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Abstract:  The efficient use of resources is a key factor to 

minimize the cost while meeting time deadlines and quality 

requirements; this is especially important in construction 

projects where field operations make fluctuations of 

resources unproductive and costly. Resource Leveling 

Problems (RLP) aim to sequence the construction activities 

that maximize the resource consumption efficiency over time, 

minimizing the variability. Exact algorithms for the RLP 

have been proposed throughout the years to offer optimal 

solutions; however, these problems require a vast 

computational capability (“combinatorial explosion”) that 

makes them unpractical. Therefore, alternative heuristic and 

metaheuristic algorithms have been suggested in the 

literature to find local optimal solutions, using different 

libraries to benchmark optimal values; for example, the 

Project Scheduling Problem LIBrary (PSPLIB) for minimal 

lags is still open to be solved to optimality for RLP. To 

partially fill this gap, the authors propose a Parallel Branch 

and Bound algorithm for the RLP with minimal lags to solve 

the RLP with an acceptable computational effort. This way, 

this research contributes to the body of knowledge of 

construction project scheduling providing the optimums of 

50 problems for the RLP with minimal lags for the first time, 

allowing future contributors to benchmark their heuristics 

methods against exact results by obtaining the distance of 

their solution to the optimal values. Furthermore, for 

practitioners, the time required to solve this kind of problems 

is reasonable and practical, considering that unbalanced 

resources can risk the goals of the construction project. 

Keywords: Branch and Bound, Benchmarking, Construction 

Project, Parallel Computing, Resource Levelling Problem, 

Virtual Computing. 

 

 

1 INTRODUCTION 

 

In any construction project, the tangible resources —

mainly materials, equipment and labor needed to implement 

the construction schedule— are generally constrained or 
limited (Hinze, 2012) (Benjaoran, et al., 2015). Even though 

the logical sequence of the activities shapes the initial 

schedule, resource allocation and levelling outlines the final 

timetable, resolving conflicts as well as balancing the 

workload throughout the construction project 

(Anagnostopoulos & Koulinas, 2010) (Hinze, 2012). 

Therefore, the goal of minimizing the cost, while fulfilling 

the total project duration (makespan) and achieving the 

approved performance, demands an efficient use of 

construction resources (Georgy, 2008) (Koulinas & 

Anagnostopoulos, 2013) (Tang, et al., 2014); by 
accomplishing this goal, the construction company remains 

competitive too (Hariga & El-Sayegh, 2010). Even though, 

resource scheduling problems can be considered recurrent in 

project management at large, they are especially important in 

construction (Doulabi, et al., 2010) (Jun & El-Rayes, 2011) 

where field operations make fluctuations of resources 

(peaks) very inefficient and costly on a short-term basis: 

hiring leads to low-quality workers with no learning curve, 

whereas heavy equipment cannot be rented or only at a very 

high cost. 

The project management literature classifies resource 

project scheduling problems in two groups 
(Anagnostopoulos & Koulinas, 2010) (Hinze, 2012) (Damci, 

et al., 2013a) (Benjaoran, et al., 2015): a) the Resource 

Constrained Project Scheduling Problem (RCPSP 

henceforth); and b) the Resource Levelling Problem (RLP 

hereafter). On the one hand, the RCPSP aims to minimize the 

makespan considering the precedence relationships as 

constraints with a limited availability of resources. On the 
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other hand, the RLP aims to offer the sequence that 

maximizes the resource consumption efficiency over time, 
minimizing the variability, with an unlimited availability of 

resources and a prescribed makespan. Taking into 

consideration both resource scheduling problems (the 

RCPSP and the RLP), the construction schedule can be more 

reliable to minimize resource fluctuations and fulfil the goals 

of the construction project (Damci, et al., 2013a) (Faghihi, et 

al., 2016). 

With the aim to offer optimal solutions for the resource 

project scheduling problems, exact algorithms based upon 

enumeration, integer programming or mixed integer 

programing have been proposed by researchers along the 

literature, but this kind of NP-Hard problems has a 
phenomenon of “combinatorial explosion” (Rieck & 

Zimmermann, 2015) (Neumann, et al., 2003). In other words, 

a rapid non-polynomial acceleration increase in the number 

of possible solutions as a function of the number of activities 

and their total slack, especially for large problems (Ponz-

Tienda, et al., 2013); this phenomenon is particularly 

significant in construction projects (Anagnostopoulos & 

Koulinas, 2010). 

Although these algorithms produce the absolute optimum 

to a given problem, they are not functional from a practical 

point of view, as they require a vast computational 
capability. To cope with this issue, alternative heuristic and 

metaheuristic algorithms have been proposed in the literature 

to find local optimal solutions with an acceptable 

computational effort. To prove the goodness of these 

heuristic algorithms, different libraries have been developed 

to test and benchmark heuristic solutions with the optimal 

solutions, especially for the RCPSP. However, in the current 

literature, only the library with minimal and maximal time 

lags up to 30 jobs for the RLP has been solved to optimality 

(Rieck, et al., 2012). However, the PSPLIB (Project 

Scheduling Problem LIBrary) for minimal lags (Kolisch & 

Sprecher, 1996) a problem without temporal windows more 
suited for construction projects is still open to be solved to 

optimality for the RLP (Ponz-Tienda, et al., 2013). 

Therefore, to partially fill this gap, the authors propose a 

Parallel Branch and Bound algorithm for the RLP with 

minimal lags. This algorithm puts forward a systematic and 

sequential tree search that does not process unnecessary 

branches. Parallel computing increases the computational 

capabilities taking advantage of the easily accessible current 

multiple-processor technology; the available computer 

infrastructure allows programs to be run in many processors 

at the same time (Adeli, et al., 1993). As stated by Adeli 
(2000) ( p.7), the trend in parallel processing and distributed 

computing “[…] should be more toward solution of large-

scale and complicated real-life engineering problems, the 

kind of problems that cannot be solved readily by traditional 

uniprocessor computers”. This way, this research 

contributes to the body of knowledge of construction project 

scheduling in three facets: (a) proposing a parallel exact 

procedure to solve non-regular problems as the RLP with an 

acceptable computational effort; (b) providing a 
benchmarking  set of solutions (50 problems taken from the 

PSPLIB) to test the goodness of the heuristic algorithms for 

the RLP; and (c) solving to optimality in a reasonable 

computational time a realistic building project, proving the 

possibility to be implemented in commercial and 

professional applications to help practitioners in the 

scheduling of real and complex construction projects. 

To present this proposal appropriately, the following 

section provides the problem description of the RLP. Next 

Section exposes the state-of-knowledge regarding the RLP, 

with particular emphasis on construction projects. Then, 

Section 3 details the proposed Parallel Branch and Bound 
algorithm for the RLP with minimal precedence 

relationships. In the following Section, the implementation 

of the Parallel Branch and Bound algorithm, as well as the 

results of the experimentation, are explained. Section 5 

compares and discusses the results. An example of 

implementation to a real construction project (with 71 

activities) follows to allow the reader understand its 

application. Finally, conclusions, limitations and future 

research lines are drawn. 

 

2. PROBLEM DESCRIPTION 
 

For the remainder of this paper, construction projects are 

specified by activity-on-node networks 𝐺 = (𝑉, 𝐴), where V 

is the set of vertices and A is the set of arcs. Vertex set 𝑉 =
{0, 1, ⋯ , 𝑛 , 𝑛 + 1} consists of n activities (Eq 1) that have 

to be carried out without interruption, and two fictitious 

activities, 𝑗0 and 𝑗𝑛+1, that represent the beginning and the 

makespan (completion time of the project), respectively. The 

set of arcs consists of pair of elements 𝐴 = {𝑎(𝑖, 𝑗)|𝑖 <
𝑗, 𝑖, 𝑗 ∈ [0, 𝑛 + 1]} that represent the precedence 

relationships between activities. Additionally, each activity 

must be executed in 𝑑𝑗  time units and without pre-emption. 

The literature background of this problem is examined in the 

next section. This way, the general formulation of the RLP 

considers the following elements: 

1. The set N of activities (being 𝑛 the total number of 

activities): 
𝑁 = {𝑗1, ⋯ , 𝑗𝑛} ( 1) 

2. The set D of durations (being 𝑛 the total number of 

activities): 
𝐷 = {𝑑1 , ⋯ , 𝑑𝑛} ( 2) 

3. The set T of periods of time in which these activities 

have to be distributed (being 𝑡𝑝 the deadline of the 

project, from now on denoted 𝑇̅): 

𝑇 = {𝑡1 , ⋯ , 𝑡𝑝}|𝑡𝑝 = 𝑇̅ ( 3) 

4. The set R of resources (being k the total number of 

resources): 
𝑅 = {𝑟1, ⋯ , 𝑟𝑘} ( 4) 
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5. The set RC of resources requirements for each activity 

(being k the total number of resources and n the total 

number of activities): 

𝑅𝐶 = {{𝑟𝑐11 , ⋯ , 𝑟𝑐𝑘1}, ⋯ , {𝑟𝑐1𝑛 , ⋯ , 𝑟𝑐𝑘𝑛}} ( 5) 

6. The set C of cost associated to each resource (being k 

the total number of resources): 
𝐶 = {𝑐1 , ⋯ , 𝑐𝑘} ( 6) 

7. The set SS of scheduled starting times of each activity 

along the elements of the set T, in such way that: 
𝑆𝑆 = {𝑠𝑠1, ⋯ , 𝑠𝑠𝑗, ⋯ 𝑠𝑠𝑛}|𝑒𝑠𝑗 ≤ 𝑠𝑠𝑗 ≤ 𝑙𝑠𝑗 ( 7) 

