
Departamento de Sistemas Informáticos y Computación
Universitat Politècnica de València

Character-based Neural Machine Translation
MASTER’S THESIS

Master’s Degree in Artificial Intelligence, Pattern Recognition and
Digital Imaging

Author: Antonio Manuel Larriba Flor

Tutor: Francisco Casacuberta Nolla
Álvaro Peris Abril

Course 2016-2017

Resum
Les paraules fora de vocabulari continuen sent un problema per resoldre en

els sistemes de traducció actuals. L’objectiu d’aquest treball es tractar de soluci-
onar el problema d’un vocabulari limitat emprant nivells de traducció més me-
nuts que les paraules (e.g: caràcters). Es busca aprofitar característiques com la
composició de paraules, propietats morfològiques y semàntiques per a tractar de
traduir paraules desconegudes mitjançant sub-unitats sí conegudes. D’aquesta
manera el model de traducció no només és capaç de bregar amb paraules desco-
negudes sinó que també seria possible traduir a paraules no vistes durant la fase
d’entrenament.

Paraules clau: xarxes neuronals, traducció automàtica, subparaules

Resumen
Las palabras fuera de vocabulario siguen siendo un problema por resolver en

los sistemas de traducción actuales. El objetivo de este trabajo es tratar de solu-
cionar el problema de un vocabulario limitado empleando niveles de traducción
más pequeños que las palabras (e.g: caracteres). Se busca aprovechar caracterís-
ticas como la composición de palabras, propiedades morfológicas y semánticas
para tratar de traducir palabras desconocidas a partir de sub-unidades sí conoci-
das. De este modo el modelo de traducción no sólo es capaz de lidiar con palabras
desconocidas si no que también sería posible traducir generando nuevas palabras
no vistas durante la fase de entrenamiento.

Palabras clave: redes neuronales, traducción automática, subpalabras

Abstract
Out of vocabulary words are still an open problem in translation systems.

The aim of this work is trying to solve the problem of a limited vocabulary using
translation levels smaller than words (e.g: characters). We want to take advantage
of characteristics like word compounding, morphological and semantical proper-
ties to try to translate unknown words from sub-word units already known. This
way the translation model is not only able to deal with unseen words but also it
will be capable of generating new words not seen during the training phase.

Key words: neural networks, machine translation, subword units

iii

Contents

Contents v
List of Figures vii

1 Introduction 1
1.1 Objectives . 1
1.2 Structure . 2

2 Statistical Machine Translation 3
2.1 Fundamental Equation of Machine Translation 3
2.2 Language Modeling . 5

2.2.1 Handling Unknown N-grams: Smoothing 5
2.3 Translation Modeling . 6

2.3.1 Word-based Translation . 6
2.3.2 Phrase-Based Models . 8

2.4 Phrase-Based SMT. Log-Linear Model 9
2.5 Assesment . 10

3 Neural Machine Translation 13
3.1 Word Representation . 13
3.2 Recurrent Neural Networks . 15

3.2.1 Bidirectional Recurrent Neural Networks 16
3.2.2 Long Term Dependencies: LSTM & GRU 17

3.3 Encoder-Decoder Architecture . 19
3.3.1 Encoder . 20
3.3.2 Decoder . 21
3.3.3 Decoding Phase . 22
3.3.4 Ensembling . 22

4 NMT: Sub-word translation 25
4.1 Why Character Translation? . 25
4.2 Byte Pair Encoding . 26
4.3 Convolutional Encoder . 27

4.3.1 Convolutional Neural Networks 27
4.3.2 Highway Networks . 28
4.3.3 Constructing convolutional encoders for NMT 29

5 Implementation, experiments and results 31
5.1 Implementation details . 31
5.2 NMT Systems . 31
5.3 Datasets . 32

5.3.1 Xerox . 33
5.3.2 EU . 37

5.4 Experiments . 39
5.4.1 Classical Phrase-Based MT with Moses 39

v

vi CONTENTS

5.4.2 Word Level NMT . 39
5.4.3 Character Level NMT . 40
5.4.4 BPE NMT . 41
5.4.5 Convolutional Encoder NMT 42
5.4.6 Convolutional Encoder + BPE NMT 42

6 Conclusions & Future Work 45
6.1 Conclusions . 45
6.2 Future Work . 46

6.2.1 New Datasets . 46
6.2.2 Improvements & other sub-word approaches 46
6.2.3 Combination of character systems with other paradigms . . 46

7 Acknowledgements 47
Bibliography 49

List of Figures

2.1 Word alignment example . 7
2.2 Phrase based alignment and phrase pairs example 9

3.1 Word embedding example . 14
3.2 Recurrent neural network example 16
3.3 Bidirectional recurrent neural network example 17
3.4 Long short-term memory example 18
3.5 Gated recurrent unit example . 19
3.6 Encoder-decoder example . 20
3.7 Alignment model . 23

4.1 BPE learnt rules . 26
4.2 Convolutional operator . 27
4.3 Pooling example . 28
4.4 Convolutional encoder . 30

vii

CHAPTER 1

Introduction

As humans we are social by nature. The tool used to socialize is the language,
however we live in a multi-lingual world which makes interaction between speak-
ers of different languages difficult.

From this necessity, and due to the magnitude of the task, machine translation
was born. This refers to the use, partial or complete of computers to carry out
translations. During the last decades the statistical models have dominated this
field. These models rely on the use of huge bilingual corpora to be trained. In
the last years neural networks have established as the state-of-the-art of machine
translation replacing other classical approximations.

Despite of the advantages of neural networks, out-of-vocabulary words are
still a problem in modern translation systems. Most systems have a limited vo-
cabulary size because of efficiency reasons. Not all words can be seen during
training phase, specially if those words are numbers, names, compound words,
loanwords and other rare words. These out-of-vocabulary or unseen words rep-
resent an issue, the translation system does not know how to deal with them since
it did not saw them during the training phase. To solve this problem we may ap-
proach the translation using the sub-words units (e.g: characters). We do this
because we think we will be able to translate unseen words by encoding them via
smaller units.

By doing this, we aim to get an open vocabulary system in which, we will try
to translate rare words by breaking them into smaller and known units. Indeed,
depending on how the system is implemented it could be also able to generate
new words. For example, in a translation system from English to Spanish the
model might not know the word “parasol” but it may be possible to generate it
by the concatenation of “para” and “sol”.

If done right we will get a better system, capable of dealing with unseen words
and generating new words.

Objectives

The prime aim of this work is to carry out translations by using neural networks
using sub-word units to handle out-of-vocabulary words. This can be split in
smaller objectives:

1

2 Introduction

1. Study different approaches to work with characters and other sub-word
units.

2. Implement and combine those approaches into the classical neural machine
translation architecture.

3. Analyze how those approaches affect out-of-vocabulary words.

4. Compare results with word-level translation systems.

Structure

In this first chapter, we have presented the issue this work addresses and the ob-
jectives we aim to fulfill. Chapter 2 introduces formally the concept of statistical
machine translation. It reviews its most classical approaches and explains the
core concepts that will be used along this work.

Chapter 3 will be dedicated to explaining the neural machine translation. It
will explain how different is with regard to the previous statistical approaches, its
most common architectures, and all the steps carried out to produce a translation.

Chapter 4 presents different techniques and algorithms for working at sub-
word level using neural machine translation. These approaches will be tested,
evaluated and compared against well-known datasets in Chapter 5. Finally Chap-
ter 6 will present the conclusions extracted from this Master thesis.

CHAPTER 2

Statistical Machine Translation

This chapter and the next one are a gentle introduction to machine translation.
We will review the literature, starting from the basics, to explain simple models
and different statistical approaches, to finally show which of them constitutes the
state of the art on this field.

Fundamental Equation of Machine Translation

Machine translation (MT) refers to the techniques computers use to translate be-
tween two different languages. Given a sentence f J

1 ≡ f1, f2, ..., f J in the source
language F we want to translate it into a sentence eI

1 ≡ e1, e2, ..., eI in the target
language E .

Our work is to build the best models to get high quality translations. Differ-
ent approaches have existed on how to define those models. Statistical machine
translation (SMT) has been the state-of-the-art for the last decades. SMT engages
the translation problem, as its name suggests, from a statistical framework. Given
the source sentence f J

1 it tries to obtain the most probable translation êI
1 from all

the possible sentences in the target language E .

ê Î
1 = arg max

eI
1,I

P(eI
1| f

J
1) (2.1)

The problem is that we do not know all the possible sentences for a given
language. And even if we knew, the cost of searching would be excessive. We
can apply Bayes’ theorem in order to break Equation (2.1) into two separate and
more affordable expressions.

ê Î
1 = arg max

eI
1,I

P(eI
1)P(f J

1 |e
I
1) (2.2)

Equation (2.2), is broken apart into two different probability distributions.
P(eI

1)
1 is modeled through the language model. It should give high probabilities

1P(·) is used for the real probability distribution while p(·) is used for models and approxima-
tions.

3

4 Statistical Machine Translation

to common and well-constructed sentences in the target language. On the other
hand, P(f J

1 |eI
1) is named as the translation probability. It is estimated through the

translation model which estimates how good a translation is. Ideally, it should
give large probabilities to a semantically equivalent translation even if it is not
syntactically correct (the language model is responsible of that kind of evalua-
tion). Equation (2.2) is known as the basic equation of MT (Brown et al., 1993)
and implies the following challenges:

1. Estimate the Language model (LM) probability distribution p(eI
1).

2. Estimate the Translation model (TM) probability distribution p(f J
1 |eI

1).

3. Find a proper and efficient search method to find the sentence êI
1 which

maximizes the product of both models probabilities.

These points will be treated in more detail in the following sections. But first,
we have to face a discouraging fact, we will never know the real probability dis-
tributions. We have to train our models, which are defined by a set of parameters
θ, with huge bilingual corpora to approximate those unknown distributions. The
goal is to automatically detect bilingual correlations and extract linguistic infor-
mation to determine the values of those parameters in our models. The afore-
mentioned set, θ, describes the probability density function related to our model
P(·|θ). Let X = x1, x2, ..., xN be a set of observations. Therefore, the log-likelihood
of X given θ is computed as:

L(θ,X) = logp(x1, x2, ..., xN|θ) =
N

∑
i

logp(xi|θ) (2.3)

We usually work with the logarithm of probabilities rather than the probabil-
ities because of two reasons. For computers summation is cheaper than multi-
plication and working in the logarithmic space provides numerical stability and
computational robustness against really small values.

To achieve the parameter estimation we are looking for, we employ Maximum
Likelihood Estimation (MLE) over the given set of observations. MLE searches the
subset of parameters θ̂, over the hyperspace of possible parameters Θ, that maxi-
mizes the log-probability2 L(θ,X).

θ̂ = arg max
θ∈Θ

L(θ,X) (2.4)

Each part of Equation (2.2) has a different set of parameters, thus we have two
set of equations, one for the language model and the other one for the transla-
tion model. Equation (2.4) is instantiated for each model and its corresponding
observations:

θ̂LM = arg max
θ∈ΘLM

I

∑
i

logp(ei|θ) (2.5)

2Indeed, as the logarithm is a monotonically increasing function it does not matter if we max-
imize the likelihood or the log-likelihood. We will achieve the same result.

2.2 Language Modeling 5

θ̂TM = arg max
θ∈ΘTM

J

∑
j

logp(f j|eI
1, θ) (2.6)

Next sections treat in more detail each one of the models and different ap-
proaches to its modeling and estimation.

Language Modeling

As previously stated, the aim of the language model is to compute the probabil-
ity associated to a given sentence P(eI

1) in the corresponding language E . In other
words, to capture language regularities to determine how well-constructed, how
natural a sentence is in its language. Let eI

1 be a sentence composed by I words
(e1, e2, ..., eI). By applying the chain rule we can decompose its associated proba-
bility mass as follows:

P(eI
1) = P(e1)P(e2|e1)...P(eI |eI−1

1) =
I

∏
i=1

P(ei|ei−1
1) (2.7)

The cost of this computation is intractable. As the length of the sentence in-
creases, our possibilities to compute it decrease; since each new word depends
on the whole sequence of previous words ei−1

1 . The full computation of this ex-
pression is discarded in favor of n-gram models.

