problems with the existing solutions. This will provide the criteria to
judge the treatment design.

Treatment design is characterized by its iterative nature. In this
task, we specified the requirements and context assumptions for the
new treatment based on design specifications identified in the previous
phase, and our own logical reasoning. Based on this and on the results
of the problem investigation, the researchers designed several versions
of the CoSTest model-driven based testing framework for conceptual
schemas in order to answer RQ2.1 and RQ2.2. The next iteration
refines the solution by adding insights from several interviews with
academic and industrial experts to improve the approach. Further
iterations use inputs from the analysis of laboratory experiments and
the results of treatment validation tasks.

Finally, the treatment validation task solves a knowledge problem
which asks if the treatment design (prototype) is effective (e.g. finding
defects capability, functional coverage). We then build a prototype: (i)
a tool that supports the CoSTest framework, so that researchers can
validate our treatment by conducting experiments to answer RQ3.1
and RQ3.2.

22

CHAPTER 2. RESEARCH METHODOLOGY

For the tasks related to the investigation (i.e. treatment validation),
we followed the empirical research cycle, which has the structure of a
rational decision cycle, just like the engineering cycle: research
problem analysis (T1’), research and inference design (T2’), validation
(T3’), research execution (T4’) and data analysis (T5’). Then, our
proposed framework was validated by (i) a comparative experiment of
the results obtained in the two first model-to-model transformations in
order to evaluate their syntactic and semantic correctness, (ii)
laboratory experiments to validate the different methods used in
CoSTest as well as to validate the effectiveness of the CoSTest test
cases, (iii) interviewing some IT practitioners to ask their opinion about
the usefulness and ease-of-use of the CoSTest tool. Several empirical
cycles were thus included in this thesis in order to validate the different
parts of the treatment.

For each validation task different protocols were applied according
to the subjects, knowledge questions and goals of the study. For
example, for the validation of CoSTest feasibility we decided to
perform laboratory experiments with a mutation analysis. Figures 2.3-
2.5 show some tasks of the empirical cycles applied to different parts
of CoSTest.

As the engineering and design cycle do not prescribe a rigid
sequence of activities [15] we conceived a system engineering
execution sequence for CoSTest in which the activities are iterated and
may even be performed simultaneously for different aspects of the
problem and for alternative treatments. After each iteration a decision
is made to stop or to go ahead with the next iteration. Throughout the
engineering cycle each iteration uses knowledge about the problem
and treatment generated by the previous ones.

Since the work involved in this thesis was carried out over six years,
we do not describe all the iterations performed on the design and
empirical cycle tasks; instead we present below a list of the tasks and

23

CHAPTER 2. RESEARCH METHODOLOGY

some research methods (RM) used in each phase of the proposed
regulative cycle.

T1. PROBLEM INVESTIGATION
- Investigate the stakeholders and the need for the validation approach
for conceptual schemas in a Model-driven environment. RM: literature
review and conceptual analysis
- Define the goals and the criteria to judge the proposed treatment.
RM: conceptual analysis.
- Define conceptual framework of the new solution. RM: literature
review, conceptual analysis.
- Identify testing techniques and type of defects at conceptual
schema level. RM: literature review, application of the defect
classification scheme, conceptual analysis.
- Identify the most relevant quality properties which need to be
considered for conceptual schemas built in a Model-driven
environment. RM: literature review.
- Identify the characteristics and resources needed to support the
goals. RM: literature review and conceptual analysis
T2. TREATMENT DESIGN
- Specify requirements for new treatment. RM: conceptual analysis.
- Investigate available treatments. RM: literature review.
- Design a new validation framework for conceptual schemas
integrated into a Model-driven environment.
- Design a process to derive an executable conceptual schema under
test.

T1’. PROBLEM INVESTIGATION
-Define the goals and the criteria to judge the proposed treatment. RM:
conceptual analysis
-Define the conceptual framework to the new treatment. RM: literature
review, conceptual analysis.
- Identify an executable language for UML-based conceptual schemas
- ldentify the transformation rules between elements of the
conceptual schema and the language.
- Identify the characteristics and resources needed to support the
derivation of the executable CS.
T2’. TREATMENT DESIGN
- Specify requirements for new treatment. RM: conceptual analysis.
- Investigate available treatments. RM: literature review.

24

CHAPTER 2. RESEARCH METHODOLOGY

- Design an approach for generating an executable conceptual schema
integrated into a Model-driven environment.

T3’. TREATMENT VALIDATION

- Validate analytically the derivation strategy of an executable CS by
providing several CS under certain conditions.

- Design the process to generate the test cases.

T1’. PROBLEM INVESTIGATION
-Define the goals and the criteria to judge the proposed treatment. RM:
conceptual analysis.
-Define the conceptual framework to the new treatment. RM: literature
review, conceptual analysis.
- Identify the entities of the test model and test scenario model.
- Identify the transformation rules between entities of the models.
- Identify the characteristics and resources needed to support the
model generation.
T2’. TREATMENT DESIGN
- Specify requirements for the model-driven generation (new treatment).
RM: conceptual analysis.
- Investigate available treatments. RM: literature review.
- Design an approach for generating the test model from requirements
and then the test scenario model from test model into a Model-driven
environment.
T3’. TREATMENT VALIDATION
- Validate analytically the model-driven generation strategy (metamodels
and transformation rules) by providing requirements and CS.
T1”. PROBLEM ANALYSIS
-Establish the conceptual framework, goal, experiment research
questions and population.
T2”. RESEARCH & INFERENCE DESIGN
- Define the experimental context, objects of study, variables and metrics
- Define hypotheses and to design the experiment.
T3”. VALIDATION
- Evaluate the experimental design
- Review the instruments for collecting data
- Analyse threats on the experiment validity
T4”’. RESEARCH EXECUTION
- Collect data: constructs for both models (test model and test scenario)
T5””. DATA ANALYSIS
- Descriptions of the results
- Application of statistical tests and corroboration of hypotheses
- Explanations and generalizations.
- Answer to the knowledge questions.

25

CHAPTER 2. RESEARCH METHODOLOGY

- Design a method to prioritize test cases

T1’. PROBLEM INVESTIGATION
-Define the goals and the criteria to judge the proposed treatment. RM:
conceptual analysis
-Define the conceptual framework to the new treatment. RM: literature
review, conceptual analysis.
- Identify the defects that occur on UML CD-based CS.
- Identify the class diagram element features that can be mutated of
an UML CD-based CS.
- Identify the restrictions and resources needed to support the CS
mutation
T2'. TREATMENT DESIGN
- Specify requirements for new treatment. RM: conceptual analysis.
- Investigate available treatments. RM: literature review.
- Define the mutation operators for CS. RM: literature review and
conceptual analysis
T3’. TREATMENT VALIDATION
- Validate some properties of the mutation operators for conceptual
schemas.
T1”. RESEARCH PROBLEM ANALYSIS
-Establish the conceptual framework.
T2”. RESEARCH & INFERENCE DESIGN
- Define the context, objects of study, measures and procedure
- Design an artefact (tool) to automate the generation of CS mutants
T3”. VALIDATION
- Analyse threats on the experiment validity
T4”. RESEARCH EXECUTION
- Collect data: contribution factor, mutation score, impact indicator for
each mutation operator
T5”. DATA ANALYSIS
- Description and discussion of results

- Define the testing strategy.

T1’. PROBLEM INVESTIGATION
-Define the goals and the criteria to judge the proposed treatment. RM:
conceptual analysis
-Define the conceptual framework to the new treatment. RM: literature
review, conceptual analysis.

- Identify the commands to run test cases against the CS

- Identify the faults generated in Alf

- Relate the faults generated by Alf with the defect to be reported.

26

CHAPTER 2. RESEARCH METHODOLOGY

- Relate the faults generated by Alf with the defect to be reported.
- ldentify the characteristics and resources needed to support the
testing process. RM: literature review and conceptual analysis
T2’. TREATMENT DESIGN
- Specify requirements for new treatment. RM: conceptual analysis.
- Investigate available treatments. RM: literature review.
- Design an approach for executing the test cases against the CS and
detect the defects using Alf.
T3’. TREATMENT VALIDATION
- Validate the testing process on executable CS mutants. RM: laboratory
experiments using mutation testing.
T1’. PROBLEM INVESTIGATION
-Define the goals and the criteria to judge the proposed treatment. RM:
conceptual analysis
-Define the conceptual framework to the new treatment. RM: literature
review, conceptual analysis.
- Identify the commands to run test cases against the CS
- Identify the faults generated in Alf
- Relate the faults generated by Alf with the defect to be reported.
- ldentify the characteristics and resources needed to support the
testing process. RM: literature review and conceptual analysis
T2’. TREATMENT DESIGN
- Specify requirements for new treatment. RM: conceptual analysis.
- Investigate available treatments. RM: literature review.
- Design an approach for executing the test cases against the CS and
detect the defects using Alf.
T3’. TREATMENT VALIDATION
- Validate the testing process on executable CS mutants. RM: laboratory
experiments using mutation testing.

- Define the results visualization for feedback and reports. RM:
conceptual analysis and defect classification schema.
- Specify usage guidelines for applying the proposed validation
approach. RM: conceptual analysis.
T3. TREATMENT VALIDATION
- Validate the effectiveness of CoSTest by means of a comparative
experiment.

27

CHAPTER 2. RESEARCH METHODOLOGY

T1’. PROBLEM ANALYSIS

-Establish the conceptual framework, goal, experiment research questions
and population.

T2'. RESEARCH & INFERENCE DESIGN

- Define the experimental context, objects of study, variables and metrics
- Define hypothesis.

- Design the experiment.

T3’. VALIDATION

- Evaluate the experimental design

- Review the instruments for collecting data

- Analyse threats on the experiment validity

T4’. RESEARCH EXECUTION

- Collect data: rate of fault detection, rate of fault type detection,
mutation score.

T5’. DATA ANALYSIS

- Description of the results

- Application of statistical tests

- Explanations and generalizations

- Answer to knowledge questions.

- Discussion of the results

- Evaluate CoSTest user perceptions by means of interviewing potential
stakeholders and using an observational case study.

T1’. PROBLEM ANALYSIS

-Establish the conceptual framework, goal, experiment research questions
and population.

T2’. RESEARCH & INFERENCE DESIGN

- Define the experimental context, objects of study, variables and metrics
- Define hypothesis.

- Design the experiment.

T3’. VALIDATION

- Evaluate the experimental design using a pilot test

- Review the instruments for collecting data

- Analyse threats on the experiment validity

T4’. RESEARCH EXECUTION

- Collect data: practitioners’ perceptions

T5’. DATA ANALYSIS

- Answer knowledge questions.

2.5 Summary
Since this PhD thesis was conceived as an exploratory research
project, this chapter summarizes the methodology followed in this

28

CHAPTER 2. RESEARCH METHODOLOGY

work, which has been taken from Wieringa’s design science [15]. The
different motivations and goals were then identified according to the
stakeholders and potential end-users. Also, the goal structure and
related research questions were presented to derive the different tasks
of regulative cycles (i.e. design and empirical) to overcome a design
problem and knowledge problem. A brief description is given of the
different tasks in the design and empirical cycles.

In the next chapter, we will discuss related work on the validation
of conceptual schemas from different standard, industrial and academy
view points.

29

PART Il
PROBLEM

INVESTIGATION

CHAPTER 3. THEORETICAL FRAMEWORK

Chapter 3

THEORETICAL FRAMEWORK

In the context of MDD, where conceptual schemas (models) are the
basis of the whole development process, the quality of the CSs has a
high impact on the final quality of the software systems derived from
them [20]. Hence, CSs may directly affect both the efficiency (time,
cost, effort) and the effectiveness (quality of the results) of information
systems development.

Conceptual Schemas are developed using a modelling language.
The de-facto standard for analysis and design of object-oriented
software systems is the Unified Modelling Language (UML) [16], which
is extended with OCL (Object Constraint Language) constraints [17].
The variety of UML diagrams provide flexibility and applicability to
modellers to create CSs in the different spaces where they can be used
(problem, solution and background) [18]. However, since the modelling
process is a human task, it is difficult to avoid introducing defects into
the CSs (e.g. inconsistency, incorrect, redundant and imprecise
elements).

Although defects may be inevitable, we should minimize their
number and impact on software quality through testing and/or
inspecting the CS. Testing aims to detect defects in a system by

33

CHAPTER 3. THEORETICAL FRAMEWORK

comparing the expected results (expressed in system requirements) to
the observed results (the behaviour of the implementation of the
System Under Test (SUT). In many organizations testing processes
begin after the code has been completed [19]. In order to detect
defects before they become extremely expensive to fix and manage
inevitable changes during software lifecycle, testing activities should
start as soon as possible (the requirements level) in the software
lifecycle and the Information on the defect types that occur in the
earlier stages of the software development life cycle can be used to
give feedback to stakeholders (e.g. modellers, developers, testers)
about detecting defects and how they can be tracked, reduced and
resolved. If the purpose is to get a good quality CS, the information on
each defect must be related to the quality goals affected, according to
an appropriate quality model for models in an MDD context, as
proposed in [9].

The purpose of this chapter is to provide the basic knowledge
required to understand the overall thesis. As shown in Figure 3.1, this
work is placed in the intersection of three research areas that have
some aspects in common. These disciplines are: Requirements
Engineering, Software Quality (focused on Conceptual Schema Quality),
and Model-driven Development.

Validation ina
Model-driven
Environment

\ Model-driven /
“ Development,/

e i

Figure 3.1. Research areas involved in this work

The rest of this chapter is organized as follows: Section 3.1 briefly
describes the modelling requirements based on Communicational

34

CHAPTER 3. THEORETICAL FRAMEWORK

Analysis used in this thesis. Section 3.2 describes the concepts of the
Conceptual Schema Quality, such as the quality model for conceptual
schemas taken as reference to our work and the testing terminology
and the testing artefacts involved in our proposal. Section 3.3
summarizes the model-driven development concepts related to this
research, and Section 3.4 summarizes and presents the conclusions of
the chapter.

3.1 Concepts of Requirements Engineering

A general definition defines Requirements Engineering as a
particular research discipline in the fields of software engineering.
Following this definition, the discipline searches for, defines, and
provides new techniques, instruments, and methods to support the
requirements document process of a software system.

A more specific definition states that requirements engineering is
the first phase of the software engineering life cycle, which is
responsible for a systematic development of a requirements document
that describes what, a system shall do. Loucopoulos and Karakostas
define Requirements Engineering as “a systematic process of
developing requirements through an iterative co-operative process of
analyzing the problem, documenting the resulting observations in a
variety of representation formats, and checking the accuracy of the

understanding gained” [20].

The second definition of requirements engineering is assumed in
this research, by which requirements engineering consists basically of
the elicitation, analysis, documentation (specification), verification and
validation. During elicitation, the requirements are elicited from all
possible sources, e.g. from input documents or through interviews with
the customer and users. The output of this first activity is the raw
requirements. These are analyzed in the second step for consistency,
feasibility, incompleteness, and ambiguity. If problems are detected in
the analysis activity, the problems must be re-negotiated among the
stakeholders until all the stakeholders agree upon the set of

35

CHAPTER 3. THEORETICAL FRAMEWORK

requirements. Then, in the third step these requirements are
documented at an appropriate level of detail (e.g. requirements
model), and are integrated into the requirements document in the
fourth activity. The requirements document is then validated with
respect to correctness and completeness of the requirements to the
customer and user needs. The validated requirements then serve as
the major input for the system development and the acceptance as
well as for the test case generation as they are required in our
proposal.

Several techniques can be used to specify the requirements in the
system requirements document. The most popular techniques to
specify the user requirements are natural language and use cases. Even
though natural language presents several disadvantages such as
ambiguities, unclearness, and redundancies, it is the most frequently
used technique to describe requirements in industry. On the other
hand, the use cases focus on the more structured description of the
interaction between the different users and the system by using a
graphical and textual representation, however, they are also in form of
natural language and also present the above disadvantages.

The acquisition of requirements is achieved through language
manipulation (communication with stakeholders). However, it is
usually convenient to specify these requirements in models, such as
conceptual schemas. As we describe in Section 3.2.2, some V&V
techniques require semi-formal or formal models to be applied, and
models are often used for specification purposes and as a base for
design and implementation (including automatic generation of code in
MDD context). In our research, we need to capture the functional
requirements in a clear and concise manner, which is typically not
possible with natural language. We therefore use a Requirements
Engineering method called Communication Analysis (CA) to specify
requirements models, which minimizes the disadvantages of writing
the requirements in natural language.

36

CHAPTER 3. THEORETICAL FRAMEWORK

3.1.1 Modelling Requirements based on

Communicational Analysis

Communication Analysis is a Requirements Engineering method
that analyses the communicative interactions between company’s
Information Systems (CIS) and their environment [21].

The methodological core of Communication Analysis is the
information system analysis stage, the result of which is an analysis
specification, a communication-oriented documentation that describes
the information system. For this purpose, CA proposes a requirements
structure with five levels (see Figure 3.2):

Communication Analysis activities

Requirements levels Dynamic perception » ™ Static perception

L1. (1) STRATEGIC

System/ @% DESCRIPTION OF

subsystems L ORGANISATION
/1] PROBLEM
g DECOMPOSITION
= L. BT (2)COMMUNICATIVE (3) BUSINESS —
£ Process EBay LA OBIECTS =
A] — DIAGRAMATION IDENTlFICATION
£ COMMUNICATIVE BUSINESS OBIECT
E EVENT DIAGRAM GLOSSARY
(=

COMMUNICATIVE DETAILED B.O.G.
EVENT TEMPLATES

L3. .. — (JfJCOMMUNICATIVE (5) BUSINESS —
Communicative 75@ EVENT OBJECTS =

. = 1 1
Interaction = SPECIHCATION SF'ECIHCATION

L4. (6) USAGE REQ. (7) OBJECT
[
o Usage [Ela CAPTURE AND CLASSES g%é?
Q. erviromEE INTERFACE DESIGN MODELLING
INTERFACE 1.5. MEMORY
S DESIGN MODEL MODEL
£ L5, f >
=
3 GCperational COMPONENT DESIGN { J LOGICAL DESIGN \}
& environment
IMPLEMENTATION]

LEGEND () Activity —= Influence [] Outcome — Production

Figure 3.2. Communication Analysis requirements levels and workflow [21]

(i) System/subsystems level (L1) refers to an overall description of
the organisation and its environment (Organisational System and
Subject System, respectively) and also involves decomposing the
problem in order to reduce its complexity, (ii) Process level (L2) refers
to business process description both from the dynamic viewpoint (by

37

CHAPTER 3. THEORETICAL FRAMEWORK

identifying flows of communicative interactions, a.k.a. communicative
events) and the static viewpoint (by identifying business objects), (iii)
Communicative interaction level (L3) refers to the detailed description
of each communicative event (e.g. the description of its associated
message) and each business object, (iv) Usage environment level (L4)
refers to capturing requirements related to the usage of the Computer
Information System (CIS), the design of user interfaces, and the
modelling of object classes that will support IS memory, and (v)
Operational environment level (L5) refers to the design and
implementation of CIS software components and architecture (further
information can obtained in [21]).

3.2 Concepts of the Conceptual Schema Quality

The meaning of quality has been widely discussed and everybody
agrees that quality is an important property of products. ISO/IEC 9126
[22] (an international standard for the evaluation of software quality
consistent with ISO 9000 [23], a family of standards related to quality
management) define the quality of a software as: “The totality of
features and characteristics of a product or service that bear on its
ability to satisfy stated or implied needs”. Most approaches to quality
evaluation therefore decompose the concept of quality into a set of
lower level quality properties (also called “goals”, “attributes” or
quality characteristics) which may be precisely measured.

In the context of modelling, the quality of a CS or model is the
degree to which a set of model quality properties is present. Therefore,
the set of quality goals with their relations, accompanied by a set of
practices or means to achieve the quality goals and evaluation
methods for evaluating quality goals define a Quality Model [9].

This section describes the quality model taken as reference for this
research project as well as the basic concepts and testing artefacts
used in the testing-based validation process of the conceptual
schemas.

38

CHAPTER 3. THEORETICAL FRAMEWORK

3.2.1 Model Quality for Conceptual Schemas

Different quality models can be found in the literature for
describing the quality of CSs such as that developed by Lindland,
Sindre, and Sglvberg [16] (1994), and its numerous extensions and
refinements (e.g. Krogstie and Sglvberg [17], 2003; Krogstie et al. [18],
2006; and Krogstie [19], 2012). This quality framework classifies model
quality into three categories (i) the syntax quality (relationship
between the model and modelling language norms, i.e. syntax), (ii)
semantic quality (relationship between the model and problem
domain); and, (iii) pragmatic quality (comprehensibility by the
stakeholders). Krogstie [19] added some quality goals for the
understanding and assessment of models quality to the Lindland's
framework; such as physical quality (model is persistent, current and
available), empirical quality (model has features visual or textual
communication to help minimal error frequency), social quality
(relationship agreements between different model interpretations) and
deontic quality (if the model meets the objectives of modelling). Other
quality models such as those found in [3] and [20] also discuss the
concept of model quality within the context of UML.

However, the MDD approach allows many activities to be
automated in software development. Conceptual schemas in MDD are
expected to get progressively more complete, precise and executable
and be used to generate the code and other artefacts such as test
cases. Therefore, MDD add new requirements to the development
process such as consistency between models, technical comprehension
by tools and support changeability. In [21] Mohagheghi et al. describe a
quality model (6C) oriented to Model Driven Engineering (MDE). They
perform a combination of quality models and identify the following six
classes of conceptual schema quality goals (see Table 3.1).

For the purpose of conceptualizing the quality properties
considered in this thesis, we adopted the quality model proposed by
Mohagheghi et al. [9].

39

CHAPTER 3. THEORETICAL FRAMEWORK

Table 3.1 Quality Goals based on 6C quality model from Mohaghehi et al. [9]

Quality Goal (QG)

Description

Correctness
QG1

Including correct elements and relations between them,
and including correct statements about the domain; not
violating rules and conventions; for example adhering to
language syntax. Thus it covers both syntactic correctness
(right syntax or well-formedness) and semantic correctness
(right meaning and relations relative to the knowledge
about the domain).

Completeness QG2

Having all the necessary information that is relevant and
being detailed enough according to the purpose of
modelling. It is a semantic quality.

Consistency
QG3

Having no contradictions in the models, related to syntactic
quality. It covers consistency between views that belong to
the same level of abstraction or development phase
(horizontal consistency), and between views that model
the same aspect, but at different levels of abstraction or in
different development phases (vertical consistency). It also
covers semantic consistency between models; i.e, the
same element does not have multiple meanings in
different diagrams or models.

Comprehensibility QG4

Being understandable by the intended users, either human
users or tools. It is related with the pragmatic quality.

Confinement
QG5

Being in agreement with the purpose of modelling and the
type of system, and being restricted to the modelling goals;
such as including relevant diagrams and being at the right
abstraction level. It is related with the semantic quality.

Changeability
QG6

Supporting changes or improvements so that models can
be changed or revolved rapidly and continuously. It is
related with the pragmatic quality.

3.2.2 Practices to

improve the Quality of

Conceptual Schemas
In order to assess whether a CS meets the above quality goals,

several methods can be employed. All these methods aim to validate

and verify (V&V) the CS according to a quality model.

The |EEE

[24] defines validation as the

“confirmation by

examination and provisions of objective evidence that the particular
requirements for a specific intended use are fulfilled”. On the other
hand, the same standard defines verification as the “confirmation by

40

CHAPTER 3. THEORETICAL FRAMEWORK

examination and provisions of objective evidence that specified
requirements have been fulfilled”.

Applying the above definitions in the modelling context, validation
is an activity that answers the question: “Are we developing the right
model?”, i.e. whether all the knowledge in the model is sufficiently
correct and relevant to the problem domain. On the other hand,
verification is an activity that answers the question “Are we developing
the model right?”, i.e. whether the model satisfies quality properties
such as consistency. According to the ISO/IEC 9126 [25]classification
[25], validation aims to check the external quality and verification aims
to check the internal quality.

The contributions of this thesis are aimed at enhancing conceptual
schema validation in the context of a model-driven development. The
application of techniques aimed at validating requirements may
depend on the formalization level of the requirements specifications.

The methods applicable to validation are suitable for software
validation in general, and for models validation (e.g. requirements
models, design models, test model, etc.) in particular.

In this thesis, we classify methods from two perspectives: (1) the
way in which the analysis is performed; and (2) the level of
formalization. This classification is an oversimplification for the
purpose of this thesis.

First, regarding the way in which the analysis is performed, we
classify methods into two categories:

Static methods. Static methods examine a model and reason over
all the possible behaviours that might arise at run time [26]. It means
that the model is read by humans, or pursued by a computer, but not
executed as a program. Hence, static methods work at “compile time”.

Dynamic methods. Dynamic methods operate by executing a
program (in our case, a CS or model) and observing its executions [27].

41

CHAPTER 3. THEORETICAL FRAMEWORK

It means that the model is run (or executed) by means of a computer.
Hence, dynamic methods work at “run time”.

Second, regarding their level of formalization, we classify methods
into two categories:

Formal methods. Wing [28] describes formal methods as
“mathematically based techniques for describing system properties.
Such formal methods provide frameworks within which people can
specify, develop, verify and validate systems in a systematic, rather
than ad-hoc manner”.

Non-formal methods. Unlike formal methods, non-formal methods
do not try to follow a rigorous approach but to use informal
techniques. Non-formal methods have the advantage that the user
does not need be an expert in understanding mathematical models.
They are easy to illustrate and can be used to validate models written
in natural language, increasing the participation of non-technical
stakeholders. As a drawback, given their non-formality, they can be
ambiguous and provide a non-precise result.

In the following, we briefly review some of the existing methods,
classifying them into the above categories (see Table 3.2). Note that,
again, our classification is an oversimplification which only includes a
subset of the many existing methods devoted to validation.

Table 3.2. Validation relevant methods for Conceptual Schemas

Static Methods Dynamic Methods
Non-formal Reviews
methods Inspections
Formal methods Testing
Simulation and Animation

Review

The IEEE [29] standard defines a review as “a process or meeting
during which a software product is presented to project personnel,
managers, users, customers, user representatives, or other interested

42

CHAPTER 3. THEORETICAL FRAMEWORK

parties for comment or approval”. The IEEE [29] also defines a
technical review as “a systematic evaluation of a software product by a
team of qualified personnel that examines the suitability of the
software product for its intended use and identifies discrepancies from
specifications and standards. Technical reviews may also provide
recommendations of alternatives and examination of various
alternatives”. The purpose of a technical review is to achieve at a
technically superior version of the software product reviewed, whether
by correction of defects or by recommendation or introduction of
alternative approaches.

Inspection

The |EEE [29] standard defines an inspection as “a visual
examination of a software product to detect and identify software
anomalies, including errors and deviations from standards and
specifications. Inspections are peer examinations led by impartial
facilitators who are trained in inspection techniques. Determination of
remedial or investigative action for an anomaly is a mandatory element
of a software inspection, although the solution should not be
determined in the inspection meeting”. Compared to the technical
reviews and walkthroughs, inspections are more structured. The IEEE
standard [29] states that inspections should be done according to the
project plan.

The above techniques have mainly been applied to analyse source
code [30]. However, these techniques can also be applied in earlier
phases of software development such as requirements specification
[31] or design [32] [33].

Paraphrasing [34] and Explanation Generation [35] techniques are
attempts to verbalize and provide explanations about the behaviour of
conceptual schemas in order to facilitate their comprehension and
validation, supporting the conceptual modelling activity.

43

CHAPTER 3. THEORETICAL FRAMEWORK

Simulation and Animation

According to Bicarregui J. et al. [36], animation facilities allow users
to execute operations of the specification with user supplied
parameters, thereby calculating the value of the output parameters
and the new system state. The method we propose to test conceptual
schemas belongs to this category of validation techniques. Formal
requirements specifications (like conceptual schemas defined in a
formal modelling language) can be validated by using these techniques
that execute them through animation (e.g. [37], [38]).

Testing

Testing is probably the most popular method used for the dynamic
verification and validation of a software artefact and is done by
running a discrete set of test cases, where a test case consists of input
values and their expected output. The test cases are suitably selected
from a finite but very large input domain. During testing the actual
behaviour is compared with the intended or expected behaviour. The
empbhasis of software testing is to validate and to verify the design and
the initial construction.

Testing could be categorized as functional and non-functional
testing. Functional testing is concerned with what the software artefact
does its features or functions. Non-functional testing is concerned with
examining how well the software artefact does its job and includes
performance, usability, portability, maintainability, etc. However,
testing is an expensive practice to improve the quality of CS and
requires stop criteria because a complete testing is infeasible [12].

3.3 Concepts of the Model-driven Environment

As mentioned before, this research focuses on the design of a
testing based validation framework that satisfies a model-driven
environment in order to improve conceptual schema quality. This
section provides the reader with the lexicon and tools used throughout
model-driven testing. First, we introduce MDA definitions and
assumptions as well as the concepts of the metamodeling architecture

44

CHAPTER 3. THEORETICAL FRAMEWORK

used in our work. Then, we summarize the concepts of the UML CD-
based Conceptual Schemas and also of an executable UML CS. Finally,
we summarize the concepts of the OMG standards for specifying
executable models.

3.3.1 MDA Definitions and Assumptions

The Object Management Group (OMG) has defined its own
proposal for applying MDE practices to system’ development, which is
called MDA (Model-Driven Architecture). The entire MDA
infrastructure is based on few core definitions and assumptions. The
main elements of interest for MDA are the following [39]:

- A System is the subject of any MDA specification. It can be a
program, a single computer system, some combination of parts
of different systems, or a federation of systems.

- Problem Space (or domain) is the context where the system
operates.

- Solution Space is the spectrum of possible solutions that satisfy
the system requirements.

- Architecture is the specification of the parts and connectors of
the system and the rules for the interactions of the parts using
the connectors.

- Platform is a set of subsystems and technologies that provide a
coherent set of functionalities oriented towards the
achievement of a specified goal.

- Viewpoint is a description of a system that focuses on one or
more particular concerns.

- View is a model of system seen under a specific viewpoint.

- Metamodel constitutes the definition of a modeling language,
which provides a way of describing the whole class of models
that can be represented by that language. Therefore, we can
define models of the reality, and then models that describe
models (called metamodels) and recursively models that
describe metamodels (called meta-metamodels). Then, a
model conforms a metamodel in the way that a computer

45

CHAPTER 3. THEORETICAL FRAMEWORK

program conforms to the grammar of the programming
language in which it is written [39].

- Transformation is a correspondence relation between
elements in a source metamodel and elements in a target
metamodel. It is defined at metamodel level, and then applied
at the model level, upon models that conforms to those
metamodels. Therefore, executing a Model-to-Model (M2M)
transformation transforms a source model Ma conforming to a
metamodel MMa into a target model Mb conforming to a
metamodel MMb (where MMa and MMb can be the same or
different metamodels).

3.3.2 Overview of the Metamodeling Architecture

Since our proposal complies with the principles of Model-Driven
Architecture, it distinguishes different types of models at various levels
of abstraction, as follows [39]:

Computation-Independent Model (CIM) is the most abstract
modelling level and represents the requirements of the solution
without any binding to computational implications.

Platform-Independent Model (PIM) is the level that describes the
behaviour and structure of the system, regardless of the
implementation platform.

Platform-Specific Model (PSM) contains all the required
information regarding the behaviour and structure of an application on
a specific platform that developers may use to implement the
executable code.

A set of mappings between each level and the subsequent one can
be defined through model transformations. Typically, every CIM can
map to different PIMs, which in turn can map to different PSMs.

In this thesis, UML (Unified Model Language) [40] class diagrams
define the metamodels presented in Chapter 6, while ATL (ATLAS

46

CHAPTER 3. THEORETICAL FRAMEWORK

Transformation Language) [41] defines the model transformations. We
select both solutions, as they are well-known languages. UML is
proposed by OMG (Object Management Group) and is frequently used
in MDE for defining metamodels. ATL is one of the most popular and
widely used model transformation languages [41]. ATL is a hybrid
transformation language that contains a mixture of declarative and
imperative constructs. Helpers and transformation rules are the
constructs used to specify the transformation functionality.

3.3.3 UML CD-based Conceptual Schemas

The aim of this work is to design test cases to find faults in a
Conceptual Schema during the analysis and design of the software by
deliberately changing a UML CD-based CS, resulting in wrong behaviour
and possibly causing a failure. The CS of a system should describe its
structure and behaviour (constraints). In this paper a UML-based class
diagram is used to represent such a CS.

A class diagram (see Figure 3.3) is the UML’s main building block
that shows elements of the system at an abstract level (e.g. class,
association class), their properties (ownedAttribute), relationships (e.g.
association and generalization) and operations.

AggregationKind

N Element ’ NamedElement TypedElement :ﬁ;;d

— name:String Packa)

— geableElement it
visibility:Visibility Kind 4_1 I composite

defaultValue |value Specificati defaultValue
DirectedRelationship ? 1 aramete ¢ S
Type {7 0.1 0.1 0.1
[RedefinableElement
| ownedParameter specification

-
LT 0.1
|Genera|izatio , geperalization peration

diti
Classifier 0.1 Pprecondition =

isAbstract:Boolean

0.1 Postcondition «

general * 1

- : ownedOperation 0..1 bodyCondition =
Relationship ‘E q — *
L 1| "\LnedAﬂribute j=Derived:Boolean 0.1 <<<<Enumerations»»»
T higgregation: Aggregationkind VisibilityKind
0.1 ! public

Association - o
rivate
isDerived:Boolean| ssociationClass 2.* | memberEnd*® D
4, protected
package

0.1 0.1

Figure 3.3. Excerpt of the Metamodel of an UML Class Diagram [40]

47

CHAPTER 3. THEORETICAL FRAMEWORK

In UML an operation is specified by defining pre- and post-
conditions. Figure 3.3 shows an excerpt of the UML structure for a class
diagram and highlights eight elements of interest for this work.

3.3.4 Executable UML Conceptual Schema Under

Test

If we want to dynamically test models to detect potential
misconceptions expressed in it, we need to be able to execute the
models. An executable model is a model with a structure (what is it?)
and behavioural specification (what does it do?) detailed enough to be
systematically executed in a production environment.

Structural model

The structural model specifies the static part of an information
system [1], which is formed by a set of classes, a set of attributes of
each class, a set of associations among classes, a set of generalizations
among classes and a set of integrity constraints (i.e. conditions that
must be satisfied in all states of an information system).

All elements in the class diagram are assumed to be correct
instances of the corresponding metaclasses of the UML metamodel
[40].

Some integrity constraints (mainly cardinalities) may be graphically
represented in the CD, while the rest of them may be textually
specified in OCL [17]. Figure 3.4 shows an excerpt of structural model
of our Video Club CS.

Behavioural model

The behavioural model specifies the dynamic part of an
information system, i.e. the valid changes in the system state, as well
as the functions that the system can perform [1]. In UML there are
several models to specify the behaviour of a system at a high level of
abstraction, for instance, using use case diagrams, activity diagrams,
state chart diagrams, etc. However, as we have introduced, in order to
be executable, the behavioural models must be detailed enough. For

48

CHAPTER 3. THEORETICAL FRAMEWORK

this reason, in this thesis, in order to define a detailed behavioural
model, we use operations. Operations are sequences of atomic steps
that users may execute to query and/or modify the information
modelled in the structural model. The Operations are attached to UML
classes.

Figure 3.4 shows three operations related to the Rental class (i.e.
new rental, RENTAL_INFO and set_return_date).

E Movie
QVideoClub
=1 id_movie : Integer
=1 id_videoclub : Integer =1 movie_name : String
=l manager_name : String |videoclub mavies| 5 director : String
= city : String = release_date : Date
=1 address : String [0.1] .[D..*] =1 rental_price : Real
= postal_code : String videoclub_movie =1 status : String
[0..1] movie
Q Partner movie_rentalline
[0.*1 rentallines
=l username : String E RentalLine
=l passwaord : String
=1 name : String = rental_number : Integer
= age : Integer = /price : Real
. B
[0.1] partner rentallines |10+
partner_rental rental_rentalline
[0.*]| rentals rental [0..1]

Q Rental

=1 id_rental : Integer
= pick_up_date : Date
= return_date : Date
=1 /total : Real

£ new_rental(p_atrid_rental : Integer, p_atrpick_up_date : Date, p_atrreturn_date : Date, p_agrpartner: Partner)
£ RENTAL_INFO(p_thisRental : Rental)
4 set_return_date(pt_return_date : Date, p_thisRental : Rental)

Figure 3.4. Excerpt of UML-CD-based CS for Video Club case

In addition, the pre and post conditions and invariants included in
the class diagram are also operations or part of operations (i.e. pre and
post condition). For example Figure 3.5 shows some constraints
attached to the class Rental of the Video Club CS.

49

CHAPTER 3. THEORETICAL FRAMEWORK

context Rental inv property_total_derivation:
this.total=this.rentallines -> collect e(e.price) -> reduce Sum;

context VideoClub::new_videoclub() &
pre: p_atrid_videoclub>=1 && p_atrid_videoclub<=10000 ‘

context Rental::new_rental()
post: Rental->isUnique e(e.id_rental)

Figure 3.5. Example of constraints for the Video Club system

3.3.5 Defect Types in UML-based Conceptual

Schemas

A conceptual schema may not always represent the functionality it
is intended for. The causes and consequences of deviations from the
expected function in conceptual schema are factors that affect the
dependability and quality of a software product. The terminology
presented below was adapted from IEEE std. 1044-2009 [42] for
executable conceptual schemas.

- Defect: An imperfection or deficiency in a work product where
that work product does not meet its requirements or
specifications and needs to be either repaired or replaced.

- Fault: A manifestation of a defect in a conceptual schema.

- Failure: An event in which the conceptual schema does not
perform a required function within specified limits.

When a defect is encountered during model execution it is called a
fault, but it is not a fault if it is detected by inspection or static analysis.
Therefore, a fault is a subtype of defect and may cause a failure when it
is encountered. We adjusted the description of the scope of the
relationships between conceptual entities proposed by the standard
IEEE on one hand, with the conceptual entities of our study (UML-
based conceptual models) on the other. This resulted in Figure 3.6,
where these relationships are depicted graphically. The red frame
directly corresponds to the IEEE standard.

50

CHAPTER 3. THEORETICAL FRAMEWORK

As seen in Figure 3.6, a conceptual schema represents the
(software) systems requirements at an abstract level. It may consist of
several UML diagrams (structural and behavioural), where each
diagram type contains different type (modelling element) of
information about the system.

Additionally, the conceptual schema has associated quality
properties that support the representation or description of the
requirements. These quality properties are usually threatened by
defects that occur at the diagram elements level of the conceptual
schema.

1

1.* Represents.
0.~

Conceptua\SchemaﬁRelease' | CS5_ChangeRequest

I]
0.1 1.7 0]

* | Supports 0..* éf‘ ‘?
0 [CorrectiveCSCR]|[PerfectiveCSCR || | AdaptativeCSCR
= [1 1 1
1]

isThreatenedBy I I
1] [1]

L
Probl Ci dB; Faill C b
[Problem Jiscauseday [Failure]| isCausedBy _ [Faurt ' "y

1.4 0.0 1 0 0 Tool
. —
0. {DetectedinExecution} ’ isAtterptedRemoveByAccion I
0.* isSupportedBy
CS_QualityProperty I isThreatenedBy CS_Defect
DefectiD 1
S 1 1
. Description
1 Status Technique
UML_Diagram || [WodetingEiement |, Reference DetectionMechanism
DiagramLevel [V 1o | | s Threatenect Priority T o TechniqueType
. . H
—_— 1 . 0.* | |Severity 1. :
Rl TechniquePurpose
StructureDiagram I‘ BehaviorDiagram I <<ENuUmE> Cause oo |Va|idation I ‘Venficalion I
I] | | DiagramLevel InsertionActivity I i |
Specification T
Instance <<enum==

Scope
Detect
Prevent
Resolved

TechniqueType
Static
Dynamic

Figure 3.6. Relationships among conceptual entities

A defect may be associated with a single Corrective Change
Request of the Conceptual Schema, which attempts to resolve the
defect and each Corrective Change Request may be associated with, at
the most, a single Conceptual Schema Release.

Figure 3.6 also shows the other two causes of a Conceptual Schema
Changed Request (CSCR), perfective change request of a conceptual
schema and adaptive change request of a conceptual schema.

51

CHAPTER 3. THEORETICAL FRAMEWORK

The defects at the conceptual level can be located in several ways
through V&V techniques, which use a detection mechanism (based on
rules, metrics, and modelling conventions) for this purpose.

According to the nature of the technique, this can be statically or
dynamically supported by a tool and can have a type of scope that
depend on its purpose (i.e. detect, prevent and resolve).

The defects have insertion activity, severity, priority and probability
of occurrence. They are detected at any specific time by noticing a
specific description (symptom) using a detection mechanism. Each of
these aspects is relevant for the purpose of the required analysis and
also allows a classification of the defects. In previous work [43] we
classified UML model defects reported in the literature and related the
types of the defects with the CS quality goals (see Section 3.2) affected
by them. Table 3.3 summarizes the CS defect types.

Table 3.3. Defect types in a UML-based model (excerpt taken from [43])

Defect Cause Sub modes Affected
Quality
Goal
MISSING Something is absent that should be present. QG2, QG4
WRONG Inconsistent: There are contradictions in the models QG1,
Something is (1) vertical inconsistency (i.e. contradictions between QG3,
incorrect, model versions) and (2) horizontal inconsistency (i.e. | QG4, QG5
inconsistent or | contradictions between different model views).
ambiguous. Incorrect: There is a misrepresentation of modelling | QG1, QG4
concepts, their attributes and their relationships, as
well as the violation of the rules by combining of
these concepts at the time of building partial or
complete models.
Ambiguous (wrong wording): The representation of a QG1,
concept in the model is unclear, and could cause a QG3
user (e.g. modeller) to misinterpret its meaning.
UNNECESSARY | Redundant: If an element has the same meaning that QG5
(Extra) other element in the model.
Something is Extraneous: If there are items that should not be | QG5, QG6
present that included in the model because they belong to
need not be. another level of abstraction, e.g. details of
implementation, which are decisions (e.g. type of
data structure used at code level) that are left to be
made by the developers, and is not specified at an
earlier level (e.g. CS).

52

CHAPTER 3. THEORETICAL FRAMEWORK

Missing and unnecessary elements (i.e. redundant and extraneous)
and incorrectly modelled requirements are the main causes of a design
model inaccuracy that can be detected by requirements testing.
Inconsistent defects can only be found by comparing CS versions, so
that testing is not required in this case. Ambiguous elements require
user (e.g. modeller, low-level designer) criteria to find defects.

In this thesis we face the challenge of detecting defects (missing,
correctness and unnecessary elements) on conceptual schemas by
testing.

3.4 Summary and Conclusions

This thesis aims at enhancing conceptual schema validation in the
context of model-driven development. In this chapter we describe the
concepts related to three research areas on which our research is
based: Requirements Engineering (Section 3.1), Conceptual Schema
Quality (Section 3.2) and Model-driven Environment (Section 3.3).

Requirements Engineering and Quality both aim to support the
development of software products to meet stakeholder’s expectations
regarding functionality and quality at different stages of the software
development life cycle (e.g. conceptual schema used in both analysis
and design phases). We adopted the quality model proposed in
Mohagheghi et al. [21] (see Section 3.2) for the purpose of
contextualizing the CS quality goals considered. In order to assess
whether a Conceptual Schema meets the desired quality goals, several
methods can be employed. In this chapter we have reviewed and
classified a subset of the most relevant analytical methods used in
several fields of computer science, both in hardware and software
(mainly in source code) verification and validation:

e Static and non-formal methods: Walkthroughs, reviews and
inspections.

e Static and formal methods: Data-Flow Analysis, Constraint-Based
Analysis and Abstract Interpretation.

¢ Dynamic and non-formal methods: Testing.

53

CHAPTER 3. THEORETICAL FRAMEWORK

¢ Dynamic and formal methods: Model Checking.

The testing of conceptual schemas may be an important and
practical means of validation because it allows checking correctness
and completeness according to stakeholders’ needs and expectations.
In conjunction with the automatic checking of basic test adequacy
criteria, it can also contribute to improving the consistency,
comprehensibility, confinement and changeability of the elements
defined in the schema.

As we explain in Section 3.3, the Model-driven theoretical
framework is indeed a vital base on which the testing-based framework
for validation of UML CD-based conceptual schemas is built.

The theoretical framework for Communication Analysis [21] (a
Requirements Engineering method) (see Section 3.1.1) is important for
the purpose of modelling the functional requirements of the CS
considered in this thesis and also defines the artefacts that are part of
the input of our proposal.

54

CHAPTER 4. RELATED WORK OF CONCEPTUAL SCHEMAS VALIDATION

Chapter 4
Recateb Work ofF CoNCEPTUAL
ScHEMA VALIDATION

In software engineering the requirements are usually elicited and
specified before implementing them. Requirements can be specified in
different kinds of artefacts and in different levels of formalization (i.e.
unrestricted natural language, disciplined documentation or formal
notation) [44]. The application of techniques aimed at validating
requirements may depend on the formalization level of their
specification. In particular, conceptual schemas defined in UML are
formal specifications of functional requirements and their validation is
the main objective of the conceptual schema testing approach
proposed in this thesis (Chapter 5).

Validation of software conceptual schemas has been a topic
addressed in the literature. The work related to this thesis can be
analysed in three dimensions: (1) the domain, i.e. the kind of model to
be validated; (2) the type of method employed to perform the
validation; and (3) the CS quality goal improved by the validation.

55

CHAPTER 4. RELATED WORK OF CONCEPTUAL SCHEMAS VALIDATION

In Chapter 3, we explained the general knowledge related to the
problem of conceptual schema validation in a model-driven
environment.

In this chapter, we review a representative set of existing
techniques on validating conceptual schemas according to the above
dimensions. Firstly, Section 4.1 describes the three dimensions and
briefly cites the related works. Section 4.2 reviews the most
representative works for the generation, selection, prioritization and
execution of test cases, which are fundamental challenges addressed
by the main contribution of this thesis. Section 4.3 compares the
related works and Section 4.4 summarizes and presents the
conclusions of the chapter.

4.1 Dimensions of the Related Work

In this section, we analyse how requirements specifications can be
validated in conceptual schemas. The related work can be analysed
from three perspectives (see Figure 4.1)

[[

— i T

o — ~Larrectness ="«

6@1‘ LinAL H':f:{h Completeness \\,é'(;-
Behavioural 7 Cansistency’y, g,

‘C}G
maodel - IC|:|n'||:nnahe-nsal:hl|t',.-I
y |
| 5, . T,
[§ o I |
| umL Conceptual 5, —hangeabllity

f i
"-.._ SlnlL'I:uraI..-"F Schema ':':Dn lnemel:!.-
S model (| Validation ina | r
(Model-driven |
] v

Environmemnt

|)

\Inspections Reviews |
\ Simulation and
\\ Animation

\ Testing .__,x’/
Method
Figure 4.1. Related Work dimensions

Domain. Refers to the kind of model used to perform the validation.

56

CHAPTER 4. RELATED WORK OF CONCEPTUAL SCHEMAS VALIDATION

Quality Goal: Refers to the quality goal of the CS to be improved with
the validation.

Method: Refers to the type of method employed to perform the
validation.

In the rest of this section we briefly describe these dimensions.

4.1.1 Domain

The domain dimension refers to the kind of model to be validated.
In the software modelling context, the focus of the validation may be
the structural model, the behavioural model or both.

Regarding the first group, only a few works (e.g. [45], [46], [47])
analyse structural models separately from behavioural models. These
works are related with static methods such as review and inspections
[48].

In the second group there are some research proposals devoted to
the problem of validating only behavioural models. For instance, in the
UML context, there are works focusing on validating only activity
diagrams [49], state machine diagrams [50], [51] and state machine
diagram with an activity diagram [52].

The remaining works require both type of models (structural and
behavioural) to validate the requirements in the CS, e.g. class diagram
including operations and OCLs [53]; class diagram, interaction diagram
and activity diagrams [54]; class and sequence [55] [56], and so on.

In Section 4.3 we review in detail the most related works.

4.1.2 Quality Goal

This dimension refers to the quality goal to be improved with the
validation.

Several quality goals such as consistency, completeness,
comprehensibility and confinement can be assessed by means of

57

CHAPTER 4. RELATED WORK OF CONCEPTUAL SCHEMAS VALIDATION

manual human inspections and reviews; as proposed in [57][58][47],
and also by using checklists [18]. Both modelling experts and non-
technical experts should be involved in inspections; especially for
evaluating comprehensibility and confinement aspects. The OORT
techniques (Object-Oriented Reading Techniques) are an example of
systematic inspection techniques to inspect (“compare”) UML
diagrams with each other for completeness and consistency (vertical
and horizontal) [50].

On the other hand, testing works (e.g. [53], [54], [55] [56]) mainly
aim at the completeness of a CS by validating the requirements.
However, semantic correctness, confinement and changeability can be
improved by analysing the elements covered and elements not covered
(extraneous elements) by test cases (see Tables 3.1 and 3.3 in Sections
3.2.1 and 3.3.5 respectively).

Since information from separate diagrams (i.e. structural and
behavioural) should be combined for the purpose of testing, the
consistency between these diagrams should be addressed previous to
the testing process. Thus, if the testing process is supported by a tool
for CS execution, then the incorrect defects are detected by the parser
in a previous step to testing, so that the syntactic correctness goal is
also improved.

CS comprehensibility by both humans and tools is addressed when
the completeness, consistency and correctness of a CS is improved (see
Tables 3.1 and 3.3 in Sections 3.2.1 and 3.3.5, respectively).

4.1.3 Method

The method dimension refers to the type of method employed to
perform the validation. As we explained in Chapter 3, a variety of
methods can be used to analyse a model. They can be classified into
static/dynamic and formal/non-formal.

In the following, we review requirements validation techniques
that may be applicable to conceptual schemas. Reviews and

58

CHAPTER 4. RELATED WORK OF CONCEPTUAL SCHEMAS VALIDATION

Inspections are general techniques that can be applied to other kinds
of requirements specifications. Others have been specifically proposed
to validate conceptual schemas, such as testing, simulation and
animation. Additionally, we briefly review a representative set of
verification approaches which can be used in conjunction with
validation techniques to enforce the V&V process, as explained in
Section 3.2.2.

Inspections and Reviews

Similar techniques in this respect are the inspections and reviews
of requirements specifications [59], [44]. Inspections do not require
formal requirements specifications. However, when semi-formal or
formal specifications are the requirements artefacts under inspection,
the process may be more clear, structured and traceable.

Conceptual schemas specify functional requirements and they can
also be inspected and reviewed [50], [60], [46], [48]. However, as
requirements validation is hard to judge only by inspecting the models,
a model with executable properties is needed to evaluate them and to
detect potential misconceptions expressed in the model.

Simulation and Animation

Techniques that execute CSs through simulation and animation
[61], [52], [62][63], present facilities for the users to uncover
inconsistencies and execute operations of the specification with
parameters supplied by users, thereby calculating the value of the
output parameters and the new system state. The idea of animating
conceptual schemas for validation purposes dates back to the mid-80s.
Dignum et al. [64] describe a conceptual language (CPL) and a tool that
generates a prototype from a CPL schema, which can be tested. The
generated prototype makes it possible to build an Information Base
state, perform consistency checks and ask questions about the
contents of the Information Base. A similar approach was taken in [58]
and [65], with the PPP and TROLL light language and environment,
respectively. [49], [55]

59

CHAPTER 4. RELATED WORK OF CONCEPTUAL SCHEMAS VALIDATION

Several tools support editions, simulations and animation of UML
models. For instance, the USE tool by Gogolla et al. [55] receives a UML
class diagram and a set of declarative operations and is able to validate
the structure/behaviour according to the modeller/designer
expectations (such as the consistency of UML models and the
independence of OCL constraints) through animation. In this context,
the authors Dotan and Kirshin [52]; and Teilans et al. [63] present tools
providing graphical visualization of simulations on activity diagrams
highlighting active states and fireable transitions, coupled with means
to visualize and record execution traces.

Testing

In the context of MDD, testing techniques have also been applied
for testing models. In these approaches the artefact under test is a
model instead of a source code. Some examples are: [56] an approach
for testing UML design models to uncover inconsistencies; [61] an
Eclipse plug-in for animating and testing UML models; and [66] a
method which applies the principles of TDD (Test-Driven Development)
to conceptual modelling.

It is important to point out that an important initiative for building
executable UML models is the fUML[67], promoted by the OMG
(Object Management Group). Research on a model execution
framework based on fUML is presented by Mijatov et al. [49]. This
framework will enable efficient testing and validating of UML activity
diagrams by providing debugging capabilities, as well as a test.

Testing is part of a process of Validation & Verification, where the
conceptual schema operates under controlled conditions in order to:
(1) verify that it behaves as specified; (2) detect defects, and (3)
validate user requirements [12]. A lot of work on automatic
verification procedures have been reported in the related literature,
such as [68], [69], [70], which are focused on an automatic check of
desirable properties in conceptual schemas (e.g. a well-formed
instantiation of the model, and consistency between models and with

60

CHAPTER 4. RELATED WORK OF CONCEPTUAL SCHEMAS VALIDATION

constraints) and the development of automated reasoning procedures
or the semi-automated control of them. As suggested in [27], static and
dynamic analysis can interact. In this regard, we believe the dynamic
method developed in this thesis can be integrated with static methods,
for instance to verify well-formed instantiations of the CS.

Since functional testing is the validation method addressed in this
thesis, in the next Section we summarize related work on the
generation, selection and prioritization process of the test cases
required by the testing process.

4.2 Generation, Selection, Prioritization and

Execution of Test Cases

Since testing uses model (sometimes a mental model) [71] as the
basis for the construction of test cases, a good set of test cases is
directly related to how adequately the model captures the features of
the CS under test (CSUT). Nevertheless, designing test cases manually
can yield inconsistent test cases even if the model is trust-worthy.
Moreover, when the model changes, test cases must be updated and
this is not always feasible manually, mainly when the number of tests
grow. So that manual generation and execution of tests can be costly
and error prone.

In this context, the purpose of model-based testing (MBT) [72] is to
use explicit models to automatize testing. Instead of a manual design,
tests are generated by a tool that processes the input model and the
generated tests can be automatically run against an executable
software artefact (e.g. code, executable model).

4.2.1 Test Case Generation

Some methods of test case generation depend on the application,
e.g. test case generation for web application, object oriented
application, structured systems, UML applications, applications based
on evolutionary and genetic algorithms and many others. Throughout

61

CHAPTER 4. RELATED WORK OF CONCEPTUAL SCHEMAS VALIDATION

the vyears, several different methods have been proposed for
generating test cases.

At the time of writing this thesis, there are two main surveys (i.e.
Escalona et al. [73] and Denger and Mora [74]), that review existing
approaches dealing with generating test cases from functional
requirements. Escalona’s survey, published at the end of 2011, cites 24
approaches; the oldest dates back to 1988 (Category-Partition Method)
and the newest to 2009. Denger’s, published in 2003, cites 12
approaches; the oldest from 1988 (it is the same approach used in
Escalona’s survey) and the newest from 2002.

From these surveys, we can see that it is very common in software
testing to generate test cases from models (e.g. [75], [76], [77]).
However, the artefact under test is a model (i.e. UML CD-based CS).
Therefore, works that generate test cases using a strategy that takes
the information for tests from another abstraction level used for the
early requirements is required, e.g. communicational analysis [21]
(communication-oriented business process modelling method), i* [78]
(a goal-oriented modelling method) and so on.

Regarding generation strategy, we can see from these surveys that
only a recent work [73] introduces a Model-driven testing (MDT)
approach, transforming an extended use case pattern (i.e. activity
diagram with all paths) to activity diagrams with single paths. These
authors propose test cases as an activity diagram to validate a system
at code level and not at conceptual schema level, as is required.

In Section 4.3 we will review in detail the generation process of the
related works.

4.2.2 Test Case Selection and Prioritization
The selection and prioritization of test cases are the two major
solutions to the problem of test case optimization.

62

CHAPTER 4. RELATED WORK OF CONCEPTUAL SCHEMAS VALIDATION

Test case selection is a method of selecting a subset of test cases
from a test suite to reduce the time, cost and effort of the software
testing process. Leon and Podgurski [79] presented an empirical
comparison of four different techniques for filtering large test suites:
test suite minimization, prioritization by additional coverage, cluster
filtering with one-per-cluster sampling, and failure pursuit sampling.

Test case prioritization is a method of scheduling and ranking the
test cases from multiple software test suites. There are many
approaches to scheduling and ranking the test cases. Each and every
test case is assigned a priority, but sometimes an issue may arise when
multiple test cases have the same priority or weights. Rothermel et al.
[80] define nine techniques (i.e. no prioritization, random, optimal,
total branch coverage, additional branch coverage, total statement
coverage, additional statement coverage, total fault-exposing-potential
and additional fault-exposing-potential) for test suite prioritization for
rate of Fault Detection. Note that test case selection and prioritization
are closely related. In fact, given a prioritization of test cases, one can
filter them simply by choosing the first n tests in the order. Therefore,
any test case prioritization algorithm can be used as a test case
selection algorithm. However, in general the reverse is not true.

Only Pilskalns et al.’s testing method [56] (see Section 4.1.3)
selects the test cases based on variable partitions that can be derived
from CS information.

4.2.3 Test Case Execution

The Executable UML approach aims at defining UML models with a
behavioural specification precise enough to be effectively executed. In
its purest state, an Executable UML eliminates the need for
programming the software system. The software models are directly
used to run the system through compilation or model interpretation.

There have been model execution tools and environments for
years, even before UML. However, each tool defined its own semantics
for model execution, often including a proprietary action language, and

63

CHAPTER 4. RELATED WORK OF CONCEPTUAL SCHEMAS VALIDATION

models developed in one tool could not be interchanged with or
interoperate with models developed in another tool. A Jordi Cabot post
[81] describes a list of Executable UML tools; for each tool Cabot
provides the name and URL, whether the tool is free, commercial or
whatever and if the tool supports the recent Executable UML standards
or its own kind of executable UML.

In order to model executable models, whilst the UML specification
is necessary, it is not sufficient. This is for two reasons:

1. UML is not specified precisely enough to be executed. Although a
UML defines some execution semantics it is not expressive enough
to describe each computable function.

2. Graphical modelling notations are not good enough for detailed
specifications because this notation tends to be very tedious for
exhaustive specifications, confusing the specification rather than
enhancing it. Graphical notation is preferred when the diagram is
intuitive, but if the diagram is more verbose than a textual
representation, then textual is preferred.

In order to overcome these issues, the OMG has extended the UML
standard to allow the models to be executable. In particular, two new
standards have been recently added to the UML standard: the
“Foundational Subset for Executable UML Models” (fUML) [67] and the
“Action Language for fUML” (ALF) [82]. In the following we introduce
both standards and give examples of their usage.

The Foundational Subset for Executable UML Models (fUML) [67],
is an executable subset of the UML that allows the structural and
behavioural semantics of systems to be defined in an operational style.
In order to precisely specify the behaviour, f{UML includes the concept
of action. An action is the fundamental unit of behaviour specification.
It takes a set of inputs (input pins) and converts them into a set of
outputs (output pins), where a pin is a typed and multiplicity element
that provides values to actions and accepts result values from them.
Some of the actions modify the state of the system in which the action

64

CHAPTER 4. RELATED WORK OF CONCEPTUAL SCHEMAS VALIDATION

is executed. However, neither UML 2.X nor fUML provide any concrete
textual syntax for actions, but an abstract syntax, which is not really
precise.

In order to cover this shortcoming, the OMG proposed in October
2011 the Action Language for Foundational UML (ALF) [83], the first
beta version of a concrete syntax conforming to the abstract syntax of
the standard fUML. Essentially, ALF is an unambiguous, concise and
readable textual language (a kind of pseudocode) that allows designers
to completely specify fine-grained behavioural aspects of the model
(e.g. to define the behaviour of a method of a class). ALF can be
attached to any place with UML behaviour. For instance, ALF sentences
can be used directly to specify the behaviours of the transitions on a
statechart diagram, the method of an operation or the classifier
behaviour of a class.

ALF also provides an extended notation that may be used to specify
structural modelling elements. Therefore, it is possible to specify a
UML model entirely using ALF, though ALF syntax only directly covers
the limited subset of UML structural modelling available in the fUML
subset. However, in this thesis we use UML Class diagram to represent
the structural part of a CS and then the CS is automatically transformed
to ALF. This is because: (1) we believe a graphical notion of the
structural model is more intuitive; and (2) neither the fUML subset (nor
ALF) allows integrity constraints associated to the class diagram to be
defined, an element that the conceptual schema used in this thesis
takes into consideration.

Before the adoption of ALF, several action languages emerged such
as Object Action Language (OAL) [84], Shlaer-Mellor Action Language
(SMALL) [85], Action Specification Language (ASL) [86]. A Jordi Cabot
post [87] summarizes Stephen Mellor’s quest of more than a decade
ago to standardize executable UML tools through OMG standards for
precise UML model execution semantics and a UML action language.
So that, although there are a number of studies addressing the

65

CHAPTER 4. RELATED WORK OF CONCEPTUAL SCHEMAS VALIDATION

verification of UML models that include actions [88] [89] [90] [91], only
some of them [92][93] [94] [95] are aligned with the ALF action
language standard.

The Papyrus tool [96][97], an open-source UML tool under the
Eclipse Modelling Project uses ALF to validate UML models. This tool
has executable modelling capabilities including: (1) creating a complete
program as a graphical UML class model, with detailed behavioural
code written textually using ALF; (2) synchronizing the graphical
representation of a UML class with its textual representation in ALF; (3)
concurrent execution of an activity and (4) debugging an executing
activity. This means a user (modeller/analyst/tester) can manually
enter the tests as an activity diagram to perform the testing and
debugging process. There is also a work [96] that provides feedback
and lessons learned by the Papyrus team regarding the
implementation and use of the fUML with ALF from the perspective of
domain-specific users.

Research has also been carried out [98][99] on using fUML and ALF
as the basis for specifying the semantics of domain-specific modelling
languages. However, to the authors’ knowledge, there is no possibility
of automatically obtaining a full version of the UML model in ALF code
from these tools.

This thesis describes the use of ALF for generating executable test
cases as well as for translating a UML CD-based CS in an executable
model. These ALF-based artefacts are then used within the CoSTest
process for validation of UML-based Conceptual Schemas by executing
the test cases against the executable CS in an ALF-based testing
environment.

4.3 Comparison of Related Works

In this section we compare the validation works related with this
thesis based on the three dimensions (i.e. domain, quality goal and
method). We also compare the main features of the testing technique

66

CHAPTER 4. RELATED WORK OF CONCEPTUAL SCHEMAS VALIDATION

used in these works such as generation, selection and prioritization of
the test cases.

