

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

Additional Information

http:dx.doi.org/10.1111/mice.12233

http://hdl.handle.net/10251/89690

Ponz Tienda, JL.; Salcedo-Bernal, A.; Pellicer Armiñana, E. (2017). A Parallel Branch and
Bound Algorithm for the Resource Leveling Problem with Minimal Lags. COMPUTER-AIDED
CIVIL AND INFRASTRUCTURE ENGINEERING. 32:474-498. doi:10.1111/mice.12233

A Parallel Branch and Bound algorithm for the Resource Levelling Problem with minimal lags 1

A Parallel Branch and Bound algorithm for the

Resource Levelling Problem with minimal lags

J. L. Ponz-Tienda, A. Salcedo-Bernal

Universidad de Los Andes, Carrera 1 Este No. 19A-40, Bogotá, Colombia

&

Eugenio Pellicer

Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain

Abstract: The efficient use of resources is a key factor to

minimize the cost while meeting time deadlines and quality

requirements; this is especially important in construction

projects where field operations make fluctuations of

resources unproductive and costly. Resource Leveling

Problems (RLP) aim to sequence the construction activities

that maximize the resource consumption efficiency over time,

minimizing the variability. Exact algorithms for the RLP

have been proposed throughout the years to offer optimal

solutions; however, these problems require a vast

computational capability (“combinatorial explosion”) that

makes them unpractical. Therefore, alternative heuristic and

metaheuristic algorithms have been suggested in the

literature to find local optimal solutions, using different

libraries to benchmark optimal values; for example, the

Project Scheduling Problem LIBrary (PSPLIB) for minimal

lags is still open to be solved to optimality for RLP. To

partially fill this gap, the authors propose a Parallel Branch

and Bound algorithm for the RLP with minimal lags to solve

the RLP with an acceptable computational effort. This way,

this research contributes to the body of knowledge of

construction project scheduling providing the optimums of

50 problems for the RLP with minimal lags for the first time,

allowing future contributors to benchmark their heuristics

methods against exact results by obtaining the distance of

their solution to the optimal values. Furthermore, for

practitioners, the time required to solve this kind of problems

is reasonable and practical, considering that unbalanced

resources can risk the goals of the construction project.

Keywords: Branch and Bound, Benchmarking, Construction

Project, Parallel Computing, Resource Levelling Problem,

Virtual Computing.

1 INTRODUCTION

In any construction project, the tangible resources —

mainly materials, equipment and labor needed to implement

the construction schedule— are generally constrained or
limited (Hinze, 2012) (Benjaoran, et al., 2015). Even though

the logical sequence of the activities shapes the initial

schedule, resource allocation and levelling outlines the final

timetable, resolving conflicts as well as balancing the

workload throughout the construction project

(Anagnostopoulos & Koulinas, 2010) (Hinze, 2012).

Therefore, the goal of minimizing the cost, while fulfilling

the total project duration (makespan) and achieving the

approved performance, demands an efficient use of

construction resources (Georgy, 2008) (Koulinas &

Anagnostopoulos, 2013) (Tang, et al., 2014); by
accomplishing this goal, the construction company remains

competitive too (Hariga & El-Sayegh, 2010). Even though,

resource scheduling problems can be considered recurrent in

project management at large, they are especially important in

construction (Doulabi, et al., 2010) (Jun & El-Rayes, 2011)

where field operations make fluctuations of resources

(peaks) very inefficient and costly on a short-term basis:

hiring leads to low-quality workers with no learning curve,

whereas heavy equipment cannot be rented or only at a very

high cost.

The project management literature classifies resource

project scheduling problems in two groups
(Anagnostopoulos & Koulinas, 2010) (Hinze, 2012) (Damci,

et al., 2013a) (Benjaoran, et al., 2015): a) the Resource

Constrained Project Scheduling Problem (RCPSP

henceforth); and b) the Resource Levelling Problem (RLP

hereafter). On the one hand, the RCPSP aims to minimize the

makespan considering the precedence relationships as

constraints with a limited availability of resources. On the

Ponz-Tienda, Salcedo-Bernal & Pellicer 2

other hand, the RLP aims to offer the sequence that

maximizes the resource consumption efficiency over time,
minimizing the variability, with an unlimited availability of

resources and a prescribed makespan. Taking into

consideration both resource scheduling problems (the

RCPSP and the RLP), the construction schedule can be more

reliable to minimize resource fluctuations and fulfil the goals

of the construction project (Damci, et al., 2013a) (Faghihi, et

al., 2016).

With the aim to offer optimal solutions for the resource

project scheduling problems, exact algorithms based upon

enumeration, integer programming or mixed integer

programing have been proposed by researchers along the

literature, but this kind of NP-Hard problems has a
phenomenon of “combinatorial explosion” (Rieck &

Zimmermann, 2015) (Neumann, et al., 2003). In other words,

a rapid non-polynomial acceleration increase in the number

of possible solutions as a function of the number of activities

and their total slack, especially for large problems (Ponz-

Tienda, et al., 2013); this phenomenon is particularly

significant in construction projects (Anagnostopoulos &

Koulinas, 2010).

Although these algorithms produce the absolute optimum

to a given problem, they are not functional from a practical

point of view, as they require a vast computational
capability. To cope with this issue, alternative heuristic and

metaheuristic algorithms have been proposed in the literature

to find local optimal solutions with an acceptable

computational effort. To prove the goodness of these

heuristic algorithms, different libraries have been developed

to test and benchmark heuristic solutions with the optimal

solutions, especially for the RCPSP. However, in the current

literature, only the library with minimal and maximal time

lags up to 30 jobs for the RLP has been solved to optimality

(Rieck, et al., 2012). However, the PSPLIB (Project

Scheduling Problem LIBrary) for minimal lags (Kolisch &

Sprecher, 1996) a problem without temporal windows more
suited for construction projects is still open to be solved to

optimality for the RLP (Ponz-Tienda, et al., 2013).

Therefore, to partially fill this gap, the authors propose a

Parallel Branch and Bound algorithm for the RLP with

minimal lags. This algorithm puts forward a systematic and

sequential tree search that does not process unnecessary

branches. Parallel computing increases the computational

capabilities taking advantage of the easily accessible current

multiple-processor technology; the available computer

infrastructure allows programs to be run in many processors

at the same time (Adeli, et al., 1993). As stated by Adeli
(2000) (p.7), the trend in parallel processing and distributed

computing “[…] should be more toward solution of large-

scale and complicated real-life engineering problems, the

kind of problems that cannot be solved readily by traditional

uniprocessor computers”. This way, this research

contributes to the body of knowledge of construction project

scheduling in three facets: (a) proposing a parallel exact

procedure to solve non-regular problems as the RLP with an

acceptable computational effort; (b) providing a
benchmarking set of solutions (50 problems taken from the

PSPLIB) to test the goodness of the heuristic algorithms for

the RLP; and (c) solving to optimality in a reasonable

computational time a realistic building project, proving the

possibility to be implemented in commercial and

professional applications to help practitioners in the

scheduling of real and complex construction projects.

To present this proposal appropriately, the following

section provides the problem description of the RLP. Next

Section exposes the state-of-knowledge regarding the RLP,

with particular emphasis on construction projects. Then,

Section 3 details the proposed Parallel Branch and Bound
algorithm for the RLP with minimal precedence

relationships. In the following Section, the implementation

of the Parallel Branch and Bound algorithm, as well as the

results of the experimentation, are explained. Section 5

compares and discusses the results. An example of

implementation to a real construction project (with 71

activities) follows to allow the reader understand its

application. Finally, conclusions, limitations and future

research lines are drawn.

2. PROBLEM DESCRIPTION

For the remainder of this paper, construction projects are

specified by activity-on-node networks 𝐺 = (𝑉, 𝐴), where V

is the set of vertices and A is the set of arcs. Vertex set 𝑉 =
{0, 1, ⋯ , 𝑛 , 𝑛 + 1} consists of n activities (Eq 1) that have

to be carried out without interruption, and two fictitious

activities, 𝑗0 and 𝑗𝑛+1, that represent the beginning and the

makespan (completion time of the project), respectively. The

set of arcs consists of pair of elements 𝐴 = {𝑎(𝑖, 𝑗)|𝑖 <
𝑗, 𝑖, 𝑗 ∈ [0, 𝑛 + 1]} that represent the precedence

relationships between activities. Additionally, each activity

must be executed in 𝑑𝑗 time units and without pre-emption.

The literature background of this problem is examined in the

next section. This way, the general formulation of the RLP

considers the following elements:

1. The set N of activities (being 𝑛 the total number of

activities):
𝑁 = {𝑗1, ⋯ , 𝑗𝑛} (1)

2. The set D of durations (being 𝑛 the total number of

activities):
𝐷 = {𝑑1 , ⋯ , 𝑑𝑛} (2)

3. The set T of periods of time in which these activities

have to be distributed (being 𝑡𝑝 the deadline of the

project, from now on denoted 𝑇̅):

𝑇 = {𝑡1 , ⋯ , 𝑡𝑝}|𝑡𝑝 = 𝑇̅ (3)

4. The set R of resources (being k the total number of

resources):
𝑅 = {𝑟1, ⋯ , 𝑟𝑘} (4)

A Parallel Branch and Bound algorithm for the Resource Levelling Problem with minimal lags 3

5. The set RC of resources requirements for each activity

(being k the total number of resources and n the total

number of activities):

𝑅𝐶 = {{𝑟𝑐11 , ⋯ , 𝑟𝑐𝑘1}, ⋯ , {𝑟𝑐1𝑛 , ⋯ , 𝑟𝑐𝑘𝑛}} (5)

6. The set C of cost associated to each resource (being k

the total number of resources):
𝐶 = {𝑐1 , ⋯ , 𝑐𝑘} (6)

7. The set SS of scheduled starting times of each activity

along the elements of the set T, in such way that:
𝑆𝑆 = {𝑠𝑠1, ⋯ , 𝑠𝑠𝑗, ⋯ 𝑠𝑠𝑛}|𝑒𝑠𝑗 ≤ 𝑠𝑠𝑗 ≤ 𝑙𝑠𝑗 (7)

Being 𝑒𝑠𝑗 and 𝑙𝑠𝑗 the early and latest starting time of

the activity 𝑗.
8. The set SH of possible shifts of each one of the

activities over the early start (𝑒𝑠𝑗) between zero and its

total float (𝑡𝑓𝑗):

𝑆𝐻 = {𝑠ℎ1, ⋯ , 𝑠ℎ𝑛}|𝑠ℎ𝑗 ∈ {0, ⋯ , 𝑡𝑓𝑗}, 𝑠𝑠𝑗 = 𝑒𝑠𝑗 + 𝑠ℎ𝑗 (8)

9. The function 𝑟𝑖(𝑆, 𝑡)|1 ≤ 𝑖 ≤ 𝑘, is defined as the

consumption (𝑢𝑖𝑡) of the resource 𝑟𝑖 in the period of

time t, belonging to the set T, in such way that the

consumption of the resource 𝑟𝑖 throughout the project

for a feasible schedule 𝑆 ∈ 𝑆𝑆 in a period t, is given by:
𝑢𝑖𝑡 = 𝑟𝑖(𝑆, 𝑡) (9)

10. The set AV of availabilities of the resources:
𝐴𝑉 = {𝑎𝑣𝑖𝑡|1 ≤ 𝑖 ≤ 𝑘, 1 ≤ 𝑡 ≤ 𝑇̅} (10)

11. The set SA of schedulable activities with total float

(𝑡𝑓𝑗 > 0) strictly greater to zero (being m the total

number of schedulable activities.):
𝑆𝐴 = {𝑗1, ⋯ , 𝑗𝑚} (11)

