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Abstract: This paper addressed the heterogeneous fixed fleet open vehicle routing problem (HFFOVRP), in which the vehicles 
are not required to return to the depot after completing a service. In this new problem, the demands of customers are fulfilled 
by a heterogeneous fixed fleet of vehicles having various capacities, fixed costs and variable costs. This problem is an 
important variant of the open vehicle routing problem (OVRP) and can cover more practical situations in transportation and 
logistics. Since this problem belongs to NP-hard Problems, An approach based on column generation (CG) is applied to solve 
the HFFOVRP. A tight integer programming model is presented and the linear programming relaxation of which is solved by the 
CG technique. Since there have been no existing benchmarks, this study generated 19 test problems and the results of the 
proposed CG algorithm is compared to the results of exact algorithm. Computational experience confirms that the proposed 
algorithm can provide better solutions within a comparatively shorter period of time.
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1.	 Introduction
While the travelling salesman problem (TSP) is 
perhaps the most famous single-vehicle problem, the 
vehicle routing problem (VRP) is an important variant 
of TSP which has many applications in industrial 
and service firms (YousefiKhoshbakht and Khorram, 
2012). This problem plays a vital role in supply 
chains where in the first transportation step to collect 
agricultural products, for instance or in the final 
distribution phase to deliver goods to customers. The 
VRP was first defined by Dantzig and Ramser  more 
than 50 years ago (1959) and can be defined on an 
undirected complete graph with one depot (node 0) 
and n customers indexed from 1 to n (if the graph is 
not complete, we can instead lack of each arc with 
the arc that has infinite size) (Saadati Eskandari and 

YousefiKhoshbakht, 2012). A fleet of same vehicles 
is based at the depot in which each vehicle has a 
fixed capacity and perhaps a route-length restriction 
which limits the maximum distance it can travel. 
Furthermore, each customer has a known demand 
and a defined distance is associated with each edge. 
This problem involves routing a fleet of vehicles that 
start to move simultaneously from the depot and 
come back to the depot after visiting customers. In 
other words, each route in the VRP is a Hamiltonian 
cycle over the subset of customers visited on the 
route. The objective is to design a set of minimum 
cost routes to serve all customers so that:

The load on a vehicle is below vehicle capacity at 
each point on the route.
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Each customer is serviced by only one visit of a 
single vehicle, i.e., split deliveries are not allowed.

The minimum number of vehicles is also required to 
service all customers. In other words, the number of 
trips or vehicles used is not imposed, it is a decision 
variable. 

The VRP is not very realistic. To make VRP models 
more realistic and applicable, there are many varieties 
of the VRP obtained by adding constraints to the 
basic model. For example, Several variations and 
specializations of the VRP are the load along each 
route must not exceed the service of the customers 
and must occur within given time windows (vehicle 
routing problem with time windows, VRPTW) 
(Wang and Chen, 2012), the customer has pick-up 
and delivery demand (vehicle routing problem with 
pickup and delivery, VRPPD) (Çatay, 2010), the 
customer demands may not be completely known 
in advance (stochastic vehicle routing problem,  
SVRP) (Lei, Laporte and Guo, 2011), the service of a 
customer may be split among different vehicles (split 
delivery vehicle routing problem, SDVRP) (Aleman 
and Hill, 2010), precedence relations may exist 
between the customers (vehicle routing problem 
with backhauls, VRPB) (Anbuudayasankar et  al., 
2012), and the demands or the travel times may 
vary dynamically (dynamic vehicle routing problem, 
DVRP) (Gendreau et al., 2006).

Another version of the VRP is heterogeneous fleet 
vehicle routing problem (HFVRP) in which the fleet 
may contain heterogeneous vehicles like most of 
the companies in the real-life context (Li, Tian and 
Aneja, 2010). In this problem, the fleet is composed 
of various vehicle types. Each type k is defined by a 
capacity Qk, a fixed cost fk and a cost per distance unit 
αk often called variable cost. It should be noted that 
a cycle of length L done by a vehicle of type k has a 
cost fk+ αk·L. As in the VRP, each customer must be 
visited by one vehicle only, each vehicle must start 
and finish its travel at the depot and the capacity of 
a vehicle and maybe the maximum length of a route 
must not be violated. The objective of the HFVRP 
is to compute a set of cycles and to assign vehicles 
to cycle to minimize total cost which includes both 
the vehicle variable and fixed costs. The idea is not 
only to consider the routing of the vehicles, but also 
the composition of the vehicle fleet (Gendreau et al., 
1999).

Using a heterogeneous fleet of vehicles has several 
advantages such as the scheduler can revise the fleet 

composition to better suit customer needs and vehicles 
of different carrying capacities give the flexibility to 
assign capacity according to the customer’s varying 
demand by deploying the suitable vehicle types to 
areas with the analogous concentration of customers. 
It is also possible to facility customers requiring 
small vehicles because of accessibility restrictions 
in urban areas, environmental concerns or physical 
restrictions on the vehicle size and weight. If we 
assume that the number of vehicles of each type is 
unlimited, we get a type of problem known as the fleet 
size and mix vehicle routing problem (FSMVRP) 
(Brandão, 2009). Furthermore, The Heterogeneous 
Fixed Fleet Vehicle Routing Problem (HFFVRP) 
is a variant of the FSMVRP in which there is a 
limited number of homogeneous and heterogeneous 
vehicles respectively. In other words, in contrast to 
the FSMVRP, the number of vehicles of each type 
is limited. Although the FSMVRP and HFFVRP 
are very similar, these two types of problems are 
used in rather different situations. The FSMVRP is 
more appropriate for tactical decisions (selecting the 
acquired number of vehicles) and operational ones 
(computing the routes and the vehicles assigned to 
them). In these strategic decisions, a company wants 
to buy a vehicle fleet and needs to define its size 
and composition, but the HFFVRP represents better 
the operational decisions of defining the vehicles 
that should be used in order to serve the customers 
among those available.

