TABLE OF CONTENTS

I. INTRODUCTION .. 28
I.1 Starch as base material for biodegradable packaging applications 30
I.2. Cassava starch ... 33
I.3. Chitosan and its applications in biodegradable packaging 39
I.4. Essential oils and their application into biodegradable films 42
I.5. Improving the functional properties of essential oils by encapsulation techniques .. 56
I. 6. Microencapsulation methods... 69
II. OBJECTIVES... 120
III. RESULTS.. 124
 III.1. CHAPTER 1
 Physical characterization of cassava starch – chitosan films obtained by compression molding ... 128
 III.2. CHAPTER 2
 Thermoplastic cassava starch-chitosan films containing essential oils 156
 III.3. CHAPTER 3
 Influence of liposome encapsulated essential oils on properties of chitosan films .. 180
 III.4. CHAPTER 4
 Release kinetics and antimicrobial properties of chitosan-essential oils films as affected by encapsulation within lecithin nanoliposomes 208
 III.5. CHAPTER 5
 Chitosan films containing encapsulated eugenol in alginate microspheres ... 227
IV. GENERAL DISCUSSION.. 258
V. CONCLUSION ... 270
TABLES

Table I.1 Summary of results obtained for cassava starch films obtained by different techniques (casting and thermoplastic processing)…………………………... 36

Table I.2 Main constituents of cinnamon leaf and oregano essential oils and their wt. percentage range, as reported by several authors……………………………... 44

Table I.3 Recent papers studying the effect of essential oils on CH films properties (Scanning Electron Microscopy (SEM), elastic modulus (EM, MPa), tensile strength (TS, MPa), elongation at break (E, %), water vapour permeability (WVP), oxygen permeability (OP), gloss and transparency……... 48

Table I.4 Recent studies dealing with the effect of EOs addition on the antimicrobial activity of CH films or coating………………………………………... 52

Table I.5 Advantages and disadvantages of wall material to encapsulation….. 62

Table I.6 A representative list of encapsulated essential oils and other compounds with different methods for encapsulation…………………………….. 66

Table I.7 Advantages and disadvantages of different microencapsulation technologies ……………………………………………………………………… 76

Table 1.1. Thermal properties of the films analyzed by TGA (T_0, T_{max}, % Mass loss over degradation). Mean values and standard deviation………………….. 137

Table 1.2. Thermal properties of films analyzed by DSC. Mean values and standard deviation…………………………………………………………………. 140

Table 1.3. Thickness, moisture content and water vapour permeability (WVP) of films equilibrated at 53% RH. Mean values and standard deviation……………….. 141

Table 1.4. Tensile properties (elastic modulus: EM, tensile strength: TS and deformation: E %, at break) of all films equilibrated at 53% RH after 1 and 5 week storage. Mean values and standard deviation……………………….. 143

Table 1.5. Lightness (L^*), chroma ($C^{*a}b$), hue ($h^{*a}b$), whiteness index (WI) and gloss at 60° after 1 and 5 week storage. Mean values and standard deviation.. 147

Table 1.6. The antimicrobial activity of the films on pork meat and stored 7 days at 10°C. Mean values and standard deviation.. 148
Table 2.1. Thermal properties of the films and essential oils (T₀, Tₘₐₓ, Mass loss during degradation). Mean values and standard deviation.

Table 2.2. Tensile properties (elastic modulus: EM, tensile strength: TS and elongation: E %, at break) of all films equilibrated at 53% RH after 1 week storage. Mean values and standard deviation.

Table 2.3. Thickness, water vapor permeability (WVP) and oxygen permeability (OP) of the films. Mean values and standard deviation.

Table 2.4. Lightness (L*), chroma (C*ₐb), hue (h*ₐb), whiteness index (WI) and gloss at 60°. Mean values and standard deviation.

Table 3.1. Density and ζ-potential of nanoliposome dispersions (ND) and film-forming dispersions (FFD). Mean values and standard deviation. Lec: lecithin, Eu: eugenol, CLEO: cinnamon leaf essential oil, CH: chitosan.

Table 3.2. Mass fraction of eugenol in the dried films (mg/g film solids), extracted in the dried film and initially incorporated, and percentage retention (extracted with respect to the initially added). Lec: lecithin, Eu: eugenol, CLEO: cinnamon leaf essential oil, CH: chitosan.

Table 3.3. Thickness and tensile parameters (elastic modulus, EM; tensile strength, TS; percentage elongation, %E) of the films. Mean values and standard deviation. Lec: lecithin, Eu: eugenol, CLEO: cinnamon leaf essential oil, CH: chitosan.