Being 𝑒𝑠𝑗  and 𝑙𝑠𝑗  the early and latest starting time of 

the activity 𝑗. 
8. The set SH of possible shifts of each one of the 

activities over the early start (𝑒𝑠𝑗) between zero and its 

total float (𝑡𝑓𝑗): 

𝑆𝐻 = {𝑠ℎ1, ⋯ , 𝑠ℎ𝑛}|𝑠ℎ𝑗 ∈ {0, ⋯ , 𝑡𝑓𝑗}, 𝑠𝑠𝑗 = 𝑒𝑠𝑗 + 𝑠ℎ𝑗 ( 8) 

9. The function 𝑟𝑖(𝑆, 𝑡)|1 ≤ 𝑖 ≤ 𝑘, is defined as the 

consumption (𝑢𝑖𝑡) of the resource 𝑟𝑖 in the period of 

time t, belonging to the set T, in such way that the 

consumption of the resource 𝑟𝑖 throughout the project 

for a feasible schedule 𝑆 ∈ 𝑆𝑆 in a period t, is given by: 
𝑢𝑖𝑡 = 𝑟𝑖(𝑆, 𝑡) ( 9) 

10. The set AV of availabilities of the resources: 
𝐴𝑉 = {𝑎𝑣𝑖𝑡|1 ≤ 𝑖 ≤ 𝑘, 1 ≤ 𝑡 ≤ 𝑇̅} ( 10) 

11. The set SA of schedulable activities with total float 

(𝑡𝑓𝑗 > 0) strictly greater to zero (being m the total 

number of schedulable activities.): 
𝑆𝐴 = {𝑗1, ⋯ , 𝑗𝑚} ( 11) 

Once the elements that compose the problem are set, a 

general formulation for the objective function of the 

optimization problem could be a function 𝑓[𝑟𝑖(𝑆, 𝑡)], which 

computes the consumption of the resource 𝑟𝑖 (during the 

period of time t) for a feasible schedule 𝑆 ∈ 𝑆𝑆, for all the k 

resources of the project multiplied by its associated cost (𝑐𝑖): 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ 𝑐𝑖 ∙ 𝑓[𝑟𝑖(𝑆, 𝑡)]

𝑘

𝑖=1

 (12) 

The function 𝑓[𝑟𝑖(𝑆, 𝑡)] provides different ways of dealing 

with the RLP. The most usual criterion focuses on getting the 

resource consumption as levelled as possible by minimizing 

the sample variance or mean square error over an ideal 

reference. Consequently, a suitable formulation for Equation 

12, given a set 𝐴𝑉 = {𝑎𝑣𝑖𝑡} of availabilities could be: 

𝑓[𝑟𝑖(𝑆, 𝑡)] =
(𝑢𝑖𝑡 − 𝑎𝑣𝑖𝑡)2

𝑇̅
;  𝑀𝑖𝑛 ∑ 𝑐𝑖 ∙

(𝑢𝑖𝑡 − 𝑎𝑣𝑖𝑡)2

𝑇̅

𝑘

𝑖=1

 (13) 

The previous formulation can be simplified taking into 

account the following: 

𝑐𝑖 = 1, ∀𝑖, 1 ≤ 𝑖 ≤ 𝑘 (14) 

𝑎𝑣𝑖𝑡 = 𝑢̅ =
∑ 𝑢𝑖𝑡

𝑇
𝑖=1

𝑇̅
, ∀1 ≤ 𝑖 ≤ 𝑘, 1 ≤ 𝑡 ≤ 𝑇̅ (15) 

Then, applying Equation 15, the Equation 13 can be 

simplified as follows: 

∑(𝑢𝑖𝑡 − 𝑢̅)2

𝑘

𝑖=1

= ∑ 𝑢𝑖𝑡
2

𝑘

𝑖=1

− 𝑇̅ ∙ 𝑢̅ ≥ 0 ⇒ ∑ 𝑢𝑖𝑡
2

𝑘

𝑖=1

≥ 0 

⇒ 𝑀𝑖𝑛 ∑(𝑢𝑖𝑡 − 𝑢̅)2

𝑘

𝑖=1

= 𝑀𝑖𝑛 ∑ 𝑢𝑖𝑡
2

𝑘

𝑖=1

 

(16) 

An equivalent formulation for Equation 13, known as the 

Method of Minimum Squares Optimization, is written this 
way: 

𝑚𝑖𝑛 ∑ 𝑢𝑖𝑡
2

𝑘

𝑖=1

, 1 ≤ 𝑡 ≤ 𝑇̅ ( 17) 

The complete formulation for the mathematical model of 

the Minimum Squares Optimization method is comprised in 

Equation 18: 

𝑚𝑖𝑛 ∑ 𝑢𝑖𝑡
2

𝑘

𝑖=1

 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: 
𝑆𝑆𝑛+1 ≤ 𝑇̅ 
𝑆𝑆𝑖 + 𝑑𝑖 + 𝛾𝑖𝑗 ≤ 𝑆𝑆𝑗, ∀𝑖 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟 𝑜𝑓 𝑗 
𝛾𝑖𝑗  𝑏𝑒𝑖𝑛𝑔 𝑡ℎ𝑒 𝑙𝑒𝑎𝑑/𝑙𝑎𝑔 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑖 𝑎𝑛𝑑 𝑗 

( 18) 

Different objective functions for 𝑓[𝑟𝑖(𝑆, 𝑡)] have been 

proposed (Damci, et al., 2016) in order to measure the 

efficiency of the construction project sequence. The most 

common objective function is the Method of Minimum 

Squares Optimization, which minimizes the sum of squares 
of periodically resource usages providing an ideal uniform 

shape for the levelled construction resource consumption. 

Similarly, the Absolute Deviations Method intends to deliver 

an ideal uniform shape by minimizing the resource 

utilization from the targeted resource utilization level 

(Younis & Saad, 1996), whereas the Overloaded Resource 

Problem considers additional costs if a threshold for the 

resource use is surpassed (Rieck, et al., 2012). A different 

objective function, the Resource Idle Days and Maximum 

Daily Resource Demand Method (El-Rayes & Jun, 2009), 

provides a Gauss shape instead of a rectangular distribution, 
in which the purpose is to eliminate the resource’s idle 

periods. Florez, Castro-Lacouture, & Medaglia (2012) 

propose the Maximizing Labor Stability, which aims to 

increase the extent of use of workers and job continuity by 

two alternatives: the first minimizes the maximal fluctuation 

of workers, and the second the sum of the fluctuations. 

 

3. LITERATURE REVIEW 

 

The Method of Minimum Squares Optimization, expressed 

in Equation 17, was introduced by Burgess and Killebrew 

(1962) using a heuristic algorithm in which the local optimal 
(near-optimality or approximation to the optimal) was 

determined by the set of scheduled starting times (SS) for 

each period project along the elements of the set T for a 

prescribed makespan. The Burgess and Killebrew proposal 

is a one-pass improvement algorithm with a parallel 

backward outline and latest finishing time, as the priority 

rule, and maximum total float, as the secondary one. This 
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scheduling outline offers poor improvements over the initial 

scheduling, but most important is that it usually offers 
infeasible solutions because it does not preserve the 

precedence restrictions in the original formulation. 

To avoid previous limitations, Harris (1978) proposed the 

Method of Minimum Moment (MOM), a new multi-pass 

heuristic algorithm with floats recovery that preserve the 

precedence restrictions with better results than the Burguess 

& Killebrew proposal. Later, Harris (1990) improved its own 

proposal with the Packing Method (PACK), which 

recognizes network interactions with a more in-depth 

analysis. Hiyassat (2000; 2001) presented a modification of 

the MOM with a different criterion for selecting the activity 

to be shifted, based on the amount of the activity’s resources 
rate and the value of its free float. More recently, 

Christodoulou et al. (2009) has put forward the entropy-

maximization, using the maximality and sub-additivity 

properties of the entropy function. 

As alternative to heuristic procedures, metaheuristic 

algorithms are higher-level procedures designed to find 

sufficiently good solutions to an optimization problem with 

limited computation capacity and grounded in physical, 

biological and animal behavior. Several specific examples 

about metaheuristics applied to RLP and RCPSP in 

construction projects can be found in the literature, such as 
Grasp (Anagnostopoulos & Koulinas, 2011), genetic 

algorithms (Hegazy, 1999) (Leu, et al., 2000) (Gaitanidis, et 

al., 2016), scatter search and Path Relinking (Ranjbar, 2013), 

simulated annealing (Son & Skibniewski, 1999) 

(Anagnostopoulos & Koulinas, 2010), simulation algorithm 

(Lim, et al., 2014), or tabu search (Koulinas & 

Anagnostopoulos, 2013). In other line, Adeli & Karim 

(1997; 2001) and Adeli & Wu (1998) proposed the 

application of neural network and Adeli & Karim (2001) a 

model based on neurocomputing and object technologies to 

construction projects. 

Other approaches related to construction projects deal 
with RLP in Line-of-Balance Scheduling (Damci, et al., 

2013a; 2013b), linear projects (Tang, et al., 2014) (Georgy, 

2008), highway projects (Arditi & Bentotage, 1996), 

considering uncertainty in activity durations (Li & 

Demeulemeester, 2014), allowing activity splitting (Hariga 

& El-Sayegh, 2010) (Alsayegh & Hariga, 2012) (Hossein 

Hashemi Doulabi, et al., 2010) (Son & Mattila, 2004) or 

considering generalized precedence relationships 

(Benjaoran, et al., 2015). Construction-related problems 

derived from multimode RLP were studied by Menesi & 

Hegazy (2014), whereas Heon Jun & El-Rayes (2011) 
analyzed those related to multiobjective optimization. 