4.3.1 Dimension-Based Comparison

A lot of research has been devoted to the problem of V&V (verify
and validate) UML models. However, those most closely related to the
present work are those which focus on the behaviour defined in
structural models (pre and post conditions and invariants related to
operations of the classes). Although none of the works addresses
exactly the same problem as our focus (i.e. generating test cases for
validating CS based on UML class diagram), some research has been
done to address similar problems. In this section we review related
works that have at least two dimensions (kind of model and validation
method) in common with our work.

Table 4.1 classifies the related works that deal with the validation
of UML models and positions our work in relation to them. For each
approach, we include the following information:

e Work. References of the work.

e Source CS. Indicates the kind of model.

e Language of the Under Test CS. Indicates the kind of CS under
test

e Supported Constraints. Indicates whether OCL integrity
constraints are considered when analysing the models.

e Technique. Indicates the technique employed during the
validation.

e Analysis. Refers to the type of analysis used for validation

e Quality Goal. Enumerates the main quality goals addressed by
the work. (see Sections 3.2.1. and 3.3.5)

As can be seen in Table 4.1, a few works target the validation
dynamics for UML-CD based CS.

67

CHAPTER 4. RELATED WORK OF CONCEPTUAL SCHEMAS VALIDATION

Table 4.1. Related approach comparison

JUBWIBUUOD) 4 4
Ajigisusyalduwiod , .
ssausla|dwo)

Buissin §S59U109.10D) [e5]
1221100U| AJUB1SISUOD 4 4 Jnewoiny Bunsa| S9A 11SD weadelp ssep) ERERT]]
1UDWBUIYUOD 4 4 35N ‘|°poN sweagelp
SS9UIIBMI0D 4 4 oJnewoliny | Junsal pue 2180188y 3Juanbas [95] |
Aauz1sisuoou| Adua1515u0)D RUIVEDS uolne|nwis SOA 2|geisal | ‘sweagelp sse|d | 12 supeys|id
JUBWBUYUOD) 4 4 uonewiuy
SSBUIIBII0D 4 4 L [ss]e
Adusisisuoou) Adua1s15u0) Jnewolny uone|nuis SBA Isn weiBeip sse) | 1@ e|jo8on
weiselp
JUBWBUUOD 4 4 Ananoe ‘weadeip
SSBUYIBLIO0D 4 4 Bunsa] pue ener auanbag FENERE
Adusisisuoou) Aduaisisuo) JnewoIny uonewiuy saA | pue Ivr ‘weaBeip sse) | Suosl-yuig
sjulelsuo) agen3ueq
adA] 10840Q |ecn sishjeuy anbiuyda)] pauoddns 1nsd 52 824nog
Ajijenp PoYyiaIN ulewoq HoMm

* Indirectly addressed by the method (see Table 3.3)

68

CHAPTER 4. RELATED WORK OF CONCEPTUAL SCHEMAS VALIDATION

Dinh-Trong et al. [54] present an approach for testing UML models
consisting of class diagrams, sequence diagrams, and activity diagrams
by simulating the model’s behaviour and validating OCL class invariants
and pre- and post-conditions of operations. In this approach a test case
consists of the definition of the initial objects and links of the system
under test and a sequence of operation calls. For executing test cases,
Java code is generated from the UML model under test.

The generated code simulates the behaviour of the defined activity
diagrams which is specified with their own action language JAL. For
evaluating OCL constraints during the simulation, USE is applied.

An interesting tool to validate UML/OCL conceptual is USE
presented by Gogolla et al. [55]. The tool requires the classes and
operations to be specified that check whether a concrete instantiation
given is accepted by the schema and the OCL constraints, but does not
invent new instances that could complement the given instantiation to
make it valid in case it is not.

Pilskalns et al. [56] present an approach for testing UML models
composed of class and sequence diagrams. OCL class invariants and
pre-/post-conditions of operations are used to validate the correct
behaviour of models. To execute test cases, a UML model is
transformed into another format called Testable Aggregate Model
(TAM) on which a symbolic execution is applied.

The OCL constraints are validated after the execution of each
message defined in the sequence diagrams with USE [55]. When
applying the UML evaluation approach, faults and inconsistencies can
be revealed throughout the process. Inconsistencies (e.g. class,
operation parameters between class diagram and sequence diagram)
are revealed via static analysis by combining the behavioural,
structural, and constraint information. Two different types of faults can
be revealed by application of dynamic testing techniques applied to the
aggregate model. The first type of fault can be classified as a path fault
(this type of fault often occur because the modeller/designer did not

69

CHAPTER 4. RELATED WORK OF CONCEPTUAL SCHEMAS VALIDATION

address all paths associated with a condition), which is found by
traversing the TAM. The second type of fault, known as an OCL fault,
occurs when states recorded in the execution trace or instance table
violate OCL expressions.

The most recent work, and the one most closely related to our
framework is the testing approach proposed by Tort and Olivé [53]
with their CSTL Processor tool [100]. These artefacts have been used in
a method [101] to apply the principles of TDD (Test-Driven
Development) to conceptual modelling. CSTL Processor extends the
USE core to testing the structural and behavioural schema elements.
However, this solution is limited to the testing elements (i.e. test
scenarios with test cases, test data and oracles) that are manually
entered by the tester using the CSTL language. Thus, the CS should be
entered into the CSTL Processor tool by using the USE language, which
makes this method unsuitable for a Model-driven environment in
which automation is required for these task types. Even though the
results of their testing are presented in a tool, they do not provide any
kind of feedback to help designers repair defects.

The above approaches have the following weaknesses:

i For defining the CS under test (CSUT), these approaches use
their own formalisms (i.e. Java, USE, TAM and CSTL), which are
different from the standard semantics (e.g. fUML) for
executable UML models.

ii. These works address validation and none addresses the
syntactic correctness of the CSs used in the validation.

iii. Most of these approaches only focus on verifying the
consistency between the structural and behavioural models
(i.e. OCL constraints) by using action sequences taken from the
same CS or defined ad-hoc by the tester to test the CS
behaviour. Only Tort et al’s work [53] addresses the
completeness and correctness of the CS. However, as can be
seen in Table 3.3. (Section 3.3.5) defects of consistency,

70

CHAPTER 4. RELATED WORK OF CONCEPTUAL SCHEMAS VALIDATION

correctness and completeness also affect other quality goals,
such as confinement and comprehensibility, and we have
added ‘* to this information in Table 4.1.

4.3.2 Testing feature Comparison

Testing is one of the time consuming and costly phases in the
software development process, so that any advances in software
testing methods and tools can reduce the time and cost of software
development.

Software testing consists of activities, for instance generation,
selection and prioritization of test cases, execution of the test values
on the software artefact being tested, and evaluating the test results.
In this section we review related work on these issues. Table 4.2
classifies related works that deal with the generation, selection,
prioritization and execution of test cases for UML models. For each
approach, we include the following information:

e Work. References of the work.

e Test Case Source. Indicates the source information for
generation of test cases.

e Test Values Source. Refers to the source for the test values.

e Test Case Generation. Indicates the process kind for generation
of test cases.

e Oracle Generation. Indicates the technique employed for
generation of the test oracle.

e Test Case Selection. Indicates the selection process of the test
cases.

e Test Case Prioritization. Refers to the prioritization of test
cases.

e Execution Environment. Indicates the execution environment
for testing.

e Repairing Feedback. Indicates whether the approach returns
some kind of repairing feedback beyond a simple yes/no
answer.

71

CHAPTER 4. RELATED WORK OF CONCEPTUAL SCHEMAS VALIDATION

Table 4.2. Testing features comparison

[001 35N Yum
pajesfalul eLIaID 19153 40 [es]
lopessazoud 131891 SUOINJSSY 12159 Jauisap ‘e
ON 115D auou Joy-py | uo paseq [enue |[enuey | Jo 13||3pon ‘IBIBPOIN | 12 oL
So
Wiy
paAlap
eLI2)ID S1UIBIISUOD suoyed | sjulelisuod [95]
5]001 35N pue afesanod | 100 woly 3|qeen 100 | e 19
ON Twndepy auoN J0y-py awos Jnewony [ENUE | U0 paIseg | yum SO | sulexs)id
apod
si1oysdeus
S1UIBIISUOD Suisn
BLIDILID 10 | newoine 19153 10
12159] | Suisn Aq -1Was 12159 Jaudisap | [ss] e 12
ON 1001 35N 3UON Joy-py | uo paseq J[eWOINY | 10 [Bnue | JO 19|[9poN ‘19]|9pOIA ejjo8oo
SuoIIeIAIUI SIUIRIISUOD
we.gelp 120 19359 10 [vs] e
51001 35N aouanbag | Buisn Aq 191591 Jaudisap | 12 Suouyp
ON | pue JuUvylNN 3UON Joy-py | uo paseq Jnewoiny lenuey | Jo 13||3po ‘19]19pOIN -yuig
éyoeqpas4 sajpeI0
Suueday juawuoliAug afesanon 159 s3se) 153] | sanjep1sal | @se)1sal
uopnaax3 uoneznuclLd | uonoalas uoleiausn aaunos HOM

72

CHAPTER 4. RELATED WORK OF CONCEPTUAL SCHEMAS VALIDATION

As can be seen in Table 4.2 none of the works targets the

generation, selection and prioritization of test cases for UML-CD based

CS. Therefore, the described approaches have the following

weaknesses:

A significant weakness is that these works (i.e. [53], [54], [55],
[56]) use their own CS or modeller/designer criteria to define
the test cases, which can derive incomplete and inappropriate
test cases.

Regarding the source of the test values, only Pilskalns et al. [56]
generate test values based on variable partitions derived from
the CS. In the other cases, the test values are provided by the
modeller or Tester, which can cause values not considered in
the test cases.

Regarding test case generation, a weak point of the related
work is that most of them deal with the manual and
unsystematic derivation of test cases. Only the method
proposed by Gogolla et al. [55] generates the test cases semi-
automatically using snapshots code. This means it is not
possible to state the relative execution order of test cases (i.e.
test scenarios) that are expected to be executed.

One of the limitations of the most of the related work (i.e. [54],
[55], [56]) is that they use their OCL constraints as the test
oracles, so that these constraints need to be present in the CS.
Only Tort et al. [55] use assertions entered manually for
modeller/designer/tester enabling the specification of arbitrary
test cases that are separated from the UML model, so the
assertions could be evaluated for any point in time as well as
for time periods of the execution of the CS under test.
Regarding the selection and prioritization of test cases, none of
them describes the criteria or the process applied to select or
prioritize the test cases. We therefore considered that they do
an ad-hoc selection. However, when the testing phase is done
using an appropriate selection of test cases, the testing effort is
reduced.

73

CHAPTER 4. RELATED WORK OF CONCEPTUAL SCHEMAS VALIDATION

vi.

Vil.

Each work has defined its own environment to execute the test
cases based on the USE tool, which requires specifying both the
CS and the test cases in their own formalism different from the
standard semantics (e.g. fUML) for executable UML models.
Finally, we would like to highlight that most of the cited
methods simply provide a response or failure (showing
whether the input test designed to validate a specific CS
element is satisfied or not). However, none clearly identifies
the source of the problems (i.e. defect type and location) nor
assist the modeller/designer to repair them. For instance, when
the testing is not satisfied, Tort et al. [53] return a verdict to
indicate whether the constraints are satisfied (i.e. pass) or not
(fail) and when the base information state is inconsistent (i.e.
error). Dinh-Trong et al. [54] report test failures whenever the
following situations occur: uninitialized variables in conditions,
uninitialized parameters passed in operations calls, non-
existent target object of an operation call, pre-and post-
conditions evaluate to false. Pilskalns et al. [56] can reveal a set
of faults related to inconsistency via static analysis, and two
faults types when test cases are executed: path faults (i.e. a
path associated with a condition is not included in the TAM)
and a OCL faults (i.e. execution trace violate OCL expressions)
using the USE tool. Gogolla et al. [55] reports inconsistencies
when invariants are contradictory. Thus, none of these works
includes goals and test oracles in their test cases to help
identify and locate the detected defects, which means an
additional effort is required to identify and locate them in the
Cs.

The state-of-the-art as reviewed in this section indicates that no

definitive approach adequately solves the problem of validating

conceptual, which means the following challenges must be addressed:

Challenge 1: Test Case Generation. The test cases with oracles and

test goals generated using information external to the CS (i.e.

74

CHAPTER 4. RELATED WORK OF CONCEPTUAL SCHEMAS VALIDATION

requirements), the measurement of possible automation and the need
for a profitable supporting tool using a standard semantic.

Challenge 2: Test input values. The testing framework should allow
(based on any coverage criteria) input data for the parameters of the
operations under test to be specified or generated in order to test
different execution scenarios.

Challenge 3: Allow to select and prioritize the generated test
cases.

Challenge 4: Generate Executable Conceptual Schema under test
(CSUT). UML CD-base Conceptual Schemas are our CSUTs. However, a
transformation into standard executable semantics (e.g. fUML) are
required to execute the UML models.

Challenge 5: Testing Environment. The testing framework should
allow to execute the test cases against the CS under test and reporting
the detected defects in an environment based on a standard
executable semantic for UML models.

Challenge 6: State validation. Assertions regarding the runtime
state of the tested model, consisting of objects, their feature values,
and links, should be possible for any point in time as well as for time
periods of the execution of the CS under test.

Challenge 7: Execution order. It should be possible to test the
chronological order in which events are executed during the execution
of the CS under test. Furthermore, it should be possible to state the
relative execution order of test scenarios that are expected to be
executed.

Challenge 8: Input / output validation. The testing framework
should enable to check whether an input of a test case results in a
given output using test oracles.

75

CHAPTER 4. RELATED WORK OF CONCEPTUAL SCHEMAS VALIDATION

Challenge 9: Syntactic Correctness and Consistency Verification.
The testing framework should enable checking whether the CS is
correctly represented in terms of the syntax of the modelling language,
as well as if the structural part is consistent with the specified
behaviour (i.e. OCL constraints). The framework should recognize well-
formed and ill-formed CS, reporting defects, if any.

Challenge 10: Repairing Feedback. The testing framework should
help the modeller (analyst/designer) to locate and correct the defects
detected in the CS.

These points are dealt with in the next Chapter.

4.4 Summary and Conclusions

In the related work on conceptual schema validation, several
existing methods claim that they perform the validation of a
conceptual schema in different degrees through animation, simulation
and testing of the behaviour of a Conceptual Schema. However, these
methods in fact verify the consistency between the structural part and
the behavioural model (i.e. OCL constraints) using tool support. For
validation, these methods need to inspect the results to determine
defects, because, although some approaches point out the source of
the problem, they do not indicate how the modeller/designer can
correct the defect. This is because the methods focus on exploring the
CS in order to execute or simulate CS states (but not on finding
defects).

Test case generation is among the most labour-intensive tasks in
software testing and also one that has a strong impact on its
effectiveness and efficiency. For these reasons, it has also been one of
the most active topics in the research on software testing for several
decades, resulting in many different approaches and tools (see Section
4.2). However, these techniques are focussed on the code level and our
proposal aims to generate test cases for revealing requirements
defects that may be detected in the CS at the conceptual modeling
stages (i.e. analysis and design).

76

CHAPTER 4. RELATED WORK OF CONCEPTUAL SCHEMAS VALIDATION

Testing-based conceptual schema validation is a research area that
admits new methods and techniques, facing challenges such as
generation of test cases using information external to the conceptual
schemas (i.e. requirements), the measurement of possible automation,
selection and prioritization of test cases and the need for a profitable
supporting tool using standard semantics, opportune feedback to
support the software quality assurance process and facilitate making
decisions based on the analysis and interpretation of the results.

77

PART II1
TREATMENT DESIGN

CHAPTER 5. MODEL-DRIVEN TESTING FRAMEWORK

Chapter 5
V/ ALIDATION FRAMEWORK For
CONCEPTUAL SCHEMAS

As mentioned in the previous chapters, the aim of this thesis is to
provide a set of methods to help modellers (analysts/designers) and
testers to improve the quality of conceptual schemas. The methods
provided as part of this thesis are organized in a validation framework.

This chapter describes the thesis’ main contribution: the testing-
based validation framework for Conceptual Schemas in a Model-driven
environment that overcomes the challenges specified in Chapter 4 and
grouped in two issues: the validation of requirements at an early phase
(i.e. conceptual schemas) and the automatic generation of test cases
for conceptual schemas. To meet these challenges, our methodological
framework advocates the use of Model-Driven Engineering (MDE)
techniques, which involve the intense use of models to support the
different phases of the proposed framework. We believe that the use
of MDE reduces the complexity of the proposed validation approach
because it allows modellers and testers to work at a high level of
abstraction and also increases automation and reuse. In our approach,

81

CHAPTER 5. MODEL-DRIVEN TESTING FRAMEWORK

the level of abstraction is raised by allowing modellers to specify
requirements using a Requirements Engineering method that provides
high-level conceptual constructs.

Automation is increased by means of model transformations, which
take the requirements models as input and automatically generate test
case implementations which are integrated in a testing environment
that executes them against executable conceptual schemas to assist
testers during the validation of requirements of conceptual schemas.
Reuse is increased by allowing testers to reuse parts of the test models
for generating test cases for other types of conceptual schemas (i.e.
00-Method based conceptual schemas). We thus enable the rapid
construction of test models and also automate the implementation of
test cases via the composition of reusable test model components.

This Chapter is organized into seven sections: Section 5.1 gives an
overview of the validation framework followed to generate the test
cases, execute them against executable conceptual schemas and report
the test results. Section 5.2 describes the Test Analysis phase and
Section 5.3 summarizes the Test Design phase. Section 5.4 presents the
Test Generation phase. Section 5.5 states Test Prioritization. Section
5.6 describes Test Execution. Section 5.7 details the Test Evaluation
phase. Section 5.8 gives an overview of the testing process and Section
5.9 contains the summary and conclusions of this chapter.

5.1 Framework Overview
In this section, before detailing our methodological framework, we
provide a general overview.

According to the vision of Weber et al. [102], we understand a
framework as a holistic and concise description of concepts and
methods relating to a specific domain. In this thesis, as mentioned in
Chapter 1, we propose a framework to help modellers,
analysts/designers to improve the quality of their conceptual schemas.
Our model-driven validation framework provides an execution
environment for the automation of test cases (i.e. test scripts) and thus

82

CHAPTER 5. MODEL-DRIVEN TESTING FRAMEWORK

provides the user with various benefits that help design, generate,
select, execute and report the automated test scripts.

5.1.1 Phases of the Methodological Framework

Figure 5.1 graphically depicts the model-driven testing based
validation framework proposed in this thesis, which is described in the
next sections.

ANALYSIS n Q Knowledge
« 3

Clients))
S35
W, 2N
&

e g > -}
’ 9 T .
et <
A S i] Requirements
Requirements Engineer Model

DESIGN ﬁ .
Example Test Model
Values
Test $ &

=P

Dit.a Test Scenario
Tester Model

GENERATION DY
Abstract
& Test Scripts
Test Cases 3 &
Selection Concrete and
Tester | | | Executable
Test Scripts
PRIORIZATION g

Based on l
Mutation Selected Concrete
Analysis r | I and Executable

Test Scripts

=}

2|

Tester

EXECUTION

Conceptual Schema

SO

]

Executable CS

EVALUATION SN
- Defects Report
L and Coverage

Analysis

Analyst/ModeIIe.;

i

Legend
[:] Model = External Input = Internal Flow & Automated process

Figure 5.1. Overview of the validation Framework

5.2 Test Analysis
In this Section, we focus on the analysis phase of our validation
framework. This phase requires a study of the requirements, talks to

83

CHAPTER 5. MODEL-DRIVEN TESTING FRAMEWORK

various stake-holders to obtain communicative interactions between
the information systems and its environment.

In this phase, the software requirements are understood and
modelled in a requirements model using Communication Analysis [21]
(see Section 3.1.1). The requirements model is an instance of the
Requirements Metamodel proposed by Espafia [103], which describes
the system requirements at business level and is specified by the
domain experts and system analysts.

5.2.1 Requirements Specification based on

Communicational Analysis

Our first reason for using Communication Analysis is to obtain a
single model to specify the functionality of an Informatin System (IS)
and to generate the respective test cases. In this way the use of
different artefacts by requirements analysts, testers and developers is
avoided, thus making their work easier. As the events sequence
describes the expected exchanges of messages between the actor and
the system, this can be used to define the test cases. In particular,
while the communicative events indicate the actions to be performed
in a complete and uninterrupted way under certain constraints, the
message structures for each communicative event contain references
to the types involved that represent actors, or business concepts, the
relationships between them and parameterized messages with data
types existing in the conceptual schema of the system (the class
diagram and state machines). However, this forces the requirements
analyst to be precise and rigorous in the semantics given to each CA
concept and thus may not be so easy to build. To reduce this
complexity, we use the existing editor tool [15], which is a Domain
Specific Language to create a Communicative Event Diagram (CED) and
introduce a message structure for each communicative event.

Our second reason comes from the fact that requirements-based
testing [3], particularly model-driven testing [16], is being increasingly

84

CHAPTER 5. MODEL-DRIVEN TESTING FRAMEWORK

used. There is thus a need for a systematic approach to generating test
cases from requirements model.

Our third reason is in the MDD context, where it is possible to
obtain a test model from a requirements model by means of model
transformations, so that the process can continue to generate the
executables test cases. This means when a modification is made in the
requirements model, not only is the test model automatically re-
generated, but so are the concrete test cases.

Finally, CA has been integrated into a UML-compliant Model-Driven
Development framework [6], as well as a model transformation
strategy defined by Espaiia et. al [104] to derive the initials versions of
conceptual schemas from Communication Analysis requirements
models. This means that it includes the primitives (Event Specification
Template primitives) that a model-driven method needs (fine-grained
enough to be represented directly in code) to express the structure and
dynamics of an IS.

5.2.2 Modelling Requirements based on

Communicational Analysis

Communication Analysis offers several modelling techniques for
business process modelling and requirements specification. The
Communicative Event Diagram (CED) describes the business processes
from a communicational perspective. Figure 5.2 shows two CEDs of the
CA model for the Video Club case (i.e. management of users and movie
rents, respectively). A CED consists of a structured sequence defined by
precedence relationships among Communicative Events (CE) (the
rounded boxes in Figure 5.2). A CE is an action related to information
(acquisition, storage, processing, retrieval and / or distribution). A CE is
carried out in a complete and uninterrupted way when there is an
external stimulus to the system (i.e. user login into the system). A CE
can be specialized by means of event variants, which are alternative
events that define paths in the CED (e.g. in Figure 5.2 the Login
Resolution is specialized into Login is accepted or login is rejected).

85

CHAPTER 5. MODEL-DRIVEN TESTING FRAMEWORK

USER
INFORMATION REGISTERED US
| REGISTER usm
Pannel salesman < Manager
SESSION —
[
INFORMATION e
Partner
(g]
LOGIN STATUS ‘ LOGIN RESOLUIION
> 51
Partner [AC(EPY(D RUECTEO
) ‘
UPDATED INFO! 6
. | UPDATE INFORMATION NO"’ >
Partner R P e k) .
1
([r——
LOGOUT INFO 7 Manager
s »{LOGOUT USER
Partner
LEGEND - RSONG
> R { FRECIBIOR S Y Yy
PRMARY COMMUNCATIVE COMMUNICATIVE PRECEDENCE (FROMADSFFERENT “OR COMMUNICATVE
i BT EVaNT RELATION PROCESS) MERGE INTERACTION
VIDEO CLUB .
INFORMATION
ﬁ,,w FORMATION I RECRTERVIOED CLUB
Manager Mmm?s!rgt?t —x
MOVIE ’—i— D
INFORMATION M
ORMATION [REGISTER MOVIE__|MOVIE NOTIF
Salesman —|—’
| ’ Manager
RENTAL INFO
»| PARTNER PLACES A | -
RENTAL
Partner Salesman

Figure 5.2. Excerpt of a CA model for the Video Club case.

A CED has relationships to specify ingoing and outgoing
communicative interactions and three actor roles: i) the primary roles

(i.e. primary actor) that trigger the CE and provide the input

information, ii) the receiver roles (i.e. receiver actor) that need to be

informed of the occurrence of an event; and iii) the interface roles (i.e.

support actor) that is in charge of editing and entering input

information. In the example, in the CE Register User, the partner acts

as primary role, the manager as receiver role and the salesman as

86

CHAPTER 5. MODEL-DRIVEN TESTING FRAMEWORK

interface role. To describe a CE in detail, Espaia et al. [21] proposed to
use Event Specification Templates.

The Event Specification Template structures the requirements [21]
and is a textual specification technique that is used to describe both
ingoing and outgoing messages transmitted to the IS in a
Communicative Event. It uses a Message Structure to define the
information that is communicated in the event.

The template is composed of a header and three categories of
requirements: contact, communicational content and reaction
requirements. The header contains information about the CE such as
event identifier, name, goal, a narrative description, and so on. Contact
(requirements related to the triggering of the event by an actor to
communicate something to the information system, e.g.
preconditions), message (specify the contents of the message being
communicated to or from the IS, e.g. message fields, domain of the
message fields, message constraints); and reaction requirements
describe how the IS reacts to the communicative event occurrence
(e.g. stores new knowledge, makes new knowledge and conclusions
available to the corresponding actors). Therefore, this category of
requirements includes business objects being registered (i.e.
treatments) and outgoing communicative interactions being generated
by the event (e.g. linked behaviours and linked communications),
among other requirements. Our research covers the testing of the
requirements related to communicative events. A simplified Event
Specification Template of event is shown next in Table 5.1.

The Message Structure specifies the information communicated to
or from the Information System [105]. Table 5.1 shows the Message
Structure for the communicative event (i.e. a salesman registers a
movie) in our example.

The following grammatical constructs are of interest for the
purpose of Test Model derivation (see [105] for further information on
this technique).

87

CHAPTER 5. MODEL-DRIVEN TESTING FRAMEWORK

Table 5.1. Example of an Event Specification Template

7. REGISTER MOVIE INFORMATION

Goals: From the point of view of the information system, the objective of this event is
to record the relevant information about the movie rents.

Description: When a partner rent movies, both the rent date and return date should be
registered in the SI. More than one movie may be included in a rental. The rental price
is calculated as a derivative, adding the movie prices that make up the rental.

Contact requirements

Primary actor: Partner
Communicational channel: In person
Temporal restrictions: none
Frequency: none

Communicational content requirements

Support actor: Salesman
Communication Structure: (see the next partial view of a Message Structure)

FIELD OP | DOMAIN EXAMPLE VALUE

RENTAL =
<idrental + g | Number 7260

pick up date + i date 18-05-2016

return date + i date 20-05-2016

total + i money 2.5

Partner + i PARTNER | User100, Jorge Vidal
RENTALLINES = 100, Valencia,...
{RENTALLINE =
<rental number + i Number 250

price + d | Money this.movie.rental_price

Movie > i MOVIE 100, Everest,...
MOVIESTATUS =
<status + i Text Rented

Movie >>} i MOVIE 100, Everest,...

Structural restrictions: One rent can have many movies.
Contextual restrictions: Rental is identified by the id rental.

Reaction requirements

Treatments: The rent lines are recorded and they are assigned to the movie rent.
Movie status is updated to “Rented”.

Linked behaviour: The rent is related to a partner.

Linked communications: none

A Substructure is an element that is part of a message structure.
For example, Partner, RENTALLINES, RENTALINE, Movie, MOVIESTATUS
are substructures of RENTAL. The initial substructure is the first level of
a message structure. In our case RENTAL = <id rental + pick up date +
return date + total + Partner + RENTALLINES, MOVIESTATUS>.

There exist two classes of substructures;

88

CHAPTER 5. MODEL-DRIVEN TESTING FRAMEWORK

a)

Field: Basic informational element of the message and is not
composed of other elements.

Data Field: To represent a piece of data with a basic domain. For id
rental, pick up date, return date, total, rental number, price and
status.

Reference Field: Field whose domain is a type of business object.
For instance, Partner and VideoClub both refer to a partner and
VideoClub respectively, and are already known to the IS.

Complex substructure: Any substructure that has an internal
composition.

Aggregation Substructure: Specify the composition of several
substructures in such a way that they remain grouped as a whole.
It is represented by angle brackets < >. For instance, RENTALLINE=
<rental number + price + Movie>.

Iteration Substructure: Specify a set or repetition of the
substructures it contains. It is represented by curly brackets { }. For
instance, a submission can be related to several RENTALLINES and
MOVIESTATUS.

Each field is characterised by properties, some of which are
described below.

It must have a significant Name (e.g. pick up date).

An acquisition operation (OP) specifies the origin of the

information that the field represents.

1) Input (i): The information of the field is provided by the primary

actor.

2) Generation (g); The IS can automatically generate the field

information (e.g. id rental).

3) Derivation (d): The field information is already known by the IS

and therefore can be derived from its memory; i.e. it was previously

communicated in a preceding communicative event. This operation can

have an associated derivation formula (e.g. price in RENTALLINE).

89

CHAPTER 5. MODEL-DRIVEN TESTING FRAMEWORK

If the attribute operation is of the “derivation” type, the derivation
formula indicates the formula in ALF language (e.g.
this.movie.rental_price for price of RENTALLINE).

A Domain specifies the type of information that the field contains
(e.g. text, number, Partner).

An Example Value is a value for the field, provided by the
organisation (e.g.7260 for id rental).

The minimum Cardinality is a value that indicates the minimum
cardinality of the data field. The maximum Cardinality is a value that
indicates the maximum cardinality of the data field.

An isldentifier is a Boolean value that indicates if a data field is an
identifier field of a substructure.

For each Communicative Event in the CED a message structure is
required with information needed to express its behaviour.

5.3 TestDesign

In this phase, the test basis information is taken from the
requirements model and is transformed into a Test Model (TM) with
the test conditions/items (something that could be tested e.g. services,
triggers, assertions and links) ordered by precedence relationships,
which generates an ordered graph. This model conforms to the
Metamodel of the Test Model (TMM). The details of metamodel and
transformations are discussed in Chapter VI.

Then, the different paths are identified from Test Model to
generate the Test Scenarios Model with the test items combined into
abstract test cases. The test cases are abstracts in the sense that they
do not contain concrete objects. The metamodel and transformation
are discussed in detail in Chapter VI.

90

CHAPTER 5. MODEL-DRIVEN TESTING FRAMEWORK

5.3.1 Test Data

For specification of test values, data is extracted from the Test
Model and stored in a data base. These values are the example values
passed to the test model from the requirements model. Another data
source is the values directly entered into the data base by the user
(modeller or tester). Finally, a web-based generation strategy of valid
test strings using regular expressions provided by the user (modeller or
tester) may be used to generate test values (e.g. [106]).

5.4 Test Generation

Test cases can also be generated by traversing from parent root to
child node using a classic pathfinder or graph traversal algorithm [107].
When all the nodes in a path from parent to child node are traversed,
then it is considered as one test scenario. All nodes should be covered
to make sure all flows in an application are covered. One flow is
considered as one test scenario.

Test suite for CS is a set of one or more test scenarios. Each test
scenario is a story that consists of one more test cases. In this phase,
abstract test scripts are generated from a test scenario model. Then,
the concrete and executable test cases (scripts) are generated from a
test scenario model to describe what the system is supposed to do
with the inputs taken from the data base, as well as the oracle and
goals of the test case. All this is done through model-to-model and
model-to-text transformations following a model-driven development.
The details of model-driven generation are discussed in Chapter 6. In
the following sections we summarize the design decisions considered
for generation of the test cases.

5.4.1 Test Case Selection

Since the generation process generates many test cases to cover
the different test scenarios, we need know which test cases should be
inventoried and which should be deleted. Because test scenarios may
share some statements in common (common path in the test scenario
model), the generation process of test cases may get a large number of

91

CHAPTER 5. MODEL-DRIVEN TESTING FRAMEWORK

duplicate test cases. The criterion to identify duplicate test cases is by
matching the Test statement. Then, we omit the generation of the
duplicated test cases and keep both the type of generated test case
and the duplicate test cases to report as a result of the generation
process.

5.4.2 Addressed Quality Goals

The test cases mainly address the validation of two CS quality goals
[9]: the correctness (covers both syntactic correctness -right syntax or
well-formedness, and semantic correctness -right meaning and
relations relative to the knowledge about the domain) and
completeness (i.e. all the necessary information is defined in the CS).
However, other quality goals are also addressed, such as Consistency,
Confinement, Comprehensibility and Changeability (see Section 4.1.2).

5.4.3 Test Types

Test types define the general types of expectations that need to be
specified in test cases for testing conceptual schemas. In conceptual
modeling, (a fragment of) the lifetime of an information system is a
sequence of CS states, which represents a snapshot of the state of the
domain as an instance of the conceptual schema [53]. In our approach,
we conceive test cases for testing conceptual schemas as a sequence of
states of the CS (i.e. concrete user story), together with formalized
expectations (i.e. test oracles and test goals) about these states. This
sequence of states is expected to be successfully executed if the
required knowledge is correctly and completely defined in the
conceptual schema. So, these kinds of tests are as follows:

Asserting the content of an object

The objective of this test kind is checking that, in a concrete object
state (explicitly created by the fixture of the test case) the value of
basic and derived knowledge defined in the schema is as expected. If
the assertion is true, then the conceptual schema has the correct
knowledge to provide information about the object state as expected.
Otherwise, the knowledge defined in the conceptual schema needs to

92

CHAPTER 5. MODEL-DRIVEN TESTING FRAMEWORK

be changed (the specification of the derived knowledge or the
specification of some events is incorrect).

Asserting the Occurrence of an Event

The second test kind corresponds to the assertion of the
occurrence of an event in a CS state reached by a test case. If the
assertion is true, then the event has occurred as expected and the
resultant CS state complies with its specification. Otherwise, some
constraints that prevent the event from occurring are too restrictive, or
the specification of the event is not correct.

Asserting the Non-Occurrence of an Event

This is the rationale for the third test kind, which corresponds to
the assertion of the non-occurrence of a CS event. If the assertion is
true, then the event has not been allowed to occur as expected.
Otherwise, the set of constraints related to the event need to be
modified (i.e. need to be more restrictive) in order to prevent its
occurrence.

Then, the tester can select the type of test case:

e Partial (only positive test cases): This kind of test case uses
assertions to test the occurrence of an event and the contents of
CS objects.

e Complete, which adds test cases (thus of positive test cases) with
some negative conditions such as values out of range based on
variable partitions that can be derived from CS information,
constraint violations, minimum cardinality violation, and unique
value violation for class variables. In this way, we test the non-
occurrence of an invalid event.

In this context, the constraints that can be validated are restricted to
those that can be represented in ALF language [83].

93

CHAPTER 5. MODEL-DRIVEN TESTING FRAMEWORK

5.4.4 Test Generation Criteria

In addition, for selection of the test cases to be generated, our
framework applies a set of generation criteria adapted from Andrews’
proposal [108] based on coverage elements (i.e. classes, associations
and generalizations) in the structural part as well as the behavioural
part (condition, all message paths) (see Table 5.2).

Table 5.2. Test generation criteria for UML CD-based Conceptual Schema
Association-end multiplicity (AEM) criterion
Given a test suite T and a test model TM, T must cause each representative
multiplicity-pair in TM to be created.
Generalization (GN) criterion
Given a test suite T and a test model TM, T must cause every specialization defined
in a generalization relationship to be created.
Class attribute (CA) criterion
Given a test suite T, a test model TM, and a class C, T must cause a set of
representative attribute value combinations in each instance of class C to be
created.
Condition coverage (Cond) criterion
Given a test suite T and test model TM, T must cause each condition in each
decision in TM to evaluate to both TRUE and FALSE.
Full predicate coverage (FP) criterion
Given a test suite T and test model TM, T must cause each clause in every condition
in TM to take the values of TRUE and FALSE while all other clauses in the predicate
(condition) have values such that the value of the predicate will always be the same
as the clause being tested.
Each message on link (EML) criterion
Given a test suite T and diagram Class (DC), T must cause each message on a link
connecting two objects in CD to be executed at least once.
All message paths (AMP) criterion
Given a test suite T and test model TM, T must cause each possible message path
(sequence of message numbers) in TM to be taken at least once.
Collection coverage (Coll) criterion
Given a test suite T and test model TM, T must test each interaction with collection
objects of various representative sizes at least once.

5.4.5 Deriving test goals

In our framework the test generation criteria and test types can be
used to derive test goals. Figure 5.3 shows some examples of test goals
for Video Club CS based on the Coll criterion.

For example, (i) the Coll criterion may be associated with test goals
for test case positive that require the system to be brought into a

94

CHAPTER 5. MODEL-DRIVEN TESTING FRAMEWORK

specific configuration that has a specified number of objects in a
collection appearing in a test model; (ii) the EML criterion can be used
to generate a test goal for test case positive that stipulates the specific
links to be exercised during tests; (iii) the CA and Cond criteria may be
used to derive the attribute value in each instance of class rental to be
created; (iv) the FP and Cond criteria can be used to derive test goals
for test case negative that stipulate values for a specific condition; (v)
the CA criterion may be used to generate a test goal for a test case
negative that validate the attribute value in each instance of class
videoclub to be created; alternatively, (vi) the AMP criterion can be
used to define a test goal for test case positive that stipulates the
specific paths to be exercised during tests.

i. Validate the Object 'videoclub_' was created (test case positive)

ii. Validate the link 'videoclub_movie.createlLink(videoclub_,movie_);'
with a valid value (test case positive)

ii. Validate the derived Attribute ‘'context rental inv
property_total_derivation:' (test case positive)

iv. Validate unique value: 'context VideoClub:: new_videoclub() post:
VideoClub->isUnique e (e.id_videoclub)' (test case negative)

v. Validate a value above the upper limit 'context videoclub::
new_VideoClub() pre: p_atrid_videoclub<=10000' (test case
negative)

vi. Validate the 'line 28' with valid values (test case positive)

Figure 5.3. Examples of test goals generated for Video Club CS

5.4.6 Concrete and Executable Test Cases

In our test framework, we adapt the UTP’s terminology [109] and
consider that a test case is a specification of one case to test the
conceptual schema including what to test with, which input, result, and
under which conditions. Then, the test cases generated by our
proposal exhibit the following properties:

- A test case consists of a fixture and one or more statements that
execute one of the tests applicable to conceptual schemas, such as

95

CHAPTER 5. MODEL-DRIVEN TESTING FRAMEWORK

testing assertions about the occurrence or the non-occurrence of
an event. The fixture is a set of statements (e.g. create an object or
link, execute an object method) that create a CS state and define
the values of the CS variables.

The oracle and test goal of each test case is derived from type of
test cases selected in the previous phase. The expected value
(oracle) to the positive test cases is the assertionEqual or
assertionTrue equal “true” and with negatives conditions the
assertionFalse must be true otherwise the test case failed.

Each execution of a test case starts with the execution of the
fixture.

It is assumed that the execution of each test case starts with an
empty state. With this assumption, test cases of a CS are
independent of each other, and the order of their execution is
therefore irrelevant.

In ALF, an executable test case is an activity that provides the

specification of parameterized behaviour as the coordinated
sequencing of subordinate ALF units. It is the fundamental mechanism

for behavioural modelling in ALF.

Each concrete test case has a name and consists of a set of

statements (see Figure 5.4).

private import namespace::*;

public import Library;

//Goal: .. <oracle< ... (<test type>)
activity TestCaseName () {

assert ..

}

Figure 5.4. Test Case Structure

The last statement of a concrete test case is an assertion. The

formal definition of ALF Language syntax is given in [82]. In this section,

we describe the syntax and semantics of the five kinds of statements

related to test conceptual schemas:

96

CHAPTER 5. MODEL-DRIVEN TESTING FRAMEWORK

e Statements that update the information of the CS objects,
e Statements that assert the occurrence of events,

e Statement that assert the non-occurrence of events,

e Statements that assert the content of the CS objects.

Updating the information of the CS object

When the execution of a test case begins, the CS information is
assumed to be empty and, therefore we need to set up in a progressive
way the different CS states to check a state that cannot be reached by
valid events.

ALF includes statements that can be used to explicitly set up a CS
state in a test case. We describe them below using examples based on
the schema fragment of Video Club (see Figure 5.5).

Q Movie
H videoClub
= id_maovie : Integer
= id_videcclub : Integer = mevie_name : String
=l manager_name: String |videoclub movies| = director : String
= city : String = release_date : Date
=1 address : String [U--l]_ _[D“”J = rental_price : Real
[=1 postal_code: String videoclub_movie [=0 status : String
I maovie
Q Partner movie_rentalline
10.% rentallines
=1 username : String E Rentalline
=1 password : String
=1 name : 5tring = rental_number : Integer
=l age : Integer =1 /price : Real
[0.1] partner rentallines 0.1
partner_rental rental_rentalline
[0.7]] rentals rental [0.1]

E] Rental

=1 id_rental : Integer
= pick_up_date: Date
= return_date : Date
=1 ftotal : Real

4% new_rental(p_atrid_rental : Integer, p_atrpick_up_date : Date, p_atrretumn_date : Date, p_agrpartner: Partner)
4 RENTAL_INFO[p_thisRental : Rental)
4@ set_return_date(pt_return_date : Date, p_thisRental : Rental)

Figure 5.5. UML class diagram for Video Club CS

97

CHAPTER 5. MODEL-DRIVEN TESTING FRAMEWORK

e We define that entitylD is a new instance of the any entity type
with the following statement:

EntityType entityID=new EntityType();
e To define that the value of attribute att of entity entitylD is val
(where val is a valid OCL expression) we write:

entityID.att=val;

The types of att and val must be compatible; otherwise the verdict
of the test case in which the statement appears is Inconclusive.

Often, it is convenient to state in a single statement the creation of
a new entity entitylD as an instance of entity type EntityType. The
syntax is as follows:

entitylD= new EntityType (parameterl=valuel, vy
parameterN=valueN);

where entitylD must be a new identifier and the valuei are values
or expressions. For example, for creation of a videoclub instance:

videoclub_= new
VideoClub(p_atrid_videoclub=100,p_ atrmanager_name= "Jose
Vicente Vidal",p_atrcity= "Valencia",p_atraddress=

"Guardia Civil 21",p_atrpostal code= "46020");
e Instances of an n-ary UML association Assoc with roles rl,. . ., rn
are created with the following statement:

AssociationName.createLink(entityA, entityB);

Where entityA and entityB must be end members of the
association. For example, to create an instance of the association
videoclub_movie:

videoclub_movie.createlLink(videoclub_,movie);

e Entities can be deleted with the following statement:

objectID_.destroy();

For example, to delete the videoclub instance.

98

CHAPTER 5. MODEL-DRIVEN TESTING FRAMEWORK

videoclub_.destroy();

The deletion of an entity implies the deletion of its attributes and
the links in which it participates. However, note that (per UML
Superstructure, 7.3.3 [110]) the composition annotation is on the part
end of the composite association. For example:

assoc rental rentaline {
public 'rental':Rental[1];
public 'rentallines': compose Rentalline;

}

That is, in the above association, Rental is the composite while
Rentalline is the part. Thus, when an instance of class Rental is
destroyed, if there is a link of association rental_rentalline with
that object at one end, then that link and the instance of Rentalline
at the other end will also be destroyed.

Asserting the Occurrence of Events

An event is an execution of some operation (method) of the
schema, which may have several kinds of defects. Among which are
highlighted:

1. The pre-conditions of the event may not allow the occurrence of
valid events.

2. The post-conditions may not precisely define the intended effect of
events.

3. The method of an operation may produce a CS state that does not
satisfy the schema invariants.

Testing the schema may be a practical means of detecting those
defects. This is done by setting up for each event in the requirements
model one test case with a CS state (i.e. fixture) and an instance of that
event followed by an assertion of the (satisfactory) occurrence of that
event.

In ALF, the event (or operation method) is a behavioural feature of
a class that provides the specification for invoking an associated

99

CHAPTER 5. MODEL-DRIVEN TESTING FRAMEWORK

method behaviour. Only classes may have operations as features. An
operation is called on an instance of a class that has it as a feature
using an invocation expression:

entityId.EventId();

execute the Eventld associate with the entityld, whose
characteristics (attribute values) can be defined as in the case of
entities with the assignment of the value for its attributes att1,..., attn.
The syntax is as follows:

entityId.EventId(attl=valuel,..., attn.=valuen);
As an example:
videoclub_.movieunique();

Once the concrete event Eventld has been executed in a test case
in order to assert that it may occur in the current state of the CS, the
conceptual modeller asserts that the current CS state must be
consistent by writing the following statement:

Assert<AssertType>((“message”, assertion);
As an example:

AssertTrue("MovieUnique", videoclub_.movies->isUnique e
(e.id_movie));

The verdict of this assertion is determined as follows:

1. Check that the preconditions of the event are satisfied. The
verdict is Inconclusive if any of the event preconditions is not
satisfied.

2. Execute the method of the corresponding operation.

3. Check that the new CS state is correct (as defined in Asserting
the CS state). The verdict is Inconclusive if any of the
constraints is not satisfied.

100

CHAPTER 5. MODEL-DRIVEN TESTING FRAMEWORK

4. Check that the event post-conditions are satisfied. The verdict
is Inconclusive if any of the post-conditions is not satisfied;
otherwise the verdict of the whole assertion is Pass.

5. Check that the current CS state is correct (as defined in
Asserting the semantically correctness of a CS state). The
verdict is Fail if that check fails (events may not occur in
incorrect CS states). A CS state is called semantically correct if it
satisfies all invariant defined in the conceptual schema.

If the verdict from step 1 is Inconclusive, then the conceptual
modeller must change the CS state in order to make it valid. If the
verdict from steps 1, 2 or 3 is Inconclusive, then the event has not
occurred as expected by the conceptual modeller/tester. If the verdict
from step 1 is Inconclusive then the following two cases are possible:
(1) domain experts consider that the CS state and event occurrence are
indeed invalid or, if it is valid, then (2) the non-satisfied constraint(s) is
incorrect. In the former, the conceptual modeller/tester may prefer to
change the assertion to assert non-occurrence (see below). In the
latter, the corresponding event constraint(s) must be corrected. If the
verdict from step 3 is Inconclusive, then the method, the event
constraints or some schema constraint must be ill-specified. If the
verdict from step 4 is Inconclusive then either the method of the
operation or some post-condition is incorrect: the method may not
produce the intended CS state, or the post-conditions may be ill-
specified. If the verdict from step 5 is Fail, then the conceptual
modeller/tester must change the CS state in order to make it valid.

As an example, let’s assume the extension of Figure 5.5 shown in
Figure 5.6, in which video clubs are restricted with pre- and post-
conditions, which restrict the id of the movies to be unique and values
between 1 and 10000. Consider, now, the following test case (see
Figure 5.7):

101

CHAPTER 5. MODEL-DRIVEN TESTING FRAMEWORK

Movie
H videoClub =
& id_videoclub : Integer El id_movie : Intege.r context VideoClub:new_videoclub()
5 manager name String |videoclub movies| = MoViename: Sing | | pre: b atrid_videoclub> =1 && p_atrid_videoclub<=1000
ranager] ! g = director : String
= city : String X
. =l release_date : Date
= address ; String [0.1] S price : Real
: Stri decclub, - !
Bl postal_code: String vigeociub.movie =l status : String context Rental:new_rental ()
post: Rental->isUnique e(e.id_rental)
0.4 movie
E partner movie_rentalline
rentzllines context Rental inv property_total_derivation:
(5 username ; String E RentalLine this.total=this.rentallines -» collect e(e.price) -»
=] password : String reduce Sum;
5 name: String =1 rental_number : Integer
= age: Integer =1 /price : Real
L. rir
(0.1 periner rentallines [0.7] | rental rentaline
partner_rental -
[0.7] rental rental [0.1]
E Rental

= id_rental : Integer
= pick_up_date : Date
& return_date : Date
= ftotal : Real

&8 new_rental(p_atrid_rental : Integer, p_atrpick_up_date : Date, p_atrreturn_date : Date, p_agrpartner : Partner)
&8 RENTAL_INFO[p_thisRental : Rental)
&8 set_return_date(pi_retum_date : Date, p_thisRental : Rental)

Figure 5.6. VideoClub CS with examples of pre, post-conditions and invariants

private import ::*;
public import A
public imp R

activity AbsTScenario_l_VideoClub () {
wvideoclub_= new VideoClub(p_atrid_ videoclub=10
P atrcity= " atraddress=

movie_= new Movie (p_atrid movie: p_atrmovie _name: EVOrL
p_atrrelease_date=new Date(2 ,2015),p_atrrental_price=new Real(2,00),p_agrvidecclub=videcclu

videoclub_
AssertTrue ("}

}

, videoclub .movies-> isUnique e(e.id_movie)):

Figure 5.7. Example for validating pre-, post-conditions and invariants

The execution of the test case fails (as detected in step 5) because
the occurrence of the event movieunique() is not defined in the
conceptual schema. This event corresponding to the following
invariant:

There are at least two possible actions that can be performed to
make the test case Pass:

102

CHAPTER 5. MODEL-DRIVEN TESTING FRAMEWORK

1. If movies may exist with duplicated id, then the isldentifier has to
be changed to false in the requirement model, and the test cases have
to be regenerated.

2. If the domain experts confirm that when a Movie is created an
invariant of the conceptual schema must ensure that it is not a
duplicate code such as the invariant shown in Figure 5.8.

context VideoClub inv Movielnigue:
body: this.mowvies-» isUnigque ele.id_movie)

Figure 5.8. Example of an invariant

Then, the execution of the test case pass.

A conceptual modeller may use this kind of assertion not only to
check that the domain events defined in the schema behave as
expected, but also to check that each domain event type is satisfiable.
An event type is satisfiable if there is at least one CS state and one
instance of that event type such that the event constraints are
satisfied. If the conceptual modeller is able to set up a CS state and an
instance of the Event for which assert occurrence gives the verdict
Pass, then by definition Event is satisfiable. If the conceptual modeller
is unable to set up such a CS state and event, this is not formal proof
that Eventld is unsatisfiable, but in many practical cases it provides a
clue that helps to uncover a faulty event specification.

Asserting the non-occurrence of Events

A correct domain event specification must not only accept valid
event executions, but also reject invalid ones. An event execution is
invalid if it may not occur in the domain in the current CS state. Testing
the conceptual schema may be a practical means of detecting missing
events. This is done by setting up for each event one or more test cases
with a CS state and an instance of that event considered may not occur

103

CHAPTER 5. MODEL-DRIVEN TESTING FRAMEWORK

in that state, followed by an assertion of the non-occurrence of that
event.

In ALF, in order to assert that the event eventld may not occur, the
tool generates the following sentence:

assertFalse(“message”, assertion);
Consider, now, the following test case (see Figure 5.9):
The verdict of this assertion is determined as follows:

1. Check that the current CS state is semantically correct (as
defined in previous Section). The verdict is Inconsistent if
that check fails.

2. Check the satisfaction of the event constraints. The verdict
is Fail if the event constraints are satisfied and Pass if one
or more event constraints are not satisfied.

private import ::¥;
pu.bl].c].TI']’_‘C"C Al brary::BasicTypea::¥*;

atrid videcclub=100
y_atraddress= "Gu

p atrclt;— h
movie = new Movie (p_i atrld My g 0 ie_ 1", p_i atrdlrectcr
p_atrrelease_dat 5 Real(2,00),p_ agrv:tdeccl

wvidecclub .movieunique():
partner_= new Partner(p_atrusername= "Ig

nda",p_atrpassword= "123",p_atrname= "Mz Fernar

atrage=25);
rental = new Rental (p_atrid_rental=200,p_atrpick up date=new Date(20,6,2015),p atrreturn_date=
new Date(20,12,2016),p_agrpartner=partner_);
rental_.property_total_derivation():
rentalline_= new Rentalline (p_atrrental _number=250,p_agrmovie=movie_,p agrrental=rental_):

rentalline2 :
RssertFalse ("N

w Rentalline(p_: atrrental nurber=250,p_agrmovie=movie ,p_agrrental=rental):;
ists",rentalline? instancecf Rentalline);

Figure 5.9. Example of test case for asserting the non-occurrence of events

If the verdict of the assertion is Fail then two cases are possible: (1)
the event is indeed valid or, if it is not, then (2) some event constraint
is missing. In the former, the event may occur in the domain, and the
conceptual modeller may prefer to change the assertion to assert
occurrence. In the latter, the conceptual modeller/tester must define a
new event constraint or refine an existing one in order to make it more

104

CHAPTER 5. MODEL-DRIVEN TESTING FRAMEWORK

constraining. In the example of Figure 5.6, if we assume now that two
rental lines cannot be created with the same number, then the
following event constraint must be added to pass the previous test
case:

context RentallLine::new_rentalline()
post: RentallLine->isUnique e(e.rental number);

Asserting the contents of CS objects

It is often useful to include in a test case an assertion on the current
state of the CS. The purpose may be to check that one or more
derivation rules derive the expected results, or that a navigational
expression yields the expected results or that the effect of one or more
events implies an expected result in the CS. In ALF, to assert that the
current state of the CS satisfies a Boolean condition defined as a
constraint, the tool generates the following statement:

assertEqual (“message”, assertion);

where assertion is an expression in ALF over the variables of the
test case. The verdict of the assertion is Inconclusive if the current
state is inconsistent (as defined in Section Asserting the consistency).
The verdict is Pass if assertion evaluation is true and Fail otherwise. If
the verdict is Fail, two cases are possible: (1) assertion should not be
True or (2) the derivation rules and/or domain events do not give the
expected results. In the former, the conceptual modeller may prefer to
change the assertion to assert false (see below). In the latter, the
conceptual modeller must change the derivation rules and/or the
domain events specification.

Additionally, we have developed in ALF the following assertions to
evaluate dates, real values, and compare data collections:

AssertEqualDate(in label: String, in valuel: Date, in
value2: Date)
AssertEqualReal(in 1label: String, in valuel: Real, in
value2: Real)
AssertList(in label: String, in list: any[*] sequence,

in expected: any[*] sequence)

105

CHAPTER 5. MODEL-DRIVEN TESTING FRAMEWORK

As an example, let’s consider again the schema of Figure 5.6 and
that the derivation rule of the derived attribute total of Rental class is
defined as follows:

context Rental inv property_total_derivation:
this.total=this.rentallines->collect e(e.price)->reduce
Sum;

A conceptual modeler that wants to test that derivation rule may
write the following test case (see Figure 5.10).

The verdict of the assertion is Fail. The conceptual modeller expects
that rentallines.prices includes the prices of the movies, and
therefore the result should be their sum.

private import

activity AbsTScenario_l_VideoClub () {
wvideoclub = new VideoClub(p atrid wideoclub=100
p_atrcity=
movie = new Movie (p_atri
re =

_atrpostal_code=
trmovie _name= "J 1d",p_atrdirector=
5 _atrrental_price=new Real(2,00),p_agrvideoclub=videoc

v1 deo c‘.]-.ub;. movieunigue ()

partner = new Partner(p atrusername= "fgranda”,p_atrpassword= "123",p atrname= "Ma Fernanda Granda
p_atrage=25);
rental = new Rental (p_atrid rental=I00,p_atrpick up date=new Date(20,6,2015),p_ atrreturn date=
new Date(20,12,2016) ,p_agrpartner=partner_);

rental .property total derivation();
BssertEqualReal ("propsrty i
rental_.total, renta

ni):m v,
.rentallines -» collect e{e.price) -> reduce Sum);

al_deri

Figure 5.10. Example of test vase validating a derivation rule

The derivation rule does not derive the expected results because it
assigns a fixed value to each movie price. The test case will pass if the
derivation rule is corrected as follows:

context RentallLine inv property_price_derivation:
this.price=this.movie.rental_price;

5.5 Test Prioritization

Since a testing process manages many test cases, we need to know
how good a test case is. To do this job efficiently, we need to know the
test case prioritization, which test cases should be executed? Which
are critical? One problem in the design of tests to assess test case
quality is that real software artefacts of appropriate size including real

106

CHAPTER 5. MODEL-DRIVEN TESTING FRAMEWORK

faults are hard to find and hard to prepare appropriately (for instance,
by preparing correct and faulty versions) [111]. Even when software
artefacts with real faults are available, these faults are not usually
numerous enough to allow the experimental results to achieve
statistical significance [111].

In this context, mutation testing is one of the ways of assessing the
quality of a test suite to prioritize efforts in those that are critical. This
method injects artificial faults or changes into a CS (mutant generation)
and checks whether a test suite is “good enough” to detect these
artificial faults. The artificial faults can be created automatically, by
using a set of mutation operators (MO) to change (i.e. mutate) some
parts of the software artefact. Mutants can be classified into two types:
First Order Mutants (FOM) and Higher Order Mutants (HOM) [112].
FOMs are generated by applying mutation operators only once. HOMs
are generated by applying mutation operators more than once [113].

Assuming that the software artefact being mutated is syntactically
correct, a mutation operator must produce a mutant that is also
syntactically correct. Each faulty artefact version, or mutant, is
executed against the test suite. The ratio of detected mutants over the
total number of the non-equivalent mutants is known as the “mutation
score” and indicates how effective the tests are in terms of fault
detection. Thus, mutation test adequacy criteria can assist in
optimizing the testing process [114]. It can be used for defining a test
set - selecting tests from the immense test pool. The condition for test
selection is detection of faults in the mutated software artefacts.

In Mutation testing the most critical activity is the adequate design
of mutation operators so that they reflect the typical defects of the
artefact under test. Therefore, we are required to design a set of
mutation operators for Conceptual Schemas (CS) based on Unified
Modelling Language (UML) Class Diagrams (CD). The main potential
advantage of mutation operators is to describe precisely the mutants

107

CHAPTER 5. MODEL-DRIVEN TESTING FRAMEWORK

that can generate and thus support a well-defined, fault-injecting
process.

Figure 5.11 illustrates the definition process of mutation operators.
As inputs, the metamodel of an UML Class Diagram [40], the defect
types in a UML-based model [43] were provided.

c L
2 E E =
5
i &5 £
3| E5 gE :
£ EE =
— 2% ch E
? 8

5 t £

Ed

2~

=

=L

Mutation
Operators
Selection

Manual
Task

Artifact

Legend

static
analysis of
Mutants

Parsing and 0

Feedback

Generation of
CS Mutants

Mutation
OErator

Conceptual Schemas

E= -
)

Defect Typas for
UML maodels

mutated

vg‘
Element features of the

F
\,

Class diagram that can be

Figure 5.11. Selection process of the mutation operators

108

CHAPTER 5. MODEL-DRIVEN TESTING FRAMEWORK

Each element of UML Class diagram was analysed based on defect
types that can be injected. Then, all mutation operators were used to
generate mutants. A static analysis and parsing (using ALF parser) of
the mutants was performed in order to discard equivalent and non-
valid mutants. Then, a selection process was performer in order to
obtain a list of mutation operators (i.e. FOM and HOM) for mutation
usage (see Table A.1 in Appendix A).

Finally, the researchers met for decision-making with two main
objectives: 1) to focus on evaluating the usefulness of the mutation
operators for FOM and 2) to automatize the mutant generation (see
Section 7.7) and evaluate its feasibility. In a previous work [43], we
presented a defects classification at model level and in [115] described
the process of selection of the 18 mutation operators from a list of 50
for generating First Order Mutants to UML CD-based CS (see Table 5.3).

Table 5.3. Mutation operators for CS FOM taken from [116]

Code | Mutation Operator rule

1 UPA2 Adds an extraneous Parameter to an Operation

2 WCO1 | Changes the constraint by deleting the references to a class Attribute
3 WCO3 | Change the constraint by deleting the calls to specific operation.

4 WCO4 | Changes an arithmetic operator for another and supports binary

operators: +, -,*,/

WCOS5 | Changes the constraint by adding the conditional operator “not”

6 WCO6 | Changes a conditional operator for another and supports operators:
or, and

7 WCO7 | Changes the constraint by deleting the conditional operator “not”

8 WCO8 | Changes a relational operator for another and supports operators: <,
<=/ >’ >=I ==, !:

9 WCQO9 | Changes a constraint by deleting a unary arithmetic operator (-).

10 | WAS1 | Interchanges the members of an Association.

11 | WAS2 | Changes the association type (i.e. normal, composite).

12 | WAS3 | Changes the multiplicity of an Association member (i.e. *-*, 0..1-0..1,
*-0..1)

13 | WCL1 | Changes visibility kind of the Class (i.e. private)

14 | WOP2 | Changes the visibility kind of an operation.

15 | WPA Changes the Parameter data type (i.e. String, Integer, Boolean, Date,
Real).

16 | MCO Deletes a constraint (i.e. pre-condition, post-condition constraint,
body constraint)

17 | MAS Deletes an Association.

18 | MPA Deletes a Parameter from an Operation.

109

CHAPTER 5. MODEL-DRIVEN TESTING FRAMEWORK

As opposed to code-based mutation, our mutation operators are
based on the element characteristics of a UML CD-based CS and
although some of the proposed operators perform syntactic changes at
the constraints level, they are mainly focused (i.e. 41 of 50 operators)
on the semantic changes of the high-level CD constructs. Our mutation
operators are classified according to the element affected by the
operator, injected defect type, and the action required by the mutation
operator to generate valid mutants (syntactically correct). Since our
purpose is to select mutation operators to be used to evaluate testing
approaches, the selection process of mutation operators was divided
into two iterations.

In the first iteration, some operators were excluded because they
generated only equivalent mutants (e.g. UCO2, UAS3, UAS4) and non-
valid mutants, (e.g. WCL4, UCO1, UAS1), which require a static
technique (without CS execution) for detecting (e.g. syntax analysis or
structural coverage analysis), and so are not useful for mutation
testing. In the second iteration, we aimed to analyse the dependencies
between different operators and to reduce the cost of applying
mutation testing by selecting 18 mutation operators that generate only
first order mutants.

These 18 mutation operators were implemented in our tool
support called CoSTest (see Chapter 7) and validated on three
conceptual schemas (see Sections 8.3.1 and Section 8.3.2). Based on
the results obtained by applying the mutation testing, 56% (10/18) of
our mutant operators generated a high number of killed mutants
(score mutation=100 %). These results suggest that these operators
generated mutants that are relatively easy to detect by the provided
test suites. In the other case 44% (8/18) of the operators related to
characteristics of associations (i.e. multiplicity and aggregation type)
and constraints generated hard to detect mutants and their application
would stimulate selection of high quality tests. However, the behaviour
of the mutation operators may depend on the characteristics of the CS

110

CHAPTER 5. MODEL-DRIVEN TESTING FRAMEWORK

they are applied to, such as the number, element type and complexity
of constraints.

Therefore, the test cases that validate multiplicity and constraints
have to be prioritized in a test suite as well as the test cases that cover
complete test scenarios. However, the aggregation types require a
static analysis for their validation.

5.6 TestExecution

Since test scripts (test case instructions) have to be executed
against the conceptual schema under test, we require an executable CS
as input to the testing environment.