The HFFVRP intensifies from a practical perspective 
when the vehicle fleet is hired, that is, vehicles 
do not constitute company assets. In such cases, 
effective planning is a critical success factor for 
the operational efficiency and the resulting service 
level, since non-company resources are responsible 
for the physical interface with the final customer. 
The open vehicle routing operational framework 
is faced by a company which either does not own 
a vehicle fleet at all, or its fleet is inappropriate or 
inadequate to satisfy the demand of its customers. 
Thus, the company has to contract all or part of its 
distribution activities to external carriers. These 
contractors have their own vehicles, they pay 
their own vehicle costs (e.g. capital, operating, 
maintenance and depreciation), and they usually 
consider a compensation model based on mileage. 
Whenever the company does not need the contractor 
or the vehicle back at the depot, the paths followed 
by the vehicles must not include the vehicle trip after 
the last delivery (i.e. the return trip to the depot) that 
will add extra mileage to the compensation model. 
This problem, called Heterogeneous Fixed Fleet 
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Open Vehicle Routing Problem (HFFOVRP) (Li, 
Leung and Tian, 2012). This reference addressed 
this problem for the first one. Besides, a multistart 
adaptive memory programming metaheuristic with 
modified tabu search algorithm was proposed to 
solve this new version of VRP. Finally, the efficiency 
and effectiveness of the proposed algorithm are 
experimentally evaluated on a set of generated 
instances. Figure 1 presents a feasible solution for 
the HFFOVRP. 

The HFFOVRP compared to HFFVRP has a unique 
character in that the vehicles are not required to 
come back to the depot after completing a service. 
The HFFOVRP is utilized in practice in delivering 
packages and newspapers to homes. In this 
important variant of the OVRP, contractors who 
are not employees of the delivery company use 
their own vehicles and do not return to the depot. 
Furthermore, companies which use contractors to 
deliver newspapers to residential customers do not 
require the contractors and their vehicles to return to 
the depot. As a result, interest of researchers in the 
OVRP and its variations has increased dramatically 
and a wide variety of new algorithms have been 
developed over the last ten years to solve the problem.

Figure 1. Feasible solution for the HFFOVRP.

However, to the best of our knowledge, a first done 
work to address HFFOVRP, which is a relaxation 
of the standard VRP, was the paper of Li, Leung 
and Tian (2012). This problem is more practical 
in distribution management and in which the fleet 
consists of vehicles with different attributes and the 
number of available vehicles is fixed like HFFVRP. 
In contrast to HFFVRP, the vehicles do not return to 
the starting point after completing the service of the 
last customers. As we know, most works on OVRP 
has aimed at minimizing the number of vehicles, but 

this objective was not considered in the HFFOVRP 
proposed in this work. To solve the problem, a multi-
start adaptive memory programming metaheuristic 
(MAMP) was proposed as a new memory-based 
algorithm. Then, the parameters tuning is conducted 
systematically by an automatic procedure and the 
advantage of considering a multi-start strategy 
in the MAMP is verified with the obtained best 
configuration. Finally, the results are reported on 
the generated instances. After that, Penna et  al.  
presented a heuristic algorithm based on the iterated 
local search metaheuristic and on the randomized 
variable neighborhood descent (Subramanian et al., 
2010) for solving the HFFOVRP. This work is an 
extension of the one proposed by themselves for 
the HFVRP (Penna, Subramanian and Ochi, 2013). 
This paper dealt with the OVRP and the HFFOVR 
which often arises in distribution management 
and transportation. They solved both variants by 
a multi-start algorithm based on the iterated local 
search metaheuristic. The proposed algorithm uses 
a variable neighborhood descent procedure, with 
random neighborhood, ordering in the local search 
phase.

Yousefikhoshbakht et  al. (2014) proposed an 
efficient adaptive memory based algorithm equipped 
with diversification and intensification to solve 
the HFFOVRP. This algorithm called BRMTS is 
a bone route algorithm combined with a modified 
tabu search (BRMTS) which is effective for solving 
HFFOVRP problems in a reasonable computing 
time. Furthermore, the proposed algorithm directly 
produces a new solution from a component of the 
other solutions while using new diversification and 
intensification mechanisms. The BRMTS employs 
the generalized route for constructive algorithm 
which was first presented in (Tarantilis and 
Kiranoudis, 2014) for generating initial diversified 
solutions and modified TS improvement procedure. 
Computational results on some test-generated 
instances demonstrate that the proposed BRMTS 
finds high quality solutions within a reasonable time. 
Besides, these authors proposed a column generation 
technique and an elite ant system for the HFFOVRP. 
This efficient hybrid heuristic used versions 
algorithms, including sweep, insert, swap, and 2-Opt 
moves in order to solve generated Hamiltonian paths 
with some modifications to generate feasible columns 
efficiently. These modifications lead to improve both 
the performance of the algorithm and the quality 
of the solutions (Yousefikhoshbakht et  al., 2016). 
The results show that the hybrid algorithm explores 
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different parts of the solution space and try to be not 
trapped at the local optimum points. 

