
Department of Computer Systems and Computation
Polytechnic University of Valencia

Text similarity by using
GloVe word vector representations

MASTER'S THESIS

Master's Degree in Artificial Intelligence, Pattern Recognition and
Digital Imaging

Author: Iván Sánchez Rodríguez

Tutor: Encarna Segarra Soriano
Lluís Felip Hurtado Oliver

Course 2016-2017

Resumen
Los word embeddings son representaciones de palabras en forma de vector que

permiten mantener cierta información semántica de estas. Existen diferentes ma-
neras de aprovechar la información semántica que las palabras tienen, así como
también existen diferentes maneras de generar los vectores de palabras que re-
presentan dichas palabras (por ejemplo, los modelos Word2Vec frente al mode-
lo GloVe). Si se usa la información que los word embeddings capturan, se pueden
construir aproximaciones para comparar información semántica entre frases o in-
cluso documentos, en lugar de palabras. En este proyecto, proponemos el uso de
la herramienta GloVe, presentada por la Universidad de Stanford, para entrenar
representaciones vectoriales de palabras en español, así como su uso para com-
parar diferencias semánticas entre frases en español y comparar el rendimiento
frente a resultados previos en los que otros modelos fueron utilizados, por ejem-
plo, Word2Vec.

Palabras clave: Similitud entre frases, Global Vectors, GloVe, representación vec-
torial de frases, diferencia semántica, similitud semántica, vectores de palabras
en español, similitud entre textos.

Abstract
Word embeddings are word representations in the form of vectors that al-

low to maintain certain semantic information of the words. There exist different
ways of taking profit of the semantic information the words have, as there exist
different ways of generating the word vectors that represent those words (e.g.
Word2Vec model vs. GloVe model). By using the semantic information the word
embeddings capture, we can build approximations to compare semantic infor-
mation between phrases or even documents instead of words. In this project,
we propose the use of the GloVe tool, presented by Stanford University, to train
Spanish word embeddings, use them to compare semantic differences between
Spanish phrases and compare the accuracy of the system with prior results in
which other models were used, for example, Word2Vec.

Key words: Phrase similarity, Global Vectors, GloVe, phrase embeddings, seman-
tic difference, spanish word embeddings, text similarity, word embeddings, word
vector representations.

iii

Contents

Contents v
List of Figures vii
List of Tables vii

1 Introduction 1
1.1 Motivation . 3
1.2 Objectives . 3
1.3 Structure of the report . 4

2 Related work 5
2.1 Classification of the task and methods 5

2.1.1 String-Based Similarity . 5
2.1.2 Corpus-Based Similarity . 7
2.1.3 Knowledge-Based Similarity 8
2.1.4 Description of the SemEval 2015 Task on Semantic Text Sim-

ilarity . 9
2.2 State-of-the-art systems in Spanish text similarity 11

2.2.1 Best systems of SemEval 2015 11
2.2.2 Other state-of-the-art systems based on word embeddings . 12

3 Tools and methods for learning word embeddings 15
3.1 Word2Vec . 15

3.1.1 Feedforward Neural Net Language Model (NNLM) 15
3.1.2 Hierarchical Softmax . 16
3.1.3 Continuous Bag-of-Words Model 16
3.1.4 Continuous Skip-gram Model 16

3.2 GloVe: Global Vectors . 17
3.2.1 Co-occurrence probability ratios 18
3.2.2 Weighted least squares regression model and cost function . 18
3.2.3 GloVe method summarized 19

3.3 Comparison between Word2Vec and GloVe models 19
4 Experimentation.

Method and evaluation 21
4.1 Experiment description and setup . 21
4.2 Experiment results . 25
4.3 Analysis and comparison of results 25

5 Further experimentation 27
5.1 Increasing training iterations . 27
5.2 COMB method using all six similarity measures 28
5.3 Vector Aggregation without stop words 29

5.3.1 COMB method with Vector Aggregation without stop words 29

v

vi CONTENTS

5.4 Exploring the Combinatorial Space of the COMB method 30
6 Final conclusions and future work 33

6.1 Final conclusions . 33
6.2 Future work . 34

Bibliography 35

Appendix
A Auxiliar scripts 41

A.1 remove_tokens.py . 41
A.2 experiment.py . 43

List of Figures

2.1 String-Based Similarity Measures . 6
2.2 Corpus-Based Similarity Measures 8
2.3 Knowledge-Based Similarity Measures 9

3.1 Representation of the architecture of CBOW model 17
3.2 Representation of the architecture of Skip-gram model 18

5.1 GloVe: Decreasing cost function value as iterations go through . . . 28

List of Tables

2.1 Examples of pairs of phrases from the evaluation set with their re-
spective target value. 10

2.2 Results of the runs of the best three teams of the Spanish STS of the
Task 2 of SemEval 2015 . 12

2.3 Best run per team . 12
2.4 Results of López Solaz, Tomás, et al. [47], compared with ExBThemis 13

4.1 Short summary of the used corpora 22
4.2 Results of every similarity measure for the Training set (Model 1) . 25
4.3 Results of every similarity measure for the Training set (Model 2) . 25
4.4 Comparison of our results (Model 1) with the teams at SemEval

2015 and [47] . 26
4.5 Comparison of our results (Model 2) with the teams at SemEval

2015 and [47] . 26

5.1 Comparison between Model 1 trained with 20 and 50 iterations . . 27
5.2 Comparison between the results of the original combination method

and the improved combination method 28
5.3 List of the Spanish stop words provided in the NLTK Corpus 29
5.4 Comparison between VA-NoSW methods with their respective VA

method . 29
5.5 Comparison between the original combination method and the com-

bination method of all the similarities 30
5.6 Comparison between the best combination and COMB-8 30

vii

viii LIST OF TABLES

5.7 Examples of the results of our best system for the pairs of phrases
shown before. 31

CHAPTER 1

Introduction

Computational Linguistics (CL) is the field of Computer Science that aims to
model the human natural language in order to automatically treat digital text
to accomplish an innumerable amount of tasks that are related to text process-
ing, analysis, synthesis, and calculations of text characteristics that are involved
in other problems, such as semantic parsing, text similarity, answer selection, etc.