Once the elements that compose the problem are set, a

general formulation for the objective function of the

optimization problem could be a function 𝑓[𝑟𝑖(𝑆, 𝑡)], which

computes the consumption of the resource 𝑟𝑖 (during the

period of time t) for a feasible schedule 𝑆 ∈ 𝑆𝑆, for all the k

resources of the project multiplied by its associated cost (𝑐𝑖):

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ 𝑐𝑖 ∙ 𝑓[𝑟𝑖(𝑆, 𝑡)]

𝑘

𝑖=1

 (12)

The function 𝑓[𝑟𝑖(𝑆, 𝑡)] provides different ways of dealing

with the RLP. The most usual criterion focuses on getting the

resource consumption as levelled as possible by minimizing

the sample variance or mean square error over an ideal

reference. Consequently, a suitable formulation for Equation

12, given a set 𝐴𝑉 = {𝑎𝑣𝑖𝑡} of availabilities could be:

𝑓[𝑟𝑖(𝑆, 𝑡)] =
(𝑢𝑖𝑡 − 𝑎𝑣𝑖𝑡)2

𝑇̅
; 𝑀𝑖𝑛 ∑ 𝑐𝑖 ∙

(𝑢𝑖𝑡 − 𝑎𝑣𝑖𝑡)2

𝑇̅

𝑘

𝑖=1

 (13)

The previous formulation can be simplified taking into

account the following:

𝑐𝑖 = 1, ∀𝑖, 1 ≤ 𝑖 ≤ 𝑘 (14)

𝑎𝑣𝑖𝑡 = 𝑢̅ =
∑ 𝑢𝑖𝑡

𝑇
𝑖=1

𝑇̅
, ∀1 ≤ 𝑖 ≤ 𝑘, 1 ≤ 𝑡 ≤ 𝑇̅ (15)

Then, applying Equation 15, the Equation 13 can be

simplified as follows:

∑(𝑢𝑖𝑡 − 𝑢̅)2

𝑘

𝑖=1

= ∑ 𝑢𝑖𝑡
2

𝑘

𝑖=1

− 𝑇̅ ∙ 𝑢̅ ≥ 0 ⇒ ∑ 𝑢𝑖𝑡
2

𝑘

𝑖=1

≥ 0

⇒ 𝑀𝑖𝑛 ∑(𝑢𝑖𝑡 − 𝑢̅)2

𝑘

𝑖=1

= 𝑀𝑖𝑛 ∑ 𝑢𝑖𝑡
2

𝑘

𝑖=1

(16)

An equivalent formulation for Equation 13, known as the

Method of Minimum Squares Optimization, is written this
way:

𝑚𝑖𝑛 ∑ 𝑢𝑖𝑡
2

𝑘

𝑖=1

, 1 ≤ 𝑡 ≤ 𝑇̅ (17)

The complete formulation for the mathematical model of

the Minimum Squares Optimization method is comprised in

Equation 18:

𝑚𝑖𝑛 ∑ 𝑢𝑖𝑡
2

𝑘

𝑖=1

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:
𝑆𝑆𝑛+1 ≤ 𝑇̅
𝑆𝑆𝑖 + 𝑑𝑖 + 𝛾𝑖𝑗 ≤ 𝑆𝑆𝑗, ∀𝑖 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟 𝑜𝑓 𝑗
𝛾𝑖𝑗 𝑏𝑒𝑖𝑛𝑔 𝑡ℎ𝑒 𝑙𝑒𝑎𝑑/𝑙𝑎𝑔 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑖 𝑎𝑛𝑑 𝑗

(18)

Different objective functions for 𝑓[𝑟𝑖(𝑆, 𝑡)] have been

proposed (Damci, et al., 2016) in order to measure the

efficiency of the construction project sequence. The most

common objective function is the Method of Minimum

Squares Optimization, which minimizes the sum of squares
of periodically resource usages providing an ideal uniform

shape for the levelled construction resource consumption.

Similarly, the Absolute Deviations Method intends to deliver

an ideal uniform shape by minimizing the resource

utilization from the targeted resource utilization level

(Younis & Saad, 1996), whereas the Overloaded Resource

Problem considers additional costs if a threshold for the

resource use is surpassed (Rieck, et al., 2012). A different

objective function, the Resource Idle Days and Maximum

Daily Resource Demand Method (El-Rayes & Jun, 2009),

provides a Gauss shape instead of a rectangular distribution,
in which the purpose is to eliminate the resource’s idle

periods. Florez, Castro-Lacouture, & Medaglia (2012)

propose the Maximizing Labor Stability, which aims to

increase the extent of use of workers and job continuity by

two alternatives: the first minimizes the maximal fluctuation

of workers, and the second the sum of the fluctuations.

3. LITERATURE REVIEW

The Method of Minimum Squares Optimization, expressed

in Equation 17, was introduced by Burgess and Killebrew

(1962) using a heuristic algorithm in which the local optimal
(near-optimality or approximation to the optimal) was

determined by the set of scheduled starting times (SS) for

each period project along the elements of the set T for a

prescribed makespan. The Burgess and Killebrew proposal

is a one-pass improvement algorithm with a parallel

backward outline and latest finishing time, as the priority

rule, and maximum total float, as the secondary one. This

Ponz-Tienda, Salcedo-Bernal & Pellicer 4

scheduling outline offers poor improvements over the initial

scheduling, but most important is that it usually offers
infeasible solutions because it does not preserve the

precedence restrictions in the original formulation.

To avoid previous limitations, Harris (1978) proposed the

Method of Minimum Moment (MOM), a new multi-pass

heuristic algorithm with floats recovery that preserve the

precedence restrictions with better results than the Burguess

& Killebrew proposal. Later, Harris (1990) improved its own

proposal with the Packing Method (PACK), which

recognizes network interactions with a more in-depth

analysis. Hiyassat (2000; 2001) presented a modification of

the MOM with a different criterion for selecting the activity

to be shifted, based on the amount of the activity’s resources
rate and the value of its free float. More recently,

Christodoulou et al. (2009) has put forward the entropy-

maximization, using the maximality and sub-additivity

properties of the entropy function.

As alternative to heuristic procedures, metaheuristic

algorithms are higher-level procedures designed to find

sufficiently good solutions to an optimization problem with

limited computation capacity and grounded in physical,

biological and animal behavior. Several specific examples

about metaheuristics applied to RLP and RCPSP in

construction projects can be found in the literature, such as
Grasp (Anagnostopoulos & Koulinas, 2011), genetic

algorithms (Hegazy, 1999) (Leu, et al., 2000) (Gaitanidis, et

al., 2016), scatter search and Path Relinking (Ranjbar, 2013),

simulated annealing (Son & Skibniewski, 1999)

(Anagnostopoulos & Koulinas, 2010), simulation algorithm

(Lim, et al., 2014), or tabu search (Koulinas &

Anagnostopoulos, 2013). In other line, Adeli & Karim

(1997; 2001) and Adeli & Wu (1998) proposed the

application of neural network and Adeli & Karim (2001) a

model based on neurocomputing and object technologies to

construction projects.

Other approaches related to construction projects deal
with RLP in Line-of-Balance Scheduling (Damci, et al.,

2013a; 2013b), linear projects (Tang, et al., 2014) (Georgy,

2008), highway projects (Arditi & Bentotage, 1996),

considering uncertainty in activity durations (Li &

Demeulemeester, 2014), allowing activity splitting (Hariga

& El-Sayegh, 2010) (Alsayegh & Hariga, 2012) (Hossein

Hashemi Doulabi, et al., 2010) (Son & Mattila, 2004) or

considering generalized precedence relationships

(Benjaoran, et al., 2015). Construction-related problems

derived from multimode RLP were studied by Menesi &

Hegazy (2014), whereas Heon Jun & El-Rayes (2011)
analyzed those related to multiobjective optimization.

There are several exact algorithms available for the

solution of the RLP with minimum and/or minimum-

maximum time lags, which may be separated into implicit

enumeration outlines and integer and mixed-integer

programming models. On the one hand, as a first

contribution on exact implicit enumeration outlines methods,

Petrovic (1969) introduced a dynamic programming for the

RLP with precedence constraints. On the other hand, Ahuja
(1976) proposed a method that enumerates all combinations

of construction activity start times for networks with

precedence constraints to minimize the squared changes in

the resource utilization for minimum time lags. Later,

Bandelloni, Tucci, & Rinaldi (1994) applied non-serial

dynamic programming and interaction graph theory to find a

minimum for the squared deviation from the average

resource utilization. Son & Mattila (2004) proposed a linear

program binary variable model to level construction

resources that permits selected activities to stop and restart,

resulting in an improvement of the leveling solution.

Additionally, models proposing Branch and Bound (B&B
from now on) procedures and tree-based enumeration were

presented by Nübel (2001). This proposal was adapted by

Neumann, Schwindt & Zimmermann (2003) for the RLP to

find a nearly optimal solution computing a lower bound for

the objective function value of each partial tree in the

enumeration. Gather et al. (2011) considered a tree-based

enumeration outline where different techniques for avoiding

redundancies were employed. None of these three

contributions were specific for construction projects.

Alternatively, for the integer and mixed-integer

programming models, based on the Pritsker et al. (1969)
formulation, Easa (1989) developed a mixed binary-integer
linear optimization model that minimizes the absolute

deviations between the construction resource requirements

and a desirable resource level (uniform or non-uniform).

Next, Rieck et al. (2012) proposed a new mixed-integer

linear model for RLP with domain-reducing pre-processing

techniques; they solved, for the first time to optimality, the

Kolisch et al. (1999) test set instances considering a deadline

equal to the unconstrained makespan. Gather et al. (2011)

presented a new tree-based enumeration outline, based on an

extended bridge that enumerates all quasi-stable schedules

without redundancy. Finally, Ponz-Tienda et al. (2013)
proposed two different binary optimization models: the first

uses binary decision variables 𝑥𝑗𝑠𝑡 that establish the period

in which the construction activities are finished; and, in the

second model, the decision variables 𝑥𝑗𝑠𝑡 establish the period

in which the activities are executed.

However, the RLP is NP-hard in the strong sense and

difficult to solve to optimality (Neumann, et al., 2003)

(Rieck, et al., 2012). Additionally, the RLP is an especial
case of the Project Scheduling Problems with non-regular

objective functions (Neumann & Zimmermann, 1999; 2000)

(Rieck & Zimmermann, 2015). This kind of problems cannot

be solved by pruning the exploration tree with the traditional

B&B procedures. Branch and Bound algorithms check the

branches of exploration tree against the bounds on the

optimal solution, and branches are discarded (cut) if they

cannot produce a better solution than the best bound found

so far by the algorithm. Consequently, with non-regular

objective functions, a better solution can be found in the

A Parallel Branch and Bound algorithm for the Resource Levelling Problem with minimal lags 5

direction of a branching node with a worst solution, than the

best bound found so far and, therefore, this solution cannot
be discarded. This fact implies that the RLP could be even

more difficult to solve than classical RCPSP, even when the

initial universe of possible solutions to the problem is less

than in the resource-constrained case. To deal with this

problem, relaxations to the problem and heuristic procedures

have been proposed along the literature to find near optimal

solutions to the RLP.