N-gram models are the result of applying Markov’s assumption to this prob-
lem. We assume that future events will depend only in recent facts, thus the next
word ei will only depend on the n− 1 preceding words. The number n determines
the order of the n-gram model. The probability of the sentence can be re-written
as follows:

P(eI
1) ≈

I

∏
i=1

p(ei|ei−1
i−n+1) (2.8)

Now, the estimation of p(ei|ei−1
i−n+1) can be computed using MLE (pML), which

results in simply counting and normalizing.

pML(ei|ei−1
i−n+1) =

c(ei−1
i−n+1)

∑ei
c(ei

i−n+1)
(2.9)

c(·) counts how many times that particular n-gram appears in the training data.

Handling Unknown N-grams: Smoothing

N-grams are a simple and effective way to model the language probability dis-
tribution. Its parameter estimation is also pretty straightforward, nonetheless
n-grams still have a problem. If one of the n-grams conforming the sentence is

6 Statistical Machine Translation

unknown the assigned probability will be null3 (recall that as appears in Equation
(2.8) final probability is a product). Obviously we do not want this displeasing
behavior in our model, to solve this low-frequency problem we appeal to differ-
ent smoothing techniques. The term smoothing refers to different means of refin-
ing the probability distribution by decreasing high frequencies and increasing the
lower ones. Not only helps to avoid null frequencies but it also has been demon-
strated to help the overall system performance (Chen and Goodman, 1996).

Different approaches exist (Goodman, 2001), however the most widely used
is the so-called Kneser-Ney discount (KND) (Kneser and Ney, 1995). KND uses
interpolation and back-off to estimate the probabilities of unseen events. By back-
off, we refer to appeal to a lower-order distribution when the actual one is null
(e.g: When a tri-gram model has no counts for a sequence of words we recall
the bi-gram distribution to interpolate it). A probability mass D (0 < D < 1)
is subtracted for each non-zero count. This constitutes the modified high-order
n-gram distribution, lower-order models are modified accordingly the higher
model counts. By doing this, we can see low-order n-gram distributions as a
smoothed version of high-order distributions. The aim is to reduce null counts
and to improve system effectiveness. To do so they proposed the following equa-
tion,

pKN(ei|ei−1
i−n+1) =

max{c(ei−1

i−n+1)−D,0}
∑ei

ei
i−n+1

, if c(ei−1
i−n+1) > 0

γ(ei−1
i−n+1)pKN(ei|ei−1

i−n+2), if c(ei−1
i−n+1) = 0

(2.10)

where γ(ei−n+1) is a normalization factor used to ensure probabilities sum to
unity. Using this smoothing technique not only affects n-grams with null fre-
quency, but also the rest are modified. This makes KND context-dependent since
modifications on lower-order models are affected by higher-order models. Hence,
KND is more accurate and different with respect other absolute discount meth-
ods.

Translation Modeling

The goal of the translation model is to estimate P(f J
1 |eI

1) from Equation (2.2), to
determine if a sentence in the target language E is a good translation, with similar
semantic meaning, of the original sentence in the source language F .

Word-based Translation

One of the first attempts for building a translation model was a simple word-
alignment model. Word is the basic unit of translation and those words are re-
organized (aligned) and translated to craft the final translation. The term align-

3This is a common problem given the enormous number of possible events. Usually much
larger than the data available to train (data sparsity problem).

2.3 Translation Modeling 7

ment (Brown et al., 1993) describes the correspondence between a sentence f J
1 ≡

f1, f2, ..., f J in the source language F and a sentence eI
1 ≡ e1, e2, ..., eI in the target

language E at a word level. Equation (2.11) represents the possible alignments.

a ⊆ 1...J × 1...I (2.11)

where aj = i if the jth word of the source sentence (f j) is aligned with the ith word
from the target sentence (ei). A special position (position 0) exists to represent
that a word in the source is not aligned with any word in the target. If we denote
the whole set of possible alignments as A(f J

1 , eI
1) we can reformulate translation

model equation as follows:

P(f J
1 |e

I
1) = ∑

aJ
i⊂A(f J

1 ,eI
1)

P(f J
1 , aJ

i |e
I
1) (2.12)

The alignment is a hidden variable and we must sum over all possible val-
ues to obtain the translation probability. Given the source sentence length J and
the target sentence length I there exist J*I possible connections, this is 2J∗I possi-
ble alignments in A(f J

1 , eI
1). We can represent alignments with lines linking the

related words and its positions as represented in Figure 2.1.

Alejandro1 no2 le3 prestó4 los5 libros6 a7 su8 hermano8 pequeño9

Alejandro1 did2 not3 lend4 the5 books6 to7 his8 little9 brother10

Figure 2.1: Word alignment example. Notice a3 = 0, meaning that word le is not aligned
with any word. It is linked to the special position 0.

IBM Models

Summing over each element of A(f J
1 , eI

1) possible alignments without further
studying it is not a good idea. In 1993, the IBM T.J. Watson Research Center de-
veloped five models (Brown et al., 1993) based on the concept of alignments. All
of this models are based on the following derivation, not an approximation, of
Equation (2.12):

P(f J
1 , aJ

i |e
I
1) = P(J|eI

1)
J

∏
j=1

P(aj|a
j−1
1 , f j−1

1 , j, eI
1)P(f j|a

j
1, f j−1

1 , j, eI
1) (2.13)

This equation implies that regardless of the form of P(f J
1 , aJ

i |e
I
1), it can always

be expressed as a product of terms. Now we can analyze Equation (2.13) as a
sequential way to generate f J

1 following this steps:

8 Statistical Machine Translation

1. We first decide the length J of the source language F sentence given eI
1. This

is done by the length distribution P(J|eI
1)

2. We choose where to connect the first word of sentence f J
1 given the knowl-

edge we have about previous history (aj−1
1 , f j−1

1), the target sentence (eI
1)

and the length of the source sentence (J). The alignment distribution
P(aj|a

j−1
1 , f j−1

1 , j, eI
1) handles this term.

3. Finally, we decide which word f j generate according to the target sentence

(eI
1), the length of the source sentence (J) and the alignment (aj

1, f j−1
1) com-

puted in the previous step. The translation distribution P(f j|a
j
1, f j−1

1 , j, eI
1)

takes care of this point.

4. Iterate over points 2 and 3 until the desired length is reached and we have
a fully-aligned sentence.

In this way we make decisions about how to build the target string, based
on previous knowledge, at every iteration step. All five aforementioned models
share this steps, they just differ on how to estimate step 2, concretely how to
compute the alignments probabilities P(aj|a

j−1
1 , f j−1

1 , j, eI
1).

The parameter estimation of all models is carried out by a modified version
for incomplete data of the Expectation-Maximization (EM) algorithm (Dempster
et al., 1977).

Until here we covered the basics of word-based translation. Unfortunately
they are very limited since only single words alignments are considered. Con-
textual information and complex structures are lost. To solve this problem multi-
word alignment models were proposed.

Phrase-Based Models

To tackle word-based systems limitations phrase-based translation models were
proposed. The basic unit of translation is now the phrase which is defined as a
set of one or more consecutive words in the source or target sentence. Now the
alignments are done between phrases. Given a source and target sentence f J

1 , eI
1,

they can be bi-segmented in K phrases with 1 < K < min(I, J), represented as
f̃ K
1 , ẽK

1 .

Phrase-based (PB) models use statistical dictionaries of phrase pairs which
are automatically learnt from the training corpus. Bilingual phrases are defined
(Zens et al., 2002) as a pair of m source words and n target words. Some restric-
tions are imposed:

1. Words must be consecutive.

2. They must be consistent with the word matrix alignment. This means that
the m source words are aligned only to the n target words and vice versa.
No multiple different relations for the same words are allowed.

2.4 Phrase-Based SMT. Log-Linear Model 9

In Figure 2.2 we can see how the phrases are aligned (2.2a) and how the phrase
pairs will be formed (2.2b). We must bear into account that three new hidden
variables must be included to deal with bilingual phrases:

1. µ determines how to segment the source sentence in K phrases (f̃ K
1).

2. γ establishes how to segment the target sentence in K phrases (ẽK
1).

3. α regulates the phrase alignments.

EThe estimation is done through a HMM approximation. Restrictions and the
maximum approximation might be used to speed up computations.

··
·· ·· · · ·· · · ·

· ·.

.

hello
,

,
well

ja

gu
te
n

T
ag

(a)

source phrase target phrase
ja well
ja, well,
ja, guten Tag well, hello
ja, guten Tag. well, hello.
, ,
, guten Tag , hello
, guten Tag. ,hello.
guten Tag hello
guten Tag. hello.
. .

(b)

Figure 2.2: Phrase based alignment and phrase pairs example. Extracted from (Zens
et al., 2002)

Phrase-Based SMT. Log-Linear Model

This model tackles Equation (2.1) from a discriminative point of view. It searches
for a target sentence with the maximum posterior probability. Many SMT systems
rely on this approach, the log-linear mode has been the prevailing approach of
SMT for a long time. It consists in a set of features hm(f J

1 , eI
1) weighted by a factor

λm:

êI
1 = arg maxeI

1
P(eI

1| f
J
1)

= arg maxeI
1

exp(∑M
m=1 λmhm(f J

1 ,eI
1))

∑
eI′
1

exp(∑M
m=1 λmhm(f J

1 ,eI′
1))

= arg maxeI
1

∑M
m=1 λmhm(f J

1 , eI
1)

(2.14)

From step 2 to 3 in Equation (2.14) we can remove the denominator because it
is a constant and we are interested just on the argmax. Also we eliminate the exp
since maximizing ex and x is equivalent.

An interesting property about this approach is that we can define as many
features and as diverse as we want. The following features are the most common:

10 Statistical Machine Translation

1. Target language model.

2. The phrase-based model and inverse phrase-based model. From source to
target and vice versa.

3. A reordering model.

4. A target word penalty and phrase penalty. These are used to avoid the
natural tendency of statistical model of generating short sentences and short
phrases.

For estimating the weights (λm), different optimization algorithms exist: MERT
(Och, 2003), MIRA (Hasler et al., 2011) or PRO (Hopkins and May, 2011). They
usually minimize an error function over a validation set to get the weights.

Assesment

MT evaluation is still an open problem. We must differentiate between human
and automatic evaluation. On the one hand, human evaluation is expensive in
time and resources, but it usually provides good estimations over the translations
quality. But in addition to the cost, we must also bear into account the subjective
nature of humans, two judges may diverge in their evaluation. On the other hand,
we have automatic evaluation, faster, cheaper and deterministic but it does not
work as well as human evaluation. However, for efficiency reasons, automatic
evaluation is widely used.

The main problem with automatic evaluation is to prove that a given metric
is related with our human judgment. That a higher score directly implies better
translations and vice versa. Nowadays we do not know how to prove it, that
is why evaluation is still an open problem. Next we present the most common
metrics.

BLEU

BLEU (BiLingual Evaluation Understudy) (Papineni et al., 2002) compares the
translation generated by a MT system (hypotheses) with a human supervised
translation (reference). It is based on the n-gram concept explained before, it
counts the number of candidate words from the hypotheses that appear in the
reference and later divides this count by the number of words in the hypotheses.
To avoid MT systems to generate too many suitable n-grams, the modified n-
gram precision is presented to clip the counts of an n-gram:

Cclip = min(c(w), max_re f _c(w)) (2.15)

where, c(w) is the count of the n-gram w in the hypotheses and max_ref_c(w)
is the maximum count of w in the reference sentence. BLEU is computed on a
document by computing it over each sentence:

1. Compute n-gram matches sentence by sentence.

2.5 Assesment 11

2. Sum over all possible candidates. If we are working with multi-references
we must compute n-gram matches for each one.

3. Normalize:

pn =
∑C∈{Candidates} ∑w∈C Cclip(w)

∑C′∈{Candidates} ∑w′∈C′ Cclip(w′)
(2.16)

In addition, to control sentence length a brevity penalty (BP) is introduced.
Translations longer than the reference are already penalized by the modified n-
gram precision, for dealing with shorter translations BP is applied as follows:

BP =

1, if t > r

e1− r
t if t ≤ r

(2.17)

BLEU is computed as a weighted geometric mean of the different n-gram or-
ders employed. Each n-gram has a weight wn such that ∑N

n=1 wn = 1. Usually
weights are set to wn = 1

N and the maximum order is fixed to N = 4. These
values are taken from (Papineni et al., 2002). Finally BLEU is computed as:

BLEU = BP ∗ exp(
N

∑
n=1

wnlogpn) (2.18)

TER

TER (Translation Edit Rate) (Snover et al., 2006) is defined as the maximum num-
ber of edits needed to change the hypotheses sentence to perfectly match the
reference. Possible edits include insertion, deletion, substitution and reordering
words. TER is computed as follows:

TER =
#of edits

#of reference words
(2.19)

All edits have equal cost. To compute number of edits a dynamic program-
ming algorithm is used.