There are several exact algorithms available for the 

solution of the RLP with minimum and/or minimum-

maximum time lags, which may be separated into implicit 

enumeration outlines and integer and mixed-integer 

programming models. On the one hand, as a first 

contribution on exact implicit enumeration outlines methods, 

Petrovic (1969) introduced a dynamic programming for the 

RLP with precedence constraints. On the other hand, Ahuja 
(1976) proposed a method that enumerates all combinations 

of construction activity start times for networks with 

precedence constraints to minimize the squared changes in 

the resource utilization for minimum time lags. Later, 

Bandelloni, Tucci, & Rinaldi (1994) applied non-serial 

dynamic programming and interaction graph theory to find a 

minimum for the squared deviation from the average 

resource utilization. Son & Mattila (2004) proposed a linear 

program binary variable model to level construction 

resources that permits selected activities to stop and restart, 

resulting in an improvement of the leveling solution. 

Additionally, models proposing Branch and Bound (B&B 
from now on) procedures and tree-based enumeration were 

presented by Nübel (2001). This proposal was adapted by 

Neumann, Schwindt & Zimmermann (2003) for the RLP to 

find a nearly optimal solution computing a lower bound for 

the objective function value of each partial tree in the 

enumeration. Gather et al. (2011) considered a tree-based 

enumeration outline where different techniques for avoiding 

redundancies were employed. None of these three 

contributions were specific for construction projects. 

Alternatively, for the integer and mixed-integer 

programming models, based on the Pritsker et al. (1969) 
formulation, Easa (1989) developed a mixed binary-integer 
linear optimization model that minimizes the absolute 

deviations between the construction resource requirements 

and a desirable resource level (uniform or non-uniform). 

Next, Rieck et al. (2012) proposed a new mixed-integer 

linear model for RLP with domain-reducing pre-processing 

techniques; they solved, for the first time to optimality, the 

Kolisch et al. (1999) test set instances considering a deadline 

equal to the unconstrained makespan. Gather et al. (2011) 

presented a new tree-based enumeration outline, based on an 

extended bridge that enumerates all quasi-stable schedules 

without redundancy. Finally, Ponz-Tienda et al. (2013) 
proposed two different binary optimization models: the first 

uses binary decision variables 𝑥𝑗𝑠𝑡 that establish the period 

in which the construction activities are finished; and, in the 

second model, the decision variables 𝑥𝑗𝑠𝑡 establish the period 

in which the activities are executed. 

However, the RLP is NP-hard in the strong sense and 

difficult to solve to optimality (Neumann, et al., 2003) 

(Rieck, et al., 2012). Additionally, the RLP is an especial 
case of the Project Scheduling Problems with non-regular 

objective functions (Neumann & Zimmermann, 1999; 2000) 

(Rieck & Zimmermann, 2015). This kind of problems cannot 

be solved by pruning the exploration tree with the traditional 

B&B procedures. Branch and Bound algorithms check the 

branches of exploration tree against the bounds on the 

optimal solution, and branches are discarded (cut) if they 

cannot produce a better solution than the best bound found 

so far by the algorithm. Consequently, with non-regular 

objective functions, a better solution can be found in the 
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direction of a branching node with a worst solution, than the 

best bound found so far and, therefore, this solution cannot 
be discarded. This fact implies that the RLP could be even 

more difficult to solve than classical RCPSP, even when the 

initial universe of possible solutions to the problem is less 

than in the resource-constrained case. To deal with this 

problem, relaxations to the problem and heuristic procedures 

have been proposed along the literature to find near optimal 

solutions to the RLP.  

As relaxations to the RLP, Drexl & Kimms (2001) 

developed two methods for lower bound computations: the 

first is based on a Lagrangian relaxation, whereas the second 

is based on a column generation procedure, where variables 

represent schedules. Coughlan et al. (2010) proposed a 
Branch-and-Price algorithm by column generation 

embedded into a B&B outline, building a pricing problem for 

each shift of the activities. The same authors (Coughlan, et 

al., 2013) improved their previous proposal with a linear 

programming relaxation based on variables that represent 

schedules via a column generation and Branch-and-Price 

algorithm. Later, Yeniocak (2013) proposed a B&B 

algorithm with a lower bound calculation strategy and a dual 

calculation to obtain lower bound values using the Resource 

Idle Days and Maximum Daily Resource Demand (RID-

MRD) metric for problems up to 20 activities. Such 
relaxations do not assure a global optimal solution for the 

RLP; therefore, an alternative possibility to obtain the global 

optimum is to divide the original problem into simpler sub-

problems and solve them using parallel computation. 

Parallel computing has been previously proposed and used 

to “upgrade” algorithms in civil engineering and make them 

perform faster. The first approach to this topic in civil 

engineering was presented by Adeli and Vishnubhotla (Adeli 

& Vishnubhotla, 1987). Later, Adeli and Kamal (1989) 

introduced a parallel algorithm for structural analysis and its 

performance results. Both approaches made use of the 

parallel capabilities of available “supercomputers”, which 
are a very limited resource. Nevertheless, today’s technology 

makes possible to connect multiple personal computers 

(which are cheaper every day) with little effort; therefore, 

new approaches show up. These approaches take advantage 

of the abundance of personal computers in order to propose 

algorithms that can be run in multiple machines at the same 

time (Adeli & Kumar, 1999). 

Although parallel computation has been widely studied for 

structural analysis (Adeli, et al., 1993), integer programming 

(Wah, et al., 1985) and parallel B&B (McKeown, et al., 

1991) (Clausen & Perregaard, 1999) (Crainic, et al., 2006) 
(Ismail, et al., 2014), proposals on parallel computing in 

scheduling are scarce and based on the parallelization of the 

B&B procedure (Perregaard & Clausen, 1998) (Chakroun & 

Melab, 2015), but not on the subdivision of the graph.  

Moreover, the RLP with minimal lags is harder to solve 

than the minimal-maximal one because, in the problem with 

minimal lags, the activities have more freedom in their shifts 

and consequently a greater universe of feasible solutions. 

Finally, in the reviewed literature, only the library with 
minimal and maximal time lags (Kolisch & Sprecher, 1996) 

up to 30 jobs has been solved to optimality, considering a 

deadline equal to the unconstrained makespan (Rieck, et al., 

2012); nonetheless, the PSPLIB (Kolisch & Sprecher, 1996) 

library for minimal lags is still open to be solved to 

optimality (Ponz-Tienda, et al., 2013). Consequently, to 

partially fill this gap and make a contribution to the body of 

knowledge, the authors propose in the next Section a Parallel 

Branch and Bound algorithm for the Resource Levelling 

Problem with minimal lags. Furthermore, this algorithm is 

tested with 50 problems of the PSPLIB providing a 

benchmarking set of solutions, as described in Section 5. 
 

4. PROPOSED PARALLEL EXACT PROCEDURE 

 

A complex problem is easier to deal with and more 

efficient to solve when divided into simpler sub-problems. 

This paradigm is especially efficient combined with parallel 

computing algorithms, converting a sequential problem into 

parallel processing sub-problems, using multiple and 

independent processors all of them running their own sub-

problem at the same time and then merging its respective 

results. 
Parallel Branch and Bound (B&B) algorithms present 

some anomalies (Lai & Sahni, 1984) in such way that a 

problem of n2 threads can take more time than a problem 

with n1 threads, even though n2 < n1. This is because the 

pruning process depends on the current best bound found, 

and the parallelization causes the unnecessary processing of 

branches with worst solutions. However, for non-regular 

problems as the RLP, this is not an issue because all the 

solutions of the exploration tree must be analyzed, and 

therefore, the parallelization process is efficient. 

The proposed parallel procedure is based on a cloud and 

multicore network computing to work simultaneously with 
various sub-problems of a given problem using a structure of 

parallel processing and distributed computing (Adeli & 

Kumar, 1995) (Adeli, 2000). This approach makes use of 

multiple execution units on the same processor (threads) and 

multiple processors with a sub-problems manager and 

communication over the Internet, as depicted in Fig 1. 

4.1. Graph subdivision process 
The process of breaking down a project graph into smaller 

sub-project graphs, simple enough to be solved in a 

reasonable computational effort, consists in a multi-branched 

recursive process. Then, the solutions of the sub-problems 

are combined to give the solution of the original problem. 

The subdivision is based on the assumption that all the 

activities can be scheduled on every position along its total 

float. From this assumption, it is possible to establish a one 

to one correspondence between possible configurations of n 

activities and integer sequences of n terms, where the 𝑖𝑡ℎ 
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term is between zero and the total float (𝑡𝑓𝑖) of the 𝑖𝑡ℎ 
activity. 

Let s be a sequence of integer positive values (Eq 19). 