5.6.1 Executable Conceptual Schema based on

UML Class Diagram

A class diagram (see Figure 5.12) is the UML’s main building block
that shows elements of the system at an abstract level (e.g. Class,
association class), their properties (ownedAttribute),
relationships (e.g. association and generalization) and
operations. In UML an operation is specified by defining
constraints. Figure 5.12 shows an excerpt of the UML structure
[40] for a class diagram and highlights eight elements of interest for

this work.
AggregationKind
y Element 4 NamedElement TypedEiement ;ﬁgfed
— name:String Packa)
— < geableElement "
visibility:VisibilityKind I composie

ue Specification || defaultvalue

defauitValue
aramete Val
DirectedRelationship ’ &
Type 0.1 0.1
*

defi leElement
ownedParameter
0.1
— eneralizatiun; eration
|General|zat|o 2 W Classifier £ .1 Pprecondition =
general® 1 isAbstract:Boolean (.1 Postcondition »
’S%' ownedOperation 0..1 bodyCondiion »
Relationship —
I — | b=Derived:Boolean 0.1 s<<senumerations»»»
T hggregation: Aggregationkind VisibilityKind
* -
Association N pu.bllct:
rivate
isDerived:Booleanll ssociationClass| 2.* | memberEnd* P
4, protected
package
0.1 0.1

Figure 5.12. Excerpt of the Metamodel of an UML Class Diagram [40]

111

CHAPTER 5. MODEL-DRIVEN TESTING FRAMEWORK

An executable model is at the next higher layer of abstraction,
abstracting away both specific programming languages and decisions
about the organization of the software (e.g. data structure and
partitioning) so that a specification built in Executable UML can be
deployed in various software environments without change [37]. A key
ingredient of any Executable UML variant is the use of an Action
language (kind of a pseudocode) that allows designers to completely
specify fine-grained behavioural aspects of the model (e.g. to define
the behaviour of a method of a class).

But, why do we need ALF? Programming languages such as Java,
C++ or another programming language are not designed to manipulate
the elements of a CS. They do not provide the facilities that we need to
be able to express the actions in a CS in a clear and precise, yet
abstract, manner. However, programming languages allow the
developer to manipulate all sorts of implementation-specific features
that are wholly inappropriate in a PIM. For instance, it is commonplace
in modelling to want to navigate across an association (i.e. finding the
associated object/s at the other end of an association). With a
programming language we would need to know how the association is
going to be implemented, for instance with any data structure
therefore navigate the association using the operations related with
this data structure. This immediately makes the model implementation
platform specific. However, ALF allows the association to be navigated
simply and concisely, without restricting the ways in which associations
can be implemented. Figure 5.6 shows part of Video Club CS using an
UML class diagram with constraints.

ALF is a platform independent language that works at the same
semantic level as the rest of the UML-based CS. This means that
actions allow direct manipulation of the elements of the PIM (no
assumptions are made about middleware, implementation language or
software design policy) and they are capable of being translated into
different implementations for different platforms and languages.
Syntactically, ALF is based on several key design principles [82]:

112

CHAPTER 5. MODEL-DRIVEN TESTING FRAMEWORK

e ALF has a largely C-legacy (“Java like”) syntax, since that is most
familiar to the community that programs detailed behaviours.
Nevertheless, ALF allows UML textual syntax when it exists (e.g., colon
syntax for typing, double colon syntax for name qualification, etc.).

e ALF does not require graphical models to change in order to
accommodate the use of the action language (e.g., special characters
are allowed in names, arbitrary names are allowed for constructors,
etc.). Further, while ALF maps to the fUML subset in order to provide
its execution semantics, it is usable in the context of models not limited
to the fUML subset.

e ALF uses an implicit type system that allows but does not require
the explicit declaration of typing within an activity, always providing for
static type checking, based at least on typing declared in the structural
model elements.

® ALF has the expressivity of OCL in the use and manipulation of
sequences of values. These sequence expressions are fully executable
in terms of fUML expansion regions, allowing the simple and natural
specification of highly concurrent computations.

® ALF provides a naming system that is based on UML namespaces
for referencing elements outside of an activity but also provides for the
consistent use of local names to reference flows of values within an
activity. ALF adds the concept of a unit to the basic UML concepts of
namespaces and packages. A unit is a namespace defined using ALF
notation that is not itself textually contained in any other ALF
namespace definition. Units are lexically independent (though
semantically related) segments of ALF text. Figure 5.13 shows the ALF
unit definition for this example. In this definition, we can see the
classes and associations that are formed the VideoClub package.

A unit may also have subunits that define namespaces that are
owned (directly or indirectly) by the unit but whose ALF definition is
given by a unit that is textually separate from the base unit. Inclusion in

113

CHAPTER 5. MODEL-DRIVEN TESTING FRAMEWORK

the base unit is indicated using a stub declaration in the base unit and a
namespace declaration in the definition of the subunit.

package VideoClub {
public class Rentalline;
public clazs VideoClub;
public claszs Rental;
public class Partner;
public class Movier

public assoc partner_rental;
public assoc movie_rentalline;
public assoc rental rentalline;
puklic assoc videoclub movier

}

Figure 5.13. Textual definition for the package VideoClub by using ALF language

Therefore, we generate the CS under test using the structural part
(class diagram with pre, post-conditions and invariants) and
transforming CSUT into ALF units and transforming the pre, post-
conditions and invariants into behavioural information (i.e. methods)
to be used in CSUT execution (testing purposes) (see Figure 5.14).
Further information is detailed in Section 6.3.6.

Conceptual Schema

Classes pre- post- Executable
conditions > CSUT
. * . Class A {
invariants Generation oublicid:
. ublic id:Integer

7 @Create Afin id_
:Integer)
{ this.id=id_;}

Figure 5.14 Overview to generate an executable CSUT

We decided to use the Reference Implementation®as an fUML
engine because (1) it is based on the reference implementation and (2)
it provides an execution log. Thanks to (1) we have confidence in its
conformity to the fUML specification. And (2) means that systematic

5> http://modeldriven.github.io/fUML-Reference-Implementation/

114

CHAPTER 5. MODEL-DRIVEN TESTING FRAMEWORK

testing (i.e. reviewing hundreds of logs) is simpler than with the Moka®
implementation, which is more suitable for interactive testing.

The translation of UML CD-based CS into ALF is performed in two
steps:

1. Mode-to-text transformation translates the UML CD-based CS
into ALF units. This transformation is written in ATL code. It
takes as inputs an UML CD-based CS, and gives as output an ALF-
based CS. The resulting Alf-based CS contains the elements
generated from the translation of all CS elements given as input.

2. ALF unit parsing. Semantically, ALF maps the CS to the
Foundational UML (fUML [67]) subset. The resulting ALF-base CS
is semantically equivalent to the original one. Then fUML
provides the virtual machine for the execution of the ALF units.

An ALF-based CS can be executed from the command line using the
ALF shell script (for Unix) or the alf.bat batch file (for Windows/DOS).
The ALF-based CS is compiled in an in-memory representation and
executed using the fUML Reference Implementation. Further details
can be found in the ALF Reference Implementation [117].

The current version of our ALF transformation supports most UML
CD constructs with the following notable exceptions: (1) features
required to specify abstractions could be added with relatively little
work; (2) transformation of OCL constraints. Currently, the UML CD-
based CSs used in our approach use directly the ALF language to
specify the constraints. But, there is an approach enabling OCL and
fUML Integration by transformation that could be used to address this
issue [118].

6 https://wiki.eclipse.org/Papyrus/UserGuide/ModelExecution

115

CHAPTER 5. MODEL-DRIVEN TESTING FRAMEWORK

5.6.2 Architecture and Testing Environment

In order to perform conceptual schema testing, our validation
framework is based on the architecture shown in the scheme in Figure
5.15.

In our validation framework for conceptual schemas, conceptual
modellers define an explicit specification of the conceptual schema of
the information system under development. Then, a collection of
automated tests is generated to test the schema by our testing
framework. A formal language to define the conceptual schema and a
formal language to define the test programs are required to make this
approach applicable in practice. In this Thesis, we test conceptual
schemas defined in UML and ALF languages (the corresponding
concepts and notation are explained in detail in [82]).

Communicational

Analysis
i A S Defines /
Req.Model [Defines/ % 7% clients changes UML/AIf
§ =T Changes (-, st Conceptual Schema
e | e— ¥ Classes [pre-post-
3 conditions
=] Requirements Amw-.t,'Monouer 3+ | constraints
° Engineer Defmesjchanges
\ CoSTest :)
! :
L
¥
] .
3 Presentation Manager
(U]
w
c y
B o
4 <
% g_‘ CoSTest Manager ‘
©f
c_f i ‘ [\
' ' %
'
|C0v=rageRepo

Execution|
Trace

Defect Repert
Test Verdict

2 falled

lAssociation
[Test Scenario
Model

Class A |

Public id:integer
=X @create Alinid_
; Integer)

o { this.id=id ;)

Model xmi Model xmi Alf Language

UML/AIf

CoSTest
Artefacts

L7

Text n_foiled
Excel

I.egend

Database

Figure 5.15. Testmg environment to test Conceptual Schemas

116

CHAPTER 5. MODEL-DRIVEN TESTING FRAMEWORK

Semantically, ALF maps the CS to the Foundational UML (fUML
[67]) subset, after which fUML provides the virtual machine for the
execution of the ALF language. An ALF-based CSUT can be executed
from the command line using the ALF shell script (for Unix) or the
alf.bat batch file (for Windows/DOS).

The CSUT is compiled to an in-memory representation and
executed using the fUML Reference Implementation. Usage is:

alf [options] unitName

where unitName is the fully qualified name of a unit (e.g. test case)
to be executed. The allowable options are

-d level: Sets the debug level for trace output from the fUML
execution engine. Useful levels are:

e OFF turns off trace output.

e ERROR reports only serious errors (such as when a primitive
behaviour implementation cannot be found during execution).

e INFO outputs basic trace information on the execution of
activities and actions.

e DEBUG outputs detailed trace information on activity
execution.

The default is as configured in the logdj.properties file in the
installation directory.

-f: Treat the unitName as a file name, rather than as a qualified
name. The named file is expected to be found directly in the model
directory and the unit must have the same name as the file name (with
any ‘.alf’ extension removed).

-| path: Sets the library directory location to path. If this option is
not given and the ALF_LIB environment variable is set, then the value
of ALF_LIB is used as the library directory location. Otherwise, the
default of Libraries is used.

117

CHAPTER 5. MODEL-DRIVEN TESTING FRAMEWORK

-m path: Sets the model directory location to path. Qualified name
resolution to unit file paths is relative to the root of the model
directory. If this option is not given, the default of Models is used.

-p: Parse and constraint check the identified unit, but do not
execute it. This is useful for syntactic and static semantic validation of
units that are not executable by themselves.

-P: Parse and constraint check, as for the -p option, and then print
out the resulting abstract syntax tree. Note that the printout will occur
even if there are constraint violations.

-v: Sets verbose mode, in which status messages are printed about
parsing and other processing steps leading up to execution. If this
option is used alone without specifying a unit name (i.e., alf -v), then
just version information is printed.

More details can be found in the ALF Reference Implementation
Wiki [119].

ALF is also such a language, but one that is an OMG standard that
can be consistently implemented across a number of tools, promoting
the same sort of interoperability for textual behavioural specification
that the UML standard already does for graphical modelling.

This is the reason why in this thesis we focus on ALF language as
our testing environment. However, the ideas presented in this
document could be adapted to any of the above action languages.

5.6.3 Execution Trace

Execution traces resulting from execution of test cases are
configured to report faults and syntax errors found during testing
process by ALF parser.

Figure 5.16 shows an example of an execution trace for Video Club
Cs.

118

CHAPTER 5. MODEL-DRIVEN TESTING FRAMEWORK

Constraint violations:
behaviorInvocationExpressionReferentConstraint in

C:\Users\Usuario\workspace\COSTest\ExecutableTestCases\UML-

ALF\VideoClub\/VideoClub_TS_1 TC_36.alf at line 17, column 12
instanceCreationExpressionDataTypeCompatibility in

C:\Users\Usuario\workspace\COSTest\ExecutableTestCases\UML-
ALF\VideoClub\/VideoClub_TS_1 TC_36.alf at line 20, column 22

positionalTupleArguments in
C:\Users\Usuario\workspace\COSTest\ExecutableTestCases\UML-
ALF\VideoClub\/VideoClub_TS_ 1 TC 36.alf at line 20, column 34

Figure 5.16. Example of an execution trace for Video Club CS

5.7 Test Evaluation

Since the tests are part of a validation and verification process,
automated procedures (i.e. syntax and coverage analysis) were used to
verify the models as a preliminary step to the test process.

5.7.1 Verifying the Syntaxis Correctness

All languages have a syntax, i.e. a set of rules about how elements
of the language can be combined together meaningfully in that
language. Then, specifications written in a specific language must
comply with the syntax imposed by the language in which they are
defined. This relationship between the specification and the language
in which it is described is known as conformance.

We consider an executable conceptual schema is syntactically
correct if all the elements satisfy the rules defined in the UML/fUML
metamodel and well-formedness rules (WFR) — constrainst that restrict
the possible set of valid (or well-formed) models.

Consider the excerpt of the class diagram shown in Figure 5.17 and
the constructor operation (in the context of class CorporatePartner) to
create an instance of this class.

119

CHAPTER 5. MODEL-DRIVEN TESTING FRAMEWORK

WEFR: An alternative constructor invocation may only occur in an
expression statement as the first statement in
the definition for the method of a constructor operation

namespace VidecClub;

1
2
=lpartner 3 Ba. i
4 tePartner specializes Partner{
5 contactName: String:
6 creditLimit: Real:
7
3
10
= 11
&= CorporatePartner [12
= Com || PrivatePartner 13 x
14 in p_atrcontactha
& contactName : Strin 15 in p_atrcreditlimit:
9 & creditCardNumber : String 1€) 1
& creditlimit : Real
17 this.contactName=p_atrcontactName;
@ new_PrivatePartner(p_atrusema... | | 18 this.creditlimit=p atrcreditLimit;
& new_CorporatePartner(p_atrusernam... 19 super.Partner(p_atrusername,p_atrpassword,p_atrname,p_atrage);
20)

21)
Feedback: Syntax error at Line 19

Figure 5.17. Excerpt of the CS with a syntactically incorrect code

The above operation is not syntactically correct because the call to
an alternative constructor is not the first line in the definition for the
method of a constructor operation. Then, the repaired operation is
shown in Figure 5.18.

1 namespace VideoClub;

2 'public import Alf::Library: antlveBehavmrs :StringFunctions::
3 'public import Alf::Library::BasicTypes::

4 class CorporatePartner specializes Partner(

5 public contactName: String;

3 public creditlimit: Real;

8 @C:eate Corpo: acePartner(

9 espon g to nev CorporatePartner

10 in p_. atrusername: String,

11 in p_atrpassword:String,

12 in p_atrname:String,

13 in p_atrage:Integer,

14 in p_atrcontactName:String,

15 in p_atrcreditlimit:Real

26l) £

17 super.Partner(p_atrusername,p atrpassword,p_atrname,p_atrage):;
g \.hlS contactName=p_atrcontactlName;

19 this.creditlimit=p atrcreditlimit;

20 } B
21}

Figure 5.18. Example of a CS with the corrected Alf code

5.7.2 Validating the Semantic Correctness

We consider an executable conceptual schema (i.e. a set of ALF
units with action-based operations) is semantically correct if all
possible changes (inserts/updates/deletes/ . . .) on all parts of the

120

CHAPTER 5. MODEL-DRIVEN TESTING FRAMEWORK

system state can be performed through the execution of those
operations. Element exists but some statement about the domain is
incorrect. For example, consider the excerpt of the class diagram and a

test case composed by the operation set_status shown in Figure 5.19.

2 :Library::BasicTypes::*;
= Movie 3 erts:i*;
4
s P = s
= id_movie : Integer ‘ St £ Toct =
5 director : String 7 activity AbsTScenario_1_VideoClub () {
S release_date : Date 8 .
S rental_price : Real 9
& status :Integer 0
i
2

alline_.property price_derivation():

& se:_sta:us: p_thisMovie : Movie) 2 e_.set_status(pt_status= "rented”,p_thisMovie=movie_); 6
14 . (o)
i pt_Status:String

16 }
Feedback: Incorrect Parameter Data Type:
Class=Movie; Operation=set_status

Figure 5.19. Excerpt of the VideoClub CS with a semantic incorrect defect

This conceptual schema is semantically incorrect since, for
example, the operation set_status exists but the expected parameter
type (i.e. String) is different than expected (i.e. Integer). Then, in order
to correct this semantic error, the designer should change the type of
the pt_Status parameter to an Integer. The repaired operation is
shown in Figure 5.20.

D Movie

£ id_movie : Integer
(51 director : String
& release_date : Date

= rental_price : Real 10 .

= status : String 11 rentalline_.property_price_derivation():
12 movie_.set_status(pt_status= "rented”,p_thisMovie=movie_)

@ set_status((pt_status : String)p_thisMovie : Movie) ﬁ . v
15
16 }

Figure 5.20. Example of the VideoClub CS with the corrected semantic defect

5.7.3 Verifying the Unnecesary Elements

In addition, unnecessary elements (i.e. redundant/repeated
elements or extraneous elements) in the schema can be uncovered by
analysis of coverage of the elements included in the conceptual

121

CHAPTER 5. MODEL-DRIVEN TESTING FRAMEWORK

schema and the executed in the test cases. An example of a CS

containing an extraneous association is shown in Figure 5.21.

CS Associations Tests Associations
Test Cases
T partner_rental partner_rental
corporatepartner_rental corporatepartner_rental
¥ movie_rentalline movie_rentalline
; rental_rentalline rental_rentalline
| e privatepartner_rental privatepartner_rental
. videoclub_movie videoclub_movie
@ @ videoclub_partner) ?
partner_rental .
Computing Computing
elements elements Feedback: Extraneous Association: 8

videoclub_partner

Coverage Analysis

Figure 5.21. Example of a CS containing an extraneous association

5.7.4 Validating the Completeness

The method we have developed for validating the completeness
property takes as input an executable model composed by a structural
model (a UML class diagram) and a behavioural model (a set of Alf
operations). So, a Conceptual Schema is complete if all elements
exercised in the test cases exist on CS.

Then, our method returns either a positive answer, meaning that
the behavioural model is complete, or a corrective feedback, consisting
in a set of actions that should be included in some operation of the
behavioural model in order to make it complete.

For example, consider the excerpt of the class diagram and a test

case composed by the operation new Partner shown in Figure 5.22.

This conceptual schema is incomplete since, for example, the class
Partner does not exist. Then, in order to correct this defect, the
designer should change the CS by adding the Partner class. The
repaired operation is shown in Figure 5.23.

122

CHAPTER 5. MODEL-DRIVEN TESTING FRAMEWORK

E videoClub

& id_videoclub : Integer
[manager_name : String
& city: String
(&) address : String
& postal_code : String
0. videoclub
videoclub_movie
movies

= Movie

1
/rentedMovies

1.7

& id_movie: Integer
& director: String

& release_date : Date
) rental_price : Real

stal_code= "46020"):
ctor= I

or=
videoclub=videoclub_) ;

ub eunique
S status : String partner_= new Partner(p_: "fgranda”,p_: "123%p_ "Ma Fermnanda Granda",
_atrage=25);

v _ AssertTrue("Object Created” partner_ instanceof Partner);

[0.2)movie 1
movie_rentalline

[0.7]| rentallines rental_rentalline = Rental

£ RentalLine 101 0.4

= id_rental : Integer

rentallines rental| & pick_up_date : Date
(& return_date : Date
() /total : Real

Feedback: Missing Class: Partner
(& rental_number : Integer
B /price: Real

Figure 5.22. Excerpt of the CS with a missing defect

] videoClub

= id_videoclub : Integer

manager_name : String

& city : String

(& address : String

postal_code : String
[0.1]] videoclub
videoclub_movie

movies

= Movie

/rentedMovies

1.1

= id_movie : Integer
[E director : String

S release_date : Date
[= rental_price : Real

0 13).p.
se.createlink (videaclub_,m
anique();

= status: String partner_= | D ¢ s 2", p_t "123",p_atrnames "Ma Fernanda Grar

p_atrage
AssertIrue("Object Created”,partner_ instancect Partaer);

[0.1)movie }

movie_rentalline parner rental = "
Partner
[0. 7] rentallines rental_rentalline E Rental 0.4 0.1
£l RentalLine 0.1 o1

[id_rental : Integer (=l username : String
rentallines rental & pick_up_date : Date (&l password : String

- - partner = Stri

= return_date : Date name : String

&l ftotal : Real =l age:: Integer

rentals
(=) rental_number : Integer
(=] /price : Real

Figure 5.23. Excerpt of a corrected CS

This phase is done by using the oracles and goals included in the
test cases. A test case returns the verdict Pass, Fail or Inconclusive.
When the verdict is Fail, a defect list and a status of failed execution is
provided. The execution of the test cases may produce an output with
several defects (e.g. missing class, incorrect operation and missing
operation), which are contained in the list. When the verdict is
Inconclusive, this means that the execution of the test case is not

123

CHAPTER 5. MODEL-DRIVEN TESTING FRAMEWORK

conclusive. For instance, if the fixture has caused a fault, this leads to
an inconclusive status. This verdict can optionally return a defect list
too. Otherwise, the status of the test case is Pass. As an example,
consider again the conceptual schema of Figure 5.6. A conceptual
modeller/tester that wants to test that Session entity may execute
the test case shown in Figure 5.24.

private import VideoClub::¥;

activity AbsIScenarioc_l1_FA login () |
partner_= new Partner(p_atrusername= "us
p_atrage= 19);
w Session(p_atrid_session=1,p_atrlogin date=new Date(10,5,2016),p_atrlogin_time= "
p_atrusernam an
BasertTrue ("Object Cre

}

e2016", p_atrname= “Usuari

d",session_ instanceof Session):

Figure 5.24. Example of the test case

After test execution a generated error log is as follows (see Figure
5.25):

Constraint violations:

instanceCreationExpressionConstructor in
C:\Users\Usuario\workspace\COSTest\ExecutableTestCases\UML-
ALF\VideoClub\/PA_login_TS_1_TC_2.alf at line 10, column 19

positionalTupleArguments in
C:\Users\Usuario\workspace\COSTest\ExecutableTestCases\UML-
ALF\VideoClub\/PA_login_TS_1_TC_2.alf at line 10, column 31

classificationExpressionTypeName in
C:\Users\Usuario\workspace\COSTest\ExecutableTestCases\UML-
ALF\VideoClub\/PA_login_TS_1_TC_2.alf at line 12, column 37

Figure 5.25. Example of execution trace

The verdict of the assertion is Fail. Then, the execution trace is
analysed by using the information shown in Table 5.4. Then, the defect
missing class (or private) is reported. The test case will pass if
the schema is corrected as Figure 5.26 shows.

124

CHAPTER 5. MODEL-DRIVEN TESTING FRAMEWORK

H videoClub

= id_videoclub : Integer
=l manager_name : String
=l city : String

=1 address : String

& postal_code: String

videoclub
videoclub_movie
movies

[0.1]

1.1

frentedMovies

context Rental inv property_total_derivation:
this.total=this.rentallines -» collect e(e.price) -» reduce Sum;

context Rental:new_rental()
post: Rental-»isUnique efe.id_rental)

lanquages
Li

= Movie

= id_movie: Integer
= director: String
= release_date : Date
= rental_price: Real
= status: String

[0.1]movie

[0..7| rentallines

= RentalLine

= rental_number : Integer
&l fprice : Real

movies

movie_rentalline

& MovieLanguage =l name : String

Q CorporatePartner

=l name: String £ privatePartner
Sl subtitles : String =l contactMame : String

= creditCardMumber : String & creditLimit : Real

partner_rental

[0.7

Q Rental Q Partner

[0.1]

=l username : String
=1 password : String
=l name: String

=l age : Integer

rental_rentalline

[0.7 [0..
=l id_rental : Integer

rental| 5 pick_up_date : Date
= return_date : Date
=l /total : Real

rentals

rentallines partner

Figure 5.26. Extended UML class diagram for Video Club CS

Table 5.4. Relationship between fault and reported defect

Fault reported by

Defect Reported

propertyAccessExpressionFeatureResolution

Missing or private
Association

instanceCreationExpressionConstructor

Missing Class (or private)

behaviorlnvocationExpressionReferentConstraint Missing Operation (or
private)

propertyAccessExpressionFeatureResolution Incorrect Association

linkOperationExpressionArgumentCompatibility Incorrect Association
Ends

instanceCreationExpressionConstructorlessLegality

Incorrect Constructor

assignmentExpressionSimpleAssignmentTypeConformance

Incorrect Parameter Data
Type

tupleNullinput in a createlink statement

Incorrect null Value in
Association Parameter

tupleNullinput in an operation statement Incorrect null Value in
Parameter

instanceCreationExpressionDataTypeCompatibility Incorrect Operation
Signature

behaviorlnvocationExpressionArgumentCompatibility Incorrect Parameter Data
Type

superlnvocationExpressionOperation

Incorrect Super Class

125

CHAPTER 5. MODEL-DRIVEN TESTING FRAMEWORK

Finally, the test evaluation generates a report with test cases
verdicts, detected faults, times report and coverage of test cases.

5.8 Overview of the CoSTest Testing Process

Testing methods for UML conceptual schemas are likely to differ
depending on the testing criteria used [108]. To illustrate the testing
process and highlight some of the issues that needed to be solved
during the development of this PhD thesis, Figure 5.27 summarizes the
testing process, which is divided into three phases.

i Test Suite Generation
1. Transform the Requirements Model (based on Communication

Analysis) into Test Model.
2. Transform the Test Model into Test Scenario Model

(sequences of events from test model).

1. TEST SUITE GENERATION Mutation Testin
Concephaal Schema
Clients
Req. Model] « Mutani™
" -+ i Generation
Requirements Il. GENERATION OF THE EXECUTABLE
CONCEPTUAL SCHEMA UNDER TEST

[} Engineer
o Test Model
Generation
Test Model| —p| Tost Values
Genetation_o Tester

W Analyst/f
Ity

Modeller
F(-r-rlh.b

’
Test Data | ¥ | ‘\‘
° TeslScenar@ i \‘
Maodel @ H . P
Generation o; ‘u‘ —
H
et Scenario N XIII.TEST EXECUTION
Model
ooy O (aii-baseal} o
oo Abstract Executabl o .
e Test Case utable Model Emecution
Lo eneration| | 195t Case Execution Trate
o) eneration
9 [
Lese“d Process with multiple [+
e —— Database
instance Automatic on Opl I'*ut
. m Process Infout relation Optional inp!

Figure 5.27. Overview of the testing process

3. Generate the test values for test cases from Test Model
(variables concretization). Tester (optionally) can enter new

test values.

126

CHAPTER 5. MODEL-DRIVEN TESTING FRAMEWORK

4. Transform each test scenario into Test cases scripts (ALF
script), which contains the abstract test cases.

5. Select the type of test cases (e.g. only positive test cases or
including negative test cases)

6. Generate concrete and executable test cases

7. Prioritize and select the test cases for execution based on
mutation analysis.

ii. Generation of the Executable Conceptual Schema under test
(CsuT)

8. Generate the CS under test using both structural (class
diagram) and behavioral information (pre, post-conditions and
invariants) and transforming CSUT into ALF units to be used in
model execution (testing purposes).

9. Parse the CS before starting the execution of CS (testing
process).

iii. Test Execution
10. Execute the test cases (scripts) against the CS under test.
11. Generate the testing report and coverage analysis.

Since our proposal for generation of test cases complies with the
principles of Model-Driven Testing, in the next chapter we describe in
detail the Model-Driven process applied in our Testing framework. The
tool support is described in detail in Chapter 7.

5.9 Summary and Conclusions

In this thesis, we propose a testing-based validation of conceptual
schemas, manly in order to enhance the validation of completeness
(missing elements). However, confinement and changeability can be
improved by analysing the elements covered and elements do not
cover (extraneous elements) by test cases. Since the testing process
has to transform the CSUT into an executable format, then redundant
and incorrect elements are detected by the parser as a previous step to
testing, so that the correctness goal is also improved. The CS
comprehensibility by humans and tools is addressed when the

127

CHAPTER 5. MODEL-DRIVEN TESTING FRAMEWORK

completeness, consistency and correctness of the CS is improved (see
Tables 3.1 and 3.3 in Sections 3.2.1 and 3.3.5 respectively).

As the quality of a conceptual schema should not be considered as
an after-thought, we aim to validate each step of the conceptual
modelling process. Our proposal therefore allows both types of
complete and incomplete models to be validated according to the
evolution of the requirements.

Tool-supported rigorous analysis of design models can enhance the
ability of developers to identify potentially costly design problems
earlier and correcting design problems early also reduces the effort
wasted on implementing faulty designs.

The testing process is based on test scenarios to execute high-level
conceptual schemas regardless of the platform by using the standard
Action Language by the OMG, ALF [82]. The validation framework
follows a top-down approach to generate the test cases, where the test
model is the master that generates the test scenarios and the test
cases. In order to automate the test suite generation, we selected a
model-driven architecture to address the analysis, design and
implementation phases. The test design is therefore independent of
the adaptation layer or test execution system and the test artefacts are
independent of the implementation domain. This reduces costs and
efforts in test system maintenance and supports communication
between conceptual schema development (modellers) and the test
department (testers).

In this chapter, we show how a model-driven generation for test
cases written in the ALF language can be used to support testing of
conceptual schemas. In the approach, a conceptual schema based on
UML class diagram is transformed into an executable conceptual
schema (ALF scripts), and a requirements model based on
Communicational Analysis is transformed into a test model that
characterizes valid sequences of test cases. A test case is an object
configuration that describes a system state. A sequence of object

128

CHAPTER 5. MODEL-DRIVEN TESTING FRAMEWORK

interactions is called a Test Scenario. These test scenarios are
transformed into ALF scripts. Then, a conceptual schema based on a
UML class diagram is transformed into an executable conceptual
schema in order to execute against the test cases.

The methods provided as part of this thesis are organized in a
testing-based validation framework.

Testing is part of a process of Validation & Verification, therefore,
we used testing in conjunction with automated procedures (i.e. syntax
and coverage analysis) aimed at verifying models.

Testing is one of the most critically important phases of the
software development life cycle and consumes significant resources in
terms of effort, time and cost. In this thesis, we share the criteria and
try to reduce the number of test cases, while maintaining quality and
customer satisfaction when faced with the challenge of testing
complex applications with limited resources.

In the next chapters, we study in depth each of the proposed
model-driven transformations as well as the validation method we
have developed to validate them.

129

CHAPTER 6. TRANSFORMATION RULES

Chapter 6

TRANSFORMATION RULES

Model manipulation is a central activity in Model Driven
Engineering (MDE) activities. Models are merged and aligned (e.g. to
create a model of the system from different views), refactored (i.e. to
improve their internal structure without changing their observable
semantics), refined (i.e. to detail high-level models), and translated to
other languages/representations, e.g. as part of code-generation,
validation, verification or simulation processes. All these operations on
models are implemented as model transformations, which automate
the translation of models between a source and a target language
using a model transformation language.

The objective of this chapter is to describe in detail the Model-
Driven Testing (MDT) process applied in our Testing framework
described in Chapter 5.

This chapter is divided into four sections: Section 6.1 describes the
Model-Driven Testing (MDT) process, Section 6.2 analyses
metamodels; Section 6.3 defines the different transformations types
required by our MDT process; and Section 6.4 summarizes and
concludes the chapter.

131

CHAPTER 6. TRANSFORMATION RULES

6.1 An Overview of the MDT Process

This Section offers a global view of test suite generation process
from a CA-based requirements model, by means of metamodels and
transformations. Figure 6.1 shows the different types of models,
metamodels and transformations of our proposal at various levels of
abstraction, where each model is an instance of its metamodel.

transformation rules
T
onceptual Reguirements Test est Data est Scenario
3l ¢ I eq Test Da Test Scenari
El schema Metamodel | | Metamodel | | Metamodel || Metamodel
@ || Metamodel
=
| instance of I I I
Cn:;:;i:::al] Requirements | M2M| Test Model | mzm Sc:ﬁ:io
Maodel (RM y ™ ”
5| | Model (csm) o] ™ 1O mode rsm)
2 12 ‘;Q M2M
=
Test Data
Th T4
o | wor Model (TDM)
=
TS M2T
2 v Oy Oy
= Executable Concrete and Scenarios
E Conceptual Executable with Abstract :;zz
2| |schema{cs) Test Cases Test Cases
E
[=
=l
E L 5{(Test Execution
¢
[¥T)
LEGEND 1 O ——3 — -
INPUT/OUTPUT TRANSFORMATION |NSTANCEOF PROCESS FLOW TESTING PROCESS
ARTEFACT PROCESS

Figure 6.1. An overview of our MDT approach

Five metamodels and six transformations are required in the MDT
process (see artefacts highlighted with a thick line in Figure 6.1). Figure
6.2 shows an overview of the metamodel elements and the
transformation sequence with the results generated in the MDT
process.

132

CHAPTER 6. TRANSFORMATION RULES

Requirement Wodel Metamodel

Test Model

£ Outgoing > Communicativelnteraction
£ Communicativelnteraction -> Element
 Support -> CommunicativeRole

£ CommunicativeRole -> Element

& OrganisationalRole -> Element

5 TestModel -> Element
] Precedence -> Element
] Element

B TestCase -> Element

+ @ cometamodel
3 OrganisationaiModule g featen Semerd 4.8 testdaty
5 Stotegy B Call > Testhem B Varisble
£ Openationalisation [Service-> Call B Model
B Goal B Trigger -> Call ->®i H Data
B Gkttt > opaion B Parameter-> Element Bre
B et oo 8 Input-> Parameter 8 put e
B Elenen ,@, £ Output -> Parameter =
§ Model 8 Data
3 TetuaRequirement -> Hement B Assestion -> Testitem Executable and Concrete Test Case
2 RequirementType 8 Link-> Call toes
8
8
8

£ Process -> Eement
3 OrganisationalActor

Aggregation -> ComplecSubstructure
] ComplecSubstructure -> Substructure

VideoClub(p_a
12 p_atrmanager_name= "Jos

& Substructure 13] p_atrcicys "
MessageStructure -> Element 14 p_avrpostal_codes
& Ingoing > : 15 ResercTrue("Object
Primary > Test Scenario Model I
Referencefield > Field 4 @ atcmetamodel
ield > Substructure [Element
& Openstion [TestScenarioModel -> Element A p
1 OrganisationaRoleSet -> Element BTk Bt iy P
 SupportRoleSet > Element R e 4 v
] BusinessObjectClass B TestCase -> Element g
£ BusinessObjectField B Testitem -> Element :
] CommunicationChannel > Element 8 Call-> Testitem &
3 Receiver -> CommunicativeRole o
B Senvice-> Call 7 a
ventVariant -> Encapsulation E
8 Indicator [Trigger > Call B
£ Organisation > OrganisationaiModule Link -> Call ‘z g
8 qulg'\::::t») Node Parameter -> Element 11 _namestext,p_at
s Ne; eniceType L 12 ,p_atrpostal ¢
& And > LogigalNode 2 visibilityType ? -
& Or-> LogigalNode H Data
£ Datofield -> Field B Input -> Parameter
omain
& hention -> ComplecSubstructure £ Qutput -> Parameter
B Specalisation -> ComplesSubstructure B Assertion -> Testitem

7 @ uml
© Integer [int]
& Boolean [boolean]
String [javalang String]
& UnlimitedNatural fint]
£ Comment > Element
E Element -> EModelElement
[Package -> Namespace, PackageableElement, TemplateableElement T package VideoCTwb |
B gL 2 publi Rentalline;
£} NamedElement -> Element i e
@ VisibilityKind s 83 Parri
Dependency -> PackageableElement, DirectedRelationship 6 22 Movi
7

DirectedRelationship -> Relationship
Relationship -> Element
Namespace -> NamedElement
Elementimport -> DirectedRelationship
Packagelmport -> DirectedRelationship
5| Constraint -> PackagesbleElement

>

8 public assoc parta

@

assoc videoclub_movie;

I (I0 (0 (10 {110 (D) (0 0 00

TypedElement -> NamedElement

£ Type -> PackageableElement

] Association -> Classifier, Relationship

E] Classifier -> Namespace, RedefinableElement, Type, TemplateableElement
E] Redefinablelement -> NamedElement

[TemplateableElement -> Element

E TemplateBinding -> DirectedRelationship

Figure 6.2. Overview of the sequence of proposed transformations

6.2 Metamodels

As shown in Figure 6.1 five metamodels are required in our
approach, from which three are designed to define the information
managed by the test suite generation process.

The first metamodel enumerates the elements to model the UML
model, therefore more details about it can be found in UML
documentation [40]. The second metamodel defines the elements to

133

CHAPTER 6. TRANSFORMATION RULES

model the requirements model (RM). The metamodels for CA based
requirement models are described in [103][120]. Note that a full
explanation of RM metamodel is outside the scope of this thesis, but
several examples and experiences of this specification can be obtained
at the project’s web site
(https://stag.dsic.upv.es/webstaq/costest.html). The third metamodel
enumerates the elements to model the test model. The fourth one lists
the elements to model test scenarios. The fifth one details the
elements for the test data model and the fifth metamodel gives the
UML structure [40] for a class diagram.

Previous work describes the Test metamodel and Test Scenario
metamodel as the Abstract Test Cases metamodel [121]. We adapted
them by (1) including some elements such as the traceability elements
(i.,e. location and trule) in the class Element of the first
metamodel (2) changing the class name TestComponent by
TestCase in both metamodels with the purpose of clarifying the
element purpose, and so on.

The three metamodels defined for our proposal are described
below.

6.2.1 Test Metamodel

The goal of this metamodel (tcmetamodel) is to include the
relevant information for generating the Test Model (TM) with the test
items and their order of precedence from a CA Requirements Model.
The elements of this metamodel are represented in Figure 6.3 and
described below.

The TestModel element represents a container for test case
sequences. The key concepts of this metamodel are the TestCase

and Precedence elements.

A TestCase element is a container for test items to be tested. A
Precedence element is a relationship that models the test cases
sequences.

134

CHAPTER 6. TRANSFORMATION RULES

H TestModel %
= name : EString

= |pcation @ EString
= trule : EStrin

g| SEAUENCES tectCases| 4
H TestCase

E Precedence target g+
source g« i [

testltems
H Testitem H Data
= owner : EString le- 0.*
expectedvalue
data ; 0.
H parameter
[E assertion | g call parameters| = type : EString
| I = type : EString [™ 0 = lowerBound : EString
"| = upperBound : EString
ﬁ}. = derivationFormula : EString
[T] = operation @ EString
[Hrigger | H service || ELink | = isldentifier : EString
[| 1]
I B Input | I B Qutput I

Figure 6.3. Metamodels for the first transformation adapted from [121]

TestItem element is a supertype that contains the CS elements
to be tested. In a test model there is at least one test case that
formalizes the user-system interaction sequences. This is related to the
Data Class, which contains the expected value. In a test model there is
at least one test case that formalize the user-system interaction
sequences.

A Link element models a structural relationship between classes.

A Service element models an action performed by an external
element of the system under test such as user input or a server
response.

A Trigger element models an action that will be carried out by
the system and that may be verified in order to evaluate the test
correction, e.g. updates in the system data or other system or user
outputs.

A Call element is a super type for the test item in a test case.
Instances of Call element must be either a Link, Service or
Trigger element. A Call element is a container of the Parameter
elements, which contains information about the parameters required

135

CHAPTER 6. TRANSFORMATION RULES

in the test items (i.e. service, trigger and link). The Parameter may
be an Input or Output parameter and is related to the Data Class,
which contains its value for the concretization process.

The Assertion is an element that indicates Constraint
statements. These statements are used to designate preconditions,
post-conditions and the derivation condition of the class attribute.

The Element class is a supertype that contains the element name
and traceability information of each one of them (i.e. location and
transformation rule that generated it).

Figure 6.4 shows the corresponding OCL constraints for the TM
metamodel. The constraints are: names must be unique within their
respective contexts, classes must have a name and the multiplicity
constraints for relations.

context TestModel inv TC_multl: self.testCases->size()>0;

context Element inv Element_name: self.name<>null;

context Element inv Element_location: self.location<>null;

context Element inv Element_trule: self.trule<>null;

context Precedence inv Precedence_Name: self->fordll(el,e? | el.name = e2.name implies el=e2);
context Precedence inv Preced_TC: self.target<>null or self.source<»null;

context TestCase inv TestCase_Name: self->forAll(el,e2 | el.name = e2.name implies el=e2);
context TestCase inv TI_multl: self.testItems->size()>0;

context TestItem inv TestItem_owner: self-> forAll(e|e.oclIskindOf(Link) = false implies e.owner<>null);
context Service inv Service_type: self.type<>null;

context Trigger inv Trigger_type: self.type<>null;

context Assertion inv Null_constraint: self.constraint<>null;

context Parameter inv Parameter_type: self.type<>null;

context Parameter inv Parameter_operation: self.operation<>null;

context Parameter inv Parameter_lowerBound: self.lowerBound<>nullj

context Parameter inv Parameter_upperBound: self.upperBound<>null;

context Input inv Parameter derivation: self->forAdll(e|e.operation='derivation' implies e.derivationFormula<>null);

Figure 6.4. OCL Constraints for Test Metamodel

6.2.2 Test Scenario Metamodel

For the second transformation, we defined another metamodel
(see Figure 6.5), which is the PST for our MDT proposal. The goal of this
metamodel (atcmetamodel) is to define the information obtained
after applying the algorithm for path analysis in the test model. A test
scenario is a possible test case for testing a concrete test scenario. The
elements of this metamodel are represented in Figure 6.5 and
described below.

136

CHAPTER 6. TRANSFORMATION RULES

The TestScenarioModel element represents a container for
test scenarios.

The key concept of this metamodel is the TestScenario
element. A test scenario represents a user-system interaction
sequence (user story). Going back to the preceding metamodel, a test
scenario is a concrete path across TM. The steps performed during the
test scenario execution are classified in terms of the concepts defined
below.

H Flement H TestscenarioModel
= name : EString

testScenarios

= |ocation : EString 0 H Testscenario
= trule ; EString L
testCases o enumeration
? H Testcase £ visibilityType
= eventReference : EString = public
= private
H Data 0. EO* $ testltems enumeration
= value : EStrin Testltem =
g expectedvalue; - & SRR
= owner ! EString - new
data IO"T = insert
H parameter ~ delete
o type : EString [H call [Assertion
= lowerBound : EString parameters = constraint : EString
= upperBound : EString

= derivationFormula : EString
= gperation : EString [\ |

o jsldentifier : EString | Hiink | H service [HTrigger |
= type : serviceType

= visibility : visibilityType

[Houtput | [Emput |
[|]

Figure 6.5. Test Scenario Metamodel adapted from [121]

A TestCase element is a supertype that contains the
TestItems to be tested. In a test scenario there is at least one test
case that formalizes the user-system interaction sequences.

The TestItem instances and the elements have already been
introduced in the previous section.

6.2.3 Test Data Metamodel

The goal of this metamodel is to formalize the information required
to concretize the values by applying the Category-Partition Method to
functional requirements.

137

CHAPTER 6. TRANSFORMATION RULES

Figure 6.6 describes this metamodel, which is further explained
below.

The Model element represents a container for operational
variables, patterns and input types related to the test model.

H variable
= name : EString
o type : EString o model H mModel
= lower : EInt - = name : EString
= upper : Elnt variables 0.1
= isldentifier : EBoolean modelF 1 model* 1
= derivationFormula : EString
= testltem : EString .
= testcase @ EString 0. patterns

$ o0l B pattern

= name : EString input_types

atterr = ion * EStri ;
o | data P T regularExpression : EString 0.1
H mput_Type

Data ;
E = name : EString

= value : EString input_type

1

Figure 6.6. Test Data Metamodel

The key concept of this metamodel is the Variable metaclass,
which contains information about the operational variables of the test
model such as name, data type, lower and upper values (these are
used as boundary values of the variable range), isldentifier (i.e. true
when the variable is an identifier of the class and otherwise it is false),
derivationFormula (i.e. its contains the derivation formula when the
variable is derived), test item and test cases where the variable is
located. The variable class is a container of the Data values. During
the test cases concretization, a variable may take a value from one of
its sets of data.

The Data element models values of the variable. Each value is
related a pattern and input type. An Input Type element models
the input type used to concretize the Data value for each variable.

A Pattern element models a regular expression required to
validate the value assigned to the variable when the concretization
process is done manually or automatically by using a web-based

138

CHAPTER 6. TRANSFORMATION RULES

generation. Examples of possible patterns may be an email pattern
("MN\W-T+HON \N\w-]+)* @ [A-Za-20-9]+(\\. [A-Za-20-9]+) *(\\.[A-Za-
z]{2,1)$"), and the Spain post code (“*([1-9]{2}|[0-9][1-9] | [1-9][0-9])[O-
9]{3}$").

6.3 Transformations

The metamodels described above depict the information on the
proposed test artefacts. The goal of this section is to define a process
to obtain instances of the test metamodel from instances of the
requirements metamodel, as well as instances of the test scenario
metamodel from instances of the test metamodel. As mentioned at the
beginning of this chapter, this process is modelled by means of
transformations, which are relations oriented from a source toward a
target metamodel, codified in ATL transformations. Figure 6.2
represents a global view of the transformations. All transformations
are specified in ATL and implemented in a supporting tool through Java
language. The transformations rules are introduced in the next sections
and include specific metrics to ensure the quality of these
transformations. ATL specification has many low-level details and a
high-level representation of the transformation process structure is
explained in the following sections.

6.3.1 Transformation from Requirements Model
to Test Model

The goal of this transformation (T1 from Figure 6.2) is to obtain a
test model conformed to the test metamodel described in the previous
section.

The main task of this transformation is to invoke the 25 rules
(mappings) depicted in Figure 6.7.

These rules are organized into eight groups: the first two generate
the structure of the test model (i.e. test cases and precedence
relations), R1 maps requirements RequirementModel to TestModel,
R2_1 and R2_2 rules map each CommunicativeEvent or EventVariant to
a TestCase.

139

CHAPTER 6. TRANSFORMATION RULES

‘ R1: RequirementsModel2TestModel ’

—| R2_1: CommunicativeEvent2TestCase ‘

—-| R4_1: TextualRequirement2Assertion]

—{ R4_2: CommunicativeEventPrecondition2Assertion |

—1 R5_1: Aggregation_ReferenceField2Trigger_Data |

Li R8_1: DataField2InputParameter_Data [

—I R5_2: Aggregation_lteration2Trigger_InputParameter_Data |

—| R5_3: lteration_NotAggregationZTrigger_DataJ
L| R8_1: DataField2InputParameter_Data |

—I R6_1: Aggregation_ReferenceField2Service_OutputParameter I
H R8_1: DataField2InputParameter_Data]

R8_2: ReferenceField2InputParameter_Data |

—+ R6_2: EventVariantAggregation_ReferenceField2Service_OutputParameter_Data]
HRS_I: DataField2InputParameter_Data |

R8_2: ReferenceField2InputParameter_Data I

—| R7_1: Iteration2Link_InputParameter_OutputParameter |

—| R7_2: ReferenceField_Aggregation2Link_OutputParameter ‘

|—-| R8_1: DataField2InputParameter_Data |

—I 7_3: ReferenceField_Aggregation2Link_Service_OutputParameter_Data I
|--| R8_1: DataField2InputParameter_Data |

——| R7_4: ReferenceField_Specialization2Link '

HR8_3: Aggregation2InputParameter ‘

L[R8_4: Aggregation20utputParameter ‘

—I R7_5: Aggregation_lteration_Specialization2Link |

L‘ R8_3: Aggregation2InputParameter ’

—{ R8_4: Aggregation20utputParameter I

—I R2_2: EventVariant2TestCase]

R4_3: EvenVariantPrecondition2Assertion ‘

R5_4: Aggregation2Trigger_Data l
L| R8_1: DataField2InputParameter_Data l

R6_2: Aggregation_ReferenceField2Service I

-{ R8_1: DataField2InputParameter_Data |

R7_6: ReferenceField2Link_InputParameter_OutputParameter |
~{ R3_1-3_5: Precedence2Precedence l

Figure 6.7. Structure of T1 Transformation

The third group of rules generates the Precedence relations, the
rules R3_1 and R3_2 rule maps each Precedence between
CommunicativeEvent and EventVariant to a Precedence between
TestCase, and the rules R3_3, R3_4 and R3_5 map the relations with
logical nodes (i.e. AND or OR) to nodes Precedence.

140

CHAPTER 6. TRANSFORMATION RULES

The fourth group of rules generates the test items Assertion in the
respective TestCase. The rules R4_1 maps TextualRequirement to an
Assertion. The rules R4_2 and R4_3 map a Precondition of a
CommunicativeEvent or EventVariant respectively to a test item
Assertion.

The following three groups of rules (R5-R7) derives the test items
Trigger, Service and Link by analysing the properties of the structures
Aggregation, ReferenceField, Specialisation and Iteration. The
structures DataField, ReferenceField and Aggregation are mapped to
instances of Parameter of the test items (i.e. Trigger, Service and Link).
For generating test items we use the methodological core of the OO-
Method proposed by Pastor [122], which is implemented into an
object-oriented model-driven development framework with automatic
code generation capabilities [6].

Tables 6.1-6.8 show the transformation rules between RM and TM.
We construct them in such a way (base on steps) that they can be
evaluated easily on model instances.

These transformation rules together specify the complete
structural correspondence for an RM and its equivalent TM, which was
validated by using the conceptual schemas derived from the
Communicational Analysis requirements models by using the strategy
proposed in Espafia et al. [104].

Table 6.1. Transformation rules for generation of the Test Model
Group # 1. Generation of the Test Model
Preconditions: none
Steps ATL rule
1 | Create a TestModel with the requirements Model name. R1

Table 6.2. Transformation rules for generation of the Test Cases

Group # 2. Generation of the Test Cases
Preconditions: Class TestModel has already been generated.

Steps ATL rule

1 | For each CommunicativeEvent and EventVariant in the CE diagram, | R2_1,
draw a TestCase (TC) in the TestModel. R2_2

2 | Do not draw the Start, End and Logical Nodes (i.e. Or, And) (if any).

141

CHAPTER 6. TRANSFORMATION RULES

Table 6.3. Transformation rules for generation of the Precedence relations

Group # 3. Generation of the Precedence relations

Preconditions: Classes TestCase have already been generated

or EventVariant.

Steps ATL rule
1 | For each Precedence relation in the CE diagram, draw a Precedence | R3_1
in the Test Model. In case of a Communicative event with Event | R3_2
Variants, draw a precedence for each EventVariant and from each
event variant, so that the test cases relate independently.
2 | If there is a Precedence that starts from a Logical Node (i.e. Or, And) | R3_3
draw the Precedence from the previous CommunicativeEvent or | R3_4
EventVariant to the logical node until the next CommunicativeEvent | R3_5

Table 6.4. Transformation rules for generation of the test items Assertions

Group # 4. Generation of the Assertions

Preconditions: Classes TestCase have already been generated.
Steps

1 For each TextualRequirement add an Assertion as a precondition in

the respective TC.

2 | For each Precondition in a CommunicativeEvent and EventVariant add

an Assertion as a precondition in the respective TC.

ATL
rule
R4 1

R4 2,
R4 3

Table 6.5. Transformation rules for generation of the test items Triggers

Group # 5. Generation of the Triggers

Preconditions: Classes TestCase have already been generated.
Steps

ATL
rule

1 | For each Aggregation class that has a ReferenceField that extends a | R5_1
business object, add a Trigger in the respective TestCase and label it
with the Aggregation name. If the substructure corresponds to a
specialised CommunicativeEvent, a Trigger is derivate in each

EventVariant.

The Trigger type is ‘set’ and the owner is the domain name of the

ReferenceField. Continue with Step 5.

2 For each Aggregation class that has Aggregation children and no a | R5_2

ReferenceField a Trigger in the respective TestCase is derivate.

The Trigger name has to correspond to the Aggregation parent name.

The owner is the Aggregation parent name and the Trigger type is

‘register’.

An Input Parameter instance is created. The Parameter name is ‘p_this’

plus the name of the Aggregation parent.

The Parameter type is the domain name of the ReferenceField.

Continue with Step 5.

3 | For each Iteration substructure that has no Aggregation child, but hasa | R5_3
ReferenceField that extends a business object a Trigger in the

respective TestCase is derivate.

142

CHAPTER 6. TRANSFORMATION RULES

The Trigger name has to correspond to the Iteration name. The Trigger
type is ‘set’ and the owner corresponds to the domain name of the
ReferenceField. Continue with Step 5.

4 | For each EventVariant that has both a related Aggregation and a | R5_4

ReferenceField that extends a business object, a Trigger in the
respective TC is derived.
The Trigger name has to correspond to the name of the last parameter
of the Aggregation related to EventVariant. The Trigger type is ‘set’ and
the owner corresponds to the domain name of the ReferenceField.
Continue with Step 5.

5 | After (1) and (2) an input Parameter instance is created. The Parameter name is
‘p_this’ plus the domain name of the ReferenceField. The Parameter type is the
domain name of the ReferenceField.

6 | After (1), (2), (3) and (4). For each DataField contained in the substructure, Rule
8 1lis called.

Table 6.6. Transformation rules for generation of the test items Services
Group # 6. Generation of the Services

Preconditions: Classes TestCase have already been generated.
Steps ATL
rule
1 | For each Aggregation related with a CommunicativeEvent or | R6_1
EventVariant without ReferenceField, a ‘new’ Service has to be
generated in the TC.
The Service name has to correspond to the Aggregation substructure
name.
For each DataField instance in the Aggregation substructure, an Input
Parameter instance has to be created with the domain value as its
type. Therefore, the rule R8_1 (CommunicativeEvent) or R8_2
(EventVariant) is called.
An Output Parameter has to be created with the Aggregation
substructure name in lowercase.

Table 6.7. Transformation rules for generation of the test items Links
Group # 7. Generation of the Links

Preconditions: Classes TestCase have already been generated.

Steps ATL
rule
1 For each Iteration substructure whose parent is an Aggregation | R7_1

substructure and its child an Aggregation substructure, a Link is
generated between the parent Aggregation name (Input parameter)
and child Aggregation substructure (Output parameter).

2 For each ReferenceField within an Aggregation a Link is generated according
to:

2.a | If the ReferenceField does not extend a Business Object and there is | R7_2
no ReferenceField in the same substructure that extends a business
object. The ReferenceField belong an Aggregation substructure
related with a CommunicativeEvent or EventVariant.

143

CHAPTER 6. TRANSFORMATION RULES

The Link is between the domain name of the ReferenceField (Input
parameter) and parent Aggregation name (Output parameter).

2.b | If the ReferenceField extends a Business Object and there is another | R7_3
ReferenceField in the same substructure.

The Link is between the domain name of the other ReferenceField
(Input parameter) and the domain name of the ReferenceField
(Output parameter).

2.c | If the ReferenceField does not extend a Business Object and thereis | R7_4
a parent Specialization substructure with child Aggregation.

The Link is between the domain name of the ReferenceField (Input
parameter) and Aggregation name (Output parameter). The
Aggregation where the ReferenceField is excluded.

3 For each Aggregation substructure whose parent is a Specialisation | R7_5
substructure and this parent has an Iteration substructure with
Aggregation substructures, a Link is generated between the parent
Aggregation (Input parameter) and Iteration child Aggregation
(Output parameter).

Table 6.8. Transformation rules for generation of the test items Parameters
Group # 8. Generation of the Parameters

Preconditions: Classes Service, Trigger or Link have already been generated.
Steps ATL
rule

1 | A DataField generates an Input Parameter instance with the domain | R8_1
value as its type.

2 | A ReferenceField generates an Input Parameter instance with the | R8_2
domain value as its type. The name is formed by 'p_agr' plus domain
value in lowercase.

3 | An Aggregation generates an Input Parameter instance with the | R8_3
substructure name as its type and name in lowercase.

4 | An Aggregation generates an Output Parameter instance with the | R8_4
substructure name as its type and name in lowercase.

Table 6.9 shows a list of required and non-required RM metamodel
constructs for test model generation. Each row describes a pair of
constructs that match and their correspondence. Some metaclasses
such as NODE (i.e. END, START) and LOGICAL _NODE (AND, OR) are
informational resources. In the other hand, some metaclasses (e.g.
ORGANISATIONAL_ROLE, ORGANIZATIONAL_ACTOR, and GOAL)
required in the CA to model the requirements levels (i.e. L1, L4, and L5
see Section 3.1.1) but they are not used for our proposal and so are not
mapped to the test metamodel instances.

144

CHAPTER 6. TRANSFORMATION RULES

Table 6.9. Requirements Metamodel constructs used in this transformation

Communication Test Model (TM) CA-TM mapping
Analysis (CA) mapping mapping correspondence

Model Test Model 1:1
Precedence Precedence 1:n
Communicative Event Test Case 1:1

Assertion 1:1
Textual Requirement 1:1
Event Variant 1:1

Test Case 1:1
Aggregation Trigger 1:1

Link 1:n

Parameter(Output) 1:n

Parameter(Input) 1:n
Reference Field Link 1:n

Parameter (input) 1:n

Trigger 1:n
Data Field Parameter (input) 1:1
Iteration Link 1:n
Specialisation Link 1:n
Node (End, Start) - Informational
Logical node (And, Or) - Informational
Communicative Interaction - Informational
(ingoing, outgoing)
Organisational actor - Not used
Organizational role - Not used
Organisational goal - Not used
Organisational Location - Not used
Organisational Module - Not used
Strategy - Not used
Operationalisation - Not used
Goal - Not used
Communicative Role - Not used
Communicational Channel - Not used
Support role set - Not used
Organisational role set - Not used
Organisational Unit - Not used
Process - Not used
Indicator - Not used
Business object field - Not used
Business object class - Not used

The second part of this transformation modifies the Test Model by
adjusting the Test Model precedence relationships. For the sake of
readability, we use concrete syntax to describe instances of
Requirements Model (RM), Test Model (TM) and Test Scenario Model
(TSM) for Sudoku CS (see Figure 6.8). Figure 6.8 depicts the graphical
concrete syntax of the models RM (see Figure 6.8a), TM (see Figure
6.8b) and modified TM (see Figure 6.8c).

145

CHAPTER 6. TRANSFORMATION RULES

Since a communicative event in RM can have more than one
precedence relationship (see the communicative event 3 in Figure
6.8a), we modified the TM (see Figure 6.8b and Figure 6.8c) so that
each node only has an input and output relationship except to the start
and end nodes (i.e. only input or output relationship, but not both) as
well as the predecessor node to a decision node (i.e. test case 4 in TM)
or successor node to a logical node (i.e. test case 4 in TM).

a) Requirements Model b) Test Model c) Test Model (modified)

Figure 6.8. Examples using graphical concrete syntax of (a) RM, (b) TM, and (c)
modified TM

Then, this transformation has been formalized in 25 ATL rules (see
column ATL in Tables 1-8) and included in our CoSTest tool (see
Chapter 8). Figure 6.9 shows part of the related ATL code.

module caZtm; create OUT: tcmetamodel from IN: cametamodel;
rule R1_RequirementsModelzTestModel]

from cametamodel : cametamodel!Model

to tonodel: tcmetamodel! TestModel |

name<- thisModule.underscore{cametamodel.name),
location<-cametamodel .name + {Reqg.Model)”, trule<-"R17,
testlases<- Sequence{cametamodel!Element->allInztances(]-
»select{e|e.0clizKindOf{ cametamodel |CommunicativeEvent) or
g.0clIsKindH {cametamodel! Eventvariant])},

sequences<- Seguence {cametamodel!Element-rallInstances()-
»select{e|e.0cllizKinddf{ cametamodel !Precedence))} 1 }

Figure 6.9. Example of the first rule of the ATL transformation CA2TM

146

CHAPTER 6. TRANSFORMATION RULES

6.3.2 Transformation from Test Model to Test
Scenario Model
This second transformation consists of processing the TestModel
obtained in the previous transformation by using 8 transformation
rules grouped into two groups (9 and 10, see Tables 6.10-6.11) in order
to generate the TestScenarioModel.

Table 6.10. Transformation rules for generation of the Test Scenario Model

Group # 9. Generation of the Test Scenario Model
Preconditions: none

Steps Rule
1 | Create the TestScenarioModel with the TestModel name. R9

Table 6.11. Transformation rules for generation of the Test Scenario

Group # 10. Generation of the Test Scenario

Preconditions: TestScenarioModel has already been generated.

Steps Rule

1 | For each path in the TestModel a TestScenario is generated by | R10
grouping the respective TestCase. The test suite name is set to
‘AbsTestScenario_’ + sequential number.

2 | For each TestCase in TM a TestCase is generated in TSM R2’
3 | For each Assertion in TM an Assertion is generated in TSM R4
4 | For each Trigger in TM a Trigger is generated in TSM RS’
5 | For each Service in TM a Service is generated in TSM R6’
6 | For each Link in TM a Link is generated in TSM R7’
7 | For each Parameter in TM a Parameter is generated in TSM R8’

This transformation aims to find all the possible scenarios from the
test model. Our transformation is an implementation of a classic
pathfinder or graph traversal algorithm using recursive functions in
Java Llanguage [107] to generate the Test Scenario Model. A
TestScenarioModel consists of a set of TestScenario. Each
TestScenario (i.e. model path) groups the corresponding
TestCase with the respective TestItem (i.e. Assertion,
Trigger, Service and Link). Figure 6.10 offers an overview of
this transformation.

147

CHAPTER 6. TRANSFORMATION RULES

‘ R9: TestModel2TestScenarioModel ‘

H R10: TestModelPath2TestScenario !
*i R2": TestCase2TestCase ’

f{ R4': Assertion2Assertion |

—'R?v Trigger2Trigger ‘

~’ R8': Parameter2Parameter [

“*i R&": Service2Service ‘

7{ R8': Parameter2Parameter ‘

~{R7'; Link2Link |

—‘ R8': Parameter2Parameter |

Figure 6.10. Structure of T2 Transformation

6.3.3 Transformation from Test Model to Test
Data Model

The goal of this third transformation is to obtain a data model from
the test model. The transformation entry point only aims to call the
mapping shown in Figure 6.11.

R11l: TestModel2TestDataModel

—I R12:Service_InputParameter2Variable |

—I R13:Trigger_InputParameter2Variable ‘

Figure 6.11. Structure of T3 transformation

The first direct mapping generates the test data model from the
test model directly. The second mapping generates variables from
input parameters related to Test Items of Service or Trigger type
located in the different TM test cases.

6.3.4 Transformation from Test Scenario Model
to Test Scenario Model with Abstract Test

Cases
The goal of this fourth transformation is to obtain the test
scenarios with abstract test cases from the test scenario model. The
transformation is specified in Acceleo (see a partial view in Figure
6.12).