From the view of CL, generally, every problem is related to some sort of
linguistic representation, ideally, digital text. Texts are made of atomic pieces,
known as words. Practically, a word is the linguistic unit, that generally pos-
sesses an intrinsic meaning (i.e. it expresses something) that grouped in conjunc-
tion with other words by following a set of grammatical rules, makes a sentence,
building a more complex idea. Technically, in text, a word is a set of characters
delimited by a blank space or a punctuation mark.

As in every other Computer Science field, all data to be processed must first
become encoded in order to be understandable by the computer. In the case of
CL, there are several ways of encoding words [72, 53], depending on several fac-
tors, that have relative advantages and disadvantages. For example, we can rep-
resent a text with a Bag of Words (BoW) model: in this case, the words take the
shape of a bit, that can have the value of 0 or 1 depending on the presence of that
word in the text. Nevertheless, one of the potential downsides of the BoW model
is that it does not capture the meaning of the words since it only takes into ac-
count if that word appears in a given text. Another example, more related to this
project is the representation of words known as word embeddings. Word embed-
dings are n-dimensional vectors of real values that are built with a large corpus
of plain text. One of the main characteristics of word embeddings that make it
special is the capability of keeping a relative meaning of the words, and that has
opened up a whole world in text representation and processing.

However, the ideal way of representing text generally depends on the problem
and its nature. In the field of CL, there is a broad set of different problems and
challenges that require different representations of text to be tackled. Some well-
known problems related to the field of CL are the following:

1

2 Introduction

• Word Sense Disambiguation (WSD): Given a polysemic word in an arbitrary
text, determine the meaning of the word [59].

• Part-of-speech Tagging (PoS Tagging): Given a text, determine the parts of
speech pertaining to each word (e.g. verb, noun, adjective, etc.) [27].

• Cross-language Information Retrieval (CLIR): Given an Information Retrieval
system and a query, process the query to be able to obtain potential results
to the query in different languages [60].

• Metonymy Resolution: Given a piece of text, find all the metonymies and
classify them into the correspondent type of metonymy [50].

• Named-entity recognition (NER): Given a text, find entities (i.e. persons,
companies, places) and classify them into their respective class [57].

• Semantic Dependency Parsing (SDP): Given a sentence, recover sentence-
internal predicate–argument relationships for all content words [61].

• Semantic Role Labeling: Given a sentence, find semantic arguments associ-
ated with the predicate or the verb and classify them into a set of specific
roles [18].

• Sentiment Analysis: Given a text, identify sentiment related characteristics,
such as polarity, attitude and emotions to classify it as a positive, negative
or neutral opinion [41].

• Commonsense Reasoning: Given a text, generate assumptions and practical
inferences of non-existent explicit information [42].

• Lexical Simplification: Given a text, replace words and/or short phrases
(generally by synonyms) in order to make it simpler so it can be understood
by a wider range of readers [73].

• Plagiarism Detection: Given two texts, determine if the compared text is a
plagiarism of the source text or calculate a plagiarism score between the two
texts [64].

• Text Classification: Given a text and a set of possible topics, classify the text
into the correspondent topic [49].

• Author Profiling: Given a text, identify who is the author (from a given
set of possible authors), or infer certain characteristics of the author, such
as gender, age, personality, language variety, ideological or organizational
affiliation, etc. [69]

• Semantic Text Similarity: Given two texts, calculate a semantic similarity
score between the two texts [26].

Most, if not all of these problems have been presented in different ways in
tasks of SemEval1, which is an ongoing series of evaluations of computational se-
mantic analysis systems in which researchers and research groups can participate

1https://www.aclweb.org/aclwiki/index.php?title=SemEval_Portal

1.1 Motivation 3

in order to solve a task related to CL, and, in the end, a ranking of all submitted
systems following some performance metrics (depending on each task) is pre-
sented in order to compare all the systems.

In this project, we are going to introduce and tackle the task of Semantic Text
Similarity for the Spanish language by using word embeddings generated with
the Stanford tool GloVe2. Also, we will compare the results with similar work
in which other methods of calculating the word embeddings have been used
(Word2Vec) in order to find differences between distinct word embedding tools
and models, and finally, given the word embeddings obtained with GloVe, deter-
mine if improvements can be made by slightly modifying the methods that best
work using Word2Vec embeddings to calculate phrase-level semantic similarity.