As relaxations to the RLP, Drexl & Kimms (2001)

developed two methods for lower bound computations: the

first is based on a Lagrangian relaxation, whereas the second

is based on a column generation procedure, where variables

represent schedules. Coughlan et al. (2010) proposed a
Branch-and-Price algorithm by column generation

embedded into a B&B outline, building a pricing problem for

each shift of the activities. The same authors (Coughlan, et

al., 2013) improved their previous proposal with a linear

programming relaxation based on variables that represent

schedules via a column generation and Branch-and-Price

algorithm. Later, Yeniocak (2013) proposed a B&B

algorithm with a lower bound calculation strategy and a dual

calculation to obtain lower bound values using the Resource

Idle Days and Maximum Daily Resource Demand (RID-

MRD) metric for problems up to 20 activities. Such
relaxations do not assure a global optimal solution for the

RLP; therefore, an alternative possibility to obtain the global

optimum is to divide the original problem into simpler sub-

problems and solve them using parallel computation.

Parallel computing has been previously proposed and used

to “upgrade” algorithms in civil engineering and make them

perform faster. The first approach to this topic in civil

engineering was presented by Adeli and Vishnubhotla (Adeli

& Vishnubhotla, 1987). Later, Adeli and Kamal (1989)

introduced a parallel algorithm for structural analysis and its

performance results. Both approaches made use of the

parallel capabilities of available “supercomputers”, which
are a very limited resource. Nevertheless, today’s technology

makes possible to connect multiple personal computers

(which are cheaper every day) with little effort; therefore,

new approaches show up. These approaches take advantage

of the abundance of personal computers in order to propose

algorithms that can be run in multiple machines at the same

time (Adeli & Kumar, 1999).

Although parallel computation has been widely studied for

structural analysis (Adeli, et al., 1993), integer programming

(Wah, et al., 1985) and parallel B&B (McKeown, et al.,

1991) (Clausen & Perregaard, 1999) (Crainic, et al., 2006)
(Ismail, et al., 2014), proposals on parallel computing in

scheduling are scarce and based on the parallelization of the

B&B procedure (Perregaard & Clausen, 1998) (Chakroun &

Melab, 2015), but not on the subdivision of the graph.

Moreover, the RLP with minimal lags is harder to solve

than the minimal-maximal one because, in the problem with

minimal lags, the activities have more freedom in their shifts

and consequently a greater universe of feasible solutions.

Finally, in the reviewed literature, only the library with
minimal and maximal time lags (Kolisch & Sprecher, 1996)

up to 30 jobs has been solved to optimality, considering a

deadline equal to the unconstrained makespan (Rieck, et al.,

2012); nonetheless, the PSPLIB (Kolisch & Sprecher, 1996)

library for minimal lags is still open to be solved to

optimality (Ponz-Tienda, et al., 2013). Consequently, to

partially fill this gap and make a contribution to the body of

knowledge, the authors propose in the next Section a Parallel

Branch and Bound algorithm for the Resource Levelling

Problem with minimal lags. Furthermore, this algorithm is

tested with 50 problems of the PSPLIB providing a

benchmarking set of solutions, as described in Section 5.

4. PROPOSED PARALLEL EXACT PROCEDURE

A complex problem is easier to deal with and more

efficient to solve when divided into simpler sub-problems.

This paradigm is especially efficient combined with parallel

computing algorithms, converting a sequential problem into

parallel processing sub-problems, using multiple and

independent processors all of them running their own sub-

problem at the same time and then merging its respective

results.
Parallel Branch and Bound (B&B) algorithms present

some anomalies (Lai & Sahni, 1984) in such way that a

problem of n2 threads can take more time than a problem

with n1 threads, even though n2 < n1. This is because the

pruning process depends on the current best bound found,

and the parallelization causes the unnecessary processing of

branches with worst solutions. However, for non-regular

problems as the RLP, this is not an issue because all the

solutions of the exploration tree must be analyzed, and

therefore, the parallelization process is efficient.

The proposed parallel procedure is based on a cloud and

multicore network computing to work simultaneously with
various sub-problems of a given problem using a structure of

parallel processing and distributed computing (Adeli &

Kumar, 1995) (Adeli, 2000). This approach makes use of

multiple execution units on the same processor (threads) and

multiple processors with a sub-problems manager and

communication over the Internet, as depicted in Fig 1.

4.1. Graph subdivision process
The process of breaking down a project graph into smaller

sub-project graphs, simple enough to be solved in a

reasonable computational effort, consists in a multi-branched

recursive process. Then, the solutions of the sub-problems

are combined to give the solution of the original problem.

The subdivision is based on the assumption that all the

activities can be scheduled on every position along its total

float. From this assumption, it is possible to establish a one

to one correspondence between possible configurations of n

activities and integer sequences of n terms, where the 𝑖𝑡ℎ

Ponz-Tienda, Salcedo-Bernal & Pellicer 6

term is between zero and the total float (𝑡𝑓𝑖) of the 𝑖𝑡ℎ
activity.

Let s be a sequence of integer positive values (Eq 19).

Each one of the elements of the sequence s represents a
possible shift (not necessarily feasible) for activity between

zero and its total float (𝑡𝑓) for an arbitrary problem with n

activities:
𝑠 = {𝑠1 , ⋯ , 𝑠𝑖 , ⋯ , 𝑠𝑛}|𝑠1 ∈ {0, ⋯ , 𝑡𝑓1}, ⋯ , 𝑠𝑖

∈ {0, ⋯ , 𝑡𝑓𝑖}, ⋯ , 𝑠𝑛 ∈ {0, ⋯ , 𝑡𝑓𝑛}
(19)

Let be S the set of elements of s possible solutions

(sequences) (Eq 20):
𝑆 = {𝑠|𝑠 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡 𝑎 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛}

= {[0, 𝑓1], ⋯ , [0, 𝑓𝑖], ⋯ , [0, 𝑓𝑛]}
(20)

The process of subdivision of the set starts selecting a 𝑖𝑡ℎ

position. In this way, the set 𝑆 can be divided in two new

disjoint subsets from the floor function of its middle point of

the 𝑖𝑡ℎ position, as stated in Equation 21:
𝑆 = 𝑆′ ∪ 𝑆′′

𝑆 = {[0, 𝑓1], ⋯ , [0, ⌊
𝑓𝑖

2
⌋] , ⋯ , [0, 𝑓𝑛]}

∪ {[0, 𝑓1], ⋯ , [⌊
𝑓𝑖

2
⌋

+ 1, 𝑓𝑖] , ⋯ , [0, 𝑓𝑛]}

|𝑆′| ≥ |𝑆′′|

(21)

In addition, the new subsets are disjoint sets, in such way

that if a possible sequence is in 𝑆´ cannot be found on 𝑆´´ and

vice versa (Eq 22):

{[0, 𝑓1], ⋯ , [0, ⌊
𝑓𝑖

2
⌋] , ⋯ , [0, 𝑓𝑛]}

∩ {[0, 𝑓1], ⋯ , [⌊
𝑓𝑖

2
⌋

+ 1, 𝑓𝑖] , ⋯ , [0, 𝑓𝑛]} = ∅

(22)

The division process could also be applied recursively to

intervals in [𝑓1, 𝑓2]|𝑓2 > 0, 𝑓2 > 𝑓1 form, where the intervals

gets divided by middle point, up to a previously established

depth m, obtaining 2m subsets, as displayed in Eq 23:

2𝑚 ≤ ∏(𝑓1 + 1)

𝑛

𝑖=1

 (23)

Being ∏ (𝑓1 + 1)𝑛
𝑖=1 the universe of possible schedules for

an instance (Ponz-Tienda, et al., 2013). The subdivision

process could produce not feasible subsets, in such way that

there are not any sequences in these subsets that meet the

constraints and, consequently, their branches are discarded.

The subdivision process of the set 𝑆 on subsets of possible

solutions is shown in Figure 2.

The proposed algorithm for the graph division, being 𝑆 =
{[𝑙1, 𝑢1], ⋯ , [𝑙𝑛 , 𝑢𝑛]} a set of sequences of integer positive

values (𝑆𝑙𝑖 = 𝑙𝑖 and 𝑆𝑢𝑖 = 𝑢𝑖), is shown in Pseudo-code 1,

and the algorithm for compute the times and analyze the

feasibility of a sequence is displayed in Pseudo-code 2.

HOST COMPUTER

COMPUTERS NETWORK

Sub-problems

Generator

Sub-problem 1

Sub-problem 2

Sub-problem 3

Sub-problem ...

Sub-problem n

Database of

problems

Sub-problems

manager

Internet

communication

Problem 1

Problem 2

Actual

Problem

Problem ...

Problem N

Virtual

CPU ...

Real CPU #1

Virtual

CPU #1

Virtual

CPU ...
Virtual

CPU ...

Real CPU ... Real CPU ... Real CPU ...

Core 1

Core 2

Core ...

Sub-problem 1

Sub-problem 2

Sub-problem ...

Sub-problem ...

Sub-problem ...

Sub-problem ...

CPU

...

CPU & Cores detail

ThreadsCoresCPU

Figure 1 Parallel processing

A Parallel Branch and Bound algorithm for the Resource Levelling Problem with minimal lags 7

...

...

Subset 1

...

...

m=0

Subsets=20=1

m=1

Subsets=21=2

m=2

Subsets=22=4

m=3

Subsets=23=8

m=m

Subsets=2m

Subset 2

Subset 3

...

Subset 2m-1

Subset 2m

...

Not feasible subset

Not branched

Not branched

   10, , 0, , , 0, , , , , 0,
2 2

j i

n

f f
f f

           
          

            

k
f

0,
2

   10, , 0, , , 0, , , 1, , , 0,
2 2

j i

n

f f
f f

           
          

            

k

k

f
f

2

   10, , , , 0, , , 0,
2

i

n

f
f f

       
      

        

j
f

0,
2

   10, , , 0, , , 0,
2

i

n

f
f f

    
   

    

   10, , , , , 0, , , 0,
2

i

n

f
f f

       
      

        

j

j

f
+ 1, f

2

   10, , , 1, , , 0,
2

i

i n

f
f f f

    
   

    

      10, , , 0, , , 0,i nf f fS 

Figure 2 Subdivision process of the set S on subsets of possible solutions

Pseudo-code 1

Algorithm for graph division

Pseudo-code 2
Computation times to analyze the feasibility of a sequence

The proposed approach to subdivide the graph aims to

produce similar sized subgraphs without building all the

exploration trees that cannot be efficiently managed due to
their great size. In this way, the goal is to find an index

(activity) such that it is possible to divide all subgraphs by

the same activity. However, although the number of possible

solutions of each subset will be similar, the number of

feasible solution could differ widely as exposed in the

following section.

Once the division process is finished, the “sub-problems

manager” (Fig. 1) begins the distribution over the computer

network delivering to each computer as many sub-problems

as cores (processors) available. The remaining sub-problems

are kept on a distribution queue waiting to be processed. The

manager makes a periodical checks (once every two seconds)
to determine if is possible to deliver new sub-problems,

because some of them have already finished or some

computers have been disconnected: in the first case,

delivering new sub-problems, and in the second, delivering

the unprocessed sub-problems. Additionally, the sub-

problems manager storages the optimal values obtained so

far, merging its respective results. The process for the graph

subdivision and sub-problems distribution is insignificant

respect to the time required solving the problems; as pointed

out by Adeli and Kamal (1992), this is a requirement for an

efficient concurrent algorithm. As example, a problem of
1018 can take an overage of one second to divide and

distribute it, and over one month to solve it with one hundred

cores.

4.2. Example of graph subdivision process
For a better understanding of the subdivision process,

Figure 3 displays a Gantt diagram where black squares

represent critical activities, dark grey the non-critical ones,

and on light grey the total floats.