148

CHAPTER 6. TRANSFORMATION RULES

[comment encoding = UTF-8 /]
[module generateTScenarios ('http://atcmetamodel/1.0')]
[template public generateTScenarios
(aTestScenarioModel:TestScenarioModel)]
[comment @main/]
[for (tsc:TestScenario|aTestScenarioModel.testScenarios)]
[file (tsc.name+'_'+aTestScenarioModel.name+'.alf',false, 'UTF-8")]
private import [aTestScenarioModel.name/]::*;
public import Alf::Library::BasicTypes::*;
public import Alf::Library::Asserts::*;
// Conceptual Schema under Test: [aTestScenarioModel.name/]
// Goal: Verify and Validate the Test Scenario: [tsc.name/]
// The Script consists of [aTestScenarioModel.testScenarios->size()/]
Test Scenarios
activity [tsc.name+' '+aTestScenarioModel.name/] () {
[for (tcase:TestCase|tsc.testCases)]
// Test Case: [tcase.name/]

[if tcase.testItems->selectByKind (Link)->size()>0]
// Links

[/if]

[for (tl:Link|tcase.testItems->selectByKind (Link))]

[tl.name/].createLink ([tl.parameters->selectByKind (Input).
name.toLower ()/]_, [tl.parameters->selectByKind (Output).name.toLower
071.);

[/for]

"L/ for]
b
[/file]
[/for]

Figure 6.12. Partial Acceleo code of transformation

The transformation in Figure 6.12 invokes the mapping for every
test scenario and creates a file (.alf) to contain the test items related to
the test scenario, keeping the classification between test cases and test
items (i.e. precondition assertions, services, triggers, links,
postcondition assertions and invariants).

This transformation is a repetitive operation that traverses all the
test scenarios from the test scenario model, creating a set of ALF
scripts with abstract test cases (see Figure 6.13).

The test cases are abstracts in the sense that they do not contain
concrete objects.

149

CHAPTER 6. TRANSFORMATION RULES

| Scenarios with Abstract Test Cases |

1 private import VideoClub::*;

2 M port Alf::Library::BasicIypes::*;

3 :Lil s Asserts::¥;

4 R

S =

6

g

9

10

11

12 p_atraddress=text,p_atrpostal_code=text);
13

14 }

Figure 6.13. Test Scenario with abstract test cases

6.3.5 Transformation from Test Data Model and
Abstract Test Cases to Executable and

Concrete Test Cases
The goal of this fifth transformation is to obtain the executable and
concrete test cases by merging the elements of the two prior
transformations, relating test data model and abstract test cases to
concretize the variable of the test cases.

Hence, this transformation takes both artefacts, a test data model
and a scenario with abstract test cases test as inputs, and generates
executable and concrete test cases as output by merging the
information of the input artefacts.

Then, the mapping associates each variable of the test case
statements with a concrete value from the test data model, if any. In
addition, the assertions are added according to the type of test case
(see Section 5.4.3). The results of this transformation are concrete and
executable test cases.

Figure 6.14 shows an example of a concrete and executable test
case for the Videoclub conceptual schema.

150

CHAPTER 6. TRANSFORMATION RULES

Executable and Concrete Test Case |
1 private import VideoClub::*

2 public import
puklic import

11 v1decclub new wldeculub{p atrld
12 p_Atrmanager name
13 p_atrcity= "Val p_atraddress
14 p_atrpcstal code= 20")

15 AssertTrue("0Object Created”,videoclub_ instanceof Videollub);

16 1

"Jose Vicente

Figure 6.14. Example of a concrete and executable test case for VideoClub CS

6.3.6 Transformation from UML CD-based CS to

Executable CS under test
We use the ALF language as a notation for representing UML CD-
based CS and for reasoning about this model. To obtain the result
outlined in the previous section we defined a model-to-text
transformation of UML to ALF, which we describe in this section. The
mapping is specified as an ATL transformation included in the CoSTest
tool and we outline here its points of interest.

Packages
Figure 6.15 shows the Acceleo transformation for a UML package
such as the Video Club example depicted in Figure 5.6.

[file (p.name+'.alf', false, 'UTF-8")]
package [p.name/] {
[for (aClass:Class|p.packagedElement->filter (Class))]
[aClass.visibility/] class [aClass.name/][if aClass.superClass—>size ()>0]
specializes [for(ac:Class|allParents())1[if i>1], [/if][ac.name/][/for][/if
[/for]
[for (assoc:Association |p.packagedElement->filter (Association))]
[if assoc.isDerived=false and assoc.oclIsKindOf (AssociationClass)=false]
[assoc.visibility/] assoc [assoc.name/];
[/if]
[if assoc.oclIsKindOf (AssociationClass)]
[for (end:Property|assoc.memberkEnd)]
[assoc.visibility/] assoc [end.type.name/] [assoc.name/];
[/ for]
[/if]
[/ for]
}
[/file]

Figure 6.15. Acceleo transformation rule for UML package

151

CHAPTER 6. TRANSFORMATION RULES

Classes

Figure 6.16 shows the partial ALF subunit translated for the class

VideoClub of our example, where we can see the definition of the

class attributes and part of the class constructor (i.e. @Create).

namespace VideoClub;
public import AlL:
public impcrt Al1f:
class Rental{
public id_rental: Integer:
public pick up date: Date;

@Create Rental(

// Corresponding to new rental
in p_atrid rental: Iiteger,
in p atrpick up date:Date,
in p_atrreturn_date:Date,
in p agrpartner:Partner

[

:Library::PrimitiveBehaviors: :StringFunctions: 1 ¥;
:Library: :BasicTypes::*;

Figure 6.16. Partial definition for the class VideoClub by using ALF language

Associations

Figure 6.17 shows two examples of the ALF-based textual definition

for associations. The first one (a) is the association between Partner

and Rental classes and the second association (b) is the aggregation

between Rental and RentalLine classes, which is transformed in

a statement with a compose clause.

nameIpace VideoClub:

a3acc
F

partner_rental|

a) Translation of an association

namespace Videollub:

1 rentaline(
:Rencal[1];
nes': compose Rentallins;

b) Translation of an aggregation

Figure 6.17. Association and Aggregation of Order example using ALF language

Inheritance

Inheritance poses a particular problem in translating UML to ALF,

since a subclass is dependent on its superclass, and this is an operation

dependence, since creation of a subclass instance requires invocation

of its superclass constructor. The inheritance relations are translated

into ALF by using the specializes clause.

152

CHAPTER 6. TRANSFORMATION RULES

Figure 6.18 shows an example of inheritance relations translated
for the PrivatePartner class.

Q Partner

Q CorporatePartner Q PrivatePartner

=l contactMame : String

= creditlimit : Real = creditCardMumber: String

PrivatePartner truserna..
48 new_CorporatePartner(p_atrusernam... & new_PrivatePar ner(p_atruserna

namespace VideoClub;
public impeort Rlf::Librarvy::PrimitiveBehaviors::StringFunctions::*;
public import Rlf::Library::BasicTypes::*;
class PrivatePartner specializes Partner{

public creditCardiumber: String:
Create PrivatePartner(

in p_atrusername:String,

in p atrpassword:String,

in p_atrname:String,

in p_atrage:Integer,

in p_atrcreditCardiumber: String

super.Partner (p_atrusername,p_atrpasaword,p_atrname,p atrage) :
this.creditCardiurmber=p atrcreditCardNumber;

}

}

Figure 6.18. Partial view of the ALF unit including an inheritance relation

Constraints

Constraints are included in the UML models using mechanisms
such as body, pre and post conditions. These mechanisms need to be
translated into ALF elements to be executable. Depending on the role
of the constraint, we generate a different scaffolding:

— body: If the corresponding operation is missing from the class
model, we create a new operation and associated method.

— pre, post, inv: For each constraint we generate a new conditional
associated with a side-effect free operation that returns an Error
message when the constraint is violated. Bodies of other operations in

153

CHAPTER 6. TRANSFORMATION RULES

the model are changed in operations that check pre- and post-
conditions of the operation and invariants of the class.

— derive: We create a getter operation (e.g.,
property_<FeatureName>_derivation). We attach the operation
generated from the constraint expression to the getter and add a call
for this operation in the class constructor. See derived Association in
the next subsection.

— def: We create a new operation and associated method.

— init: We set the value of the property to the result of the
compilation of the constraint expression in the class constructor.

Figure 6.19 shows a constraint attached to the class Rental of the
VideoClub CS with the corresponding ALF code, which is translated
to an operation of the Rental class.

namespace VideoClub;
public import Alf::Library::PFrimitiwveBehaviors::5tringFunctions::*;
public import Alf::Library::BasicTypes::*;
class Rental]
prublic id rental: Integezr;
rublic pick up date: Date;
public return date: Date;
public total: Real;
"

i:ﬁ.blic property_total derivation(){

Alf code

this.total=this.rentallines -> collect e{e.price) -» reduce Sum;
}
}

Figure 6.19. Example of a constraint translated to ALF code

Derived Associations

For derived associations, we add an attribute to the class (e.g.
sequence) and create a getter operation (e.g.,
association_<DerivedAssociationName>_derivation). We then attach
the operation generated from the constraint expression to the getter.
Figure 6.20 shows the attribute and method generated for the derived
association rentedMovies of the VideoClub example (see Figure
5.6).

154

CHAPTER 6. TRANSFORMATION RULES

nameapace VideoClub:
public import Alf::Library::PrimitiveBehaviors::StringFunctions::*;
public import Alf::Library::BasicTypes::#;
class Videollub{
public id videcclub: Integer;
public manager name: String;
public city: String;
public address: String;
public postal_code: String;
public rentedMovies: Movie [] sequence;

Integer,
in p_atrmanager_name:String,
in p_atrcity:String,

in p_atraddress:String,

in p atrpostal code:String

this.asscciation rerentedMovies derivation():

1

public asscciation rentedMovies derivation(){
thiz.rentedMovies=this.movies-»zelect e(e.3status=="renced");

1

i

Figure 6.20. Example of a derived association using ALF code

Association classes

The association class effect can be equivalently modelled with a
class with two associations as shown in Figure 6.21. Therefore, we used
this equivalence to transform an association class into ALF units.

= Movie mowvie languages
. - Q Language
= id_mowvie : Integer
=1 director : String =l name : String
= release_date ; Date -
=l rental_price : Real 2 MovieLanguage

= status : String

= narme : String ~
= subtitles : String ™

Q Movie

=l id_mowie : Integer & MovieLanguage | Q Language

=1 director: String -
= release_date : Date = namle ' StrlnS 2 =l name : String
= rental_price : Real B subtitles: String
=1 status : String

-

.
.

-

Figure 6.21. An example of class association

155

CHAPTER 6. TRANSFORMATION RULES

6.4 Summary and Conclusions

Developing model transformation definitions is expected to
become a common task in model driven software development.
Software engineers should be supported in performing this task by
mature MDE tools and techniques in the same way as they are
presently supported by classical IDEs, compilers, and debuggers in their
everyday programming work.

In this chapter we have detailed the three metamodels and six
transformations that we defined to implement our model-driven
testing framework wusing the Eclipse Modelling Framework
(http://www.eclipse.org/modeling/emf). For implementing the
transformations, we used Java, ATL and Acceleo languages integrated
into the Eclipse platform, one of the most popular development
platforms in the software development community. These artefacts are
required to implement the tool support described in Chapter 8.

In Chapter 8 the validation of the two main M2M transformations
will be described and discussed.

156

PART IV
TREATMENT
VALIDATION

CHAPTER 7. THE COSTEST TOOL IMPLEMENTATION

Chapter 7

CoSTEest TooL IMPLEMENTATION

Testing software would be extremely difficult without a reliable,
fast and automated tool that runs the artefact software against a test
suite, reporting the detected faults.

In Chapter 5, we proposed a validation framework for testing
executable conceptual schemas. In this chapter, we summarise the
prototype tool that we built to support the proposed validation
framework.

CoSTest supports the generation, management and execution of
automated tests against the executable conceptual schemas and
makes the proposed testing framework feasible in practice.

This chapter is organized as follows: Section 7.1 explains the
architecture and functionality of the CoSTest tool support. Sections
7.2-7.8 summarize individual tool functionalities. Section 7.9 contains a
summary and conclusions of the chapter.

7.1 General Overview and Architecture
The main purpose of the tool is to support our testing-based
framework described in Chapter 5 for validating CSs according to

159

CHAPTER 7. THE COSTEST TOOL IMPLEMENTATION

stakeholders’ requirements. CoSTest is a software tool that supports
the generation, management and execution of test suites.

CoSTest works as standalone desktop application for Windows
platforms and is available for downloading from the project website
(https://stag.dsic.upv.es/webstaq/costest.html). Video tutorial with
examples of its use may also be found on the project website, together
with additional information and resources such as source files of
requirements and conceptual schemas and complementary
documentation.

CoSTest has been developed in the context of Design Science,
which is the general framework of the present research work (Chapter
2). The development and refinement of the contributions presented in
this Thesis were supported by the knowledge and experience acquired
during continuous development of this tool and by its application in
several laboratory experiments and case studies (Chapter 8).

Our tool may be used by testers/modellers/analysts in any
development phase of a CS based on UML class diagrams. For example,
as part of the test-last validation (i.e. correctness and completeness are
checked by testing after the CS definition) or test-first development of
conceptual schemas, in which the elicitation and definition is driven on
a set of test cases.

The implemented release of the tool deals with schemas defined in
UML class diagrams. Additionally, CoSTest is also able to deal with a
representative set of constraints that involve two successive states of
the modelled system (i.e. pre and post conditions), and on creation-
time constraints (i.e. invariants and derived values). The definition of
these additional features and their implementation are explained in
Section 5.4.3.

We chose Eclipse (http://www.eclipse.org) as the technological
platform and used the Eclipse Modelling Framework
(http://www.eclipse.org/modeling/emf) to implement the

160

http://www.eclipse.org/modeling/emf

CHAPTER 7. THE COSTEST TOOL IMPLEMENTATION

metamodels. Atlas Transformation Language
(http:////www.eclipse.org/atl/) and Acceleo Language
(http://www.acceleo.org) to implement the model transformations.

CoSTest’s main features are as follows:

1. The generation of a Test Model from a Requirements Model.
The generation of a Test Scenario Model containing the
Abstract Test Cases.

3. The generation and management of values for Data
Concretization.

4. The generation and management of executable Conceptual
Schemas under Test.

5. The generation and management of Executable Test Cases
(scripts).

6. The execution of the test cases and the automated
computation of Testing Results, which include verdicts, reports
of defects and failing information as well as the automatic
analysis of testing coverage according to a basic set of testing
adequacy criteria.

7. The Mutant Generation of first order mutants for conceptual
schemas, which are required to prioritize and validate the
quality of CoSTest’s test suite.

8. The Batch Testing allows the execution of the test suite and
the automated computation of testing results for a set of
selected CS.

The user interface of the CoSTest tool is implemented in Java Swing
[123], assisted by a specialized tool to design graphical interfaces in
Java, called JFormDesigner. The user interface of the tool is composed
of seven tabs (see Figure 7.1) with one tab for each of the above
features.

Figure 7.2 shows the main components of the CoSTest tool
architecture. In the following sections, we describe the responsibilities
and the implementation of each component.

161

CHAPTER 7. THE COSTEST TOOL IMPLEMENTATION

K COSlest - Cunceplual Schemas Testing (rololype ol - o
3
Conceptual Schema Testing
X
% Conceptual Schema Under Test Executable Test Cases | [~ Testing Results | .4 Mutant Generation Balch Testing | s About
Test Model < Test Scenano Model 7~ Data Concretization
Requirement Model fle : [Ciuize - Selectfile
Test Mode file : |C: ST 5! M saveas ..
Generation Time : seconds CSUT Type :[00-Method - Generate TestModel ||) Report Elements Graph Configuration |, Open Test Modsl
Test Model Graph Test Model Tree
St : REGISTER_VIDEOCLUB_INFORMATION)
(REGISTER_VIDEQGLUB_INFORMATION : REGISTER_PARTHER)-
(REGISTER_MOVIE_INFORMATION : A_PARTNER_PLACES _A_RENTAL)
(REGISTER_PARTNER: A_PARTNER_PLACES_A RENTAL)
Figure 7.1. Screenshot of the CoSTest tool support
O . > Defines /
Req. Model “J::"MS/) Clients Changes | _Conceptual Schema
anges (- 5 [=—>| Ciasses
Z — - A
g Requirements Tester Analyst/Modeller % 58
—‘V nameer Defings /Changes .
s N K
CoSTest Tool . \
A 3
Wi Test Model | | WaTest Scenario| | % Data Editor | | S9CSUT Editor, W Test Editor W Test Results | | ws i = Mutant
) T Model tasen actwity Test1[) { Results Generation
2 oy — Fublc wﬁ Integer We= new VideaCIub — ——
C] =5 == | crenewin- gy —||=
3 <) Integer] ve instanceof
4 e N
L 3 L) . 3
: ' bi o \
t H
52 Test Scenari y
est Scenario
= g| Test Model Test Data CcSUT Batch Test Mutant
L1 Model L Test Processor
[=] Manager Manager Processor Processor Manager
o E Manager >
(=]
o } PN]
. / [1 J
f f / £ 1 + S 1 \
(4 Rssociation R Y I?—L R
= [Test Model [Test Scenario [Thass Execution| CCverage Repor C5 Mutont
38 3 Model Class A Trace CS tutant
2 8o Pop crse A
n i Public id:Integer
o plat @create afind_7
Integer)
o< o I_ﬁ

Legend

Artifact (Cm Infout relation Optional input

Database

Figure 7.2. The CoSTest tool architecture

7.2 The Test Model Manager
The Test Model Manager provides functionalities for generating
and viewing the test model. Figure 7.3 shows the main components
with a 3-layer architecture of the Test Model Manager, which consists

162

CHAPTER 7. THE COSTEST TOOL IMPLEMENTATION

of the Presentation Manager, the Test Model Generator, Graph and
Tree Builder, and the Element Report Generator.

Test Model Manager

~

Presentation
Layer

Presentation Manager
Graph

X |
_Configurator
-onfigurato

L
Test Model

. . J
Visualizer

‘ Graph and Tree

| Builder
Loaded into A

Test Model Generator

Logic Layer

| Test Model

Req. Model §

o}
File (.xls) File (.xmi)

Legend External flow
g -
Artifact Gm In(ternal f)low

Figure 7.3. Test Model Manager design

O
=

Data Layer

-

7.2.1 Presentation Manager

The Presentation Manager implements two user interfaces: one
related to the visualization configuration and another related to test
model generation. The user interface for generating test models selects
source and target files, which are saved as persistent files in a specified
directory of the files system. The interface also provides functionalities
to open existing test models, then the test model is presented as a
graph and a visual tree. The graph view is provided by the JGraph and
ListenableGraph libraries and the visual tree is implemented by
XMLTreePanel library. The interface also includes a comboBox to
select the CSUT type. Two options are available: (1) OO-Method
conceptual model and (2) UML, depending on the derivation strategy
of the CS elements. The interface also includes the following buttons:

163

CHAPTER 7. THE COSTEST TOOL IMPLEMENTATION

Generate Test Model to request the generation of the test

model by the Test Model Generator.

Report Elements to request a report of the generated

elements as well the requirements model elements used in

the transformation. This report helps to calculate the

metrics presented in Chapter 8.

visualization.

Graph Configuration to call the interface to configure the

Figure 7.4 shows the user interface to configure the visualization,

which can adjust the graph properties such as visualize the grid and the

route tree edges, personalize the scale, change the distances between

node levels, nodes as well as the node width.

f | £| COSTest - Test Model View Configuration l = -&-]1
Visibility Properties :
[]Grid
Route Tree Edges
Scale
) Personalized Scale
Scale Value (1=100%) :
i® Normal Scale
Distances :
Between Levels : ﬂ
Between Modes : 100
Node Width 200
| [save || # cancel |

Figure 7.4. Screenshot with a test configuration example of the CoSTest tool

Figure 7.1 and Figure 7.5 show a CoSTest screenshot with the test

model for the Video Club system using a visual tree.

7.2.2 Test Model Generator

Every time the user requests the generation of the test model, the

Presentation Manager communicates with the Test Model Generator

which executes the ATL model transformation (i.e. ca2tc.asm) in order

164

CHAPTER 7. THE COSTEST TOOL IMPLEMENTATION

to generate the test model. Then, the test model is used by the
Presentation Manager in order to show the result of the model
transformation.

8 COS lout - Conceplual Schemas losing (prototype lodl) - a

) Conceptual _Schema Testing

X conceptual Schema Under Test Executable Test Cases | [~ Testing Results | :3 Mutant Generation Batch Testing | & About
Test Model I = Test Scenario Model 7~ Data Concretization

= el e
B smeas

(] Report Elements Graph Conguration Open Test Model

Requirement Model fle : [C\Users\PC Hlaferworkspa:

S ER_PLACES_A_RENTAL
A_PARTNER_RETURNS_THE_MOVIE

Figure 7.5. Screenshot with a test model example of the CoSTest tool

7.2.3 Graph and Tree Builder

When the user requests the generation or the opening of the test
model, the Presentation Manager communicates with the Graph and
Tree Builder, which loads the test model in order to generate the
respective views (i.e. graph and tree). Then, the test model is used by
the Presentation Manager to show the result of the generation.

7.2.4 Element Report Generator

Every time the user requests the generation of the elements
report, the Presentation Manager communicates with the Element
Report Generator, which executes the query in both source files (the
requirement model and test model) in order to generate the Excel
report. Then, the report is saved as an Excel file by using the jxI library.

7.3 The Test Scenario Model Manager
The Test Scenario Model Manager implements the generation and
the visualization of the test scenario model. Figure 7.6 shows the main

165

CHAPTER 7. THE COSTEST TOOL IMPLEMENTATION

components with a 3-layer architecture of the Test Scenario Model
Manager, which consists of the Presentation Manager, the Test
Scenario Model Generator, Tree Builder, and the Element Report

Generator.

Test Scenario Model Manager

Presentation Presentation
Layer Manager
Logi ’
oglc Tree Builder
Layer
Loaded into
Test Scenario
Model Generator
Element Report
Loaded
Generator f
* into
] Test Model || [Test Scenario
% —= g Model
© el RS
=) —31 Jiz] == le]
a o) Sy
File (.xmi) File (.xls) File (xmi) /
Legend External flow

-

Figure 7.6. Test Scenario Model Manager design

7.3.1 Presentation Manager

The Presentation Manager implements only one user interface
related to test model generation. The user interface can select source
and target files, which are saved as persistent files in a specified
directory of the files system. The interface also provides functionalities
to open an existing test scenario model, then the test scenario model is
presented as a visual tree. Additionally, the interface includes the

following buttons:

e Test Scenario Model Generation to request the generation
of the test scenario model by the Test Scenario Model

Generator.

166

CHAPTER 7. THE COSTEST TOOL IMPLEMENTATION

e Report Elements to request a report of the generated
elements as well the requirements model elements used in
the transformation. This report helps to calculate the
metrics presented in Chapter 8.

7.3.2 Test Model Generator

Every time the user requests the generation of the test model, the
Presentation Manager communicates with the Test Scenario Model
Generator, which executes the Java model transformation to generate
the test scenario model. Then, the test scenario model is used by the
Presentation Manager to show the result of this transformation.

7.3.3 Tree Builder

When the user requests the generation or the opening of the test
scenario model, the Presentation Manager communicates with the
Tree Builder which loads the test model to generate the respective tree
view. Then, the test scenario model is used by the Presentation
Manager to show the result of the generation.

7.3.4 Element Report Generator

Every time the user requests the generation of the elements
report, the Presentation Manager communicates with to the Element
Report Generator which executes the query in both source files (the
test model and test scenario model) to generate the Excel report.
Then, the report is saved as an Excel file. Figure 7.7 shows a CoSTest
screenshot with the test scenario model for the Video Club system
using a visual tree.

7.4 The Test-Data Manager

The Test-Data Manager is able to setup a data base by creating,
reading, updating and deleting test data values to concretize the test
cases. A variable may be concretized with values by using (i) the
requirements model, (ii) a manual entry, or (iii) a web-based
generation.

167

CHAPTER 7. THE COSTEST TOOL IMPLEMENTATION

M COSlest - Conceplual Schemas Testing fprololype tool)

A

%
\ 1/2'\2 &
\

Exscuable Test Cases | | Tesing Resuts

2 Conceptual Schema Under Test
Test Model

4 Mutant Generation Balch Testing

S Test Scenario Model

Conceptual Schema Testing

% About

7~ Data Concretization

Test Model file: [CL: Testodel_xm = SelectFlie
Test Scenario Model file : [C.L sTesiCases.ami [Hsaveas..

Open Test Scenario Model

) Report Elements

Figure 7.7. Screenshot of a test scenario model example in the CoSTest tool

Figure 7.8 shows the main components with a 3-layer architecture
of the Test-Data Manager, which consists of the (1) Presentation
Manager, (2) the Web-based Generator, (3) the Requirements-based
Generator, and (4) the Database Manager.

Test-Data Manager

Presentation Presentation
Layer Manager
|
Loaded into Web-based ‘
- Generator / |
g Requirements-based 1
8 Generator
i
= Database
= Manager
A
GLJ Test Model CRUD
> Lo) 4
] =1
=
z —
-
©
o
Legend External flow

Figure 7.8. Test Data Manager design

168

CHAPTER 7. THE COSTEST TOOL IMPLEMENTATION

7.4.1 Presentation Manager

Since the Presentation Manager implements an interface to
support the CRUD functionalities (i.e. create, read, update and delete)
on the test data, the test model filename is required as input. Then, the
test data is presented as a list of variables with their properties (i.e.
type, upper limit, lower limit, test item, test case, data source, related
pattern data source type and concrete values).

When the user requires to concretize a variable with the values
included in the requirements model, the user must click on the button
“Generate from Model”. Then, the Presentation Manager
communicates this request to the Requirement-based Generator.

When the user requires to concretize a variable with a manual
entry, the user must (1) select the variable from list of variables, (2)
select the “Manual Entry” option from the data source list, (3) select a
pattern previously defined from the patterns list, and (4) click on “+”
button located below the concrete values list. Then, the Presentation
Manager enables the input controls to edit a concrete value for the
selected variable.

Finally, when the user clicks on the save button, the Presentation
Manager communicates the value entered, the pattern, the source
type and the variable to the Database Manager to save the data.

The user interface also provides functionalities to support the
CRUD functionalities (i.e. create, read, update and delete) on regular
expressions (i.e. sequence of characters) that forms a search pattern
for searching data on the web.

When the user requires to concretize a variable with values found
in the Web, the user must (1) select the variable from the list of
variables, (2) select the “Web—based Generation” option from the data
source list, (3) select a pattern previously defined from the patterns
list, and (4) click on “+” button located below the concrete values list,
the Presentation Manager communicates the request to the Web-

169

CHAPTER 7. THE COSTEST TOOL IMPLEMENTATION

based Generator in order to search for values to concretize on the
Web.

7.4.2 Web-based Generator

When the Presentation Manager communicates a request to the
Web-based Generator, it executes the Java module to search for the
data on the Web by using the related pattern and the org.jsoup.Jsoup
library. Then, the list of values found is passed to the Database
Manager to save the result of the search.

7.4.3 Requirement-based Generator

Every time the user requests the generation of the values from the
Model, the Presentation Manager communicates with the
Requirement-based Generator, which uploads the test model file to
retrieve the values related with each variable and then passes them to
the Database Manager to save the loaded values.

7.4.4 Database Manager

This component is responsible for executing the commands or
gueries on the database in order to support the CRUD operations.
Then, this information (i.e. value, pattern, variable with its properties)
is returned to the Presentation Manager in order to refresh the
information displayed on the interface.

The Database Manager is supported by Hibernate
(http://hibernate.org, an Object/Relational Mapping (ORM)
framework.

Figure 7.9 shows a CoSTest screenshot of the data concretization of
the Video Club system.

170

CHAPTER 7. THE COSTEST TOOL IMPLEMENTATION

e COSlesl - Conceplual Schenmas Tesling (prololype ol)

) Conceptual Schema Testing

% Conceptual Schema Under Test | — Execulable Test Cases | |- Testing Resulls | 4 Mutani Generation | & Baich Testing | & About
Test Model 5 Test Sconario Model ~ Data Concretization

151PC-Malerworks pace\COSTestTestiodelsIVideoClub_Testhodelxmi = select File

Recovery from DB # Generate from Model

Select a Variable: Variable Information Select a Pattern : Concrete Values
Type: number

. Name
dvideocb Lower: 1 i Neme
manager_name s 2 Temail flw-jo]

Testiter

Figure 7.9. Screenshot for the data concretization in the CoSTest tool

7.5 The CSUT Processor

The CSUT Processor has the responsibility of transforming the UML-
based Conceptual Schema into an executable format by using ALF
language. UML relationships, constraints and classes with attributes
and operations are transformed into ALF scripts. Details of the ALF
Language and its grammar can be found in [82]. Figure 7.10 shows the
main components with a 3-layer architecture of the CSUT Manager,
which consists of the Presentation Manager and the CSUT Manager.

7.5.1 Presentation Manager

The Presentation Manager implements three user interface parts:
the first is Script Editor tab, which is related to the management of the
CSUT scripts (see Figure 7.11), the second the Log Visualizer tab, which
provides the errors found by the parser in the syntax validation of the
ALF scripts (see Figure 7.12), and the last one is the CSUT Elements tab,
which reports the different elements identified in the conceptual
schema (see Figure 7.13).

The user interface for managing ALF scripts can create (i.e. result of
the generation), parse, edit and save the generated scripts.

171

CHAPTER 7. THE COSTEST TOOL IMPLEMENTATION

CSUT Processor
c Presentation Manager
K] (Log Visualizer)
- ——
g 0>’_ Wements “
© N Report)
% - ’ 97
s / Script | __Open/
= | editorsaved
3 [CSUT|Manager
% | Report
= Generator
2 Parser
oo
S ﬂi CSUT Transformer
1
o [Associatio c Sehema
> [Class B o
© csuT asses
=
P Pt ineger B8
- @Create Afin id_
8 Integer) 7 .
{ this.id=id_;} <_E|le..LumlL
[Feiies (alf)
Legend External flow

-
Artifact Component In(ternal f)low

Figure 7.10. CSUT Processor design

The user interface can select source and target files, which are
saved as persistent files in a specified directory of the files system. The
interface also provides functionalities to open existing ALF scripts, then
the file is presented as a text file in the Script Editor.

B LOSIont - Concuplual Schemas esling (proletype ol - o

Conceptual Schema Testing

% Conceptual Schema Under Test Executable Test Cases | [Testing Resulis | =4 Mulant Generation Baich Testing | m About
Test Model S Test Scenario Model 7 Data Concretization
Source Format : [UML -

Conceptual Schema file: |C: = Select File.

Target Directory :

[Select Folder
Transtormation Time : hhamm:ss
Parsing Time : nmmss |

CSUT Parser 1 Save this file

CSUT Elements

\VideoClub_TS_001_TC_005.alt
\VideoClub_TS_001_TC_006.alf

[VideoClub_TS_001_TC_007.alf
\VideoClub_TS_001_TC_008.all o
|VideoClub_TS_001_TC_009.alt 1

[VideoCIub_TS_001_TC_010lf 15

T5_001_TC_011.010

19

Videociun TS 001_TC 01421]

|VideoClub_T$_001_TC_015.alf =
VideaCiu_Testhlodelxmi. -

Figure 7.11. Screenshot for editing an executable CSUT in the CoSTest tool

172

CHAPTER 7. THE COSTEST TOOL IMPLEMENTATION

8 LUSlest - Cuneeplual Schermas lesting (prololype Lool) - o o=
k3
2 Conceptual Schema Testing
& |
¥ Conceptual Schema Under Test | Execulable Tes{ Cases | [Testing Results | :4 Mutant Generation | - Balch Testing | s About |
 Test Model = Test scenario Model 7~ Data Concretization
Generation of the Conceptual Schema Under Test (CSUT)
Source Format : [UML [~
Conceptial Schematiie: |CilsersPC OSTest two_umi = SelectFile
: [CusersPe = tCases\UMLALFidsoCub o ——
Transformation Time : nmmss L= €suT Transtormaton | » CSUT Parser, [[save tis me
Parsing Tume: (0 hh:mm:ss (3, script Editor | Log Visualizer CSUT Elements |

Select a filename to be edited: [Parse failed: C:\Users\PC- TestCases\UML-ALFVideoClubWideoClub aif
NideoChb.all [~ [Encounterea” <DENTIFIER> "clss ~ atline 8, column 16.
\VideoClub_TS_001_TC_001.alf Was expediing one of.
VideoClub_TS_001_TC_002.alf Bl
VideoClub_TS_001_TC_003.a1f sy
VideoCiub_TS_001_TC_004.aif “ass0
VideoClub_TS_001_TC_005.alf diass
VideoClub_TS_001_TC_006.alf a datatype
VideoClub_TS_001_TC_007.alf enum”
VideoCiub_TS_001_TC_00%.aif “package”...
VideoClub_TS_001_TC_009.alf signal
VideoCub_TS_001_TC_010.alf
VideoClub_TS_001_TC_011.aif
VideoClub_TS_001_TC_012.alt
VideoClub_TS_001_TC_013.alf
VideoCub_TS_001_TC_014.alf
VideoCiub_TS_001_TC_015.a =

(Opening VideoCiun. -‘

File 53ved : CAUsersiPC-Mafers 50 S\UMLALFWIdeoCIUDNIGe OCIu alf -

Figure 7.12. Screenshot for showing the parser results in the CoSTest tool

B COS lest - Conceplual Schemas lesting (protolype tool - o

N, Conceptual Schema Testing
&

8 Conceptuai Schema Under Test |~ Exacutable Test Cases | [Testing Results | 14 Mutant Generation | & Baich Tosting | @ About
Test Model 2 Test Scenario Model " Data Concretization
Generation of the Conceptual Schema Under Test (CSUT)
Source format:. [0 =)

Conceptual Schema file: C ub_umi e Select file
L FiAdeoCHs Basnciasc]
Transtormation Tume : 1 hhmm:ss L4 CSUT Transtormation + CSUT Parser 1 save tis e
Parsing Time: 0 s) Script Editor Log Visualizer CSUT Elements
Select a filename to be edited: nentType | Amount Elements.
VideoClub.all o

[RentalLine v
VideoClub_TS_001_TC_001.ait Ir
VideoClub_TS_001_TC_002.ai
VideoClub_TS_001_TC_003.alt
VidooClub_TS_001_TC_004.ait
VideoClub_TS_001_TC_005.aif
VideoClub_TS_001_TC_006.al
VideoClub_TS_001_TC_007.af
VidooClub_TS_001_TC_008.a
VideoClub_TS_001_TC_009.a
VideoClub_TS_001_TC_010.a1t
VideoClub_TS_001_TC_011.a
VideoClub_TS_001_TC_012.ait
VideoClub_TS_001_TC_013.at
VideoCiub_TS_001_TC_014.2
VideoClub_TS_001_TC_015.a0 = | T ¥l

File saveq C\UsersPC-Maferworkspace\COST estExecutableTestCases\UML-ALFVideoChubVideoClub aif
Transtormaton done.

Figure 7.13. Screenshot for showing the CSUT elements in the CoSTest tool

The Script Editor is implemented by using the JSyntaxPane library.
JSyntaxPane provides resources to handle basic syntax highlighting and
editing of various languages within the Java Swing application. Since
JSyntaxPane does not include syntax highlighting for the ALF Language,
we extended it to allow this. The interface also includes the following
buttons:

173

CHAPTER 7. THE COSTEST TOOL IMPLEMENTATION

e (CSUT Transformation button to request the CSUT
transformation from UML format (.uml) to executable
format into an ALF script (.alf) by using the CSUT
Transformer.

e (CSUT Parser button to request the syntax validation of
CSUT Scripts, which are transferred to the Parser Executor.

7.5.2 CSUT Manager

The CSUT manager has three main roles:

1)

7.6

Read and transform the CSUT written in UML format (.uml) into
an executable CSUT format (ALF script .alf). For this, the
Presentation Manager communicates with to the CSUT
Transformer, which executes the Java model transformation to
generate the ALF scripts. Then, the ALF scripts are used by the
Presentation Manager to show the result of this transformation
in the files list shown in the interface as well as in the Script
Editor Tab. For transformation, we use libraries such as
org.eclipse.uml2.uml, org.eclipse.emf,
java.io.File, and java.io.FileWriter.

Perform the execution of the Report Generator to list elements
identified in the conceptual schema during the transformation.

Call the Parser in order to check the syntax of the CSUT. Then,
the log generated by the parser is passed to the Log Visualizer
of the Presentation Manager to show the result of the
generation. If the log is empty no errors were found, otherwise
the log reports the errors using the ALF report. Details of the
ALF Language and its grammar can be found in [82].

The Test Processor

The Test Processor implements the generation, management and

the execution of the test cases. Figure 7.14 shows the main

components of the Test Processor, which consists of the presentation

manager and the test manager, as described below.

174

CHAPTER 7. THE COSTEST TOOL IMPLEMENTATION

c n
o Presentation Manager
® = Report | [TestCase \“
c % _Generator / _Configurator / _Save
3 T Test Case™ Open/ |
o ‘ Test' ase \|_sqve
a _ Editor

1 B |
QLJ TestiManager I
z |
©
-
o Gest Case GeneratoD
oo
o
-
. Conceptual Schema
q>,). Test Scenario Classes
@| Model s = | R 4
-1 o3 Public id:Integer
S @Create Afinid_ 7

:Integer) . ile (..
s vl File (uml) ~ File (xis)
Files (.alf)
Legend External flow 4. 1apace

-
Artifact Irkternal f;ow

Figure 7.14. Test Processor design

7.6.1 Presentation Manager

The Presentation Manager implements three user interface parts:
the one related to the configuration of test cases and testing process
(Figure 7.15), the second related to the generation and management of
the test suite (Figure 7.16), and the last one related to the presentation
of the testing results (Figure 7.17).

|] COSTest - Test Case Generation Configuration - O s)

Target Directory :
Delete previous Test Cases|
Two-instances of the same class :
Differenciate instances
Data Selection from Database for Concretization:

@® Sequential Selection

Starting from (record) : 1

) Random selection
Test Suite :

@® All Scenarios

2 Only scenario(s)
Test Cases and Input Data :
@® Complete O Negative © Postive

Object Creation Only Complete Scenarios

lues out of range With Partial Scenarios

onstraint Violations
Min. Cardinality Violation

Unique Violation
Type of Execution :

@® Stop when a fault is found ©) Complete Execution
Type of Detection Strategy :
@ Testing + Coverage Analysis of the Test Cases ©) Only Testing

[[save | %cance |

Figure 7.15. Screenshot of the test configuration in the CoSTest tool

175

CHAPTER 7. THE COSTEST TOOL IMPLEMENTATION

B CO5lesl - Canceptual Schemas lesting fprololype lool - g x

Conceptual Schema Testing

S Conceptual Schema Under Test | Executable TestCases | [] & Batch Testing | g8 About
Test Model = Test Model 7~ Data e
Executable Test Cases Generation
Abstract Test Cases file: [CiUsersiC WideoClub_AbsTostCases xm = Selectiie |
CSUT: [CiUsersiC. tu_umi i Select CSUT _|
Test Cases Directory : |C\Users\PC-MafermworkspacelCOSTesExscutableTestCas estUMLALFWideoClub T selectromer_|
Generation Time : himm:ss | [coseGeneravon | Test Case Concretization &\ Testing |[0 Export summary wexcer |
[~ vestcase conniguration | i save this testcase |
e Test Case Editor | - Summary Generation
o ubi 0
VideaClub_Ts_001_TC_00z.1t 2w
VideoClub_TS_001_TC_003.alf 2 7

|VideoClub_T$_001_TC_004.alf
VideoClub_TS_001_TC_005.alf |
VideoClub_TS_D01_TC_008.alf
VideoClub_TS_001_TC_007.alt 11
\VideoClub_TS_001_TC_008.alf 10

videsclub_= new VideoClub(p_atrid_videoclub=100,p_atrmanager mame= "Jose da1",p_streity= "V
VideoClub_TS_001_TC_009.alf 1 AssertTrae (“object Created”, videde: tanceo? VideoTlubi:
VideoClub_TS_001_TC_010.a10 npe?
VideoClub_T$_001_TC_011.alf 14
VideoClub_TS_001_TC_012.alt 15
VideoClub_TS_001_TC_013.af 15
VideoClub_TS_001_TC_014.l1 18
VideoClub_TS_001_TC_015.a11 15
VideoCiub_TS_001_TC_016.ait K} il T I |
Pe saved ; ClUsers\PC-Maferwor SIUMLALF an H
ransformation done B

Figure 7.16. Screenshot of a test suite management example in the CoSTest tool

B LOSTest - Coneeptual Schemas Tosting (prolotype ol
o
r

' Conceptual Schema Under Test Executable Test Cases | [~ Testing Results | :4 Mutant Generation | & Batch Testing | & About
Test Model S Test scenario Model 7~ Data Concretization

Conceptual Schema Tcsﬁ'ng

Testing Results

Conceptual Schema nder Test: Videociub) Exportio Excel

Final Veredict : Inconciusie Testing Tme: 00 nummss Coverage ReportTime: 00 nhmm:ss
| Resuits |/ Testing Log
TestCase ID Test Case Name Scenario D verdit | Type | Purpose (Requirementle be tested) TestDuration
10 REGISTER_WOVIE_INFORWATION VideoGiub._inconciusive || Vaiidale a valus below o fower i ‘context movie- new_Yiovie() prep_sHd_monis>=1

0l 3
& Founded Defects | & Coverage |

TestCaselD| Mode | Descrption Fault Wodeling Element
urong |incomect Operaton Signature Jinste ta__(Class=MOVIE:
<1 0 I D
File saved: C1sers¥PC- WNL-ALFWVide oClubWideoClub_TS_001_TC_010.alf <]
File saved: C:WsersiPC- WHL-ALFVigeoCIupWideoClub_TS_001_TC_010.alf -

Figure 7.17. Screenshot of a test execution report in the CoSTest tool

The user interface for managing test cases can generate, edit, save
and report all information related to the generated test cases, which
are saved as persistent files in a specified directory of the files system.
For this, the interface implements buttons such as Select File, Select
CSUT, Select Folder, Code Generation, Test Case Concretization, Save
this test case and Export Summary to Excel.

176

CHAPTER 7. THE COSTEST TOOL IMPLEMENTATION

The presentation manager includes the Testing button to request
the execution of test cases selected from the test case list. After the
execution, this module shows the faults (if any) in the Testing Results
Tab (see Figure 7.17), the global verdict of the whole test suite, and the
“Results” Tab that contains the detail of the verdict of all test cases in a
tabular form. This information includes test case identifier, test case
name, scenario ID, verdict, test case type, test case purpose, test
duration. All this information is collected, organized and transmitted to
this component by the Test Manager. Figure 7.17 shows the result of
the execution of a CoSTest test suite example on the Testing Results
Tab, in which one test case has had problems in its execution, so that
the global verdict is Inconclusive.

When the user clicks on the Export Summary to Excel button the
Presentation Manager saves the report shown on the Summary
Generation tab (see Figure 7.18) in an Excel file. This report contains
details of test case types generated in each ALF script.

M COSTest - Conceplual Schemas Tesling fprololype luoll - =]
-~ I h &
o0) Conceptfual Schema Testing
\ //:§ X
2 Conceptual Schema Under Test Executable TestCases | [~ Testing Results | .4 Mutant Generation Batch Testing | @ About
Test odel = Tast Sconar Model ~ Da Concrotiation

Abstract Test Cases fle : [c = Select File
esur = Soloct CSUT
Test Cases Directory Seloct Folder
Generation Time : 13 hhamm:ss Code Generation Test Case Concrelization «. Testing [Export summary to Excel
Test Cass Contguration 4 save mistest case
AT s S Test Case Edtor | | Summary Generation
[VideoCiub_TS_001_TC_001.af E i biect Cre. | Repeitve Datal-] Above Lim. Upper(-)| Below Lim. Lower(:)| Not Exppected(:) | Consiraini(] Min, Cardin

[VideaClub_TS_001_TC_002.2if 5
|VideoClub_TS_001_TC_003.aif i
1
1

\idoocius_TS_001_1C_0odai
\Vidoacius_TS_001_1C_005.i
\Videociun_TS_001_1C_006.1 i
|VideoClub_TS_001_TC_007.alf 1
|VideoClub_TS_001_TC_002.ai i
\VideoCiun TS_001_1C_ 000, :
\Videaciun_TS_001_7C_o10.i !
\VideoCius_TS_001_TC_01 i —n
\ideocius_TS_001_1C_012.ai ‘
\dsociu_TS_001_1C_ 01 ;
\idsociun TS. 001 1C 01 E
|VideoClub_TS_001_TC_015.alf 1
\Videociun_TS_001_1C_o1s.ar 1

Figure 7.18. Screenshot of the Summary Generation tab of the CoSTest tool

Note that the table on the “Found Defects” tab (see Figure 7.17)
indicates information about of the test case that fails or ends as
inconclusive, such as test case identifier, the defect mode, the defect

177

CHAPTER 7. THE COSTEST TOOL IMPLEMENTATION

description in natural language, the fault and the number of the lines
where the fault has been revealed, and the modelling element. This
information assists the modeller to point out the errors and faults.

Figure 7.19 also shows information about an execution log
generated by the execution engine on the “Testing Log” Tab as well as
the coverage report on the “Coverage” Tab. When the user clicks on
Export to Excel the Presentation Manager generates an Excel file with
details of the testing process (i.e. time report, results testing, found
defects, coverage report, log report and CSUT element report) by
taking the information from the different controls and tables on
interfaces.

[Export ta Excel

nhmm:ss

xxxxxx

Figure 7.19. Screenshot of a log and coverage report in the CoSTest tool

7.6.2 Test Manager

The Test Manager has three main roles in the process of executing
test cases: (1) the generation of the test cases (i.e. Test Generator), (2)
the test cases execution, and (2) the collection and organization of the
results to be shown by the Presentation Manager.

The generation of test cases consists of executing the model-to-
text transformation written in Acceleo (see Section 5.4), then these

178

CHAPTER 7. THE COSTEST TOOL IMPLEMENTATION

abstract test cases are concretized with the values taken from the data
base. Details about the generation are collected, organized and
transmitted to the Presentation Manager in order to generate a report
by calling the Report Generator. Next the Test Manager collects all the
test cases that are selected from the test suite (i.e. List), and requests
its execution by the test interpreter. The individual results provided by
the Test Interpreter are collected, organized and transmitted to the
Presentation Manager.

The Test Interpreter has two main roles: (1) parse the test cases
written in ALF language, and (2) perform the execution of the test
cases specified in ALF scripts, as requested by the Test Manager.

CoSTest test cases can be executed from the command line using
the alf.bat batch file (for Windows). The CSUT and test cases are
compiled to an in-memory representation and executed using the
fUML Reference Implementation. The result is an execution trace
reporting faults (such as when a primitive behaviour implementation
cannot be found during execution). Each assertion defined in the test
case is evaluated by analysing the execution trace. The test verdict
comprises the information on which assertions succeeded and which
failed. When the test verdict is failed, the root causes are analysed in
order to report the associated fault.

After the execution of all test cases, the report generator queries
the coverage in order to obtain the sets of covered and uncovered
elements of both CSUT and test suite respectively and computes
information about coverage results.

7.7 The Mutant Generator

The Mutant Generator implements the computing, generation, and
parsing of mutants for UML class diagrams. Figure 7.20 shows its main
components, which consist of the Presentation Manager, and Mutant
Manager.

179

CHAPTER 7. THE COSTEST TOOL IMPLEMENTATION

(Presentation N\
Layer Presentation
Manager
o
)
% Mutant Manager
= Mutant
] Mutant Calculator Parser
‘oo Generator
-)
—
\

o Conceptual Schema M-l.l-tant iation R
E x % Classes Classes Class A
(] %‘—5 Class A {

Public id:Integer
g
8 File (.xls) J ﬁ\(é;;ztre'/\(m\d_

_ F|Ie (-uml) File (.uml) {this.ideid 3})
Legend

. | flow
Artifact COmponent Internal flow Externa
PO, > -+

Figure 7.20. The Mutation UML tool architecture

In the following sections, we describe the responsibilities and the

implementation of each component

7.7.1 Presentation Manager
The Presentation Manager implements the user interface related

for the configuration and generation of mutants.

The interface can select a source CS file for the generation process,

which are saved as uml files in a specified directory of the files system.

The interface also includes two checkboxes for selecting between two

options: (1) apply all mutation operators or select them individually

and (2) generate all calculated mutant or select them individually.

The interface also includes the following buttons:

Calculate Mutants to request the computation of the valid

first order mutants from CS source by the Mutant

C

alculator.

Generate Mutants to request the generation of the

mutants selected from the previously calculated mutant

list (by default all mutants are selected) by using the

Mutant Generator component.

180

CHAPTER 7. THE COSTEST TOOL IMPLEMENTATION

e Parse Mutants to request the parsing of mutants selected
from the list by using the Parser component.

Export Results to Excel to request a report from the Mutant
Calculator of the calculated valid and non-valid mutants.

7.7.2 Mutant Manager

Every time the user requests the calculation of the first order
mutants, the Presentation Manager communicates with the Mutant
Manager, which executes the Mutant Calculator to read the CS source
and calculate the valid mutants that can be generated by applying the
mutation operators selected by the user. This mutant list is used by the
Presentation Manager to show it on the “Mutant Description Table”
and can be exported as a report by pressing the “Export Report to
Excel” button.

When the user requests the mutant generation, the Mutant
Generator executes the Java code to generate the CS mutants (.uml)
from the CS source file (.uml).

When the user requests mutant parsing, the Presentation Manager
communicates with to the Mutant Manager, which executes the Parser
to transform each selected mutant into an executable format by using
ALF language. The ALF parser then produces an output with the
analysis results of each mutant, which can be classified into valid and
non-valid mutants. The working of the Mutant Generator can be seen
in the partial view of a CS in Figure 7.21.

Five mutation operators have been applied to the CS. Four
operators generate valid FOM (i.e. b) UPA2, c) WAS3, d) WCO3, e)
MCO). However, applying the MAS operator to the WhiteCells
association generates a non-valid FOM because there is a constraint
(i.e. MovieUnique) that is related with the association.

Simply deleting the association would result in a Dangling
constraint, which evidently is not desirable. Therefore, we need to add

181

CHAPTER 7. THE COSTEST TOOL IMPLEMENTATION

more steps to the operator (going from FOM to HOM). The HOM
should delete the association together with the respective constraint.
This way, the mutant will not be detected by the parser and can
generate a valid mutant for testing.

a) MAS operator
QMuvie
& videoClub videoclub, mavies context Moviesnew_movie(contesxt Movie inew_movie(
1 id_movie : Tnteger pre: Size(p_atrmovie_name) >=1 pre: p_atrid_mowvie>=1
= id_videoclub : Integer [0.1] 0.7 | = movie_name : String
=) manager_name : String wideoclub_movie &1 director: String
E ::fd : Stwmsgt. E 'E‘Et“JIE—d“tE :RDatIE context VideoClub inv MovieUnigue:
address : string Sl rental_price : Real body: this.movies- > isUnique efeid_movie)
[postal_code : String 3 status : String i il - e) MCO operator
v "'I
0.1 mowie
Q Rental movie_rentalline context Rentalline:new_rentalline() context Ren] RE
¢) WAS3 operator (0.7l rentallines pre:p_atrrental_number>=1 &)_a
. rental rentallines B
Sl id_rental : Integer E RentalLine
S5 pick_up_date :Date | [g.1) 10,71
= return_date : Date rental_rentalline = rental_number : Integer
B /total : Real =1 /price : Real context VideoClubznew_videoclub()
[0.*] «— [0.1] pre: p_atrid_videoclub >=1 &8 p_atrid_videoclub <=10000

rentals ([0.*] d) WCO3 operator

partner_rental context VideoClub:new_videoclub()

partmer | 10,41 pre: Size(p_atrpostal_code) >=5 ;"‘mi"" —4@»
QPartner
context VideoClub:inew_videaclub()
=] username : String pre: Size(p_atrmanager_name) >=1
= password : String

[E name : String Legend
(5 age : Integer (b) UPAZ operator = = = Add Element

- <2520 Delete Element
4§ new_partner{p_atrusername:String, p_atrpasswaord:String, p_atrname:String, p_atrage Integer.p_atraddiional integer) Change Element

Figure 7.21. Application of five mutation operators for our CS example

The Mutant Generator had been presented as the MutUML tool
[124] before being integrated into CoSTest. This integration will allow
us to conduct studies evaluating the effectiveness of CoSTest test cases
and facilitate making decisions (i.e. prioritize and select the test cases)
based on analysis and interpretation of the results (see Section 5.5).

7.8 The Batch Testing Processor
The Batch Testing Processor implements the execution of the test
cases for a group of mutants.

Figure 7.22 shows the main components of the Test Processor,
which consists of the presentation manager and the test manager
described below.

182

CHAPTER 7. THE COSTEST TOOL IMPLEMENTATION

Batch Testing Processor

~
Presentation ‘ Presentation Open/Save
Layer Manager
S
(]
5 Batch Test Manager
-
o Test Interpreter
b0
o
i
] Mu
utant
z’ Classes Class A
Class A {
— E Public id:Integer
E @Create A(in id_|
:Integer) i
8 4 (thlfld:\d,t} File (xls)
_ File (.uml) Files (.alf) %

Legend
External flow
Artifact Component 'n(t.e . Tfl.gow -

Figure 7.22. Batch Testing Processor design

7.8.1 Presentation Manager

The Presentation Manager implements the user interface (see
Figure 7.23) for test mutants and enables both mutant directories and
test cases to be selected, which are saved as UML and ALF files,
respectively, in a specified directory of the files system.

The interface also includes a checkbox for parsing mutants or not
(if not checked) previous to the testing process.

Additionally, the interface includes the following buttons:

e Mutant Testing to request the execution of the test cases
against the mutants, which is passed to the Batch Test
Manager.

e Results Summarization to request the report with the
results of the testing process, which generates an Excel file
summarizing the defects found in all mutants. For this
purpose, the Presentation Manager reads the Excel file
generated for each mutant and recovers the found defects
only (if any).

183

CHAPTER 7. THE COSTEST TOOL IMPLEMENTATION

W COSTest - Conceptual Schemas Testing (prototype tool) [m]

"

Conceptual Schema T:sf'i'ng

LA

Figure 7.23. Screenshot for Batch Testing of the CoSTest tool

7.8.2 Batch Test Manager

When the user clicks on Mutants Testing the Batch Test Manager
calls the CSUT Manager (see Section 7.5) to transform each mutant
into an executable format (the parser is executed only if the checkbox
is active). Then, the Batch Test Manager executes the test cases
specified in ALF script by executing the Test Interpreter (see Section
7.6). In this option the Excel report is generated for each tested mutant
automatically.

7.9 Summary and Conclusions
In Model-driven development it is very important to provide tools
that support and promote the application of model-driven solutions.

In this chapter we have explained the fundamentals of the
prototype tools that we developed to prove the feasibility of our
approach and to support its validation. We implemented these
prototypes as a standalone desktop application by using Java, ATL and
Acceleo languages integrated into the Eclipse platform, which is one of
the most popular development platforms in the software development
community.

CoSTest focuses on the implementation of the model-driven testing
framework presented in Chapter 5 to validate the correctness and

184

CHAPTER 7. THE COSTEST TOOL IMPLEMENTATION

completeness of requirements of conceptual schemas. For this
purpose, we implemented the transformation rules detailed in Chapter
6. Users (e.g. conceptual modelling researchers, modellers, testers,
students and practitioners) considering or planning to conduct
Conceptual Schema validation using a tool, as well as those interested
in taking a systematic sound snapshot of the conceptual schema
validation practice are the expected users of our tool.

Additionally, the tool implements a component in Java to generate
first order mutants of Conceptual Schemas. This functionality helps to
validate the effectiveness and adequacy of CoSTest test cases (see
Chapter 8).

Further development will extend CoSTest to create a multiplatform
support as the first step towards a tool supporting model-driven
testing at the conceptual schema level.

In the next chapter, different validation and evaluation processes
of the tool support will be presented and discussed.

185

CHAPTER 8. VALIDATION AND EVALUATION OF THE COSTEST TOOL

Chapter 8
VALIDATION AND EVALUATION OF

CoSTest

According to the Design-Science Research (DSR) paradigm
proposed by Wieringa [15], the validation of the designed artefacts
produced as a result of the research process is crucial. So, the next step
in our design cycle to develop our research project is the design
validation.

The evaluation of the designed artefacts may rely on several
methodologies available in the knowledge base such as observation
(case studies, field studies, etc.), analysis (static analysis, architecture
analysis, optimization, etc.), experimentation (controlled experiments,
simulation, etc.), testing (functional black box, structural white box,
etc.).

In [125], Shull et al. provide a basis for both understanding and
selecting from the variety of methods applicable to empirical software

187

CHAPTER 8. VALIDATION AND EVALUATION OF THE COSTEST TOOL

engineering. Following the criteria suggested by these authors, we
selected experimentation as the method of evaluating several features
of the result of our research (i.e. our validation framework and our
prototype tool). An experiment is an investigation of a testable
hypothesis where one or more independent variables are manipulated
to measure their effect on one or more dependent variables. This
methodology has been largely used in software engineering
[126][127][128].

For the validation of our framework, we have performed several
evaluations and validations throughout the development of our
framework as summarized below.

For the validation of the UML-to-ALF transformation of the
conceptual schema, we performed an experiment for the purpose of
validating the effectiveness of CoSTest CSUT processor (Section 8.1.).

For the validation of the two first model-to-model transformations,
we performed a comparative experiment (manual and automatic) for
the purpose of validating them with respect to their syntactic and
semantic correctness (Section 8.2).

For the evaluation of some properties of the mutation operators
implemented in the CoSTest tool, we used a laboratory experiment
(see Section 8.3.1). These mutation operators were used to prioritize
the test cases (see Section 5.5) and to validate the effectiveness of our
validation framework (see Section 8.4). Another laboratory experiment
was performed for evaluating the efficiency and effectiveness in terms
of the percentage of valid and non-equivalent mutants generated by
the tool and the time that can be saved by using it (see Section 8.3.2).

For the validation of CoSTest’s effectiveness, we performed a
comparative experiment [15] of CoSTest test cases for detecting
defects in both first order and high order mutant types. For that we
used conceptual schemas of different sizes and domains (e.g.
information systems, games). Among them is a real CS case that

188

CHAPTER 8. VALIDATION AND EVALUATION OF THE COSTEST TOOL

conceptualises the Incident Management process in everis, a Spanish
consultancy company. Some other CSs are well-documented cases that
were found in the literature and others were selected because they
contained the relevant CS elements required to inject the faults.

For evaluating CoSTest’s usefulness and ease-of-use, we ran a pilot
experiment prior to contacting real practitioners, and performed an
observational case study [15] using interviews on CoSTest user
perceptions. As a result, the everis testers evaluated the CoSTest tool
as a very useful tool for validating information systems at the
conceptual schema level. They recognise the usefulness of the tool and
that opportune feedback given by our validation tool can support the
quality assurance process of software and facilitate in making decisions
based on analysis and interpretation of the results.

We believe that the results of these studies make the CoSTest
framework strong and attractive to be transferred to industry.

This chapter is structured into two sections. Section 8.1 describes
the experiment to evaluate the UML-to-ALF transformation of the CSs.
Section 8.2 summarizes the experiment to evaluate the transformation
rules used in the model-driven generation of CoSTest test cases.
Section 8.3 describes the two experiments to validate and evaluate the
mutant generation process. Section 8.4 describes a laboratory
experiment to validate the effectiveness of the test cases of our
CoSTest framework in detecting fault types for FOM and HOM sets of
mutants. Section 8.5 describes an observational case study taken from
industry to evaluate user perceptions in the correction process of the
defects found on UML CD-based CS. We describe the design,
procedure, results, conclusions, and lessons learnt. As a result, we
improved the process, and the latest version of the tool is presented in
Chapter 5 and the implementation in Chapter 7. Section 8.6
summarizes the conclusions of the chapter.

189

CHAPTER 8. VALIDATION AND EVALUATION OF THE COSTEST TOOL

8.1 Validating the Effectiveness of CoSTest CSUT

Processor
Model transformations are key elements of Model-driven
Engineering (MDE). They allow querying, synthesizing and transforming
models into other models or into code. However, it is very difficult and
expensive (time and computational complexity) to validate in full the
correctness of the model transformations.

Validation clarifies the question “Is the transformation right?" by
allowing modellers and designers to test if the transformation behaves
as expected. Intuitively, the validation of a transformation consists of
exercising the transformation to certify that it works for a selected set
of input models and compare the result with the expected outcome
[129], without trying to validate it for the full input space [130].
Although such a certification approach cannot fully prove correctness,
it can be very useful for identifying bugs in a very cost-effective
manner.

In this section we present a laboratory experiment performed as
part of our reseach to demonstrate the effectiveness (i.e. ability to be
successful and produce the intended results) of CoSTest CSUT
Processor using uml-to-alf transformation rules for obtaining ALF-
based CS from UML CD-based CS.

The experiment was an iterative process in which we evaluated the
V0.5 transformation rules, which were evolved until achieving the
stable version V1.0.

8.1.1 Experimental Design

The experiment was performed by the author of this PhD thesis in a
controlled environment using different CSs in an iterative process;
approximately 10 iterations in one year (from June of 2014 to June
2015) with the objective of demonstrating the effectiveness of the
CoSTest CSUT Processor.

190

CHAPTER 8. VALIDATION AND EVALUATION OF THE COSTEST TOOL

Subject CS

Most of the input CSs used in this experiment were small UML/ALF-
based models in the form of ten CSs containing a variety of
characteristics that can be present in UML CD-based CS, including
classes, relations (i.e. association, composite aggregation, and
generalization) and different types of constraints (i.e. pre-condition,
post-condition and body condition). These CS were of different sizes
and domains (e.g. information systems, games). One case was taken
from industry (i.e. IM), while other CSs were found in the literature (i.e.
[131], [2132], [133], [134] and [135]). The different CSs were specified
using UML2 and Papyrus’ tools. Table 8.1 summarizes their
characteristics.

Table 8.1. Elements of the Subject Conceptual Schemas

Element VC [MT | SG | ER | OCR | SS | PA | OC DBLP | IM
Classes 5 6 1 | 7 10 9 15 | 20 17 6
Attributes 19 | 26 26 | 36 | 61 44 | 43 | 33 59 29
Derived 2 0 6 6 1 1 33 | 27 21 0
Attributes

Operations 8 13 19 | 24 | 16 32 | 30 | 24 32 13
Parameters 27 | 43 48 | 75 | 77 91 | 82 | 50 80 51
Associations 4 5 6 8 10 9 19 | 13 10 4
Derived 0 0 2 0 0 0 0 0 4 0
Associations

Composite 0 0 3 0 0 0 0 1 4 0
Aggregations

Constraints 16 | 9 19 (21 | 14 12 | 45 | 24 44 8
Generalizations | 0 0 4 0 3 0 0 10 13 0

A brief description of each CS is as follows:

1) Video Club (VC) CS represents the functionality of a chain of
video stores to manage movies, partners and movie rentals.