Other metrics

Many other metrics are used, we briefly present three of the most used. METEOR
(Banerjee and Lavie, 2005) is a language metric based on alignments which takes
advantage of language resources for evaluation. It applies stemming and syn-
onymy to the matching process. A possible drawback is that there is no language
resources available for all language pairs.

NIST (Doddington, 2002) is a modified version of BLEU proposed by the NIST
(National Institute is Standards and Technology)4. WER (Word Error Rate) is

4https://www.nist.gov/

https://www.nist.gov/

12 Statistical Machine Translation

based on Levensthein distance, it works by measuring the number of edits at
word level.

CHAPTER 3

Neural Machine Translation

In the last years a new approach in MT, within the statistical framework, has
emerged to constitute itself as the state of the art in automatic translation. This
is the neural machine translation (NMT), where the translation process is carried
out by artificial neural networks or simply neural networks (NN).

Neural networks are models whose basic unit is the neuron, which performs
a linear combination of its inputs and later applies a non-linear function to the
output. This simple unit is used to build complex networks which have a wide
range of applications.

In Chapter 2, we broke apart Equation (2.1) because we were not able to esti-
mate that probability directly. NN are able to model that probability straight. No
need to employ different models. In addition the whole translation system (also
referred as the network) can be trained jointly.

NN are not new, they were previously applied, in a simpler way, to MT (Cas-
tano et al., 1997) but until the recent years the problems that were dragging this
approach were still unresolved: problems propagating the gradients through the
network and a high computational cost.

Points 1 is explained in detail in the following sections. Regarding point 3,
conventional central processing units (CPUs) have been substituted by graphic
processing units (GPUs) specialized in floating-point arithmetic. The use of GPUs
has speed up training by a few orders of magnitude, because they allow a higher
degree of parallelization and lots of toolkits and libraries have proliferated to ease
its use.

Word Representation

Different choices exist on how to represent words in an NMT system, however the
de facto standard is to use a continuous representation. Words are represented as
low-dimensional continuous vectors of features, also called word-embeddings.
Instead of working with discrete vectors of size equal to vocabulary |V| (e.g:
15000) we work with continuous vectors of lower size m (e.g: 300). Word embed-
dings are stored in a matrix E ∈ R|V|xm which can be indexed by words, being
|V| the size of the vocabulary and m the embedding size. Typically, words are
linearly projected to the word-embedding space.

13

14 Neural Machine Translation

Other discrete word representation approaches became obsolete for the rea-
sons that Bengio et al. (2003) explain in his language model proposal: they do
not take into account the similarity between words and they describe a really dis-
perse space (the course of dimensionality). On the other hand it seems logical to
think that similar words (at lexical or semantic level) should have some similar
continuous vector of features.

To estimate words probability in the continuous space Bengio et al. (2003) pro-
pose the following approach. First, words are mapped to a real vector v ∈ Rm.
Second, to obtain the probabilities associated to each word and its context a func-
tion g maps an input sequence of those vectors to a conditional probability dis-
tribution over the words in the vocabulary. To simultaneously train word feature
vectors and the parameters of probability function g, they employ a feed-forward
NN as shown in Figure 3.1.

...

Words

Continuous vectors

... ...

...

... ...

tanh

softmax

Feed-forward connections

Index for word wt−n+1 Index for word wt−2 Index for word wt−1

Shared matrix E for vector mapping.

P (wt = i|context)
Probabilities

Figure 3.1: Neural architecture for word embedding. Image extracted from (Bengio et al.,
2003)

Mikolov et al. (2010) used recurrent neural networks with the same objective
and came up with a new version of the language model: a recurrent neural net-
work language model (RNNLM) which improved previous results. Over this
language model a new approach for obtaining word representations was devel-
oped (Mikolov et al., 2013a). If we are not interested in the language model and

3.2 Recurrent Neural Networks 15

its probabilities, if we are just concerned about the word-embeddings we can
speed up computations and yet obtain really good results. Some enhancements
were added later to improve overall system performance (Mikolov et al., 2013c).
Some of them were based on using a simplified version of the noise contrastive
estimation technique as a substitution of the softmax of the output layer. The
softmax layer is used to obtain probabilities and constitutes a significant part of
the computational work. The softmax layer applies the softmax function:

σ(zk) =
exp(zk)

∑K
k′=1 exp(zk′)

(3.1)

to its inputs and returns a vector in which all the elements sum up to one.

Words-embeddings have proved useful in many areas other of natural lan-
guage processing: NMT, PB, sentiment analysis and even for exploiting language
similarities (Mikolov et al., 2013b).

Recurrent Neural Networks

Recurrent neural networks (RNN) are a class of NN adequate for processing se-
quential data. They are widely used in translation tasks since they often can pro-
cess sequences of variable length (e.g: sentences). As its name suggest it has an
internal recurrent connection between its states. This internal state h allows the
network to model a discrete-temporal behavior. Given a sequence of input vec-
tors xT

1 ≡ x1, ..., xT a RNN will output a sequence yT
1 ≡ y1, ..., yT, computed as:

ht = fh(ht−1, xt) (3.2)

yt = fo(ht) (3.3)

where fh and fo are hidden and output activation functions respectively. Different
configurations of fo, fh and h result in different RNN like Jordan networks (Jor-
dan, 1997) or Elman networks (Elman, 1990). Figure 3.2 shows an Elman RNN
unfolded in time.

Parameter estimation of these models is done using stochastic gradient de-
scent (Robbins and Monro, 1951), using back-propagation through time (BPTT)
(Werbos, 1990) which tries to minimize a loss function under some optimality
criteria. BPTT algorithm is applied to the unfolded version of the RNN. It uses
the general back-propagation method to each state of the RNN. Back-propagation
modifies the network parameters according to the loss gradient with regard to the
weights. The problem is that applying the algorithm at each step is expensive and
causes problems propagating gradients trough too many states. To mitigate the
overhead of the algorithm, samples are accumulated and the back-propagation
algorithm is applied in parallel. We accumulate the loss for b samples (batch size)
and then proceed to modify the parameters. A possible solution for propagating
the gradients is presented in the next sections.

16 Neural Machine Translation

xt xt+1xt−1

yt+1yt−1 yt

ht+1ht−1 ht

ht+1htht−1

Input Layer

Recurrent Layer

Output Layer

Figure 3.2: Elman architecture unfolded through time.

Typically, the loss function used is cross-entropy between system’s output and
the references. For models in which there exists a relation among the system out-
put and the hidden state h we can use, in training phase, teacher forcing (Williams
and Zipser, 1989), a procedure which takes advantage of knowing the references.
At training phase teacher forcing feeds the correct output yt (from the reference)
to the next hidden state ht+1 trying to speed up the convergence process.

Bidirectional Recurrent Neural Networks

RNN are used in MT due to its variable input length and its ability to pass in-
formation across an undefined number of sequential steps. However they have a
drawback, they process the sequential input only in one direction, usually left-to-
right. In order to capture the future dependencies Bidirectional Recurrent Neural
Networks (BRNN) were proposed (Schuster and Paliwal, 1997). The idea is to
have two independent RNN, one to process the input from left-to-right (or from
past to future if we want to see it as a time relation) and a second one to process
it from right-to-left. Later the output of both networks is combined (sum or con-
catenation are the most usual choices) to obtain a single output like as in a regular
RNN. Figure 3.3 shows the structure of a BRNN to illustrate the process.

As there is no interaction between each RNN both can be trained using the
same algorithms explained before. Symbol ⊕ represents a union operator. Hid-
den states and output are now computed as:

h f
t = fh(h

f
t−1, xt) (3.4)

3.2 Recurrent Neural Networks 17

hb
t = fh(hb

t+1, xt) (3.5)

yt = fo(h
f
t ⊕ hb

t) (3.6)

where notation is shared with previous equations.

xt xt+1xt−1

yt+1yt−1 yt

Input Layer

Output Layer

Backward Layer

Forward Layer
hf
thf

t−1
hf
t+1

hb
t hb

t+1hb
t−1

hb
t+1hb

thb
t−1

hf
t−1 hf

t
hf
t+1

Figure 3.3: BRNN architecture unfolded through time. Forward components are colored
in blue and backward ones in red.

Long Term Dependencies: LSTM & GRU

As previously explained we employ RNNs because of its ability to model sequen-
tial relations through time, but it has been demonstrated that classical RNNs have
problems to model long term dependencies (Bengio et al., 1994). As longer the
dependency is, more difficult is to capture due to the so-called vanishing gradient
or the exploding gradient effect.

1. Vanishing gradient effect: When the network produces an output, it gets
the gradient of the loss with regard to the weights that should be back-
propagated along its steps. At each step we back-propagate, the gradient
gets smaller since we are multiplying numbers smaller than one. As the
gradient is applied to deep layers of the network, is so small that it has no
effect on the parameters that should be updated.

18 Neural Machine Translation

2. Exploding gradient effect: The opposite effect, if we continuously multiply
numbers larger than one we will get numbers too big that will affect too
much the parameters of the network. It produces numerical instability.

To deal with the exploding gradient problem, we clip the gradient value to a
limit. To solve the vanishing gradient problem, new activation functions, which
control the flow of information, were proposed. They ensure the derivative of the
recurrent function is close to one and avoid the gradient from being vanished.
They have become so popular that when talking about RNNs it usually implies
the use of one of these units. We present the two most popular options:

LSTM: Long Short-Term Memory

LSTMs were proposed to address those issues (Hochreiter and Schmidhuber,
1996), a later modification of LSTMs introduced the forget gate (Gers et al., 2000)
and became the de facto standard.
LSTMs share the recurrent structure of a regular RNN but each simple cell is sub-
stituted by a number of gates which have the ability to add or remove information
from the cell state. Cell state Ct acts like a conveyor belt between different neu-
rons and allows a easy flow of the information. Figure 3.4 illustrates the structure
of a LSTM cell. Different gates exist, each one with a specific purpose, and they
are all composed by a point-wise sigmoid function τ, a point-wise multiplication
� operation and the addition of a bias vector. Sigmoid is applied to get a value
between 0 and 1 representing how much information flows.

τ τ τ

tanh

tanh

ht

ht−1

xt

Ct−1 Ct

otft it

C̃t

ht

ft = τ(Wfxxt +Wfhht−1 + bf)

it = τ(Wix,xt +Wihht−1 + bi)

C̃t = tanh(Wcxxt +Wchht−1 + bc)

Ct = ft �Ct−1 + it � C̃t

ot = τ(Woxxt +Wohht−1 + bo)

ht = ot � tanh(Ct)

Figure 3.4: LSTM architecture representing its gates and computations.

1. Forget gate (ft): This gate decides how much information of the previous
cell state Ct−1 is going to be forgotten. To make this call the gate uses pre-
vious hidden state ht−1 an the input xt.

2. Input gate (it): It regulates which part of the input ht−1 passes, how much
of the old context affects the new.

3.3 Encoder-Decoder Architecture 19

3. Memory gate (Ct): It generates the new memory jointly with the input
gate. It decides what new information is going to be stored in the cell state
by applying the hyperbolic tangent function.

4. Output gate (ot): Finally we compute the output of the cell. It is based on
the cell state but it is a filtered version.

GRU: Gated Recurrent Units

LSTMs provide an effective solution to the vanishing gradient problem but they
are also rather complicated. Gated recurrent units were proposed (Cho et al.,
2014) as an effective simplification (Chung et al., 2014). It combines the forget
and the input gate into a single update gate zj, it also merges the cell and the
hidden state. Due to these simplifications it requires less time and computational
power to be trained. Figure 3.5 shows the structure of a GRU cell.