The HFFOVRP is an NP-hard combinatorial 
problem, since it reduces to the OVRP if the number 
of types of vehicles is just one, i.e., the vehicle fleet 
is homogeneous, and the number of vehicles is 
unlimited. From the point of view of graph theory, 
the difference between the OVRP and the VRP 
is that a solution of the former consists of a set of 
Hamiltonian paths rather than Hamiltonian cycles. 
The problem of finding the best Hamiltonian path for 
each set of customers assigned to a vehicle is NP-hard 
(Syslo, Deo and Kowalik, 1983). Hence HFFOVRP 
is also NP-hard. Therefore, most of the practical 
examples of this problem cannot be solved by exact 
algorithms to optimality within reasonable time. 
Furthermore, because there is no known polynomial 
algorithm that will find the optimal solution in every 
instance, the use of heuristics and metaheuristic 
are considered as a reasonable approach in finding 
solutions. In this paper, we have proposed a heuristic 
column generation algorithm (CG) in order to 
improve both the performance of the algorithm and 
the quality of the solutions of the exact algorithm. 
The algorithm explores different parts of the solution 
space, and the search method is not trapped at the 
local optimum. The experimental results have shown 
that the proposed algorithm is to be very efficient and 
competitive in terms of solution quality compared to 
exact algorithm.

The structure of the remainder of the paper is as 
follows. In section 2, a proposed mixed integer 
model is described and in Section 3, the proposed 
idea based on column generation is explained in 
great detail. In Section 4, the proposed algorithm is 
compared with an exact algorithm on generated or 
standard problems belonging to HFFOVRP library. 
Finally, some concluding remarks are given in the 
section 5.

2.	 Problem description and 
formulation

From a graph theoretical point of view, we can 
define the HFFOVRP as follows. Let G = (V, E) be 
an undirected connected graph with V={0,1,…,n} 
as the set of vertexes and the set of arcs 

( , ): ,E i j i j n0 # #= " ,  (if the graph is not complete, 
we can instead lack of each arc with the arc that has 
infinite size). Node 0 is the depot and the customer 
set C consists of n customers, i.e., , , ...,C n1 2= " , . A 

nonnegative cost cij (cii= 0, 0 ≤ i ≤ n) associated with 
each arc ( , )i j E! and each vertex i C!  is a customer 
with a non-negative demand pi . The available fleet 
consists of K different type vehicles located at the 
depot and the number of available vehicles of each 
type is fixed and equal to nk . A capacity Qk , a fixed 
cost fk and a variable cost αk are associated with 
each type of vehicle k in which αk is cost per unit 
of distance corresponding to each vehicle type k. 
Hence, c cij

k
ij k# a=  represents the cost of the travel 

from customer i to j with a vehicle of type k. The 
HFFOVRP deals with finding the minimum total 
transportation cost, including the fixed and variable 
cost for a fleet of vehicles which start and end at the 
depot so that the following constraints are taken into 
account:

-- The total load of each vehicle cannot exceed the 
capacity of the corresponding vehicle type.

The used number of vehicles of type k cannot 
exceed nk.

The demand of each customer is satisfied by exactly 
one vehicle in only one visit.

We present following mathematical formulation for 
HFFOVRP using variables and yij where, xijk  take the 
value 1 if a vehicle of type k travels directly from 
customer i to customer j, and 0 otherwise; denotes 
the route. The flow variables yij specify the quantity 
of goods that a vehicle k is carrying when leaves 
customer i to service customer j. 
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The objective function (1) gives the sum of the 
total fixed cost of the vehicles used plus the total 
variable routing cost. Constraints (2) mean that only 
one arc can be entered for each customer; however, 
constraints (3) show that almost one arc can be exited 
from each customer. Constraints (4) states that if a 
vehicle visits a customer, it can remain there or depart 
from it. The maximum number of vehicles available 
for each vehicle type is guaranteed by constraints 
(5). Equality equations (6) insure that the demands 
of all customers are fully satisfied. Constraints (7) 
state that the vehicle capacity is never exceeded. 
Constraints (8) guarantee that there is not any arc 
from each customer to the depot. Constraints (9) 
describe that each arc in the network has the value 1 
if it is used and 0 otherwise. Finally, Restrictions 
(10) force the flow to remain non-negative.

3.	 The proposed algorithm
A route-vehicle pair in open vehicle routing, (r,k), 
is feasible when route r starts at the depot and the 
sum of demand of customers on route r is not larger 
than the capacity of the vehicle type k. The refor-
mulation of the HFFOVRP is required the following 
additional notation:

K The set of vehicle type, { , , ..., }k K1 2! .

Rk The set of feasible route r for vehicle type k.

R The set of all of feasible route, r R! , 
R Rk

k K
=
!

'

crk Cost of rout r for vehicle type k, (r, k) Rk! , 

c c
( , )

r
k

ij
i j r

=
!

|

airk Binary parameter of equal to 1 if the customer 
i is serviced by route r ∈ R and vehicle type 
k ∈ K, 0 otherwise.

xr
k Binary variable of equal to 1 if route r ∈ Rk is 

used in the solution, 0 otherwise.

nk The number of vehicle type k ∈ K.

Now, HFFOVRP can be formulated as follows:

Min c xrk r
k

r Rk K k!!

|| � (11)

Subject to

,…,a x i n1 1ir
k

r
k

r Rk K k

6= =
!!

|| �  (12)

x n k Kr
k

k
r Rk

6# !
!

| 	 (13)

, ,x k K r R0 1r
k

k6! ! !" , � (14)

In this formulation, the objective function (11) 
minimizes the total costs. Constraints (12) indicate 
that each customer is assigned to once and only 
once feasible route-vehicle pair. Constraints (13) 
ensure that that maximum of the number of used 
vehicles of each type does not exceed the number of 
available vehicles of same type. Finally, constraints 
(14) describe that each arc in the network has the 
value 1 if it is used and 0 otherwise. In this type of 
formulation, each column corresponds to one route-
vehicle pair. As number of columns is extremely 
large, this problem cannot be solved directly, so 
we use a column generation approach to solve this 
problem.