GraphDivide (initialsequence:S, divisiondegree:m)

 Queueofsequences: Q

 Divisionindex: i = 0

 Lastdivisionindex: l = 0

 Q.enqueue(S)

 while (m > 1) do

 'remark Search for a suitable index i to divide all sequences in Q

 i = 0

 for j = l + 1 to N

 if (min{ Tuj - Tlj: T ∈ Q } > 0) then
 i = j

 j = N + 1

 end if

 end for

 if (i > 0) then

 count = |Q|

 'remark Divide all sequences in Q by the index i

 while (count > 0) do

 T = Q.dequeue()

 U = clone(T)

 middle = ⌊(Tui - Tli)/2⌋
 Tui = middle

 Uli = middle + 1

 if (Computetimes(T) = true) then Q.enqueue(T)

 if (Computetimes(U) = true) then Q.enqueue(U)

 count = count - 1

 end while

 l = i

 elseif (l = 0) then break

 else l = 0

 end while

return Q

function Computetimes (sequenceset:S)

 for i = 1 to N

 SSi = max{SSi, ESi + Sli }

 if (SSi > ESi + Sui) then return false

 for each j in succesors(i)

 SSj = max{SSj, ESi + di)

 end for

 end for

return true

Ponz-Tienda, Salcedo-Bernal & Pellicer 8

4 4

1 1 5

0

A

7 11

5 1 12

4

D

5 9

6 2 11

4

E

6 10

4 0 10

4

G

6 10

4 0 10

4

F

4 4

0 0 4

0

C

4 4

0 0 4

0

B

3 14

12 1 15

11

H

4 14

11 1 15

10

J

5 15

10 0 15

10

K

1 16

15 0 16

15

L

Dur ef

ls tf lf

es

Name

Dur ES EF LS LF TF Res 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

A 4 0 4 1 5 1 3 3 3 3 3 0 0 0 0 0 0 0 0 0 0 0 0

B 4 0 4 0 4 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

C 4 0 4 0 4 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

D 7 4 11 5 12 1 2 0 0 0 0 2 2 2 2 2 2 2 0 0 0 0 0

E 5 4 9 6 11 2 1 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0

F 6 4 10 4 10 0 2 0 0 0 0 2 2 2 2 2 2 0 0 0 0 0 0

G 6 4 10 4 10 0 2 0 0 0 0 2 2 2 2 2 2 0 0 0 0 0 0

H 3 11 14 12 15 1 5 0 0 0 0 0 0 0 0 0 0 0 5 5 5 0 0

J 4 10 14 11 15 1 3 0 0 0 0 0 0 0 0 0 0 3 3 3 3 0 0

K 5 10 15 10 15 0 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0

L 1 15 16 15 16 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
Figure 3 Example of subdivision process

The Example shown in Figure 3 could be divided for an

arbitrary depth (𝑚 = 3), remarking in light gray the position
in the subset in which the subset was branched (Fig 4).

Not necessarily all the subsets are feasible subsets, and not

all the sequences of feasible subsets are feasible sequences

(Fig. 4) Therefore, the branching process cut the not feasible

branches with not feasible solutions, and not necessarily all

the sequences of feasible subsets are feasible sequences. On

the Example of Figure 3, the sequence {0,0,0,0,2,0,0,0,0,0,0}
in #𝑆2, given by shifting the fifth activity (E) two-steps is a

possible sequence, but not a feasible sequence, due to the fact

that this shift violates the precedence constraints with its
follower (J).

m=0

Subsets=20=1

m=1

Subsets=21=2

m=2

Subsets=22=4

m=3

Subsets=23=8

#S1

Subset ID

#S2

#S3

#S4

#S5

#S6

#S7

#S8

                      
{[0

0

,1],[0,0],[0,0],[0,1],[0,2],[0,0],[0,0],[0,1],[0,

, , 0, , 0, , 0, , 0, , 0, ,

1],[0,

0, , 0,

0

, 0, , , 0, , 0

}

,

]

A B C D E F G H J K Lf f f f f f f fS f f f

S





{[1,1],[0,0],[0,0],[0,1],[0,2],[0,0],[0,0],[0,1],[0,1],[0,0]}

{[0,0],[0,0],[0,0],[0,0],[0,2],[0,0],[0,0],[0,1],[0,1],[0,0]}

{[0,0],[0,0],[0,0],[1,1],[0,2],[0,0],[0,0],[0,1],[0,1],[0,0]}

{[1,1],[0,0],[0,0],[0,0],[0,2],[0,0],[0,0],[0,1],[0,1],[0,0]}

{[1,1],[0,0],[0,0],[1,1],[0,2],[0,0],[0,0],[0,1],[0,1],[0,0]}

{[0,0],[0,0],[0,0],[0,1],[0,2],[0,0],[0,0],[0,1],[0,1],[0,0]}

{[0,0],[0,0],[0,0],[0,0],[0,1],[0,0],[0,0],[0,1],[0,1],[0,0]}

{[0,0],[0,0],[0,0],[0,0],[2,2],[0,0],[0,0],[0,1],[0,1],[0,0]}

{[0,0],[0,0],[0,0],[1,1],[0,1],[0,0],[0,0],[0,1],[0,1],[0,0]}

{[0,0],[0,0],[0,0],[1,1],[2,2],[0,0],[0,0],[0,1],[0,1],[0,0]}

{[1,1],[0,0],[0,0],[0,0],[0,1],[0,0],[0,0],[0,1],[0,1],[0,0]}

{[1,1],[0,0],[0,0],[0,0],[2,2],[0,0],[0,0],[0,1],[0,1],[0,0]}

{[1,1],[0,0],[0,0],[1,1],[0,1],[0,0],[0,0],[0,1],[0,1],[0,0]}

{[1,1],[0,0],[0,0],[1,1],[2,2],[0,0],[0,0],[0,1],[0,1],[0,0]}

Figure 4 Process subdivision tree of the graph Example

Subset 1

Sequence 1.1

Sequence 1.2

Sequence 1.3

Sequence 1,...

Subset 2

Sequence 2.1

Sequence 2.2

Sequence 3.3

Sequence 3,...

Subset 3

Sequence 2.1

Sequence 2.2

Sequence 3.3

Sequence 3,...

Subset ...

Sequence 2.1

Sequence 2.2

Sequence 3.3

Sequence 3,...

Subset 2m

Sequence 2m.1

Sequence 2m.2

Sequence 2m.3

Sequence 2m,...

Figure 5 Composition of possible sequences for feasible

subsets of the problem

4.3. The implicit enumeration outline
Once the problem is divided in feasible subsets, the

process of Implicit Enumeration starts for each one of them.

The term Implicit Enumeration implies that not all the

solutions of the enumeration outline are analyzed and that

large numbers of not feasible solutions are excluded. Note

that in Figure 6 each node represents an activity and its shift

along the restricted total float in the subset.

The scanning sequence for the Implicit Enumeration of the

subsets is a tree enumeration with outline Depth First Search

in which the live node with deepest level in the search tree is

chosen for exploration (Fig 7).

Table 1

Sequences for all subsets for the example of subdivision process
Sub Set #S1 Sub Set #S2 Sub Set #S3 Sub Set #S4 Sub Set #S5 Sub Set #S6 Sub Set #S6 Sub Set #S6

{0,0,0,0,0,0,0,0,0,0,0} {0,0,0,0,2,0,0,0,0,0,0} {0,0,0,1,0,0,0,0,0,0,0} {0,0,0,1,2,0,0,0,0,0,0} {1,0,0,0,0,0,0,0,0,0,0} {1,0,0,0,2,0,0,0,0,0,0} {1,0,0,1,0,0,0,0,0,0,0} {1,0,0,1,2,0,0,0,0,0,0}

{0,0,0,0,0,0,0,0,1,0,0} {0,0,0,0,2,0,0,0,1,0,0} {0,0,0,1,0,0,0,0,1,0,0} {0,0,0,1,2,0,0,0,1,0,0} {1,0,0,0,0,0,0,0,1,0,0} {1,0,0,0,2,0,0,0,1,0,0} {1,0,0,1,0,0,0,0,1,0,0} {1,0,0,1,2,0,0,0,1,0,0}

{0,0,0,0,0,0,0,1,0,0,0} {0,0,0,0,2,0,0,1,0,0,0} {0,0,0,1,0,0,0,1,0,0,0} {0,0,0,1,2,0,0,1,0,0,0} {1,0,0,0,0,0,0,1,0,0,0} {1,0,0,0,2,0,0,1,0,0,0} {1,0,0,1,0,0,0,1,0,0,0} {1,0,0,1,2,0,0,1,0,0,0}

{0,0,0,0,0,0,0,1,1,0,0} {0,0,0,0,2,0,0,1,1,0,0} {0,0,0,1,0,0,0,1,1,0,0} {0,0,0,1,2,0,0,1,1,0,0} {1,0,0,0,0,0,0,1,1,0,0} {1,0,0,0,2,0,0,1,1,0,0} {1,0,0,1,0,0,0,1,1,0,0} {1,0,0,1,2,0,0,1,1,0,0}

{0,0,0,0,1,0,0,0,0,0,0} {0,0,0,1,1,0,0,0,0,0,0} {1,0,0,0,1,0,0,0,0,0,0} {1,0,0,1,1,0,0,0,0,0,0}

{0,0,0,0,1,0,0,0,1,0,0} {0,0,0,1,1,0,0,0,1,0,0} {1,0,0,0,1,0,0,0,1,0,0} {1,0,0,1,1,0,0,0,1,0,0}

{0,0,0,0,1,0,0,1,0,0,0} {0,0,0,1,1,0,0,1,0,0,0} {1,0,0,0,1,0,0,1,0,0,0} {1,0,0,1,1,0,0,1,0,0,0}

{0,0,0,0,1,0,0,1,1,0,0} {0,0,0,1,1,0,0,1,1,0,0} {1,0,0,0,1,0,0,1,1,0,0} {1,0,0,1,1,0,0,1,1,0,0}

A Parallel Branch and Bound algorithm for the Resource Levelling Problem with minimal lags 9

Subset #S3

{A,B,C,D,E,F,G,H,J,K,L}

{[0,0],[0,0],[0,0],[1,1],[0,1],[0,0],[0,0],[0,1],[0,1],[0,0]}

E Shift 0 E Shift 1

J Shift 0 J Shift 1

K Shift 0 K Shift 1

J Shift 0 J Shift 1

K Shift 0 K Shift 1

Subset #S3

#1

#2

#3

#4

#5

#6

#7

{0,0,0,1,0,0,0,0,0,0,0} {0,0,0,1,0,0,0,1,0,0,0}

{0,0,0,1,0,0,0,0,1,0,0} {0,0,0,1,0,0,0,1,1,0,0}

#8

#9

#10

#11

#12

#13

#14

{0,0,0,1,1,0,0,0,0,0,0} {0,0,0,1,1,0,0,1,0,0,0}

{0,0,0,1,1,0,0,0,1,0,0} {0,0,0,1,1,0,0,1,1,0,0}

 Figure 6 Tree representation of the subset #S3 Figure 7 Depth First Search order enumeration

 outline for Sub Set #3 and obtained sequences

Pseudo-code 3 shows the algorithm for the B&B with

Depth First Search outline. The algorithm is a recursive

procedure, in which nodes are examined incrementally from

a starting index (initial job for the first call) while it can be

branched, calling himself from the next index. The B&B

algorithm (non-parallel) with Depth First Search outline for

the RLP has been implemented in an app (Fig 8) as an

illustrative example of the search procedure that can be

downloaded from https://goo.gl/hxW8c9.