Each one of the elements of the sequence s represents a 
possible shift (not necessarily feasible) for activity between 

zero and its total float (𝑡𝑓) for an arbitrary problem with n 

activities: 
𝑠 = {𝑠1 , ⋯ , 𝑠𝑖 , ⋯ , 𝑠𝑛}|𝑠1 ∈ {0, ⋯ , 𝑡𝑓1}, ⋯ , 𝑠𝑖

∈ {0, ⋯ , 𝑡𝑓𝑖}, ⋯ , 𝑠𝑛 ∈ {0, ⋯ , 𝑡𝑓𝑛} 
( 19) 

Let be S the set of elements of s possible solutions 

(sequences) (Eq 20): 
𝑆 = {𝑠|𝑠 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡 𝑎 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛}

= {[0, 𝑓1], ⋯ , [0, 𝑓𝑖], ⋯ , [0, 𝑓𝑛]} 
( 20) 

The process of subdivision of the set starts selecting a 𝑖𝑡ℎ 

position. In this way, the set 𝑆 can be divided in two new 

disjoint subsets from the floor function of its middle point of 

the 𝑖𝑡ℎ position, as stated in Equation 21: 
𝑆 = 𝑆′ ∪ 𝑆′′ 

𝑆 = {[0, 𝑓1], ⋯ , [0, ⌊
𝑓𝑖

2
⌋] , ⋯ , [0, 𝑓𝑛]}

∪ {[0, 𝑓1], ⋯ , [⌊
𝑓𝑖

2
⌋

+ 1, 𝑓𝑖] , ⋯ , [0, 𝑓𝑛]} 

|𝑆′| ≥ |𝑆′′| 

( 21) 

In addition, the new subsets are disjoint sets, in such way 

that if a possible sequence is in 𝑆´ cannot be found on 𝑆´´ and 

vice versa (Eq 22): 

{[0, 𝑓1], ⋯ , [0, ⌊
𝑓𝑖

2
⌋] , ⋯ , [0, 𝑓𝑛]}

∩ {[0, 𝑓1], ⋯ , [⌊
𝑓𝑖

2
⌋

+ 1, 𝑓𝑖] , ⋯ , [0, 𝑓𝑛]} = ∅ 

( 22) 

The division process could also be applied recursively to 

intervals in [𝑓1, 𝑓2]|𝑓2 > 0, 𝑓2 > 𝑓1  form, where the intervals 

gets divided by middle point, up to a previously established 

depth m, obtaining 2m subsets, as displayed in Eq 23: 

2𝑚 ≤ ∏(𝑓1 + 1)

𝑛

𝑖=1

 ( 23) 

Being ∏ (𝑓1 + 1)𝑛
𝑖=1  the universe of possible schedules for 

an instance (Ponz-Tienda, et al., 2013). The subdivision 

process could produce not feasible subsets, in such way that 

there are not any sequences in these subsets that meet the 

constraints and, consequently, their branches are discarded. 

The subdivision process of the set 𝑆 on subsets of possible 

solutions is shown in Figure 2.  

The proposed algorithm for the graph division, being 𝑆 =
{[𝑙1, 𝑢1], ⋯ , [𝑙𝑛 , 𝑢𝑛]} a set of sequences of integer positive 

values (𝑆𝑙𝑖 = 𝑙𝑖  and 𝑆𝑢𝑖 = 𝑢𝑖), is shown in Pseudo-code 1, 

and the algorithm for compute the times and analyze the 

feasibility of a sequence is displayed in Pseudo-code 2. 

HOST COMPUTER

COMPUTERS NETWORK

Sub-problems 

Generator

Sub-problem 1

Sub-problem 2

Sub-problem 3

Sub-problem ...

Sub-problem n

Database of 

problems

Sub-problems 

manager

Internet 

communication

Problem 1

Problem 2

Actual 

Problem

Problem ...

Problem N

Virtual

CPU ...

Real CPU #1

Virtual

CPU #1

Virtual

CPU ...
Virtual

CPU ...

Real CPU ... Real CPU ... Real CPU ...

Core 1

Core 2

Core ...

Sub-problem 1

Sub-problem 2

Sub-problem ...

Sub-problem ...

Sub-problem ...

Sub-problem ...

CPU 

...

CPU & Cores detail

ThreadsCoresCPU

 
Figure 1 Parallel processing 
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...

...

Subset 1

...

...

m=0

Subsets=20=1

m=1

Subsets=21=2

m=2

Subsets=22=4

m=3

Subsets=23=8

m=m

Subsets=2m

Subset 2

Subset 3

...
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...
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Figure 2 Subdivision process of the set S on subsets of possible solutions 

 

Pseudo-code 1  

Algorithm for graph division 

 

Pseudo-code 2  
Computation times to analyze the feasibility of a sequence 

 
The proposed approach to subdivide the graph aims to 

produce similar sized subgraphs without building all the 

exploration trees that cannot be efficiently managed due to 
their great size. In this way, the goal is to find an index 

(activity) such that it is possible to divide all subgraphs by 

the same activity. However, although the number of possible 

solutions of each subset will be similar, the number of 

feasible solution could differ widely as exposed in the 

following section.  

Once the division process is finished, the “sub-problems 

manager” (Fig. 1) begins the distribution over the computer 

network delivering to each computer as many sub-problems 

as cores (processors) available. The remaining sub-problems 

are kept on a distribution queue waiting to be processed. The 

manager makes a periodical checks (once every two seconds) 
to determine if is possible to deliver new sub-problems, 

because some of them have already finished or some 

computers have been disconnected: in the first case, 

delivering new sub-problems, and in the second, delivering 

the unprocessed sub-problems. Additionally, the sub-

problems manager storages the optimal values obtained so 

far, merging its respective results. The process for the graph 

subdivision and sub-problems distribution is insignificant 

respect to the time required solving the problems; as pointed 

out by Adeli and Kamal (1992), this is a requirement for an 

efficient concurrent algorithm. As example, a problem of 
1018 can take an overage of one second to divide and 

distribute it, and over one month to solve it with one hundred 

cores. 

4.2. Example of graph subdivision process 
For a better understanding of the subdivision process, 

Figure 3 displays a Gantt diagram where black squares 

represent critical activities, dark grey the non-critical ones, 

and on light grey the total floats. 

GraphDivide (initialsequence:S, divisiondegree:m) 

    Queueofsequences: Q 

    Divisionindex: i = 0 

    Lastdivisionindex: l = 0 

    Q.enqueue(S) 

    while (m > 1)  do  

        'remark Search for a suitable index i to divide all sequences in Q 

        i = 0 

        for j = l + 1 to N 

            if (min{ Tuj - Tlj: T ∈ Q } > 0)  then  
                i = j  

                j = N + 1 

            end if 

        end for 

        if (i > 0)  then 

            count = |Q| 

            'remark Divide all sequences in Q by the index i 

            while (count > 0)  do 

                T = Q.dequeue() 

                U = clone(T) 

                middle = ⌊(Tui - Tli )/2⌋ 
                Tui = middle 

                Uli = middle + 1 

                if (Computetimes(T) = true)  then Q.enqueue(T)   

                if (Computetimes(U) = true)  then Q.enqueue(U) 

                count = count - 1 

            end while 

            l = i 

        elseif (l = 0)  then break  

        else l = 0 

    end while 

return Q 

 

function Computetimes (sequenceset:S) 

    for i = 1 to N 

        SSi = max{SSi, ESi + Sli } 

        if (SSi > ESi + Sui)  then return false 

        for each j in succesors(i)  

            SSj = max{SSj, ESi + di ) 

        end for 

    end for 

return true 
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4 4

1 1 5

0

A

7 11

5 1 12

4

D

5 9

6 2 11

4

E

6 10

4 0 10

4

G

6 10

4 0 10

4

F

4 4

0 0 4

0

C

4 4

0 0 4

0

B

3 14

12 1 15

11

H

4 14

11 1 15

10

J

5 15

10 0 15

10

K

1 16

15 0 16

15

L

Dur ef

ls tf lf

es

Name

Dur ES EF LS LF TF Res 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

A 4 0 4 1 5 1 3 3 3 3 3 0 0 0 0 0 0 0 0 0 0 0 0

B 4 0 4 0 4 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

C 4 0 4 0 4 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

D 7 4 11 5 12 1 2 0 0 0 0 2 2 2 2 2 2 2 0 0 0 0 0

E 5 4 9 6 11 2 1 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0

F 6 4 10 4 10 0 2 0 0 0 0 2 2 2 2 2 2 0 0 0 0 0 0

G 6 4 10 4 10 0 2 0 0 0 0 2 2 2 2 2 2 0 0 0 0 0 0

H 3 11 14 12 15 1 5 0 0 0 0 0 0 0 0 0 0 0 5 5 5 0 0

J 4 10 14 11 15 1 3 0 0 0 0 0 0 0 0 0 0 3 3 3 3 0 0

K 5 10 15 10 15 0 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0

L 1 15 16 15 16 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1  
Figure 3 Example of subdivision process 

The Example shown in Figure 3 could be divided for an 

arbitrary depth (𝑚 = 3), remarking in light gray the position 
in the subset in which the subset was branched (Fig 4). 

Not necessarily all the subsets are feasible subsets, and not 

all the sequences of feasible subsets are feasible sequences 

(Fig. 4) Therefore, the branching process cut the not feasible 

branches with not feasible solutions, and not necessarily all 

the sequences of feasible subsets are feasible sequences. On 

the Example of Figure 3, the sequence {0,0,0,0,2,0,0,0,0,0,0} 
in #𝑆2, given by shifting the fifth activity (E) two-steps is a 

possible sequence, but not a feasible sequence, due to the fact 

that this shift violates the precedence constraints with its 
follower (J). 