3.1.	 Column Generation approach
Column Generation approach deals with two 
problems, the Master-Problem (MP) and the Pricing 
Sub-Problem (PSP). The MP is linear programming 
problem that the goal of this problem is to find the 
minimal cost and to produce the shadow prices of the 
temporary optimal solution to be used in the Pricing 
Sub-Problem.

Since the number of columns of MP is arbitrarily 
large, a Restricted MP is used to initiate the 
computations. The goal of the Pricing Sub-Problem 
is to generate additional columns for MP. In this 
section, the proposed sweep-based algorithm is first 
described and then the formulations of the Master 
Problem and Pricing Sub-Problem are presented. 
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3.1.1.	The proposed sweep-based algorithm

In this section, the sweep-based algorithm is 
described. This heuristic belongs to the class of 
heuristic called cluster first-route second in which 
a set of initial feasible open routes is generated. 
To apply the heuristic, we assume that the location 
of each customer is known in terms of an (x,y) 
coordinate. We compute the polar coordinates of 
each customer with respect to the depot and then 
order the customers by increasing polar angle and 
generate a list of customer. Note that if customer 
i and customer j have same polar angle, we put 
the customer that has lower distance respect to the 
depot earlier in the list. Then do the following steps:

Step 1: Sort the type of vehicles randomly.

Step 2: For each of the type of vehicles (k), perform 
the following step, until all of the customers to be 
swept or all vehicles of this type are loaded:

Step 2.1: For the unused vehicle, we gradually 
add customers in vehicle route according to list of 
customers until the capacity constraint is attained. 
Now, we add pair (r,k) to the set of Initial feasible 
routes.

Step 3: Delete the first customer in the list and add it 
to the end of list.

Step 4: If updated list was the initial list, stop and the 
algorithm is terminated, otherwise go to step 1.

In Figure 2, we illustrate the heuristic described by 
means of an example involving 7 customers and 3 
vehicles. The customer demands and the vehicle 
capacity are given below.

Figure 2. Sweep Algorithm.

3.1.2.		Master-Problem

The MP can be formulated as a set covering 
formulation. This formulation is linear programming 
problem that each customer is assigned to at least 
one feasible route–vehicle pair, since the arc costs 
satisfy the triangle inequality and each customer 
will be visited exactly once to minimize the costs. 
Also in constraint (14), integrality of variable xr

k is 
eliminated.   

( )MP Min c xrk r
k
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Creating all feasible routes is considered as a NP-
hard problem. The main idea of column generation 
approach is to use only a small number of feasible 
routes in order to find the optimal solution out of a 
large set of possible feasible routes and additional 
routes are added only when needed. Therefore, at 
first, we considered the Restricted Master Problem 
(RMP) containing only the routes that have been 
generated by sweep algorithm. Let generated routes 
for vehicle type k indicated by R Rk k1l , then the 
RMP created by replaced Rk in the MP by R'k. The 
RMP is solved from this solution and we are able 
to obtain shadow prices for each of the constraints 
in the RMP. This information is then utilized in the 
objective function of the Pricing Sub-Problem. Each 
time the Pricing Sub-Problem is being solved, new 
routes are being generated as needed and inserted in 
the set R Rk

k K
=

!

l l' . 

We solve the RMP by solver CPLEX 12.1 and 
vector π*=(π*

i1,…, π*
in, π*

1,…, π*
m) is the values of 

the dual variables (shadow price) corresponding to 
constraints (16) and (17). 

Pricing Sub-Problem

The Pricing Sub-Problem (PSP) is a new problem 
created to identify a new route–vehicle pair with the 
minimum reduced cost. The PSP uses the shadow 
price information from RMP to generate promising 
a route–vehicle pair that is also feasible. We 
formulated a Pricing Sub-Problem for vehicle type 
k (PSP(k)) and consequently have m problems. We 
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consider vehicle type k and r ∈ Rk. This open route 
is as follows:

r = (i0,i1,…,iH ,iH+1); i0=, iH+1≠ 0

The reduced cost cr
k of r ∈ Rk  is defined as:
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Where π*
i0=π

*
k . Therefore, reduced cost cr

k  is equal to 
sum of the fixed cost and the cost of route r on the 
directed sub-graph Gk=(V, Ak) for vehicle type k with 
arc modified cost defined as follows:
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Now, the PSP formulation can be written as follows:
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Therefore, the result of PSP(k) will be one route 
for vehicle type k, if the optimal objective value of  
PSP(k) is negative, the route–vehicle pair having 
the minimum reduced cost cr

k will be added to the 
set R'k in RMP. Then the RMP will be solved again 
and obtain shadow prices for each of the constraints 
in RMP. For vehicle type k, arc modified cost cij

k is 
obtained and the process is repeated until no routes 
with negative reduced cost are identified. The CG 
approach will be described as follows:

1.	 Find initial sets R' of routes by sweep algorithm 
for the MP.

2.	 Solve the MP by using Solver CPLEX 12.1 and 
obtain the shadow prices of the optimal solution.

3.	 For vehicle type k, produce the modified costs 
cij

k, as equation (20).

4.	 For vehicle type k, solve PSP(k) by using Solver 
CPLEX 12.1 and Find feasible route–vehicle 
pairs with negative reduced costs and add them 
to the sets R'k.

5.	 If no new route–vehicle pair was found go to 
Step 6, otherwise continue with step 2.

6.	 If solution obtained from the last RMP is integer, 
the approach terminates, otherwise replace Rk in 
HFFOVRP formulation by R'k , then solve it and 
the approach terminates.