Pseudo-code 3
Depth First Search outline Branch and Bound algorithm

As it can be seen on Pseudo-code 3, there is not a previous

process that excludes activities with zero total float or

without resource consumption, because the subdivision

process could reduce to zero the total float of some activities.

Consequently, the real complexity could differ between the

sequential and the parallel computation in a number that is

less or equal to the number of feasible subsets. The
application of Pseudo-codes 1 to 3 provides the feasible

sequences presented in Table 1 for each one of the subsets of

the Example.

In Table 2, the initial and levelled values for the objective

function for each subset are shown. Note that, due to the fact

that RLP is a non-regular problem, a lower bound cannot be

established to cut the exploration tree. Therefore, all subsets

must be analyzed in order to find the optimal value. In the

example of graph subdivision process, the subsets #S2 and

#S4 present the best initial value; however, the optimal value

is found in subset #S3.

Table 2

Values for the objective function for each sub-set
 Initial value Best value

#S1 956 926

#S2 920 920

#S3 922 916

#S4 920 920

#S5 988 968

#S6 962 962

#S7 944 938

#S8 932 932

5. IMPLEMENTATION AND RESULTS

The proposed Parallel B&B algorithm has been

completely implemented in an app developed in C# language

and tested with the PSPLIB library (Kolisch & Sprecher,

1996). The process of implementation of the Parallel B&B

was gradual from one core to 490 cores (Fig 8). The first step

(with one core) had the purpose of testing the B&B algorithm

(Fig 9). Once the goodness of the provided solutions was

verified, the parallel B&B was implemented in one computer

with eight cores and gradually increased to 490 cores in

several physical and virtual computers. The complete app
with the Parallel B&B and the user manual can be

downloaded from https://goo.gl/F0vKOL.

The Information and Technology Services Directorate

(DSIT) and the Department of Systems Engineering of la

Universidad de Los Andes, Colombia, provided 25 Windows

7© virtual machines of 10 cores and 2.4 GHz under the HP

Cloud Management Software©. Furthermore, five

Workstations HP Z620 12 DIMM (with a Chipset Intel®

C602) and one additional CPU Xeon E5-2603v2 were used.

Additionally, several Linux virtual machines were provided

ParallelBranch&Bound (jobindex:i, sequenceset:S)

'remark Tries with the possible shifts of ith activity given by S constraints

 for k = Sli to Sui

 if (ESi + k < SSi) then

 k = SSi - ESi

 else

 SSi = ESi + k

 end if

 'remark The ith activity shifting could induce the violation

 'of another activity constrain in S

 isfeasible = Computetimes(S)

 if (isfeasible = true) then actualbound = Computeobjectivefunction()

 if (actualbound < lowerbound) then

 lowerbound = actualbound

 for z = 1 to N

 Elitez = SSk

 end for

 end if

 'remark recursive calling

 if (i < N) then

 call ParallelBranch&Bound (i + 1,S)

 else

 for z = i + 1 to N

 SSz = 0

 end for

 'remark If a constraint gets violated, the next shifts will be

 'violated. So is no need to continue

 k = Sui + 1

 end if

 end for

https://goo.gl/hxW8c9
https://goo.gl/F0vKOL

Ponz-Tienda, Salcedo-Bernal & Pellicer 10

by UnaCloud under the Opportunistic Cloud Computing

Infrastructure as a Service framework (Rosales, et al., 2011).

Figure 8 Improvement process considering the number

of cores

Along with the implementation process, the algorithm was

significantly improved, not only by increasing the number of

cores, but also the efficiency in the iterations by thread, going

from 5,000 to around 150,000 iterations per second and

thread (Fig 10, left side), and 7.35E+07 total iterations per

second (Fig 10, right side).

Figure 9 App for the Depth First Search B&B algorithm

5.000

25.000

62.500

80.000

95.000

100.000

150.000

0

20.000

40.000

60.000

80.000

100.000

120.000

140.000

160.000

0 2 4 6 8 10 12

It
er

/s
ec

 b
y
 t

h
re

ad

Improvement step

5,00E+03 2,00E+05

1,00E+06 4,00E+06

1,62E+07

1,78E+07

2,18E+07

2,68E+07

4,90E+07

7,35E+07

0,E+00

1,E+07

2,E+07

3,E+07

4,E+07

5,E+07

6,E+07

7,E+07

8,E+07

0 2 4 6 8 10 12

T
o

ta
l

It
er

at
io

n
s

b
y
 s

ec
o

n
d

Improvement step

Figure 10 Improvement process in the number of iterations by second

For the graph subdivision, a non-fixed depth variable 𝑚

(Eq. 23) is adopted in such way that the division process

produces at least 2𝑚 > 20,000 feasible subgraphs. This

ensures a balanced complexity for the analyzed problems

with the available infrastructure, without disturbing the
efficiency of the sub-problems manager negotiation process.

The real complexity of different solved instances is shown in

Figure 11. The x-axis represents the subgraph, and the y-axis

the number of iterations needed to be solved; the red line

displays the cumulated iterations. As shown in Figure 11, the

complexity of the sub-problems can differ widely (up to 10

orders of magnitude).

By dividing the problem into a large number of sub-

problems, the sub-problems manager minimizes idle times of

the computer network and, additionally, reduces the

difference of complexity between sub-problems, balancing

the distribution of work among processors (Saleh & Adeli,

1994a; 1994b). If all sub-problems where equally sized, the

perfect distribution would be to divide the problem in as

many sub-problems as processors are available, mapping the

sub-problems with the processors one to one (Adeli &

Kamal, 2003). However, the sub-division process does not

produce equally sized sub-problems, as can be seen in Figure
11, where there are sub-problems with a thousand times more

complexity than others. Therefore, this distribution would

produce idle time among the processors: if a sub-problem is

considerably bigger, then its respective processors will spend

more running time whereas the remaining processors are

waiting. Thus, it is recommended to produce a big number of

sub-problems to minimize this issue.

A Parallel Branch and Bound algorithm for the Resource Levelling Problem with minimal lags 11

Figure 11 Real complexity of the subgraphs after graph subdivision

 Figure 12 Comparison of the initial complexity over real Figure 13 Correlation of the initial complexity over real

 Figure 14 Correlation of the initial complexity Figure 15 Comparison of the initial complexity over the

 over efficiency processing time considering 3 × 107 iterations per second

For the experimentation phase, all problems with an initial

complexity less than 1017 (42 instances) were selected, on top

of seven arbitrary instances with a complexity between 1017

and 1018 and one instance with a complexity greater than

1018. Table 3 exposes the main indicators for each one of the

solved instances: (a) the initial complexity, as the product of

the total floats of the activities (𝑂(𝑛) = ∏(𝑇𝑜𝑡𝑎𝑙𝑓𝑙𝑜𝑎𝑡 +
1)); (b) the real number of iterations needed (feasible

solutions); (c) the efficiency, as the relation between the real

and initial complexity (smaller values correspond to greater

efficiency); and (d) the initial and levelled values for the sum

of the squares and the improvement as a percentage of the

initial value. For a complete compatibility of the

benchmarking test, the problems were solved considering the

prescribed makespan as the obtained for the unconstrained

problem (𝑇̅ = 𝑙𝑠𝑛 , 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 3) and the associated cost to

Ponz-Tienda, Salcedo-Bernal & Pellicer 12

each resource equal to one (𝑐𝑖 = 1, 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 14). The

optimal values, the scheduled times for the activities, and the
benchmarking results can be downloaded from

https://goo.gl/GjCGEi.

Figures 12 and 13 show the correlation between the initial

complexity versus the real number of iterations and the

processing time, respectively. In Figure 12, the problems, in

x-axis, are ordered by their real complexity and then

compared with their respective initial complexity, without a

clear relationship between those magnitudes. In Figure 13,

the initial and real complexity of each solved problem are

mapped showing that, in general, the real complexity is

increasing with the initial complexity, but with a variability
up to three levels of magnitude between two similar

problems. This implies that the real complexity cannot be

established by only considering the initial complexity. The

processing time has been computed considering an average

of 3 × 107 iterations per second.
Figures 14 and 15 display the correlation between the

initial complexity over efficiency and the processing time,

considering 3 × 107 iterations per second, respectively.

Figure 14 shows the relationship between the efficiency and

the initial complexity, with a weak correlation between the

two metrics, indicating that bigger problems are more

efficiently solved, but with great variability up to two levels

of magnitude between similar problems. Figure 15 compares

the time required by the instances to be solved to optimality

versus its initial complexity, suggesting that problems up to

3 × 1017 can be solved in a reasonable computational time.

Table 3

Parallel B&B experimentation results

of
problem

Problem
 Complexity O(n)

Efficiency
 Sum of squares

Improvement
 Initial Real Initial Levelled

1 j3029_6 6.6E+08 3.8E+06 0.573% 110,265 107,109 2.862%

2 j3041_1 3.9E+09 1.4E+08 3.525% 45,832 41,878 8.627%

3 j3025_2 1.2E+11 7.1E+09 6.167% 39,398 37,178 5.635%

4 j3044_4 1.4E+12 1.8E+10 1.293% 51,951 49,379 4.951%

5 j3037_6 3.9E+12 1.9E+09 0.048% 22,127 19,399 12.329%

6 j3047_6 3.9E+12 1.6E+11 4.149% 76,849 71,273 7.256%

7 j3025_9 4.4E+12 9.5E+08 0.022% 42,302 40,714 3.754%

8 j3032_7 2.4E+13 1.6E+11 0.652% 75,573 66,411 12.123%

9 j3030_10 4.7E+13 3.7E+10 0.078% 110,314 101,746 7.767%

10 j3022_2 6.1E+13 7.6E+11 1.242% 27,075 23,765 12.225%

11 j3014_1 7.0E+13 5.3E+11 0.766% 70,211 62,561 10.896%

12 j3024_9 8.2E+13 6.8E+09 0.008% 25,970 23,824 8.263%

13 j3048_8 3.4E+14 4.4E+10 0.013% 72,636 67,838 6.606%

14 j3034_2 4.5E+14 9.5E+09 0.002% 8,283 7,097 14.318%

15 j3013_1 6.6E+14 3.8E+11 0.057% 102,511 83,771 18.281%

16 j3016_3 7.8E+14 2.2E+11 0.029% 105,510 95,492 9.495%

17 j3019_9 8.6E+14 1.2E+12 0.144% 8,864 7,280 17.870%

18 j3041_2 1.1E+15 3.0E+11 0.028% 53,603 46,743 12.798%

19 j3020_4 1.1E+15 1.1E+13 1.004% 9,499 8,445 11.096%

20 j3027_7 1.9E+15 1.3E+12 0.065% 54,870 48,316 11.945%

21 j3017_5 3.1E+15 1.8E+11 0.006% 10,692 9,458 11.541%

22 j3043_2 3.2E+15 2.0E+12 0.061% 51,273 45,233 11.780%

23 j3037_2 6.0E+15 4.8E+11 0.008% 25,393 20,041 21.077%

24 j3021_1 9.6E+15 1.5E+13 0.159% 19,863 18,221 8.267%

25 j3029_3 1.1E+16 1.7E+13 0.165% 83,716 72,010 13.983%

26 j3022_1 1.1E+16 3.5E+11 0.003% 27,189 21,909 19.420%

27 j3017_4 1.3E+16 9.5E+12 0.076% 10,867 8,453 22.214%

28 j3044_7 1.4E+16 3.9E+11 0.003% 57,601 53,111 7.795%

29 j3033_3 1.4E+16 3.0E+12 0.021% 9,518 8,532 10.359%

30 j3044_2 1.6E+16 7.9E+11 0.005% 59,728 56,040 6.175%

31 j301_6 1.8E+16 5.6E+12 0.031% 7,470 6,290 15.797%

32 j3021_9 2.1E+16 5.7E+12 0.027% 32,996 30,706 6.940%

33 j306_4 2.5E+16 4.8E+12 0.019% 41,622 37,950 8.822%

34 j3046_7 2.7E+16 2.2E+13 0.082% 74,803 66,713 10.815%

35 j3038_8 2.7E+16 2.5E+12 0.009% 26,614 25,314 4.885%

36 j301_10 4.4E+16 3.4E+13 0.079% 7,035 6,403 8.984%

37 j3034_10 4.6E+16 2.8E+11 0.001% 6,894 5,774 16.246%

https://goo.gl/GjCGEi

A Parallel Branch and Bound algorithm for the Resource Levelling Problem with minimal lags 13