2) The Medical Treatment (MT) CS defines part of the CS (of a
Medical Treatment business process) of the fictional Santiago Grisolia
University Hospital, developed by Espafia et al. [131].

7 https://eclipse.org/papyrus/

191

CHAPTER 8. VALIDATION AND EVALUATION OF THE COSTEST TOOL

3) The Sudoku Game (SG) CS was developed by Tort and Olivé [133]
as an object-oriented CS of the Sudoku Game system. This CS defines
the functionality for managing different users, playing with their
Sudokus and generating new ones.

4) The Expense Report (ER) CS defines the functionality of an
information system to manage the expense report life cycle of a
business. This CS deals with several entities such as departments,
employees, projects and expense types.

5) The Online Conference Review (OCR) CS, which is based on the
description of the CyberChair System [136], defines the functionality of
an information system to deal with members (committee chair and
program committee) of a conference, as well as authors that submit
papers to be evaluated for inclusion in the conference proceedings.

6) The Super Stationery (SS) CS defines the information system of a
company that provides stationery and office material to its clients. This
CS was developed by Espaiia et al. [132].

7) The Photography Agency (PA) CS makes use of classes,
associations and constraints but has no generalizations and derived
associations to define the information system that manages
photographers and their photographic reports for distribution to
newspaper publishers.

8) The osCommerce (OC) CS specified by Tort [134] represents all
the essential structural and behavioural knowledge needed to perform
the main user functionalities of the osCommerce system when placing
an order.

9) The Digital Bibliography & Library Project (DBLP) case contains
parts of the conceptual schema of the DBLP system [135], a computer

192

CHAPTER 8. VALIDATION AND EVALUATION OF THE COSTEST TOOL

science bibliography website?, which deals with persons (authors and
editors) and their publications.

10) The Incident Management (IM) CS defines the functionality of
an information system to solve the incoming incidents (reception,
process, allocation process and resolution process). This CS is a real
case taken from Everis Company®, a multinational firm offering
business consulting, as well as development, maintenance and
improvement IT.

Procedure

Figure 8.1 illustrates the i-th iteration of the experiment. Each
subject CS was transformed from UML to ALF using the CoSTest UML-
to-ALF transformation rules version V0.5. Then, the fUML virtual
machine (executed from CoSTest) was used to parse the CSs.

?ﬁ(Researcher
Adjusting
rules
No

Translation

Conceptual rules

Yes

Schema
sociation R
| ClassB

Public id:Integer ' No Yes

@Create Alinid =
teger) Completeness Is > @
this.ideid_ I Verification omplete?” Tranglation results

Researcher
Legend

Executableo —
— CsuT
L Generation
y
o TF
_b
Process
Class A
Class & |
(Manual) I ?] g N, —
. Automati Decision
Artifact Task Task In/out relation
Figure 8.1. i-th iteration of the experiment applying the CoSTest tool

If the result was incorrect, the transformation rules had to be
adjusted and the process was then re-run. If the result was correct, the
researcher reviewed the generated code for each CS, and compared

& http://www.informatik.uni-trier.de/~ley/db/
% www.everis.cm

193

CHAPTER 8. VALIDATION AND EVALUATION OF THE COSTEST TOOL

the ALF units generated with source elements to evaluate the
completeness of the CS. The last iteration of the experiment was used
to exemplify the CoSTest tool.

8.1.2 Conclusions and Changes on the CoSTest
CSUT Processor

The experiment let us validate the UML-to-ALF transformation
rules of the CoSTest CSUT Processor by verifying the syntactic
correctness and evaluating the completeness of the transformed CS
(100% in syntactic correctness of our generated CSUTs and 100% in
completeness). These results suggest that these translation rules are
effective in generating ALF-based CSUT. However, the behaviour of the
translation may depend on the characteristics of the CS they are
applied to, such as the CS element types (see Section 5.6.1) and
syntactic correctness of the CS.

Some of the main changes applied to the transformation rules were
the restrictions included in the operation and constraint names, for
example, the constructor operation name should begin with “new_"
and the constraint name for a derived association should be
“association_<DerivedAssociationName>_derivation”. Some of the
main changes applied to the CoSTest tool were: (i) include the facility
for visualizing the parser log with syntax defects, (ii) structure a report
containing element type, amount and translated CS elements. All

reports were exemplified using the ten analysed CS.

8.2 Validating the CoSTest Transformation Rules

In this Section, we validate the model-to-model transformations by
means of a comparative experiment between the generated results in
five CS specifications with the expected outcomes. Measuring our
model transformation entails evaluating correctness across the
following two dimensions: (1) Semantic Correctness of transformations
(mapping algorithms) is accomplished if for each simulation sequence
of the source model we find a corresponding simulation sequence in
the target model [137] i.e., the elements generated are equivalent to

194

CHAPTER 8. VALIDATION AND EVALUATION OF THE COSTEST TOOL

the requirements model from which these elements are mapped. (2)
Syntactic Correctness of the generated elements is achieved if given a
well-formed source model, the target model generated by the
transformation is a well-formed instance of the target metamodel
[138], whether individual values of these elements are appropriate
locally (e.g., for a component) as well as globally (e.g., for all
dependent components). For this purpose, we proposed a set of
metrics to measure the semantic and syntactic correctness of the
proposed transformations as well as each one of the used
transformation rules.

Once the metamodels and transformation rules had been specified
(Chapter 6), and the information to trace the elements added to the
metamodels, the transformation rules were evaluated on the instance
models after each execution of the transformation. These rules can be
evaluated by performing a classic pathfinder or graph traversal
algorithm on the instance models, and checking if the transformation
rules are satisfied at each transformation. This process is as follows:

1. We generate the code that traverses the instance models and
reports the transformation rules used for generating the model
constructors. Since the metamodels of both the source and
target models are available with the transformations, and the
trace information is included in the metamodels in attribute
form that can be checked automatically, the model traverser
code was defined from the transformation rules specification.
This needs to be done only once each time the rule
specification changes. This code was included in our CoSTest
tool (see Chapter 7).

2. We call the model traverser code (i.e. include in the CoSTest
tool) at the end of each execution of the transformation,
supplying to it the source and target model instances with the
trace information. In the case of the RM to TM transformation,
we traverse the input requirements model and evaluate the
transformation rules at each node (i.e. communicative event)

195

CHAPTER 8. VALIDATION AND EVALUATION OF THE COSTEST TOOL

and precedence relation. For each Communicative Event, the
trace information is checked to find the corresponding Test
Case as well as at precedence level (see the group of rules 1-3
in Section 6.3.1). In the second transformation from TM to TSM
transformation, we traverse the input test model and evaluate
the transformation rules at each test scenario (i.e. path) and
their test cases. For each Test Scenario, the path is checked to
find the corresponding path in the test model. Then, the rest of
the internal elements of each test case generated by the
transformations in the two models are compared with the
expected elements by applying manually the transformation
rules.

3. We check if the generated elements conform to the respective
metamodel (i.e. syntactic correctness), otherwise a syntactic
problem is found. We also verify if the information assigned to
each attribute is well-formed, otherwise the ATL
transformation rule is wrong. Thus, if some element is absent
that should be present, the rule is missing in the ATL
implementation. On the other hand, if a TM element has been
defined for an RM element, and no corresponding
transformation rule is found, then this signals an unnecessary
ATL rule implemented in the model transformation.

Finally, after locating the corresponding assignments, these are
evaluated. If all the rules are satisfied for all the model nodes, then we
can conclude that the transformation has been executed correctly. If
any of the rules are not satisfied, the problem is reported by using the
metrics described in the next Section.

8.2.1 Definition of Basic and Derived Metrics with
Rule Scope

The basic metrics have been defined considering the elements of
the two metamodels of our proposal. The basic metrics with rule scope
are shown in Table 8.2.

196

CHAPTER 8. VALIDATION AND EVALUATION OF THE COSTEST TOOL

Table 8.2. Basic metrics for Semantic and Syntactic Correctness of a Rule
Metric Definition

N_EGj Total number of elements generated by the rule j
Syntactic Correctness reached by a Rule j

N_CEGj | Total number of Correct Elements generated by the rule j
Semantic Correctness reached by a Rule j

N_EEj | Number of expected elements to be generate by the rule j

The respective derived metrics are listed in Table 8.3. The values of
these metrics are only at the element level, so that they do not
consider the contained elements.

Table 8.3. Derived metrics for Semantic and Syntactic Correctness of a Rule

Metric Definition Formula
SyC_rulej Syntactic Correctness reached by the rule j N_CEGj/N_EGJj (1)
SeC_rulej Semantic Correctness reached by the rule j N_EGj/N_EEj (2)

8.2.2 Definition of Basic and Derived Metrics

with Transformation scope
In order to evaluate the correctness of the model transformations
we adapted Yue and Ali’s proposal [139], which involves an MOF-based
framework for defining metrics to measure the quality of models.

As in the metrics with rule scope, we defined metrics to calculate
the syntactic and semantic correctness of the whole transformation by
considering that the result of the execution of a rule depends on the
outcome of other nested rules (e.g. From Tables 6.5-6.7 the Rules 5,
Rules 6 and Rules 7 are containers of Rules 8). To do this, we first
define the following relevant concepts and variables: An AtomicRule is
a rule that does not contain any reference to any rule including self-
references; otherwise it is a CompositeRule, e.g. Rule 6 is an instance
of CompositeRule because its result depends on the outcome of Rule 8.
On the other hand, Rules 3, 4 and 8 are instances of an AtomicRule.

The syntactic correctness of a transformation (SyC_T#) is measured by
the syntactic correctness achieved by the respective rules in the target
model. An ATrule measures the correctness of an atomic rule, while a
Crule measures the correctness of the composite rule, which depends
on both values, the ATrule of its nested rules and its own ATrule value.

197

CHAPTER 8. VALIDATION AND EVALUATION OF THE COSTEST TOOL

If an atomic rule generates a correct element, then its ATRule value is
1; otherwise its value is 0. Since TM has a hierarchical structure (see
Figure 6.3) SyC_T is calculated starting from the most nested level of
the structure (i.e. rules 3, 4 and 8) up to the highest level (i.e. Rule 1).
The syntactic correctness value for Atomic Rules 3, 4 and 8 corresponds
to their ATrule value. Finally, we have defined values W/, which
denotes the weight (i.e. value range between 0 and 1) assigned for
each element | of the target model, so that it allows differentiating the
impact of each model construct type on the correctness of the
transformation. Notice that the sum of the weights should always be
equal to the number of weighted model elements corresponding to the
same level in the hierarchy. If the user does not assign any weights,
then all weights are automatically assigned to 1. These derived metrics
are as follows:

— Syntactic Correctness for rule i, which generates the target model
element k (Cruleik). The rule i is formed by the rules j, which
generate the target model elements / (i.e. Parameter=Pr, Service=S,
Trigger=T, Assertion=A, Link=L, Test Case=TC, Precendence=Pr, Test
Model=TM, Test Scenario Model=TSM). The j depends on element
type /, for instance, if I corresponds to the Link element then rule j
canbe R_7 1-R7_5(see Table 6.7).

Yheleminkyy « [ACrulejl | ATrulejl] @
#elements_in_k

Cruleik =

— Average Composite Syntactic Correctness for rule i, which
generates the target model element k. ACrule is equal to an ATrule
at leaves level (i.e. parameter, assertion and precedence).

Cruleik + ATruleik (2)

ACruleik =
rulei 2

Syntactic Correctness of the # Transformation (SyC_T1) corresponds
to ACrulel-TM * 100% value in the first transformation and the
SyC_T2=ACrule9-TSM * 100% in the second transformation
respectively.

For Semantic Correctness (SeC_T#) of a transformation, a similar
pattern as for the metrics on Syntactic Correctness is followed.
However, we only consider one value for semantic correctness of an
SCrule, if the rule is a CompositeRule, we take the composite SCrule

198

CHAPTER 8. VALIDATION AND EVALUATION OF THE COSTEST TOOL

value; otherwise we take the ATRule value. ATRule is 1 if the rule
generates the expected element; otherwise its value is 0. The metrics
that can be used in both transformations are as follows:

— Semantic Correctness for rule i, which generates the target model
element k. The rule i is formed by the rules j, which generate the
target model elements /. The j depends on element type I. Crule is
equal to ATrule at leaves level (i.e. parameter, assertion and
precedence).

ykeleminkyy) « [SCrulejl | ATrulejl] ®)
#elements_in_k

SCruleik =

— Semantic Correctness of the # Transformation (SeC_T1)
corresponds to SCrulel-TM * 100% value in the first transformation
and the SeC_T2=Crule9-TSM * 100% in the second transformation
respectively.

Figure 8.2 shows an example of the execution order to calculate
the metrics SyC_T# and SeC_T#.

From this picture we can see the bottom-up process required to
calculate the metrics. For Syntactic Correctness of the first
transformation (SyC_T1) (see Figure 8.2 left side), we started by
calculating the Average Composite Syntactic Correctness for rule 8.1 of
the parameter P1 (ACrule8.1-P1) by using the formula (2) and the
values ATrule8.1-P1 and Crule8.1-P1. Since Parameter P1 is missing in
the transformation output, the atomic value ATrule8.1-P1=0. In
addition, rule 8.1 is at leave level, then the Composite value for rule 8.1
(Crule8.1-P1) is equal ATrule8.1-P1 and therefore the ACrule8.1-P1
value is 0.

In the next level (i.e. Test Item level), we followed a similar process
to calculate the Average Composite Syntactic Correctness for rule 5.2
corresponding to the Trigger T1 (ACrule5.2-T1) by using the formula (2)
and the values ATrule5.2-T1 and Crule5.2-T1.

199

CHAPTER 8. VALIDATION AND EVALUATION OF THE COSTEST TOOL

| Syntactic Correctness || Semactic Correctness |
TEST MODEL SyC_T =ACrule1-TM1 Legend SeC ¥ =Scret Tt
(oo (2) e
- (™ Used by SyC_T# l3}
¢ \ATrule L TML U i —— asz
4 ' Crule1-TM1 ||—® Contribution flow /#\
\ .
TEST CASES + PRECEDENCIES (1) / 7 \ <
_ 0.94 Ve | rule2.1-TC1
(TC=Test Case, ACruIe3 1-pr1 H. ”‘ Yo \ \'-. N\
and TN i ¥ ACruIEZ 1-TC1 / f SCrule2. 1-TC2 Y
Pr=Precedence) LJ /.aCrulez 112 ||' SCruIelé) TC}J \
" ACrue2. 11ca | /L @ P o /J
£ () D 'Q) = | AO
35 (032) 1 e | o Y h
= AT ATrule2, 1-TCA ‘\ B), L\i/
b '- L .’ 083
= . Crule?. LTea /J %,
1= SCrule7. 144 | ™
= TEST ITEMS = |5
o le7
B (Acnssertons \} _ACrule7 1- L?h 088 L (1) (i}sc;j 8 Sz; 5 2/Tl i Crled 41
c s=Services, ACrule7 211 _ 4 e
T=Triggers and / P ACruIeS 271 ‘ ACUIE 4 Al P / SCrule6.1-51| | \
/ \ i A_,\
L=Links) ACruIeE- 151 | \ ki//_z/ }."' |I I/ ;
\\ / (o g)
(2} I E \ |1 [1
% (3) " NS
Crules 2 T1 ATruIeE. 2- T]. 7
/
e
i -~ } i_ o } S/Cru/I'ES.Z-Tl
— e i
PARAMETERS ACrle8.1-P1=ATruled. 1 PL_(2) (j) 3)

Figure 8.2. Example of the calculation of the metrics SyC_T1 and SeC_T1

Since Trigger T1 is missing in the transformation output, the values
ATrule5.2-T1=Crule5.2-T1=0. Then, at Test Cases level the Average
Composite Syntactic Correctness for rule 2.1 of the Test Case TC4
(ACrule2.1-TC4) was calculated by using the formula (2) and the values
ATrule2.1-TC4 and Crule2.1-TC4. In this case, the information about of
the test case TC4 was generated correctly, then the ATrule2.1-TC4=1.
The Crule2.1-TC4 value was calculated by using the formula (1) and the
values ACruleik corresponding to the rules applied to the elements
forming the Test Case TC4 (e.g. ACrule7.1-L1, ACrule7.1-L2, ACrule6.1-
S1). In this paper all weights WI required in the formula (1) are
considered equal to 1. Then, the Crule2.1-TC4=0.83 and ACrule2.1-
TC4=0.92.

In the top level (i.e. Test Model level), the Average Composite
Syntactic Correctness for the rule 1 corresponding to the Test Model
TM1 (ACrule1-TM1) was calculated by using the formula (2) and the
values ATrulel-TM1 and Crulel-TM1. In this case, the information
about of the Test Model TM1 was generated correctly, then the

200

CHAPTER 8. VALIDATION AND EVALUATION OF THE COSTEST TOOL

ATrule1l-TM=1. The Crulel-TM1 value was calculated by using the
formula (1) and the values ACruleik corresponding to the rules applied
to the elements forming the Test Model TM1 (e.g. ACrule3.1-Pr1l,
ACrule2.1-TC1, and ACrule2.1-TC2). Then, the Crule1-TM1=0.94 and
SyC_T1=ACrule1-TM1=0.97 are calculated by using the formulas (1)
and (2) respectively. In a similar way, the Syntactic Correctness of the
second transformation (SyC_T2) is calculated by applying the formulas
(1) and (2).

For Semantic Correctness of the first transformation (SeC_T1) (see
Figure 8.2 right side), we started by calculating the Semantic
Correctness for rule 5.2 of the Trigger T1 (SCrule5.2-T1) by using the
formula (3). Since Trigger T1 is missing in the transformation output,
the value SCrule5.2-T1=0. Then, at Test Case level the Semantic
Correctness for the rule 2.1 of the Test Case TC4 (SCrule2.1-TC4) was
calculated by using the formula (3) and the values of the Semantic
Correctness obtained from the rule values nested in the Test Case TC4
(e.g. SCrule7.2-L3, SCrule7.2-L4, SCrule5.2-T1, SCrule6.1-S1, SCrule4.4-
Al), then the SCrule2.1-TC4=0.83. Finally, at Test Model level, the
Semantic Correctness for the rule 1 of the Test Model TM1 (SCrulel-
TM1) was calculated by using the formula (3). Then, the
SeC_T1=SCrule1-TM1=0.92. In a similar way, the Semantic Correctness
of the second transformation (SeC_T2) is calculated by applying the
formula (3).

8.2.3 Experimental Design

This section describes the goal of the validation, experimental
reseach questions, metrics used, and the subject Conceptual Schema
definitions.

Goal/Question/Metric Definition

Following the line related with the Goal/Question/Metric Paradigm
[140], the goal of our study is: to analyse the model-to-model
transformations for the purpose of validating them with respect to

201

CHAPTER 8. VALIDATION AND EVALUATION OF THE COSTEST TOOL

their syntactic and semantic correctness from the viewpoint of the
researcher.

In order to address this goal, we defined the questions related with
the
correctness of the M2M transformation of our proposal (see Table 8.4).

respective metric to measure the syntactic and semantic

Table 8.4. GQM for M2M transformation validation

Goal: Semantic Correctness

Question

Derived Metric

ERQ1: What is the semantic correctness extent
of our transformation rules used for generating
test model from a requirements model?

SeC_rule;, Percentage of
Semantic Correctness of the rule
i

ERQ2: What is the overall semantic correctness
extent of transformation rules used for
generating test model from a requirements

SeC_Tj. Percentage of overall
Semantic Correctness of the
Transformation j.

model?

Goal: Syntactic Correctness
ERQ3: What is the syntactic correctness extent | SyC_rule;. Percentage of
of test case elements generated by our | Syntactic Correctness of the
transformation rules from a requirements | elements generated by the rulei.
model?
ERQ4: What is the overall syntactic correctness
extent of test model elements generated by our
transformation rules from a requirements
model?

SyC Tj. Percentage of overall
Syntactic Correctness of the
elements generated by the
Transformation j.

Subjects: Conceptual Schemas

To assess the correctness of our proposal M2M transformation, we
selected five CS from the literature, which contained a variety of
characteristics that can be present in UML class diagram-based CS,
including classes, relations (i.e. association, composite aggregation, and
generalization) and different types of constraints (i.e. pre-condition,
post-condition and body condition). These CS were of different sizes
and domains (e.g. information systems, games). Table 8.5 summarizes
the characteristics of these CS. A brief description of each one was
introduced in Section 8.1.1. These CS specifications were first
processed by hand to a requirements model based on Communication
Analysis (see Section 5.2.2) using the GREAT tool modeller [141].

202

CHAPTER 8. VALIDATION AND EVALUATION OF THE COSTEST TOOL

Table 8.5. Elements of the CSs

CS Element MT | SS SG OC | DBLP
Classes 6 9 11 20 17
Attributes 26 44 26 33 59
Derived Attributes 0 1 6 27 21
Operations 13 32 19 24 32
Parameters 43 91 48 48 80
Associations 9 6 14 10
Derived Associations 0 2 0 4
Composite Aggregations 0 3 1 4

Constraints 12 19 24 44
Generalizations 0 4 10 13
Elements Total 102 | 198 | 144 | 201 271

We carefully reviewed the RM models to ensure that they were

o|lo|(o|Oo|un

syntactically correct and that the behaviour described in the CS
specification document was the intended one. Then, the two M2M
transformations were executed by using the CoSTest tool (see Chapter
8) in order to generate the test scenarios model from the requirements
model.

Experimental Procedure

Once the metrics, the model transformations and their
transformation rules had been specified and the information needed to
trace the elements had been added to the metamodels, the
transformation rules were evaluated on the model instances after each
execution. These rules can be evaluated by performing a simple depth-
first search on the model instances, and checking whether the
transformation rules have been satisfied at each transformation, as
follows (see Figure 8.3).

1. Execution of the M2M. The first step to analyse the model-to-
model transformations in our proposal is to execute the respective
transformation M2M..

2. Traversing the Models. In our tool CoSTest, we have implemented
code to traverse the model instances and reports the
transformation rules used for generating the different model
elements. Since the metamodels of both the source and target
models are available with the transformations, and the trace

203

CHAPTER 8. VALIDATION AND EVALUATION OF THE COSTEST TOOL

information is included in the metamodels during transformation
in attribute form (i.e. location and trule of the Element
class), this trace information needs to be analysed each time the
rules specification changes.

-
Metamodels CoSTest tool O
= b
o [Model
5 7 Transformation . memwd
Transformation ,’ .
/e i
PAdjusting the)
_l? transformation
Input Model J rules
4 i No f
4/ —m S Yes
p -
Measuring el

Correctness

Repert of Generated
Elements

o [
- o
SyC and SeC Metrics

Expert Report of Expected
Elaments

- o < »
|m-lhctJ .\ ‘::s:a) Automs ':I @ Infout relation
1 Task

Figure 8.3. Process to evaluate a M2Mi; in our proposal

Legend

We call the model traverser at the end of each execution of the
transformation, supplying to it the source and target model
instances with the trace information.

3. Measuring Correctness. We check the generated elements are
well-formed (i.e. syntactic correctness), which would otherwise
indicate that the ATL transformation rule is syntactically incorrect.
Thus, if there are differences between the obtained model and the
expected one (i.e. semantic incorrectness), it could mean: a) there
are unnecessary rules in the M2M that generate additional
elements of the expected ones, or b) there are incomplete rules

204

CHAPTER 8. VALIDATION AND EVALUATION OF THE COSTEST TOOL

because the elements were not generated as expected. For this
task, the tester uses the set of metrics proposed in the next Section
and measures the correctness of the evaluated M2M.

4. Take a Decision. If the output model is correct, then we can
conclude that the transformation and its rules are correct. In
another case, the transformation rules have to be adjusted and the
evaluation process has to be executed again.

8.2.4 Results and Discussion

This section presents the results of metrics-based validation for
measuring the semantic and syntactic correctness of the model
transformations with their transformation rules implemented in the
CoSTest tool (see Chapter 8). We collected metrics data from a
heterogeneous collection of five requirements model in their two
transformations for generating the test scenario models.

First Transformation

In this section, we summarize and discuss the results obtained for
the selected CSs previously described (see Section 6.3.1), which were
transformed from Requirements Model (RM) to Test Scenario Model
(TSM) using CoSTest (see Chapter 8) to perform the proposed model
transformation.

Automation increases the quality of this transformation, as errors
manually implanted into transformation rules during implementation
are eliminated. We used the most basic level of validation for
transformations, which executes the transformation in one direction
[129]: and given a source (RM) model provided by a designer or
modeller, generate the corresponding target (i.e. test model).

We then checked whether the generated test model conformed to
the test model metamodel and the constraints (see Section 6.3.1).

Tables 8.6-8.7 summarize the different elements of both the RM
and TM models.

205

CHAPTER 8. VALIDATION AND EVALUATION OF THE COSTEST TOOL

Table 8.7 shows the elements of both phases: column G shows the
number of elements generated in the transformation and the column E
to the number of elements expected after the transformation.

Table 8.6. Elements of the requirements model included in the five examples

Example MT SS SG ocC DBLP
Elements
Start 1 1 1
End 1 1 1 1
Precedence 9 20 10 20 28
Communicative Event 6 11 6 11 16
Event Variant 0 2 3 4 10
And 0 1 0 1 0
Or 0 2 1 1 2
Iteration 1 4 3 4 8
Specialisation 0 0 2 3 8
Textual Requirement 0 0 8 0 18
Aggregation 7 14 13 22 28
Data Field 26 45 20 47 66
Reference Field 5 12 8 19 18
Table 8.7. Elements of the Test Model generated for the five example

ample MT SS SG (o] DBLP
Elemen G E G E G E G E G E
Test Case 6 6 12 12 8 8 13 13 21 21
Precedence 9 9 19 19 11 11 21 21 32 32
Final 7 7 14 14 10 10 15 15 29 29
Precedence
Assertion 7 7 12 12 15 15 14 14 39 39
Service 6 10 21 21 15 15 20 20 26 26
Trigger 2 3 12 12 6 6 6 6 17 17
Link 5 5 9 9 9 15 24 26 19 19
Parameter 49 58 120 120 90 102 155 159 197 197

From these results we can see that the values in bold (e.g. services,
triggers, parameters for MT) represent the elements that differ from
those expected and therefore indicate an error in the transformation
rules related to these elements. For example, for MT services we
expected 10 elements (see rows related to 7.x rules in Table 8.8) but
only 6 elements were generated by the respective transformation
rules.

We added the “Final Precedence” row to report the number of
precedence relations obtained after of adjusting these relations in the

206

CHAPTER 8. VALIDATION AND EVALUATION OF THE COSTEST TOOL

test model, inspected the MMT result and determined its correctness
by comparing the Test Model elements with the manually derived CS
elements by expert.

For each question related to the correctness goal, we report the
results obtained when applying the respective metrics for each
measurement model (e.g. MT, SS systems). This report was supported
by CoSTest (see Chapter 7).

Table 8.8 shows some of the results of the comparative effort of
the Syntactic and Semantic Correctness achieved for each
transformation rule in the five CS used in this study during the first
transformation.

From these results, we can see that the number of rules (i.e. the
number of rows with data in Table 8.8) required by DBLP is the highest
(i.e. 21 rules for semantic correctness) of the five generated Test
Model, while this is not the case for MT, which only requires 13 rules
for semantic correctness (SeC).

The differences found in each validation phase allowed us to take
corrective actions to adjust our M2M transformation, so that for the
next phase the problems identified in the transformation rules were
fixed.

For example, for the first phase four of six Service classes were
omitted by Rule 7.3. Therefore, in this first phase rule 7.3 achieved 33%
of semantic correctness and 100% of syntactic correctness for the
generated elements. In this phase rule 5.2 was missing, omitting a
Service class, so that the semantic correctness achieved by 5.2 is 0%
and the syntactic correctness value is not required.

Finally, for this first phase (i.e. MT case), the M2M transformation
achieved 100% of syntactic correctness, while the semantic correctness
was 96.30%. Similarly, the values of correctness for the other phases
were calculated.

207

CHAPTER 8. VALIDATION AND EVALUATION OF THE COSTEST TOOL

Table 8.8. Results of SyC_T1 and SeC_T1 for the five cases

Phase Test Models
1° — MT (%) 2° - SS (%) 3°-SG (%) 4° - 0C (%) 5° —DBLP (%)
T. SyC SeC SyC SeC SyC SeC SyC SeC SyC SeC
Rule
SyC_T 100 96.3 98.3 100 100 98.0 100 99.6 100 100
SeC_T
1 | 100 100 100 100 100 100 100 100 100 100
2.1 | 100 6/6 100 10/10 100 5/5 100 9/9 100 11/11
90.7 100 92.5 98.4 100
2.2 - - 100 2/2100 100 3/3 100 4/4 100 10/10
100 100 100
3.1 | 100 9/9 100 14/14 100 5/5 100 12/12 100 18/18
100 100 100 100 100
3.2 - 100 2/2=100 100 3/3 100 6/6 100 8/8=100
100 100
3.3 - - - - - - - - 4/4=100
34 - 100 1/1 100 3/3 100 1/1 100 2/2
100 100 100 100
3.5 - 50 2/2=100 - - 100 2/2=100 - -
4.1 - - - 100 8/8 100 100 100 18/18
100 100
4.2 - - 100 1/1=100 - - - - - -
4.3 100 1/1=100 - - - - - - - -
4.4 | 100 6/6 100 11/11 100 7/7 100 14/14 100 21/21
100 100 100 100 100
5.1 100 1/1=100 100 1/1=100 100 1/1=100 - - 100 1/1=100
5.2 - 0/1=0 100 2/2=100 100 1/1=100 100 2/2=100 100 5/5=100
5.3 - 100 1/1 100 - - - - - -
5.4 - 100 2/2 100 100 3/3 100 4/4 100 10/10
100 100 100
6.1 | 100 6/6 100 9/9=100 100 11/11 100 20/20 100 22/22
100 100 100 100
7.1 | 100 1/1 100 3/3 100 3/3 100 3/3 100 4/4
100 100 100 100 100
7.2 | 100 3/3 100 3/3 100 5/5 100 16/16 100 11/11
100 100 100 100 100
7.3 | 100 2/6 100 18/18 100 6/6 - - 100 6/6
33.3 100 100 100
7.4 - - - - - 0/6 100 4/4 100 3/3
0 100 100
7.5 - - - - - - - 0/2=0 - -
8.1 | 100 27/27 100 51/51 100 35/35 100 61/61 100 101/101
100 100 100 100 100
8.2 | 100 3/3 100 3/3 100 11/11 100 19/19 100 10/10
100 100 100 100 100
8.3 - - - - - 0/6 100 4/6 100 3/3
0 66.7 100
8.4 - - - - - 0/6 100 4/6 100 3/3
0 66.7 100

From these results, we see that transformation rules 5.2, 7.3, 7.4,
7.5, 8.3 and 8.4 (see rows in Table 8.8 achieved less than 100%
semantic correctness in some of the validation phases (see columns in

Table 8.8), while the Syntactic Correctness of the rules achieved a score

of 100% in most phases, except for rule 3.5 in the second phase (i.e. SS

Cs).

208

CHAPTER 8. VALIDATION AND EVALUATION OF THE COSTEST TOOL

We also calculated the semantic and syntactic correctness of all
first M2M transformations based on the partial values of semantic and
syntactic correctness of each transformation rule.

The first row of Table 8.8 shows the values of these metrics (i.e.
SeC_T1 and SyC_T1), so that the syntactic correctness was 100% in 4
out of 5 of the analysed CS. This result was as expected because
syntactic correctness is easier to achieve with the tests performed
while the transformation is implemented.

The semantic correctness varies in each phase (i.e. 96.3%, 100%,
98%, 99.6% and 100%) depending on the number of elements that
matched with the expected elements.

Once we identified the correctness problems (see Figure 8.4) in this
M2M transformation, we reviewed the transformation rules and found
the following explanations:

— Missing Rules. For rules 5.2, 7.4, 7.5, 8.3 and 8.4 it was necessary to
extend the respective rules by adding the required code.

— Incorrect Rules. Rules 3.5, 7.3, 8.3 and 8.4 required some
adjustments, e.g. 3.5 was modified by adding “->AND->OR->" in the
Precedence class name it generated. The definition of Rules 7.3, 8.3
and 8.4 was correct, however there was an unreachable code in the
ATL code implemented in CoSTest. We therefore restructured the
code to correct this unreachable code bug.

— Unnecessary rules. Metrics can also sometimes detect unnecessary
rules in the transformation (e.g. alternative rules that implement
code for Rules 3.5 and 7.3 are not applied in any case, as well as
some helpers) and need to be deleted.

209

CHAPTER 8. VALIDATION AND EVALUATION OF THE COSTEST TOOL

‘ R1: RequirementsModel2TestModel ’

~{ R2_1: CommunicativeEvent2TestCase |

{ R4_1: TextualRequirement2Assertion

—{ R4_2: CommunicativeEventPrecondition2Assertion]

—I RS5_1: Aggregation_ReferenceField2Trigger_Data [

I—I R8_1: DataField2InputParameter_Data |

—{RS_Z: Aggregation_[teration2Trigger_InputParameter_Data] Missing (1)

-{ RS5_3: Iteration_NotAggregation2Trigger_Data I

R8_1: DataField2InputParameter_Data I

—I R6_1: Aggregation_ReferenceField2Service_OutputParameter |
URS_I: DataField2InputParameter_Data I

R8_2: ReferenceField2InputParameter_Data l

-1 R6_2: EventVariantAggregation_ReferenceField2Service_OutputParameter_Data |
H R8_1: DataField2InputParameter_Data |

R8_2: ReferenceField2InputParameter_Data |

—I R7_1: Iteration2Link_InputParameter_OutputParameter |

~{ R7_2: ReferenceField_Aggregation2Link_OutputParameter |
H R8_1: DataField2InputParameter_Data]

{ 7_3: ReferenceField_Aggregation2Link_Service_OutputParameter_Data I Wrong (1)
|—|R8_1: DataField2InputParameter_Data I

—| R7_4: ReferenceField_Specialization2Link | Missing (3)

L|R8_3: Aggregation2InputParameter | Missing (3)

L{RS_A: Aggregation20OutputParameter | Missing (3)
%R7_5: Aggregation_Iteration_Specialization2Link] Missing (4)

l—|R8_3: Aggregation2inputParameter | Wrong (4)

‘—[R8_4: Aggregation2OutputParameter | Wrong (4)

~{ R2_2: EventVariant2TestCase |

R4_3: EvenVariantPrecondition2Assertion |

RS5_4: Aggregation2Trigger_Data]
’-I R8_1: DataField2InputParameter_Data]

R6_2: Aggregation_ReferenceField2Service |
;| R8_1: DataField2InputParameter_Data |

R7_6: ReferenceField2Link_InputParameter_OutputParameter |

~{ R3_1-3_5: Precedence2Precedence | R3_5:Wrong (2)

Figure 8.4. Structure of T1 Transformation with the identified problems

Finally, at the end of the evaluation (i.e. in the fifth phase), the
syntactic and semantic correctness achieved by the first two MMTs and
each transformation rule was 100%.

210

CHAPTER 8. VALIDATION AND EVALUATION OF THE COSTEST TOOL

Second Transformation
The goal of this transformation is to obtain a model conformed to
the test scenario metamodel presented in Section 6.2.2.

Table 8.9 shows the different elements of Test Scenario Models for
the five subjects. As in the previous transformation, we included the
columns G (generated elements) and E (expected elements).

Table 8.9. Elements of the Test Scenario Model generated for the five examples

Example MT SS SG ocC DBLP
Elements G E G E G E G E G E
Test Scenario 1 1 2 2 2 2 3 3 7 7
Test Case 6 6 17 17 14 14 31 31 52 52
Assertion 7 7 15 15 28 28 31 31 85 85
Service 6 |10 | 32 32 30 30 57 57 69 69
Trigger 2 16 16 10 10 10 10 38 38
Link 5 5 16 6 18 30 67 73 44 44
Parameter 49 | 58 | 188 | 188 | 176 | 200 | 419 | 431 | 487 | 487

Like the analysis done for Table 8.7, the values in bold represent
the elements that differ from those expected and therefore there is an
error in the transformation rule related to that element. For example,
the error detected in the first phase for MT services is translate to the
second phase, so that we expected 10 service elements (see rows
related to 7’ in Table 8.10) but only 6 elements were generated by the
respective transformation rules

Table 8.10 shows the results of the comparative effort during the
second transformation to measure the syntactic and semantic
correctness achieved for each transformation (i.e. SyC_ T and SeC T
row and SyC and SeC columns respectively) and with each rule
(different rows in Table 8.10) in the five CS used in this study.

Table 8.10 shows the calculation of the metrics, and the rules that
had errors are those that do not have a value of 100% in the respective
metric.

211

CHAPTER 8. VALIDATION AND EVALUATION OF THE COSTEST TOOL

Table 8.10. Results of SyC_T2 and SeC_T2 for the five cases

Phase Test Scenario Models
T. 1° — MT (%) 2°—SS (%) 3°-SG (%) 4° - 0C (%) 5°— DBLP (%)
Rule SyC SeC SyC SeC SyC | SeC SyC | SeC | SyC SeC
SyC_T 100 90.7 100 100 100 | 94.6 100 | 98.6 100 100
SeC_T
T2 T1
9 1| 100 100 100 100 100 100 100 100 100 100
10 100 1/1 100 2/2 100 2/2 100 3/3 100 7/7
90.7 100 100 98.6 100
2’ | 2.1 | 100 6/6 100 10/10 100 | 10/10 | 100 9/9 100 11/11
90.7 100 92.5 100 100
2.2 - - 100 | 2/2 100 | 100 4/4 100 4/4 100 10/10
100 100 100
4 | 41 - - - - 100 8/8 100 100 100 18/18
100 100
4.2 - - 100 | 1/1=100 - - - - - -
4.3 | 100 | 1/1=100 - - - - - - - -
4.4 | 100 6/6 100 11/11 100 7/7 100 | 14/14 | 100 21/21
100 100 100 100 100
5 | 5.1 | 100 1/1 100 1/1 100 1/1 - - 100 1/1
100 100 100 100
5.2 - 0/1 100 2/2 100 100 1/1 100 2/2 100 5/5
0 100 100 100
5.3 - - 100 | 1/1100 - - - - - -
5.4 - - 100 | 2/2 100 | 100 3/3 100 4/4 100 10/10
100 100 100
6’ | 6.1 | 100 | 6/6100 | 100 | 9/9100 | 100 | 11/11 | 100 | 20/20 | 100 22/22
100 100 100
7 | 7.1 | 100 1/1 100 | 3/3100 | 100 3/3 100 3/3 100 4/4
100 100 100 100
7.2 | 100 3/3 100 | 3/3100 | 100 5/5 100 | 16/16 | 100 11/11
100 100 100 100
7.3 | 100 2/6 100 18/18 100 6/6 - - 100 6/6
33.3 100 100 100
7.4 - - - - - 0/12 | 100 4/4 100 3/3
0 100 100
7.5 - - - - - - - 0/6=0 - -
8 | 8.1 | 100 27/27 100 51/51 100 | 35/35 | 100 | 61/61 | 100 | 101/101
100 100 100 100 100
8.2 | 100 3/3 100 3/3 100 | 11/11 | 100 | 19/19 | 100 10/10
100 100 100 100 100
8.3 - - - - - 0/12 100 | 12/18 | 100 3/3
0 66.66 100
8.4 - - - - - 0/12 | 100 | 1218 | 100 3/3
0 66.66 100

Since the second model transformation generates test scenarios,

the problems found in some of the rules in the first transformation are

translated into each scenario generated from these rules. Columns T1

and T2 shows the correspondence of the rules of the transformation T2

212

CHAPTER 8. VALIDATION AND EVALUATION OF THE COSTEST TOOL

with the rules of the transformation T1. For example, R2' transforms
the elements generated by R2.1 and R2.2 in T1.

For Syntactic Correctness (SyC) the rules in the first transformation
achieved a score of 100% in most of the phases (4/5), except in the
second phase (i.e. SS CS), with a SyC value of 98.3% (see row SyC_T1 of
Table 8.8). In the second transformation the SyC value was 100% for all
phases, suggesting that the impact of the syntactic correctness
problems in the second transformation depends on the defect type
detected in the transformation rule. For example, in the SS subject, the
defective rule R3_5 (i.e. R3_5 does not include the specification “-
>AND->0R->" in its name) and does not affect the generation of the

test scenario.

On the other hand, Semantic Correctness varied in each phase of
the first (i.e. 96.3%, 100%, 98%, 99.6% and 100% in Table 8.8) and
second transformation (i.e. 90.7%, 100%, 94.6%, 98.6%, 100% in Table
8.10), according to the number of elements generated by each
defective rule and the number of test scenarios generated in this
second transformation. For example, in the SG subject the impact on
correctness is greater in the second transformation (i.e. SyC=100% and
SeC=94.64%), because two scenarios were generated using all
elements of the test model, so there are more elements generated
with rules that have anomalies.

Since the purpose of this chapter is to validate the syntactical and
semantical correctness of the M2M transformation, we exercised the
transformation with a set of requirements models derived from CS
specifications found in the literature and then compared the results
with the expected outcomes by using a set of metrics defined to
measure the semantic and syntactic correctness of the proposed M2M
transformation. Both the M2M transformation and the report of the
generated TM elements are supported by the tool.

The M2M transformation validation was performed in several
phases. In this chapter we report the results of the comparative effort

213

CHAPTER 8. VALIDATION AND EVALUATION OF THE COSTEST TOOL

in five phases, where the Syntactic Correctness (SyC) of the rules in the
first transformation achieved a score of 100% in most phases (4/5),
except in the second phase (i.e. SS CS), with a SyC value of 98.3%. In
the second transformation the SyC value was 100% for all phases,
suggesting that the impact of the syntactic correctness problems on
the second transformation depends on the defect type detected in the
transformation rule. On the other hand, the semantic correctness
varied in each phase of the first (i.e. 96.3%, 100%, 98%, 99.6% and
100%) and second transformation (i.e. 90.7%, 100%, 94.6%, 98.6%,
100%), depending on the number of elements generated by each
defective rule and the number of test scenarios generated in this
second transformation.

Although this validation does not guarantee full correctness of the
M2M transformation, it shows that it has very interesting benefits. In
particular, the defined metrics were useful for identifying bugs (i.e.
incorrect, missing and redundant rules) in the transformation rules in a
cost-effective manner, so these M2M transformations are suitable to
be integrated in our tool support (see Chapter 8). Moreover, the
metrics can measure the correctness of CSs without having to
transform them into any other formalism or to abstract away any of
their features.

8.3 Evaluating the CoSTest Mutant Generator

The empirical assessment of test techniques plays an important
role in software testing research. One common practice is to
instrument faults, either manually or by using mutation operators. The
latter allows the systematic, repeatable seeding of large numbers of
faults, helping to clarify assumptions, support understanding, analysis,
prediction, and decision-support.

In Mutation testing the most critical activity is the adequate design
of mutation operators so that they reflect the typical defects of the
artefact under test. We therefore designed a set of mutation operators
for Conceptual Schemas (CS) based on Unified Modelling Language

214

CHAPTER 8. VALIDATION AND EVALUATION OF THE COSTEST TOOL

(UML) Class Diagrams (CD). The main potential advantage of mutation
operators is that they describe precisely the mutants they can generate
and thus support a well-defined, fault-injecting process. Figure 8.5
illustrates the definition process of mutation operators.

The research group met for decision-making with two main
objectives: (i) to focus on evaluating some properties of the mutation
operators for FOM and (ii) to validate the effectiveness of CoSTest
components to automatize mutant generation (i.e. Mutant Generator)
(see Section 7.7 in Chapter 7).

Two experiments were performed using mutation in an iterative
process to evaluate some properties of the mutation operators as well
as the effectiveness and efficiency of the CoSTest Mutant Generator.

8.3.1 Experiment No 1: Evaluating the Mutation

Operators Implemented in CoSTest
The first experiment was an iterative process to evaluate the
mutation operators for FOM implemented in CoSTest.

In this experiment we used the CoSTest tool V0.5 (conception of
the tools), which was evolved until achieving the stable V1.0 version.
The tool generated the first order mutant (FOM), but did not include
the facility for selecting (all or partially) the mutation operators before
calculating and generating the mutants.

Experimental Design

The experiment was performed by the authors (researchers) of
[115], which reports on the use of the tools in a controlled
environment using three types of system: (i) the Super Stationery (SS)
system, (ii) an Expense Report (ER) management system, and lastly, (iii)
the Sudoku Game (SG) system [133], which is more variant-rich than
the other two CS. The source files of the requirements models and
Conceptual Schemas can be found at
https://staq.dsic.upv.es/webstag/costest.html

215

CHAPTER 8. VALIDATION AND EVALUATION OF THE COSTEST TOOL

The experiment was run as an iterative process with approximately
3 iterations in three months (from July 2015 to September 2015). The
objective was to evaluate the usefulness of the mutation operators for
FOM. Then, we prepared a renewed version of the tools that included
the emerging improvements.

The experiment was performed in a laboratory environment where
the CS requirements were specified using GREAT tool [141]. Eclipse
Framework tools such as UML2 or Papyrus were used for modelling
conceptual schemas, and Microsoft Excel for managing and analysing
the test results.

Figure 8.5 illustrates the i-th iteration of the experiment. Each CS
subject was analysed based on FOM that can be generated using
CoSTest version V0.5. It was then used to generate the test cases
according to the requirements model and to execute them against the
mutants.

Finally, the mutation score for mutant and mutation operator,
contribution factor of mutation operator and impact indicator were
computed in order to evaluate some properties of the mutation
operators. The last iteration of the experiment was used to exemplify
the CoSTest tool V1.0 and evaluate some properties of the mutation
operators [93].

Conclusions and changes to the tool
The FOM mutation operators were evaluated in the experiment by
means of the contribution factor, impact indicator and mutation score.

Based on the results obtained by applying mutation testing, 56%
(10/18) of our mutant operators generated a high number of killed
mutants (score mutation=100 %). These results suggest that these
operators generated mutants that are relatively easy to detect by the
provided test suites.

216

CHAPTER 8. VALIDATION AND EVALUATION OF THE COSTEST TOOL

ﬁm

yoeqpasy
1591500

Y

1aypIeasay

sishjeuy
sjnsay
O Junsa)

SaA

uojiesauan
53587 159

uole|3) INoful
< uoispag

YSeL wseL \[
SWOINY| | |enuey

puasdal

@ng isa L

1—_33 Aunysa)

5532044

o Bunsa)

o

2|qeIndaxy

1°pon
sjuawainbay

b

189Y2Jeasay

SJUBINN SO

-
seny
L™]

uonelausn

1

BLWALDS
|emdasuo)

Figure 8.5. i-th iteration of the experiment applying the CoSTest tool

217

CHAPTER 8. VALIDATION AND EVALUATION OF THE COSTEST TOOL

In the other case 44% (8/18) of the operators related to
characteristics of associations (i.e. multiplicity and aggregation type)
and constraints generated hard-to-detect mutants and their
application would stimulate selection of high quality tests. However,
the behaviour of the mutation operators may depend on the
characteristics of the CS they are applied to, such as the number,
element type and complexity of the constraints.

Some of the main changes applied to the mutation operator list
were the restrictions included in the mutation operator rules to avoid
generating non-valid mutants (see Table A.1 in Appendix A). Some of
the main changes applied to the tool were: (i) include the facility for
selecting the mutation operators before calculating and generating
them, (ii) structure the Excel report containing CSUT elements, testing
log, covered elements, found defects, test case verdicts and (i)
generate a report for each mutant to help identify defects. All the
reports were exemplified using the three analysed CS.

8.3.2 Experiment No 2: Validating the
Effectiveness and Efficiency of Mutant

Generator of CoSTest

The second experiment was an iterative process to evaluate the
effectiveness and efficiency of the CoSTest mutant generator. The V1.0
version generated mutants using the mutation operators but could not
facilitate the summaries of the generated mutants including the
required mutation time nor could it analyse the CS information to help
discard equivalent mutants. The V1.0 version used in this study can
only execute the test cases on one conceptual schema at a time, so it
was not possible to select several conceptual schemas (i.e. mutants) to
test with the selected test cases and report the summarized results of
all of them.

Experimental Design
The experiment was performed by the authors (researchers) of
[124], which reports on the evaluation of the tool in a controlled

218

CHAPTER 8. VALIDATION AND EVALUATION OF THE COSTEST TOOL

environment using six types of system: (i) the Medical treatment (MT)
system, (ii) the Sudoku Game (SG) system [133], (iii) an Expense Report
(ER) management system, (iv) the Online conference review (OCR)
system, (v) the SuperStationery (SS) system and lastly, (vi) Photography
Agency (PA) system. The source files of requirement models and
Conceptual Schemas can be found at
https://staq.dsic.upv.es/webstag/costest.html

The experiment was run as an iterative process; approximately 6
iterations were performed in three months (from September 2015 to
November 2015). The objective was to carry out an evaluation of the
CoSTest tool V1.5 with respect to the effectiveness and efficiency in
generating valid First Order Mutants to UML CD-based CS.

In this experiment the CS requirements were specified using GREAT
tool [141], Eclipse Framework tools such as UML2 or Papyrus were
used for modelling conceptual schemas and Microsoft Excel (for
managing both results testing and mutation analysis). Figure 8.6
illustrates the i-th iteration of the experiment.

The version V1.0 of the CoSTest tool was provided. Each CS was
used to generate the FOM that can be generated using the CoSTest
Mutant Generator. CoSTest was then used to generate the test cases
according to the requirements model and to execute them against the
mutants and report the results. The researcher manually analysed the
mutants that were not killed to determine whether they were
equivalent (i.e. the CS mutant produces the same output as the original
CS as if it had no faults) and register them.

The last iteration of the experiment was used to evaluate CoSTest
V1.2 with respect to its effectiveness and efficiency in generating valid
First Order Mutants to UML CD-based CS [124].

219

CHAPTER 8. VALIDATION AND EVALUATION OF THE COSTEST TOOL

uope|al Inoyu| E m ysel vuum—_td
uoleIauUdn O — ﬁw.ume:ou:(|enuey

suodal e TE D
1591500 FeEORIL sase) 3sal e = puasaq
L OIEUSIG j58 | S
R m_m__:mcq U OUBURIS 153 O =1 s3nsaJ uopeIN
— SUNS 1531 A
HNS9Y N0 J0y sioiesado
- o BunsaL /3__._3: =< [opon % :o__uﬂ_.s_
p=sapy !
R \//f “pr iy 2122038 sjuawainbay
sjuenw hl 28R MGNg *
jajeninby) sseD
- SSE
v Sse 1k uonesauan .
f— ssanoug assep -+ spueInpy
— uoRJLlep o 3unsaL Y uoneossy| (=]
sjuelnwi
juajeanb3 (Uoreiausn R SIUEINIAI 5D
1ns> ey
.%_..Eauxm o
19Ydieasay
eways
|enydasuoy

Figure 8.6. i-th iteration of the experiment applying the CoSTest tool

220

CHAPTER 8. VALIDATION AND EVALUATION OF THE COSTEST TOOL

Conclusions and changes to CoSTest

The experiment showed the effectiveness and efficiency of CoSTest
in generating FOM [124] and that mutation operators can be
automated avoiding the generation of a high percentage (49.1%) of
non-valid mutants and generating a low percentage (7.2%) of
equivalent mutants.

However, detecting these mutants is costly in terms of the time
and effort of creating, executing and manually inspecting them. We
therefore implemented the restrictions and rules for eliminating them
by performing a static analysis of the CS. As these results show, the
reduction achieved in this analysis of equivalent mutants is about
74.3%, which is equivalent to 2249.24 seconds estimated by KLM, and
the cost of reducing non-valid mutant is 49.1% (48833.4 seconds
estimated by KLM) by using the mutation tool in the six subject CSs
involved in this study.

Therefore, the results of this study suggest that the mutation tool
can help researchers and supports a well-defined, fault-injecting
process to generate a potentially large number of valid and non-
equivalent FOMs, increasing the statistical significance of results
obtained in assessing test case quality.

However, some changes were applied to the tool to (i) include the
report on generated mutants, (ii) add the restrictions to avoid
equivalent mutant generation using WOP2, (iii) report the time
required to generate mutants (iv) include the facility of executing a set
of test cases against a set of mutants and generate an Excel report
containing CSUT name, testing time, final verdict, defect id, defect
mode, found defect and CSUT element for all tested mutant of a CS to
help with information visualization.

221

CHAPTER 8. VALIDATION AND EVALUATION OF THE COSTEST TOOL

8.4 Validating of the Effectiveness of CoSTest’

Test Cases
The following is a description of the comparative experiment to
evaluate the effectiveness of CoSTest test cases.

The experiment was motivated by the need to investigate the
effectiveness of our testing framework; that is, we intended to
compare the effectiveness when they were applied in both first order
mutants and high order mutants to detect faults in eight CS.

The experiment was carried out in 2016 (from January to March)
and was designed according to Wholin et al. [142] as reported by Jurist
and Moreno [127].

8.4.1 Experiment Goal and Questions

The experimental goal according to the Goal/Question/Metric
Template [143] is to analyse the resulting CoSTest test cases for the
purpose of evaluation with respect to their effectiveness in detecting
fault types from the point view of the researchers in the context of
mutants generated for eight CS.

We are interested in determining if the test case effectiveness is
the same for both types of mutants (i.e. FOM and HOM). Therefore, we
pose and study the following experiment research questions (ERQ):

e ERQ1: How significant is the influence of the mutation type in the
effectiveness of CoSTest test cases for detecting faults and fault
types?

And as we are also interested in measuring whether the test case
quality is depending on the type of mutant:

e ERQ2: How adequate are CoSTest test suites for killing both the
First Order Mutants and High Order Mutants of Conceptual
Schemas?

222

CHAPTER 8. VALIDATION AND EVALUATION OF THE COSTEST TOOL

8.4.2 Variables

Independent Variables

We consider one independent variable (a.k.a. factor [127]):

e Mutant type. Since this study uses mutations for injecting the
artificial faults into a CS, CSs can be classified into two types
according to the number of mutated elements:

o First Order Mutant (FOM) (baseline), which is generated by
applying mutation operators (i.e. rules to modify the
grammar used to capture the syntax of a software artefact
[113]) only once.

o Higher Order Mutant (HOM), which is generated by
applying mutation operators more than once [113].

Dependent Variables

We consider the following dependent variables (a.k.a. response
variables [127]), which are expected to be influenced to some extent
by the independent variable.

e [Effectiveness in Detecting Fault. To investigate our ERQ1 we need
to measure the effectiveness of the CoSTest test cases in terms of
the number of faults found and the type (or cause) of the faults
that were found [144] as well as the mutation score, which can be
used to measure the effectiveness of a test suite in terms of its
ability to kill mutants because it is one outcome of the Mutation
Testing process, which indicates the quality of the input test set
[15].

8.4.3 Metrics

Effectiveness
For evaluating the effectiveness of our testing technique, we used
three metrics:

e Rate of Fault Detection (FDR). The metric FDR is the value
calculated by dividing the number of faults detected by the tool by
the total number of faults that are expected to be identified from
the CS mutants.

223

CHAPTER 8. VALIDATION AND EVALUATION OF THE COSTEST TOOL

Fp(T)
E

FDR(T) =

Rate of Fault Type Detection (FTDR). The metric FTDR is the value
calculated by dividing the number of fault types detected by the
tool by the total number of fault types that are expected to be

identified from the CS mutants.
FTp(T)

FTDR(T) = —
E

Mutation Score. During execution each CS mutant Mi will be run
against a test case suite T. If the result of running Mi is different
from the result of running CS (without defects) for any test case in
T, then the mutant Mi is said to be “killed”, otherwise it is said to
have “survived”. A CS mutant may survive either because it is
equivalent to the original model (i.e. it is semantically identical to
the original model although syntactically different) or the test set is
inadequate to kill the mutant.

Thus, the adequacy of a test suite T for a given set of M mutants is
quantitatively evaluated with a mutation score (MS). It is measured
as the ratio of the number of killed mutants Mg (T) over the total
number of the non-equivalent mutants My generated for a CS. It is

calculated by:
M (T)

MS(T) = M,

8.4.4 Hypotheses

We defined three hypotheses: Table 8.11 shows the null

hypotheses (represented by a 0 in the subscript), which corresponds to

the

absence of an impact of the independent variables on the

dependent variables.

Table 8.11. Specification of hypotheses

Null Statement:
hypothesis Mutant type does not influence ...
H1,(ERQ1) ... the effectiveness of the CoSTest test cases in detecting

faults in Conceptual Schemas

H20 (ERQ1) ... the effectiveness of the CoSTest test cases in detecting

fault types in Conceptual Schemas

H30 (ERQ2) ... the adequacy of the CoSTest test cases

224

CHAPTER 8. VALIDATION AND EVALUATION OF THE COSTEST TOOL

The alternative hypotheses involve the existence of such an impact
and are the expected result.

8.4.5 Experimental Material

Subject CS

Most of the input CSs used in this experiment were small UML/ALF-
based models. In particular, this experiment took as input eight CSs
containing a variety of characteristics that can be present in UML CD-
based CS, including classes, relations (i.e. association, composite
aggregation, and generalization) and different types of constraints (i.e.
pre-condition, post-condition and body condition). These CS were of
different sizes and domains (e.g. information systems, games). One
case is taken from industrial, others CSs were found in the literature
(i.e.[131], [133] and [132]).

In order to guarantee that our tool is also effectively detecting the
different mutants created using the defined mutation operators (see
Table A.1), we also used CSs artificially created for this purpose (i.e. ER,
OCR, VC, and PA) containing the CS elements required to inject the
faults.

Table 8.12 summarizes the characteristics of these CS. A brief
description of each CS is given in Section 8.1.1:

Table 8.12. Elements of the Subject Conceptual Schemas

Element VC|MT |SG |ER|OCR|SS | PA | IM
Classes 5 6 11 | 7 10 9 15 | 6
Attributes 19 | 26 | 32 | 42 | 62 45 | 85 | 29
Operations 6 13 19 | 24 | 16 32 | 31 | 13
Parameters 22 | 43 a8 | 75 | 77 91 | 8 | 51
Associations 4 5 11 | 8 10 9 19 | 4
Constraints 17 | 9 19 | 21 | 14 12 | 37 | 8
Generalizations | 0 0 4 0 3 0 0 0

Our experiment was carried out under a within-subject design, all
our subjects were exposed to the two treatments of our independent
variable (CS type) [145].

225

CHAPTER 8. VALIDATION AND EVALUATION OF THE COSTEST TOOL

8.4.6 Procedure

We provide in this section a brief description and justification of
the analysis procedure that we used.

Figure 8.7 summarizes the experimental process, which involved
performing the following seven steps:

1) Choose CS Subjects. The selected subjects are described in Section
8.1.1.

2) Select a Conceptual Schema and generate the test suite. A test
suite T was generated to kill CS mutants for each subject CS by
following Steps 1-7 of Section 5.8, we then analysed the
information on the generated test cases in order to detect
problems in the generation process (e.g. repeated test cases).

3) Execute Test Suites on CS. Each test suite is executed on the
respective CS subject.

We assessed whether an invalid test case required a manual
setting (e.g. concretize variables that require several values
because they should be unique values or adjust a negative test
case so that it can create a valid sequence of events to validate
constraints).

We adjusted the test cases in order to get a successful testing
process with the original CS and registered the invalid test cases.
For example for OCR CS, we required updating the test case
number 19, which validate the precondition “context Submission::
new_submission() pre: Author->size()>0 “ with an invalid state
(test case negative), so we removed the statement that previously
creates an author.

Additionally, we had to concretize different values for the
variable id_member used in the classes PCMember, PCChair and
Author, so that there are no problems with the constraints that
validate unique values.

226

CHAPTER 8. VALIDATION AND EVALUATION OF THE COSTEST TOOL

Select CS ﬂlg

Generate Test

Mutant testing
results

Generation results Repeated Test
Case excluded to
test

Execute te?

cases and
Generate results

Select Muta
and Generate
Executable

enerate
Mutants

results
analysis

\ Mutant Testing CS Testing results
Mutants results
Operatars Legend

—_—
Manual faro N, m—
€S mutants f Decision
Artifact || Taek In/out relation

Figure 8.7. Steps taken in experimental process

"h

4) Generate CS Mutants. As this step was quite computationally
expensive, we used our Mutant Generator (see Section 7.7 in
Chapter 7) for generating first order mutants, in contrast to the
High order mutants, which were generated manually.

In this study, we used all the FOMs generated by the tool for all
CS subjects (see mutation operators of Table A.1 marked with “*”
in Appendix A).

In the other case, since there is no tool to automatically
generate HOMs, and also due to the unmanageably large number
of mutants that would result from including the set of higher order
mutants [17], we tried to generate in each subject CS, 3 mutants
for each mutation operator from Table A.1 (see mutation
operators marked with “**” in the Appendix A). Elements were
randomly selected to apply the mutation, however, some CS

227

CHAPTER 8. VALIDATION AND EVALUATION OF THE COSTEST TOOL

subjects did not allow random selection due to the limited number
of elements required by some mutation operators (e.g. WAT?2,
WGE and MGE).

Therefore, a random selection of elements from CSs combined
with a size of 3 mutants for each mutation operator for HOM
(“**”) from Table A.1 were deemed sufficient (enough variability in
faulty versions do not cover in FOM). Figure 8.8 shows an excerpt
of Video Club CS and the application of five mutation operators of
first order.

A syntax analysis was then performed by using the ALF parser
to ensure that the mutants were valid and could be used in a
testing process.

Select and generate an executable CS mutant. Each CS mutant is
transformed into an executable CS (CSUT) by using the respective
CoSTest module (see Step 7 in Section 5.8).

Execute Test Suites on CS Mutants. We ran each test case for each
mutant and maintained the test status (i.e.
passing/failing/inconclusive) using our CoSTest tool. Then, we
compared the output of each mutant against the output of the
original version of the CS with no faults.

When the output of the mutant was different to the original CS
output, the test case was labelled as failing and when the outputs
were exactly the same, the test case was tagged as passing.

We then manually examined the FOM with zero kills and
eliminated any that were semantically equivalent to the original CS.

The analysis of survivor mutants in order to identify equivalent
mutants is a prerequisite for calculating a mutation score. An
example of an equivalent mutant is shown in Figure 8.9, in which
the changed operator did not influenced the result of the
assignment.

We used the CoSTest option to export the results (faults and
coverage analysis) of the testing process of the CS subject.