1.1 Motivation

As [24] introduces, supposing that a practical and valid method of calculating the
semantic difference between two short texts exists, there are many applications
in Natural Language Processing (NLP) that can take advantage of it. For exam-
ple, in the field of information retrieval and image retrieval from the Web, one
of the best techniques for improving retrieval effectiveness is by using semantic
similarity [63].
The use of text similarity is also useful for boosting accuracy results in relevance
feedback and text categorization [30, 43], as for methods for automatic evalua-
tion of machine translation [44, 62], evaluation of text coherence [75, 35], word
sense disambiguation [37, 71], formatted documents classification [75] and text
summarization [15, 39]. Also, it has been proved that for data sharing systems
such as federated databases, message passing or data integration systems, web
services, data management systems, etc., lexical and syntactical differences be-
tween shared variables can be solved by using semantic text similarity [48].
Semantic text similarity can also be used to build a text similarity join operator,
that can be used to join two relations if their join attributes are textually similar
to each other, which can be useful in several domains, such as integration of data
from heterogeneous resources, mining of data, cleansing of data, etc. [14]

1.2 Objectives

The objective of this thesis is to determine and prove whether a system using
word embeddings generated with GloVe can perform better than state-of-the-art
systems that use the collection of models Word2Vec to build the word vector rep-
resentations for their final use in the field of text similarity. We compare both
methods (GloVe and Word2Vec) in several ways in order to determine which as-
pects of the word embeddings are different for the task of semantic text similarity.
After analyzing the results, we also aim to use the currently generated word em-
beddings with GloVe in several different ways to improve the performance of our
model.

2https://nlp.stanford.edu/projects/glove/

4 Introduction

1.3 Structure of the report

This report is structured as follows. The next chapter (chapter 2) is focused on
related work, especially, previous work made by the professors of the University
of Sevilla, that is closely related to the work of this thesis, as the main objective
of this thesis is to reproduce their approximation of [47] but using word embed-
dings generated with GloVe in order to compare the used tools.
Chapter 3 introduces the two most famous tools to build word embeddings:
Word2Vec and GloVe; in this chapter, a simple description of each tool/method
is explained and a comparison between the two is made in order to understand
the main differences between the two.
In Chapter 4, that is the most extensive, we explain the setup of our experiment
and the steps made to reproduce [47] with GloVe. Also, in Chapter 4, we compare
the results obtained.
In Chapter 5, we discuss some variations of the experiment explained in Chapter
4 and compare the result of all the different experiments.
Finally, in Chapter 6, we conclude the thesis making some final conclusions and
establishing some possibilities of future work.

CHAPTER 2

Related work

This chapter discusses prior related work and research made in the field of se-
mantic text similarity. Firstly, a classification of the tackled task is made, along
with the already existing methods to solve the challenge. We also introduce the
different classes these methods can belong to. Secondly, we are going to mention
three systems that are the state of the art in this task and then, we are going to
reference and explain the adaptation made in [47] in order to obtain state-of-the-
art results with their system for this task, but for Spanish texts, as our approach
is closely related to their work.

2.1 Classification of the task and methods

As already stated, finding the similarity between words is elemental to calculate
the similarity between sentences, paragraphs, and documents. There are two
kinds of similarity between words: lexical similarity and semantic similarity. Two
words are lexically similar if they are built using a similar sequence of characters.
Two words are semantically similar if they mean similar things, are opposite of
each other, one is a type of the other, used in a similar way, or are in the same
context [19].

While lexical similarity can be calculated through String-Based algorithms,
semantic similarity is calculated using Corpus-Based algorithms or Knowledge-
Based algorithms. String-Based algorithms ensure that a string comparison met-
ric is used in order to compare the similarity of the different sequences of char-
acters. Corpus-Based algorithms measure the semantic similarity of words using
information gathered in a large corpus, and Knowledge-Based algorithms cal-
culate the semantic similarity between words using information obtained from
semantic networks.

2.1.1. String-Based Similarity

String-Based similarity measures focus on the comparison between the string that
delimits the two segments of text being compared. There are two sub-types of
string comparison, one is Character-Based and the other is Term-Based. Character-
Based similarity compares the sequence of characters of the segments of text (i.e.

5

6 Related work

the letters of the words), while Term-Based similarity compares the blocks of the
segments of texts (i.e. the words of the texts).

In the first group [19] lay the Longest Common Substring (LCS) algorithm,
the Jaro Method [25] used in record linkage, Damerau-Levenshtein algorithm
[20], Needleman-Wunsch and Smith-Waterman algorithms, used in bioinformat-
ics; and character N-grams, where the distance can be calculated by dividing the
number of similar n-grams by the total number of n-grams [5].
In the second group [19] we can find the Manhattan Distance, Cosine Similar-
ity, Dice's Coefficient, Euclidean Distance, Jaccard Similarity, Matching Coeffi-
cient and Overlap Coefficient. A schematic representation of the classification of
String-Based algorithms is represented in the Figure 2.1 [19].

Figure 2.1: String-Based Similarity Measures

2.1 Classification of the task and methods 7

2.1.2. Corpus-Based Similarity

Corpus-Based algorithms measure the semantic similarity of words using infor-
mation gathered in a large corpus. The next methods fall into this category of
similarity computation methods:

• Hyperspace Analogue to Language (HAL)[46, 45] is a method in which
a square matrix of size N is created, where N is the number of distinct
terms that appear in the training corpus. Then, a sliding window is passed
through the text, counting how many times each word (columns) appears in
the context of the currently evaluated word (row), and adding a value (that
is weighted depending on the distance to the currently evaluated word in-
side the window) to the count in the matrix every time the words are in the
same context.

• Latent Semantic Analysis (LSA)[34] is the most popular form of Corpus-
Based Similarity. In this technique, the assumption of the distributional hy-
pothesis is made, meaning that words that are close in meaning will occur in
similar pieces of text. Similarly to HAL, a matrix is constructed from a large
piece of text (corpus) taking into account the cooccurrences inside a de-
fined context (usually, a sliding window). Then, a mathematical technique
called singular value decomposition (SVD) is used to reduce the number of
columns while preserving the similarity structure among rows, leaving the
word vectors as rows in the matrix.