38 j3013_8 5.4E+16 2.1E+13 0.040% 109,543 102,449 6.476%

39 j3042_4 5.7E+16 1.1E+13 0.019% 45,827 41,363 9.741%

40 j3039_9 6.2E+16 2.5E+13 0.041% 25,512 21,852 14.346%

41 j3046_10 7.6E+16 2.2E+13 0.029% 74,004 69,040 6.708%

42 j3029_7 8.3E+16 1.2E+13 0.014% 87,787 75,801 13.654%

43 j306_6 1.4E+17 2.2E+13 0.016% 35,558 25,546 28.157%

44 j3033_8 1.5E+17 2.3E+13 0.015% 9,658 7,610 21.205%

45 j3031_5 1.8E+17 5.4E+12 0.003% 61,749 58,775 4.816%

46 j3033_5 1.9E+17 1.2E+13 0.006% 11,776 9,520 19.158%

47 j307_5 2.0E+17 8.7E+12 0.004% 35,221 31,411 10.817%

48 j3036_7 3.1E+17 2.9E+13 0.009% 9,773 7,399 24.291%

49 j3024_8 6.2E+17 8.5E+12 0.001% 31,737 26,475 16.580%

50 j3043_6 1.5E+18 1.2E+14 0.008% 42,110 35,950 14.628%

6. DISCUSSION OF RESULTS

The results obtained from the experimentation have been

compared with the only benchmark published up to now for

the Adaptive Genetic Algorithm (AGA hereafter) (Ponz-

Tienda, et al., 2013). They are analyzed in order to obtain

correlations that provide an explanation about the differences

observed between similar instances “a priori" (Fig 13). The

results obtained, comparing the Parallel B&B and the AGA

algorithms, are presented in Table 4.
Table 4 indicates that instances with an initial level of

complexity equal to or lower than 1014 are not improved

compared with the AGA benchmarking. The results of the

experimentation are summarized in Table 5, presenting the

average improvement of the AGA vs the Parallel B&B, with

the number and percentage of improved instances. Table 4

shows that metaheuristics, as AGA, provide excellent results

expending less computational time than exact methods.

However, metaheuristics methods converge fast, easily

relapsing into local optimum as with problem #48 (j3036_7),

obtaining results very far away from the optimal value; in

this case, it is necessary a benchmarking test to prove the

capability of heuristics and metaheuristics methods in order
to escape from local optimum.

Table 4

Results comparison between AGA and Parallel B&B

Instance

 Sum of squares
Improvement

Initial

Levelled

AGA

Parallel
B&B

AGA

Parallel
B&B

Improved

1 j3029_6 110,265 107,109 107,109 2.862% 2.862% No

2 j3041_1 45,832 41,878 41,878 8.627% 8.627% No

3 j3025_2 39,398 37,290 37,178 5.351% 5.635% Yes

4 j3044_4 51,951 49,379 49,379 4.951% 4.951% No

5 j3037_6 22,127 19,399 19,399 12.329% 12.329% No

6 j3047_6 76,849 71,273 71,273 7.256% 7.256% No

7 j3025_9 42,302 40,714 40,714 3.754% 3.754% No

8 j3032_7 75,573 66,557 66,411 11.930% 12.123% Yes

9 j3030_10 110,314 101,766 101,746 7.749% 7.767% Yes

10 j3022_2 27,075 23,765 23,765 12.225% 12.225% No

11 j3014_1 70,211 62,561 62,561 10.896% 10.896% No

12 j3024_9 25,970 23,864 23,824 8.109% 8.263% Yes

13 j3048_8 72,636 67,838 67,838 6.606% 6.606% No

14 j3034_2 8,283 7,097 7,097 14.318% 14.318% No

15 j3013_1 102,511 83,869 83,771 18.185% 18.281% Yes

16 j3016_3 105,510 95,502 95,492 9.485% 9.495% Yes

17 j3019_9 8,864 7,280 7,280 17.870% 17.870% No

18 j3041_2 53,603 46,857 46,743 12.585% 12.798% Yes

19 j3020_4 9,499 8,455 8,445 10.991% 11.096% Yes

20 j3027_7 54,870 48,316 48,316 11.945% 11.945% No

21 j3017_5 10,692 9,468 9,458 11.448% 11.541% Yes

22 j3043_2 51,273 45,233 45,233 11.780% 11.780% No

23 j3037_2 25,393 20,099 20,041 20.848% 21.077% Yes

24 j3021_1 19,863 18,221 18,221 8.267% 8.267% No

Ponz-Tienda, Salcedo-Bernal & Pellicer 14

25 j3029_3 83,716 72,016 72,010 13.976% 13.983% Yes

26 j3022_1 27,189 21,929 21,909 19.346% 19.420% Yes

27 j3017_4 10,867 8,453 8,453 22.214% 22.214% No

28 j3044_7 57,601 53,111 53,111 7.795% 7.795% No

29 j3033_3 9,518 8,532 8,532 10.359% 10.359% No

30 j3044_2 59,728 56,040 56,040 6.175% 6.175% No

31 j301_6 7,470 6,290 6,290 15.797% 15.797% No

32 j3021_9 32,996 30,714 30,706 6.916% 6.940% Yes

33 j306_4 41,622 38,126 37,950 8.399% 8.822% Yes

34 j3046_7 74,803 66,803 66,713 10.695% 10.815% Yes

35 j3038_8 26,614 25,382 25,314 4.629% 4.885% Yes

36 j301_10 7,035 6,427 6,403 8.643% 8.984% Yes

37 j3034_10 6,894 5,774 5,774 16.246% 16.246% No

38 j3013_8 109,543 102,709 102,449 6.239% 6.476% Yes

39 j3042_4 45,827 41,381 41,363 9.702% 9.741% Yes

40 j3039_9 25,512 21,872 21,852 14.268% 14.346% Yes

41 j3046_10 74,004 69,040 69,040 6.708% 6.708% No

42 j3029_7 87,787 75,977 75,801 13.453% 13.654% Yes

43 j306_6 35,558 25,602 25,546 27.999% 28.157% Yes

44 j3033_8 9,658 7,618 7,610 21.122% 21.205% Yes

45 j3031_5 61,749 58,817 58,775 4.748% 4.816% Yes

46 j3033_5 11,776 9,570 9,520 18.733% 19.158% Yes

47 j307_5 35,221 31,411 31,411 10.817% 10.817% No

48 j3036_7 9,773 8,383 7,399 14.223% 24.291% Yes

49 j3024_8 31,737 26,475 26,475 16.580% 16.580% No

50 j3043_6 42,110 35,950 35,950 14.628% 14.628% No

Additionally, as shown in Figure 14, the efficiency grows

as the initial complexity increases, providing a

covariance 𝑐𝑜𝑣(𝑥, 𝑦) = −0.604; this result indicates a

strong correlation between efficiency and complexity (note

that lower values represent greater efficiency). Nevertheless,
this experimentation evidences that low complexity

problems are not always easier to solve than bigger

instances; in fact, for the same initial complexity there might

be a difference of up to three magnitude orders in the number

of iteration needed to solve the instance (Fig. 14).

Table 5

Summary of benchmark comparison

Average Improvement Improved instances

AGA Parallel B&B Number %

11.616% 11.895% 26 of 50 52.00%

The efficiency has been correlated (Table 7, Figures 16,

17 and 18) with several parameters (network-based and

resource-based) found in the literature, as explained now.

The network-based parameters used were the Network

Complexity (NC) and the Flexibility Ratio (FR) (equivalent
to Order Strength (OS) or Graph Density (GD)). The

Complexity Index (CI) was not included on the network-

based parameters, because the real complexity variability

cannot be explained by this parameter as was demonstrated

by De Reyck and Herroelen (1996). Most of resource-based

parameters take into account resources availability, but since

the RLP formulation assumes unlimited resources, including

them makes no sense. Particularly for that reason, the

parameters Resource Strength (Kolisch & Sprecher, 1996)

and Resource Contrainedness were not included on this

analysis; nevertheless, the authors have analyzed the

correlation with the Resource Factor (RF) (Kolisch &

Sprecher, 1996) as it is considered in the literature (Li &

Demeulemeester, 2015). Additionally, other parameters not

found in the analyzed literature were considered: the Number
of Paths (#P), the Average Total Float (ATF), the Average

Free Float (ATF), and the Free Float Complexity (FFC)

(computed as the product of the free float plus one of all the

activities).

The improvement sectored by level of complexity shows

that AGA provides poorer results, even though complexity

increases (see Table 6).

Table 6

Improvement sectored by level of complexity (B&B vs

AGA)

Level of

complexity

 # Instances % Improved by B&B

 By

level

Improved

by B&B
 By level Cumulated

e08 1 0 0.00% 0.00%

e09 1 0 0.00% 0.00%

e11 1 1 100.00% 33.33%

e12 4 0 0.00% 14.29%

e13 5 3 60.00% 33.33%

e14 5 2 40.00% 35.29%

e15 7 4 57.14% 41.67%

e16 18 11 61.11% 50.00%
e17 7 5 71.43% 53.06%

e18 1 0 0.00% 52.00%

Total 50 26

A Parallel Branch and Bound algorithm for the Resource Levelling Problem with minimal lags 15

Figure 16 Correlations with network-based parameters

Table 7

Correlations with graph and resource parameters

The values observed in Table 7 and represented in Figures

16 to 18 do not provide clear evidences about correlations,

with the exceptions of the poor correlation of the efficiency

with the Average Total Float (ATF) and the correlation with
the Resource Factor (RF). The first correlation (Figure 18

upper right hand side) is due to the fact that the efficiency is

computed as the relationship between the real and initial

complexity, but it does not totally explain the behavior of the

variability. The correlation with the Resource Factor (RF)

(Figure 17) is not conclusive because the PSPLIB is built

using the RF as initial parameter with only four values (𝑅𝐹 =
{0.25, 0.50, 0.75 , 1.00}) (Kolisch & Sprecher, 1996), and

consequently the correlation may be slanted by the

randomness of the selected problems. Nerveless, it suggests
that the variability of the efficiency is reduced when the

resource factor grows, but this is not a conclusive result.

Therefore, more experiments are required to reach more

robust conclusions.