Figure 3 presents the column generation approach 
flowchart.

Start

Stop

Find Initial Solution for the MP by Sweep Algorithm

Solve the Restricted Master Problem

Produce modified costs

For vehicle type k, solve PSP(k)

HFFOVRP formulation

Is integer 
solution?

Add route-vehicle pair to RMP

Route-vehicle pairs with 
reduced cost <0?

Yes

Yes

No

No

Figure 3. Flowchart of the column generation approach 
for the HFFOVRP.
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4.	 Results

The proposed algorithm was coded in Aimms with 
solver GUROBI 4.5 and all the experiments were 
implemented on a PC with Pentium 4 at 2.3GHZ 
and 4GB RAM running Windows XP Home 
Basic Operating system. AIMMS is an advanced 
development environment to build advanced 
planning systems and optimizing the problems in 
applied research studies. The numerical experiment 
is performed using two sets of problem instances. 
These problems are built of 10-85 nodes including 
the depot that all randomly located over a square 
with no service time. They have fixed fleet with 
capacity restrictions, without route length. Euclidean 
distances are used in the all problems. The first one 
consists 14 generated by author instances from 10 

to 85 customers and the second one consists 5 test 
problems available in the literature from the well-
known Taillard’s benchmark for Heterogeneous 
fixed fleet Vehicle Routing Problem (HFFVRP) 
provided by Taillard (1999). It is noted that the first 
data set is also derived from Taillard’s benchmark 
and the second set consists of instances 9, 10, 11, 
12 and 17 with sizes ranging 50, 50, 50, 50 and 75 
respectively without the depot. For more information 
regarding the provided examples visit:

http://mistic.heig-vd.ch/taillard/problemes.dir/vrp.
dir/vrp.html

In this section, we first introduce the benchmark 
problems and then the detailed computational results 
obtained. The specifications of these twenty two 
problems are reported in Table 1. 

Table 1. Data for problems.

Instance
Number of 
customers

Number of different 
type vehicles Capacity Fixed cost Variable cost

Available number of 
kind kth of vehicle

1 10

1 20 20 1 1
2 30 40 1.1 1
3 40 70 1.3 2
4 70 200 1.7 1

2 15

1 30 60 1 1
2 60 100 1.1 1
3 80 250 1.5 1
4 150 300 2 1

3 20

1 20 70 1 1
2 35 120 1.1 2
3 50 200 1.2 2
4 120 250 2 3

4 25
1 25 50 1 2
2 35 80 1.1 2
3 50 200 1.2 3
4 120 250 1.7 3

5 30

1 25 35 1 3
2 35 50 1.1 2
3 50 75 1.2 4
4 120 150 1.7 4

6 35
1 50 60 0.7 1
2 120 75 1 2
3 160 200 1.1 3

7 40
1 60 20 1 3
2 140 50 1.7 2
3 200 120 2 1

8 45

1 50 20 1 2
2 150 35 1.4 1
3 200 50 1.4 1
4 300 120 1.7 1

9 50

1 20 20 1 4
2 30 35 1.1 2
3 40 50 1.2 4
4 70 120 1.7 4
5 120 225 2.5 2
6 200 400 3.2 1
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The proposed compound heuristic algorithm is 
compared to the solver Cplex 12.1 in AIMMS as 
an exact algorithm in the Table 2. In this table, the 
first column includes the instance name, the second 
column shows the number of customers n, and the 

third and fourth columns present the results obtained 
by exact algorithm and its CPU time. It is noted 
that in these results shown in the third column, the 
exact algorithm continues until the software finishes 
the search. Number of generated pair (r,k) for each 

Instance
Number of 
customers

Number of different 
type vehicles Capacity Fixed cost Variable cost

Available number of 
kind kth of vehicle

10 50
1 120 100 1 4
2 160 1500 1.1 2
3 300 3500 1.4 1

11 50
1 50 100 1 4
2 100 250 1.6 3
3 160 450 2 2

12 50
1 40 100 1 2
2 80 200 1.6 4
3 140 400 2.1 3

13 55

1 20 10 1 2
2 50 35 1.3 2
3 100 100 1.9 2
4 150 180 2.4 1
5 250 400 2.9 1
6 400 800 3.2 1

14 60

1 20 10 1 2
2 50 35 1.3 2
3 100 100 1.9 2
4 150 180 2.4 1
5 250 400 2.9 1
6 400 800 3.2 1

15 65

1 20 10 1 1
2 50 35 1.3 2
3 100 100 1.9 2
4 150 180 2.4 2
5 250 400 2.9 1
6 400 800 3.2 1

16 70

1 20 10 1 3
2 50 35 1.1 3
3 100 100 1.2 2
4 150 180 1.4 2
5 250 400 1.9 1
6 400 800 2.2 1

17 75

1 20 10 1 4
2 50 35 1.3 4
3 100 100 1.9 2
4 150 180 2.4 2
5 250 400 2.9 1
6 400 800 3.2 1

18 80

1 20 10 1 5
2 50 35 1.3 6
3 100 100 1.9 2
4 150 180 2.4 2
5 250 400 2.9 1
6 400 800 3.2 1

19 85

1 20 10 1 5
2 50 35 1.3 6
3 100 100 1.9 3
4 150 180 2.4 2
5 250 400 2.9 1
6 400 800 3.2 1
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instance is presented in fifth column. Besides, the 
sixth and seventh columns of Table 2 show the results 
of the proposed algorithm and running time of the 
algorithm. The best results of the exact algorithm 
for the presented time in the seventh column are 
shown in the eighth column. In other word, the exact 
algorithm continues until the presented time shown 
in seventh column is over. The best solutions found 
by sweep algorithms is displayed in the ninth column 
and finally, to show the method’s performance more 
clearly, we present the best known solutions (BKS) 
in the last column of Table 2. 