• Generalized Latent Semantic Analysis (GLSA)[51] is a framework for cal-
culating semantic term and document vectors [19]. It amplifies the LSA
method by focusing on term vectors instead of the dual document-term
representation. GLSA demands a specification of the semantic association
between the terms (e.g. a context; given, for example, by a sliding window)
and a method of dimensionality reduction (e.g. SVD, like in LSA; PCA,
LDA, etc.).

• Explicit Semantic Analysis (ESA)[17] is a measure to compare two arbi-
trary texts. One famous approach is the Wikipedia-Based technique, which
represents texts or words as high-dimensional vectors and each vector entry
represents the TF-IDF weight between the term and one Wikipedia article.
In this way, there is a manner of representing the meaning of the word by
calculating how important is this word in each Wikipedia article.
The multilingual generalization of this technique is known as cross-language
explicit semantic analysis (CL-ESA) [68].

• Pointwise Mutual Information - Information Retrieval (PMI-IR)[74] uses
AltaVista's Advanced Search system to calculate probabilities that two words
appear close to each other in a web, which translates into a semantic similar-
ity. The Second-order co-occurrence pointwise mutual information (SOC-
PMI) [23] first calculates the PMI-IR to sort the list of important semanti-
cally close words of both target words. Then, it calculates the similarity
between the two sets of sorted words to better determine the similarity of
two words that do not co-occur frequently.

8 Related work

• Normalized Google Distance (NGD) [12] is derived from the number of
hits returned by the Google search engine after doing a query with the key-
words of which the similarity has to be calculated.

• Extracting DIStributionally similar words using CO-occurrences (DISCO)
[32, 31] is also based in the distributional hypothesis and a sliding window.
The similarities are based on the statistical analysis of very large text col-
lections. This method has two similarity measures: DISCO1 and DISCO2.
Similarly to PMI-IR and SOC-PMI, DISCO1 is the first order similarity be-
tween two words, while DISCO2 is the second-order similarity between two
words, that is calculated using the results of DISCO1 to perform the simi-
larity measures between the set of closest words to each of the two input
words.

A schematic representation of the classification of Corpus-Based algorithms is
represented in the Figure 2.2 [19].

Figure 2.2: Corpus-Based Similarity Measures

2.1.3. Knowledge-Based Similarity

Knowledge-based algorithms calculate the semantic similarity between words
using information obtained from semantic networks. One well-known semantic
network is WordNet [54]. WordNet is a large lexical database of English nouns,
verbs, adjectives and adverbs, that are grouped into sets of synonyms (known as
synsets). Synsets can also be considered sets of semantically related words.

Knowledge-based algorithms can be divided into two groups [19]: measures
of semantic similarity and measures of semantic relatedness. The former cov-
ers much more senses of relatedness than the latter, as semantic similarity takes

2.1 Classification of the task and methods 9

into account relations such as is-a-kind-of, is-a-specific-example-of, is-a-part-of,
is-the-opposite-of [66].

Inside the semantic similarity class just described, there are two subgroups:
methods based on information content, such as Resnik (res) [70], Lin (lin) [40]
and Jiang & Conrath (jcn) [26], pertain to one group, while methods based on
path length, such as Leacock & Chodorow (lch) [36], Wu & Palmer (wup) [77]
and Path Length (path) [38], pertain to the other group.
In the semantic relatedness class, three similarity measures can be found: St.Onge
(hso) [22], Lesk (lesk) [2] and vector pairs (vector) [65].

A schematic representation of the classification of Knowledge-Based algo-
rithms is represented in the Figure 2.3 [19].

Figure 2.3: Knowledge-Based Similarity Measures

2.1.4. Description of the SemEval 2015 Task on Semantic Text
Similarity

In this task, the submitted systems had to compute how similar were two sen-
tences of text, by returning a similarity score between 0 and 4. The similarity
score 0 means that the similarity between the sentences is null, in other words,
it means that there is no semantic relation between the two sentences at all. The
similarity score 4 means that the sentences are semantically equivalent. To evalu-
ate the systems, an evaluation set of pairs of sentences was used with human an-
notations (also known as ground truth or Gold Standard annotations in SemEval)
of the similarity score. The Gold Standard annotations were created calculating
the mean of the annotations of different expert judges in semantic text similarity.

10 Related work

Some examples of input pairs of phrases and target values can be found in
table 2.1.

Compared pair of phrases Target value
El espécimen es excepcional por las partes conservadas: un cráneo y mandíbula y un molde interno de la caja craneal.
El espécimen comprende la mayor parte de la cara y mandíbula con los dientes y un molde interno de la caja craneal. 4

Time “100´´ es una lista de las 100 personas más influyentes según la revista Time.
La primera lista fue publicada en 1999 con las 100 personas más infuyentes del siglo 20. 3

La “marinera´´ es un baile de pareja suelto, el más conocido de la costa del Perú.
La marinera es el baile nacional del Perú, y su ejecución busca hacerse con derroche de gracia, picardía y destreza. 2

La “cripta de Santa Leocadia´´ está situada en el interior de la catedral de Oviedo, Asturias.
Esteban Báthory fue sepultado en la cripta de la catedral de Wawel en Cracovia. 1

El río atraviesa la importante ciudad de Puebla de Zaragoza, la cuarta más poblada del país.
El “Grêmio Esportivo Bagé´´ es un club de fútbol brasileño, de la ciudad de Bagé en el estado de Rio Grande do Sul. 0

Table 2.1: Examples of pairs of phrases from the evaluation set with their respective
target value.