Figure 17 Correlations with Resource Factor (RF)

Figure 18 Correlations with other parameters

Network-

based

parameters

 Resource-

based

parameter

Other

parameters

NC RT RF #P ATF FFC AFF

0.06 0.11

-0.56

0.05
-

0.22

-

0.05

-0.06

Ponz-Tienda, Salcedo-Bernal & Pellicer 16

7. EXAMPLE OF APPLICATION

Besides the benchmarking test described previously, a

building project of 15 floors (three underground and 12

aboveground) is used to illustrate the versatility and

adaptability of the proposed Parallel Branch and Bound

algorithm; this example was already used by Ponz-Tienda, et

al. (2015) and it has been slightly modified for this case. The

building project is completely solved using 71 construction

activities contemplating the widest possible set of

conditions: the structure is a process overlapped with the
processes of masonry, facades and basements with an

additional lag of 3, 2 and 1 weeks respectively for removal

of formwork to ensure the proper hardening of the concrete.

A total of 13 activities/processes which summarize 71

activities and sub-processes are considered. The durations,

relationships, weekly resource demand and continuity

conditions of each task and process are shown in Table 8.

Table 8

Example of application; durations, relationships and construction constraints.

Activity
Code

Activity description

of
subactivities

Duration
in weeks

 Weekly
resource
demand

Continuity
condition

 Precedence Relationships

#1 #2

1 Previous works 1 1 5 Yes - -

2 Excavations 0.0/-1.0 1 2 3 Yes FS1-2(0) -

3 Diaphragm-wall 1 8 5 Yes FS2-3(0) -

4 Excavations 1 6 5 Yes FS3-4(0) -

5 Rebars for foundation works 1 3 10 Yes FS4-5(0) -

6 Concrete foundation 1 1 5 Yes FS4-5(0) -

7 Structure 1 to 15 15 2 15 No FS6-7(0) -

8 Masonry works 1 to 12 12 1 5 No Fl7-8(5,1,3) -

9 Facades 1 to 12 12 2 10 No Fl8-9(6,1,2)

10 Paving works 1 to 12 12 1 5 No Fl8-9(1,1,1)

11 Office works 1 to 12 12 2 10 No Fl9-11(3,1,0) Fl10-11(1,1,0)

12 Reworks and finishing 1 1 10 Yes FS11-12(0) -

13 Delivery/reception 1 1 0 Yes FS12-13(0) -

𝐹𝑆𝑖−𝑗(𝑧) Finish to start relationship with z lag units from activity 𝑖 to 𝑗

𝐹𝑙𝑖−𝑗(𝑝𝑖 , 𝑝𝑗 , 𝑧) Flow relationship with z lag units from subactivity 𝑝𝑖 to 𝑝𝑗

Figure 18 Before/After leveling resource profile of the example of application

Table 9

Example of application; main indicators.

of
problem

Problem
 Complexity O(n)

Efficiency
 Sum of squares

Improvement
 Initial Real Initial Levelled

51 EJEM 8.58E+16 1.66E+11 0.00019% 31,418 30,068 4.297%

The construction resource profile of the building project,

before and after the leveling process, is presented in Figure

18. In Table 9 the main indicators are displayed, following

the criteria used in Table 3.

The building project has been solved to optimality with

160 cores. It has required the generation of 52,467 subgraphs

and it has needed 9,869 seconds (2.74 hours). Note that with

one core, the required time to solve this problem to

optimality would be at least 20 days. This building project is

A Parallel Branch and Bound algorithm for the Resource Levelling Problem with minimal lags 17

significantly easier and faster to solve than the ones included

in the PSPLIB library, processing only the 0.00019% of the

sequences (1.66 × 1011) of the initial complexity of the

problem (8.58 × 1016). The time required to solve this kind

of problems is reasonable and practical, considering that
unbalanced resources can risk the goals of the construction

project; therefore, the use of advanced computer methods in

construction projects are justified in order to achieve the best

possible schedule.

8. CONCLUSIONS

The efficient use of resources is a key factor in achieving

project goals, minimizing resource fluctuations and

maximizing results in cost savings by increasing the

efficiency of the project sequence. This is particularly
significant in construction projects where field operations

make fluctuations of resources unproductive and costly.

Resource Leveling Problems (RLP) aim to sequence the

construction activities that optimize the resource

consumption over time, minimizing the variability. Exact

algorithms have been proposed by researchers along the

literature to offer optimal solutions, but this kind of problems

are strongly NP-Hard and, consequently, alternative

heuristic and metaheuristic algorithms have been proposed

in the literature to find local optimal solutions in an

acceptable computational effort. These alternative methods

should be tested against exact benchmarks, and not only
between them. For this purpose, different libraries have been

developed in order to test and benchmark heuristic solutions

with the optimal solutions; nevertheless, the PSPLIB for

minimal lags is still open to be solved to optimality.

The actual computational capacity allows these problems

to be solved to optimality in a reasonable computational

time, but such capacity is distributed in individual computers

and therefore traditional algorithms must to be redesigned in

order to take advantage of these distributed infrastructures.

Therefore, the authors have proposed a Parallel Branch and

Bound algorithm for the Resource Levelling Problem with
minimal lags. This algorithm has been implemented

gradually in an app developed in C# language using 490

cores in several physical and virtual computers. The

algorithm has also been tested with the PSPLIB library.

This way, this proposal is contributing to the body of

knowledge of construction project scheduling in the

following facets:

 Analyzing the real complexity of the RLP based on the

standard parameters found in the literature.

 Proposing a new parallel exact procedure to solve the

RLP using an acceptable computational effort

considering the scenario of a construction project.

 Providing a benchmarking set of solutions (50

problems of the PSPLIB) to test the goodness of the

heuristic algorithms for the RLP.

 Solving to optimality in reasonable computational time

a building project with 71 activities, proving the

feasibility to be implemented in commercial and

professional applications that can help practitioners to

schedule real and complex construction projects.

The time required to solve real construction projects is

very reasonable and practical (as shown in the previous

section), considering that unbalanced resources can risk the

goals of the construction project. Therefore, the use of

advanced computer methods in construction projects is

justified in order to achieve the best possible schedule.

Furthermore, the proposed Parallel Branch and Bound for

the RLP can be easily adapted to solve other regular project

scheduling problems as the RCPSP, or combined problems

as the RCPSP-RLP, only by including the resource
availability as a restriction to the problem and discarding the

branches with worst bounds.

This research makes available the optimums of 50

problems (with complexity from 108 to 1018) for the RLP

with minimal lags for the first time, allowing contributors to

compare their heuristics methods against exact results by

obtaining the distance of their solution to the optimal values.

It aims to be a benchmark for researchers and a practical tool

for practitioners, as the computational capacity increases.

This benchmark can be the foundation of future collaborative

efforts to estimate the real complexity of the RLP in order to

categorize the problems and establish the feasibility to obtain
an optimal solution based on the availability of

computational resources. Additionally, there are other

problems in scheduling as the RCPSP that can take

advantage of the Parallel B&B algorithm to be solved to

optimality; therefore, they can provide new alternatives to

the software industry by including the proposed algorithm in

their commercial packages.

ACKNOWLEDGEMENTS

This research was supported by the FAPA program of the
Universidad de Los Andes (Colombia). The authors would

like to thank the research group of Construction Engineering

and Management (INgeco), especially to J. S. Rojas-

Quintero, and the Department of Systems Engineering at the

Universidad de Los Andes. The authors are also grateful to

the anonymous reviewers for their valuable and constructive

suggestions.

REFERENCES

Adeli, H., 2000. High-performance computing for large-

scale analysis, optimization, and control. Journal of
Aerospace Engineering, 13(1), pp. 1-10.

Adeli, H. & Kamal, O., 1989. Parallel Structural

Analysis Using Threads. Computer-Aided Civil and
Infrastructure Engineering, 4(2), pp. 133-147.

Ponz-Tienda, Salcedo-Bernal & Pellicer 18

Adeli, H. & Kamal, O., 1992. Concurrent analysis of

large structures—II. applications. Computers &
Structures, 42(3), pp. 425-432.

Adeli, H. & Kamal, O., 2003. Parallel processing in
structural engineering. s.l.:Taylor & Francis.

Adeli, H., Kamat, M. P., Kulkarni, G. & Vanluchene, R.

D., 1993. High-performance computing in structural

mechanics and engineering. Journal of Aerospace
Engineering, 6(3), pp. 249-267.

Adeli, H. & Karim, A., 1997. Scheduling/cost

optimization and neural dynamics model for construction.

Journal of Construction Engineering and Management,
123(4), pp. 450-458..

Adeli, H. & Karim, A., 2001. Construction Scheduling,

Cost Optimization, and Management: A New Model Based

on Neurocomputing and Object Technologies. In:

s.l.:Spon, pp. 233-234.

Adeli, H. & Kumar, S., 1995. Concurrent Structural

Optimization on Massively Parallel Supercomputer.

Journal of Structural Engineering, 121(11), pp. 1588-

1597.

Adeli, H. & Kumar, S., 1999. Distributed Computer-

Aided Engineering: For Analysis, Design, and

Visualization. s.l.:CRC Press, Inc. Boca Raton, FL, USA.

Adeli, H. & Vishnubhotla, P., 1987. Parallel Processing.

Computer-Aided Civil and Infrastructure Engineering,

2(3), pp. 257-269.

Adeli, H. & Wu, M., 1998. Regularization neural

network for construction cost estimation. Journal of

Construction Engineering and Management, 124(1), pp.

18-24.

Ahuja, H., 1976. Construction Performance Control by

Networks. New York: John Wiley and Sons.

Alsayegh, H. & Hariga, M., 2012. Hybrid meta-heuristic

methods for the multi-resource leveling problem with

activity splitting. Automation in Construction, Volume 27,

pp. 89-98.

Anagnostopoulos, K. & Koulinas, G., 2011. Resource-

constrained critical path scheduling by a GRASP-based

hyperheuristic. Journal of Computing in Civil

Engineering, 26(2), 204-213., 26(2), pp. 204-213.

Anagnostopoulos, K. P. & Koulinas, G. K., 2010. A

simulated annealing hyperheuristic for construction

resource levelling. Construction Management and
Economics, 28(2), pp. 163-175.

Arditi, D. & Bentotage, S. N., 1996. System for

scheduling highway construction projects. Computer‐
Aided Civil and Infrastructure Engineering, 11(2), pp.

123-139.

Bandelloni, M., Tucci, M. & Rinaldi, R., 1994. Optimal

Resource Leveling using non-serial dynamic

programming,. European Journal of Operations Research,

Volume 78, pp. 162-178.

Benjaoran, V., Tabyang, W. & Sooksil, N., 2015.

Precedence relationship options for the resource levelling

problem using a genetic algorithm. Construction

Management and Economics, 33(9), pp. 711-723.

Bianco, L., Caramia, M. & Giordani, S., 2016. Resource

levelling in project scheduling with generalized

precedence relationships and variable execution

intensities. OR Spectrum, 38(2), pp. 405-425.

Burguess, A. & Killebrew, J., 1962. Variation in activity

level on a cyclic arrow diagram. Journal of Industrial

Engineering, 13(2), p. 76–83..

Chakroun, I. & Melab, N., 2015. Towards a

heterogeneous and adaptive parallel Branch-and-Bound

algorithm. Journal of Computer and System Sciences,
81(1), pp. 72-84.

Christodoulou, S., Ellinas, G. & Michaelidou-Kamenou,

A., 2009. Minimum moment method for resource leveling

using entropymaximization. Journal of construction
engineering and management, 136(5), pp. 518-527.

Clausen, J. & Perregaard, M., 1999. On the best search

strategy in parallel branch‐and‐bound: Best‐First Search

versus Lazy Depth‐First Search. Annals of Operations

Research, pp. 1-17.