1. Reset gate (rt): It decides if the previous hidden state ht−1 is ignored.

2. Update gate (zt): It selects whether the hidden state is updated with a new
hidden state h̃.

τ τ tanh

ht

ht−1

xt

rt zt h̃t

zt = τ(Uzxt +Wzht−1 + bz)

rt = τ(Urxt +Wrht−1 + br)

h̃t = tanh(Uhxt +Wh(ht−1 � rt))

ht = (1− zt)� h̃t + zt � ht−1

1-

ht

Figure 3.5: GRU architecture representing its gates and computations.

Encoder-Decoder Architecture

The encoder-decoder is the most common framework in NMT. It is based on a
simple concept: first, we encode the source sentence into a real-valued vector and
second, that information is decoded into a target sentence. Different approxima-
tions exist on how to implement the encoder and the decoder, but the same idea
underlies, Figure 3.6 illustrates the concept. Two similar models were proposed
independently by (Sutskever et al., 2014) and (Cho et al., 2014), the differences be-
tween them are architectural. Later (Bahdanau et al., 2014) extended this model

20 Neural Machine Translation

by allowing the decoder to dynamically search in the source sentence while de-
coding a translation. This system is described in detail in next sections.

Me encanta el helado de chocolate

I love chocolate ice cream

[c1, c2, c3, ..., cN]

Encoder

Decoder

Figure 3.6: Encoder-Decoder architecture.

The encoder-decoder system is trained to maximize the conditional log-likelihood
over a set of bilingual phrases X = {(x1, y1), ..., (xN, yN)}. We are looking for the
optimal set of parameters that maximizes that probability over the training set:

θ̂ = arg max
Θ

1
N

N

∑
n=1

logpΘ(yn|xn) (3.7)

Encoder

The encoder is a RNN in charge of processing the source sentence f1, f2, ..., f J and
encode it in a context vector c. The encoder receives as input the sequence of word
embeddings of f J

1 , which are jointly trained with the network. After processing
them, when the sequence has been read, the context vector represents kind of
a synopsis of the original sentence. The context vector c was originally the last
hidden state of the encoder c = hJ (Sutskever et al., 2014), but a better approach
is presented in the next section.

Different options exist on how to implement the encoder, however (Bahdanau
et al., 2014) decided to use a bidirectional RNN (explained in Section 3.2.1) to
capture sequence relations in both directions. The hidden states computations of
the BRNN encoder are the same as the presented in the aforementioned section
with the exception of Equation (3.6), where ⊕ is instantiated as a concatenation
operator and no output function is applied.

hj = h f
j ⊕ hb

j (3.8)

For the encoder, in Equations (3.4) and (3.5) the activation function fh is re-
placed by a LSTM or GRU (explained in Section 3.2.2) to deal with long phrases.

Forward layer processes the sequence from left to right and the backward
layer the other way around. Finally the hidden states are computed by concate-

3.3 Encoder-Decoder Architecture 21

nating the output of the forward and backward layer. This way for each word f j
an annotation hj is computed.

Decoder

The decoder is in charge of generating the output sentence eI
i taking into account

the context vector c and the previously generated words. If we model it using a
RNN we can express the conditional probability as:

p(ei|ei−1
1 , c) = e>i g(E(ei−1), si, c) (3.9)

where si is the hidden state of the decoder RNN, c is the context vector from
the encoder, e>i is the one-hot representation of the word ei and E(ei−1) is the
word embedding of the target word ei−1. As in the encoder, we work with word
embeddings. The non-linear function g applied by the decoder RNN is

g(E(ei−1), si, c) = σ(U ∗ tanh(Wsi + VE(ei−1) + Zc)) (3.10)

where U ∈ R|V|xl, W ∈ Rlxn, V ∈ Rlxm and Z ∈ Rlxk are the weight matrices.
Being |V| the target language vocabulary size, l the size of the dimension on
which we want to project these vectors, n the size of the decoder hidden state si,
m the word-embedding size and k the size of the context vector c.

The hidden state of the decoder si is computed as follows:

si = φ(Xsi−1 + Cc + YE(ei−1)) (3.11)

where X ∈ Rnxn, C ∈ Rnxk and Y ∈ Rnxm are the weight matrices and φ is a non
linear activation function. As in the encoder φ is usually a LSTM or GRU to deal
with long-term dependencies.

The problem is the sentence is represented by a fixed size vector c. When working
with long sentences this might not be enough to capture all the information in the
sentence (Cho et al., 2014). To deal with this issue Bahdanau et al. (2014) proposed
a new approach: employ a variable length context vector ci for each target word
ei. In this way the length of the vector adapts to the sentence length enabling a
better modeling of its information. Equation (3.9) is rewritten as:

p(ei|ei−1
1 , ci) = g(E(ei−1), si, ci) (3.12)

The variable context vector ci is computed as a weighted sum of the sequence of
encoder’s output:

ci =
J

∑
j=1

αijhj (3.13)

where αij is the weight for each annotation hj. These weights are computed as:

αij =
exp(rij)

∑J
k=1 exp(rik)

(3.14)

22 Neural Machine Translation

where rij = a(si−1, hj) is an alignment model which scores how well the inputs
around position j and the output at position i match.

Soft Alignment

There are different choices on how to implement the alignment model, but since
it has to score JxI possible alignments, we are interested in a fast and lightweight
system. Bahdanau et al. (2014) implemented it by using a simple multilayer per-
ceptron (MLP) relying on the annotation of the source sentence hj and previous
RNN decoder state si−1:

a(si−1, hj) = v>a tanh(Uahj + Wasi−1) (3.15)

where Ua ∈ Rpx2k, Wa ∈ Rpxn and va ∈ Rp are the weight matrices of the MLP.
Being p the size of the MLP. Figure 3.7 shows the structure of the NMT system
with the attention model.

Decoding Phase

The ultimate goal of the NMT system is to generate translations. Given the source
sentence f J

i , the translation eI
1 will be the sentence with maximum posterior prob-

ability:

êI
1 = arg max

I,eI
1

p(eI
1| f

J
1 , eI−1

1) (3.16)

The search space is all the possible sentences in the target language E . The op-
timal solution is untractable so we must use sub-optimal solutions to generate
translations in an acceptable time. Typically, the strategy is beam search an ap-
proximation that considers the B best hypotheses at each time step. Possible par-
tial hypotheses are added at each phase but pruning keeps the number of best
hypotheses always equal to B. This process continues until the end-of-sequence
symbol is generated.

Ensembling

A simple way to improve NMT systems performance is to combine various NNs
outputs. Different networks have different strengths and weaknesses, thus its
correct combination may lead to a synergy of those strengths. Different tech-
niques exist on how to combine the NN, here we present one of the simplest ones.
During the search phase, at each time step, we sum the output vectors of the N
NMT systems, these vectors are the output of the softmax layer and contain the
probabilities for all the words in the output vocabulary. We select the word with

3.3 Encoder-Decoder Architecture 23

ft ft+1ft−1

ht+1ht−1 ht

Input Layer

hf
t

hf
t−1 hf

t+1

hb
t

hb
t+1hb

t−1

hb
t+1hb

thb
t−1

hf
t−1 hf

t
hf
t+1

∑
......

αi,1

αi,t−1 αi,t
αi,t+1

αi,T

BRNN Encoder

si si+1si−1

...
...

ci
ci−1 ci+1

c1 cI

ei ei+1ei−1

Alignment MLP

RNN Decoder

Figure 3.7: Encoder-decoder architecture with alignment model.

the highest probability ei. from the resulting vector. Therefore, the final sentence
probability can be computed as:

p(eI
1| f

J
1) =

1
N

N

∑
i=1

pi(eI
1| f

J
1) (3.17)

In order to combine different NN, two requisites must be fulfilled: they must
share the same vocabulary and they must apply the same factorization to the
output layer. There is some empirical component related to which models select
and how many of them. However ensembling constitutes a simple and cheap
way to obtain better translations.

CHAPTER 4

NMT: Sub-word translation

In Chapter 3 the most standard NMT techniques were reviewed. However when
using characters and other sub-word units many different approaches exist. Af-
ter a brief introduction of the topic we will explain the core ideas used in the
implementations discussed in Chapter 5.

Why Character Translation?

The problem with word-level translation is, that we do not know of a prefect
word segmentation algorithm for a given language, although extensive research
exist for some languages (Creutz and Lagus, 2007) (Finnish), (Zhao et al., 2010)
(Chinese). We end up using suboptimal approaches for preprocessing and tok-
enizing the datasets. This results in having “fly”, “flies”, “flew”, “flying” as dif-
ferent entries in the vocabulary and treated as if they were completely different
words which results in:

1. MT systems have difficulties when generalizing into new words since it
ignores the word structure.

2. Problems modeling morphological variants efficiently.

These issues can be addressed to a certain extent by using characters and/or other
sub-word units. Various works in the literature have studied this issue in differ-
ent ways: using a hierarchical NMT approach (Ling et al., 2015), a character level
decoder (Chung et al., 2016), a character level encoder (Costa-Jussà and Fonol-
losa, 2016) and even a NMT system which takes advance of Chinese character
fonts (Costa-Jussà et al., 2017). Different NMT approximations might be classi-
fied as:

1. Sub-word-level Encoder: It applies character or sub-word treatment to the
source language F , the encoder is able to interpret unseen words.

2. Sub-word-level Decoder: It applies character or sub-word treatment to the
target language E , the decoder is able to generate new words.

3. Complete Sub-word-level: Both, the source and target language are han-
dled at character or sub-word level, the system is able to interpret unseen

25

26 NMT: Sub-word translation

words and generate new words. The closest approximation to an open vo-
cabulary system.

Byte Pair Encoding

A popular technique for working with sub-word units is Byte Pair Encoding
(BPE). BPE deals with rare and unknown words by encoding them as a sequence
of sub-word units. This is based on the intuition that some word classes are trans-
latable via smaller units: compounds, loanwords or cognates.

BPE was used by Sennrich et al. (2016) with one goal: to propose a simple and
effective way to achieve open vocabulary. To do so they employed a data com-
pression algorithm on words: BPE (Gage, 1994). BPE is an iterative algorithm
which at each time step takes the two most frequent symbols and merges them,
this way the algorithm learns the substitution rules from the datasets separated in
characters. Pairs that cross word boundaries are not considered. BPE is a statisti-
cal approach, this results in frequent character n-grams (or words) merged into a
single symbol. On the other hand, rare n-grams result in short symbols or single
characters. Figure 4.1 shows an example of possible results. Here we present a
simple sequence of steps to apply BPE over a dataset:

1. Text is tokenized in characters.

2. Set desired number of merges. The only hyper-parameter of the algorithm.

3. Search for the most frequent pair of symbols.

4. Merge the pair as a new single symbol.

5. Go to step 3 until the number of merge operations is reached.

r .

l o

lo w

e r.

r.

lo

low

er.

Figure 4.1: BPE merge operations learned from dictionary {’low’, ’lowest’, ’newer’,
’wider’}. Example borrowed from Sennrich et al. (2016)

BPE can be learnt separately for each language or jointly. In this work we use
joint BPE because of two reasons: it has reported, in general, better results and if
they were equal words in the source and target datasets we ensure they would be
splitted in the same way (Sennrich et al., 2016). The problem is to determine how
many merge operations are necessary to obtain good results. Too few merges
result in a small vocabulary and long sentences (it slows the translation process)
that might not be powerful enough to capture language richness, on the other
hand too many merges might result in almost the original vocabulary providing
no improvement.

4.3 Convolutional Encoder 27

Convolutional Encoder

Another choice is to use a convolutional encoder. The main idea is to replace the
traditional word-embedding with a new embedding based on the information
we can gather from characters. These new embeddings are obtained by apply-
ing some convolutional filters, once the new word embeddings are computed the
translation works as a classical NMT system. Word-embeddings are no longer
a simple projection to the continuous space. The original idea of applying these
filters was proposed by Kim et al. (2016) to create a character-aware language
model, later it was used in an NMT system (Costa-Jussà and Fonollosa, 2016).
Before detailing this process, we briefly introduce two mandatory concepts: con-
volutional neural networks and highway layers.