Evaluation of the systems

The final evaluation was made by using the commonly used metric in semantic
text similarity tasks: the Pearson Correlation Coefficient (PCC), also known as
Pearson r, linear or product-moment correlation.
The PCC between two vectors of real values, x and y is defined [6] as:

r(x, y) = ∑i(xi − x̄)(yi − ȳ)√
∑i(xi − x̄)2

√
∑i(yi − ȳ)2

(2.1)

One important property of PCC is that:

−1 ≤ r(x, y) ≤ 1 (2.2)

x and y can be considered two ordered lists of real numbers, where x0 is re-
lated to y0, x1 is related to y1, and so on. In that case, the value r(x, y) calculates
the linearity between the values of x and y. If the linearity is total (i.e. r(x, y) = 1),
it means that x is a linear combination of y or vice versa. If the linearity is nonex-
istent (i.e. r(x, y) = 0), it means that there is absolutely no relation between the
behavior of x and y. If the linearity is inverse (i.e. −1 ≤ r(x, y) ≤ 0), it means that
x is inversely proportional to y, i.e. one increases as the one decreases, propor-
tionally. If the linearity is relatively strong (i.e. 0.6 < r(x, y)), it means that there
is some relationship (higher relationship the higher the value of r(x, y)) between
the variables in x and the variables in y.
In the case of semantic text similarity, PCC is useful to calculate the grade of lin-
earity between the ground truth and the predictions the system makes. The better
PCC, the more the predictions fit the ground truth, hence, the better the system
is predicting the real similarity value between the texts. Therefore, the objective
is to build a system which predictions, paired with the gold standard values of
similarity, returns the PCC as close to 1 as possible.

2.2 State-of-the-art systems in Spanish text similarity 11

Classification of the task

Given the introduction to the different methods of calculating the similarity be-
tween texts, we can classify (and will confirm it in chapter 4) that our approach
to this task is based on a Corpus-Based Similarity approach.

2.2 State-of-the-art systems in Spanish text simi-
larity

The majority of recent contributions in the field of semantic text similarity comes
from the participation of research groups in the related tasks of SemEval. Thanks
to the work of these groups, a lot of techniques, ideas, and even frameworks have
emerged to help develop text similarity systems. One example of an open source
framework for text similarity is DKPro Similarity [3].

In this section, three state-of-the-art systems that showed the best performance
in the results of the Spanish Text Similarity task of SemEval 2015 [1] will be de-
scribed. Then, one last system presented by the professors of the University of
Sevilla [47] that has achieved a better performance than the best system of Se-
mEval 2015 will be introduced. As we will describe in the evaluation part of
Chapter 4, the metric used in this task for the evaluation is the Pearson Correla-
tion Coefficient.

2.2.1. Best systems of SemEval 2015

The three best groups of SemEval 2015 were ExB Themis [21], UMDuluth-BlueTeam
[28] and RTM-DCU [10], that ended being first, second and third in the rank, re-
spectively.
ExB Themis joins three techniques: vector representation of texts through BOW,
sequential alignment with the help of similarity techniques, and the use of ma-
chine learning to combine the different calculated metrics.
UMDuluth-BlueTeam takes a system previously used for the English language
task and utilizes the Google Translator in order to translate the inputs for their
system. The main idea of this system is to build an alignment system based on
different metrics such as proportionality, number of adjectives, verbs, nouns, etc.;
and the size of the texts.
RTM-DCU submitted a system based on Referential Translation Machines, which
is founded on how similar are the two texts being compared when they are trans-
lated into another language.

While ExBThemis and RTM-DCU submitted three runs, UMDuluth-BlueTeam
only submitted one. The ExBThemis system was clearly the best, obtaining more
than 10 points more than the second best system, UMDuluth-BlueTeam. The re-
sults of all the runs submitted for each system and the ranking of the teams de-
pending on the best run are shown in Table 2.2 and Table 2.3 respectively.

12 Related work

System Pearson Rank
ExBThemis-trainMini 0.70550 1
ExBThemis-trainEs 0.70545 2
ExBThemis-trainEn 0.67630 3
UMDuluth-BlueTeam-run1 0.59364 4
RTM-DCU-1stST.tree 0.58233 5
RTM-DCU-2ndST.rr 0.58233 6
RTM-DCU-3rdST.SVR 0.58233 7

Table 2.2: Results of the runs of the best three teams of the Spanish STS of the Task 2 of
SemEval 2015

Team Pearson Rank
ExBThemis 0.70550 1
UMDuluth-BlueTeam 0.59364 2
RTM-DCU 0.58233 3

Table 2.3: Best run per team

2.2.2. Other state-of-the-art systems based on word embeddings

Word embeddings are used in a lot of systems for different purposes, for exam-
ple, they have been used in different manners for Phrase-Based Machine Transla-
tion [78], calculating document distances [33], learn semantic hierarchies [16], im-
prove document ranking [58], speech recognition [7], information retrieval [13],
clinical abbreviation disambiguation [76], etc. One of the main uses of word em-
beddings is to calculate the similarity between texts, as they are enough powerful
they can yield good results by being used without any additional external infor-
mation, as can be seen in [29, 47].
In [29], the authors aim to make as few assumptions as possible and to build a
generic model that requires no prior knowledge of the natural language (such as
parse trees) and no external resources of structured semantic information.
In [47], the authors aim to improve the best results of SemEval 2015 by only us-
ing word embeddings. In both approaches, it is clear that the only resource of
data is the huge amount of unlabeled text data extracted from the web (mainly
Wikipedia), which is an appealing characteristic of the model, since this kind of
data not expensive to obtain.
Our objective is to take [47] as our main reference and reproduce their approach
using GloVe word embeddings and see if their results can be improved, therefore,
we proceed to make a detailed explanation of the approach taken by them.