 

m=0

Subsets=20=1

m=1

Subsets=21=2

m=2

Subsets=22=4

m=3

Subsets=23=8

#S1

Subset ID

#S2

#S3

#S4

#S5

#S6

#S7

#S8

                      
{[0

0

,1],[0,0],[0,0],[0,1],[0,2],[0,0],[0,0],[0,1],[0,

, , 0, , 0, , 0, , 0, , 0, ,

1],[0,

0, , 0,

0

, 0, , , 0, , 0

}

,

]

A B C D E F G H J K Lf f f f f f f fS f f f

S





{[1,1],[0,0],[0,0],[0,1],[0,2],[0,0],[0,0],[0,1],[0,1],[0,0]}

{[0,0],[0,0],[0,0],[0,0],[0,2],[0,0],[0,0],[0,1],[0,1],[0,0]}

{[0,0],[0,0],[0,0],[1,1],[0,2],[0,0],[0,0],[0,1],[0,1],[0,0]}

{[1,1],[0,0],[0,0],[0,0],[0,2],[0,0],[0,0],[0,1],[0,1],[0,0]}

{[1,1],[0,0],[0,0],[1,1],[0,2],[0,0],[0,0],[0,1],[0,1],[0,0]}

{[0,0],[0,0],[0,0],[0,1],[0,2],[0,0],[0,0],[0,1],[0,1],[0,0]}

{[0,0],[0,0],[0,0],[0,0],[0,1],[0,0],[0,0],[0,1],[0,1],[0,0]}

{[0,0],[0,0],[0,0],[0,0],[2,2],[0,0],[0,0],[0,1],[0,1],[0,0]}

{[0,0],[0,0],[0,0],[1,1],[0,1],[0,0],[0,0],[0,1],[0,1],[0,0]}

{[0,0],[0,0],[0,0],[1,1],[2,2],[0,0],[0,0],[0,1],[0,1],[0,0]}

{[1,1],[0,0],[0,0],[0,0],[0,1],[0,0],[0,0],[0,1],[0,1],[0,0]}

{[1,1],[0,0],[0,0],[0,0],[2,2],[0,0],[0,0],[0,1],[0,1],[0,0]}

{[1,1],[0,0],[0,0],[1,1],[0,1],[0,0],[0,0],[0,1],[0,1],[0,0]}

{[1,1],[0,0],[0,0],[1,1],[2,2],[0,0],[0,0],[0,1],[0,1],[0,0]}
 

Figure 4 Process subdivision tree of the graph Example 
 

Subset 1

Sequence 1.1

Sequence 1.2

Sequence 1.3

Sequence 1,...

Subset 2

Sequence 2.1

Sequence 2.2

Sequence 3.3

Sequence 3,...

Subset 3

Sequence 2.1

Sequence 2.2

Sequence 3.3

Sequence 3,...

Subset ...

Sequence 2.1

Sequence 2.2

Sequence 3.3

Sequence 3,...

Subset 2m

Sequence 2m.1

Sequence 2m.2

Sequence 2m.3

Sequence 2m,...
 

Figure 5 Composition of possible sequences for feasible 

subsets of the problem 

4.3. The implicit enumeration outline 
Once the problem is divided in feasible subsets, the 

process of Implicit Enumeration starts for each one of them. 

The term Implicit Enumeration implies that not all the 

solutions of the enumeration outline are analyzed and that 

large numbers of not feasible solutions are excluded. Note 

that in Figure 6 each node represents an activity and its shift 

along the restricted total float in the subset.  

The scanning sequence for the Implicit Enumeration of the 

subsets is a tree enumeration with outline Depth First Search 

in which the live node with deepest level in the search tree is 

chosen for exploration (Fig 7).  

Table 1  

Sequences for all subsets for the example of subdivision process 
Sub Set #S1 Sub Set #S2 Sub Set #S3 Sub Set #S4 Sub Set #S5 Sub Set #S6 Sub Set #S6 Sub Set #S6

{0,0,0,0,0,0,0,0,0,0,0} {0,0,0,0,2,0,0,0,0,0,0} {0,0,0,1,0,0,0,0,0,0,0} {0,0,0,1,2,0,0,0,0,0,0} {1,0,0,0,0,0,0,0,0,0,0} {1,0,0,0,2,0,0,0,0,0,0} {1,0,0,1,0,0,0,0,0,0,0} {1,0,0,1,2,0,0,0,0,0,0}

{0,0,0,0,0,0,0,0,1,0,0} {0,0,0,0,2,0,0,0,1,0,0} {0,0,0,1,0,0,0,0,1,0,0} {0,0,0,1,2,0,0,0,1,0,0} {1,0,0,0,0,0,0,0,1,0,0} {1,0,0,0,2,0,0,0,1,0,0} {1,0,0,1,0,0,0,0,1,0,0} {1,0,0,1,2,0,0,0,1,0,0}

{0,0,0,0,0,0,0,1,0,0,0} {0,0,0,0,2,0,0,1,0,0,0} {0,0,0,1,0,0,0,1,0,0,0} {0,0,0,1,2,0,0,1,0,0,0} {1,0,0,0,0,0,0,1,0,0,0} {1,0,0,0,2,0,0,1,0,0,0} {1,0,0,1,0,0,0,1,0,0,0} {1,0,0,1,2,0,0,1,0,0,0}

{0,0,0,0,0,0,0,1,1,0,0} {0,0,0,0,2,0,0,1,1,0,0} {0,0,0,1,0,0,0,1,1,0,0} {0,0,0,1,2,0,0,1,1,0,0} {1,0,0,0,0,0,0,1,1,0,0} {1,0,0,0,2,0,0,1,1,0,0} {1,0,0,1,0,0,0,1,1,0,0} {1,0,0,1,2,0,0,1,1,0,0}

{0,0,0,0,1,0,0,0,0,0,0} {0,0,0,1,1,0,0,0,0,0,0} {1,0,0,0,1,0,0,0,0,0,0} {1,0,0,1,1,0,0,0,0,0,0}

{0,0,0,0,1,0,0,0,1,0,0} {0,0,0,1,1,0,0,0,1,0,0} {1,0,0,0,1,0,0,0,1,0,0} {1,0,0,1,1,0,0,0,1,0,0}

{0,0,0,0,1,0,0,1,0,0,0} {0,0,0,1,1,0,0,1,0,0,0} {1,0,0,0,1,0,0,1,0,0,0} {1,0,0,1,1,0,0,1,0,0,0}

{0,0,0,0,1,0,0,1,1,0,0} {0,0,0,1,1,0,0,1,1,0,0} {1,0,0,0,1,0,0,1,1,0,0} {1,0,0,1,1,0,0,1,1,0,0}  
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Subset #S3

{A,B,C,D,E,F,G,H,J,K,L}

{[0,0],[0,0],[0,0],[1,1],[0,1],[0,0],[0,0],[0,1],[0,1],[0,0]}

E Shift 0 E Shift 1

J Shift 0 J Shift 1

K Shift 0 K Shift 1

J Shift 0 J Shift 1

K Shift 0 K Shift 1

 

Subset #S3

#1

#2

#3

#4

#5

#6

#7

{0,0,0,1,0,0,0,0,0,0,0} {0,0,0,1,0,0,0,1,0,0,0}

{0,0,0,1,0,0,0,0,1,0,0} {0,0,0,1,0,0,0,1,1,0,0}

#8

#9

#10

#11

#12

#13

#14

{0,0,0,1,1,0,0,0,0,0,0} {0,0,0,1,1,0,0,1,0,0,0}

{0,0,0,1,1,0,0,0,1,0,0} {0,0,0,1,1,0,0,1,1,0,0}
 

 Figure 6 Tree representation of the subset #S3  Figure 7 Depth First Search order enumeration  

  outline for Sub Set #3 and obtained sequences 

 

Pseudo-code 3 shows the algorithm for the B&B with 

Depth First Search outline. The algorithm is a recursive 

procedure, in which nodes are examined incrementally from 

a starting index (initial job for the first call) while it can be 

branched, calling himself from the next index. The B&B 

algorithm (non-parallel) with Depth First Search outline for 

the RLP has been implemented in an app (Fig 8) as an 

illustrative example of the search procedure that can be 

downloaded from https://goo.gl/hxW8c9. 

Pseudo-code 3  
Depth First Search outline Branch and Bound algorithm 

 
As it can be seen on Pseudo-code 3, there is not a previous 

process that excludes activities with zero total float or 

without resource consumption, because the subdivision 

process could reduce to zero the total float of some activities. 

Consequently, the real complexity could differ between the 

sequential and the parallel computation in a number that is 

less or equal to the number of feasible subsets. The 
application of Pseudo-codes 1 to 3 provides the feasible 

sequences presented in Table 1 for each one of the subsets of 

the Example. 

In Table 2, the initial and levelled values for the objective 

function for each subset are shown. Note that, due to the fact 

that RLP is a non-regular problem, a lower bound cannot be 

established to cut the exploration tree. Therefore, all subsets 

must be analyzed in order to find the optimal value. In the 

example of graph subdivision process, the subsets #S2 and 

#S4 present the best initial value; however, the optimal value 

is found in subset #S3. 

Table 2  

Values for the objective function for each sub-set 
 Initial value Best value 

#S1 956 926 

#S2 920 920 

#S3 922 916 

#S4 920 920 

#S5 988 968 

#S6 962 962 

#S7 944 938 

#S8 932 932 

 

5. IMPLEMENTATION AND RESULTS 
 

The proposed Parallel B&B algorithm has been 

completely implemented in an app developed in C# language 

and tested with the PSPLIB library (Kolisch & Sprecher, 

1996). The process of implementation of the Parallel B&B 

was gradual from one core to 490 cores (Fig 8). The first step 

(with one core) had the purpose of testing the B&B algorithm 

(Fig 9). Once the goodness of the provided solutions was 

verified, the parallel B&B was implemented in one computer 

with eight cores and gradually increased to 490 cores in 

several physical and virtual computers. The complete app 
with the Parallel B&B and the user manual can be 

downloaded from https://goo.gl/F0vKOL.  