228

CHAPTER 8. VALIDATION AND EVALUATION OF THE COSTEST TOOL

wawa|3 28uey) 4—p

(JaBaueuopppenEdyabajul: abene d Bulyg: awewge d ‘Buiis: promssedieTd ‘Buig: swewasnigeTd plauped mau g

awa|] 212|2Q ey

WBWI[] ppY = = =
puadaq

Joyesado zydn (q)

T=<(aweuzbeueuye djazg taid
(gn|30apIAmaLgn|J0apI Xajuod

Jabawy: 2be =
BuLgs : aweu =
Bulys : plomssed &5
Bulgs : awewacn 5

1euLEd 5

o .ﬁ%ﬂv @t £=< (apodT|epsodneTd)azig aud
(ignaoapIAmauiqn|Jeapip U0l

Jozesado goom (P

|ejuaiTIauped

0000T=>4nj20appuie d igrg T=<qnproapinpuged aud
(gn|aoapIAmauigqn|J0apIa ajUod

jeay : aoudy =
12Bagul irquInuTiRuRl [

[t70] 4—p [«70]

EV I EN SAVEY

T=<Jaquinu”ezuasediad
(Jau]|EIUa T MALE AU [BIUDY JHAU0D

[tep]| 12uped

01| slesuas

123yt |20y =]
2je AEpTIINGAl =)
apeg] aepdnTyad &5

Lol [0l
auriieusy sau|je3ua |e3ua
EINERED [P Jozesado gsym (2
G T
ainow [Tl

JaBagur: (eualTpl &

[UCHES

Jojesado Qo (=

(anowprraja anbiuns <-saowrsiyy ipog
anbILnAIA A AUL QNI 0RPIA BEIUDD

T=<3now pued jaud
()10 LT AMILEAIAO A PEA3U0D

T=<(aweuTanowne~d)azig taid
(JaIAOLUTMB L IIAD|A PEIUOD

Buig @ smyeys 5

jeay i aaudTeuRl =
a1e(]: AlEpTatRAlRl [
Buiig aopanp =
Buiig @ aeu"anoWw =
Jabagul: amowTpl (=

AADLLTN|I03PIA
L] (10l

Buls aposTesod =
Buiig ¢ ssauppe =

Buwis 1 A 5

Buwgg @ aweu abeuew =
Jabagul: gqniaoapiaTpl 5

T

o

A0 m

falnoLl qnjaoapia

qnjgoapia 5

lojesado sy (e

Figure 8.8. Application of five mutation operators on Video Club CS

229

CHAPTER 8. VALIDATION AND EVALUATION OF THE COSTEST TOOL

]

Original Constraint with relational operator “=—"
this_ emplovees number=this emplovees->=select e{e fired=—false}->size(}==07 0:
this emplovees->select e(e fired==false}->size();

Mutated Constraint change the relation operator to “<=="

this emplovees number=this employees->=select ee fired=—=false}->size()}<=07 0:
this emplovees-»select e(e fired==false)->size();

Figure 8.9. Excerpt of a Constraint mutated by WCO8 operator

If there are further CS to be studied, steps 2 to 5 are repeated with
the next subject CS.

7) Analysis of Testing Results. We then determined which test case
in the pool detected which mutant and fault.
Next we computed the fault detection ratios of all test suites,
plotted the detection ratio distributions of mutants and faults for
each subject CS. Then, CoSTest effectiveness and adequacy of the
test suite were calculated from the information recorded in this
process.
These results are given in the next Section.

8.4.7 Analysis of Results
This section describes the analysis and interpretation of the results
related to our response variables (e) for ERQ1 and ERQ2.

The Statistical analysis was carried out on the Statistical Package
for Social Sciences (SPSS) V20.0.

Fault Detection Effectiveness

Since the first question (ERQ1) was aimed at evaluating CoSTest’s
Effectiveness at detecting faults, we compared the ratio of fault types
detected per mutant type (i.e. FOM and HOM) in the different CS
subjects. Table 8.13 shows both the number of the fault types detected
in each CS subject by mutant type.

Shapiro-Wilk tests were performed to evaluate the samples
normality. We used this test as our numerical means of assessing
normality because it is more appropriate for small sample sizes (<50
samples).

230

CHAPTER 8. VALIDATION AND EVALUATION OF THE COSTEST TOOL

Table 8.13. Faults and Fault Types detected by Mutant type

00T

0T

S0

00T

00T

00T

00T 080

00T

yaid

a/9

L/9

LfL

/s

L

8/9

8/t

s/s

s/s

s/v

1744

L9

a/9 s/v

/e

9/s

sadA] 3neg
pauoday
jo Jaquinp

00T

850

00T

S9°0

00T

L0

060

190

00T

TL0

€6°0

€9°0

00T | #L°0

00T

TL0

Had

12
/12

0TT
/%9

T4
/st

657
/s91

a4
fez

96T
/st

0€
/LT

vET
/8

7
/vt

991
/811

V4
/st

89T
/sot

17 | 58
1z | /e9

0z
foz

76
/59

sijneg
pauoday
jo Jaquinp

0t

124

4]

9T

89

6T

1alsulele
122.1032U|

€7

T

uonesado
128.1400U|

[4"

€T

UoI1eID0SSY
Buissiy

T

€C

LT

T

€T

uonesado
Buissiy

78

6T

LE

9¢

0T

0s

ST

S

ulensuo)
Buissiy

ST

0T

T

sse|D) Suissiy

Ulensuo)
SNOaUeIlx]

aINquUuIY
paniaq
snoauelix]

WI

vd

SS

420

¥l

o5

1N

N

129)3Q
S2

231

CHAPTER 8. VALIDATION AND EVALUATION OF THE COSTEST TOOL

Effectiveness based on Rate of Fault detection

Since all Sig. values for Shapiro-Wilk tests were 0.219 for FOM and
0.001 for HOM, these variables have a non-normal distribution (<0.05
for HOM) (see Table 8.14).

Table 8.14. Shapiro-Wilk Normality Tests

Shapiro-Wilk
Mutant Type
Statistic df Sig.
FOM .878 7 .219
RFD
HOM .648 7 .001

Given that the variables were non-normally distributed and that we
considered both mutant types as independent groups, the Mann-
Whitney U Test was used to test our first null hypothesis (Hio). Figure
8.10 shows the box-plot containing data on the rate of fault detection
per mutant type.

1.00

1

80

RATE OF FAULT DETECTION

1

FC;M HCI)M
MUTANT TYPE

B0

Figure 8.10. Box-plot for Rate of Fault Detection by Mutant Type

232

CHAPTER 8. VALIDATION AND EVALUATION OF THE COSTEST TOOL

Table 8.15 shows the result of the Mann-Whitney U Test. Regarding
the significance test (i.e 0.001<0.05), we stated that the hypotheses Hio
is rejected. In other words, “the rate of Fault Detection is different for

each mutant type”.

Table 8.15. Mann-Whitney U Test for Rate of Fault Detection by Mutant Type

Rate of Fault Detection
Mann-Whitney U .000
Wilcoxon W 36.000
Zz -3.456
Asymp. Sig. (2-tailed) .001
Exact Sig. [2*(1-tailed Sig.)] .0002

a. Not corrected for ties

Effectiveness based on Rate of Fault Type detection

Since all Sig. values for Shapiro-Wilk tests were 0.520 for FOM and
0.0 for HOM, these variables have a non-normal distribution (<0.05 for
HOM) (see Table 8.16).

Table 8.16. Tests of Normality of Shapiro-Wilk

Shapiro-Wilk
Statistic | df | Sig.

Mutant Type

Rate Fault Type FOM .930 81].520
Detection HOM 418 81.000

Given that the variables were non-normally distributed and that we
considered both mutant types as independent groups, the Mann-
Whitney U Test was used to test our second null hypothesis (Hzo).

Figure 8.11 shows the box-plot containing data on the rate of fault
type detection per mutant type.

233

CHAPTER 8. VALIDATION AND EVALUATION OF THE COSTEST TOOL

1.004 o —

857

0=

B85

B0

Rate of Fault Type Detection

T T
FOM HOM

Mutant Type
Figure 8.11. Box-plot for Rate of Fault Type Detection by Mutant Type
Table 8.17 shows the result of the Mann-Whitney U Test. Regarding
the significance test (i.e 0.02<0.05), we stated that the hypotheses Hyg

is rejected. In other words, “the rate of Fault Type Detection is different
for each mutant type”.

Table 8.17. Mann-Whitney U Test for Rate of Fault Type Detection?

Rate Fault Type Detection
Mann-Whitney U 4.500
Wilcoxon W 40.500
z -3.090
Asymp. Sig. (2-tailed) .002
Exact Sig. [2*(1-tailed Sig.)] .002°

a. Grouping Variable: Mutant Type

b. Not corrected for ties.

234

CHAPTER 8. VALIDATION AND EVALUATION OF THE COSTEST TOOL

Test Suite Adequacy

In ERQ2, we aimed to verify whether the muttion score of CoSTest

test suites was the same for killing the different mutant types. To do

this, we compared the mutation score for HOMs and FOMs in the eight
different CS subjects.

Table 8.18 shows the mutation scores summarized for each CS

subject and mutant type.

Table 8.18. Mutation Score by Mutant type

Element vC MT SG ER OCR SS PA M
FOM 0.87 0.80 0.75 0.90 0.75 0.82 0.75 0.74
HOM 1.00 1.00 0.89 1.00 0.96 1.00 1.00 1.00

Table 8.19 and Table 8.20 show the detailed mutation scores for

each CS Subject and mutant type (FOM and HOM) respectively.

Figure 8.12 depicts the box-plot of our collected data for mutation

score per mutant type. As the results show, the values of mutation

score gave a better value for HOM than for FOM.

MUTATION SCORE

1.00+

59

el

B0

T
FOmM

MUTANT TYPE

T
HOM

Figure 8.12. Box-plot for Mutation Score by Mutant Type

235

CHAPTER 8. VALIDATION AND EVALUATION OF THE COSTEST TOOL

Table 8.19. Mutation Score of CoSTest Test Suites for First Order Mutants

=] =] o =1 =1I=1=11=] =] =1=1Kd
g2 =1 =] S =1 =1=103
— — - oD || o (=2 =]
Slwnlc =] =] o|s|~n|olo) <+ ||
= — ~
" on w|~ ~
=8 A S T S S S i e e R e R -]
= =z =z
= =] ~ Q o = olze|o|ee|le =11=] n
g|s|a =] ~ @ =] ~ SIEIEIEIEIEIE] I=1k=] ~
—| D - o o — o A DD || | | | [=]
Tinloln o (o [= |o o o|la|n|o|o|o|e |o|lo| =
- |- =]
o sl o = =t (=] wnlolowm|n| NI~ w00 —
x| @ — ~ ~ Eh k] iy - @
-
(=] [=a) ~
28 8| B 8| 8 8 3 8(8|8|8|8|8 3
~— (=] o — - — o Ll k=l E=RE NN] (=]
AQln|e on -l o o o < o|lo|x|olale o|lo|o I
- o
~ [=] - ~ ~ o~ a Llio|jlo|a|m|w o~ -
~|m ~N| N - el 0
-
== o =] = = =1 [=] F=l k=Yg f=] =11=] n
g2|2 =1 =] @ a|=|S|a|alala |2 ~
| = - - o OO || | |~ | (=]
o
Jdlp|c|o o o ~ ole|d|e|ele|la oo o)
o | L]
O = [X=] w - ~lojlo|o|lw|mim ~|w -
| ~ = — =1
]
= =] L on =] =] =] ole|ele =] o
g|s|e =] ~ ~ =1 =1 =1 I=1k=1k=1k=] =] G
—| o o =] =] - - =] i o] oy - =1
Eln|o|m — ~ on o (=] o0 o|lo|o|o =] ~
|0 < w @ ~ =3 =] ~| =~y " @
|~ ~ | | ~ =
-
w|2|e < L) o — =] =] ole|ele =) w
g(2|= 0 0 " =] ™~ S =] S|S|a|S S ~
- o o o o — o - o ARl] - o
AP E=1E [=4]] el [=] ~ (=] — o|o|lo|a o [x]
v - inl =
@l w ~) < — @ — o || o] — o
|~ o~ ~— — ~— ~
-
=] =1 =) i=E=] == E=1k=] o|lo =]
g[S =1 =] I={k=1=1k=1R=1k=] =1}=1 @
— — —|o|o| | === | = S
-
wfed
Slwlo =] =] n|o|o|o|o o|lo ~
" e o~ oo o0
~|M +|o|o <9 2
P E=1=] o [=] =) o =1 ololo|e|elale olo ~
gis|2 =] =] =] =] =] a|e|e|e|e|s|S S| 3 o
- o - - - - — OO |||~ | o
o]
S|~ o =] [=] o o o|<|v|o|ojo|o o|o|= ~
z\DD - ~ — m s o NI ||| | W N 00 O
“ || o
o <2 o o o o o o o I I T e A Olu|a
ClzC o) Q o o [} o EEI I Ol <L|a =
IR R S I R R R E I EHEEH R R === <

236

CHAPTER 8. VALIDATION AND EVALUATION OF THE COSTEST TOOL

Table 8.20. Mutation Score of CoSTest Test Suites for High Order Mutants

w|l o =] =] =1R=1R=1k-]
s(< < S 2l=S(=] e
— — - A |-
2
=lw|lo o =] alalale
= L]
e e o onfon|on| e
w2 (=R =1 =] Q|le|e|e
S| <= 2= = 2l=S(=] e
— || A |-
<
&lwnlo o|o|o [=1R=1N=1}=]
o
®|m m|m|m mfm|m| e
w2 (=R =1 =] Q|le|e|e
s < 22| = ele(=e
— || A |-
%)
“wlo ola|o [=1=1k=1R=]
@
=l | | m |||
wo oo e|w
Z|ew =22 s|=2|
=1 Rl R Rl Rl R R K-
[+
Q
Olwol-lo|o|o|o|o|o|o|—
e =t
miedfm| | m|m|m|m| ;|
wn o oo olelo|e
== Q|e|e celel=le
— || A | |-
[
Ww o o|lolo o|le|o|e
-
=l || m mfo|;|
0o Moo Mo
2222 (==2=|8e| @
oo A || A A S| a
Q
“unolno|lolo|lolo|lol]|m
e =t
midlm|m|m|m|m|m| oo
w o (=] [=] olelo|e
== = e celel=le
— — - A | |-
[
E"’D [=] o olo|o|o
o0
=l o] ofon|o| =
wl o (=) =] Re] Q|le|e|e
2= 2= = 2l=S(=] e
— || A |-
o
>lwlo olao|lo [=1=1k=1R=]
[=]
Xlm | e m mfm|m| s
wn
o)N
e <] V] g] i VY (Y SR 0
OUU{((UUC(O:
HEEHEEEEEEG

237

CHAPTER 8. VALIDATION AND EVALUATION OF THE COSTEST TOOL

As in the analysis (ERQ1), Shapiro-Wilk tests were performed for
each mutant type related to the adequacy of the test suites. Since the
value of Sig. was >0.05 (0.100), this variable had a normal distribution.
However, for HOM the Sig. value was 0, which meant this variable did
not have a normal distribution (see Table 8.21). Considering both
mutant types as independent groups, we selected the Mann-Whitney
Test (non-parametric test) to evaluate the hypothesis.

Table 8.21. Shapiro-Wilk Normality Tests

Shapiro-Wilk
Mutant Type
Statistic df Sig.
MUTATION FOM .852 8| .100
SCORE HOM .576 8| .000

Table 8.22 shows the result of the Mann-Whitney U Test. The Sig.
value obtained with this test was 0.01<0.05, which meant that we
rejected the null hypothesis Hsp and concluded that “The test suite
adequacy (mutation score) is different for different mutant types”.

Table 8.22. Mann-Whitney U Test for Mutation Score by Mutant Type?

MUTATION SCORE
Mann-Whitney U 1.000
Wilcoxon W 37.000
z -3.353
Asymp. Sig. (2-tailed) .001
Exact Sig. [2*(1-tailed Sig.)] .000P

a. Grouping Variable: Mutant Type

b. Not corrected for ties.

8.4.8 Discussion

Our main results regarding CoSTest’s effectiveness and the
adequacy of the test suites are the following: mutant type can
influence these two variables, with better effectiveness and test suite
adequacy in high order mutants than in first order mutants. This means

238

CHAPTER 8. VALIDATION AND EVALUATION OF THE COSTEST TOOL

that test suites generated by CoSTest are effective at killing a large
number of mutants. However, there are fault types that our test suites
cannot detect, as explained below.

The mutants generated by the WAS2 mutation operator (changes
the association type, i.e. normal, composite) and WAS3 mutation
operator (changes the member end multiplicity of an Association, i.e.
- 0..1-0..1, *-0..1) cannot be killed (mutation score=0) by an
adequate traditional mutation test set.

Also, the fault types Incorrect Constraint and Incorrect
Generalization injected by the mutation operators WC0O1, WCO3,
WCO04, WCO5, WCO8 and WGE were hard to detect (mutation score
<0.7). This showed the weakness of test cases in testing some
constraints, such as derivation rules, which needed to be executed in
reverse order when there was a relation between classes that affected
the computed result. For example, they first calculated the total of the
expense report and then the total of the expense report details. This
means these test cases will have to be improved.

Additionally, we found that a lower mutation score for some
mutants related with constraints (WCOx) was because the test suites
only consider coverage at element level and not at constraint level (i.e.
condition branch).

We therefore plan to include test cases with values to make sure
that different conditions (e.g. > vs >=) will be tested. However, the
coverage analysis is important to detect defects when the assertions
assert only return values and not side effects (see Figure 8.13) in which
the coverage analysis is reduced, but all tests still pass.

if (numbers:0) f

Figure 8.13. Example of an assertion conditional

239

CHAPTER 8. VALIDATION AND EVALUATION OF THE COSTEST TOOL

In addition, we found that CoSTest test suites do not test whether
the cardinalities of the association ends meet a certain limit (only
creating links according to the test scenario) thereby leading to missed
faults, such as an Incorrect Association injected by the WAS3 mutation
operator. As well as changing a navigable association to a shared
aggregation or vice versa (WAS2) generates an equivalent mutant
because “aggregation=shared” has no semantic effect in an executable
model using ALF. Thus, another validation technique is required to
validate these elements’ properties (i.e. inspection of the CS).

Finally, one of the strengths of CoSTest test cases is that it can
detect types of defect about misunderstanding requirements (i.e.
Missing and Unnecessary types) that are not normally detected at the
CS level, by generating test cases based on user requirements. In a
previous work [43] we found a tendency to report only defects related
to verification, such as “Wrong” type (e.g. incorrect) rather than
defects related to validation.

8.4.9 Analysis of the Threats to the Validity of

the Results
There are several threats that potentially affect the validity of our
study including threats to internal validity, threats to external validity,
threats to construct validity and threats to conclusion validity.

Threats to internal validity are conditions that can affect the
dependent variables of the experiment without the researcher’s
knowledge. In our study, the selection of mutation operators is the
main threat to internal validity. According to Andrews et al. [111],
when using carefully selected mutation operators and after removing
equivalent mutants, the mutants can provide a good indication of the
fault detection ability of a test suite. Therefore, in order to minimize
this threat we used an automatic process [124] to inject faults
systematically, by avoiding non-valid and equivalent mutants and
optimizing the testing coverage. This tool implements the mutation
operators defined in a previous work [115].

240

CHAPTER 8. VALIDATION AND EVALUATION OF THE COSTEST TOOL

Threats to external validity are conditions that limit the ability to
generalize the results of our experiments to industrial practice. This
threat is reduced by using seven CS of different sizes (see Subject CS
Section) and domain (e.g. information systems, games). Moreover, a CS
was taken from industry, some well-documented CS were found in the
literature (i.e. [131], [133] and [132]), and others (i.e. ER, OCR, and VC)
were selected because they contained the relevant CS elements
required to inject the faults.

Threats to construct validity refer to the suitability of our
evaluation metrics. We used well-known metrics to measure the
effectiveness (rate of number of faults and number of detected fault
types) [146] and the adequacy of the test suites (mutation score) [147].
We therefore believe there is little threat to the construct validity.

8.4.10 Conclusions and Changes to the Tool

The experiment let us to evaluate empirically the test cases
generated by CoSTest tool V1.1 with respect to its effectiveness in
terms of its fault detection in Conceptual Schemas.

Fault detection effectiveness was measured in terms of rate of
faults detection and their causes (fault type) by the test suites. Test
suite adequacy was measured in terms of the mutation score value.
Our evaluation included the analysis of the variables for mutant types
(FOM and HOM).

This experiment demonstrated that the effectiveness of the
CoSTest test suites was affected by the mutant type and better results
were obtained in detecting faults in HOM. These results suggest that
the CoSTest technique is robust in detecting types of defects that are
not normally detected at the CS level. However, some mutation
operators achieved a value lower than 0.7 in the mutation score. These
results suggest that the test suite should include a test for certain
characteristics of CS elements, such as associations, and improve the
coverage at the constraint level in order to enhance the effectiveness
of the test suites.

241

CHAPTER 8. VALIDATION AND EVALUATION OF THE COSTEST TOOL

Finally, some of the main changes applied to the tool including the
ability to execute in reverse order some constraints, such as derivation
rules, which needed to be executed in reverse order when there was a
relation between classes that affected the computed result. This means
these test cases were improved. We also implemented a report to
track the generated test cases in a way that helps to locate the test
cases and to detect if any are repeated.

8.5 Evaluating CoSTest User Perceptions

The following is a description of two experiments (i.e. pilot and
industrial cases) to evaluate two properties of CoSTest: usefulness and
ease-of-use CoSTest for which we recruited a set of users from both
the university (i.e. pilot test) and industry.

Our main motivation was to validate CoSTest in real-world
conditions as CoSTest had been conceived and evaluated only in
laboratory experiments. Therefore, we aimed at discovering in a real
world observational case study what kind of practical interpretations
can be obtained from practitioners to identify areas of possible
improvements, to explore general problems detected by the users and
to define generally applicable solution strategies.

8.5.1 Experiment Research Goal

Following the template for goal definition that is suggested in [142], the
goal of this study can be summarized as follows:

Analyze CoSTest

For the purpose of evaluation

With respect to usefulness and ease-of-use
From the point of view of the researchers
In the context of university and industry

8.5.2 Research Methodology

This study is an observational case study of a real-world case
without performing an intervention. As a result of the case study-based
research experience, we are going to collect many types of evidence:
words, statements, documents, etc. that may be replicated in, or

242

CHAPTER 8. VALIDATION AND EVALUATION OF THE COSTEST TOOL

generalised by similarity to the context of small and medium software
companies where there are UML CD-based conceptual schemas to be
validated. However, the context, time, participants, and problem will
be different. Thus, the evidence will be linked together to support our
conclusions on the user perceptions of CoSTest.

8.5.3 Experiment Context: The everis’ Study Case

The case study company is everis®®, a multinational firm offering
business consulting, as well as IT development, maintenance and
improvement in different domains and platforms (e.g. mobile, desktop
embedded, web-based applications). everis is carrying out a project to
improve a service-oriented architecture (SOA) platform for e-
government. Within the public administration sector, everis has wide
experience in projects related to modernization of public procurement
management, education, e-government, health, justice, etc. everis has
developed several electronic services provided by several Spanish
municipal councils to citizens and companies (e.g. marriage registration
application, public pool booking, taxes).

In order to compete on an international scale, everis is constantly
looking for ways to reduce the time to market and increase the quality
of its software products. However, they do not run CS-level tests but
they do use tests of usability, integration, system, regression,
acceptance and unit. In addition, everis uses a manual technique to
generate the test cases from use cases, so that they require new
techniques for systematization and automation of testing throughout
the software and system life-cycle.

By applying the CoSTest validation, it is possible to perform early
testing that facilitates the detection of defects in conceptual schemas
and prevents defects from being transferred to the code, which
contributes to the assurance of the quality of the product and
optimizes the use of resources (e.g. time, budget) required in the

10 http://www.everis.com

243

CHAPTER 8. VALIDATION AND EVALUATION OF THE COSTEST TOOL

process of software development. everis is thus a real-world
environment in which the CoSTest validation can be applied.

8.5.4 Experiment Reseach Questions

In the following, we formulate two experiment reseach questions
(ERQ) that guided the experiment that was performed in this study and
briefly describe how we plan to gather the data to answer the
qguestion. The overall approach is based on interviews with users and
observing their behaviour while interpreting defects report generated
by CoSTest.

ERQ1. When the subjects are validating a UML CD-based CS with
CoSTest’s reports, what is their impression of its perceived usefulness?

ERQ2. When the subjects are validating a UML CD-based CS with
CoSTest’s reports, what is their impression of its perceived ease-of-use?

To answer these questions, we measure the perceived usefulness
and perceived ease-of-use of the CoSTest tool in the future. Besides
collecting evidence from interviews and observation we plan to assess
the perceived usefulness for everis testers by means of a 7-point Likert
scale questionnaire [148].

8.5.5 Case Selection

For this case study, we took one unit that is part of the everis’ SOA
development platform: the project management office (PMO). We
selected this CS for our case study for two main reasons. First, it
represents a simple, understandable, and realistic scenario that
includes enough elements for the complete application of our
validation framework. Second, a document with a specification of
requirements using communicational analysis was available during the
case study.

A PMO is the department or group of designated people in charge
of defining the best practices and standards for project management in
the portfolio of projects of an organisation or collaborative

244

CHAPTER 8. VALIDATION AND EVALUATION OF THE COSTEST TOOL

environment. As such, the PMO can use and establish several tools,
depending on the nature of the environment and the type of projects.
In this case study we are focused on the incident management process
of the PMO. Incidents emerge when the eGoveris’ users have problems
using the platform. eGoveris was created to deliver an eGoverment
solution for local councils based on an SOA paradigm.

PMO offers several services to their customers and wants to
improve them, but does not know how. It does not have enough
technical knowledge to accomplish this, so it needs an external
provider. Several companies would interact with the PMO through a
contract procedure defined by the end customer. This implies that a
change in the service provider, according to different context
conditions, influences the value delivered to customers, activities and
service provisioning. If the PMO has technicians with technical
knowledge, it would be the external provider also. Otherwise, it needs
to hire the services of an external provider in order to supply the lack
of technical knowledge. In this case, everis is the external provider who
defines the best way to apply a solution according to the requirements
specified by the PMO. As a result, the PMO is modified to incorporate
the proposed methodology (for turhter details see Appendix B).

8.5.6 Methods of Data Collection

The Technology Acceptance Model, or TAM [149] is one of the
most influential usability questionnaires. According to the TAM, the
primary factors that affect a user’s intention to use a technology are
his/her perceived usefulness and perceived ease-of-use. Actual use of
technologies is affected by the intention to use, which is itself affected
by the perceived usefulness and usability of the technology. A number
of studies support the validity of the TAM and its satisfactory
explanation of end-user system usage [150].

Thus, we used two standard questionnaires widely applied for
evaluating usefulness and ease-of-use in a subjective manner [151].
The method selected to collect data was the interview.

245

CHAPTER 8. VALIDATION AND EVALUATION OF THE COSTEST TOOL

Perceived usefulness

The extent to which a person believes a technology will enhance
job performance [151]. This variable is measured using a 7-point Likert
scale format to obtain users’ perception. We also asked the everis’
stakeholders which improvements are required to improve its
usefulness.

Perceived ease-of-use

The extent to which a person believes that using the technology
will be effortless. The stakeholders’ perceived ease-of-use will be
evaluated by means of a 7-point Likert scale questionnaire. In addition,
we asked the everis’ stakeholders which improvements are required to
improve ease-of-use.

8.5.7 Experimental Subjects

The subjects that participated in this experiment were:

e A research and developer manager, who has 12 years of
experience in the IT sector and that has led several
innovation projects. This role has a mixture of knowledge
about the SOA platform, development tools, and also of
the results expected by public bodies.

e A junior developer and tester with five years of experience
in testing processes generating test cases in JUnit. She was
willing to validate the Conceptual Schema in some projects
and had little initial knowledge of Communicational
Analysis specification.

8.5.8 Instrumentation

We designed a set of instruments to train the subjects, collected
data from the experimental task and also facilitated the subsequent
data analysis. For the training in the CoSTest tool, we provided digital
and textual material, such as requirements model, conceptual schema
as well as a CoSTest demonstration video.

246

CHAPTER 8. VALIDATION AND EVALUATION OF THE COSTEST TOOL

We noticed that the provision of the demonstration video was a

very good motivation for learning.

For the experimental task we designed a task description document

and templates to collect data about defects identified and corrected by

the subjects.

Further information about the instrumentation can be found in

Appendix C.

8.5.9 Experimental Procedure
Figure 8.14 presents an overview of the experimental procedure.

Sessions

CSUT AMD CA
REQUIREMENTS
MODEL FOR VIDED

=
S CLUB CASE
a Testers
0 \
wy
(U]
= PRESENTATION CLR;':;:"'%SL || FiLL OUT TEM pmre}
=
g DEMOGRAPHIC
= QUESTIONNARIE TRAINING MATERIAL
—
=)=
CSUT AND
REQUIREMENTS
MOGEL FOR PMO
= Testers [
b VALDATING WITH
7 . DEFECTS REPORT BY COLLECT RESULTS
S USING COSTEST TOOL
=
E '-OC"Tin PERCEIVED
= DF::EK s USEFULNESS
wy AND PERCEIVED
G DOCUMENT) EASY TO USES
z QUESTIONNARIE
=
<
(=]
]
=
=

Figure 8.14. Experimental Procedure

The session was carried out in a meeting room in the everis’ offices.

A detail of the activities during the session is specified in the following
Table 8.23. The detailed material is included in Appendix C.

247

CHAPTER 8. VALIDATION AND EVALUATION OF THE COSTEST TOOL

Table 8.23. Detail of the Activities

Activity Description
identification
Training Session
Al.l Presentation of the activities to be performed during the two
sessions. The objective is to describe the activities that to be
performed during the session.

Al.2 Demographic questionnaire.
Al.3 Training in the use of CoSTest tool.
Al.4 Provide the subjects with textual material specifying the

requirements model, conceptual schema and the task
descriptions.

Al.5 Subjects fill out the template to take notes during the execution
of the tasks.

Experimental Session

A2.1 Provide the subjects with textual material specifying the

requirements model, conceptual schema and the task
descriptions.

A2.2 Subjects fill out the template to take notes during the execution
of the tasks.
A2.3 Subjects fill out the MEM questionnaire.

8.5.10 Pilot Test

In order to verify that all the experimental material was correct and
would not cause problems during the data collection, a pilot test was
run on June 2016 as a Testing course in the University of San Agustin of
Arequipa, Perd. This course consisted of two sessions (Friday and
Monday) of four hours each session.

Objects
In this experiment we used two small UML/ALF conceptual
schemas:

1. A CS of a video club (VC) system, introduced in Chapter 5;
which contains information about the movies and the
partners registered in the system (both of them must be
registered by the salesman (supervisor of the system)
before being able to use all the functionalities. Each movie
is assigned to only one video club. Also, each videoclub
holds its rents.

248

CHAPTER 8. VALIDATION AND EVALUATION OF THE COSTEST TOOL

2. A Photography Agency (PA) system that represents the
functionality of a photography agency that covers the
management of photographers (e.g. application, selection,
promotion) and publishing houses (e.g. subscriptions), as
well as the management of regular reports (they are
provided by photographers and become part of the agency
catalogue, then publishing houses order them) and of
exclusive reports (they are first requested by a publishing
house and then assigned to a photographer); the delivery
of both types of reports and the corresponding invoicing to
publishing houses and payment to photographers are also
within the scope of the case. This case is used to illustrate
Communication Analysis in [21].

Participants

Software modellers/testers were the population of interest for this
study; in practical settings, they are the designers of conceptual
schemas and often work as testers.

The study does not require expert developers, but the subjects
must have basic knowledge in software development: design of
conceptual schemas, some languages and tools that support software
development, and execution of testing in development projects.
Additionally, we required them to be familiar with Eclipse and UML2.

A total of twenty-five people participated in our pilot experiment.
Three participants were industry practitioners and the others were
Computer Engineering Degree students from the University of San
Agustin of Arequipa, Peru.

All the participants had a good background in modelling in UML,
model-based testing and good testing and programming skills (using
object oriented languages such as Java or C++).

249

CHAPTER 8. VALIDATION AND EVALUATION OF THE COSTEST TOOL

Tasks

The participants were asked to carry out the tasks of the two
planned sessions (Table 8.23). Both tasks were part of a mandatory
activity (which also contained other tasks) that all students had to
deliver to pass the Testing course.

Prior to carrying out the tasks, the participants were introduced to
CoSTest in the form of two demo videos.

The activity was composed of eight tasks and three questionnairies
(demographic, tasks template and post-task) to evaluate the CoSTest
tool and covered two four-hour sessions (friday and monday). During
this period the students were able to work collaboratively, ask the
teacher questions and search for any kind of information to help in
solving the proposed tasks.

Lessons Learnt

We performed a pilot test in order to test the material
(presentation, requirements specification, conceptual schemas, task
templates, questionnaires, required time, and so on).

The pilot test was performed according to the schedule of the
course and we adapted the material to keep the original objectives. As
a result of our pilot test, several improvements have been added,
mainly consisting of the following:

1. Include a clear description of the requirements for the
installation of the tool because the tool has problems with
a more advanced Java version than version 7.

2. Update the task template to collect data by eliminating the
timing record because the time in each iteration varies
depending on several factors such as the complexity of the
defect type to be corrected and the skills of the subjects in
managing the modelling tool (i.e. UML2 or Papyrus tool).

3. Include an error log in the tool; this suggestion was made
by an industry practitioner.

250

CHAPTER 8. VALIDATION AND EVALUATION OF THE COSTEST TOOL

4. Highlight the failed test cases in red to differentiate them
from those that are passed successfully.

5. Show all defects; this suggestion was not addressed
because the testing process is incremental.

These observations were useful to update the experiment material
and to be able to apply it in a more understable way.

8.5.11 Analysis of the Threats to Validity

There are several threats that potentially affect the validity of our
study including threats to internal validity, threats to external validity,
threats to construct validity and threats to conclusion validity.

Conclusion Validity

Threats to conclusion validity are concerned with issues that affect
the ability to draw valid conclusions about relations between the
treatment and the outcome of an experiment. Threats to the validity of
conclusions are typically due to low statistical power. As the method
used in this research project is purely qualitative, we consider that this
kind of threat does not apply here. As a result, we avoid making any
conclusions from a generalisation made by inference from
observations made during the research. In addition, we address the
“Fishing for a specific result” by two methods (i.e. questionnaires and
interviews) to ensure consistent results.

Internal Validity

Threats to internal validity are conditions that can affect the
dependent variables of the experiment without the researcher’s
knowledge.

In our study, the selection of mutation operators is the main threat
to internal validity. According to Andrews et al. [111], when using
carefully selected mutation operators and after removing equivalent
mutants, the mutants can provide a good indication of the fault
detection ability of a test suite. Therefore, in order to minimize this

251

CHAPTER 8. VALIDATION AND EVALUATION OF THE COSTEST TOOL

threat, we used a random selection of mutation operators to inject
faults into the selected CS and avoiding non-valid and equivalent
mutants.

Regarding the instrumentation threat, we reduced this threat by
validating the instruments used in the study by means of a pilot test.
Another threat deal with was maturation, which implies that subjects
may react differently as time passes (e.g., due to boredom or
tiredness). To minimize this threat, we selected a set of tasks that
allowed the subjects to finish them in less than two hours. Finally,
social threats were avoided because the tasks were individual and the
subjects were not allowed to talk to each other about the tasks. Also,
since they were not aware of the experimental research goal, this they
did not affect their performance.

External Validity

Threats to external validity are conditions that limit the ability to
generalize the results of our study to industrial practice. This threat is
reduced by using a real case and involving all the engineers of the
company concerned with the analysed CSs rather than using a random
sample. In addition, this threat involves having an experimental setting
that is not representative of industrial practice. To minimize this threat,
we utilized tools that are commonly used in industrial environments
(e.g., UML2 tools, the Eclipse platform).

Construct Validity

This threat focuses on whether the theoretical constructs are
suitably interpreted and measured fore our evaluation metrics. We
increased the reliability of subjective measures by using questionnaires
with scales previously validated in other studies [148].

252

CHAPTER 8. VALIDATION AND EVALUATION OF THE COSTEST TOOL

8.5.12 Answers to Experiment Research

Questions
To answer the experiment research questions, we established a set
of preliminary hypotheses. Table 8.24 presents the corresponding

hypotheses.
Table 8.24. Specification of hypotheses
Null Statement:
hypothesis The application of CoSTest’s report does not influence the
subject ...

H1,(ERQ1) ... perceived usefulness of CoSTest in detecting faults in
Conceptual Schemas

H2, (ERQ2) ... perceived ease-of-use of CoSTest in detecting faults in
Conceptual Schemas

As there were only 2 subjects in the research we did not apply any
statistical test to analyse, interpret the collected data or generalize. We
analysed the responses of each subject for each experiment research
question obtained from the aforementioned instruments containing
the questionnaires filled in by the subjects.

Regarding ERQ1, the results obtained from the questionnaires
show that both subjects agreed that CoSTest was useful for correcting
the defects found in a CS. These positive results were reinforced by the
qualitative feedback obtained during the interviews. All the subjects
considered that CoSTest was useful, since it allowed them to perform
the tasks more effectively; for instance, one subject stated: “The tool
seems very useful, it can help a lot in the creation of test cases and
validation of conceptual schemas”, while the other said: “CoSTest
reduces the possibility of omitting test cases”. The usefulness of the
test cases generation capabilities was also emphasized by some
subjects “Reduces the amount of effort required to produce all test
cases in a systematic way” and “the feedback to localize and correct
the defects is valuable”.

Regarding ERQ2, the results obtained from the questionnaires
show that both subjects think that the correction of defects using
CoSTest is perceived as easy to use. These positive results were

253

CHAPTER 8. VALIDATION AND EVALUATION OF THE COSTEST TOOL

reinforced by the qualitative feedback obtained during the interviews.
All of the subjects considered that CoSTest was easy to use, since it
allowed them to perform the tasks easily. Most subjects emphasized
the execution method; for instance, one subject stated: “Generating
test cases with CoSTest requires just a few clicks to get them ... and the
localization of defects is done in an easier and more direct way”, while
another subject said: “When you execute CoSTest, the process to follow
is quite intuitive”.

8.5.13 Discussion

The subjective perception expressed by the subjects of the study
indicates their willingness to accept and use CoSTest. They perceived
CoSTest to be a useful and easy to use to generate test cases and
correct the defects found in conceptual schemas. Further studies using
CSs of different sizes and domains (e.g. information systems, games)
will be required to generalize these results. However, this
observational case study done in everis has taught us several lessons
regarding putting CoSTest into practice of the and research. We would
like to highlight the following:

Models are vital for the application of our validation
framework

CoSTest is designed for validation of conceptual schemas using a
model as the functional requirements specification. The generation of
test cases is based on a model-driven paradigm. In this context, the
two subjects of the study were highly satisfied with CoSTest level of
automation. This level was achieved thanks to model transformations,
which reduce the complexity of test case generation by automating the
process. This is in line with the benefits of MDE: the reduction of
complexity by means of the automation of labour-intensive and error-
prone tasks [152]. Therefore, the assistance provided by CoSTest
allowed the subjects to perform the validations without deviations, and
this led to a significant increase in usefulness and ease of use
perception. In this context, the everis’ developer/tester said: "Although
CoSTest uses an interesting strategy to validate conceptual schemas,

254

CHAPTER 8. VALIDATION AND EVALUATION OF THE COSTEST TOOL

the industry needs to adopt the MDD paradigm, particularly the
Communicational Analysis method, which may require time in cases of
low modelling experience". However, they indicate that they do not
want to miss the advantages of CoSTest and are receptive to its use; “I
am interested in investing time in modelling, seeing the benefits it has
in the tests and correction of defects phase”.

In future research studies on the advantages of CoSTest in real
projects is needed to convince more companies like everis to apply
Communication Analysis to take advantage of this requirements
method in their projects.

In order to reduce this barrier and to show the facilities of CoSTest,
we plan to improve our work in two ways. First, we will increase our
repository (https://staq.dsic.upv.es/webstaq/costest.html) containing
examples of conceptual schemas and requirements models that can be
validated by CoSTEst. Secondly, we will incorporate a way to specify
the requirements using a textual specification, so that the use of both
types of specifications can be evaluated and compared.

An open source tool is required for adoption

The subjects participating in this research emphasized developing
open-source and free solutions as a means of allowing free access for
experimentation and reduce the cost of adoption. In addition, they
think that the development of tools based on industry-accepted open
platforms, such as Eclipse, has provided benefits, such as easier
integration. Therefore, we plan to invite more companies to use our
tool and to probe its benefits.

The use of the ALF language is required

Since our validation tool uses ALF as the language to generate test
cases and execute them (see Chapter 5), the testers need to know the
syntaxes and semantics of the ALF language to edit or modify the test
cases involving some complex negative constraints.

255

CHAPTER 8. VALIDATION AND EVALUATION OF THE COSTEST TOOL

Since the case study used in this research does not require
modifying the generated test cases, this knowledge was not required.
However, it can be varied depending on the complexity of the
formalized stories, according to each testing objective. These
difficulties can be mitigated by enhancing CoSTest with appropriate
assistance for updating/editing its test cases. To do this, we plan to
include a set of guidelines that will free users from having to be ALF
experts, allowing them to create/update test cases following a set of
intuitive steps.

Finally, we observed that as ALF is a script language, it was familiar
to the subjects.

Validation should be extended at code level

The subjects also considered that they would like CoSTest to be
able to generate test cases using other programming languages (e.g.
java, C#) at code level. In this way the model-driven process for
generating test cases can be used for two levels of abstraction: model
and code level. To do this, we plan to include an option that will allow
test cases to be generated for execution in Java language [153] using
JUnit test cases [154]. This result is in line with one of the most widely
recognized benefits of MDD: development of Platform Independent
Models (PIMs) that have a long lifespan and may be ported to multiple
platforms or languages [152].

8.6 Summary and Conclusions

In this chapter we have reported six experiences in order to
evaluate and validate the CoSTest framework. We performed two
comparative laboratory experiments to evaluate the transformation
rules used in CoSTest, generating the test cases and CSUT, two
mutation-based laboratory experiments to evaluate the mutation
operators implemented in the tool. This was done to identify the test
cases that should be prioritized in CoSTest as well as to evaluate the
effectiveness of the CoSTest test cases. A mutation-based laboratory
experiment was used to validate CoSTest effectiveness in Kkilling

256

CHAPTER 8. VALIDATION AND EVALUATION OF THE COSTEST TOOL

mutants as well as the defects detected in these mutants. The last
evaluation experience included an observational case study to gather
user perceptions on using CoSTest for correction of defects.

Mutated CSs are like virtual laboratories where injected defects can
be detected, and test cases and corrective procedures can be
experimented with before they are used and implemented in the real
system. Experience from applications in other fields than software
engineering indicates that significant benefits can be drawn from
introducing the use of mutation for management decision support.
Mutation-based software engineering laboratories can help focus
experimentation in both industry and academia for this purpose, while
saving effort by avoiding experiments in real-world settings that have
little chances of generating significant new knowledge.

The results of the first two comparative experiments to validate the
model-to-text and the first two model-to-model transformations
helped the researchers to improve the tool support as well as to
identify the transformation rules that should be improved.

The results of the next two mutation-based experiments suggest
that the CoSTest mutant generator is effective and efficiency in
generating first order mutants using the 18 mutation operators defined
for this purpose.

The results of the fifth experiment suggest that most of CoSTest’s
test cases are quite effective (i.e. detection ratio > 70%) in detecting
defects at the CS level. However, some test cases achieved a value
lower than 0.7 in the mutation score. These results suggest that the
test suite should include a test for certain characteristics of CS
elements, such as associations, and improve the coverage at the
constraint level in order to enhance the effectiveness of the test suites.

The results of the observational case study are also encouraging. All
of the subjects agreed, or strongly agreed, about each of the items of
the usefulness scale. We also obtained positive results for perceived

257

CHAPTER 8. VALIDATION AND EVALUATION OF THE COSTEST TOOL

ease-of-use. These subjective results were reinforced by positive
results about the intention of the subjects to use the tool. We believe
that these results were obtained thanks to the use of MDD techniques
(such as metamodeling, model transformations and independent
platform), which reduce the complexity of the four main phases of the
test cases generation process: design, generation, execution and
evaluation.

In contrast to these positive findings, we also found several
challenges that are inherent to CoSTest usage. With the aim of
providing better tool support for model-driven testing, we will address
these challenges in the near future. For instance, as Section 8.5.13
describes, we will incorporate support for a textual specification of
requirements, include a help that enables guided test case edition,
enhance the validation at code level and allow free access to our
validation tool. The main goal of these enhancements is to facilitate
the adoption of CoSTest in the industry.

258

PART V

FINAL DISCUSSION

CHAPTER 9. FINAL DISCUSSION

Chapter 9

FinaL Discussion

Unlike traditional Software Development in which the software is
the main artefact, the main artefact in MDE is a model (conceptual
schema). Conceptual modelling is an essential activity in the
requirements phase of the software development life cycle, which is
aimed at eliciting, specifying and validating the conceptual schema of
an information system (Chapter 1). The aim of Conceptual Schema
Validation is to check the alighment between the knowledge specified
in the CS and the stakeholder’s expectations.

9.1 Summary of the Contributions of this
Thesis

This thesis has presented a Testing-Based Validation Framework for
Conceptual Schema in a Model-Driven Environment as a contribution
to the challenge of conceptual schema validation. We describe how to
use each framework method and how they are integrated. The
contributions of the thesis consist of the evidence for the achievement
of the research goals, as well as the answers to the established
research questions as described below:

Contribution 1. Establishment of the fundamentals for our validation
framework, which are very important because they establish the

261

CHAPTER 9. FINAL DISCUSSION

requirements and challenges addressed in the thesis (Chapters 3 and
4). This is a knowledge contribution related with the RQ1 (see Section
2.3) and it is based on the existing state of knowledge in both the
problem and solution domains for the research opportunity under
study.

Thus, we have described the fundamentals of conceptual schema
testing in a model-driven environment (Chapter 3). We have explained
the main quality models and validation practices to improve the quality
of conceptual schemas (Chapter 4). In addition, some concepts were
further defined in Chapters 5 and 6, which helped the researchers to
establish the requirements and challenges to be faced in this thesis.
These concepts and challenges are related to the design of the CoSTest
framework methods (Chapters 5 and 6).

Contribution 2. This contribution is very important because provides a
new validation framework to improve the quality of the conceptual
schemas in a model-driven environment (Chapters 5 and 6). This is the
main research contribution of the thesis and it is related with the
RQ2.2 (see Section 2.3).

We show how MDD techniques (such as metamodeling, and model
transformations), improve abstraction, automation and reuse, which
allows us to alleviate the complexity of our validation framework. So
that, our framework supports four phases of the testing process: test
design, test case generation, test case execution and the evaluation of
the results. We described the work involved in designing each phase of
the model-driven testing framework, as well as the decisions made to
obtain the expected results. The design can be summarised as follow:

The test case generation is based on related works and knowledge
from relevant solutions in model management, model-driven
development and testing, such as Communication Analysis (a
communication-oriented business process modelling and requirements
method), model-to-model transformations, the classic pathfinder or
graph traversal algorithm, and the 0OO-Method (object-oriented

262

CHAPTER 9. FINAL DISCUSSION

model-driven development method). To generate the executable test
cases and create the testing environment we selected a platform
independent language (i.e. OMG Standard - ALF), that works at the
same semantic level as the rest of the UML-based CS and can be
consistently implemented across a number of tools, promoting the
same sort of interoperability for textual behavioural specification that
the UML standard already does for graphical modelling.

For the test selection and prioritization of test cases, we used
mutation strategies in order to identify the types of defect that can be
detected in the conceptual schemas using our testing strategy, as well
as, the test cases that should be selected and prioritized. To generate
the executable Conceptual Schemas, we applied model-to-test
transformations to generate the ALF execution units and integrate
them into our testing framework.

In order to make the corrective feedback understandable to the
modeller/tester, the report generated by our framework identifies the
defect type and the source of the problems and assists the
modeller/tester to repair them, which was one of the goals of our
proposal.

Contribution 3. Prototype that implements the validation framework
supporting the facilities to test conceptual schemas (Chapter 7). This
contribution is related with the RQ2.1 (see Section 2.3) showing how
the proposed validation framework can be applied in practice and
making ideas tangible to then transfer this proposal to industrial
applications.

We have implemented a supporting tool (CoSTest) for automated
generation of test cases and automated testing of conceptual schemas
(Chapter 7). This tool contains the modules that manage and generate
the executable test cases from requirements. These include a CSUT
processor that transforms a conceptual schema into an executable CS,
a test data-manager to concretize the test case values, and a test
processor that coordinates the execution of the tests and reports the

263

CHAPTER 9. FINAL DISCUSSION

found defects as well the elements covered by the test cases. Tests
written in ALF Language may be automatically executed as many times
as needed. We have also shown that our testing framework has been
extended with the mutant generator in order to be able to deal with
first-order mutant generation and provide the facilities to test them.

Contribution 4. Some experiences in evaluating and validating the
CoSTest tool (Chapter 8). This is a knowledge contribution related to
show how our validation framework works in practice; what are its
limitations and the solution’s effectiveness. This contribution is related
with the RQ3 (see Section 2.2).

We validated the proposed framework in the context of Design
Science Research, which was the framework adopted in this PhD thesis
(Chapter 2). Various laboratory demonstrations were performed for
some methods of CoSTest. We tested all CoSTest methods in a
controlled laboratory environment and evaluated their feasibility
before applying them to empirical tasks.

We validated the transformation rules used in the CoSTest model-
driven strategy to generate the test cases by means of their application
in a comparative experiment with cases taken from the literature and
others selected with the relevant CS elements required to evaluate all
the rules. The results helped the researchers to improve the tool
support and to identify the transformation rules that need to be
improved.

Since our validation framework includes the component to
generate first order mutants of UML CD —based conceptual schemas,
we evaluated some properties of the mutation operators used for
generating mutants and also validated the effectiveness and efficiency
of the mutant generation process. The results were positive in terms of
the percentage of valid and non-equivalent mutants generated by the
tool and the time that can be saved by using it.

264

CHAPTER 9. FINAL DISCUSSION

We also evaluated CoSTest effectiveness by means of its
application in a comparative experiment using mutation with cases
taken from the literature and industrial practice and other cases
selected because they contained the relevant CS elements required to
inject the faults. The results helped the researchers to improve and
extend the tool support as well as to identify the test cases that need
to be improved and prioritized.

Finally, we evaluated the stakeholder’s perceptions by using our
tool support in the correction process of the defects found on UML CD-
based in an industrial case (Chapter 8). The perceptions of the
usefulness and ease-of-use of our tool are very positive and have
provided ideas to be addressed in future work. We have seen that the
main quality goal of conceptual schemas is completeness and that this
may be improved by testing, and that other quality goals such as
correctness, consistency, comprehensibility, confinement and
changeability are also positively influenced. We have also shown that
our testing framework can be used in combination with existing
conceptual schema validation and verification techniques.

In summary, this thesis contributes new knowledge and artefacts
to the software quality field and model-driven development. The
evidence provided by the evaluations and all the validations and tool
developments have pointed us in the right direction to further transfer
this method to industrial applications.

9.2 Thesis Impact

9.2.1 Publications

Book Chapter

1. Granda, M.F., Condori-Ferndndez, N., Vos, T. E. J., Pastor, O.
A Model-Level Mutation Tool to Support the Assessment of the
Test Case Quality — Lecture Notes Information Systems.
Publication: Print ISBN 978-3-319-52592-1, volume 22, 2017.

265

CHAPTER 9. FINAL DISCUSSION

Journals

Granda, M.F., Condori-Ferndndez, N., Vos, T. E. J., Pastor, O.

Model Transformations Rules within a Model-Driven Testing
Environment: Definition and Validation — Submitted to Software
Quality Journal.

Granda, M.F., Condori-Ferndndez, N., Vos, T. E. J., Pastor, O.
CoSTest: A model-driven framework for validation of conceptual
schemas — Submitted to Systems and Software Journal.

Conference Papers

Granda, M.F., Condori-Ferndndez, N., Vos, T. E. J., Pastor, O.
Effectiveness Assessment of an Early Testing Technique using
Model-Level Mutants. Evaluation and Assessment in Software
Engineering (EASE 2017). Core Index A. Karlskrona, Sweden, June
16, 2017.

Granda, M.F., Condori-Fernandez, N., Vos, T. E. J., Pastor, O.
Mutation Operators for UML Class Diagrams. Advanced
Information Systems Engineering - 28th International Conference
(CAISE 2016). Core Index: A. Publication: Print ISBN 978-3-319-
39695-8, pp. 325-341. Ljubljana, Slovenia, June 13-17, 2016.
Granda, M.F., Condori-Ferndndez, N., Vos, T. E. J., Pastor, O.

A Model-level Mutation Tool to Support the Assessment of the
Test Case Quality. 25th International Conference on Information
Systems Development (ISD 2016). Core Index: A. Online ISBN 978-
83-7875-307-0. Katowice, Poland, August 25-27, 2016

Granda, M.F., Condori-Ferndndez, N., Vos, T. E. J., Pastor, O.

What do we know about the defect types detected in conceptual
models? 9th IEEE International Conference on Research Challenges
in Information Science (RCIS 2015). Core Index: B. Publication:
print ISBN 978-1-4673-6630-4, pp. 88-99. Athens, Greece, May 13-
15, 2015.

266

http://dblp.uni-trier.de/db/conf/isdevel/isdevel2016.html#GrandaCVP16

CHAPTER 9. FINAL DISCUSSION

Workshops Papers

Granda, M.F., Condori-Ferndndez, N., Vos, T. E. J.

Using ALF within the CoSTest process for Validation of UML-based
Conceptual Schemas. 36th International Conference on Conceptual
Modeling (ER2017). Valencia, Spain, November 8, 2017.

Granda, M.F., Condori-Ferndndez, N., Vos, T. E. J., Pastor, O.
Towards the automated generation of abstract test cases from
requirements models. 1st International Workshop on
Requirements Engineering and Testing (RET 2014). Online ISBN
978-1-4799-6334-8, pp. 39-46. Karlskrona, Sweden, August 26,
2014.

Granda, M. F.

An experiment design for validating a test case generation strategy
from requirements models. 4th |IEEE International Workshop on
Empirical Requirements Engineering (EmpiRE 2014). Online ISBN
978-1-4799-6337-9, pp. 44-47. Karlskrona, Sweden, August 25,
2014.

Poster and Demo Tool

Granda, M.F., Condori-Ferndndez, N., Vos, T. E. J., Pastor, O.
CoSTest: A tool for Validation of Requirements at Model Level.
25th IEEE International Requirements Engineering Conference. (RE
2017). Lisbon, Portugal, September 7, 2017.

Granda, M. F.

Testing-Based Conceptual Schema Validation in a Model-Driven
Environment.| Encuentro de Estudiantes de Doctorado de la
Universitat Politecnica de Valencia, Valencia, Spain, June 12, 2014.

Doctoral Consortium

Granda, M. F.

Testing-Based Conceptual Schema Validation in a Model-Driven
Environment. Doctoral Consortium of the 25th International
Conference on Advanced Information Systems Engineering (CAiSE
2013), Valencia, Spain, June 21, 2013.

267

http://dblp.uni-trier.de/db/conf/re/ret2014.html#GrandaCVP14

CHAPTER 9. FINAL DISCUSSION

9.2.2 Academic Project Participation
1. CaaS: Capability as a Service in digital enterprises. European Project

FP7-ICT 2009-5. Reference: INFSO-ICT-257574. 2013-2016.

2. IDEO: Innovative services for Digital Enterprises with ORCA
(Servicios Innovadores para Empresas Digitales con ORCA).
Reference: PROMETEOII/2014/039.

9.2.3 Research Stay

Erasmus Stay in the Department of Computer Science, Faculty of
Sciences of VU University, Amsterdam, Netherlands. June - September
2014. Project: An experiment design for validating a test case
generation strategy from requirements models.

9.3 A Work that Opens New Research Lines
The work carried out in the course of this thesis can be extended in
many ways. In this section we suggest several directions for further
research in this area, according to the three dimensions of our
framework and the limitations found in the validation phase.

9.3.1 Domain

Regarding the kind of model to be validated, the conceptual
schemas addressed in this thesis could be extended. In order to be
more expressive, new types of constraints could be considered. Adding
constraints means identifying their representation in ALF language.
However, -as we pointed out in Chapter 5 — not all the possible
constraints can be tested by our method.

The methods described in this thesis could also be applied to other
types of executable models. In the context of UML, for instance, other
model behaviour (such as activity diagrams or statechart diagrams)
could be analysed in terms of the testing method addressed in this
thesis.

268

CHAPTER 9. FINAL DISCUSSION

9.3.2 Quality Goal

Regarding the conceptual schema quality goals some of these could
be improved with our validation framework. In particular, as we stated
in Chapter 3, the meaning of the consistency goal could be extended to
consider not only the structural diagram appearing in the conceptual
schema but also other behavioural diagrams (such as activity diagrams
or statechart diagrams) reasoning over the consistency between the
structural and behavioural parts.

9.3.3 Method

The validation framework should integrate with other verification
methods to allow the validation of more complex and specific elements
such as verifying weak and strong executability of the model
operations [155].

Regarding framework inputs, two concrete research lines could be
addressed:

a) The first line consists of specifying the requirements with other
types of models, for instance, BPM, i* or concept maps or a
textual specification in order to extend the facilities to specify
requirements for our validation framework.

b) The second line consists of providing an automatic translation
into an executable CSUT of other types of conceptual schemas
complaint with UML, such as Integranova models [6] to allow
designers to perform validation on these types of conceptual
schemas.

In addition, we plan to develop and include in our tool a set of
guidelines that will support users in creating/updating test cases
following a set of intuitive steps. We plan to include in the tool an
option that will allow test cases to be generated to be executed in Java
language using JUnit test cases.

Further developments should be performed on the developed
prototypes to make them more stable and usable. Currently, with

269

CHAPTER 9. FINAL DISCUSSION

these tools we consider that it is possible to implement CoSTest in real
world conditions. The open source provision of tools for CoSTest
ensures the future execution of the engineering cycle to bring CoSTest
to industry.

A set of guidelines should be proposed on the use of CoSTest, to
provide useful advice to the conceptual modeler/tester in at least the
most basic situations.

The proposed further work will help to extend our validation
framework and make it more complete. Thus, we could perform a
large-scale empirical study on several industrial subject CS to predict
how the validation framework will improve the performance of
stakeholders in their tasks of testing of conceptual schemas and
evaluate if the use of CoSTest reduces the development costs and
improve the quality of delivered software systems (see especulatives
goals G7 and G8 in Section 2.2).

In summary, given the increasing importance of models in the most
relevant software development methods currently in use, the
validation of the requirements on such models is a research topic that
needs further in-depth study.

270

REFERENCES

REFERENCES

[1]

(2]

3]

[4]

(5]

(6]

(7]

(8]

[9]

[10]

A. Olivé, Conceptual Modeling of Information System. Springer,
2007.

J. Johnson and A. Henderson, Conceptual Models: Core to Good
Design. Morgan & Claypool, 2012.

R. France and B. Rumpe, “Model-driven Development of
Complex Software: A Research Roadmap,” in International
Conference on Software Engineering, 2007, no. 2, pp. 37-54.

M. Staron, “Adopting Model Driven Software Development in
Industry — A Case Study at Two Companies,” Model Driven Eng.
Lang. Syst., pp. 57-72, 2006.

J. Hutchinson, M. Rouncefield, and J. Whittle, “Model-driven
Engineering Practices in Industry,” Proc. 33rd Int. Conf. Softw.
Eng., pp. 633-642, 2011.

0. Pastor and J. C. Molina, Model-Driven Architecture in
Practice. Cambridge: Springer Berlin Heidelberg, 2007.

R. Van Der Straeten and T. Mens, “Challenges in model-driven
software engineering,” in Model Driven Engineering Languages
and Systems - MODELS 2008, 2009, pp. 35-47.

A. Olivé and J. Cabot, “A Research Agenda for Conceptual
Schema- Centric Development,” in Conceptual Modelling in
Information Systems Engineering, 2007, pp. 319-334.

P. Mohagheghi, V. Dehlen, and T. Neple, “Definitions and
approaches to model quality in model-based software
development - A review of literature,” Inf. Softw. Technol., vol.
51, no. 12, pp. 1646-1669, 2009.

J. Krogstie, Model-Based Development and Evolution of

271

REFERENCES

(11]

(12]

[13]

(14]

(15]

[16]

(17]

(18]

(19]

[20]

(21]

[22]

(23]

Information Systems: A Quality Approach. 2012.

M. Genero, A. M. Fernandez-Saez, H. J. Nelson, and G. Poels, “A
Systematic Literature Review on the Quality of UML Models,” J.
Database Manag., vol. 22, no. September, pp. 46-70, 2011.

I. Sommerville, Software Engineering, 9th edn. Boston: Addison-
Wesley, 2011.

K. El Emam and G. A. Koru, “A replicated survey of IT software
project failures,” IEEE Softw., vol. 25, no. 5, pp. 84-90, 2008.

A. Hevner, S. T. March, J. Park, and S. Ram, “Design Science in
Information Systems Research,” vol. 32, no. 4, pp. 725-730,
2008.

R. Wieringa, Design Science Methodology for Information
Systems and Software Engineering. 2014.

Y. Labiche, “The UML Is More Than Boxes and Lines,” in Models
2008, pp. 375-386.

Object Management Group, “OCL: Object Constraint
Language,” 2014.

B. Unhelkar, Verification and Validation for Quality of UML 2.0
Models. WILEY, 2005.

P. Skokovi¢ and M. Raki¢-Skokovi¢, “Requirements-Based
Testing Process in Practice,” vol. 1, no. 4, pp. 155-161, 2010.

P. Loucopoulos and V. Karakostas, System Requirements
Engineering. McGraw-Hill Publishing Company, 1995.

S. Espafia, A. Gonzélez, and O. Pastor, “Communication Analysis:
A Requirements Engineering Method for Information Systems,”
in 21st International Conference on Advanced Information
Systems Engineering, 2009, vol. 5565, pp. 530-545.

I. S. 0. (ISO), ISO Standard 9126: Software Product Quality, vol.
2000. 2001, pp. 1-26.

1. S. 0. (ISO), ISO 9000:2000, no. 70. 2001, pp. 1-135.

272

REFERENCES

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

V. Process, V. Process, and |. Levels, IEEE Standard for Software
Verification and Validation. 2004.

I. S. 0. (ISO), ISO Standard 9126: Software Product Quality, vol.
2000. 2001, pp. 1-26.

M. D. Ernst, “Static and dynamic analysis: synergy and duality,”
in WODA 2003 ICSE Workshop on Dynamic Analysis, 2003, pp.
24-27.

M. D. Ernst, “Static and dynamic analysis: synergy and duality,”
in WODA 2003 ICSE Workshop on Dynamic Analysis, 2003, pp.
24-27.

J. M. Wing, “A Specifier’s Introduction to Formal Methods,” IEEE
Comput., vol. 23, no. 9, pp. 8-24, 1990.

IEEE, “IEEE Standard for Software Reviews, |EEE std 1028-1997,”
1997.