A simple criterion to measure the efficiency of two 
algorithms CG and Sweep algorithm is to compute 
the relation percentage deviation of their solutions 
on specific benchmark instances. These values are 
calculated by below formula.

( )
100Gap

value of theSweep algorithm
value of the CG algorithm

value of the CG algorithm
#=

-

Figure 4 presents the gap between these two 
algorithms for the all the instances. In this figure, 
the horizontal axis shows the name of instances and 
the vertical axis indicates the percentage of sweep 
algorithm compared to the CG. Form this figure, we 
conclude that the sweep algorithm is high quality 
algorithm in order to produce an initial solution 
because this algorithm able to find very good solution 
with average almost 41% gap in comparison with the 

CG. Moreover, the lower gap in all instances is 1 
with almost 17% gap and the upper gap is instance 
19 with almost 70% gap. Finally, we see that there is 
not any relationship between size of the instance and 
value of gap in this figure.

Generally, the exact algorithm fails to find optimal 
solutions for most of the problems especially in-
stances with more than 35 customers and is not able 
to be used as an efficient and applicant algorithm. 
As a result, the performance comparison of results 
between Cplex and the CG shows that the proposed 
algorithm clearly yields better CPU time than the 
other algorithms in Table 2. In more detail, the CG 
not only can find optimal solution for four inctance 
including 1, 2, 3 and 4 but also this algorithm capale 
to find near optimal in two other instance 5 and 6. 
The ratio of CPU time exact algorithm to CG until 
instances with 35 customers is shown in Figure 5. In 
this figure, the horizontal axis shows the customer’s 
number of instance 1 to instance 6 and the vertical 
axis indicates the ratio of these algorithms.

As mention above, the result of CG and exact algo-
rithm in the same CPU time are shown in the column 
6 and 8 respectively in Table 2. Column 7 in Table 2 
shows this CPU time in second. It is found in table 2 
that CPLEX can reach an optimal solution for only 
one small-scale instance out of 5 instances. Further-
more, we find that in other instances the exact algo-
rithm lower bound is far away from its best solution 

Table 2. Comparison results between the proposed algorithm and Aimms.

Instance n CPLEX12.3 Time (Sec) #(r,k) CG Time (Sec) CPLEX12.3 Sweep BKS
1 10 191.10 1.09 107 191.10 0.36 191.10 224.22 191.10
2 15 282 171.02 168 282 4.28 525.56 345.14 282
3 20 379.63 16.55 277 379.63 5.44 390.25 465.01 379.63
4 25 437.79 22.78 397 437.79 9.78 532.18 534.09 437.79
5 30 472.76 61.78 585 473.31 16.46 497.48 615.69 472.76
6 35 346.26 55567.75 788 349.95 370.08 Na 487.61 346.26
7 40 Na - 629 600.99 767.42 Na 997.13 600.99
8 45 Na - 787 676.04 2408.40 Na 950.46 676.04
9 50 Na - 1263 907.3 256.72 Na 1308.23 907.3
10 50 Na - 867 507.58 2253.26 Na 737.18 507.58
11 50 Na - 855 826.19 840.18 Na 1061.61 826.19
12 50 Na - 886 947.81 698.96 Na 1261.77 947.81
13 55 Na - 1110 1074.91 1940.82 Na 1801.45 1074.91
14 60 Na - 1274 1937.03 8807.25 Na 2239.13 1937.03
15 65 Na - 1363 1563.33 4203.14 Na 2047.70 1563.33
16 70 Na - 1638 962.57 6357.70 Na 1452.27 962.57
17 75 Na - 1873 1356.67 6021.97 Na 2274.05 1356.67
18 80 Na - 2222 1285.74 8331.64 Na 2162.70 1285.74
19 85 Na - 2470 1295.58 13731.35 Na 2199.34 1295.58
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result of the BKS.  Besides, the CG has been able to 
find the best solutions in four instances including 1, 
2, 3 and 4 of the 5 examples. Therefore, the CG has 
been able to find the better solutions than exact algo-

rithm in four out of five examples including 2, 3, 4 
and 5. In other words, in 4 examples except instance 
1 among remaining 5 examples, the proposed algo-
rithm has been capable of improving the solutions 
gained from exact algorithm. Furthermore, CG has 
failed in improving the solutions in only instance 1 
and has come up with solutions similar to the ones 
found by exact algorithm. Hence, it can be conclud-
ed that CG is more efficient than exact algorithm in 
finding good solutions at the same CPU time.

5.	 Conclusion and Future Works
This paper investigates HFFOVRP in the transporta-
tion system and presents a new combined heuristic 
algorithm base on CG, which has allowed us to ob-
tain high quality solutions which cannot obtain by 
exact algorithm. The HFFOVRP is a variant of the 
classical OVRP in which customers are served by 
a given hired heterogeneous fixed fleet of vehicles 
with various capacities and variable costs. This prob-
lem has significant applications in the transportation 
system, especially when a company used hired vehi-
cles to serve customers. Computational results gen-
erally have shown that the proposed CG gives better 
results compared to the exact algorithm in terms of 
the solution quality in the same CPU time. It seems 
that using effective heuristic algorithms can lead to 
gain better initial solutions than the sweep algorithm. 
Furthermore, powerful metaheuristic can be used for 
solving this problem and other versions of HFFO-
VRP. Future projects will focus on working on such 
ideas and making them operational.
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Appendix A.