The Information and Technology Services Directorate 

(DSIT) and the Department of Systems Engineering of la 

Universidad de Los Andes, Colombia, provided 25 Windows 

7© virtual machines of 10 cores and 2.4 GHz under the HP 

Cloud Management Software©. Furthermore, five 

Workstations HP Z620 12 DIMM (with a Chipset Intel® 

C602) and one additional CPU Xeon E5-2603v2 were used. 

Additionally, several Linux virtual machines were provided 

ParallelBranch&Bound (jobindex:i, sequenceset:S) 

'remark Tries with the possible shifts of ith  activity given by S constraints 

    for k = Sli  to Sui 

        if (ESi + k < SSi)  then 

            k = SSi - ESi 

        else 

            SSi = ESi + k 

        end if 

        'remark The ith  activity shifting could induce the violation  

        'of another activity constrain in S 

        isfeasible = Computetimes(S) 

        if (isfeasible = true) then actualbound = Computeobjectivefunction() 

        if (actualbound < lowerbound) then  

            lowerbound = actualbound 

            for z = 1 to N 

                Elitez = SSk 

            end for 

        end if 

        'remark recursive calling 

        if (i < N) then 

            call ParallelBranch&Bound (i + 1,S)  

        else  

            for z = i + 1 to N 

                SSz = 0 

            end for 

            'remark If a constraint gets violated, the next shifts will be 

            'violated. So is no need to continue 

            k = Sui + 1 

        end if 

    end for 

 

https://goo.gl/hxW8c9
https://goo.gl/F0vKOL


Ponz-Tienda, Salcedo-Bernal & Pellicer 10 

by UnaCloud under the Opportunistic Cloud Computing 

Infrastructure as a Service framework (Rosales, et al., 2011). 
 

 
Figure 8 Improvement process considering the number 

of cores 

Along with the implementation process, the algorithm was 

significantly improved, not only by increasing the number of 

cores, but also the efficiency in the iterations by thread, going 

from 5,000 to around 150,000 iterations per second and 

thread (Fig 10, left side), and 7.35E+07 total iterations per 

second (Fig 10, right side). 

 
Figure 9 App for the Depth First Search B&B algorithm 
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Figure 10 Improvement process in the number of iterations by second 

 

For the graph subdivision, a non-fixed depth variable 𝑚 

(Eq. 23) is adopted in such way that the division process 

produces at least 2𝑚 > 20,000 feasible subgraphs. This 

ensures a balanced complexity for the analyzed problems 

with the available infrastructure, without disturbing the 
efficiency of the sub-problems manager negotiation process. 

The real complexity of different solved instances is shown in 

Figure 11. The x-axis represents the subgraph, and the y-axis 

the number of iterations needed to be solved; the red line 

displays the cumulated iterations. As shown in Figure 11, the 

complexity of the sub-problems can differ widely (up to 10 

orders of magnitude).  

By dividing the problem into a large number of sub-

problems, the sub-problems manager minimizes idle times of 

the computer network and, additionally, reduces the 

difference of complexity between sub-problems, balancing 

the distribution of work among processors (Saleh & Adeli, 

1994a; 1994b). If all sub-problems where equally sized, the 

perfect distribution would be to divide the problem in as 

many sub-problems as processors are available, mapping the 

sub-problems with the processors one to one (Adeli & 

Kamal, 2003). However, the sub-division process does not 

produce equally sized sub-problems, as can be seen in Figure 
11, where there are sub-problems with a thousand times more 

complexity than others. Therefore, this distribution would 

produce idle time among the processors: if a sub-problem is 

considerably bigger, then its respective processors will spend 

more running time whereas the remaining processors are 

waiting. Thus, it is recommended to produce a big number of 

sub-problems to minimize this issue. 
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Figure 11 Real complexity of the subgraphs after graph subdivision 

   
 Figure 12 Comparison of the initial complexity over real  Figure 13 Correlation of the initial complexity over real 

   
 Figure 14 Correlation of the initial complexity Figure 15 Comparison of the initial complexity over the  

  over efficiency  processing time considering 3 × 107 iterations per second 
 

For the experimentation phase, all problems with an initial 

complexity less than 1017 (42 instances) were selected, on top 

of seven arbitrary instances with a complexity between 1017 

and 1018 and one instance with a complexity greater than 

1018. Table 3 exposes the main indicators for each one of the 

solved instances: (a) the initial complexity, as the product of 

the total floats of the activities (𝑂(𝑛) = ∏(𝑇𝑜𝑡𝑎𝑙𝑓𝑙𝑜𝑎𝑡 +
1)); (b) the real number of iterations needed (feasible 

solutions); (c) the efficiency, as the relation between the real 

and initial complexity (smaller values correspond to greater 

efficiency); and (d) the initial and levelled values for the sum 

of the squares and the improvement as a percentage of the 

initial value. For a complete compatibility of the 

benchmarking test, the problems were solved considering the 

prescribed makespan as the obtained for the unconstrained 

problem (𝑇̅ = 𝑙𝑠𝑛 , 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 3) and the associated cost to 
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each resource equal to one (𝑐𝑖 = 1, 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 14). The 

optimal values, the scheduled times for the activities, and the 
benchmarking results can be downloaded from 

https://goo.gl/GjCGEi.  

Figures 12 and 13 show the correlation between the initial 

complexity versus the real number of iterations and the 

processing time, respectively. In Figure 12, the problems, in 

x-axis, are ordered by their real complexity and then 

compared with their respective initial complexity, without a 

clear relationship between those magnitudes. In Figure 13, 

the initial and real complexity of each solved problem are 

mapped showing that, in general, the real complexity is 

increasing with the initial complexity, but with a variability 
up to three levels of magnitude between two similar 

problems. This implies that the real complexity cannot be 

established by only considering the initial complexity. The 

processing time has been computed considering an average 

of 3 × 107 iterations per second. 
Figures 14 and 15 display the correlation between the 

initial complexity over efficiency and the processing time, 

considering 3 × 107 iterations per second, respectively. 

Figure 14 shows the relationship between the efficiency and 

the initial complexity, with a weak correlation between the 

two metrics, indicating that bigger problems are more 

efficiently solved, but with great variability up to two levels 

of magnitude between similar problems. Figure 15 compares 

the time required by the instances to be solved to optimality 

versus its initial complexity, suggesting that problems up to 

3 × 1017 can be solved in a reasonable computational time. 

 

Table 3  

Parallel B&B experimentation results 

# of 
problem 

Problem 
 Complexity O(n)  

Efficiency 
 Sum of squares  

Improvement 
 Initial Real   Initial Levelled  

1 j3029_6  6.6E+08 3.8E+06  0.573%  110,265 107,109  2.862% 

2 j3041_1  3.9E+09 1.4E+08  3.525%  45,832 41,878  8.627% 

3 j3025_2  1.2E+11 7.1E+09  6.167%  39,398 37,178  5.635% 

4 j3044_4  1.4E+12 1.8E+10  1.293%  51,951 49,379  4.951% 

5 j3037_6  3.9E+12 1.9E+09  0.048%  22,127 19,399  12.329% 

6 j3047_6  3.9E+12 1.6E+11  4.149%  76,849 71,273  7.256% 

7 j3025_9  4.4E+12 9.5E+08  0.022%  42,302 40,714  3.754% 

8 j3032_7  2.4E+13 1.6E+11  0.652%  75,573 66,411  12.123% 

9 j3030_10  4.7E+13 3.7E+10  0.078%  110,314 101,746  7.767% 

10 j3022_2  6.1E+13 7.6E+11  1.242%  27,075 23,765  12.225% 

11 j3014_1  7.0E+13 5.3E+11  0.766%  70,211 62,561  10.896% 

12 j3024_9  8.2E+13 6.8E+09  0.008%  25,970 23,824  8.263% 

13 j3048_8  3.4E+14 4.4E+10  0.013%  72,636 67,838  6.606% 

14 j3034_2  4.5E+14 9.5E+09  0.002%  8,283 7,097  14.318% 

15 j3013_1  6.6E+14 3.8E+11  0.057%  102,511 83,771  18.281% 

16 j3016_3  7.8E+14 2.2E+11  0.029%  105,510 95,492  9.495% 

17 j3019_9  8.6E+14 1.2E+12  0.144%  8,864 7,280  17.870% 

18 j3041_2  1.1E+15 3.0E+11  0.028%  53,603 46,743  12.798% 

19 j3020_4  1.1E+15 1.1E+13  1.004%  9,499 8,445  11.096% 

20 j3027_7  1.9E+15 1.3E+12  0.065%  54,870 48,316  11.945% 

21 j3017_5  3.1E+15 1.8E+11  0.006%  10,692 9,458  11.541% 

22 j3043_2  3.2E+15 2.0E+12  0.061%  51,273 45,233  11.780% 

23 j3037_2  6.0E+15 4.8E+11  0.008%  25,393 20,041  21.077% 

24 j3021_1  9.6E+15 1.5E+13  0.159%  19,863 18,221  8.267% 

25 j3029_3  1.1E+16 1.7E+13  0.165%  83,716 72,010  13.983% 

26 j3022_1  1.1E+16 3.5E+11  0.003%  27,189 21,909  19.420% 

27 j3017_4  1.3E+16 9.5E+12  0.076%  10,867 8,453  22.214% 

28 j3044_7  1.4E+16 3.9E+11  0.003%  57,601 53,111  7.795% 

29 j3033_3  1.4E+16 3.0E+12  0.021%  9,518 8,532  10.359% 

30 j3044_2  1.6E+16 7.9E+11  0.005%  59,728 56,040  6.175% 

31 j301_6  1.8E+16 5.6E+12  0.031%  7,470 6,290  15.797% 

32 j3021_9  2.1E+16 5.7E+12  0.027%  32,996 30,706  6.940% 

33 j306_4  2.5E+16 4.8E+12  0.019%  41,622 37,950  8.822% 

34 j3046_7  2.7E+16 2.2E+13  0.082%  74,803 66,713  10.815% 

35 j3038_8  2.7E+16 2.5E+12  0.009%  26,614 25,314  4.885% 

36 j301_10  4.4E+16 3.4E+13  0.079%  7,035 6,403  8.984% 

37 j3034_10  4.6E+16 2.8E+11  0.001%  6,894 5,774  16.246% 

https://goo.gl/GjCGEi
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38 j3013_8  5.4E+16 2.1E+13  0.040%  109,543 102,449  6.476% 