D. P. Freedman and G. M. Weinberg, Handbook of
Walkthroughs, Inspections, and Technical Reviews: Evaluating
Programs, Projects, and Products, 3rd ed. New York, USA:
Dorset House Publishing Co., 2000.

A. a. Porter, J. Votta, L.G., and V. R. Basili, “Comparing Detection
Methods for Software Requirements inspections: A Replicated
Experiment,” Empir. Softw. Eng., vol. 3, no. 4, pp. 355-379,
1998.

G. H. Travassos, F. Shull, and J. Carver, “Working with UML: A
Software Design Process Based on Inspections for the Unified
Modeling Language,” Adv. Comput., vol. 54, pp. 35-98, 2001.

M. E. Fagan, “Design and code inspections to reduce errors in
program development,” IBM Syst. J., vol. 15, no. 3, pp. 182-211,
1976.

C. Rolland and C. Proix, “A Natural Language Approach for
Requirements Engineering,” in The 5th International Conference
on Advanced Information Systems Engineering (CAISE’93), 1993,
pp. 257-277.

273

REFERENCES

(35]

(36]

(37]

(38]

(39]

[40]

[41]

[42]

(43]

[44]

(45]

[46]

J. A. Gulla, “A general explanation component for conceptual
modeling in CASE environments,” ACM Trans. Inf. Syst., vol. 14,
no. 3, pp. 297-329, 1996.

B. J, D. J, M. B.,, and W. E., “Making the most of formal
specification through animation, testing and proof,” Sci.
Comput. Program., vol. 29, no. 1-2, pp. 53-78, 1997.

S. J. Mellor and M. J. Balcer, Executable UML: A Foundation for
Model-Driven Architecture. Addison Wesley, 2002.

0.J.S.and T. F. A, “Testable Requirements and Specifications,”
2007, pp. 17-40.

M. Brambilla, J. Cabot, and M. Wimmer, Model-Driven Software
Engineering in Practice. Morgan & Claypool, 2012.

Object Management Group, “Unified Modeling Language
(UML),” 2015.

F. Jouault, F. Allilaire, J. Bézivin, and I. Kurtev, “ATL: A model
transformation tool,” Sci. Comput. Program., vol. 72, no. 1-2,
pp. 31-39, 2008.

IEEE, “IEEE Standard Classification for Software Anomalies,”
2010.

M. F. Granda, N. Condori-fernandez, T. E. J. Vos, and O. Pastor,
“What do we know about the Defect Types detected in
Conceptual Models ?,” in IEEE 9th Int. Conference on Research
Challenges in Information Science (RCIS), 2015, pp. 96—-107.

A. Van Lamsweerde, Requirements Engineering: From System
Goals to UML Models to Software Specifications. 2009.

O. L. Llindland, G. Sindre, and A. Sglvberg, “Understanding
Quality in Conceptual Modeling,” IEEE Softw., vol. 11, no. 2, pp.
42-49, 1994.

C. Lange, C. M. R. V,, M. J,, L. J. Somers, and D. H. M., “An
empirical investigation in quantifying inconsistency and
incompleteness of UML designs,” in Workshop Consistency

274

REFERENCES

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

Problems in UML-based Software Development I, 2003, pp. 26—
34,

H. J. Nelson and D. E. Monarchi, “Ensuring the quality of
conceptual representations,” Softw. Qual. J., vol. 15, no. 2, pp.
213-233, 2007.

F. Leung and N. Bolloju, “Analyzing the Quality of Domain
Models Developed by Novice Systems Analysts,” in Proceedings
of the 38th Hawaii International Conference on System Sciences,
2005.

S. Mijatov, P. Langer, T. Mayerhofer, and G. Kappel, “A
framework for testing UML activities based on fUML,” in
MoDEVVa, 2013, vol. 1069, pp. 1-10.

R. Conradi, P. Mohagheghi, T. Arif, L. C. Hegde, G. A. Bunde, and
A. Pedersen, “Object-oriented reading techniques for inspection
of UML models - An industrial experiment,” Lect. Notes Comput.
Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes
Bioinformatics), vol. 2743, pp. 483-500, 2003.

S. Ali, T. Yue, and Z. I. Malik, “Comprehensively evaluating
conformance error rates of applying aspect state machines,” in
Proceedings of the 11th annual international conference on
Aspect-oriented Software Development - AOSD ‘12, 2012, p.
155.

D. Dotan and A. Kirshin, “Debugging and testing behavioral UML
models,” in Companion to the 22nd ACM SIGPLAN conference
on Object oriented programming systems and applications
companion - OOPSLA ‘07, 2007, p. 838.

A. Tort and A. Olivé, “An approach to testing conceptual
schemas,” Data Knowl. Eng., vol. 69, no. 6, pp. 598-618, 2010.

T. Dinh-Trong, N. Kawane, S. Ghosh, and R. France, “A tool-
supported approach to testing UML design models,” in 10th
IEEE International Conference on Engineering of Complex
Computer Systems (ICECCS’05), 2005.

M. Gogolla, F. Biittner, and M. Richters, “USE: A UML-based

275

REFERENCES

(56]

(57]

(58]

(59]

(60]

(61]

[62]

(63]

[64]

specification environment for validating UML and OCL,” Sci.
Comput. Program., vol. 69, no. 1-3, pp. 27-34, 2007.

O. Pilskalns, A. Andrews, A. Knight, S. Ghosh, and R. France,
“Testing UML designs,” Inf. Softw. Technol., vol. 49, no. 8, pp.
892-912, Aug. 2007.

B. Berenbach, “The evaluation of large, complex UML analysis
and design models,” in 26th International Conference on
Software Engineering, 2004, no. January 2004, pp. 232-241.

O. I. Lindland and J. Krogstie, “Validating conceptual models by
transformational prototyping,” in 5th International Conference
on Advanced Information Systems, 1993, pp. 213-254.

O. Albayrak, “An experiment to observe the impact of UML
diagrams on the effectiveness of software requirements
inspections,” in 3rd International Symposium on Empirical
Software Engineering and Measurement, ESEM 2009, 2009, pp.
506-510.

B. Berenbach, “The evaluation of large, complex UML analysis
and design models,” in 26th International Conference on
Software Engineering, 2004, no. January 2004, pp. 232-241.

T. Dinh-Trong, S. Ghosh, R. B. France, M. Hamilton, and B.
Wilkins, “UMLANT: an Eclipse plugin for animating and testing
UML designs,” in eclipse ‘05: Proceedings of the 2005 OOPSLA
workshop on Eclipse technology eXchange, 2005, pp. 120-124.

Y. Zhang, “Test-driven modeling for model-driven
development,” IEEE Softw., vol. 21, no. 5, pp. 80—86, 2004.

A. Teilans, A. Kleins, Y. Merkuryev, and A. Grinbergs, “Design of
UML models and their simulation using ARENA,” WSEAS Trans.
Comput. Res., vol. 3, no. 1, pp. 67-73, 2008.

F. Dignum, T. Kemme, W. Kreuzen, H. Weigand, and R. P. van de
Riet, “Knowledge Base Modelling Based on Linguistics and
Founded in Logic,” Data Knowl. Eng., vol. 2, no. 3, pp. 213-254,
1987.

276

REFERENCES

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

M. Gogolla, S. Conrad, R. Herzig, and N. Vlachantonis, “A
Development Environment for an Object Specification
Language,” Trans. Knowl. Data Eng., vol. 7, no. 3, pp. 505-508,
1995.

A. Tort and A. Olivé, “CSTL Processor tool, prototype for
automated testing of UML/OCL conceptual schemas,” 2011.
[Online]. Available:
http://www.essi.upc.edu/~atort/cstlprocessor/.

Object Management Group, “Semantics of a Foundational
Subset for Executable UML Models (fUML),” 2012.

A. Queralt and E. Teniente, “Verification and validation of UML
conceptual schemas with OCL constraints,” in ACM Transactions
on Software Engineering and Methodology, 2012, vol. 21, no. 2.

G. Bergmann, A. Hegedus, A. Horvath, I. Rath, Z. Ujhelyi, and D.
Varro, “Implementing efficient model validation in EMF tools,”
in 2011 26th IEEE/ACM International Conference on Automated
Software Engineering (ASE 2011), 2011, pp. 580-583.

M. Gogolla, M. Kuhlmann, and L. Hamann, “Consistency,
independence and consequences in UML and OCL models,”
Lect. Notes Comput. Sci., vol. 5668 LNCS, pp. 90-104, 2009.

M. Utting, A. Pretschner, and B. Legeard, “A taxonomy of
model-based testing approaches,” Softw. Testing, Verif. Reliab.,
vol. 22, no. 5, pp. 297-312, 2012.

M. Mussa, S. Ouchani, W. Al Sammane, and A. Hamou-Lhadj, “A
survey of model-driven testing techniques,” in Proceedings -
International Conference on Quality Software, 2009, pp. 167-
172.

J. J. Gutiérrez, M. J. Escalona, and M. Mejias, “A Model-Driven
approach for functional test case generation,” J. Syst. Softw.,
vol. 109, pp. 214-228, 2015.

C. Denger and M. M. Mora, “Test case derived from
Requirement Specifications,” 2003.

277

REFERENCES

[75]

[76]

[77]

(78]

[79]

(80]

(81]

(82]

(83]

(84]

(85]

(86]

R. lbrahim, M. Z. Saringat, N. Ibrahim, and N. Ismail, “An
automatic tool for generating test cases from the system’s
requirements,” in 7th IEEE Int. Conference on Comp. and Info.
Technology, 2007, pp. 861-866.

S. Nogueira, A. Sampaio, and A. Mota, “Test generation from
state based use case models,” Form. Asp. Comput., vol. 26, no.
3, pp. 441-490, 2014.

P. Samuel and R. Mall, “A Novel Test Case Design Technique
Using Dynamic Slicing of UML Sequence Diagrams,” E-
Informatica Softw. Eng. J., vol. 2, no. 1, 2008.

E. Yu, “Modelling Strategic Relationships for Process
Reengineering,” University of Toronto, 1995.

D. Leon and A. Podgurski, “A comparison of coverage-based and
distribution-based techniques for filtering and prioritizing test
cases,” in Proceedings - International Symposium on Software
Reliability Engineering, ISSRE, 2003, pp. 442—453.

G. Rothermel, R. H. Untch, C. Chu, and M. J. Harrold, “Test Case
Prioritization: an Empirical Study,” in Proceedings of the IEEE
International Conference on Software Maintenance, 1999, p.
179.

J. Cabot, “List of Executable UML tools,” 2011. [Online].
Available: http://modeling-languages.com/list-of-executable-
uml-tools/.

Object Management Group, “Action Language for Foundational
UML (ALF),” 2013.

Model Driven Solutions, “Action Language for UML (Alf) Open
Source Implementation Version 0.5.1,” 2011. [Onlinel.
Available: http://modeldriven.org/alf/.

Project Technology, “Object Action Language Manual.”
Project Technology, “Shlaer-Mellor Action Language,” 1997.

I. Wilkie, A. King, M. Clarke, C. Raistrick, and P. Francis, “UML

278

REFERENCES

(87]

(88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

ASL Reference Guide,” 2003.

J. Cabot, “History of Executable UML — Action Language: An
OMG Journey,” 2011. [Online]. Available: http://modeling-
languages.com/uml-action-language-omg-journey/.

G. Graw and P. Herrmann, “Transformation and Verification of
Executable UML Models,” Electron. Notes Theor. Comput. Sci.,
vol. 101, pp. 3-24, 2004.

H. H. Hansen, J. Ketema, B. Luttik, M. Mousavi, J. Van de Pol,
and O. Marchi dos Santos, “Automated Verification of
Executable UML Models,” in International Symposia on Formal
Methods for Components and Objects, 2010, pp. 225-250.

Y. Laurent, R. Bendraou, S. Baarir, and M.-P. Gervais,
“Formalization of fUML : An Application to Process Verification,”
in International Conference on Advanced Information Systems
Engineering, 2014, pp. 347-363.

F. Xie, V. Levin, and J. C. Browne, “Model Checking for an
Executable Subset of UML,” in 16th IEEE International
Conference on Automated Software Engineering, 2001.

F. Craciun, S. Motogna, and |. Lazar, “Towards Better Testing of
fUML Models,” in Sixth International Conference on Software
Testing, Verification and Validation, 2013, pp. 485—-486.

Q. Lai and A. Carpenter, “Defining and Verifying Behaviour of
Domain Specific Language with fUML Categories and Subject
Descriptors,” in Proceedings of the Fourth Workshop on
Behaviour Modelling - Foundations and Applications, 2012.

Z. Micskei, R. Konnerth, H. Benedek, O. Semerath, A. Voros, and
D. Varrd, “On Open Source Tools for Behavioral Modeling and
Analysis with fUML and Alf,” in 1st Workshop on Open Source
Software for Model Driven Engineering, 2014, pp. 31-41.

E. Planas, J. Cabot, and C. Gomez, “Lightweight and static
verification of UML executable models,” Comput. Lang. Syst.
Struct., vol. 46, pp. 6690, 2016.

279

REFERENCES

[96]

[97]

(98]

[99]

[100]

[101]

[102]

[103]

[104]

S. Guermazi, J. Tatibouet, A. Cuccuru, S. Dhouib, S. Gérard, and
E. Seidewitz, “Executable Modeling with fUML and AIf in
Papyrus: Tooling and Experiments,” in 1st International
Workshop on Executable Modeling, 2015, pp. 3-8.

E. Seidewitz and J. Tatibouet, “Tool Paper : Combining Alf and

UML in Modeling Tools — An Example with Papyrus =" in
OCL@MOoDELS, 2015, pp. 105-119.

J. Tatibouét, A. Cuccuru, Sébastien Gérard, and F. Terrier,
“Formalizing Execution Semantics of UML Profiles with fUML
Models,” in International Conference on Model Driven
Engineering Languages and Systems, 2014, pp. 133-148.

T. Mayerhofer, P. Langer, and M. Wimmer, “xMOF : A Semantics
Specification Language for Metamodeling,” in Satellite Events of
MODELS, 2013.

A. Tort, A. Olive, and M.-R. Sancho, “The CSTL Processor: A Tool
for Automated Conceptual Schema Testing,” in 30th
International Conference on Conceptual Modeling, 2011, vol.
6999, pp. 349-352.

A. Tort, A. Olivé, and M.-R. Sancho, “An approach to test-driven
development of conceptual schemas,” Data Knowl. Eng., vol.
70, no. 12, pp. 1088-1111, 2011.

F. Weber, M. Wunram, J. Kemp, M. Pudlatz, and B. Bredehorst,
“Standardisation in knowledge management — towards a
common KM framework in Europe,” in Proceedings of UNICOM
Seminar “Towards Common Approaches & Standards in KM,”
2002.

S. Espafia, “Methodological Integration of Communication
Analysis into a Model-Driven Software Development
Framework,” Universitat Politecnica de Valéncia, 2011.

S. Espafia, M. Ruiz, and A. Gonzalez, “Systematic derivation of
conceptual models from requirements models: A controlled
experiment,” in Proceedings - International Conference on
Research Challenges in Information Science, 2012, no. April.

280

REFERENCES

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

A. Gonzalez, M. Ruiz, S. Espafia, and O. Pastor, “Message
structures: A modelling technique for information systems
analysis and designl,” in 14th Ibero-American Conference on
Software Engineering and 14th Workshop on Requirements
Engineering, CIbSE 2011, 2011, pp. 407-418.

M. Shahbaz, P. McMinn, and M. Stevenson, “Automated
discovery of valid test strings from the web using dynamic
regular expressions collation and natural language processing,”
in Proceedings - International Conference on Quality Software,
2012, pp. 79-88.

N. Li, F. Li, and J. Offutt, “Better algorithms to minimize the cost
of test paths,” in Proceedings - IEEE 5th International
Conference on Software Testing, Verification and Validation,
ICST 2012, 2012, pp. 280-289.

A. Andrews, R. France, S. Ghosh, and G. Craig, “Test adequacy
criteria for UML design models,” Softw. Test. Verif. Reliab., vol.
13, no. 2, pp. 95-127, 2003.

Object Management Group (OMG), “UML Testing Profile (UTP)
Version 1.2,” 2013.

Object Management Group, “OMG Unified Modeling Language (
OMG UML), SuperStructure,” 2011.

J. H. Andrews, L. C. Briand, and Y. Labiche, “Is mutation an
appropriate tool for testing experiments?,” in Proceedings. 27th
International Conference on Software Engineering, 2005. ICSE
2005., 2005, pp. 402-411.

Y. Jia and M. Harman, “Higher Order Mutation Testing,” Inf.
Softw. Technol., vol. 51, no. 10, pp. 1379-1393, 2009.

Y. Jia and M. Harman, “An Analysis and Survey of the
Development of Mutation Testing,” Softw. Eng. IEEE Trans., vol.
37,no0.5, pp. 1-31, 2011.

H. Do and G. Rothermel, “A controlled experiment assessing
test case prioritization techniques via mutation faults,” in IEEE
International Conference on Software Maintenance, ICSM, 2005,

281

REFERENCES

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

vol. 2005, pp. 411-420.

M. F. Granda, N. Condori-Fernandez, T. E. J. Vos, and O. Pastor,
“Mutation Operators for UML Class Diagrams,” in CAISE 2016,
2016.

“Mutation Operators for UML CD-based CS,” 2015. [Online].
Available: https://staq.dsic.upv.es/webstag/costest/FOMs.html.

“An open-source implementation of the OMG Action Language
for fUML.” [Online]. Available: http://modeldriven.github.io/Alf-
Reference-Implementation/.

T. Massimo, F. Jouault, Z. Saidi, and J. Delatour, “Enabling OCL
and fUML Integration by Transformation,” in European
Conference on Modelling Foundations and Applications, 2016,
vol. 2, pp. 156-172.

E. Seidewitz, “Model execution using the fUML Reference
Implementation,” 2016. [Online]. Available:
https://github.com/ModelDriven/Alf-Reference-
Implementation/wiki/Command-Line-Scripts.

M. Ruiz, “A Model-Driven Framework to Integrate
Communiaction Analysis and 0O-Method,” Universitat
Politécnica de Valéncia, 2011.

M. F. Granda, N. Condori-Fernandez, T. E. J. Vos, and O. Pastor,
“Towards the automated generation of abstract test cases from
requirements models,” in 1st International Workshop on
Requirements Engineering and Testing, 2014, pp. 39-46.

O. Pastor, “Disefio y Desarrollo de un Entorno de Produccidn
Automatica de Software basado en el Modelo Orientado a
Objetos,” Universitat Politecnica de Valencia., 1992.

M. Loy, R. Eckstein, D. Wood, J. Elliott, and B. Cole, Java Swing.
O’Reilly Media, 2002.

M. F. Granda and N. Condori-fernandez, “A Model-level
Mutation Tool to Support the Assessment of the Test Case
Quality,” in 25TH International Conference on Information

282

REFERENCES

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

[133]

[134]

Systems Development (1SD2016 POLAND), 2016.

F. Shull, J. Singer, and D. |. K. Sjgberg, Guide to Advanced
Empirical Software Engineering. 2008.

G. H. Travassos, P. Sérgio, P. G. Mian, A. Cldudio, D. Neto, and J.
Biolchini, “An Environment to Support Large Scale
Experimentation in Software Engineering,” in 13th [|EEE
International Conference on Engineering of Complex Computer
Systems, 2008, pp. 193-202.

N. Juristo and A. M. Moreno, Basics of Software Engineering
Experimentation, 1st ed. Springer Publishing Company, 2010.

V. R. Basili, “The role of Experimentation in Software
Engineering Past, Current, and Future,” in Proceedings of the
18th international conference on Software engineering, 1996,
pp. 442-449.

J. Cabot, R. Clariso, E. Guerra, and J. de Lara, “Verification and
validation of declarative model-to-model transformations
through invariants,” J. Syst. Softw., vol. 83, no. 2, pp. 283-302,
2010.

M. Gogolla and A. Vallecillo, “Tractable model transformation
testing,” Lect. Notes Comput. Sci., vol. 6698 LNCS, pp. 221-235,
2011.

S. Espafia, A. Gonzéalez, O. Pastor, and M. Ruiz, “Technical
Report Communication Analysis and the 00-Method : Manual
Derivation of the Conceptual Model the SuperStationery Co. Lab
Demo,” Valencia, 2011.

S. Espafia, A. Gonzalez, O. Pastor, and M. Ruiz, “Integration of
Communication Analysis and the OO-Method: Rules for the
manual derivation of the Conceptual Model,” Valencia, 2011.

A. Tort and A. Olivé, “Case Study: Conceptual Modeling of Basic
Sudoku,” 2006. [Online]. Available:
http://guifre.lsi.upc.edu/Sudoku.pdf.

A. Tort, “A Basic Set of Test Cases for a Fragment of the

283

REFERENCES

[135]

[136]

[137]

[138]

[139]

[140]

[141]

[142]

[143]

[144]

[145]

osCommerce Conceptual Schema,” UPC, 2009. [Online].
Available: http://hdl.handle.net/2117/6130.

E. Planas and A. Olivé, “The DBLP Case Study,” 2006. [Online].
Available: http://guifre.lsi.upc.edu/DBLP.pdf.

R. Van de Stadt, “CyberChair.” [Online]. Available:
http://www.borbala.com/cyberchair/.

H. Ehrig and C. Ermel, “Semantical correctness and
completeness of model transformations using graph and rule
transformation,” in Lecture Notes in Computer Science, 2008,
vol. 5214 LNCS, pp. 194-210.

A. Kleppe, J. Warmer, and W. Bast, MDA Explained, The Model-
Driven Architecture: Practice and Promise. Addison Wesley,
2003.

T. Yue and S. Ali, “A MOF-based framework for defining metrics
to measure the quality of models,” in Lecture Notes in Computer
Science, vol. 8569 LNCS, 2014, pp. 213-229.

V. R. Basili, G. Caldiera, and H. D. Rombach, “Goal Question
Metric Paradigm,” Encyclopedia of Software Engineering. 1994.

U. Rueda, S. Espafia, and M. Ruiz, “GREAT Process Modeller user
manual,” 2015.

C. Wholin, P. Runeson, M. Host, M. C. Ohlsson, B. Regnell, and
A. Wesslén, Experimentation in Software Engineering, vol. 1.
2012.

R. van Solingen and E. Berghout, The Goal/Question/Metric
Method — A Practical Guide for Quality Improvement of
Software Development. McGraw-Hill, 1999.

J. A. Morgan, G. J. Knafl, and W. E. Wong, “Predicting fault
detection effectiveness,” in Proceedings Fourth International
Software Metrics Symposium, 1997, pp. 82—89.

G. Charness, U. Gneezy, and M. A. Kuhn, “Experimental
methods: Between-subject and within-subject design,” J. Econ.

284

REFERENCES

[146]

[147]

[148]

[149]

[150]

[151]

[152]

[153]

[154]

[155]

Behav. Organ., vol. 81, no. 1, pp. 1-8, 2012.

T. E. J. Vos, B. Marin, M. J. Escalona, and A. Marchetto, “A
Methodological Framework for Evaluating Software Testing
Techniques and Tools,” 2012 12th Int. Conf. Qual. Softw., pp.
230-239, 2012.

C. Jing, Z. Wang, X. Shi, X. Yin, and J. Wu, “Mutation Testing of
Protocol Messages Based on Extended TTCN-3,” in 22nd
International Conference on Advanced Information Networking
and Applications, 2008, pp. 667-674.

S. Jamieson, “Likert scales : how to (ab) use them,” Med. Educ.,
vol. 38, pp. 1217-1218, 2004.

Fred Davis, “Perceived Usefulness , Perceived Ease Of Use , And
User Acceptance of Information Technology,” MIS Q., vol. 13,
no. 3, pp. 319-340, 1989.

J. Wu, Y. Chen, and L. Lin, “Empirical evaluation of the revised
end user computing acceptance model,” Comput. Human
Behav., vol. 23, pp. 162-174, 2007.

J. Sauro and J. R. Lewis, Quantifying the User Experience:
Practical Statistics for User Research. 2012.

P. Mohagheghi, W. Gilani, A. Stefanescu, and M. A. Fernandez,
“An Empirical Study of the State of the Practice and Acceptance
of Model-Driven Engineering in four Industrial Cases,” Empir.
Softw. Eng., vol. 18, no. 1, pp. 89-116, 2013.

Eclipse, “Eclipse IDE for Java Developers.” [Online]. Available:
www.eclipse.org.

JUnit, “JUnit framework.” [Online]. Available: junit.org.

E. Planas, J. Cabot, and C. Gomez, “Lightweight verification of
executable models,” in Conceptual Modelling -ER2011, 2011,
pp. 467-475.

285

APPENDICES

APPENDIX A

Appendix A

Mutation Operators for UML CD-based

Conceptual Schemas

This Appendix contains the mutation operators used to mutate the

UML CD-based conceptual schemas during the process of prioritization

(Chapter 5) and evaluation of effectiveness of CoSTest test cases
(Chapter 8). The process to define these mutation operators is
described in [115].

Table A.1. Mutation Operators defined for a UML CD-based CS taken from [115]

| Code Mutation Operator rule and relation with other mutation operators

1 | ucol Adds a redundant constraint to the CD

2 | Uco2 Adds an extraneous constraint to the CD

3 | UAS1 Adds a redundant association to the CD

4 | UAS2 Adds a redundant derived association to the CD. Relation: UCO2

5 | UAS3 Adds an extraneous association to the CD

6 | UAS4 Adds an extraneous derived association to the CD. Relation: UCO2

7 | UGE1l Adds a redundant generalization to the CD

8 | UGE2 Adds an extraneous generalization to the CD

9 | UCL1 Adds a redundant class to the CD

10 | UCL2 Adds an extraneous class to the CD

11 | UCL3 Adds a redundant association class to the CD

12 | UCL4 Adds an extraneous association class to the CD

13 | UAT1 Adds a redundant attribute to a Class

14 | UAT2 Adds an extraneous attribute to a Class

15 | UOP1 Adds a redundant operation to a Class

16 | UOP2 Adds an extraneous operation to a Class

17 | UPA1 Adds a redundant parameter to an Operation

18 | UPA2* Adds an extraneous Parameter to an Operation

19 | WCO1* Changes the constraint by deleting the references to a class Attribute

20 | WCO2** | Changes the Attribute data type in the constraint. Relation: WPA, WAT3

21 | WCO3* Change the constraint by deleting the calls to specific operation.

22 | WCo4* Changes an arithmetic operator for another and supports binary operators: +, -
A

23 | WCO5* Changes the constraint by adding the conditional operator “not”

24 | WCO6* Changes a conditional operator for another and supports operators: or, and

25 | WCO7* Changes the constraint by deleting the conditional operator “not”

26 | WCO8* Changes a relational operator for another operators: <, <=, >, >=, ==, |=

27 | WCO9* Changes a constraint by deleting a unary arithmetic operator (-).

28 | WAS1* Interchange the members (memberEnd) of an Association.

29 | WAS2* Changes the association type (i.e. normal, composite).

30 | WAS3* Changes the memberEnd multiplicity of an Association (i.e. *-*, 0..1-0..1, *-
0..1)

31 | WGE** Changes the Generalization member ends. Relation: MPA, UPA

32 | WCL1* Changes visibility kind of the Class (i.e. private)

289

APPENDIX A

33 | wcCL2 Changes Class by an Association Class

34 | WCL3 Changes Association Class for a Class

35 | WCL4 Changes the Class feature “isAbstract “ to true.

36 | WAT1** Changes the Attribute feature “Is Derived” to true. Relation: UCO2

37 | WAT2** Changes the Attribute property “Is Derived” to false. Relation: MCO

38 | WAT3** Changes the Attribute data type. Relation: WPA, WCO2

39 | WAT4 Changes the Attribute visibility property

40 | worl Changes the order of the parameters

41 | WOP2* Changes the visibility kind of an operation. Restriction. WOP2 has to be applied
to operations that are not related with any constraints. Relation: MCO

42 | WOP3 Changes the data type returned by operation. Relation: WAT3

43 | WPA* Changes the Parameter data type (i.e. String, Integer, Boolean, Date, Real).
Restriction. WPA has to be applied to parameters that are not related with
attributes in a constructor operation. To reduce mutants only a change is
counted.

44 | MCO* Deletes a constraint (i.e. pre-condition, post-condition constraint, body
constraint)

45 | MAS* Deletes an Association. Restriction. MAS has to be applied to associations that
are not related with any constraints. Relation: MCO

46 | MGE** Deletes a Generalization relation. Relation: MPA, UPA

47 | MCL** Deletes the class (i.e. normal or association class). Relation: MCO, MAT, MOP,
MGE.

48 | MAT** Deletes an Attribute. Relation: MPA, MCO

49 MOP** Deletes the operation. Relation: MPA, MCO, WCO3

50 | MPA* Deletes a Parameter from an Operation. Restriction. This mutation operator

has to be applied to operations without related constraints. Relation: MCO

290

APPENDIX B

Appendix B

Case Study: The Incident Management System

This appendix describes how we applied our CoSTest validation
framework using the Incident Management case study, which was
carried out in the context of the everis company. Within this private
entity, we put into practice the validation framework that is presented
in Chapter 5: we used CoSTest to generate the test cases, generate
mutants from the conceptual schema that represents the system and
also to execute the test cases against the mutants and evaluate the
results.

Overall, the application of CoSTest in an industrial context was
successful and showed the effectiveness of the model-driven validation
framework described in this thesis.

The remainder of the appendix is structured as follows: Sections
B.1-B.6 show the application of the phases that comprise our validation
framework (i.e. design, generation, prioritization, execution and
evaluation) and Section B.7 outlines some conclusions from the case
study.

B.1 Test Analysis

This Section introduces the requirements of the Incident
Management (IM) System using the Communicational Analysis
instruments (i.e. the event description templates and the event
diagram).

B.1.1 Event Description Templates
The event description templates for the communicative events
using Espafia et al’s notation [21] are described below:

TECH1. Technician Registration

291

APPENDIX B

Description

The technician is described and registered in the system. The PMO
has a technician management tool to record and keep track of all the

technicians.

Contact Requirements

e Primary actor: Technician

e Communication channel: Face to face

e Temporal restrictions: none

e Frequency: none

Communicational content requirements

e Support Actor: technician

Table B.1. Communication Structure for TECH1

FIELD OP DOMAIN EXTENDS BUSINESS OBJECT
TECHNICIAN =
< id Technician + g text False
Name i text False
>

USR1. User Registration

Description

The user is described and registered in the system. The PMO has a

user management tool to record and keep track of all the users.

Contact Requirements

e Primary actor: User

e Communication channel: Face to face

e Temporal restrictions: none

e Frequency: none

Communicational content requirements

e Support Actor: technician

292

APPENDIX B

Table B.2. Communication Structure for USR1

FIELD oP DOMAIN EXTENDS BUSINESS OBJECT
USER =
<id User + g text False
Name i text False
>

PLAN1. Plan Registration

Description

A set of steps for the incident resolution are registered in the
system as a resolution plan. The PMO has a plan management tool to
record and keep track of all the resolution plans.

Contact Requirements

e Primary actor: Technician

e Communication channel: Face to face
e Temporal restrictions: none

e Frequency: none

Communicational content requirements

e Support Actor: Technician

Table B.3. Communication Structure for PLAN1

FIELD OoP DOMAIN EXTENDS BUSINESS OBJECT
RESOLUTION PLAN =
<id Plan + g number False
Name+ i text False
Step sequence > i text False

INC1. Incident Registration

Description

The incident is described and registered in the system. The PMO

has an incident management tool to record and keep track of all the
incidents.

Contact Requirements

e Primary actor: User
e Communication channel: phone, face to face
e Temporal restrictions: none

293

APPENDIX B

e Frequency: none

Communicational content requirements

e Support Actor: PMO Responsible

Table B.4. Communication Structure for INC1

FIELD oP DOMAIN EXTENDS BUSINESS
OBJECT

INCIDENT =

<id Incident + g text False
Request type + i text [incident|request] False
Component + i Text False
User + i User False
Contact information + i Text False
Initial Scope i Text False
Subject + i Text False
Description + i Text False
Step sequence + i Text False

>

INC2. Incident Priority Assignment

Description

After that, an initial analysis of the incident is done by the PMO
in order to find risks and additional information, and a priority is
assigned.

Contact Requirements

e Primary actor: Phone operator

e Communication channel: Incident management tool
o Temporal restrictions: Phone Operator

e Frequency: none

Communicational content requirements

e Support Actor: PMO Technician

294

APPENDIX B

Table B.5. Communication Structure for INC2

FIELD opP DOMAIN EXTENDS BUSINESS
OBJECT

INCIDENT PRIORITY=
<

State + i Text False
Progress + i Text False
Initial Scope + i Text False
Incident+ i Incident True
>
INC3. Register Scope
Description

The incident is analysed and the work is described. The incident
scope is calculated taking into account the incident details and PMO
background.

Contact Requirements

e Primary actor: PMO Technician

e Communication channel: Incident management tool
e Temporal restrictions: none

e Frequency: none

Communicational content requirements

e Support Actor: PMO Technician

Table B.6. Communication Structure for INC3

FIELD OoP DOMAIN EXTENDS BUSINESS
OBJECT

INITIAL SCOPE =

< State + i Text False
Progress + i Text False
Estimated Scope + i Text False
Incident i Incident True

>

INC4. Assess PMO Capacity to Solve

Description

After that, the incident estimation is calculated based on the
PMO experience and depending on human non-calculated
estimation. Then the incident is reassigned to the PMO, to the

295

APPENDIX B

municipality or to an external company. The reassignment depends
on the PMO’s capability of solving it and the incident scope.

Contact Requirements

e Primary actor: PMO Technician

e Communication channel: Face to face
e Temporal restrictions: none

e Frequency: none

Communicational content requirements

e Support Actor: PMO Technician

Table B.7. Communication Structure for INC4

FIELD OP DOMAIN EXTENDS BUSINESS OBJECT
EQUIPMENT AVAILABILITY =
<Incident + i Incident True
State+ i Text False
Progress i Text False
>

INC5. Resource Allocation

Description
A technician for the incident is assigned.

Contact Requirements

e Primary actor: PMO Responsible

e Communication channel: incident management tool
e Temporal restrictions: none

e Frequency: none

Communicational content requirements

e Support Actor: PMO Responsible

296

APPENDIX B

Table B.8. Communication Structure for INC5

FIELD oP DOMAIN EXTENDS BUSINESS OBJECT

RESOURCE ALLOCATION=
<id allocation+ g number False

Incident + i Incident False

Technician i Technician False
>

INC6. Check Plan

Description

A plan for the incident type is checked.

Contact Requirements

e Primary actor: PMO Technician
e Communication channel: Face to face, incident management

tool

e Temporal restrictions: none

e Frequency: none

Communicational content requirements

e Support Actor: PMO Responsible

Table B.9. Communication Structure for INC6

>

FIELD OP DOMAIN EXTENDS BUSINESS OBJECT
CHECK PLAN=
< Incident + Incident True
Plan Response Text False

INC7. PMO Incident Resolution

Description

If the plan already exists, the resolution proceeds following the
described steps. If there is no plan defined for the given incident
type, no further actions are carried out.

Contact Requirements

e Primary actor: PMO Technician
e Communication channel: Face to face, incident management

tool, phone

297

APPENDIX B

e Temporal restrictions: none

e Frequency: none

Communicational content requirements

e Support Actor: PMO Technician

Table B.10. Communication Structure for INC7

FIELD OP DOMAIN EXTENDS BUSINESS OBJECT
PMO RESOLUTION =
<Incident + i Incident True
Step sequence+ i Text False
State+ i Text False
Progress i Text False
>

INC8. PMO Resolution Validation

Description

The incident is checked to determine whether or not it has been
solved. If the incident solution solves the incident the incident is solved
and is updated as “Solved”. Else further actions are required and the
incident is updated as “Reallocation pending”.

Contact Requirements

e Primary actor: PMO Technician
e Communication channel: Incident management tool
e Temporal restrictions: none

e Frequency: none

Communicational content requirements

e Support Actor: PMO Technician

Table B.11. Communication Structure for INC8

>

FIELD oP DOMAIN EXTENDS BUSINESS OBJECT
PMO RESOLUTION VALIDATION=
<Incident + Incident True
State+ Text False
Progress Text False

298

APPENDIX B

INC9. Municipality Assignment Evaluation

Description

Then the incident is reassigned to the municipality. The
reassignment depends on the PMOQ’s capability of solving it and the
incident scope.

Contact Requirements

e Primary actor: PMO Technician

e Communication channel: Face to face, Incident management
tool

e Temporal restrictions: none

e Frequency: none

Communicational content requirements

e Support Actor: PMO Technician

Table B.12. Communication Structure for INC9

FIELD oP DOMAIN EXTENDS BUSINESS
OBJECT
ASSIGNMENT TO MUNICIPALITY =
< State + i Text False
Progress + i Text False
Incident+ i Incident True

>

INC10. Municipality Resolution

Description

If the PMO has not enough capacity to solve the incident and the
responsibility belongs to the municipality, then the incident will be
assigned to it. In this case the municipality will solve the incident.

Contact Requirements

e Primary actor: Municipality Responsible

e Communication channel: Incident management tool
e Temporal restrictions: none

e Frequency: none

299

APPENDIX B

Communicational content requirements

e Support Actor: PMO Responsible

Table B.13. Communication Structure for INC10

FIELD OoP DOMAIN EXTENDS BUSINESS OBJECT
MUNICIPALITY RESOLUTION=
<Incident + i Incident True
Step Sequence+ i Text False
State + i Text False
Progress i Text False
>

INC11. Municipality Resolution Validation

Description

The incident is checked to know if it is solved or not. If the incident
solution solves the incident the incident is solved and it is updated as
“Solved”. Else further actions are required and the incident is updated
as “Reallocation pending”. It is necessary to validate the incident
solution depending on the legal framework and quality standards.

Contact Requirements

e Primary actor: PMO Technician

Communication channel: Incident management tool
Temporal restrictions: none

e Frequency: none

Communicational content requirements

e Support Actor: PMO Responsible

Table B.14. Communication Structure for INC11

FIELD oP DOMAIN EXTENDS BUSINESS OBJECT
MUNICIPALITY RESOLUTION
VALIDATION=
<Incident + i Incident True
State+ i Text False
Progress i text False
>

300

APPENDIX B

INC12. Company Assignment Evaluation

Description

In case the incidents are higher than the PMO capacity +
Municipality capacity, then it will reallocate to the external company.

Contact Requirements

e Primary actor: PMO Responsible

e Communication channel: Incident management tool
e Temporal restrictions: none

e Frequency: none

Communicational content requirements

e Support Actor: PMO Responsible

Table B.15. Communication Structure for INC12

FIELD oP DOMAIN EXTENDS BUSINESS
OBJECT
ASSIGNMENT TO COMPANY =
< State + i Text False
Progress + i Text False
Incident+ i Incident True

>

INC13. Incident and Impact External Company Analysis
Description

The company will provide an impact report with the incident
analysis, implications, possible solutions and time estimation.

Contact Requirements

e Primary actor: PMO Technician

e Communication channel: Incident management tool
e Temporal restrictions: none

e Frequency: none

Communicational content requirements

e Support Actor: PMO Responsible

301

APPENDIX B

Table B.16. Communication Structure for INC13

FIELD OoP DOMAIN EXTENDS BUSINESS OBJECT

EXTERNAL COMPANY ANALYSIS=
<Incident + i Incident False

Subject+ i Text False

Description+ i Text False

Analysis+ i Text False

Implications+ i Text False

Possible Solutions+ i Text False

Time estimation i Text False

INC14. Action Plan Definition

Description

The PMO responsible analyses the impact report with the
technicians. If the incident is a bug, the external company will fix it. If it
becomes an improvement, the decision to carry it out will be taken in
the next steps.

Contact Requirements

e Primary actor: PMO Responsible

e Communication channel: Incident management tool
e Temporal restrictions: none

e Frequency: none

Communicational content requirements

e Support Actor: PMO Responsible

Table B.17. Communication Structure for INC14

FIELD oP DOMAIN EXTENDS BUSINESS OBJECT
PLAN DEFINITION =
<Incident + i Incident True
State + i Text False
Progress > i Text False

INC15. Improvement Evaluation

Description

The PMOQ’s director and Project leader are involved in the deciding
which option should be used to solve the incident and if a deeper
analysis is needed.

302

APPENDIX B

Contact Requirements

e Primary actor: PMO Responsible

e Communication channel: Incident management tool
e Temporal restrictions: none

e Frequency: none

Communicational content requirements

e Support Actor: PMO Responsible

Table B.18. Communication Structure for INC15

FIELD oP DOMAIN EXTENDS BUSINESS OBJECT
IMPROVEMENT EVALUATION=
<Incident + i Incident True
State + i Text False
Progress i Text False
>
INC16. Impact Analysis
Description

If the chosen option is a new development, the external company
will make the functional and technical designs, and estimation in time
and cost.

Contact Requirements

e Primary actor: PMO Responsible

e Communication channel: Incident management tool
e Temporal restrictions: none

e Frequency: none

Communicational content requirements

e Support Actor: PMO Responsible

Table B.19. Communication Structure for INC16

FIELD oP DOMAIN EXTENDS BUSINESS OBJECT
IMPACT ANALYSIS=
<Incident + i Incident True
State+ i Text False
Progress + i Text False
Time Estimation + i Text False
Cost Estimation i Text False

>

303

APPENDIX B

INC17. Functional and Technical Design Documents Revision

Description

The responsible PMO and technicians revise the documents
provided by the external company to check if the requirements are
well specified.

Contact Requirements

e Primary actor: Company Responsible

e Communication channel: Incident management tool
e Temporal restrictions: none

e Frequency: none

Communicational content requirements

e Support Actor: PMO Responsible

Table B.20. Communication Structure for INC17

FIELD OoP DOMAIN EXTENDS BUSINESS OBJECT
DOCUMENTS REVISION=
<Incident + i Incident True
State+ i Text False
Progress i Text False
>

INC18. Need and Viability Evaluation

Description

The PMO responsible shows the chosen option to the PMO’s
Project Leader and Director. Then it is decided if it is approved or not.

Contact Requirements

e Primary actor: PMO Director

e Communication channel: Incident management tool
e Temporal restrictions: none

e Frequency: none

Communicational content requirements

e Support Actor: PMO Responsible

304

APPENDIX B

Table B.21. Communication Structure for INC18

>

FIELD OP DOMAIN EXTENDS BUSINESS OBJECT
VIABILITY EVALUATION=
<Incident + i Incident True
State+ i Text False
Progress i Text False

INC19. Company Incident Resolution

Description

Once the improvement or the new development is approved, the
external Company proceeds with the development.

Contact Requirements

e Primary actor: Company Responsible

e Communication channel: Incident management tool
e Temporal restrictions: none

e Frequency: none

Communicational content requirements

e Support Actor: PMO Technician

Table B.22. Communication Structure for INC19

FIELD OoP DOMAIN EXTENDS BUSINESS OBJECT
COMPANY RESOLUTION =
<Incident + i Incident True
Step Sequence+ i Text False
State+ i Text False
Progress i Text False
>

INC20. Company Resolution Validation

Description

It is necessary to validate the incident solution depending on the
legal framework and quality standards.

Contact Requirements

e Primary actor: PMO technician
e Communication channel: Incident management tool
e Temporal restrictions: none

305

APPENDIX B

e Frequency: none

Communicational content requirements

e Support Actor: PMO Technician

Table B.23. Communication Structure for INC20

>

FIELD OoP DOMAIN EXTENDS BUSINESS
OBJECT
COMPANY RESOLUTION VALIDATION=
<Incident + Incident True
State+ Text False
Progress Text False

INC21. Incidence Closure
The incident is marked as “Closed” either if it is marked as “solved”
or “Implementation not allowed”.

Contact Requirements

e Primary actor: PMO Technician

e Communication channel: Incident management tool
e Temporal restrictions: none

e Frequency: none

Communicational content requirements

e Support Actor: PMO Technician

Table B.24. Communication Structure for INC21

>

FIELD oP DOMAIN EXTENDS BUSINESS
OBJECT
INCIDENT CLOSURE=
< Incident + Incident True
State Text False

Each Event Specification Template has a Message Structure in the
modeller [141] to define the
communicated in the event. Figure B.1 shows a partial view of the
message structure for the last communicative event “INC20. Company

GREAT tool

Resolution Validation”

information that

306

APPENDIX B

L™ Resource Set
4 [platform:/resource/PMO/PMO.cametarmodel
a < Model PMO
4 m Message Structure Closure State
a = Aggregation INCIDENT CLOSURE
= Data Field state
n Reference Field Incident

Selection | Parent | List| Tree| Table | Tree with Columns

¥4 Tasks | = Properties 2

Property Value
Derivation Formula =
Description =
Domain U= pext
Example '= closed
Is Identifier i false

Maximum Cardinality =
Message Structure
Minimum Cardinality
MName

Operation

Figure B.1. Partial view of the message structure in the GREAT tool [141]

B.1.2 Events Diagram
Figure B.2 presents part of the communicative event diagram (CED)
of the Incident Management (IM) of the PMO business process.

B.2 Test Design

This section describes how we applied our CoSTest validation
framework to generate the Test Model and the Test Scenario Model
using the Incident Management case study.

We divide this section into three main subsections (B.2.1, B.2.2 and
B.2.3), each of which focuses on a specific phase of the framework.

307

APPENDIX B

[EERTNG] weryas) gid

JEvION | 1w
T'h I
o ﬂmh -

O INL
ANT0S OL ALIDWAYD OINd 55355
I

QALT20 1190 03L72077%
N U6 [y awubiesy fanediungy

NOLLTN AT LNZINSISST AL =

B

Fjgisuadsay Qipediziu

[CIEEEENRIUE) \\
UEEIULE) O

T IS LOM

= T'E INL

H”_ 14028 HALSI9TY =
£ and o3 uapia]

iopiadg auayg

uRBIY3E] Ol ﬁ

TETETITT S0

sigpsuadsay ediuny (2] ININSIESY ALOMA LNIAIIND

1= E

#|qesucdsay Auedwoy E

Jegeiadp sueyy (I
UEIILYIRL
[FTERTERT

ueRIya | Od [F)
REIE (o H

jgisuodsay pid [T =
NOILVHISIIR NYIDINHDAL | - c_%_ﬂ HOLLTHLSIZT N Td
— THIL Thwld G4 uEld
103330 O [Z] -
53704 TYNOLLYSINY2HO

Figure B.2. Event Diagram using Communication Analysis

308

APPENDIX B

B.2.1 Test Model

This phase of CoSTest involves a model-to-model transformation
that is carried out according to the model-driven strategy implemented
in CoSTest (see Secction 6.3.1). Figure B.3 shows the test model for IM
case study.

CINC2
.
|N::3 1 E iwcaz

I\INC41) (INca.2)

v ¥
— INC5.2

INCS »{ INC5.1) ﬂ

INC12.1) (INC12.2

(INce.1) ((INC6.2) —X
\-_

INC?

(INC11.1 . (INC14.1) {INC14.2
(mca.l) ;mcs.z —
L |

(INC15.1) (INC15.2

g
[INC21)= /-INC1E>

CINC13

H INC17

(INC18.1 —,EIS.I! *

{ INC19

(INC20.1) (INC20.2)

Figure B.3. Test Model for IM case study

B.2.2 Test Scenario Model

The model-driven generation for the test scenario model is
implemented in CoSTest using a classic pathfinder or graph traversal
algorithm to traverse from parent root to child node (see Section
6.3.2). The test scenarios are summarized in the following list.

309

APPENDIX B

PLAN REGISTRATION:TECHNICIAN REGISTRATION:USER REGISTRATION:IN
CIDENT REGISTRATION:INCIDENT PRIORITY ASSIGMENT:NOT CRITICAL:P
MO IS ABLE:RESOURCE ALLOCATION:EXISTS PLAN:PMO INCIDENT RESOLU
TION:UNSOLVED_ BY PMO:ALLOCATED IN MUNICIPALITY:MUNICIPALITY IN
CIDENT RESOLUTION:UNSOLVED BY MUNICIPALITY:ASSIGNED TO_COMPANY
:INCIDENT AND_ IMPACT EXTERNAL_COMPANY ANALYSIS:IMPROVEMENT:NEW
~ DEVELOPMENT : IMPACT ANALYSIS:FUNCTIONAL AND TECHNICAL DESIGN D
OCUMENTS REVISION:APPROVAL:COMPANY INCIDENT RESOLUTION:SOLVED
BY COMPANY:INCIDENCE CLOSURE

USER REGISTRATION:INCIDENT REGISTRATION:INCIDENT PRIORITY ASSI
GMENT : CRITICAL:UNALLOCATED IN MUNICIPALITY:NOT ASSIGNED TO COM
PANY : INCIDENCE CLOSURE

USER_REGISTRATION:INCIDENT REGISTRATION:INCIDENT PRIORITY ASSI
GMENT :NOT_CRITICAL:PMO IS NOT ABLE:UNALLOCATED_ IN MUNICIPALITY
:ASSIGNED TO COMPANY:INCIDENT AND IMPACT EXTERNAL COMPANY ANAL
YSIS:IMPROVEMENT :NEW DEVELOPMENT:IMPACT ANALYSIS:FUNCTIONAL AN
D_TECHNICAL DESIGN_ DOCUMENTS REVISION:APPROVAL:COMPANY INCIDEN
T RESOLUTION:SOLVED_ BY COMPANY:INCIDENCE CLOSURE

TECHNICIAN REGISTRATION:USER REGISTRATION:INCIDENT REGISTRATIO
N:INCIDENT PRIORITY ASSIGMENT:NOT CRITICAL:PMO IS ABLE:RESOURC
E_ALLOCATION:NOT EXISTS:UNSOLVED BY PMO:ALLOCATED IN MUNICIPAL
ITY:MUNICIPALITY INCIDENT RESOLUTION:UNSOLVED BY MUNICIPALITY:
ASSIGNED TO COMPANY:INCIDENT AND IMPACT EXTERNAL COMPANY ANALY
SIS:IMPROVEMENT :NEW DEVELOPMENT:IMPACT ANALYSIS:FUNCTIONAL AND
TECHNICAL DESIGN DOCUMENTS REVISION:APPROVAL:COMPANY INCIDENT
RESOLUTION:SOLVED BY COMPANY:INCIDENCE CLOSURE

PLAN REGISTRATION:TECHNICIAN REGISTRATION:USER REGISTRATION:IN
CIDENT REGISTRATION:INCIDENT PRIORITY ASSIGMENT:NOT CRITICAL:P
MO_IS ABLE:RESOURCE ALLOCATION:EXISTS PLAN:PMO INCIDENT RESOLU
TION:SOLVED BY PMO:INCIDENCE CLOSURE

PLAN REGISTRATION:TECHNICIAN REGISTRATION:USER REGISTRATION:IN
CIDENT REGISTRATION:INCIDENT PRIORITY ASSIGMENT:NOT CRITICAL:P
MO IS ABLE:RESOURCE ALLOCATION:EXISTS PLAN:PMO INCIDENT RESOLU
TION:UNSOLVED BY PMO:UNALLOCATED IN MUNICIPALITY:ASSIGNED TO C
OMPANY : INCIDENT AND_IMPACT EXTERNAL COMPANY ANALYSIS:IMPROVEME
NT:NEW_DEVELOPMENT: IMPACT ANALYSIS:FUNCTIONAL AND TECHNICAL DE
SIGN DOCUMENTS REVISION:APPROVAL:COMPANY INCIDENT RESOLUTION:S
OLVED BY COMPANY:INCIDENCE CLOSURE

PLAN REGISTRATION:TECHNICIAN REGISTRATION:USER REGISTRATION:IN
CIDENT REGISTRATION:INCIDENT PRIORITY ASSIGMENT:NOT CRITICAL:P
MO IS ABLE:RESOURCE ALLOCATION:EXISTS PLAN:PMO INCIDENT RESOLU
TION:UNSOLVED BY PMO:ALLOCATED IN MUNICIPALITY:MUNICIPALITY IN
CIDENT RESOLUTION:SOLVED BY MUNICIPALITY:INCIDENCE CLOSURE
PLAN REGISTRATION:TECHNICIAN REGISTRATION:USER REGISTRATION:IN
CIDENT REGISTRATION:INCIDENT PRIORITY ASSIGMENT:NOT CRITICAL:P
MO IS ABLE:RESOURCE ALLOCATION:EXISTS PLAN:PMO INCIDENT RESOLU
TION:UNSOLVED BY PMO:ALLOCATED IN MUNICIPALITY:MUNICIPALITY IN
CIDENT RESOLUTION:UNSOLVED BY MUNICIPALITY:NOT_ ASSIGNED TO_ COM
PANY : INCIDENCE CLOSURE

PLAN REGISTRATION:TECHNICIAN REGISTRATION:USER REGISTRATION:IN
CIDENT REGISTRATION:INCIDENT PRIORITY ASSIGMENT:NOT CRITICAL:P
MO_IS_ ABLE:RESOURCE ALLOCATION:EXISTS PLAN:PMO INCIDENT RESOLU
TION:UNSOLVED BY PMO:ALLOCATED IN MUNICIPALITY:MUNICIPALITY IN
CIDENT RESOLUTION:UNSOLVED BY MUNICIPALITY:ASSIGNED TO COMPANY
:INCIDENT AND_ IMPACT EXTERNAL_ COMPANY ANALYSIS:INCIDENT:COMPAN
Y INCIDENT RESOLUTION:SOLVED BY COMPANY:INCIDENCE CLOSURE

310

APPENDIX B

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

PLAN REGISTRATION:TECHNICIAN REGISTRATION:USER REGISTRATION:IN
CIDENT REGISTRATION:INCIDENT PRIORITY ASSIGMENT:NOT CRITICAL:P
MO IS ABLE:RESOURCE ALLOCATION:EXISTS PLAN:PMO INCIDENT RESOLU
TION:UNSOLVED BY PMO:ALLOCATED IN MUNICIPALITY:MUNICIPALITY IN
CIDENT RESOLUTION:UNSOLVED BY MUNICIPALITY:ASSIGNED TO COMPANY
:INCIDENT AND IMPACT EXTERNAL COMPANY ANALYSIS:IMPROVEMENT:IMP
ROVE : APPROVAL: COMPANY INCIDENT RESOLUTION:SOLVED BY COMPANY:IN
CIDENCE CLOSURE

PLAN REGISTRATION:TECHNICIAN REGISTRATION:USER REGISTRATION:IN
CIDENT REGISTRATION:INCIDENT PRIORITY ASSIGMENT:NOT CRITICAL:P
MO IS ABLE:RESOURCE ALLOCATION:EXISTS PLAN:PMO INCIDENT RESOLU
TION:UNSOLVED BY PMO:ALLOCATED IN MUNICIPALITY:MUNICIPALITY IN
CIDENT RESOLUTION:UNSOLVED BY MUNICIPALITY:ASSIGNED TO COMPANY
:INCIDENT AND IMPACT EXTERNAL COMPANY ANALYSIS:IMPROVEMENT :NEW
_DEVELOPMENT : IMPACT ANALYSIS:FUNCTIONAL AND TECHNICAL DESIGN D
OCUMENTS REVISION:NOT ALLOWED:INCIDENCE CLOSURE

PLAN REGISTRATION:TECHNICIAN REGISTRATION:USER REGISTRATION:IN
CIDENT REGISTRATION:INCIDENT PRIORITY ASSIGMENT:NOT CRITICAL:P
MO IS ABLE:RESOURCE ALLOCATION:EXISTS PLAN:PMO INCIDENT RESOLU
TION:UNSOLVED BY PMO:ALLOCATED IN MUNICIPALITY:MUNICIPALITY IN
CIDENT RESOLUTION:UNSOLVED BY MUNICIPALITY:ASSIGNED TO COMPANY
:INCIDENT AND IMPACT EXTERNAL COMPANY ANALYSIS:IMPROVEMENT:NEW
_DEVELOPMENT : IMPACT ANALYSIS:FUNCTIONAL AND TECHNICAL DESIGN D
OCUMENTS_REVISION:APPROVAL:COMPANY INCIDENT RESOLUTION:UNSOLVE
D BY COMPANY:INCIDENCE CLOSURE

USER_REGISTRATION:INCIDENT REGISTRATION:INCIDENT PRIORITY ASSI
GMENT :NOT CRITICAL:PMO IS NOT ABLE:UNALLOCATED IN MUNICIPALITY
:NOT_ASSIGNED TO COMPANY:INCIDENCE CLOSURE

USER REGISTRATION:INCIDENT REGISTRATION:INCIDENT PRIORITY ASSI
GMENT:NOT CRITICAL:PMO IS NOT ABLE:UNALLOCATED IN MUNICIPALITY
:ASSIGNED TO COMPANY:INCIDENT AND IMPACT EXTERNAL COMPANY ANAL
YSIS:INCIDENT:COMPANY INCIDENT RESOLUTION:SOLVED BY COMPANY:IN
CIDENCE CLOSURE

USER_REGISTRATION:INCIDENT REGISTRATION:INCIDENT PRIORITY ASSI
GMENT :NOT CRITICAL:PMO IS NOT ABLE:UNALLOCATED IN MUNICIPALITY
:ASSIGNED TO COMPANY:INCIDENT AND IMPACT EXTERNAL COMPANY ANAL
YSIS:IMPROVEMENT : IMPROVE : APPROVAL : COMPANY INCIDENT RESOLUTION:
SOLVED BY COMPANY:INCIDENCE CLOSURE

USER_REGISTRATION:INCIDENT REGISTRATION:INCIDENT PRIORITY ASSI
GMENT :NOT CRITICAL:PMO IS NOT ABLE:UNALLOCATED IN MUNICIPALITY
:ASSIGNED TO COMPANY:INCIDENT AND IMPACT EXTERNAL COMPANY ANAL
YSIS:IMPROVEMENT :NEW DEVELOPMENT:IMPACT ANALYSIS:FUNCTIONAL AN
D _TECHNICAL DESIGN DOCUMENTS REVISION:NOT ALLOWED:INCIDENCE CL
OSURE

USER_REGISTRATION:INCIDENT REGISTRATION:INCIDENT PRIORITY ASSI
GMENT:NOT CRITICAL:PMO IS NOT ABLE:UNALLOCATED IN MUNICIPALITY
:ASSIGNED TO COMPANY:INCIDENT AND IMPACT EXTERNAL COMPANY ANAL
YSIS:IMPROVEMENT :NEW_DEVELOPMENT : IMPACT ANALYSTIS:FUNCTIONAL AN
D TECHNICAL DESIGN DOCUMENTS REVISION:APPROVAL:COMPANY INCIDEN
T RESOLUTION:UNSOLVED BY COMPANY:INCIDENCE CLOSURE

TECHNICIAN REGISTRATION:USER REGISTRATION:INCIDENT REGISTRATIO
N:INCIDENT PRIORITY ASSIGMENT:NOT CRITICAL:PMO IS ABLE:RESOURC
E ALLOCATION:NOT EXISTS:SOLVED BY PMO:INCIDENCE CLOSURE

TECHNICIAN REGISTRATION:USER REGISTRATION:INCIDENT REGISTRATIO
N:INCIDENT PRIORITY ASSIGMENT:NOT CRITICAL:PMO_IS ABLE:RESOURC
E_ALLOCATION:NOT EXISTS:UNSOLVED BY PMO:UNALLOCATED IN MUNICIP
ALITY:ASSIGNED TO COMPANY:INCIDENT AND IMPACT EXTERNAL COMPANY

311

APPENDIX B

ANALYSIS:IMPROVEMENT:NEW DEVELOPMENT: IMPACT ANALYSIS:FUNCTION
AL_AND TECHNICAL DESIGN_ DOCUMENTS REVISION:APPROVAL:COMPANY IN
CIDENT RESOLUTION:SOLVED BY COMPANY:INCIDENCE CLOSURE

20. TECHNICIAN REGISTRATION:USER REGISTRATION:INCIDENT REGISTRATIO
N:INCIDENT PRIORITY ASSIGMENT:NOT CRITICAL:PMO IS ABLE:RESOURC
E_ALLOCATION:NOT EXISTS:UNSOLVED BY PMO:ALLOCATED IN MUNICIPAL
ITY:MUNICIPALITY INCIDENT RESOLUTION:SOLVED BY MUNICIPALITY:IN
CIDENCE CLOSURE

21. TECHNICIAN REGISTRATION:USER REGISTRATION:INCIDENT REGISTRATIO
N:INCIDENT PRIORITY ASSIGMENT:NOT CRITICAL:PMO IS ABLE:RESOURC
E ALLOCATION:NOT EXISTS:UNSOLVED BY PMO:ALLOCATED IN MUNICIPAL
ITY:MUNICIPALITY INCIDENT RESOLUTION:UNSOLVED BY MUNICIPALITY:
NOT ASSIGNED TO COMPANY:INCIDENCE CLOSURE

22. TECHNICIAN REGISTRATION:USER REGISTRATION:INCIDENT REGISTRATIO
N:INCIDENT PRIORITY ASSIGMENT:NOT CRITICAL:PMO IS ABLE:RESOURC
E ALLOCATION:NOT EXISTS:UNSOLVED BY PMO:ALLOCATED IN MUNICIPAL
ITY:MUNICIPALITY INCIDENT RESOLUTION:UNSOLVED BY MUNICIPALITY:
ASSIGNED_TO COMPANY:INCIDENT AND IMPACT EXTERNAL COMPANY ANALY
SIS:INCIDENT:COMPANY INCIDENT RESOLUTION:SOLVED BY COMPANY:INC
IDENCE CLOSURE

23. TECHNICIAN REGISTRATION:USER REGISTRATION:INCIDENT REGISTRATIO
N:INCIDENT PRIORITY ASSIGMENT:NOT CRITICAL:PMO IS ABLE:RESOURC
E ALLOCATION:NOT EXISTS:UNSOLVED BY PMO:ALLOCATED IN MUNICIPAL
ITY:MUNICIPALITY INCIDENT RESOLUTION:UNSOLVED BY MUNICIPALITY:
ASSIGNED_TO COMPANY:INCIDENT AND IMPACT EXTERNAL COMPANY ANALY
SIS:IMPROVEMENT : IMPROVE : APPROVAL:COMPANY INCIDENT RESOLUTION:S
OLVED_BY_ COMPANY:INCIDENCE CLOSURE

24. TECHNICIAN REGISTRATION:USER REGISTRATION:INCIDENT REGISTRATIO
N:INCIDENT PRIORITY ASSIGMENT:NOT CRITICAL:PMO IS ABLE:RESOURC
E ALLOCATION:NOT EXISTS:UNSOLVED BY PMO:ALLOCATED IN MUNICIPAL
ITY:MUNICIPALITY INCIDENT RESOLUTION:UNSOLVED BY MUNICIPALITY:
ASSIGNED TO COMPANY:INCIDENT AND IMPACT EXTERNAL COMPANY ANALY
SIS:IMPROVEMENT:NEW DEVELOPMENT:IMPACT ANALYSIS:FUNCTIONAL AND
_TECHNICAL DESIGN DOCUMENTS REVISION:NOT ALLOWED:INCIDENCE CLO
SURE

25. TECHNICIAN REGISTRATION:USER REGISTRATION:INCIDENT REGISTRATIO
N:INCIDENT PRIORITY ASSIGMENT:NOT CRITICAL:PMO IS ABLE:RESOURC
E ALLOCATION:NOT EXISTS:UNSOLVED BY PMO:ALLOCATED IN MUNICIPAL
ITY:MUNICIPALITY INCIDENT RESOLUTION:UNSOLVED BY MUNICIPALITY:
ASSIGNED TO COMPANY:INCIDENT AND IMPACT EXTERNAL COMPANY ANALY
SIS:IMPROVEMENT:NEW DEVELOPMENT:IMPACT ANALYSIS:FUNCTIONAL AND
_TECHNICAL DESIGN DOCUMENTS REVISION:APPROVAL:COMPANY INCIDENT
_RESOLUTION:UNSOLVED BY COMPANY:INCIDENCE CLOSURE

26. PLAN REGISTRATION:TECHNICIAN REGISTRATION:USER REGISTRATION:IN
CIDENT REGISTRATION:INCIDENT PRIORITY ASSIGMENT:NOT CRITICAL:P
MO IS ABLE:RESOURCE ALLOCATION:EXISTS PLAN:PMO INCIDENT RESOLU
TION:UNSOLVED BY PMO:UNALLOCATED IN MUNICIPALITY:NOT ASSIGNED
TO_COMPANY : INCIDENCE CLOSURE

27. PLAN REGISTRATION:TECHNICIAN REGISTRATION:USER REGISTRATION:IN
CIDENT REGISTRATION:INCIDENT PRIORITY ASSIGMENT:NOT CRITICAL:P
MO_IS_ ABLE:RESOURCE_ALLOCATION:EXISTS PLAN:PMO_ INCIDENT RESOLU
TION:UNSOLVED BY PMO:UNALLOCATED IN MUNICIPALITY:ASSIGNED TO C
OMPANY : INCIDENT AND IMPACT EXTERNAL COMPANY ANALYSIS:INCIDENT:
COMPANY INCIDENT RESOLUTION:SOLVED BY COMPANY:INCIDENCE CLOSUR
E

28. PLAN REGISTRATION:TECHNICIAN REGISTRATION:USER REGISTRATION:IN
CIDENT REGISTRATION:INCIDENT PRIORITY ASSIGMENT:NOT CRITICAL:P

312

APPENDIX B

29.