Convolutional Neural Networks

Convolutions are a mathematical operator that involve two functions and pro-
duce a third one. It can be seen as sliding one function on top of another, multiply-
ing and adding. This concept has been applied to NN, resulting in the so-called
convolutional neural networks (CNN) (LeCun et al., 1998). CNNs have proved
useful in many applications such as image classification (Krizhevsky et al., 2017),
sentence classification (Kim, 2014) or sentence modeling (Kalchbrenner et al.,
2014) among others.

CNNs alternate the use of convolutional and pooling layers to obtain a higher
level representation of the input containing sensitive information. Convolutional
layers apply the same neuron to all the dimensions of the input. The neuron
acts like a convolutional operator, also called kernel, over the input as illustrates
Figure 4.2. The kernel slides over the input, new values are obtained multiplying
the kernel and the input.

Kernel

Input Output

Figure 4.2: Example of convolutional operator applied by a convolutional layer.

The pooling operator is used to reduce the size of the inputs. This has three ad-
vantages: it reduces the computational cost, it deals with multi-scale and allows
to capture higher level features. It acts like a window sliding over the input and

28 NMT: Sub-word translation

taking the maximum (or average) value. The size of the window decides the
output size. Figure 4.3 illustrates the effect of a 2x2 pooling window over a two
dimensional input.

21 8 8 12

12 19 9 7

8 10 4 3

18 12 9 10

15 9

12 7

21 12

18 10

Input

Average Pooling Max Pooling

Figure 4.3: Example of pooling operator.

Convolutions can be generalized to other dimensions. In the case of the convolu-
tional encoder explained in Section 4.3 we work with one-dimensional convolu-
tions. The same principles apply.

Highway Networks

Highway networks were proposed (Srivastava et al., 2015) with the aim of reduc-
ing the difficulty of training very deep neural networks. They allow the flow of
unimpeded information across several layers, by doing so they avoid the infor-
mation vanishing across the network.

Ordinary layers in a NN apply a linear combination to the input x (parametrized
by the weight matrix WF), after a non-linear function F is applied.

y = F(x, WF) = φ(WFx + bF) (4.1)

A highway layer adds two additional gates, the transform gate T and the carry gate
C . They express how much information is transformed and how much is just
carried respectively. Usually, for the sake of simplicity C = 1− T.

y = F(x, WH) ∗ T(x, WT) + x ∗ (1− T(x, WT)) (4.2)

4.3 Convolutional Encoder 29

This way the layer regulates T values, smoothly varying its behavior between an
ordinary layer and a dummy layer that simply passes the input.

y =

x, if T(x, WT)= 0

F(x, WH), if T(x, WT)= 1
(4.3)

Constructing convolutional encoders for NMT

After introducing the concepts of CNN and Highway layers, we present the ap-
proach followed in (Costa-Jussà and Fonollosa, 2016) to construct the word em-
beddings. Figure 4.4 illustrates the following process.

1. Text is tokenized in characters and embeddings are now computed over
characters. Let d be the embedding size of the characters.

2. Sequences of character embeddings are grouped for each word. We obtain,
for each word, a sequence of character embeddings of size:

dx|w|

Being |w| the length of the word.

3. We apply h one-dimensional convolutions of length l to that sequence. Re-
sulting in k convolutional filters applied.

k = ∑
l,h

lh

For each different length l, we get a matrix of filters of size

hx(|w| − li + 1)

The length l of the filters and the number h of them are hyper-parameters
of the model.

4. We apply max pooling over time for each one of the filter matrices. This
results in a vector of size h for each length l.

5. The concatenation of these vectors constitutes the word-embedding. The
size of the word-embedding is determined by k.

6. Usually two Highway Layers are applied to the previous vector since it has
proved to improve system overall performance.

In Kim et al. (2016) fifteen is proposed as the embedding size for the characters.
For the convolutional filters they use seven filters of variable length, from one to
seven. Number of filters varies depending on the dataset size.

30 NMT: Sub-word translation

moment the absurdity is recognized

a b s u r d i t y

max{}

Highway Layer

Highway Layer

Word embedding

Concatenation

of character

embeddings

Convolution layer

with multiple filters

of different widths

Max-over time
pooling layer

Highway layers

Figure 4.4: Process to obtain the word-embedding from characters through convolutions.
Note that in the above example we have twelve filters, three filters of width two (blue),
four filters of width three (yellow), and five filters of width four (red). Figure adapted

from Kim et al. (2016)

CHAPTER 5

Implementation, experiments and
results

In this chapter we discuss and compare the MT implementations based on the
concepts previously explained.

Implementation details

For the implementation of phrase-based MT systems we used the popular toolkit
Moses1 (Koehn et al., 2007). For the NMT systems we used Keras2, a high level
API written in Python, on top of Theano3 (Bastien et al., 2012), a Python library
for efficiently training and evaluating neural networks. A toolkit was used to
work with Keras, (Peris, 2017). The neural models were trained on a GeForce
GTX TITAN X.

NMT Systems

Each model was based on the NMT encoder-decoder architecture with atten-
tion mechanism proposed by Bahdanau et al. (2014). For the encoder-decoder
we chose GRU as activation function for the RNNs of the encoder and the de-
coder. The size of the hidden state of each GRU and the word embedding size
of the source and target language is 256 for Xerox datasets and 350 for the Eu
corpus. These parameters are extracted from (Peris et al., 2017) different hyper-
parameters were tested. In the case of working with single characters the word
embedding was halved. For the special case of the convolutional encoder the
word-embedding was determined by the number of convolutional filters applied,
this is 700 for the small set of parameters and 1100 for the large one.

The models have been trained using the Adam algorithm (Kingma and Ba, 2014)
with learning rate of 10−3. The algorithm and the learning rate selection were
the result after some previous experimentation process, where other algorithms

1http://www.statmt.org/moses/
2https://keras.io/
3http://www.deeplearning.net/software/theano/

31

http://www.statmt.org/moses/
https://keras.io/
http://www.deeplearning.net/software/theano/

32 Implementation, experiments and results

and learning rates were tested. During the training phase Gaussian noise (Zur
et al., 2009) and batch normalization (Ioffe and Szegedy, 2015) was applied for
preventing the NN from over-fitting. We used 32 as batch size and 6 for the
beam size of all the models. The training was early stopped if after 20 epochs
for Xerox or 10 for Eu the BLEU did not improved. BLEU was computed over
the development set at the end of each epoch. When the models encountered an
unseen token we simply substituted it for a special unknown symbol.

Regarding the sentence loading, the convolutional encoder had some peculiari-
ties. In standard NMT systems sentences were loaded in a batch as vectors of
indexes. Each index represented a word that was later replaced by its corre-
sponding word-embeddding. Now, since the embedding is computed at char-
acter level, sentences are represented by a bi-dimensional matrix of indexes. One
row for each word, one column for each character. We apply padding to align the
indexes on the matrix.

One drawback of the convolutional encoder is the addition of a set of extra hyper-
parameters. The embedding size for the characters, the number and size of con-
volutional filters and the padding of the sentence. For the embedding size, we
chose 15, for the size of the filters we used 7 filters of size from 1 to 7. These
values are extracted from the literature. Regarding the padding of the sentence,
after doing some tests, we decided to center the words and the characters since it
provided the best results. We allowed a maximum of 30 words per sentence and
15 characters per word. Longer words and sentences are truncated. Finally, for
the number of the convolutional filters we tried two sets of hyper-parameters, the
small one: {25, 50, 75, 100, 125, 150, 175} and the large one: {50, 100, 150, 200, 200,
200, 200}. Both extracted from the original proposal (Kim et al., 2016)

Datasets

To test the experimentation process the MT systems were evaluated against two
tasks: EU and Xerox. The corpora were tokenized and randomly selected parti-
tions for training, developing and testing phase were extracted. We tried as many
language pairs as possible and specially attention was dedicated to German since
it is a fusional language. This is a language where morphemes of different types
are joined to create new words. It seems logical to think that sub-word units will
be more advantageous in these kind of languages. For this reason, when working
with a language pair containing German both translations directions were tested.

Now we present the datasets and their statistics. From this information we can
infer how difficult a task is: from the length of the sentence, the data available
to train or observing how many words from the source language correspond to
words in the target language. The information is presented at the three levels of
tokenization we use in this work: word level, character level and BPE level. The
only hyper-parameter of the BPE algorithm is the number of merge operations.
To be exhaustive in the experimentation we tried three different sets of parame-
ters. Since Xerox datasets are smaller than Eu datasets each one has a different
number of merge operations. For Xerox we tried 2000, 4000 and 8000 merges,
analogously for Eu we tried 10000, 13000 and 20000 merges. BPE does not to-

5.3 Datasets 33

kenize symmetrically the datasets, the target development and test set are not
tokenized because we want the references to be at word level. For this reason,
in language pairs where just one translation direction is tested (Xerox En-Es and
Xerox En-Fr) some data in their BPE table appears at word levels.

Xerox

Xerox dataset (Barrachina et al., 2009) consists in the translation of sentences ex-
tracted from the user manual of Xerox printers. Next we present the different
language pairs and their statistics.

Train Development Test

Word Char Word Char Word Char

|S| 55.6k 1k 1.1k

En
gl

is
h |T| 665k 3.5M 14.4k 77.1k 8.3k 47.7k

|V| 14k 99 1.6k 78 1.8k 75
|OOV| - - 61 0 206 0
|CPT| 4.3 1 4.3 1 4.7 1

Sp
an

is
h |T| 750k 4.2M 16k 91.6k 10.1k 60.5k

|V| 16.7k 111 1.7k 89 1.9k 87
|OOV| - - 97 0 225 0
|CPT| 4.6 1 4.6 1 4.8 1

Table 5.1: Xerox corpus English-Spanish statistics at word and character level. Number
of sentences |S|, tokens |T|, vocabulary size |V|, out-of-vocabulary words |OOV|
and characters per token |CPT| for each partition. k stands for thousands and M for

millions.

Table 5.1 shows the statistical analysis of the Xerox-EnEs dataset, both at word
and character level. We can appreciate how tokenizing into characters affects the
sentences: enlarges the number of tokens, reduces the vocabulary and solves the
problem of out-of vocabulary words. In this task, Spanish has longer sentences,
longer words and a richer vocabulary. However it also presents more OOV. This
may indicate that the English-Spanish translation direction is harder than the op-
posite one.

Table 5.2 presents the analysis of the Xerox-EnEs dataset when tokenized using
BPE. These results are showed for three different levels of merge operations. Since
we are just translating from English to Spanish, the development and test sets in-
formation of Spanish is at word-level. However the OOV are computed at BPE
level always. We can appreciate how more merges result in a bigger vocabu-
lary, shorter sentences, longer symbols and less tokens per sentence. It has also
the potential effect of augmenting OOV, but as can be seen BPE reduces OOV to
neglectable levels.

34 Implementation, experiments and results

Train Development Test

|S| 55.6k 1k 1.1k

En
gl

is
h

2k

|T| 1M 20.5k 14.8k
|V| 1.5k 1.1k 1.1k

|OOV| - 0 2
|CPT| 3.5 3.6 3.5

4k

|T| 855.3k 17.4k 12.3k
|V| 2.8k 1.6k 1.5k

|OOV| - 0 2
|CPT| 3.8 3.9 3.8

8k

|T| 747.7k 15.6k 10.3k
|V| 5k 1.8k 1.8k

|OOV| - 0 2
|CPT| 4.1 4.6 4.1

Sp
an

is
h

2k

|T| 1.1M 16k 10k
|V| 1.8k 1.7k 1.9k

|OOV| - 0 0
|CPT| 3.7 4.6 4.8

4k

|T| 995.6k 16k 10k
|V| 3.2k 1.7k 1.9k

|OOV| - 1 0
|CPT| 3.7 4.6 4.8

8k

|T| 842.4k 16k 10k
|V| 5.7k 1.7k 1.9k

|OOV| - 3 7
|CPT| 3.7 4.6 4.8

Table 5.2: Xerox corpus English-Spanish statistics at BPE level. Number of sentences
|S|, tokens |T|, vocabulary size |V|, out-of-vocabulary words |OOV|, and characters

per token |CPT| for each partition. k stands for thousands and M for millions.