Table 3.4. Water content (Xₜ), water vapor permeability (WVP) and solubility (g of solubilized solids/100 g of initial solids) of the films. Mean values and standard deviation. Lec: lecithin, Eu: eugenol, CLEO: cinnamon leaf essential oil, CH: chitosan.

Table 3.5. Lightness (L*), chroma (C*ₐb), hue (h*ₐb) and gloss (60°) of the films. Mean values and standard deviation. Lec: lecithin, Eu: eugenol, CLEO: cinnamon leaf essential oil, CH: chitosan.

Table 3.6. Onset temperature (T₀) and maximum degradation rate temperature of the films. Mean values and standard deviation. Lec: lecithin, Eu: eugenol, CLEO: cinnamon leaf essential oil, CH: chitosan.
Table 3.7. Escherichia coli counts in liquid (TSA Broth) and solid media (TSA Agar) at 10ºC. Mean values ± standard deviation Lec: lecithin, Eu: eugenol, CLEO: cinnamon leaf essential oil, CH: chitosan. ng: no growth ... 201

Table 3.8. Listeria innocua counts in liquid (TSA Broth) and solid media (TSA Agar). Mean values ± standard deviation Lec: lecithin, Eu: eugenol, CLEO: cinnamon leaf essential oil, CH: chitosan. ng: no growth 202

Table 4.1. Total migration (10 days, 20ºC) of material from the films and eugenol extracted and retained in methanol after 24 hours. Mean values and standard deviation ... 216

Table 4.2. Apparent diffusivity (D) and parameters of Peleg’s model: amount of active compound released at equilibrium in the simulant (M∞) and its release rate (1/k1), and maximum release ratio (M∞/M0) mass of active released at equilibrium in the simulant related to the initial mass of the active in the film expressed with respect to the amount determined by methanol extraction (1) or by acetic acid extraction (2) ... 218

Table 4.3. Total specific migration of eugenol (mg eugenol/g meat) from the films in meat samples stored at 10ºC. Mean values and standard deviation, in brackets ... 220

Table 5.1. Density, pH and ζ-potential of the dispersions an emulsion used to prepare the microspheres. Mean values and standard deviation ... 238

Table 5.2. Elastic modulus (EM), tensile strength (TS), elongation at break (%E), water vapor permeability (WVP), oxygen permeability (OP) and moisture content. Mean values and standard deviation. ... 240

Table 5.3. Lightness (L*), chroma (C*a,b), hue (h*ab), whiteness index (WI) and internal transmittance (Ti) at 450 nm. Mean values and standard deviation 241

Table 5.4. Parameters of Peleg’s model: amount of eugenol released from CHEU at equilibrium in the simulant (M-) and its release rate (1/k1), and maximum release ratio (M∞/M0): mass of active released at equilibrium in the simulant related to the initial mass of the active in the film (expressed with respect to the theoretical incorporated amount (1) and with respect to the amount determined by acetic acid extraction (2)) ... 245