Best solutions obtained by CG
The best solutions found by the proposed algorithm for the problems are presented in Tables  
1-19. All the calculations have been performed with a precision of 64 bits and the total solution cost is presented 
with three or four decimal places.

Instance 1 Routes Kind of vehicle Cost
1 1-7-8 3 36.262
2 1-6-10-11 3 50.119
3 1-5 1 14.866
4 1-3-4 4 61.745
5 1-2-9 2 28.110
Sum - - 191.102

Instance 2 Routes Kind of vehicle Cost
1 1-10-11-16 1 50.93977564
2 1-13-6-12-3-4 4 108.7786929
3 1-7-15-5-14 3 78.72884492
4 1-2-9-8 2 43.54901829
Sum - - 281.9963

Instance 3 Routes Kind of vehicle Cost
1 1-3-2 3 34.94452747
2 1-17-4-19 3 53.63437012
3 1-7 1 9.219544457
4 1-14-21 2 48.33244534
5 1-6-16 2 36.36848352
6 1-18-13-10-11 4 86.07287612
7 1-8-9-20-5-12 4 96.91824471
8 1-5 4 14.14213562
Sum - - 379.6326

Instance 4 Routes Kind of vehicle Cost
1 1-6-22 3 45.64608577
2 1-11 2 28.600
3 1-3 2 16.01624176
4 1-14-16-21 4 53.19762955
5 1-17-24 1 32.22273631
6 1-18-13-10-26-19-25 3 105.6486204
7 1-7-2 3 42.41666743
8 1-8-9-20-15-12 4 82.380508
9 1-3 1 19.6468827
10 1-5 4 12.02081528
Sum - - 437.7962

Instance 5 Routes Kind of vehicle Cost
1 1-4-17-24 2 45.5984443
2 1-28-14 1 23.22656223
3 1-7-3-29-22 4 63.41043657
4 1-2-23 1 35.30470192
5 1-8-9-20-15-12 4 82.380508
6 1-5-31-30-6-16-21 4 86.41338606
7 1-27-11 3 31.3292963
8 1-18-13-10-26-19-25 4 105.6486204
Sum - - 473.312
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Instance 6 Routes Kind of vehicle Cost
1 1-31-22 1 19.14935811
2 1-3-29-23-2-24-25 2 71.99992496
3 1-27-8-36-20-15-12 3 52.62606364
4 1-5-35-9-14-28-30-6-16-21 3 82.03318409
5 1-7-34-17-4-33-10-26-19 3 79.53758332
6 1-18-13-11-32 2 44.60737999
Sum - - 349.9535

Instance 7 Routes Kind of vehicle Cost
1 1-41-23-3-16 1 52.1982838
2 1-14-7-6-18-17-38-15-39 2 139.0471265
3 1-19-9-8-12-20-37 1 73.52931824
4 1-28-32-11-33-31-21-10-36 2 125.7796298
5 1-2-34-4-25-30-35 1 69.13258122
6 1-29-13-27-22-5-26-40-24 3 141.302948
Sum - - 600.9899

Instance 8 Routes Kind of vehicle Cost
1 1-37-8-20-12 1 80.24315107
2 1-3-16-44-43-14-15-38-39-45-17-7 3 273.1300937
3 1-2-34-4-30-25 1 51.43887377
4 1-29-13-27-41-22-5-26-40-24-23-42 4 153.3682033
5 1-28-32-11-33-31-21-10-36-35 2 117.8604791
Sum - - 676.0408

Instance 9 Routes Kind of vehicle Cost
1 1-15 1 27.80287755
2 1-39 1 26.92582404
3 1-47 2 12.29837388
4 1-25 1 33.13608305
5 1-12 1 29.15475947
6 1-4-19-26 3 56.6872941	
7 1-8-36-20 3 31.70669462
8 1-7-34-2-44-42-43 5 103.267770	
9 1-18-41-45-33-51 5 91.76199689
2 1-31-49-22 4 51.56637333
10 1-5-46-30-6-48-37-38-21 6 168.6069753
11 1-28-14-16 3 41.07187468
12 1-35-9 3 20.4852813	
13 1-27-11-32 4 67.2543306	
14 1-13-40-10 4 45.05302896
15 1-3-29-23 4 57.96477825
16 1-17-50-24 2 42.55449871
Sum - - 907.2988

Instance 10 Routes Kind of vehicle Cost
1 1-21-46-30-38-6-37 1 94.59151952
2 1-47-35-14-28-16-5 1 65.94248802
3 1-18-41-33-45-4-17-50-25 3 62.37450693
4 1-13-40-10-26-51-19 1 51.04362313
5 1-7-34-2-44-43-42-24 1 52.97935262
6 1-27-8-36-9-20-15-12-39-11-32 2 114.3707895
7 1-3-31-49-48-22-29-23 3 66.27947061
Sum - - 507.5818
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Instance 11 Routes Kind of vehicle Cost
1 1-49-27-28 1 49.18808315
2 1-9-32-29 1 37.56681532
3 1-15-25-7-44-24-8 2 136.4414249
4 1-11-6-34-46-16-13 2 150.2146344
5 1-12-39-50-10-17-51-35-31-40 3 143.1569457
6 1-48-19-26-14-42-20-41 3 133.7873043
7 1-5-18-38-45-43 1 47.49518318
8 1-33-2-23-4-21-36-37 2 90.11914556
9 1-47-3-30-22 1 38.22563859
Sum - - 826.1952