Train Development Test

Word Char Word Char Word Char

|S| 51.7k 994 984

En
gl

is
h |T| 615.3k 3.3M 10.9k 58.3k 11.1k 57.7k

|V| 13.9k 98 1.8k 78 1.7k 77
|OOV| - - 141 0 206 0
|CPT| 4.3 1 4.3 1 4.1 1

Fr
en

ch

|T| 676.4k 4.1M 11.7k 71.7k 11.8k 70.2k
|V| 15.5k 114 1.8k 88 1.7k 90
|OOV| - - 190 0 194 0
|CPT| 4.9 1 4.9 1 4.7 1

Table 5.3: Xerox corpus English-French statistics at word and character level. Number of
sentences |S|, tokens |T|, vocabulary size |V|, out-of-vocabulary words |OOV| and
characters per token |CPT| for each partition. k stands for thousands and M for millions.

5.3 Datasets 35

In Table 5.3 we can observe the dataset analysis of the Xerox-EnFr dataset. Again,
character tokenization solves the problem of OOV. As it happened with Spanish,
French seems a richer language, in this dataset, than English. A larger vocabulary,
longer sentences and words support this hypothesis. However OOV are pretty
similar in the test set.

Table 5.4 shows the effect of BPE tokenization in the Xe-EnFr dataset. BPE seems
to reduce OOV to just a few. The same effect we saw on the Xe-EnEs pair applies,
more merges make sentences shorter and increase the vocabulary size. Notice
how with just 2000 merges we reduce the number of tokens by four, in the case of
French, with respect to the character tokenization. However 8000 merges are not
enough to reach the word level representation, as expected the number of merges
do not have a linear relation with the number of tokens.

Train Development Test

|S| 51.7k 994 984

En
gl

is
h

2k

|T| 936.1k 17.1k 18.2k
|V| 1.6k 1.1k 1.1k

|OOV| - 0 0
|CPT| 3.5 3.4 3.3

4k

|T| 785.7k 14.5k 15k
|V| 2.9k 1.6k 1.5k

|OOV| - 1 4
|CPT| 3.8 3.7 3.6

8k

|T| 689k 12.4k 13k
|V| 5.3k 1.9k 1.8k

|OOV| - 2 4
|CPT| 4.1 4 3.8

Fr
en

ch

2k

|T| 1M 11.7k 11.8k
|V| 1.9k 1.8k 1.7k

|OOV| - 0 0
|CPT| 3.9 4.9 4.7

4k

|T| 856.5k 11.7k 11.8k
|V| 3.3k 1.8k 1.7k

|OOV| - 1 5
|CPT| 4.3 4.9 4.7

8k

|T| 755.3k 11.7k 11.8k
|V| 5.9k 1.8k 1.7k

|OOV| - 9 10
|CPT| 4.9 4.9 4.7

Table 5.4: Xerox corpus English-French statistics at BPE level. Number of sentences |S|,
tokens |T|, vocabulary size |V|, out-of-vocabulary words |OOV|, and characters per

token |CPT| for each partition. k stands for thousands and M for millions.

36 Implementation, experiments and results

Train Development Test

Word Char Word Char Word Char

|S| 50.2k 964 995

En
gl

is
h |T| 592.4k 3.1M 10.8k 56.7k 12.5k 64.4k

|V| 13.7k 97 1.5k 78 1.8k 77
|OOV| - - 28 0 139 0
|CPT| 4.3 1 4.2 1 4.1 1

G
er

m
an

|T| 531.7k 3.6M 10.4k 73.7k 11.7k 76.1k
|V| 25.1k 108 1.7k 87 2.1k 89
|OOV| - - 146 0 483 0
|CPT| 5.8 1 5.9 1 5.4 1

Table 5.5: Xerox corpus English-Deutsch statistics at word and character level. Number
of sentences |S|, tokens |T|, vocabulary size |V|, out-of-vocabulary words |OOV|
and characters per token |CPT| for each partition. k stands for thousands and M for

millions.

Train Development Test

|S| 50.2k 964 995

En
gl

is
h

2k

|T| 929.5k 16.3k 19.6k
|V| 1.4k 1k 1k

|OOV| - 0 3
|CPT| 3.4 3.4 3.3

4k

|T| 779.4k 14k 16.5k
|V| 2.6k 1.4k 1.5k

|OOV| - 1 3
|CPT| 3.7 3.6 3.6

8k

|T| 680.2k 12.2k 14.5k
|V| 4.6k 1.6k 1.9k

|OOV| - 2 3
|CPT| 4 3.9 3.8

G
er

m
an

2k

|T| 996.6k 17.9k 21.5k
|V| 1.9k 1.1k 1.3k

|OOV| - 0 5
|CPT| 4 4.2 3.8

4k

|T| 823.1k 15.2k 18.2k
|V| 3.4k 1.6k 1.8k

|OOV| - 0 20
|CPT| 4.4 4.6 4.1

8k

|T| 687.5k 12.8k 15.4k
|V| 6.1k 2k 2.3k

|OOV| - 1 39
|CPT| 4.9 5.1 4.5

Table 5.6: Xerox corpus English-Deutsch & English-Deutsch statistics at BPE level. Num-
ber of sentences |S|, tokens |T|, vocabulary size |V|, out-of-vocabulary words |OOV|

and characters per token |CPT| for each partition. k stands for thousands.

5.3 Datasets 37

Table 5.5 represents the different measures we obtained from the Xerox-EnDe and
Xerox-DeEn language pairs. Now, both translation directions are tested since the
special interest we have on the German language. Despite of being relatively
similar on the number of words, German has almost twice the vocabulary than
English. It has also longer words and four times the OOV English has. German
seems a difficult language to translate. It seems the German to English translation
will be easier than the other way around. However, the character tokenization
reduces the OVV to zero.

In Table 5.6 we find he results of applying BPE this corpus. As mentioned before,
BPE seems to be able to deal with OOV, especially on German. Since now both
directions are tested all the results in the table are at BPE level.

EU

The EU translation task (Barrachina et al., 2009) consists in a selection from the
Bulletin of the European Union. As we did with Xerox we present next the statistics
for the language pairs selected.

Train Development Test

Word Char Word Char Word Char

|S| 222.6k 400 800

En
gl

is
h |T| 5.7M 34.4M 10.1k 60.8k 20.1k 121k

|V| 51.1k 143 2.5k 81 3.8k 89
|OOV| - - 33 0 58 0
|CPT| 4.9 1 5 1 5 1

G
er

m
an

|T| 5.3M 38.6M 9.7k 70k 18.3k 137.1k
|V| 118.6k 145 2.9k 81 4.7k 88
|OOV| - - 99 0 182 0
|CPT| 6 1 6 1 6.1 1

Table 5.7: Eu corpus English-Deutsch statistics at word and character level. Number of
sentences |S|, tokens |T|, vocabulary size |V|, out-of-vocabulary words |OOV|, and
characters per token |CPT| for each partition. k stands for thousands and M for millions.

Table 5.7 shows the statistical analysis to the Eu dataset. Again we translate in
both directions, from English to German and from German to English. We can
appreciate how much bigger the Eu corpus is compared with Xerox. The training
set is four times bigger, the vocabulary size is doubled and sentences are twice
longer. However the linguistic properties we saw in Xerox persist, German is
more complicated. It has twice the vocabulary size and more OOV. It is signif-
icant that with he same characters as English, its vocabulary is twice the size.
Compared to Xerox-EnDE and Xerox-DeEn we have more data to train, longer
sentences, a bigger vocabulary, a smaller test set and less OOV.

38 Implementation, experiments and results

Train Development Test

|S| 222.6k 400 800

En
gl

is
h

10
k

|T| 6.8M 12.1k 23.9k
|V| 6.8k 2.7k 3.6k

|OOV| - 0 1
|CPT| 4.5 4.5 4.5

13
k

|T| 6.5M 11.6k 22.9k
|V| 8.4k 2.8k 3.9k

|OOV| - 0 1
|CPT| 4.6 4.6 4.6

20
k

|T| 6.2M 11k 21.8k
|V| 11.8k 2.8k 4.2k

|OOV| - 0 1
|CPT| 4.7 4.7 4.7

G
er

m
an

10
k

|T| 7.3M 13.1k 25.7k
|V| 8.4k 3.4k 4.5k

|OOV| - 0 0
|CPT| 5 5 5

13
k

|T| 6.9M 12.4k 24.2k
|V| 10.6k 3.5k 5.1k

|OOV| - 1 0
|CPT| 5.1 5.2 5.2

20
k

|T| 6.4M 11.5k 22.4k
|V| 15.9k 3.6k 5.6k

|OOV| - 1 0
|CPT| 5.4 5.4 5.4

Table 5.8: EU corpus English-Deutsch & English-Deutsch statistics at BPE level. Number
of sentences |S|, tokens |T|, vocabulary size |V|, out-of-vocabulary words |OOV|
and characters per token |CPT| for each partition. k stands for thousands and M for

millions.

Table 5.8 shows the EU corpus English-Deutsch & English-Deutsch statistics at
BPE level. Despite of being a larger corpus the effect of BPE is the same. More
merges result in shorter sentences and a larger vocabulary. We can appreciate
how BPE reduces the OOV to zero. All the results are at BPE level.

After seeing these corpus statistics we can extract some conclusions. Out-of-
vocabulary words are a problem, they go from 1% to 23%, with respect vocab-
ulary size, in test sets. And this is in closed sets, if we are talking about real trans-
lation domains these numbers rocket up. Second, the tokenization at character
level solves the problem of OOV. It is possible, but unlikely, to find an unknown
character at test phase. BPE tokenization situates itself as a compromise between
character and word tokenization. BPE usually reduces the problem of unknown
words to insignificant levels. Third, Eu dataset is not only larger, but it has longer
sentences and words than the Xerox dataset. Finally, German is a more compli-
cated language, compared to English, it presents a richer vocabulary and more
OOV.

5.4 Experiments 39

These results support our approach. They prove the character-based NMT as a
valid approximation for dealing with out-of-vocabulary words. These results also
demonstrate sub-word approaches bring us closer to open-vocabulary systems.

Experiments

In this section we will describe each one of the experimentation carried out and
the obtained results. The results are expressed as a percentage in BLEU and TER
(Section 2.5). We evaluated twice the neural models, one sampling with the best
epoch and a second one using model ensembling of the best epochs as explained
in section 3.3.4.

Classical Phrase-Based MT with Moses

The phrase-based system was built using Moses with standard parameters: 5-
gram language model with Kneser-Ney discount. The alignments are computed
using GIZA++ (Och and Ney, 2003) with the IBM model 4 and bidirectional re-
ordering. Weight estimation of the log-linear model is carried out by MERT over
a development set.

We use this model as a reference, a baseline we can compare with other imple-
mentations to check if we are working in the right direction. The results obtained
can be found in Tables 5.9 and 5.10.

BLEU TER

Xe-EnEs 60.1 26.1
Xe-EnFr 36.4 50.8
Xe-EnDe 23.4 64.0
Xe-DeEn 32.6 50.1

Table 5.9: Xerox test set results using
Moses.

BLEU TER

Eu-EnDe 35.2 26.1
Eu-DeEn 40.7 47.3

Table 5.10: EU test set results using
Moses.

Table 5.11: Results for the Xerox and Eu datasets using Moses

Xerox-EnEs obtains the best results, probably by the similarity between both lan-
guages. Xerox-EnFr comes second in the Xerox task probably for the same reason.
Notice how in both tasks, the translation direction from German to English ob-
tain better results than English to German. It is easier translate from German that
generate German words due to its fusional nature.

Word Level NMT

This model is the one explained in section 3.3: a bidirectional encoder connected
to the decoder through an attention model. It is a classical NMT architecture we
used to translate at word level. Again the goal is to have a baseline to compare

40 Implementation, experiments and results

sub-word translation approaches. The results can be found in Tables 5.12 and
5.13.

Best Model Ensembling

BLEU TER BLEU TER

Xe-EnEs 51.6 36.7 59.4 29.1
Xe-EnFr 27.5 62.7 31.8 57.2
Xe-EnDe 18.0 74.3 20.9 68.0
Xe-DeEn 30.6 56.4 33.26 51.6

Table 5.12: Xerox test set results using
standard NMT.

Best Model Ensembling

BLEU TER BLEU TER

Eu-EnDe 28.6 60.0 31.7 56.2
Eu-DeEn 33.1 56.5 37.1 51.5

Table 5.13: Eu test set results using stan-
dard NMT.