The authors of [47] describe a method that is built by combining several simi-
larity indicators based on word embeddings to calculate similarities between the
words of the phrases. The first two indicators are obtained doing word vector ag-
gregation to build phrase embeddings from word embeddings, and then, calcu-
lating two simple distances between phrase embeddings by using the Euclidean
distance and the cosine similarity. The third indicator is obtained doing an align-
ment of the phrases that are being compared and using word embeddings to
make the alignment of the words that cannot be matched directly. To combine

2.2 State-of-the-art systems in Spanish text similarity 13

the indicators, a method based on supervised machine learning for regression is
used.

There were two models trained in order to get the word embeddings, the
Model 1, which was trained by only using the Spanish Wikipedia1, and the Model
2, that was trained by adding Europarl 2 and Ancora-ES 3 corpora as training in-
put for the estimation of the word embeddings. This estimation was made using
the tool Word2Vec. Word vectors of 300 dimensions were generated, the number
of iterations was 20, and the option negative sample was used to remove noise
words. The training set consisted of 324 pairs of sentences for training and 251
pairs of sentences for evaluation. The training split corresponds to the test split
of Task 10 of SemEval 2014 “Multilingual Semantic Textual Similarity”. The test
split corresponds to the test split of Task 2 of SemEval 2015 “Semantic Textual
Similarity”. The results of the experiments are shown in the Table 2.4

System Pearson ∆
ExB Themis 0.706 -
Euclidean distance [E] (Model 1) 0.509 -19.7
Euclidean distance [E] (Model 2) 0.642 -6.4
Cosine similarity [C] (Model 1) 0.467 -23.9
Cosine similarity [C] (Model 2) 0.646 -5.9
Alignment [A] (Model 1) 0.692 -1.4
Alignment [A] (Model 2) 0.687 -1.8
Combined [E+C+A] (Model 1) 0.713 0.7
Combined [E+C+A] (Model 2) 0.723 1.8

Table 2.4: Results of López Solaz, Tomás, et al. [47], compared with ExBThemis

In table 2.4, the column ∆ represents the absolute improvement of the cor-
respondent method (given by the row) with respect to the best SemEval 2015
system, ExB Themis.

1https://dumps.wikimedia.org/eswiki/latest/
2http://www.statmt.org/europarl/
3http://clic.ub.edu/corpus/

CHAPTER 3

Tools and methods for learning
word embeddings

This chapter focuses on two of the most famous existing methods to unsupervis-
edly learn word embeddings from large corpora, that are Word2Vec and GloVe.
There are way more than two methods for estimating continuous representations
of words; a couple of well-known classic examples are Latent Semantic Analy-
sis (LSA) and Latent Dirichlet Allocation (LDA). However, the main downside of
this methods is the high computational cost, since they must be estimated from
a large corpus, and the operations made in order to estimate the vectors are not
scalable enough. That is the reason for the popularity of Word2Vec models from
[52]. In this paper of 2013, Mikolov et al. presented a novel efficient way of
calculating continuous word vector representations and developed software that
implemented the models that are explained in their paper, giving to the scientific
community a valuable tool to keep investigating on word embeddings. From that
time, other efficient methods of unsupervisedly estimating word vectors have
grown in the scientific community, and one of the most famous is GloVe, that
stands for Global Vectors, and is a model created by the professors of the Univer-
sity of Stanford, and described in their paper [67].

3.1 Word2Vec

The intuitive idea behind Word2Vec models is to train deep neural networks in
order to predict the context given a word, and vice versa. The model to predict the
context [..., w(t− 2), w(t− 1), w(t+ 1), w(t+ 2), ...] given a word w(t) is known as
the Skip-gram model, while the model to predict the word that goes in the middle
given the context is known as the Continuous Bag of Words (CBOW) model. The
figures 3.1 and 3.2 show the architecture of both models.

3.1.1. Feedforward Neural Net Language Model (NNLM)

While the Skip-gram model is based on the CBOW model, the CBOW model
is based on the Feedforward Neural Net Language Model (NNLM), which was
originally introduced by Bengio et al. in [8]. The probabilistic feedforward neural
network language model is a deep neural network model of four layers: input (I),

15

16 Tools and methods for learning word embeddings

projection (P), hidden (H) and output (O). The input layer (I) takes the N previous
words in 1-of-V encoding, V being the size of the vocabulary. Then, a projection
using the shared projection matrix encoded by the projection layer (P) is made.
After that, the hidden layer (H) computes the probability distribution over all the
words in the vocabulary and with the help of a softmax activation function, the
output layer (O) shows the probability of each word being the next one.

The literature specifies that the dominating term of the cost function resides
in the size of the vocabulary, V, because the output layer size increases as V in-
creases and the softmax function gets harder to compute; and H, that is the hid-
den layer size, that depends on the chosen value of N (the context, that usually is
N = 10), but normally, H ranges from 500 to 2000.

3.1.2. Hierarchical Softmax

There are solutions to significantly reduce the computational cost of the output
probability. The most used method is to use the hierarchical variation of the soft-
max function [56, 55]. The hierarchical softmax is founded on the idea of build-
ing a Huffman tree based on word frequencies, meaning that the most frequent
word is the one with the shortest path from the root to the leaf that represents
the word itself. The normalization of the probabilities of each target word is cal-
culated by continuously multiplying prior calculated probabilities of the tree (i.e.
the probability of the branches), and this reduces the complexity from H × V to
log2(V)× H.