30.

31.

32.

33.

34,

35.

36.

MO_IS ABLE:RESOURCE_ALLOCATION:EXISTS PLAN:PMO INCIDENT RESOLU
TION:UNSOLVED_ BY PMO:UNALLOCATED_ IN MUNICIPALITY:ASSIGNED TO C
OMPANY : INCIDENT AND IMPACT EXTERNAL COMPANY ANALYSIS:IMPROVEME
NT: IMPROVE : APPROVAL : COMPANY INCIDENT RESOLUTION:SOLVED BY COMP
ANY: INCIDENCE CLOSURE

PLAN REGISTRATION:TECHNICIAN REGISTRATION:USER REGISTRATION:IN
CIDENT REGISTRATION:INCIDENT PRIORITY ASSIGMENT:NOT CRITICAL:P
MO IS ABLE:RESOURCE ALLOCATION:EXISTS PLAN:PMO INCIDENT RESOLU
TION:UNSOLVED_BY PMO:UNALLOCATED_ IN MUNICIPALITY:ASSIGNED TO C
OMPANY : INCIDENT_ AND_IMPACT EXTERNAL COMPANY ANALYSIS:IMPROVEME
NT:NEW DEVELOPMENT:IMPACT ANALYSIS:FUNCTIONAL AND TECHNICAL DE
SIGN DOCUMENTS REVISION:NOT ALLOWED:INCIDENCE CLOSURE

PLAN REGISTRATION:TECHNICIAN REGISTRATION:USER REGISTRATION:IN
CIDENT REGISTRATION:INCIDENT PRIORITY ASSIGMENT:NOT CRITICAL:P
MO IS ABLE:RESOURCE ALLOCATION:EXISTS PLAN:PMO INCIDENT RESOLU
TION:UNSOLVED BY PMO:UNALLOCATED IN MUNICIPALITY:ASSIGNED TO C
OMPANY : INCIDENT AND_ IMPACT EXTERNAL COMPANY ANALYSIS:IMPROVEME
NT:NEW_DEVELOPMENT: IMPACT ANALYSIS:FUNCTIONAL AND TECHNICAL DE
SIGN DOCUMENTS REVISION:APPROVAL:COMPANY INCIDENT RESOLUTION:U
NSOLVED BY COMPANY:INCIDENCE CLOSURE

PLAN REGISTRATION:TECHNICIAN REGISTRATION:USER REGISTRATION:IN
CIDENT REGISTRATION:INCIDENT PRIORITY ASSIGMENT:NOT CRITICAL:P
MO IS ABLE:RESOURCE ALLOCATION:EXISTS PLAN:PMO INCIDENT RESOLU
TION:UNSOLVED BY PMO:ALLOCATED IN MUNICIPALITY:MUNICIPALITY IN
CIDENT RESOLUTION:UNSOLVED BY MUNICIPALITY:ASSIGNED TO COMPANY
:INCIDENT AND IMPACT EXTERNAL COMPANY ANALYSIS:INCIDENT:COMPAN
Y INCIDENT RESOLUTION:UNSOLVED BY COMPANY:INCIDENCE CLOSURE
PLAN REGISTRATION:TECHNICIAN REGISTRATION:USER REGISTRATION:IN
CIDENT REGISTRATION:INCIDENT PRIORITY ASSIGMENT:NOT CRITICAL:P
MO IS ABLE:RESOURCE ALLOCATION:EXISTS PLAN:PMO INCIDENT RESOLU
TION:UNSOLVED BY PMO:ALLOCATED_ IN MUNICIPALITY:MUNICIPALITY IN
CIDENT RESOLUTION:UNSOLVED BY MUNICIPALITY:ASSIGNED TO_ COMPANY
:INCIDENT AND IMPACT EXTERNAL COMPANY ANALYSIS:IMPROVEMENT:IMP
ROVE:NOT ALLOWED:INCIDENCE CLOSURE

PLAN REGISTRATION:TECHNICIAN REGISTRATION:USER REGISTRATION:IN
CIDENT REGISTRATION:INCIDENT PRIORITY ASSIGMENT:NOT CRITICAL:P
MO IS ABLE:RESOURCE ALLOCATION:EXISTS PLAN:PMO INCIDENT RESOLU
TION:UNSOLVED BY PMO:ALLOCATED IN MUNICIPALITY:MUNICIPALITY IN
CIDENT RESOLUTION:UNSOLVED BY MUNICIPALITY:ASSIGNED TO COMPANY
:INCIDENT AND IMPACT EXTERNAL COMPANY ANALYSIS:IMPROVEMENT : IMP
ROVE : APPROVAL: COMPANY INCIDENT RESOLUTION:UNSOLVED BY COMPANY:
INCIDENCE CLOSURE
USER_REGISTRATION:INCIDENT REGISTRATION:INCIDENT PRIORITY ASSI
GMENT :NOT CRITICAL:PMO IS _NOT ABLE:UNALLOCATED IN MUNICIPALITY
:ASSIGNED TO COMPANY:INCIDENT AND IMPACT EXTERNAL COMPANY ANAL
YSIS:INCIDENT:COMPANY INCIDENT RESOLUTION:UNSOLVED BY COMPANY:
INCIDENCE CLOSURE
USER_REGISTRATION:INCIDENT REGISTRATION:INCIDENT PRIORITY ASSI
GMENT :NOT CRITICAL:PMO IS NOT ABLE:UNALLOCATED IN MUNICIPALITY
:ASSIGNED TO COMPANY:INCIDENT AND IMPACT EXTERNAL COMPANY ANAL
YSIS:IMPROVEMENT : IMPROVE:NOT ALLOWED:INCIDENCE CLOSURE
USER_REGISTRATION:INCIDENT REGISTRATION:INCIDENT PRIORITY ASSI
GMENT :NOT CRITICAL:PMO IS NOT ABLE:UNALLOCATED IN MUNICIPALITY
:ASSIGNED TO COMPANY:INCIDENT AND IMPACT EXTERNAL COMPANY ANAL
YSIS:IMPROVEMENT : IMPROVE : APPROVAL: COMPANY INCIDENT RESOLUTION:
UNSOLVED BY COMPANY:INCIDENCE CLOSURE

313

APPENDIX B

37.

38.

39.

40.

41.

42.

43.

44,

45.

TECHNICIAN REGISTRATION:USER REGISTRATION:INCIDENT REGISTRATIO
N:INCIDENT PRIORITY ASSIGMENT:NOT CRITICAL:PMO IS ABLE:RESOURC
E ALLOCATION:NOT EXISTS:UNSOLVED BY PMO:UNALLOCATED IN MUNICIP
ALITY:NOT ASSIGNED TO_COMPANY:INCIDENCE CLOSURE

TECHNICIAN REGISTRATION:USER REGISTRATION:INCIDENT REGISTRATIO
N:INCIDENT PRIORITY ASSIGMENT:NOT CRITICAL:PMO IS ABLE:RESOURC
E ALLOCATION:NOT EXISTS:UNSOLVED BY PMO:UNALLOCATED IN MUNICIP
ALITY:ASSIGNED TO_COMPANY:INCIDENT AND IMPACT EXTERNAL COMPANY
ANALYSIS:INCIDENT:COMPANY INCIDENT RESOLUTION:SOLVED BY COMPA
NY: INCIDENCE_ CLOSURE

TECHNICIAN REGISTRATION:USER REGISTRATION:INCIDENT REGISTRATIO
N:INCIDENT PRIORITY ASSIGMENT:NOT CRITICAL:PMO IS ABLE:RESOURC
E_ALLOCATION:NOT EXISTS:UNSOLVED BY PMO:UNALLOCATED IN MUNICIP
ALITY:ASSIGNED TO_ COMPANY:INCIDENT AND IMPACT EXTERNAL COMPANY
_ ANALYSTIS:IMPROVEMENT : IMPROVE : APPROVAL:COMPANY INCIDENT RESOLU
TION:SOLVED BY COMPANY:INCIDENCE CLOSURE

TECHNICIAN REGISTRATION:USER REGISTRATION:INCIDENT REGISTRATIO
N:INCIDENT PRIORITY ASSIGMENT:NOT CRITICAL:PMO IS ABLE:RESOURC
E ALLOCATION:NOT EXISTS:UNSOLVED BY PMO:UNALLOCATED IN MUNICIP
ALITY:ASSIGNED TO COMPANY:INCIDENT AND IMPACT EXTERNAL COMPANY
ANALYSIS:IMPROVEMENT :NEW DEVELOPMENT : IMPACT ANALYSIS:FUNCTION
AL _AND TECHNICAL DESIGN_ DOCUMENTS REVISION:NOT ALLOWED:INCIDEN
CE_CLOSURE

TECHNICIAN REGISTRATION:USER REGISTRATION:INCIDENT REGISTRATIO
N:INCIDENT PRIORITY ASSIGMENT:NOT CRITICAL:PMO IS ABLE:RESOURC
E_ALLOCATION:NOT EXISTS:UNSOLVED BY PMO:UNALLOCATED IN MUNICIP
ALITY:ASSIGNED TO_ COMPANY:INCIDENT AND IMPACT_ EXTERNAL COMPANY
_ANALYSIS:IMPROVEMENT:NEW_DEVELOPMENT:IMPACT ANALYSIS:FUNCTION
AL AND TECHNICAL DESIGN DOCUMENTS REVISION:APPROVAL:COMPANY IN
CIDENT RESOLUTION:UNSOLVED BY COMPANY:INCIDENCE CLOSURE
TECHNICIAN REGISTRATION:USER REGISTRATION:INCIDENT REGISTRATIO
N:INCIDENT PRIORITY ASSIGMENT:NOT CRITICAL:PMO IS ABLE:RESOURC
E_ALLOCATION:NOT EXISTS:UNSOLVED BY PMO:ALLOCATED IN MUNICIPAL
ITY:MUNICIPALITY INCIDENT RESOLUTION:UNSOLVED BY MUNICIPALITY:
ASSIGNED TO_ COMPANY:INCIDENT AND IMPACT_ EXTERNAL COMPANY ANALY
SIS:INCIDENT:COMPANY INCIDENT RESOLUTION:UNSOLVED BY COMPANY:I
NCIDENCE CLOSURE

TECHNICIAN REGISTRATION:USER REGISTRATION:INCIDENT REGISTRATIO
N:INCIDENT PRIORITY ASSIGMENT:NOT CRITICAL:PMO IS ABLE:RESOURC
E_ALLOCATION:NOT EXISTS:UNSOLVED BY PMO:ALLOCATED IN MUNICIPAL
ITY:MUNICIPALITY INCIDENT RESOLUTION:UNSOLVED BY MUNICIPALITY:
ASSIGNED TO COMPANY:INCIDENT AND IMPACT EXTERNAL COMPANY ANALY
SIS:IMPROVEMENT: IMPROVE:NOT ALLOWED:INCIDENCE CLOSURE
TECHNICIAN REGISTRATION:USER REGISTRATION:INCIDENT REGISTRATIO
N:INCIDENT PRIORITY ASSIGMENT:NOT CRITICAL:PMO IS ABLE:RESOURC
E ALLOCATION:NOT EXISTS:UNSOLVED BY PMO:ALLOCATED IN MUNICIPAL
ITY:MUNICIPALITY INCIDENT RESOLUTION:UNSOLVED BY MUNICIPALITY:
ASSIGNED TO_ COMPANY:INCIDENT AND IMPACT EXTERNAL COMPANY ANALY
SIS:IMPROVEMENT : IMPROVE : APPROVAL:COMPANY INCIDENT RESOLUTION:U
NSOLVED BY COMPANY:INCIDENCE CLOSURE

PLAN REGISTRATION:TECHNICIAN REGISTRATION:USER REGISTRATION:IN
CIDENT REGISTRATION:INCIDENT PRIORITY ASSIGMENT:NOT CRITICAL:P
MO IS ABLE:RESOURCE ALLOCATION:EXISTS PLAN:PMO INCIDENT RESOLU
TION:UNSOLVED BY PMO:UNALLOCATED IN MUNICIPALITY:ASSIGNED TO C
OMPANY : INCIDENT_AND_IMPACT EXTERNAL COMPANY ANALYSIS:INCIDENT:
COMPANY INCIDENT RESOLUTION:UNSOLVED BY COMPANY:INCIDENCE CLOS
URE

314

APPENDIX B

46.

47.

48.

49.

50.

PLAN REGISTRATION:TECHNICIAN REGISTRATION:USER REGISTRATION:IN
CIDENT REGISTRATION:INCIDENT PRIORITY ASSIGMENT:NOT CRITICAL:P
MO IS ABLE:RESOURCE ALLOCATION:EXISTS PLAN:PMO INCIDENT RESOLU
TION:UNSOLVED BY PMO:UNALLOCATED IN MUNICIPALITY:ASSIGNED TO C
OMPANY : INCIDENT AND IMPACT EXTERNAL COMPANY ANALYSIS:IMPROVEME
NT:IMPROVE:NOT ALLOWED:INCIDENCE CLOSURE

PLAN REGISTRATION:TECHNICIAN REGISTRATION:USER REGISTRATION:IN
CIDENT REGISTRATION:INCIDENT PRIORITY ASSIGMENT:NOT CRITICAL:P
MO IS ABLE:RESOURCE ALLOCATION:EXISTS PLAN:PMO INCIDENT RESOLU
TION:UNSOLVED BY PMO:UNALLOCATED IN MUNICIPALITY:ASSIGNED TO C
OMPANY : INCIDENT AND IMPACT EXTERNAL COMPANY ANALYSIS:IMPROVEME
NT : IMPROVE : APPROVAL : COMPANY INCIDENT RESOLUTION:UNSOLVED BY CO
MPANY : INCIDENCE CLOSURE

TECHNICIAN REGISTRATION:USER REGISTRATION:INCIDENT REGISTRATIO
N:INCIDENT PRIORITY ASSIGMENT:NOT CRITICAL:PMO IS ABLE:RESOURC
E ALLOCATION:NOT EXISTS:UNSOLVED BY PMO:UNALLOCATED IN MUNICIP
ALITY:ASSIGNED TO COMPANY:INCIDENT AND IMPACT EXTERNAL COMPANY
_ANALYSIS:INCIDENT:COMPANY INCIDENT RESOLUTION:UNSOLVED BY COM
PANY : INCIDENCE CLOSURE

TECHNICIAN REGISTRATION:USER REGISTRATION:INCIDENT REGISTRATIO
N:INCIDENT PRIORITY ASSIGMENT:NOT CRITICAL:PMO IS ABLE:RESOURC
E ALLOCATION:NOT EXISTS:UNSOLVED BY PMO:UNALLOCATED IN MUNICIP
ALITY:ASSIGNED TO COMPANY:INCIDENT AND IMPACT EXTERNAL COMPANY
_ANALYSIS:IMPROVEMENT : IMPROVE :NOT ALLOWED:INCIDENCE CLOSURE

TECHNICIAN REGISTRATION:USER REGISTRATION:INCIDENT REGISTRATIO
N:INCIDENT PRIORITY ASSIGMENT:NOT CRITICAL:PMO IS ABLE:RESOURC
E_ALLOCATION:NOT EXISTS:UNSOLVED BY PMO:UNALLOCATED IN MUNICIP
ALITY:ASSIGNED TO COMPANY:INCIDENT AND IMPACT_ EXTERNAL COMPANY
_ANALYSIS:IMPROVEMENT : IMPROVE : APPROVAL:COMPANY INCIDENT RESOLU
TION:UNSOLVED BY COMPANY:INCIDENCE CLOSURE

B.2.3 Test Data

For specification of test values, data was extracted from Test

Model and stored in a data base (see Section 5.3.1).

Table B.25 shows the test values for Incident Manager case study.

These values are the example values passed to the test model from the

requirements model.

B.3 Test Case Generation

As one can observe in the list of test scenarios (Section B.2.2), the

test cases are grouped into 50 possible test scenarios, all of which were

defined from the requirements model shown in Figure B.2.

315

APPENDIX B

Table B.25. Values for variables of test model for Incident Management

Test case Test Item Variable Data Concrete
Type Values
USER_REGISTRATION USER id_user number 100
USER_REGISTRATION USER name text Pepe Pérez
TECHNICIAN_ TECHNICIAN id_technician number 200
REGISTRATION
TECHNICIAN_ TECHNICIAN name text Juan Valverde
REGISTRATION
PLAN_REGISTRATION RESOLUTION_ id_plan number 200
PLAN
PLAN_REGISTRATION RESOLUTION_ name text Enable activity
PLAN register
PLAN_REGISTRATION RESOLUTION_ step_sequence text 1- Login as
PLAN administrator
2- Select option
“Enable
activity”
INCIDENT_ INCIDENT id_incident number 501
REGISTRATION
INCIDENT_ INCIDENT request_type text Request
REGISTRATION
INCIDENT_ INCIDENT component text Activities
REGISTRATION
INCIDENT_ INCIDENT contact_ text RRHH secretary
REGISTRATION information
INCIDENT_ INCIDENT Initial_scope text no critical
REGISTRATION
INCIDENT_ INCIDENT subject text Enable activity
REGISTRATION
INCIDENT_ INCIDENT Description text Activity cannot
REGISTRATION be created
INCIDENT_ INCIDENT step_sequence text 1- Login as
REGISTRATION administrator
2- Select option
“Enable
activity”
INCIDENT_PRIORITY_ Initial_scope state text Pending Review
ASSIGMENT
INCIDENT_PRIORITY_ Initial_scope progress text INCIDENT
ASSIGMENT PRIORITY
ASSIGMENT
INCIDENT_PRIORITY_ Initial_scope progress text Bug
ASSIGMENT
NOT_CRITICAL Estimated_ State text Incident
scope Revision
NOT_CRITICAL Estimated_ progress text REGISTER
scope SCOPE
NOT_CRITICAL Estimated_ Estimated_scop | text NOT CRITICAL
scope e
CRITICAL Estimated_ State text Incident
scope Revision
CRITICAL Estimated_ progress text REGISTER

316

APPENDIX B

scope SCOPE
CRITICAL Estimated_ Estimated_scop | text CRITICAL
scope e
PMO_IS_ABLE progress State text PMO IS ABLE
PMO_IS_ABLE progress progress text ASSESS PMO
CAPACITY TO
SOLVE
PMO_IS_NOT_ABLE progress state text PMO IS NOT
ABLE
PMO_IS_NOT_ABLE progress progress text ASSESS PMO
CAPACITY TO
SOLVE
RESOURCE_ALLOCATI RESOURCE_ALL | id_allocation text 500
ON OCATION
EXISTS_PLAN plan_response plan_response text EXISTS_PLAN
NOT_EXISTS plan_response plan_response text NOT EXISTS
UNSOLVED_BY_PMO progress state text UNSOLVED BY
PMO
UNSOLVED_BY_PMO progress Progress text PMO_RESOLUTI
ON
SOLVER_BY_PMO progress state text SOLVED BY
PMO
SOLVER_BY_PMO progress progress text PMO
RESOLUTION
INCIDENT_AND_ EXTERNAL_ id_analysis Number 800
IMPACT_EXTERNAL_ COMPANY_
COMPANY_ANALYSIS ANALYSIS
INCIDENT_AND_ EXTERNAL_ subject text analysis of
IMPACT_EXTERNAL_ COMPANY_ company XYZ
COMPANY_ANALYSIS ANALYSIS
INCIDENT_AND_ EXTERNAL_ description text analysis of
IMPACT_EXTERNAL_ COMPANY_ incident
COMPANY_ANALYSIS ANALYSIS
INCIDENT_AND_ EXTERNAL_ analysis text Thisis a
IMPACT_EXTERNAL_ COMPANY_ software
COMPANY_ANALYSIS ANALYSIS improvement
INCIDENT_AND_ EXTERNAL_ implications text Access to the
IMPACT_EXTERNAL_ COMPANY_ database must
COMPANY_ANALYSIS ANALYSIS be checked
INCIDENT_AND_ EXTERNAL_ posible_solutio text Login as
IMPACT_EXTERNAL_ COMPANY_ ns Administrator
COMPANY_ANALYSIS ANALYSIS
INCIDENT_AND_ EXTERNAL_ time_estimatio text 2 days
IMPACT_EXTERNAL_ COMPANY_ n
COMPANY_ANALYSIS ANALYSIS
IMPROVEMENT progress state text IMPROVEMENT
IMPROVEMENT progress progress text ACTION PLAN
DEFINITION
INCIDENT progress state text INCIDENT
INCIDENT progress progress text ACTION PLAN
DEFINITION
NEW_DEVELOPMENT progress state text NEW
DEVELOPMENT

317

APPENDIX B

NEW_DEVELOPMENT progress progress text IMPROVEMENT
EVALUATION
IMPROVE progress state text IMPROVE
IMPROVE progress progress text IMPROVEMENT
EVALUATION
IMPACT_ANALYSIS cost_estimation | state text Solution
analysis
IMPACT_ANALYSIS cost_estimation | progress text None
IMPACT_ANALYSIS cost_estimation | time_estimatio text 1 week
n
IMPACT_ANALYSIS cost_estimation | cost_estimation | text 500.00
PMO_INCIDENT_ step_sequence state text PMO
RESOLUTION
PMO_INCIDENT_ step_sequence progress text none
RESOLUTION
PMO_INCIDENT_ step_sequence step_sequence text PMO resolution
RESOLUTION
ALLOCATED_IN_ progress state text ALLOCATED IN
MUNICIPALITY MUNICIPALITY
ALLOCATED_IN_ progress progress text MUNICIPALITY
MUNICIPALITY ASSIGNMENT
EVALUATION
UNALLOCATED_IN_ progress state text UNALLOCATED
MUNICIPALITY IN
MUNICIPALITY
UNALLOCATED_IN_ progress progress text MUNICIPALITY
MUNICIPALITY ASSIGNMENT
EVALUATION
MUNICIPALITY_ step_sequence state text Municipality
INCIDENT_ resolution
RESOLUTION
MUNICIPALITY_ step_sequence progress text Municipality
INCIDENT_
RESOLUTION
MUNICIPALITY_ step_sequence step_sequence text Login as
INCIDENT_ Administrator
RESOLUTION
UNSOLVED_BY_ progress state text UNSOLVED BY
MUNICIPALITY MUNICIPALITY
UNSOLVED_BY_ progress progress text MUNICIPALITY
MUNICIPALITY RESOLUTION
VALIDATION
SOLVED_BY_ progress state text SOLVED BY
MUNICIPALITY MUNICIPALITY
SOLVED_BY_ progress progress text MUNICIPALITY
MUNICIPALITY RESOLUTION
VALIDATION
ASSIGNED_TO_ progress state text ASSIGNED TO
COMPANY COMPANY
ASSIGNED_TO_ progress progress text COMPANY
COMPANY ASSIGNMENT
EVALUATION
NOT_ASSIGNED_TO_ progress state text NOT ASSIGNED

318

APPENDIX B

COMPANY TO COMPANY
NOT_ASSIGNED_TO_ progress progress text COMPANY
COMPANY ASSIGNMENT
EVALUATION
FUNCTIONAL_AND_ progress state text DOCUMENTS
TECHNICAL_DESIGN_ REVISION
DOCUMENTS_
REVISION
FUNCTIONAL_AND_ progress progress text FUNCTIONAL
TECHNICAL_DESIGN_ AND
DOCUMENTS_ TECHNICAL
REVISION DESIGN
DOCUMENTS
REVISION
APPROVAL progress state text APPROVAL
APPROVAL progress progress text NEED AND
VIABILITY
EVALUATION
NOT_ALLOWED progress state text NOT ALLOWED
NOT_ALLOWED progress progress text NEED AND
VIABILITY
EVALUATION
COMPANY_INCIDENT step_sequence state text company
_RESOLUTION resolution
COMPANY_INCIDENT step_sequence progress text Progress
_RESOLUTION
COMPANY_INCIDENT step_sequence step_sequence text Select the new
_RESOLUTION option
SOLVED_BY_ progress state text SOLVED BY
COMPANY COMPANY
SOLVED_BY_ progress progress text COMPANY
COMPANY RESOLUTION
VALIDATION
UNSOLVED_BY_ progress state text UNSOLVED BY
COMPANY COMPANY
UNSOLVED_BY_ progress progress text COMPANY
COMPANY RESOLUTION
VALIDATION
INCIDENCE_CLOSURE state state text CLOSED

In order to illustrate the test case generation phase of the case

study, we selected all test cases to be generated (see Section 5.4.3),

which include some negative conditions such as out of range values,

based on variable partitions that can be derived from CS information,

constraint violations, minimum cardinality violation, and, unique value

violation for class variables.

319

APPENDIX B

The result of this phase is 115 different test cases to test the 50
test scenarios. For instance, test scenario number 2 with test case
number 51 belongs to the set of test items shown in Figure B.4.

These test items represent the report of a critical incident that is
not solved by the PMO and is not assigned to either the municipality or
a company, therefore its final status is closed.

1 private import PMO::¥*;

2 public import Alf::Library::BasicTypes::*;

3 public import Alf::Library::Asserts::*;

2

5 / alue (test cass positive)

[

:

9 // Servic

10 w USER(p_atrid use ,D_atrname= "E

11/ ENT

12 17

13 incident = new INCIDENT (p_atrid_incident=501,p_atrrequest_type=

14 p_atrcorponent= ", p_atrcontact_information= 1
15 p_atrinitial_scope: ",p_atraubject=

16 p_atrdescription= " 1 |

17 3tep_segquence: on",p_agruser=user_):
18

19

20

21 gg

22 incident .set_initial scope(pt_state= "Pending Review", pt_progress= "INCIDENT FRIORITY L
23 pt_initial_scope= "bug”,p_thisINCIDENT=incident) :

24 CAL

25

28 scope (pt_state= "Inci Revision",pt_progress= "REGISTER SCOFE",
27 TICAL" thisINCIDENT=incident_);

28 TY

29

30 IBALITY",

31 ",p_thisINCIDENT=incident_);
32

33

34 incident_.set 10 C

35 Dt_progress

B =i

37 5

38 nt_.set_state(pt_state= "closs=d”,p_thisINCIDENT=incident };

38

Figure B.4. Test cases of the test scenario #2

B.4 Mutant Generation

This step was performed automatically by means of the CoSTest
Mutant Generator (see Sections 5.5 and 7.7). Figure B.5. shows an
excerpt of the UML class diagram used as CS for IM case study as an
example of the result obtained in the mutation step. Table B.26 shows
eight mutants that were generated from the IM conceptual schema
after applying the mutant generation process to the case study.

320

APPENDIX B

Qued uonnosamau:

8)2 anbuunsic-Ny14 MOLLN 1053y Ased
[77d NOILM10S Y ¥23u0d

{120}

(ueIdIUY337pIR)2 anbiunsi<-NGTIINHIIL 3sod
(Ue Iy MBI FTIINH AL HEIU0d

W51ST3 LON,==2suodsarue)dTd

1 W14 SL5IX3, ==3suodsa, uedyd aid

(3 suodzaimte djas: | NIANT Pa1U00 Bumg 5
(10l {100}

“aBaur: sisfjeuepraeTd JoisAjeueTAueduwodTewipa T mau 3

(s1sheueTpra)s anbiunzi< -SISATYNG ANVANO D™ Trhy3Lx 3sed
psisAjeue hueduwios e s MaLESEATYNT ANTIN0) TYNYILKG P03

{120}

Buing : aweune™

(Bupg : axuanbas dagened
abapu : uejd pred juey

uonnjosaimau

(uopedojje™pr-a)a anbiuns

(uones

-NOLLYD0T17 32¥N0S 3y asod
OLL72011% 10¥N0STY el

buins : aauznbasTdas =

{10}

Bupis : uopewRsa AW
Buys : suopn|osz|qusod =

Doooo

2By sishjeuep)

Nvd NOLLN10S3d 5

JTOLLY D, ==adoas pagewunsayd
1. 7921 10N, ==2do3s"pajewnsayd 1aud

SISATVNY ANVdIWOD TWNYALAE 5

sishjeueAurduwosjewispaTjusproul

[0

soisAjeueAuedwonTeuiagxa

Juapnul

(o35 patetunsa1asi |IQON] HEIU0
{100}

{ Bups § sweuneTd
wuyzapugeTd Jueiuyaymau g

Buing : swieu =
13Baqu: ueIUYIAYT P &)

{quapiauTprra)a anbiupsi< - | NIATIMT A50d
(Oauzplaulmaut | NIQIONI #E3U03
{120}

NVIJINHOALF

{ BuLg aweLReT
“1aBaqu] £ sasnTpLyeTd JzsnTmau g ol

ueRIIYE 0]
uone30|jeT{ nasai uRIUY Y

suonEaoEa2nesa) L1l

Bupag : aweu [| 1250

(LNIAIINI* LNIAIINIEE

(LNIQNE LNIADNE Y d ‘[eay: uonewnsa3s0373d Buingiuonewnsa awy3d Bu
{ INFQONI LNIAENEYd Buiss adoas pajewupsad Bupn;
(LMIAMNI ¢ LNIADNI d B

(LN3IAIINI : INIATINTEd Buy

(N3N : LNFarNsyyd B
Buing : a>uanbas dayyd Buug : ssaibaid3d Buis : meyeyd Jasuanbas daysyas @

1230 Jageye et
15 + asuodsaiueidyd Jasuodsaruejdjas

sqe3sTd uonewnsa 50320
ae3d Jadoas pagewinsaias
: ssauBoudyd “Buung : g3y JssaiBordas @

{ LNJAQIINI LN3QNIELRd Buing : ado>s™jeruryd ‘Bung : szaiboid yd ‘Guing : ayessd Jadess eniuraas @

(4350 ¢ 13smiBe-d Bupng : a>uanbas~dajene=d Buiig : uon
5+ uoneLIou e d B

asapne”d B
5 1 wauodwone~d Bupng : adfysanbal

12afgnsne=d “Buing : adoas epuned
e=d “1aBaqu] : Jusppurpraed juspiurmau

&

NP1 =)

spuapiU

L0l

(WYIDIMHDAL ¢ venuysanbed
INIAIDNT 3uapunbed
“13Bagur : uonedo,

TpLeTd JuonelogeTadIN0sa Mmal &

13633ur : uonedo| TP &

|eTaadnota) UspLUl

NOILYIOTIV 304N0S3d H

It

|Ba%un0saI JuapIUl

B +asuodsalTued
|eay : UORRLUIGEI S0
BuLgS © uonewsaTawg
bumg @ adoas"pajelunsa
Bumg : ssauboad

Buugs @ a3e3s

Buug @ a3uanbasTdage
Buus : uondudsap
Buig : 3algns

bums : adoasT e
BULS © UORELLIOMIT RO
Buuis uauodwes
Buins : adfTsanbar
12Ba3ur : Juapraupl

000000000000 @0

INIAIINI 5

B.5. Excerpt of the Conceptual Schema for Incident Management System

igure

F

321

APPENDIX B

Table B.26. List of First Order Mutants generated for the case study

Mutation
No | Mutation Operator
Operator Rule

Mutated elements

Deletes an
1| MAS_2 Association

user_incident

Deletes a
2 | MCO_5 constraint)

context INCIDENTset_estimated_scope()
precondition pt_estimated_scope=="NOT CRITICAL" | |
pt_estimated_scope=="CRITICAL"

Deletes a
Parameter
from a Class
3 | MPA_4 Operation)

p_thisINCIDENT(set_cost_estimation-INCIDENT)

Adds a
Parameter to
a Class

4 | UPA2_2 Operation)

set_initial_scope-INCIDENT

Changes the
member
5 | WAS1_1 ends)

incident_external_company_analysis

Changes
Class visibility
6 | WCL1_2 property)

EXTERNAL_COMPANY_ANALYSIS

Changes the
12 operator
7 | WCO5_6 (==) with (!=))

context INCIDENTset_progress()

precondition pt_state=="PMO IS ABLE" | | pt_state=="PMO
IS NOT ABLE" | | pt_state=="UNALLOCATED IN
MUNICIPALITY" | | pt_state=="ALLOCATED IN
MUNICIPALITY" | | pt_state=="IMPROVEMENT" ||
pt_state=="NEW DEVELOPMENT" | | pt_state=="APPROVAL"
| | pt_state=="NOT ALLOWED" || pt_state=="IMPROVE" | |
pt_state=="INCIDENT" | | pt_state=="NOT ASSIGNED TO
COMPANY" || pt_state=="ASSIGNED TO COMPANY" | |
pt_state=="SOLVED BY PMQ" || pt_state=="UNSOLVED BY
PMO" || pt_state=="SOLVED BY MUNICIPALITY" ||
pt_state=="UNSOLVED BY MUNICIPALITY" | |
pt_state=="SOLVED BY COMPANY" | |
pt_state=="UNSOLVED BY COMPANY" ||
pt_state=="DOCUMENTS REVISION"

Changes the
operation
visibility

8 | WOP2_7 property)

set_state-INCIDENT

322

APPENDIX B

B.5 Test Execution

This phase of our approach is automatic; we only had to select the
mutated CSs and then run the test cases against them. We divide this
section into two main subsections (B.5.1 and B.5.2), each of which
focuses on a specific tasks of the framework.

B.5.1 Generation of the Executable Conceptual

Schema Under Test

This step was performed automatically by means of the UML2ALF
transformation implemented in the CSUT Processor that is provided by
CoSTest (see Section 6.3.6). As an example of the result obtained in the
Executable Conceptual Schema Generation step, Figure B.5 shows the
UML CD-based CS for Incident Management System and the Figures
B.6-B.16 show the ALF units that were generated after applying the
UML2ALF transformation to mutated IM case study.

package PMO |

public class INCIDENT;

public class EXTERMAL COMPANY ANRLYSIS;

public class RESOLUTION_FLAN;

puklic class USER;

public class RESOURCE_ALLOCATION;

public class TECHNICIAN:
public assoc incident_external company analysis;
public assocc user_incident:
10 public assoc incident rescurce_allocation:
11 public assoc technician resocurce_allocation;
12 1

e = I S L S

(¥l e]

Figure B.6. ALF unit for PMO class

namespace DPMO;
ggsoc incident external company_analysis|
public 'incident':INCIDENT[1]:
external company analysiss':EXTERNAL COMPFRNY ANALYSIS[*];

o= Ld b

Figure B.7. ALF unit for Incident_external_company association

323

APPENDIX B

1 namespace PMO;

2 public import Alf::Library::PrimitiveBehaviors::StringFunctions::*
3 public import Alf::Library::BasicIypes::*

4 class EXTERNAL COMPANY ANALYSIS{

5 public id analysis: Integesr;

[public subject: String;

7 public description: String:

i} public analysia: String:

El public implications: String;

10 puklic posible_sclutiona: String:

11 public time_estimation: String:

2 @Create EXTERNAL COMPANY ANALYSIS(in p_atrid analysis:Integer,in p_atrsubject:String,
13 in p_atrdescription:String,

14 in p_atranalysis:String,

15 in p_atrimplications:String,

16 in p_atrposible_solutions:String,

17 in p_atrtime_estimation:String,

8 in p_agrincident:INCILENT) {

15 this.id analysis=p_atrid_analysis;

=

this.subject=p_atrsubject;
this.description=p_atrdescription;
this.analysis=p_atranalysis;
this.implications=p atrimplications:
this.posible_soclutions=p atrposible_sclutions;
this.time_estimation=p_atrtime_estimation;
incident_external_company analysis.createlink(p agrincident, this);
if (EXTERNAL_COMPANY ANALYSIS->isUnique e(e.id analysis)){]} elae
{Writeline ("Error in PostCondition 'context EXTERNAL COMPANY ANALYSIS:
new_external company analysia() post: EXTERNAL_C I"PANY ENALYSIS- >1sUn1q‘ue
e(e.id_analysis)'™);
thia.deastroy(); }
11

[T - Ty O)

L L Db R R Ra R R Ra RS R R P

(=)

Figure B.8. ALF unit for EXTERNAL_COMPANY_ANALYSYS class

1 namespace EMO;
2 @agsoc incident resocurce_allocation{
3 public 'incident':INCIDENT[1]:
4 public 'r allocations' :RESOURCE ALLOCATION([*]:
5 1
Figure B.9. ALF unit for incident_resource_allocation association
1 namespace PMO;
2 @assoc technician_ rescurc‘.e _allocation{
3 public 't n' :TECHNICIAN[1]:
4 public locations' :RESOURCE RLLOCATION([*];
5 1

Figure B.10. ALF unit for technician_resource_allocation association

324

APPENDIX B

W e M e

=

LR R R R R R R R R

=R R v

B N s 3 R O D D oy o G R

R R L R e P e e g |

namespace EMO;

PrimitiveBehaviors::StringFunctions::*;

public import ALf
class INCIDENT{
public id_incident:
public request_type: String;
public i
public _information: String;
public initial_scope: String:
public subject: String;
public deacription: String:
public step_sequence: String;
public state: Stringr
public progress: String:
public estimated scope: String;
public time estimation: String:
public cost_estimation: Real;
public plan_response: String;
Create INCIDENT{ in p atrid_incident
in p_atrcontact_information:String,
in pﬁatrlm.nalisccpe String,
in p_atrsubject:String,
in p_atrdescription:String,
in p_atrstep_sequence:String,
in p_agruser:USER) {
this.id_incident=p_atrid_incident;
this.reqguest_type=p_atrrequest_type;
this.component=p_atrcomponent;
this.contact_information=p atrcontact i
this.initial_scope=p atrinitial_scope;
this.subject=p_atrsubject;
this.description=p_atrdescription;
this.step sequence=p_atrstep sequence;
user_incident.createlink(p_agruser,this);
{ INCIDENI->isUnique e(e.id_incident))[} else
{ WriteLine("Error in PostCondition 'context INCIDENT::new_incident ()
post: INCIDENI-»>isUnigue e{e.id_incident)'™);
T}:hls.deatrcyﬁ E]

nteger, in p_atrrequest_type:String, in p atrcomponent:String,

public set_initial_scope(in pt state:String, in p:}rcgreﬁs:s.‘:ring,in pt_initial scope:String,
in p_thisINCIDENT:INCIDENT) {

thia.state=pt_state;

this.progress=pt_progress;

this.initial_ scope=pt_initial_ scope:

Nu.blm set_prcgress(m pl: state:String, in pt_prc:gress String,in p_thisINCIDEN.
{ pt_state= |l pt_state |l pt_state

else

{ Writeline("Error in Precondition 'context INCIDENT::set_progress()

ore: pt_state= || pt_state= || pt_state=

1

CIDENT) |

this.state=pt_state;
this.progress=pt_progress;
1

public set_estimaved scope(in pt_state:String, in pt_progress:String, in pt estimated scope:String,
in p_thisINCIDENT:INCIDENT)
{ pt_estimated scope T
{ Writeline ("Error in Pre
pre: pt_eatimated scope
this.state=pt_state;
this.progress=pt_progress;
thiz.eatimated_scope=pt_estimated scope;

) [} else

|l pt_estimated scope
'context INCIDENT::set estimated
' |l pt_estimated scope=

public set_cost_estimation(in pt_state:String, in pt_progress:String, in pt_time_estimation:String,
in pt_cost_estimation:Real,
in p_thisINCIDENT:INCIDENT) {

this.state=pt_state;

this.progress=pt_progress;

this.time_estimation=pt_time estimation;

this.cost_estimation=pt_cost_estimation;

}'}.\ubllc set_step sequence(in pt_state:String,in pt_progress:String, in pt_step_sequence:String,
in p_thisINCIDENT:INCIDENT) {

this.state=pt_state;

thia.progress=pt_progreasa;

this.step_sequence=pt_step_segquence;

r}.\u.bllc set_plan response(in pl:_plan response:String,in p - th1sINCDENI INCIDENT) {
{ pt plan respense= || pt plan response= I3"){} elze

{ hrlteLlnE("Error in I—‘reccn:iltlcn 'context INCIDENT::set_plan_response()

pre: pt_plan_response= |l pt_plan_response= My}

Ehis‘plan_raspcnsefpt_plan_resp‘:nse.'

public set_state(in pt_state:String, in p_thisINCIDENT: INCIDENT) {
this.state=pt_state; } }

Figure B.11. ALF unit for INCIDENT class

325

APPENDIX B

namespace PMO;
public impert Rl1f::Library::PrimitiveBehaviors::StringFunctions::*;
public import Alf::Library::BasicTypes::¥;
clazs REESOLUTION PLAN{
public id plan: Integer:
public name: String;
public step_sequence: String:
@Create RESCLUTICN_PLAN(in p_atrid_plan:Integer, in p_atrname:String,
in p atratep sequence:String) |
this.id plan=p atrid plan;
11 this.name=p atrname;
12 this.step sequence=p atrstep Sequence;
13 - 100
14 if (BEESOLUTION PLAN->»isUnique e(e.id plan)){} else
15 { Writeline ("Error in PostCondition 'context RESOLUTION PLAN: :new resclution planf()
16 post: RESOLUTION PLAN->isUnique e(e.id plan)'™);
17 this.destrov(): }

[T I T R SO NS

8 11
Figure B.12. ALF unit for RESOLUTION_PLAN class
1 namespace PEMO;
2 public im t Rlf::Likrary::PrimitiveBehaviors::StringFuncticns::*;
3 public import Alf::Library::BasicTypes::*;
4 class RESOURCE ALLOCATION{
5 public id allocation: Integer;
& @Create RESQURCE ALLOCATION({ in p_atrid allocation:Integer, in p_agrincident:INCIDENT,
7 in p agrtechnician:TECHNICIZN) |
& this.id_allocation=p_atrid_allocation;
9 incident_resource_allocation.createlink(p_agrincident,this);
10 technician resource_allocation.createlink(p agrtechnician,this);

11 if { RESQOURCE_ALLOCATION-»>isUnique e(e.id allocation)){} else

12 | Writeline("Error in PostCondition 'context RESOURCE ALLOCATION::new_resource allocation()
13 post: RESOURCE_ALLOCATION-»isUnique e{e.id allocation)'™);

14 this.destroy(): }

15 1}

Figure B.13. ALF Unit for RESOURCE_ALLOCATION class

namespace EMO;
public import Alf:
public import Al1f:
class TECHNICIAN{
public id technician: Integer;
public name: String:
Create TECHNICIZN(in p atrid technician:Integer,in p atrname:String) {
this.id technician=p_atrid technician:
this.name=p atrname;
if (TECHNICIAN-»isUnique e(e.id technician)){} elss
{ WritelLine("Error in PostCondition 'context TECHNICIAN::new technician()
post: TECHNICIAN->isUnique e(e.id technician)'"):
this.destroy(): }

:Library::PrimitiveBehavicors: :StringFunctions:*;
:Library::BasicTypes::i*;

o e
T N e T = R T MY TSRO o

i
Figure B.14. ALF unit for TECHNICIAN class
1 namespace FMO;
2 public import B1f::Library::PrimitiwveBehaviors::StringFunctions::*;
3 public import A1f::Library::BasicTypes::*;
4 class USER]
5 public id user: Integer;
[public name: String:
7 @Create USER({ in p_atrid user:Integer,in p atrname:String) {
8 this.id user=p atrid user;
9 this.name=p atrname;
10 11

Figure B.15. ALF unit for USER class

326

APPENDIX B

1 namespace PEMO;

2 a&s33cc user_incident]

3 public 'user':USER[1]:

4 public 'incidents':INCIDENT[*]:
5 1

Figure B.16. ALF unit for user_incident association

B.5.2 Generation of the Execution Trace

The testing execution phase of the mutants was performed by
means of the Test Processor, which is integrated in CoSTest (see
Section 7.6). As an example of the execution trace, Figure B.17 shows
the execution trace of the test cases against the MAS_2 mutant.

Error in PostCondition 'context RESOLUTION_PLAN::new_resolution_plan()
post: RESOLUTION_PLAN->isUnique e(e.id_plan)'

Error in PostCondition 'context TECHNICIAN::new_technician()
post: TECHNICIAN->isUnique e(e.id_technician)'

Error in PostCondition 'context INCIDENT::new_incident()
post: INCIDENT->isUnique e(e.id_incident)'

Constraint violations:

propertyAccessExpressionFeatureResolution in C:\Users\PC-
Mafer\workspace\COSTest\ExecutableTestCases\UML-ALF\PMO\/PMO_TS_001_TC_008.alf
at line 22, column 62

Figure B.17. Example of Execution Trace for the MAS_2 mutant

From these results, we can see that test cases numbers 2, 4 and 7
are negative test cases to validate constraints; therefore, the expected
result is an error in postcondition because the constraints are violated
in order to test their existence as we can see in Figure B.17. The result
for test case number 8 shows that line 22 produces the fault property
Access Expression Feature Resolution, and then the testing process is
stopped.

327

APPENDIX B

B.6 Test Evaluation

This phase of our approach is automatic; therefore, we did not
have to perform any work at this point. The result of the test
evaluation phase was (1) a defect report that provides feedback to the
tester of the CS and also (2) a coverage report comparing the elements
included in the conceptual schema and those executed in the test
cases. Table B.27 shows the veridicts for each CS mutant, the found
defects and the CS elements affected by the defect

Table B.27. Testing results for the mutants of Table B.26

CSUT Final Veridict Found Defects Localized Element
Missing or private
MAS 2 Failed Association Association=user_incident;
contextincident::set_plan_respon
Missing se()pre:pt_plan_response=="exist
MCO_5 Failed Constraint splan’
Incorrect
Parameter Data Class=INCIDENT;
MPA_4 Inconclusive Type Operation=set_cost_estimation()
Missing or private | Association=incident_external_co
WAS1 1 Failed Association mpany_analysis;
Class=EEXTERNAL_COMPANY _
ANALYSIS; Operation=new
Missing Class (or | EXTERNAL_COMPANY_ANALY
WCL1 2 Inconclusive private) SIS()
Missing contextincident::set_progress()pr
WCO5_6 Failed Constraint e:pt_state=="improve'
Missing Operation | Class=INCIDENT;
WOP2_7 Failed (or private) Operation=set_state()

An example of a CoSTest report is shown in Figure B.18, in which
seven of the eight test cases were successfully passed in the testing
process.

The eighth test case returns the verdict Fail. Then, the execution
trace is analysed by using the information shown in Figure B.17 and the
defect missing (or private) Associationis reported.

328

APPENDIX B

e COSest - Lonceptual dScnemas lesting (prototype 100l)

o) Conceptual Schema Testing
Q‘of

% Cooceptuat scaema Under Test Executatie Test Cases | [Tostmg Mesults | .5 Mutant Generaton Batch Testing | % About
Test Model = Test Sconano Model Data Concrotizaton
Testing Results

Concoptus Schema Under Test - PUC £ apont 10 tacet

Final Voredict : F aded Testing Time ;12 Momercss Coverage Report Time: 12 Mummss
§ Resuts |« Testmglog

112 be tested) Tost Duraten

& Founded Delects | & Coverage

Tes Case O oo Descrpaen fan
o ussngy 330G of prrvate At1000n

odean; Mement

Figure B.18. Defect report obtained in the testing process for MAS_2 CS

Thus, Figure B.19 shows the coverage report generated for the
MAS_2 CS mutant by comparing the elements included in the
conceptual schema and those executed in the test cases.

M COSTest - Conceptual Schemas Testing (prototype tool) O X
~
[Conceptual Schema Testing
‘d
% Concoptual Schema Under Tost Exocutatie Tost Caves [Tostng Results | .5 Mutant Generation Batch Testng | 8 About
Tost Model < Test Scenano Mode! Data Concretizavon
Testing Results

Conceptusl Schema Unde Test : PO () taport o e

Final Verodict : Fated Testog Time: 12 Wumecss Coverage Report Twme: 12 [
Testng Log

T WO
s0rt

TORTER AT THSICAS SFLML-ALFPMOVMO_TS_001_TC_000 o at e 22, cokumn 62

Figure B.19. Coverage report obtained in the testing process for MAS_2 CS

329

APPENDIX B

B.7 Conclusions

This appendix presents a case study that exemplifies the CoSTest
framework described in this thesis. To this end, the appendix applies
the validation framework to eight CS mutants, which represent the
conceptual schema for the Incident Manager System that was defined
for the everis company. The application of the approach to an
industrial case study allowed us to identify some of CoSTest’s
limitations (such as highlighting the failed test cases in red). However,
it also allowed us to be optimistic since CoSTest successfully supported
the design, execution, and evaluation of the test cases for detecting
defects in the mutants generated from the CS of the case study.

330

APPENDIX C

Appendix C

Supplementary Material on the Evaluation Study

This appendix includes material that was used during the
evaluation study that is presented in Chapter 8. First, the appendix
presents several instruments that were employed during the execution
phase of the study. These instruments are the characterization form,
the CoSTest tool installation guide, the guideline with the task
template, and the interview questions, which are given in Sections C.1,
C.2, C.3 and C.4, respectively.

C1. Characterization Form

This section presents the characterization form. As Section 8.5.9
describes, the characterization form is divided in two parts. The first
part requests demographic data, such as gender, age, and work status.
This part of the form is shown in Figure C.1. The second part includes
twenty-two questions concerning the subjects’ level of experience of
the topics covered by the study (e.g. modelling activities and testing).
This part of the form is shown in Figures C.2 - C.4.

Characterization Form

Please state your Age :
o , o o 5

<24 25-29 30-34 35-39 40-44 45-49 >50

Please state your Gender:
o Male o Female

‘What is the highest level of education that you have completed?

o High school (or equivalent) o Technical school o Bachelor degree
0 Master degree o Doctoral degree o Other (specify)

Figure C.1. Characterization form: Demographic data

331

APPENDIX C

Profile and Demographics of Practitioners
Q1. What is your current job position?

+ Project manager

e Test manager

+ Software tester.
* Modeller/Analyst
» Developer

* QOther

Q2. Do you have any previous experience in UML modelling?

oNo oYes
Q3. If you have answered “yes”, how many years of experience do you have in
UML modelling?

e <2years
e 2-5years
e 6-10years
e 10 years

Q4. If you have answered “yes”, how do you qualify your experience regarding to
use Modelling tools to do modelling activities in your job? (g,g UMLZ2 diagrams,
Papyrus)

Tool Poor Fair Average Good Excellent
Tool 1: UML2 diagrams) 0 0))
Tool 2: Papyrus o 0 o))
Others (specify)
Tool 3: o o) 0 0
Tool 4: o o o o

Q5. Do you have any previous experience regarding Software Testing?

oNo oYes
Q6. If you have answered “yes”, how many years of experience do you have in
software testing?

s <2vyears

e 2-5years
e 6-10years
e 10 years

Q7. Do you have any formal training in software testing or quality assurance?
oNo oYes

Q8. If you answer was Yes in Q3. What formal training was taken?

Q9. What type of application is developed by your company?
o Mobile applications

Desktop applications

Embedded applications

Web based applications

Other

c o o O

Figure C.2. Characterization form: Experience (1)

332

APPENDIX C

Q10. How many employee work in your company?

o lessthan 50
o 50-250
o More than 250

Q11. Which one of the following software testing methods are commonly used in your

company?

White box testing
Black box testing
Gray box testing
Agile testing

Ad hoc testing
Others

c O 0o o0 O o

Q12. Which one of the following software testing type is performed in your company?

e Unit testing .
« Security testing .
« Usability testing .
* Smoke testing .
« Functional testing .
« Conceptual Schema testing .

Q13. In the most recent projects in your company, did you use any test automation
tools to perform Software Functional Testing?

oNo oYes

Q14. If the answer was Yes in Q13, which tool did you use and which was it purpose?

Integration testing
System testing
Acceptance testing
Automated testing
Regression testing
Other testing

Q15. In the most recent projects in your company, do you perform Software
Functional Testing at conceptual schema level?

oNo oYes

Q186. If the answer was Yes in Q15, which testing type did you use?

o Manual o Automatic

Q17. If the answer was Automatic in Q16, which tool did you use?

Q18. Please describe why you like to use Manual Functional Software Testing?

Q19. In your most recent project, which software test design techniques do you

use? .
Boundary value analysis

Equivalent partitioning
Decision table

State transition

Use case testing
Error Guessing
Exploratory testing
Other

o 0o o o o o oo

Figure C.3. Characterization form: Experience (2)

333

APPENDIX C

Q20. To what extent do you agree with listed statement why your company do not
use Functional Software Test Automation Tools?

Strongly Disagree Neither Agree Agree
Disagree nor Disagree

Setting up
automated
tools is very
difficult and
costly
Require
scripting skills,
which some
testers lack
Time-
consuming to
use

Costly to use
Difficult to use
Lack of
expertise
Lack of
supporting
tools
Maintenance
difficulty and
Cost

Lack of
information
about the
available tools
Automation
was not
needed

Q21. From your experience in your recent projects, please describe the main
disadvantages or drawbacks of manual functional software testing?

Q22. Are you planning to change the way how you currently implement Software
Functional Testing or do you have idea how to improve it, please describe your
answer.

Figure C.4. Characterization form: Experience (3)

C2. CoSTest Tool Installation Guide

The CoSTest tool can be downloaded as a compressed bundle
(*.zip/*.rar) from: https://stag.dsic.upv.es/webstaq/costest/costest.zip

334

APPENDIX C

The execution requirements are:

e Microsoft Windows operative system; Windows 7 or superior is
suggested
e JRE (Java Runtime Environment); version 7 is suggested.

To execute the tool, you need to:

e Uncompress the .rar bundle to the desired location: e.g.
c:\CoSTest\

e Launch the database client; e.g. c:\CoSTest\runServer.bat

e Launch the tool; e.g. c:\CoSTest\costest.bat

To use with a concrete case, you need to:

e Copy the requirements model file (e.g.
VideoClub.cametamodel) into to ReqModels folder (e.g.
c:\CoSTest\ReqModels\)

e Copy the conceptual schema file (e.g. Video_Club_mutant.uml)
into to ConceptualSchemas folder (e.g.

c:\CoSTest\ConceptualSchemas\) Modelling Tool

The Eclipse framework with UML2 or Papyrus tools can be
downloaded from:

— www.eclipse.org

To execute Eclipse and select the CoSTest folder (e.g. c:\CoSTest) as
workspace.

In Eclipse, to create New Java project “ConceptualSchemas”

To open the tree view of the conceptual schema (e.g.
VideoClub_mutant.uml)

— Double click on the filename from left |list (e.g.
VideoClub_mutant.uml)

To open the graphical view of the conceptual schema

335

APPENDIX C

— Double click on the filename from left list (e.g.
VideoClub_mutant.umlclass)

To create the graphical view (if it does not exist)

— Click with right button on UML diagram (e.g.
VideoClub_mutant.uml) and select the option “Initialize Class Diagram”

— To select the parent folder “ConceptualSchemas” and enter the
filename e.g. “VideoClub_mutant.umlclass”

— Click on button Finish to generate the graphical view.

C3. Guideline with Task Template for VideoClub

Case
This section presents the guideline with the tasks template for the
VideoClub case (see Figures C.5 and C.6).

C4. User Acceptance Form

This section presents the user acceptance form. As Section 8.5.6
describes, we developed the user acceptance form following the Post-
study System Usability Questionnaire [151], which suggests measuring
perceived usefulness and perceived ease-of-use by means of two scales
of 7-point Likert items, ranging from “strongly agree" (1) to “neutral"
(4) to “strongly disagree" (7). The first of these two scales, which
evaluates perceived usefulness, is graphically depicted in Figure C.7.
The second scale, which evaluates perceived ease-of-use, is graphically
depicted in Figure C.8.

336

APPENDIX C

To use the CoSTest tool execute the runServer.bat file, then execute the CoSTest.bat file.

GUIDELINE FOR VIDEOCLUB CASE

1. Convert the Requirement Model in a Test Model

a) Click on the Tab “Test Model”

b) Click on the button “Select File” to select the Requirement Model file (e.g.
VideoClub.cametamodel) from the folder “ReqModels”

c) Click on the button “Save as” to choose the target folder “TestModels™ and to write the
filename as “VideoClub_TestModel.xmi”.

d) Click on button “Test Model Generation™ to generate the Test Model.

e) Verify that the model graph is generated.

2. Convert the Test Model in a Test Scenarios Model with the abstract test cases

a) Click on the Tab “Abstract Test Cases”

b) Click on the button “Select File” to select the Test Model file. The filename is the similar to
the filename entered in the previous step but it ends with an underscore (e.g.
VideoClub_TestModel .xmi) from the folder “TestModels™.

¢) Click on the button “Save as” to choose the target folder “AbstractTestCases™ and to write the
filename as “VideoClub_Scenarios.xmi”

d) Click on button “Abstract Test Cases Generation” to generate the Test Scenario Model. The
file VideoClub_Scenarios.xmi” is generated.

e) Verify that the model tree is generated.

3. Concretize the variables of the Test Model with the values taken from Test model.

a) Click on the Tab “Data Concretization™

b) Click on the button “Select File” to select the Test Model file. The filename is the similar to
the filename entered in the first step (e.g. VideoClub_TestModel.xmi).

¢) Click on the button “Generate from Model” to generate the data

d) Verify that the variables list is generated.

4. Convert the Conceptual Schema Under Test (CSUT) in an Executable CSUT.

a) Click on the Tab “Conceptual Schema Under Test”

b) Click on the button “Select File” to select the CSUT file (e.g. VideoClub_mutant.uml) from
the folder “ConceptualSchemas”

¢) Click on the button “Select Folder” to choose the target folder
“ExecutableTestCases\VideoClub”

d) Click on button “CSUT Transformation” to generate the executable CSUT. The file
“VideoClub.alf” is added in the left file list.

e) Select the filename “VideoClub.alf” from the files list (left).

f) Click on button “CSUT Parser” in order to verify the syntax.

g) Verify that the parsing is OK

5. Execution of the test scripts on the Executable CSUT

a) Click on the Tab “Executable Test Cases”

b) Click on the button “Select File” to choose the Abstract Test Cases file (e.g.
VideoClub_Scenarios.xmi) from the folder “AbstractTestCases”

¢) Click on the button “Select CSUT” to choose the CSUT (e.g. VideoClub_mutant.uml) from
the folder “Conceptual Schemas”

d) Click on the button “Select Folder” to choose the target folder

“ExecutableTestCases\VideoClub”

Figure C.5. Guideline for VideoClub case (1)

337

APPENDIX C

¢) Click on the button “Code Generation” to generate the abstract test cases
f) Click on the button “Test Case Concretization” to generate the concrete and executable test
cases
g) Select from left file list the filenames that begin with “VideoClub TS 1 TC ” (total 36
files).
h) Click on the button “Testing”
6. Analyse the testing report generated by the tool and identify the faults, If the CSUT has
no faults, the process has finished.
a) Click on the Tab “Testing Results”
b) Review the test cases executed in the Results Table and searching if there is one test case
with a “Failed” Verdict.
¢) Review the Founded Defects Table to identify the defect type and CSUT element (e. g.
Class-Operation-Parameter, Association, Class-Constraint)
d) Write the following information about the founded defects otherwise write “no defects”
Iteration | Test Test Verdict Detected Fault | CSUT Element
Scenario ID | Case
1D
1
2
3
4
5
7. If the CSUT has detected faults, correct them on CSUT.
a) Go to Eclipse UML2 Diagrams
b) Double click on the CSUT filename to open it
¢) Correct the defect according the identified defects
d) Save the changes.
e) Return to the CoSTest tool for the next iteration

Figure C.6. Guideline for VideoClub case (2)

The Post-Study Perceived Usefulness Questionnaire

Strongly agree Strongly disagree
1 2 3 4 5 3 7 NA
1 Using CoSTest in my job would enable o 0 e} o} 0o o o}
me to accomplish tasks more quickly.
2 Using CoSTest would improve my job o o o o o o o
performance.
3 Using CoSTest in my job would increase o I} o o o o o
my productivity.
4 Using CoSTest would enhance my o 0 o o o o o}
effectiveness on the job.
5 | Using CoSTest would make it easier to do o) 0 0 o o) I} 0
my job.
6 | would find CoSTest useful in my job. Ie] o) o) 0 0 o) 0

Figure C.7. User Acceptance Form: Perceived Usefulness

338

APPENDIX C

The Post-Study Ease to Use Questionnaire

Strongly agree Strongly disagree
1 2 3 4 5 6 7 NA

1 Learning to operate CoSTest would be I} fe} o o | o o) o]

easy for me |
2 | I'would find it easy to get CoSTest to do o o o o | o o 1)

what | want it to do. |
3 | My interaction with CoSTest would be o) o 0 o) o o e}

clear and understandable. |
4 | I would find CoSTest to be flexible to o o o o | o o I}

interact with. |
5 It would be easy for me to become skilful 1) e} o o | o o) o

at using CoSTest. |
6 | would find CoSTest easy to use. 1) Ie} o o | o o] o]

Figure C.8. User Acceptance Form: Perceived Ease-of-Use

339