Table 5.5. Diffusion coefficient (D) and parameters of the Korsmeyer–Peppas model (rate constant (k) and diffusional exponent (n)) ... 245
<table>
<thead>
<tr>
<th>FIGURE</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure I.1</td>
<td>Chemical structure of amylose and amylopectin</td>
</tr>
<tr>
<td>Figure I.2</td>
<td>Chemical structure of chitosan</td>
</tr>
<tr>
<td>Figure I.3</td>
<td>Chemical structure of eugenol and carvacrol</td>
</tr>
<tr>
<td>Figure I.4</td>
<td>Morphology of different types of microspheres</td>
</tr>
<tr>
<td>Figure I.5</td>
<td>Chemical structure of β-D-mannuronic acid and α-L-guluronic acid</td>
</tr>
<tr>
<td>Figure I.6</td>
<td>The “Eggs-box” model for alginate gelation with calcium ions</td>
</tr>
<tr>
<td>Figure I.7</td>
<td>Set-ups of different ways of making alginate microspheres by extrusion</td>
</tr>
<tr>
<td>Figure 1.1</td>
<td>Scanning electron microscopy micrographs of the cross-sections of the films. (a) Polymer: plasticizer proportion 70:30. (b) Polymer: plasticizer proportion 60:40</td>
</tr>
<tr>
<td>Figure 1.2</td>
<td>Typical thermogravimetric curves (mass loss vs. temperature) and first derivative (mg/s vs temperature) for a) Polymer: plasticizer proportion 70:30 and b) Polymer: plasticizer proportion 60:40</td>
</tr>
<tr>
<td>Figure 1.3</td>
<td>Typical stress–strain curves of the films after 1 week (left) and 5 weeks (right) of storage at 53% RH</td>
</tr>
<tr>
<td>Figure 1.4</td>
<td>Spectral distribution of the internal transmittance (Ti) of the films. (a) Ratio polymer: plasticizer 70:30. (b) Ratio polymer: plasticizer 60:40. After 1 week and 5 weeks of storage</td>
</tr>
<tr>
<td>Figure 2.1</td>
<td>FESEM micrographs of cross-sections of bilayer films A and B) CS-CH at different magnifications C) CS-CH-OEO showing the layer interface, D) CS-CH-CLEO showing the layer interface</td>
</tr>
<tr>
<td>Figure 2.2</td>
<td>Typical thermogravimetric curves (weight loss vs. temperature) and first derivative (mg/s vs temperature) for a) monolayer films and b) bilayer films</td>
</tr>
<tr>
<td>Figure 2.3</td>
<td>Shows the spectral distribution curves of the internal transmittance (Ti) of the monolayer and bilayer films</td>
</tr>
<tr>
<td>Figure 2.4</td>
<td>Total aerobial and coliform counts of non-coated pork samples and samples coated with the films. Mean values and standard deviation</td>
</tr>
<tr>
<td>Figure 3.1</td>
<td>Typical particle size distribution curves of the nanoliposome dispersions Lec: lecithin, Eu: eugenol, CLEO: cinnamon leaf essential oil</td>
</tr>
<tr>
<td>Figure 3.2</td>
<td>Spectral distribution curves of internal transmittance (Ti) of the films. Lec: lecithin, Eu: eugenol, CLEO: cinnamon leaf essential oil, CH: chitosan</td>
</tr>
</tbody>
</table>
Figure 3.3. SEM micrographs of the cross section of the chitosan films with and without eugenol and cinnamon leaf essential oil in free form (left) or lecithin liposomes (right). Lec: lecithin, Eu: eugenol, CLEO: cinnamon leaf essential oil, CH: chitosan……………………………………………………………………………… 197

Figure 3.4. SEM micrographs of the surface of the chitosan films with eugenol (top) and cinnamon leaf essential oil (below) in free form (left) or lecithin liposomes (right). Lec: lecithin, Eu: eugenol, CLEO: cinnamon leaf essential oil, CH: chitosan……………………………………………………………………………… 198

Figure 3.5. First derivative of weight loss vs. temperature curves obtained from TGA. Lec: lecithin, Eu: eugenol, CLEO: cinnamon leaf essential oil, CH: chitosan………………………………………………………………………………… 199

Figure 4.1. Kinetics of eugenol release from CH-EU films (experimental data in closed symbols, Peleg’s fit plotted with a continuous line) and CH-Lec-EU films (experimental data in open symbols, Peleg’s fit plotted with a dashed line) in different food simulants. ……………………………………………………………… 217

Figure 4.2. Microbial count of samples inoculated with *L. innocua* or *E. coli* during storage at 10ºC. Mean values and standard deviations. …………………………………………………………………………………… 219

Figure 4.3. Total aerobial and coliform counts in pork meat slices during storage at 10ºC. Mean values and standard deviation. ………………………………………………………………………………… 221

Figure 4.4. Chromatic parameters and total color difference as regards non-coated samples (ΔE) after 13 days of cold storage. The initial counts are indicated by a continuous line. *Indicates significant differences (p<0.05). The initial counts are indicated by a continuous line. *Indicates significant differences (p<0.05)………………………………………………………………………………… 222

Figure 5.1. Typical particle size distribution curves of the microspheres……… 239

Figure 5.2. a) Strain sweep dependence of the storage moduli (G’) and loss moduli (G’’) of the microspheres dispersions at 1 Hz and b) Frequency dependence of the storage moduli (G’) and loss moduli (G’’).…………………………… 240

Figure 5.3. SEM micrographs of the (a) surface and (b) cross-section of chitosan film (left) and chitosan film with alginate-eugenol microspheres (CH/M EU) (right)……………………………………………………………………………… 243

Figure 5.4. a) Typical thermogravimetric curves (mass loss vs. temperature) and b) first derivative (mg/s vs temperature) for CH and CH/M EU films………… 243

Figure 5.5. Eugenol release curves from chitosan films containing encapsulated eugenol-alginate microspheres in the food simulants: ethanol
10% (v/v), ethanol 50% (v/v), acetic acid 3% (w/v) and Isooctane.

Experimental data (symbols) and Fitted Peleg’s (continuous lines).

Figure 5.6. Antimicrobial activity of the different films against *L. Innocua* and *E.Coli* at 10 °C. Figures a) and c): assays in liquid medium. Figures b) and c): solid media assays.