Table 5.14: Results for the Xerox and Eu datasets using standard NMT

The results, using ensembling, are comparable to the ones obtained using Moses
(Tables 5.9 and 5.10). Maybe slightly worse, but BLEU usually benefits Moses
since both, the evaluation metric and the translation system are based on the con-
cept of n-grams. The same patterns persist: Xerox-EnEs obtains the best results
and Xerox-EnFr comes second. Again translate into German is trickier than trans-
late from German. The change in the approach to carry out the translations does
not to seem to affect these tendencies. Thus, we can infer that they are data and
linguistically oriented.

Character Level NMT

The same model as before, but now it operates at character level. The sentences
are tokenized, the systems translates characters and a posterior detokenization
is applied to go back to words and compare with the references. It is a simple
approach we implemented to get a baseline for characters translation using NMT.
It is a true open vocabulary system, assuming no unknown characters, since it is
able to deal with unknown words by splitting them in known characters. It is
also capable of creating new words by the concatenation of characters. Results
are showed in Tables 5.15 and 5.16.

Best Model Ensembling

BLEU TER BLEU TER

Xe-EnEs 41.6 48.5 52.2 32.4
Xe-EnFr 23.3 72.9 30.5 60.5
Xe-EnDe 12.9 73.4 13.8 70.4
Xe-DeEn 17.8 62.9 20.3 59.9

Table 5.15: Xerox test set results using
character NMT.

Best Model Ensembling

BLEU TER BLEU TER

Eu-EnDe 10.5 76.1 11.2 75.2
Eu-DeEn 14.4 70.7 15.4 69.2

Table 5.16: Eu test set results using char-
acter NMT.

Table 5.17: Results for the Xerox and Eu datasets using character NMT

5.4 Experiments 41

As it can be appreciated, the results are worse compared with the previous ones.
This might be because despite of being open vocabulary the plain unigram rep-
resentation does not provide enough information, enough context to model, to
capture the relationships between words. By tokenizing the sentences into char-
acters, we lengthen them by a factor of four or five. Longer sentences imply
longer term dependencies and extra computational work. In general long sen-
tences are more difficult to translate, especially if the context is reduced to char-
acters. We can observe how in the Eu dataset, where the sentences are much
longer, the results get much worse. Despite of the limitations of this approach, it
achieved acceptable results in some language pairs.

BPE NMT

Again, the same model is employed. But now the sentences are tokenized using
BPE algorithm explained in Section 4.2. The obtained results can be found in
Tables 5.18 and 5.19.

2k merges 4k merges 8k merges

BM E BM E BM E

B T B T B T B T B T B T

Xe-EnEs 54.2 32.2 61.7 26.1 53.8 33.1 61.5 26.2 34.8 52.9 45.7 41.2
Xe-EnFr 26.1 61.7 31.9 56.4 27.7 61.1 23.2 56.1 24.8 62.8 33.2 53.8

Xe-EnDe 17.8 69.2 21.7 66.3 19.5 70.7 22.3 66.1 18.6 68.7 23.5 64.5
Xe-DeEn 24.1 60.9 29.7 52.7 26.5 60.3 32.7 52.3 26.7 59.1 32.8 51.8

Table 5.18: Xerox test set results using BPE encoding. BM stands for best model, E for
ensembling, B for BLEU and T for TER.

10k merges 13k merges 20k merges

BM E BM E BM E

B T B T B T B T B T B T

Eu-EnDe 31.7 56.4 34.9 52.7 32.6 55.2 35.3 52.6 32.8 54.8 36.0 51.9
Eu-DeEn 37.2 49.5 40.1 46.8 37.5 49.5 41.4 45.9 37.3 49.7 41.6 45.5

Table 5.19: Eu test set results using BPE encoding. BM stands for best model, E for
ensembling, B for BLEU and T for TER.

Different number of merge operations affect the final result, we can appreciate
how augmenting the merge operations seems to improve the system’s outcome.
From 2k/10k to 4k/13k merges almost every result gets better and the same oc-
curs with the next increment. The overall results are good. Indeed, they are bet-
ter than the results obtained with Moses (Tables 5.9 and 5.10), word level NMT
(Tables 5.12 and 5.13), and character level NMT (Tables 5.15 and 5.16). BPE of-
fers a trade-off between character and word representations. More merges result
in more and longer symbols in the vocabulary, but shorter sentences that have
shorter dependencies.

We can appreciate that the biggest hyper-parameters (8000 and 20000 merge oper-
ations respectively) offer, in general, better results. The exception is Xerox-EnEs,

42 Implementation, experiments and results

where the 8000 merges perform worse than others. Xerox-EnEs was the language
pair that obtained the best result translating at character level. This might in-
dicate that this particular task benefits from pretty small sub-word units. BPE
seems to be a flexible option that offers tokens small enough to be used to con-
struct words but large enough to offer some context and more information that
single characters.

Convolutional Encoder NMT

We tested the model explained in Section 4.3 with the parameters explained in
Section 5.2. The results can be seen in Tables 5.20 and 5.21.

Small Large

BM E BM E

B T B T B T B T

Xe-EnEs 48.2 37.1 55.9 30.8 50.3 36.1 58.0 29.4
Xe-EnFr 23.0 66.4 26.4 63.1 25.0 66.2 27.1 61.8

Xe-EnDe 18.0 72.4 19.3 69.2 19.5 70.7 21.2 67.2
Xe-DeEn 22.8 64.7 26.2 60.2 23.8 62.3 26.5 59.1

Table 5.20: Xerox test set results using the convolutional encoder. BM stands for best
model, E for ensembling, B for BLEU and T for TER.

Small Large

BM E BM E

B T B T B T B T

Eu-EnDe 27.1 61.1 29.8 58.6 26.5 61.3 30.0 57.8
Eu-DeEn 29.2 58.0 32.7 54.4 31.0 56.0 34.0 53.0

Table 5.21: Eu test set results using the convolutional encoder. BM stands for best model,
E for ensembling, B for BLEU and T for TER.

The results are better than the ones obtained simple character tokenization (Tables
5.15 and 5.16) but in general, a bit worse than the rest. Sometimes the difference
seems meaning and others it is just a few percentage points of BLEU. Having
into account the extra parameters this approach introduces a more in depth ex-
perimentation should be done to find the best parameters. This way we will
conclude if it is an intrinsic problem of the approach or a bad decision on the
parameter selection.

Convolutional Encoder + BPE NMT

We use the convolutional encoder model again, but this time a previous tokeniza-
tion, just in the source language, using BPE is applied. This results in the word
embedding being computed over the BPE encoding instead of single characters.

5.4 Experiments 43

We tried this approach after seeing the improvement BPE offered over the simple
character translation. We used the large set of parameters of the convolutional
encoder since it provided better results in the previous section. For the merges
of the BPE algorithm we used the one who performed better in Section 5.4.4 for
each language pair. The results are showed in Tables 5.22 and 5.23.

Best Model Ensembling

BLEU TER BLEU TER

Xe-EnEs 48.6 37.5 56.6 30.8
Xe-EnFr 22.1 68.1 27.1 60.9
Xe-EnDe 16.6 72.5 19.6 66.8
Xe-DeEn 20.2 65.1 24.9 58.9

Table 5.22: Xerox test set results convo-
lutional encoder and BPE.

Best Model Ensembling

BLEU TER BLEU TER

Eu-EnDe 27.3 60.3 29.6 57.9
Eu-DeEn 29.1 57.2 32.3 54.4

Table 5.23: Eu test set results using con-
volutional encoder and BPE.

Table 5.24: Results for the Xerox and Eu datasets using a convolutional encoder and BPE

As can be seen the combination of both approaches does not improve the original
proposition of the convolutional encoder (results in Tables 5.20 and 5.21). Again
a more exhaustive experimentation should be carried out to test if the results
vary significantly when trying other parameters. However, since the sub-word
units are used to compute a word embedding at word level it seems possible that
BPE does not results in such a great improvement as it was for single character
translation.

CHAPTER 6

Conclusions & Future Work

Conclusions

In this Master thesis, four NMT systems based on sub-word units were proposed.
The objective of these models was to deal with out-of-vocabulary words and im-
prove neural networks resilience against unseen events. They rely on the concept
of encoding words via smaller units. This allowed the models to profit from the
information we can gather from characters or sub-word units. Therefore, the pro-
posed models can deal with unseen words through smaller units. The models
(except for the convolutional encoder) are also able to generate new words at
translation phase.

For doing this, four different approaches were implemented: a NMT using single
characters, a NMT using BPE tokenization, an NMT using a convolutional en-
coder for replacing simple look-up word embeddings and finally a NMT which
combines the convolutional encoder and BPE. These models have been tested in
as many bilingual datasets as possible to demonstrate that they are valid indepen-
dently of the pair of languages. Given these new approaches have a high number
of hyper-parameters to adjust, we tried to make the experimentation process as
thorough as possible. The implemented models have been compared against a
classical PB system and a standard NMT system, both at word level. We have
measured the quality of the translations as well as how the different approaches
affect the sentence length, the word length and the out-of-vocabulary words.
NMT systems have been evaluated independently and as an ensembling. This
combination aims to enhance the strengths while minimizing the weaknesses of
the different models.

According to the results BPE outnumbered any other model. PB and standard
NMT also performed pretty well, the convolutional encoder and its combination
with BPE come close but they performed generally a bit worse. In last place, as
expected, we find the NMT translating single characters. Sub-word based NMT
constitutes a valid translation approach on its own. Indeed, it can surpass PB
systems or classical NMT at word level. It has also been proved its effective-
ness against fusional or agglutinative languages, where morpheme combination
is common, and against out-of-vocabulary words.

45

46 Conclusions & Future Work

Future Work

We have presented how different sub-word approaches can be applied to NMT
in order to deal with unseen events. However there is still open lines of work that
could extend this Master thesis.

New Datasets

Due to the high computational cost of training neural networks all the models
were estimated using a GPU. Despite of this, models took between 1 to 3 days
to be trained. For this reason, the selected corpus, Xerox and Eu, were relatively
small. It would be interesting to test the model against bigger and more standard
corpus like for example the Europarl (Koehn, 2005).

Improvements & other sub-word approaches

We have presented a few sub-word systems. However, there are many other ap-
proaches that would be worth to compare: full char2char translation (Ling et al.,
2015), at encoder and decoder level or convolutional encoder-decoder (Gehring
et al., 2017) at character level.

Other techniques can be applied to the presented convolutional encoder: the use
dilated convolutions (Yu and Koltun, 2015), variable padding convolutions or
replacing the standard GRUs with convolutional LSTMs (Xingjian et al., 2015) .

Combination of character systems with other paradigms

Character-based NMT could be used as a back-off model when a word-level
translation system encounters an unknown word (Luong and Manning, 2016). In
such cases, the sub-word system can propose a better translation that the heuris-
tics used for out-of-vocabulary words.
Other possible choice would be combining character-based translation into the
interactive machine translation (IMT) (Peris et al., 2017) paradigm. IMT is a
paradigm that interactuates with the end user to produce translations. The sys-
tem proposes a possible translation and the user corrects it. The system proposes
a new translation according to user correction and the process repeats until the
user is satisfied with the translation.

CHAPTER 7

Acknowledgements

I would like to thank Francisco Casacuberta for directing this Master thesis and
giving me this opportunity. Also I have to thank Álvaro Peris for co-directing
this work, for his help and for his marvelous drawings which helped me a lot
understanding some concepts.
Thanks to my family and friends for their support.
Thanks!.

47

Bibliography

Bahdanau, D., Cho, K., and Bengio, Y. (2014). Neural machine translation by
jointly learning to align and translate. Computing Research Repository-arXiv,
abs/1409.0473.

Banerjee, S. and Lavie, A. (2005). Meteor: An automatic metric for mt evalua-
tion with improved correlation with human judgments. In Proceedings of the
ACL workshop on intrinsic and extrinsic evaluation measures for machine translation
and/or summarization, volume 29, pages 65–72.

Barrachina, S., Bender, O., Casacuberta, F., Civera, J., Cubel, E., Khadivi, S., La-
garda, A., Ney, H., Tomás, J., Vidal, E., et al. (2009). Statistical approaches to
computer-assisted translation. Computational Linguistics, 35(1):3–28.