39 j3042_4  5.7E+16 1.1E+13  0.019%  45,827 41,363  9.741% 

40 j3039_9  6.2E+16 2.5E+13  0.041%  25,512 21,852  14.346% 

41 j3046_10  7.6E+16 2.2E+13  0.029%  74,004 69,040  6.708% 

42 j3029_7  8.3E+16 1.2E+13  0.014%  87,787 75,801  13.654% 

43 j306_6  1.4E+17 2.2E+13  0.016%  35,558 25,546  28.157% 

44 j3033_8  1.5E+17 2.3E+13  0.015%  9,658 7,610  21.205% 

45 j3031_5  1.8E+17 5.4E+12  0.003%  61,749 58,775  4.816% 

46 j3033_5  1.9E+17 1.2E+13  0.006%  11,776 9,520  19.158% 

47 j307_5  2.0E+17 8.7E+12  0.004%  35,221 31,411  10.817% 

48 j3036_7  3.1E+17 2.9E+13  0.009%  9,773 7,399  24.291% 

49 j3024_8  6.2E+17 8.5E+12  0.001%  31,737 26,475  16.580% 

50 j3043_6  1.5E+18 1.2E+14  0.008%  42,110 35,950  14.628% 

6. DISCUSSION OF RESULTS 

 

The results obtained from the experimentation have been 

compared with the only benchmark published up to now for 

the Adaptive Genetic Algorithm (AGA hereafter) (Ponz-

Tienda, et al., 2013). They are analyzed in order to obtain 

correlations that provide an explanation about the differences 

observed between similar instances “a priori" (Fig 13). The 

results obtained, comparing the Parallel B&B and the AGA 

algorithms, are presented in Table 4. 
Table 4 indicates that instances with an initial level of 

complexity equal to or lower than 1014 are not improved 

compared with the AGA benchmarking. The results of the 

experimentation are summarized in Table 5, presenting the 

average improvement of the AGA vs the Parallel B&B, with 

the number and percentage of improved instances. Table 4 

shows that metaheuristics, as AGA, provide excellent results 

expending less computational time than exact methods. 

However, metaheuristics methods converge fast, easily 

relapsing into local optimum as with problem #48 (j3036_7), 

obtaining results very far away from the optimal value; in 

this case, it is necessary a benchmarking test to prove the 

capability of heuristics and metaheuristics methods in order 
to escape from local optimum. 

 

Table 4  

Results comparison between AGA and Parallel B&B 
 

Instance 

 Sum of squares  
Improvement 

  

Initial 

Levelled  

  
AGA 

Parallel 
B&B 

 
AGA 

Parallel 
B&B 

Improved 

1 j3029_6  110,265 107,109 107,109  2.862% 2.862% No 

2 j3041_1  45,832 41,878 41,878  8.627% 8.627% No 

3 j3025_2  39,398 37,290 37,178  5.351% 5.635% Yes 

4 j3044_4  51,951 49,379 49,379  4.951% 4.951% No 

          

5 j3037_6  22,127 19,399 19,399  12.329% 12.329% No 

6 j3047_6  76,849 71,273 71,273  7.256% 7.256% No 

7 j3025_9  42,302 40,714 40,714  3.754% 3.754% No 

8 j3032_7  75,573 66,557 66,411  11.930% 12.123% Yes 

9 j3030_10  110,314 101,766 101,746  7.749% 7.767% Yes 

10 j3022_2  27,075 23,765 23,765  12.225% 12.225% No 

11 j3014_1  70,211 62,561 62,561  10.896% 10.896% No 

12 j3024_9  25,970 23,864 23,824  8.109% 8.263% Yes 

13 j3048_8  72,636 67,838 67,838  6.606% 6.606% No 

14 j3034_2  8,283 7,097 7,097  14.318% 14.318% No 

15 j3013_1  102,511 83,869 83,771  18.185% 18.281% Yes 

16 j3016_3  105,510 95,502 95,492  9.485% 9.495% Yes 

17 j3019_9  8,864 7,280 7,280  17.870% 17.870% No 

18 j3041_2  53,603 46,857 46,743  12.585% 12.798% Yes 

19 j3020_4  9,499 8,455 8,445  10.991% 11.096% Yes 

20 j3027_7  54,870 48,316 48,316  11.945% 11.945% No 

21 j3017_5  10,692 9,468 9,458  11.448% 11.541% Yes 

22 j3043_2  51,273 45,233 45,233  11.780% 11.780% No 

23 j3037_2  25,393 20,099 20,041  20.848% 21.077% Yes 

24 j3021_1  19,863 18,221 18,221  8.267% 8.267% No 
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25 j3029_3  83,716 72,016 72,010  13.976% 13.983% Yes 

26 j3022_1  27,189 21,929 21,909  19.346% 19.420% Yes 

27 j3017_4  10,867 8,453 8,453  22.214% 22.214% No 

28 j3044_7  57,601 53,111 53,111  7.795% 7.795% No 

29 j3033_3  9,518 8,532 8,532  10.359% 10.359% No 

30 j3044_2  59,728 56,040 56,040  6.175% 6.175% No 

31 j301_6  7,470 6,290 6,290  15.797% 15.797% No 

32 j3021_9  32,996 30,714 30,706  6.916% 6.940% Yes 

33 j306_4  41,622 38,126 37,950  8.399% 8.822% Yes 

34 j3046_7  74,803 66,803 66,713  10.695% 10.815% Yes 

35 j3038_8  26,614 25,382 25,314  4.629% 4.885% Yes 

36 j301_10  7,035 6,427 6,403  8.643% 8.984% Yes 

37 j3034_10  6,894 5,774 5,774  16.246% 16.246% No 

38 j3013_8  109,543 102,709 102,449  6.239% 6.476% Yes 

39 j3042_4  45,827 41,381 41,363  9.702% 9.741% Yes 

40 j3039_9  25,512 21,872 21,852  14.268% 14.346% Yes 

41 j3046_10  74,004 69,040 69,040  6.708% 6.708% No 

42 j3029_7  87,787 75,977 75,801  13.453% 13.654% Yes 

43 j306_6  35,558 25,602 25,546  27.999% 28.157% Yes 

44 j3033_8  9,658 7,618 7,610  21.122% 21.205% Yes 

45 j3031_5  61,749 58,817 58,775  4.748% 4.816% Yes 

46 j3033_5  11,776 9,570 9,520  18.733% 19.158% Yes 

47 j307_5  35,221 31,411 31,411  10.817% 10.817% No 

48 j3036_7  9,773 8,383 7,399  14.223% 24.291% Yes 

49 j3024_8  31,737 26,475 26,475  16.580% 16.580% No 

50 j3043_6  42,110 35,950 35,950  14.628% 14.628% No 

Additionally, as shown in Figure 14, the efficiency grows 

as the initial complexity increases, providing a 

covariance 𝑐𝑜𝑣(𝑥, 𝑦) = −0.604; this result indicates a 

strong correlation between efficiency and complexity (note 

that lower values represent greater efficiency). Nevertheless, 
this experimentation evidences that low complexity 

problems are not always easier to solve than bigger 

instances; in fact, for the same initial complexity there might 

be a difference of up to three magnitude orders in the number 

of iteration needed to solve the instance (Fig. 14). 

Table 5  

Summary of benchmark comparison 

Average Improvement  Improved instances 

AGA Parallel B&B  Number % 

11.616% 11.895%  26 of 50 52.00% 

The efficiency has been correlated (Table 7, Figures 16, 

17 and 18) with several parameters (network-based and 

resource-based) found in the literature, as explained now. 

The network-based parameters used were the Network 

Complexity (NC) and the Flexibility Ratio (FR) (equivalent 
to Order Strength (OS) or Graph Density (GD)). The 

Complexity Index (CI) was not included on the network-

based parameters, because the real complexity variability 

cannot be explained by this parameter as was demonstrated 

by De Reyck and Herroelen (1996). Most of resource-based 

parameters take into account resources availability, but since 

the RLP formulation assumes unlimited resources, including 

them makes no sense. Particularly for that reason, the 

parameters Resource Strength (Kolisch & Sprecher, 1996) 

and Resource Contrainedness were not included on this 

analysis; nevertheless, the authors have analyzed the 

correlation with the Resource Factor (RF) (Kolisch & 

Sprecher, 1996) as it is considered in the literature (Li & 

Demeulemeester, 2015). Additionally, other parameters not 

found in the analyzed literature were considered: the Number 
of Paths (#P), the Average Total Float (ATF), the Average 

Free Float (ATF), and the Free Float Complexity (FFC) 

(computed as the product of the free float plus one of all the 

activities). 