Instance 12 Routes Kind of vehicle Cost
1 1-44-24-8-49-27 2 125.1892307
2 1-6-34-46-16-13-38-45-18-43 3 221.9402168
3 1-14-19-26-15-25-7 3 180.3042078
4 1-39-10-22-30 1 43.75622479
5 1-50-11-40 1 39.24908076
6 1-47-12-3-17-51-35-31 3 105.7905219
7 1-28-9-32-294 2 75.30656257
8 1-48-5-42-20-41 2 74.12480107
9 1-33-2-23-21-36-37 2 82.1455313
Sum - 947.8064

Instance 13 Routes Kind of vehicle Cost
1 1-14-16 6 33.561
2 1-27-13-40-10-26-56 3 90.871
3 1-5-31-49-6-30-46-28-53-35-47-9-36-54-15-12-39-11-32 1 390.379
4 1-8-20-55 5 45.383
5 1-52-24-50-25 5 64.040
6 1-7-34-2-44-42-43-23-29-22-48-37-38-21 2 284.046
7 1-18-41-4-45-33-51-19 4 112.274
8 1-3 4 34.945
9 1-17 6 19.416
Sum - - 1074.915

Instance 14 Routes Kind of vehicle Cost
1 1-20-9-47-55-35-53-14-28-58-16-5-21-46-30 2 529.739
2 1-38-6-61 5 74.677
3 1-4-45-19-18-51-33-41-56-26-10-40-13-32-11-59-27-39-12-54 1 830.922
4 1-15 6 27.802
5 1-57-24-17-52-50-25 4 168.043
6 1-22 6 27.294
7 1-7-34-2-44-42-43-23-29 3 148.414
8 1-8-36-60 5 51.558
9 1-3-31-49-48-37 4 78.582
Sum - - 1937.031

Instance 15 Routes Kind of vehicle Cost
1 1-10-40-13-32-11-59-27-39-66-12-54-8-60-15-36-20-9-47-55 1 727.202
2 1-64-57-24 5 55.975
3 1-46-30-49-48-37-61 3 93.873
4 1-35-53-28-14-58-16-6-38-21 4 143.206
5 1-52-50-25-19-51-26-56 3 136.353
6 1-7-63-23 5 41.080
7 1-5-31-3-29-22-62 4 128.298
8 1-18-41-33-45-4-17-34-2-44-42-43-65 2 236.353
Sum - - 1562.34
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Instance 16 Routes Kind of vehicle Cost
1 1-18 6 8.062
2 1-34-64-57-24-17 4 68.869
3 1-5 6 7.071
4 1-63-23-65-43-2-44-7-42 3 168.074
5 1-32 6 37.108
6 1-52-50-25-19-51-26-56 4 86.117
7 1-27-13-41-4-45-33-10-40-59-11-39-66-67-12-54-15-60 1 257.205
8 1-68-35-47-9-53-28-46-30-6-38-21-71-61 2 133.779
9 1-31-49 5 23.528
10 1-55-14-58-16 5 52.377
11 1-69-3-29-62-22-48-37-70 3 91.320
12 1-8-36-20 5 29.064
Sum - - 962.574

Instance 17 Routes Kind of vehicle Cost
1 1-18-51 2 38.60423502
2 1-32 1 37.10795063
3 1-5 2 9.192388155
4 1-22 1 27.29468813
5 1-48-37-72-62 2 82.44826844
6 1-7-34-74-2-44-42-43-65 4 126.5496831
7 1-27-23-41-4-45-33-10-40-73-59-11-39-66-67-12-54-15-60 6 374.1160165
8 1-76-69-3-31-75-29-63-23 4 118.3894944
9 1-64-24-57 2 48.63452897
10 1-68-35-47-53-28-46-30-49-6-38-21-71-61 5 203.3042731
11 1-52-17-50-25-19-26-56 3 132.1757352
12 1-8-36-20-55-14-58-16 3 105.6807833
13 1-9 1 15.8113883
14 1-70 1 37.36308338
Sum - - 1356.673

Instance 18 Routes Kind of vehicle Cost
1 1-41 6 14.142
2 1-31 6 14.318
3 1-75-70 6 38.868
4 1-28-14-55 5 40.348
5 1-52-17-50-25-24-57 4 108.747
6 1-74-23 6 31.661
7 1-27-13-40-10-33-51-19 3 117.933
8 1-59-73-32 5 53.940
9 1-8-36-60 5 51.559
10 1-7-34-64-2-44-42-43-65 3 135.777
11 1-53-81-58-16 5 44.297
12 1-4-45-26-56 5 62.867
13 1-76-5-46-30-49-6-38-21-71-61-72-37-48-22 2 237.586
14 1-69-3-63-29-62 4 75.047
15 1-68-77-35-47-78-9-80-20-79-15-54-12-67-66-39-11 1 250.591
16 1-18 6 8.062
Sum - - 1285.743
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Instance 19 Routes Kind of vehicle Cost
1 1-51 6 29.68
2 1-27 6 6.083
3 1-49 6 20.616
4 1-3 6 14.560
5 1-29 6 24.515
6 1-83-19-26-56 5 74.505
7 1-28-14-55 5 40.348
8 1-8-36-20-79-15-60 4 87.922
9 1-53-81-58-16 5 44.297
10 1-59-73-32 5 53.940
11 1-13-41-40-10-33-45-4 3 111.872
12 1-68-77-35-47-78-9-80-82-54-12-67-66-39-11 1 212.519
13 1-76-69-7-34-74-2-86-44-42-43-65 2 169.280
14 1-31-75-22-48-37-70 4 93.151
15 1-64-85-24-57 5 52.321
16 1-18-52-17-84-50-25 4 74.836
17 1-63-23-62 5 55.418
18 1-5-46-30-6-38-21-71-61-72 3 129.714
Sum - - 1295.577
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