3.1.3. Continuous Bag-of-Words Model

The Continuous Bag-of-Words model, known as CBOW model is a model de-
rived from the NNLM model, but in this case, the non-linear hidden layer (H)
is removed so the projection layer is shared for all words of the context. In the
CBOW model, the position of the words does not influence the projection, and
that is why it is called a bag-of-words model. This model is used to predict the
word given the context.

3.1.4. Continuous Skip-gram Model

The Continuous Skip-gram Model (or simply Skip-gram model, SG) is based on
the CBOW model, but it aims to adjust its parameters to try to maximize the
classification of the current word given a context. If we consider the conditional
probability p(c|w), the goal of the SG model is to calculate the parameters θ of
the distribution, p(c|w; θ), that maximize the probability of the corpus:

arg max
θ

∏
w∈Text

[
∏

c∈C(w)

p(c|w; θ)

]
(3.1)

3.2 GloVe: Global Vectors 17

Figure 3.1: Representation of the architecture of CBOW model

that can also be represented as:

arg max
θ

∏
(w,c)∈D

p(c|w; θ) (3.2)

where D is the set of all word-context pairs in the corpus.

To do this, each current word is used as input to a log-linear classifier with
a continuous projection layer in order to predict words that are near the center
(current) word within a range.

3.2 GloVe: Global Vectors

The intuitive idea behind GloVe model is to build a very big matrix, X, of co-
occurrence words from a corpus. Each cell of the matrix, Xij represents how many
times has the row word, wi, appeared in some context, cj. By doing a simple nor-
malization of the values for each row of the matrix, we can obtain the probability
distribution of every context given a word. Once the probabilities have been cal-
culated, the relationship between words can be calculated by doing the ratio be-
tween the probabilities of the context given those two words. For example, given
two random contexts formed by only one word, dog and teapot, and a target word
tail, we expect P(“dog”|“tail”) to be higher than P(“teapot”|“tail”), therefore, we
expect the ratio P(“dog”|“tail”)

P(“teapot”|“tail”) to be greater than 1. In the same way, the ratio be-
tween the probabilities of two similar contexts (with respect to probability) tends
to be close to 1.

18 Tools and methods for learning word embeddings

Figure 3.2: Representation of the architecture of Skip-gram model

3.2.1. Co-occurrence probability ratios

Given this reasoning, the first step of the creation of the word vectors is to use the
ratios instead of the raw probabilities, so given the words i, j and k, the ratio

Pij
Pik

can be expressed in the terms of those words:

F(wi, wj, w̃k) =
Pij

Pik
(3.3)

where the probabilities and therefore the ratios are extracted from the corpus
and the left-hand side of the equation may depend on some parameters. As the
authors state, the number of possibilities for F is big, but taking several assump-
tions and derivations, they end up with a soft constraint to the matrix values that
define the word vectors:

−→w T
i
−→w j + bi + bj = logXij (3.4)

3.2.2. Weighted least squares regression model and cost function

But there is a major problem with this formulation, that is that it it weighs all
co-occurrences equally, so the result word vectors y very sensitive to noise, so
the authors propose a weighted least squares regression model that takes into

3.3 Comparison between Word2Vec and GloVe models 19

account the noise by adding weight to each term of the function. The cost function
of the model is expressed as:

J =
V

∑
i,j=1

f
(

Xij

)(
wT

i w̃j + bi + b̃j − logXij

)2
(3.5)

and by taking a function f that does not skew the objective with the presence
of values that are distinctively high:

f (x) =

{
(x/xmax)α if x < xmax

1 otherwise
(3.6)

so, when a pair of words that are extremely common is found (i.e. Xij > xmax),
the function cuts it off and returns 1. In the other case, the function returns a value
in the range (0, 1) that is weighted by the value of α, which is demonstrated to
give the best performance outputs when α = 3/4.

Finally, by means of gradient descent and calculating the derivative of the
cost function with respect to the important parameters (wi, wj, bi, bj), the values
of the vectors get rectified through iterations until the cost function reaches a local
minimum and the vectors reach a state of convergence.

3.2.3. GloVe method summarized

The algorithm of the GloVe tool acts as follows:

1. Given a vocabulary, a corpus, a window size (N) and a minimum co-occurrence
count, the algorithm takes a sliding window of size N and passes it through
the entire corpus, counting the co-occurrences of every word with every
other word. The result is the sparse matrix Xij.

2. Initialization of the model parameters. Those are the word vector matrix W
of size (V × D, where V denotes the size of the vocabulary and D denotes
the specified vector dimensions; and a vector of bias for each term. Each
term is initiated randomly in the range of (−0.5, 0.5)

3. The co-occurrences are shuffled and the algorithm calculates the cost func-
tion associated with the initial phase of the algorithm.

4. For each iteration, gradients of the cost function J are derived with respect
to the parameters and the parameters are updated accordingly to a learning
rate.

3.3 Comparison between Word2Vec and GloVe mod-
els

Despite both Word2Vec and GloVe models outputs are the estimated word vec-
tors, it is clearly visible that the two methods are far from being similar. Although

20 Tools and methods for learning word embeddings

there are some parts of the methods that are similar, such as the pass of the slid-
ing window over the text or the use of some gradient descent method to adjust
parameters, the basis on which the two methods are founded are completely dif-
ferent.