Coughlan, E. T., Lübbecke, M. E. & Schulz, J., 2010. A
Branch-and-Price Algorithm for Multi-mode Resource
Leveling. Berlin Heidelberg: Springer.

Coughlan, E. T., Lübbecke, M. E. & Schulz, j., 2013. A

Branch-Price-and-Cut Algorithm for Multi-Mode

Resource Leveling. Preprint submitted to Elsevier.

Crainic, T. G., Le Cun, B. & Roucairol, C., 2006.

Parallel Branch-and-Bound Algorithms. In: Parallel
Combinatorial Optimization. s.l.:John Wiley & Sons, Inc.,

pp. 1-28.

Damci, A., Arditi, D. & Polat, G., 2013a. Resource

Leveling in Line-of-Balance Scheduling. Computer-Aided
Civil and Infrastructure Engineering, Volume 28, p. 679–

692.

Damci, A., Arditi, D. & Polat, G., 2013b. Multiresource

leveling in line-of-balance scheduling. Journal of

Construction Engineering and Management, 139(9), pp.

1108-1116..

Damci, A., Arditi, D. & Polat, G., 2016. Impacts of

different objective functions on resource leveling in Line-

of-Balance scheduling. KSCE Journal of Civil
Engineering, 20(1), p. 58.67.

De Reyck,, B. & Herroelen, W., 1996. On the use of the

complexity index as a measure of complexity in. European
Journal of Operational Research, Volume 91, pp. 347-

366.

Doulabi, S., Seifi, A. & Shariat, S. Y., 2010. Efficient

hybrid genetic algorithm for resource leveling via activity

splitting. Journal of Construction Engineering and

Management, 137(2), pp. 137-146.

A Parallel Branch and Bound algorithm for the Resource Levelling Problem with minimal lags 19

Drexl, A. & Kimms, A., 2001. Optimization guided

lower and upper bounds for the resource investment

problem. The Journal of the Operational Research Society,

52(3), pp. 340-351.

Easa, S., 1989. Resource leveling in construction by

optimization. Journal of Construction Engineering and

Management, 115(2), pp. 302-316.

El-Rayes, K. & Jun, D., 2009. Optimizing resource

leveling in construction projects. Journal of Construction

Engineering and Management, 135(11), pp. 1172-1180.

Faghihi, V., Nejat, A., Reinschmidt, K. F. & Kang, J. H.,

2016. Automation in construction scheduling: a review of

the literature. The International Journal of Advanced

Manufacturing Technology, 81(9), pp. 1845-1856.

Florez, L., Castro-Lacouture, D. & Medaglia, A. L.,

2012. Sustainable workforce scheduling in construction

program management. Journal of the Operational
Research Society, 64(8), pp. 1169-1181.

Gaitanidis, A., Vassiliadis, V., Kyriklidis, C. & Dounias,

G., 2016. Hybrid Evolutionary Algorithms in Resource
Leveling Optimization: Application in a Large Real
Construction Project of a 50000 DWT Ship. Thessaloniki,

Greece, ACM, p. Article No. 25.

Gather, T., Zimmermann, J. & Bartels, J.-H., 2011.

Exact methods for the resource levelling problem. Journal
of Scheduling, 14(6), pp. 557-569.

Georgy, M. E., 2008. Evolutionary resource scheduler

for linear projects. Automation in Construction, 17(5), pp.

573-583.

Hariga, M. & El-Sayegh, S. M., 2010. Cost optimization

model for the multiresource leveling problem with allowed

activity splitting. Journal of Construction Engineering and

Management, 137(1), pp. 56-64.

Harris, R., 1978. Precedence and Arrow Networking

Techniques for Construction. s.l.:Wiley.

Harris, R. B., 1990. Packing method for resource

leveling (PACK). Journal of Construction Engineering
and Management, 116(2), pp. 331-350.

Hegazy, T., 1999. Optimization of resource allocation

and leveling using genetic algorithms. Journal of

construction engineering and management, 125(3), pp.

167-175.

Heon Jun, D. & El-Rayes, K., 2011. Multiobjective

optimization of resource leveling and allocation during

construction scheduling. Journal of Construction

Engineering and Management, 137(12), pp. 1080-1088.

Hinze, J., 2012. Construction Planning and Scheduling
(4th Ed.). s.l.:Prentice Hall, Upper Saddle River (NJ).

Hiyassat, M. A. S., 2000. Modification of minimum

moment approach in resource leveling. Journal of

Construction Engineering and Management. 126(4), pp.

278-284.

Hiyassat, M. A. S., 2001. Applying modified minimum

moment method to multiple resource leveling. Journal of
Construction Engineering and Management, 127(3), 192-

198.(3), pp. 192-198.

Hossein Hashemi Doulabi, S., Seifi, A. & Shariat, S. Y.,

2010. Efficient hybrid genetic algorithm for resource

leveling via activity splitting. Journal of Construction
Engineering and Management, 137(2), pp. 137-146.

Hu, J. & Flood, I., 2012. A multi-objective scheduling

model for solving the resource-constrained project

scheduling and resource leveling problems. s.l., s.n., pp.

49-56.

Ismail, M. M., El-Raoof, O. & El-Wahed, W. F., 2014.

A Parallel Branch and Bound Algorithm for Solving Large

Scale Integer Programming Problems. Applied
Mathematics & Information Sciences, 8(4), pp. 1691-1698.

Jun, D. & El-Rayes, K., 2011. Multiobjective

optimization of resource leveling and allocation during

construction scheduling. Journal of Construction

Engineering and Management, 137(12), pp. 1080-1088.

Kolisch, R., Schwindt, C. & Sprecher, A., 1999.

Benchmark Instances for Project Scheduling Problems. In:

Project Scheduling; Recent Models, Algorithms and

Applications. Boston: Kluwer Academic Publishers, pp.

197-212.

Kolisch, R. & Sprecher, A., 1996. PSPLIB-a project

scheduling problem library. European journal of
operational research, 96(1), pp. 205-216.

Koulinas, G. & Anagnostopoulos, K., 2013. A new tabu

search-based hyper-heuristic algorithm for solving

construction leveling problems with limited resource

availabilities. Automation in Construction, Volume 31, pp.

169-175.

Lai, T.-H. & Sahni, S., 1984. Anomalies in parallel

branch-and-bound algorithms. Communications of the
ACM, 27(6), pp. 594-602.

Leu, S. S., Yang, C. H. & Huang, J. C., 2000. Resource

leveling in construction by genetic algorithm-based

optimization and its decision support system application.

Automation in construction, 10(1), pp. 27-41.

Li, H. & Demeulemeester, E., 2015. A genetic algorithm

for the robust resource leveling problem.. Journal of

Scheduling, pp. 1-18.

Li, H. X. Z. & Demeulemeester, E., 2014. Scheduling

policies for the stochastic resource leveling problem.

Journal of Construction Engineering and Management,

141(2), p. 04014072.

Lim, T. K., Yi, C. Y., Lee, D. E. & Arditi, D., 2014.

Concurrent construction scheduling simulation algorithm.

Computer‐Aided Civil and Infrastructure Engineering,
29(6), pp. 449-463.

Ponz-Tienda, Salcedo-Bernal & Pellicer 20

McKeown, G. P., Rayward-Smith, V. J. & S. A. Rush,

H. J., 1991. Using transputer network to solve B&B
problems. s.l., 2, p. 781–800.

Menesi, W. & Hegazy, T., 2014. Multimode resource-

constrained scheduling and leveling for practical-size

projects. Journal of management in engineering, 31(6), p.

04014092.

Neumann, K., Schwindt, C. & Zimmermann, J., 2003.

Project Scheduling with Time Windows and Scarce

Resources. Berling: Springer.

Neumann, K. & Zimmermann, J., 1999. Methods for

Resource-Constrained Project Scheduling with Regular

and Nonregular Objective Functions and Schedule-

Dependent Time Windows. In: Project Scheduling.
s.l.:Springer, pp. 261-287.

Neumann, K. & Zimmermann, J., 2000. Procedures for

resource leveling and net present value problems in project

scheduling with general temporal and resource constraints.

European Journal of Operational Research, 127(2), pp.

425-443.

Nübel, H., 2001. The resource renting problem subject

to temporal constraints. OR Spektrum, Volume 23, pp.

359-381.

Perregaard, M. & Clausen, J., 1998. Parallel branch-and-

bound methods for thejob-shop scheduling problem.

Annals of Operations Research, Volume 83, pp. 137-160.

Petrovic, R., 1969. On optimization of resource leveling

in project plans. In: Project planning by network analysis.

North-Holland, Amsterdam,: Lombaers HJ, pp. 268-273.

Ponz-Tienda, J. L., Pellicer, E., Benlloch-Marco, J. &

Andrés-Romano, C., 2015. The Fuzzy Project Scheduling

Problem with Minimal Generalized Precedence Relations.

Computer-Aided Civil and Infrastructure Engineering,
30(11), pp. 872-891.

Ponz-Tienda, J., Yepes, V., Pellicer, E. & Moreno-

Flores, J., 2013. The Resource Leveling Problem with

multiple resources using an adaptive. Automation in
Construction, Volume 29, pp. 161-172.

Pritsker, A. A. B., Waiters, L. J. & Wolfe, P. M., 1969.

Multiproject scheduling with limited resources: A zero-

one programming approach. Management science, 16(1),

pp. 93-108.

Ranjbar, M., 2013. A path-relinking metaheuristic for

the resource levelling problem. Journal of the Operational
Research Society, 64(7), pp. 1071-1078..

Rieck, J. & Zimmermann, J., 2015. Exact Methods for

Resource Leveling Problems. In: Handbook on Project
Management and Scheduling Vol. 1. s.l.:Springer

International Publishing, pp. 361-387.

Rieck, J., Zimmermann, J. & Gather, T., 2012. Mixed-

integer linear programming for resource leveling

problems. European Journal of Operational Research,

Volume 221, pp. 27-37.

Rosales, E., Castro, H. & Villamizar, M., 2011.

Unacloud: Opportunistic cloud computing infrastructure
as a service. Rome, Italy, IARIA, pp. 187-194.

Saleh, A. & Adeli, H., 1994a. Microtasking,

Macrotasking, and Autotasking for Structural

Optimization. Journal of Aerospace Engineering, 7(2), pp.

156-174.

Saleh, A. & Adeli, H., 1994b. Parallel Algorithms for

Integrated Structural/Control Optimization. Journal of

Aerospace Engineering, 7(3), pp. 297-314.

Son, J. & Mattila, K. G., 2004. Binary resource leveling

model: Activity splitting allowed. Journal of construction
engineering and management, 130(6), pp. 887-894.

Son, J. & Skibniewski, M. J., 1999. Multiheuristic

approach for resource leveling problem in construction

engineering: Hybrid approach. Journal of construction

engineering and management, 125(1), pp. 23-31..

Tang, Y., Liu, R. & Sun, Q., 2014. Two-stage

scheduling model for resource leveling of linear projects.

Journal of Construction Engineering and Management,
140(7), p. 04014022.

Wah, B. W., Li, G. J. & Yu, C. F., 1985. Multiprocessing

of Combinatorial Search Problems. IEEE Computer,

18(6), pp. 93-108.

Yeniocak, H., 2013. An efficient branch and bound
algorithm for the resource leveling problem, Middle east

technical university: Unpublished Thesis; School of

natural and applied sciences.

Younis, M. & Saad, B., 1996. Optimal resource leveling

of multi-resource projects. Computers & Industrial
Engineering, 31(1-2), pp. 1-4.