The improvement sectored by level of complexity shows 

that AGA provides poorer results, even though complexity 

increases (see Table 6).  

Table 6  

Improvement sectored by level of complexity (B&B vs 

AGA) 

 

Level of 

complexity 

 # Instances  % Improved by B&B 

 By 

level 

Improved 

by B&B 
 By level Cumulated 

e08  1 0  0.00% 0.00% 

e09  1 0  0.00% 0.00% 

e11  1 1  100.00% 33.33% 

e12  4 0  0.00% 14.29% 

e13  5 3  60.00% 33.33% 

e14  5 2  40.00% 35.29% 

e15  7 4  57.14% 41.67% 

e16  18 11  61.11% 50.00% 
e17  7 5  71.43% 53.06% 

e18  1 0  0.00% 52.00% 

Total  50 26    
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Figure 16 Correlations with network-based parameters 

Table 7  

Correlations with graph and resource parameters 

 
The values observed in Table 7 and represented in Figures 

16 to 18 do not provide clear evidences about correlations, 

with the exceptions of the poor correlation of the efficiency 

with the Average Total Float (ATF) and the correlation with 
the Resource Factor (RF). The first correlation (Figure 18 

upper right hand side) is due to the fact that the efficiency is 

computed as the relationship between the real and initial 

complexity, but it does not totally explain the behavior of the 

variability. The correlation with the Resource Factor (RF) 

(Figure 17) is not conclusive because the PSPLIB is built 

using the RF as initial parameter with only four values (𝑅𝐹 =
{0.25, 0.50, 0.75 , 1.00}) (Kolisch & Sprecher, 1996), and 

consequently the correlation may be slanted by the 

randomness of the selected problems. Nerveless, it suggests 
that the variability of the efficiency is reduced when the 

resource factor grows, but this is not a conclusive result. 

Therefore, more experiments are required to reach more 

robust conclusions. 

 
Figure 17 Correlations with Resource Factor (RF) 

 

 
Figure 18 Correlations with other parameters 
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7. EXAMPLE OF APPLICATION 
 

Besides the benchmarking test described previously, a 

building project of 15 floors (three underground and 12 

aboveground) is used to illustrate the versatility and 

adaptability of the proposed Parallel Branch and Bound 

algorithm; this example was already used by Ponz-Tienda, et 

al. (2015) and it has been slightly modified for this case. The 

building project is completely solved using 71 construction 

activities contemplating the widest possible set of 

conditions: the structure is a process overlapped with the 
processes of masonry, facades and basements with an 

additional lag of 3, 2 and 1 weeks respectively for removal 

of formwork to ensure the proper hardening of the concrete. 

A total of 13 activities/processes which summarize 71 

activities and sub-processes are considered.  The durations, 

relationships, weekly resource demand and continuity 

conditions of each task and process are shown in Table 8. 

 

Table 8  

Example of application; durations, relationships and construction constraints. 

Activity 
Code 

Activity description 
 

# of 
subactivities 

 
Duration 
in weeks 

 Weekly 
resource 
demand 

 
Continuity 
condition 

 Precedence Relationships 

     
#1 #2 

1 Previous works  1  1  5  Yes  - - 

2 Excavations 0.0/-1.0  1  2  3  Yes  FS1-2(0) - 

3 Diaphragm-wall  1  8  5  Yes  FS2-3(0) - 

4 Excavations  1  6  5  Yes  FS3-4(0) - 

5 Rebars for foundation works  1  3  10  Yes  FS4-5(0) - 

6 Concrete foundation  1  1  5  Yes  FS4-5(0) - 

7 Structure 1 to 15  15  2  15  No  FS6-7(0) - 

8 Masonry works 1 to 12  12  1  5  No  Fl7-8(5,1,3) - 

9 Facades 1 to 12  12  2  10  No  Fl8-9(6,1,2)  

10 Paving works 1 to 12  12  1  5  No  Fl8-9(1,1,1)  

11 Office works 1 to 12  12  2  10  No  Fl9-11(3,1,0) Fl10-11(1,1,0) 

12 Reworks and finishing  1  1  10  Yes  FS11-12(0) - 

13 Delivery/reception  1  1  0  Yes  FS12-13(0) - 

𝐹𝑆𝑖−𝑗(𝑧) Finish to start relationship with z lag units from activity 𝑖 to 𝑗 

𝐹𝑙𝑖−𝑗(𝑝𝑖 , 𝑝𝑗 , 𝑧) Flow relationship with z lag units from subactivity 𝑝𝑖 to 𝑝𝑗 

 
Figure 18 Before/After leveling resource profile of the example of application 

Table 9  

Example of application; main indicators. 

# of 
problem 

Problem 
 Complexity O(n)  

Efficiency 
 Sum of squares  

Improvement 
 Initial Real   Initial Levelled  

51 EJEM  8.58E+16 1.66E+11  0.00019%  31,418 30,068  4.297% 

The construction resource profile of the building project, 

before and after the leveling process, is presented in Figure 

18. In Table 9 the main indicators are displayed, following 

the criteria used in Table 3. 

The building project has been solved to optimality with 

160 cores. It has required the generation of 52,467 subgraphs 

and it has needed 9,869 seconds (2.74 hours). Note that with 

one core, the required time to solve this problem to 

optimality would be at least 20 days. This building project is 
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significantly easier and faster to solve than the ones included 

in the PSPLIB library, processing only the 0.00019% of the 

sequences (1.66 × 1011) of the initial complexity of the 

problem (8.58 × 1016). The time required to solve this kind 

of problems is reasonable and practical, considering that 
unbalanced resources can risk the goals of the construction 

project; therefore, the use of advanced computer methods in 

construction projects are justified in order to achieve the best 

possible schedule. 

 

8. CONCLUSIONS 

 

The efficient use of resources is a key factor in achieving 

project goals, minimizing resource fluctuations and 

maximizing results in cost savings by increasing the 

efficiency of the project sequence. This is particularly 
significant in construction projects where field operations 

make fluctuations of resources unproductive and costly. 

Resource Leveling Problems (RLP) aim to sequence the 

construction activities that optimize the resource 

consumption over time, minimizing the variability. Exact 

algorithms have been proposed by researchers along the 

literature to offer optimal solutions, but this kind of problems 

are strongly NP-Hard and, consequently, alternative 

heuristic and metaheuristic algorithms have been proposed 

in the literature to find local optimal solutions in an 

acceptable computational effort. These alternative methods 

should be tested against exact benchmarks, and not only 
between them. For this purpose, different libraries have been 

developed in order to test and benchmark heuristic solutions 

with the optimal solutions; nevertheless, the PSPLIB for 

minimal lags is still open to be solved to optimality. 

The actual computational capacity allows these problems 

to be solved to optimality in a reasonable computational 

time, but such capacity is distributed in individual computers 

and therefore traditional algorithms must to be redesigned in 

order to take advantage of these distributed infrastructures. 

Therefore, the authors have proposed a Parallel Branch and 

Bound algorithm for the Resource Levelling Problem with 
minimal lags. This algorithm has been implemented 

gradually in an app developed in C# language using 490 

cores in several physical and virtual computers. The 

algorithm has also been tested with the PSPLIB library. 

This way, this proposal is contributing to the body of 

knowledge of construction project scheduling in the 

following facets:  

 Analyzing the real complexity of the RLP based on the 

standard parameters found in the literature. 

 Proposing a new parallel exact procedure to solve the 

RLP using an acceptable computational effort 

considering the scenario of a construction project. 

 Providing a benchmarking set of solutions (50 

problems of the PSPLIB) to test the goodness of the 

heuristic algorithms for the RLP. 

 Solving to optimality in reasonable computational time 

a building project with 71 activities, proving the 

feasibility to be implemented in commercial and 

professional applications that can help practitioners to 

schedule real and complex construction projects. 

The time required to solve real construction projects is 

very reasonable and practical (as shown in the previous 

section), considering that unbalanced resources can risk the 

goals of the construction project. Therefore, the use of 

advanced computer methods in construction projects is 

justified in order to achieve the best possible schedule. 

Furthermore, the proposed Parallel Branch and Bound for 

the RLP can be easily adapted to solve other regular project 

scheduling problems as the RCPSP, or combined problems 

as the RCPSP-RLP, only by including the resource 
availability as a restriction to the problem and discarding the 

branches with worst bounds. 

This research makes available the optimums of 50 

problems (with complexity from 108 to 1018) for the RLP 

with minimal lags for the first time, allowing contributors to 

compare their heuristics methods against exact results by 

obtaining the distance of their solution to the optimal values. 

It aims to be a benchmark for researchers and a practical tool 

for practitioners, as the computational capacity increases. 

This benchmark can be the foundation of future collaborative 

efforts to estimate the real complexity of the RLP in order to 

categorize the problems and establish the feasibility to obtain 
an optimal solution based on the availability of 

computational resources. Additionally, there are other 

problems in scheduling as the RCPSP that can take 

advantage of the Parallel B&B algorithm to be solved to 

optimality; therefore, they can provide new alternatives to 

the software industry by including the proposed algorithm in 

their commercial packages. 
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