Bastien, F., Lamblin, P., Pascanu, R., Bergstra, J., Goodfellow, I. J., Bergeron, A.,
Bouchard, N., Warde-Farley, D., and Bengio, Y. (2012). Theano: new features
and speed improvements. Computing Research Repository-arXiv, abs/1211.5590.

Bengio, Y., Ducharme, R., Vincent, P., and Janvin, C. (2003). A neural probabilistic
language model. Journal of Machine Learning Research, 3:1137–1155.

Bengio, Y., Simard, P. Y., and Frasconi, P. (1994). Learning long-term dependencies
with gradient descent is difficult. Institute of Electrical and Electronics Engineers
Transactions on Neural Networks, 5(2):157–166.

Brown, P. F., Pietra, S. D., Pietra, V. J. D., and Mercer, R. L. (1993). The mathe-
matics of statistical machine translation: Parameter estimation. Computational
Linguistics, 19(2):263–311.

Castano, M. A., Casacuberta, F., and Vidal, E. (1997). Machine translation using
neural networks and finite-state models. Theoretical and Methodological Issues in
Machine Translation, pages 160–167.

Chen, S. F. and Goodman, J. (1996). An empirical study of smoothing techniques
for language modeling. In Proceedings of the 34th Annual Meeting of the Associa-
tion for Computational Linguistics, pages 310–318.

Cho, K., van Merrienboer, B., Gülçehre, Ç., Bahdanau, D., Bougares, F., Schwenk,
H., and Bengio, Y. (2014). Learning phrase representations using RNN encoder-
decoder for statistical machine translation. In Proceedings of the 2014 Conference
on Empirical Methods in Natural Language Processing, pages 1724–1734.

49

50 BIBLIOGRAPHY

Chung, J., Cho, K., and Bengio, Y. (2016). A character-level decoder without ex-
plicit segmentation for neural machine translation. In Proceedings of the 54th
Annual Meeting of the Association for Computational Linguistics, volume 1.

Chung, J., Gülçehre, Ç., Cho, K., and Bengio, Y. (2014). Empirical evaluation of
gated recurrent neural networks on sequence modeling. Computing Research
Repository-arXiv, abs/1412.3555.

Costa-Jussà, M. R., Aldón, D., and Fonollosa, J. A. R. (2017). Chinese-spanish
neural machine translation enhanced with character and word bitmap fonts.
Machine Translation, 31(1-2):35–47.

Costa-Jussà, M. R. and Fonollosa, J. A. R. (2016). Character-based neural machine
translation. In Proceedings of the 54th Annual Meeting of the Association for Com-
putational Linguistics, volume 2.

Creutz, M. and Lagus, K. (2007). Unsupervised models for morpheme segmenta-
tion and morphology learning. Association for Computing Machinery. Transactions
on Speech and Language Processing, 4(1):3:1–3:34.

Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977). Maximum likelihood from
incomplete data via the em algorithm. Journal of the royal statistical society. Series
B (methodological), pages 1–38.

Doddington, G. (2002). Automatic evaluation of machine translation quality us-
ing n-gram co-occurrence statistics. In Proceedings of the second international con-
ference on Human Language Technology Research, pages 138–145.

Elman, J. L. (1990). Finding structure in time. Cognitive Science, 14(2):179–211.

Gage, P. (1994). A new algorithm for data compression. The C Users Journal,
12(2):23–38.

Gehring, J., Auli, M., Grangier, D., Yarats, D., and Dauphin, Y. N. (2017). Con-
volutional sequence to sequence learning. Computing Research Repository-arXiv,
abs/1705.03122.

Gers, F. A., Schmidhuber, J., and Cummins, F. A. (2000). Learning to forget: Con-
tinual prediction with LSTM. Neural Computation, 12(10):2451–2471.

Goodman, J. T. (2001). A bit of progress in language modeling. Computer Speech
& Language, 15(4):403–434.

Hasler, E., Haddow, B., and Koehn, P. (2011). Margin infused relaxed algorithm
for moses. The Prague Bulletin of Mathematical Linguistics, 96:69–78.

Hochreiter, S. and Schmidhuber, J. (1996). LSTM can solve hard long time lag
problems. In Advances in Neural Information Processing Systems 9, pages 473–
479.

Hopkins, M. and May, J. (2011). Tuning as ranking. In Proceedings of the 2011
Conference on Empirical Methods in Natural Language Processing, pages 1352–1362.

BIBLIOGRAPHY 51

Ioffe, S. and Szegedy, C. (2015). Batch normalization: Accelerating deep network
training by reducing internal covariate shift. In International Conference on Ma-
chine Learning, pages 448–456.

Jordan, M. I. (1997). Serial order: A parallel distributed processing approach.
Advances in psychology, 121:471–495.

Kalchbrenner, N., Grefenstette, E., and Blunsom, P. (2014). A convolutional neural
network for modelling sentences. In Proceedings of the 52nd Annual Meeting of
the Association for Computational Linguistics, volume 1, pages 655–665.

Kim, Y. (2014). Convolutional neural networks for sentence classification. In
Proceedings of the 2014 Conference on Empirical Methods in Natural Language Pro-
cessing, pages 1746–1751.

Kim, Y., Jernite, Y., Sontag, D., and Rush, A. M. (2016). Character-aware neural
language models. In Proceedings of the Thirtieth Association for the Advancement
of Artificial Intelligence. Conference on Artificial Intelligence, pages 2741–2749.

Kingma, D. and Ba, J. (2014). Adam: A method for stochastic optimization. Com-
puting Research Repository-arXiv, abs/1412.6980.

Kneser, R. and Ney, H. (1995). Improved backing-off for m-gram language mod-
eling. In 1995 International Conference on Acoustics, Speech, and Signal Processing,
pages 181–184.

Koehn, P. (2005). Europarl: A parallel corpus for statistical machine translation.
In Machine Translation summit, volume 5, pages 79–86.

Koehn, P., Hoang, H., Birch, A., Callison-Burch, C., Federico, M., Bertoldi, N.,
Cowan, B., Shen, W., Moran, C., Zens, R., Dyer, C., Bojar, O., Constantin, A.,
and Herbst, E. (2007). Moses: Open source toolkit for statistical machine trans-
lation. In Proceedings of the 45th Annual Meeting of the Association for Computa-
tional Linguistics.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2017). Imagenet classification
with deep convolutional neural networks. Communications of the Association for
Computing Machinery, 60(6):84–90.

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based learning
applied to document recognition. Proceedings of the Institute of Electrical and
Electronics Engineers, 86(11):2278–2324.

Ling, W., Trancoso, I., Dyer, C., and Black, A. W. (2015). Character-based neural
machine translation. Computing Research Repository-arXiv, abs/1511.04586.

Luong, M.-T. and Manning, C. D. (2016). Achieving open vocabulary neural
machine translation with hybrid word-character models. Computing Research
Repository-arXiv, abs/1604.00788.

Mikolov, T., Chen, K., Corrado, G., and Dean, J. (2013a). Efficient estimation
of word representations in vector space. Computing Research Repository-arXiv,
abs/1301.3781.

52 BIBLIOGRAPHY

Mikolov, T., Karafiát, M., Burget, L., Cernocký, J., and Khudanpur, S. (2010).
Recurrent neural network based language model. In Proceedings of the 11th
Annual Conference of the International Speech Communication Association, pages
1045–1048.

Mikolov, T., Le, Q. V., and Sutskever, I. (2013b). Exploiting similarities
among languages for machine translation. Computing Research Repository-arXiv,
abs/1309.4168.

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., and Dean, J. (2013c). Dis-
tributed representations of words and phrases and their compositionality. In
Advances in Neural Information Processing Systems, pages 3111–3119.

Och, F. J. (2003). Minimum error rate training in statistical machine translation.
In Proceedings of the 41st Annual Meeting of the Association for Computational Lin-
guistics, pages 160–167.

Och, F. J. and Ney, H. (2003). A systematic comparison of various statistical align-
ment models. Computational Linguistics, 29(1):19–51.

Papineni, K., Roukos, S., Ward, T., and Zhu, W. (2002). Bleu: a method for au-
tomatic evaluation of machine translation. In Proceedings of the 40th Annual
Meeting of the Association for Computational Linguistics, pages 311–318.

Peris, Á. (2017). NMT-Keras. https://github.com/lvapeab/nmt-keras. GitHub
repository.

Peris, Á., Domingo, M., and Casacuberta, F. (2017). Interactive neural machine
translation. Computer Speech & Language, 45:201–220.

Robbins, H. and Monro, S. (1951). A stochastic approximation method. The annals
of mathematical statistics, pages 400–407.

Schuster, M. and Paliwal, K. K. (1997). Bidirectional recurrent neural networks.
Institute of Electrical and Electronics Engineers Transactions on Signal Processing,
45(11):2673–2681.

Sennrich, R., Haddow, B., and Birch, A. (2016). Neural machine translation of
rare words with subword units. In Proceedings of the 54th Annual Meeting of the
Association for Computational Linguistics, volume 1.

Snover, M., Dorr, B., Schwartz, R., Micciulla, L., and Makhoul, J. (2006). A study
of translation edit rate with targeted human annotation. In Proceedings of asso-
ciation for machine translation in the Americas, volume 200.

Srivastava, R. K., Greff, K., and Schmidhuber, J. (2015). Highway networks. Com-
puting Research Repository-arXiv, abs/1505.00387.

Sutskever, I., Vinyals, O., and Le, Q. V. (2014). Sequence to sequence learning with
neural networks. In Advances in Neural Information Processing Systems, pages
3104–3112.

Werbos, P. J. (1990). Backpropagation through time: what it does and how to do it.
Proceedings of the Institute of Electrical and Electronics Engineers, 78(10):1550–1560.

https://github.com/lvapeab/nmt-keras

BIBLIOGRAPHY 53

Williams, R. J. and Zipser, D. (1989). A learning algorithm for continually running
fully recurrent neural networks. Neural Computation, 1(2):270–280.

Xingjian, S., Chen, Z., Wang, H., Yeung, D.-Y., Wong, W.-K., and Woo, W.-c. (2015).
Convolutional lstm network: A machine learning approach for precipitation
nowcasting. In Advances in Neural Information Processing Systems, pages 802–
810.

Yu, F. and Koltun, V. (2015). Multi-scale context aggregation by dilated convolu-
tions. Computing Research Repository-arXiv, abs/1511.07122.

Zens, R., Och, F. J., and Ney, H. (2002). Phrase-based statistical machine transla-
tion. In Advances in Artificial Intelligence, 25th Annual German Conference, pages
18–32.

Zhao, H., Huang, C., Li, M., and Lu, B. (2010). A unified character-based tag-
ging framework for chinese word segmentation. Association for Computing Ma-
chinery. Transactions on Asian and Low-Resource Language Information Processing,
9(2):5:1–5:32.

Zur, R. M., Jiang, Y., Pesce, L. L., and Drukker, K. (2009). Noise injection for
training artificial neural networks: A comparison with weight decay and early
stopping. Medical Physics, 36(10):4810–4818.

	Contents
	List of Figures
	Introduction
	Objectives
	Structure

	Statistical Machine Translation
	Fundamental Equation of Machine Translation
	Language Modeling
	Handling Unknown N-grams: Smoothing

	Translation Modeling
	Word-based Translation
	Phrase-Based Models

	Phrase-Based SMT. Log-Linear Model
	Assesment

	Neural Machine Translation
	Word Representation
	Recurrent Neural Networks
	Bidirectional Recurrent Neural Networks
	Long Term Dependencies: LSTM & GRU

	Encoder-Decoder Architecture
	Encoder
	Decoder
	Decoding Phase
	Ensembling

	NMT: Sub-word translation
	Why Character Translation?
	Byte Pair Encoding
	Convolutional Encoder
	Convolutional Neural Networks
	Highway Networks
	Constructing convolutional encoders for NMT

	Implementation, experiments and results
	Implementation details
	NMT Systems
	Datasets
	Xerox
	EU

	Experiments
	Classical Phrase-Based MT with Moses
	Word Level NMT
	Character Level NMT
	BPE NMT
	Convolutional Encoder NMT
	Convolutional Encoder + BPE NMT

	Conclusions & Future Work
	Conclusions
	Future Work
	New Datasets
	Improvements & other sub-word approaches
	Combination of character systems with other paradigms

	Acknowledgements
	Bibliography