While Word2Vec is a predictive model, GloVe is a count-based model [11, 4].
On the one hand, Word2Vec seeks to maximize the log-likelihood of the probabil-
ities of the corpus (i.e. the words and their contexts) given the model parameters
(i.e. the word vectors, θ). This is done by learning the vectors with the help of a
learning algorithm such as the backpropagation algorithm for feedforward neu-
ral networks, in order to improve the predictive ability of the model, given by the
loss function:

Jθ = ∏
(w,c)∈D

p(c|w; θ) (3.7)

On the other hand, count-based models such as GloVe, generally learn the
word vectors by building a matrix of co-occurrences and doing some sort of
dimensionality reduction, preserving the meaningful columns. Although it de-
pends on the parameters of each model, GloVe is generally faster than Word2Vec
[67] because it does not need to go through the entire corpus in each iteration.
However, most papers report Word2Vec being slightly more accurate in terms of
results of their respective tasks [9].

CHAPTER 4

Experimentation.
Method and evaluation

In this chapter, the method used and the steps followed in our experiments will
be discussed. First, we will make a detailed description of the steps made in order
to reproduce the experiments in [47] but using GloVe. Then, we will explain the
different setups of the experiments, and finally, we will gather the results of all
the experiments and make a reasoned comparison.

4.1 Experiment description and setup

For the first GloVe model (Model 1) We have downloaded the latest Spanish
dump of the Wikipedia to process it. This is an XML file that contains all the infor-
mation of the articles of the Spanish Wikipedia. Note that since latest dumps vary
upon the date, the same experiments done with the latest dumps may slightly
vary over time. The corpus we have been worked with corresponds to the one of
June of 2017.

To extract the articles into a plain text file, the Python script WikiExtractor1

was used.
After the conversion of the Wikipedia dump into a text file, a tokenization using
the Stanford Tokenizer was used. Since the Stanford Tokenizer is a tool used in
several Stanford Tools, it is not distributed alone, so we chose to utilize the one
integrated into the Stanford Parser Tool2. For the execution of the tokenizer, the
options -preserveLines and -lowerCase were used.

However, these steps lead to a plain text file that still has commas, dots, and
several escape sequences that the tokenizer uses in order to specify brackets and
parenthesis as tokens, which must be removed. In order to remove this kind
of tokens that should not appear in the corpus that GloVe is fed with, the im-
plementation of a simple python script was done, in order to remove unwanted
tokens and to unify the entire text into a single line, which is recommended for
the GloVe tool. This script, named as remove_tokens.py is annexed at the end of
this document.

1https://github.com/attardi/wikiextractor
2https://nlp.stanford.edu/software/lex-parser.html

21

22
Experimentation.

Method and evaluation

After this processing, the resulting text file (2.8 GB) is composed of a single
line of approximately 470,000,000 words. This text is the text in which the GloVe
tool bases its first iteration, and it is when the sliding window is used to deter-
mine the context of each word in the vocabulary.
After that, GloVe was run with the text file as input to calculate the word vec-
tors. For this first experiment, we set VOCAB_MIN_COUNT=30, VECTOR_SIZE=300,
MAX_ITER=20, WINDOW_SIZE=15 and X_MAX=10, as we wanted to approximate this
experiment as much as possible to the same experiment but done with Word2Vec
in [47].

For the second model (Model 2), the Spanish version of the corpus Europarl
(346.5 MB, composed by 56.060.785 words) and the corpus Ancora-ES were added
to the Spanish Wikipedia corpus (2.9 MB, composed by 451.918 words). The pa-
rameters were the same as for Model 1. A short summary of the corpora charac-
teristics can be found in table 4.1

Corpus Name Word count Size
Wikipedia (Spanish) 474.529.339 2.8 GB
Europarl (Spanish) 56.060.785 346.5 MB
Ancora-ES 451.918 2.9 MB
Wikipedia + Europarl + Ancora-ES 531.042.042 3.2 GB

Table 4.1: Short summary of the used corpora

The word vectors were trained in a machine running an Intel(R) Core(TM)
i7-4790 CPU @ 3.60GHz processor, in Ubuntu 16.04.1 LTS. The training time for
Model 1 was 4 hours (approximately 13 minutes per iteration), while the training
time for Model 2 was 5 hours (approximately 16 minutes per iteration).

Once the word vectors were generated, a python script was programmed in
order to do the entire experiment. The code of this script can be found in the
annex, in the section experiment.py. This script loads the word vectors into dic-
tionaries and both training and test sentence pairs along with the respective target
values (i.e. ground truth similarity measures). After loading the sentence pair, a
simple cleaning of the text is made by changing all characters to lower case and
removing punctuation marks. After that, a vector aggregation of the sentences
is calculated by summing the word vectors and dividing by the number of word
vectors that were summed, to normalize the resulting sentence vector:

−→
Vd =

∑n
i=0
−→vi

n
(4.1)

where −→vi is the word vector of the word i of the sentence and
−→
Vd is the phrase

vector.

Once the phrase embeddings of all training and test sentence pairs are calcu-
lated, the script performs the calculation of the Euclidean distance, cosine simi-
larity, and alignment distance method described in [47] for every pair of phrases.
For the Euclidean distance, a transformation into a “Euclidean similarity” is done,

4.1 Experiment description and setup 23

creating a Euclidean distance: given a Euclidean distance, de, the calculated Eu-
clidean similarity, se takes the form of:

se =
1

1 + de
(4.2)

With respect to the alignment method, which was proposed in [47], the algo-
rithm in pseudo-code is described in 4.1

Algorithm 4.1 Similarity Alignment Method

Require: t1 and t2 token sets. m word embedding model
Ensure: s similarity score between t1 and t2

1: voc = t1 ∪ t2
2: for all w in voc do
3: bow[w] = 0 // Initialization
4: end for
5: for all w in t1 do
6: if w in t2 then
7: bow[w] = 1
8: else if w in m then
9: bow[w] = max(m.similarity(w, t2))

10: else
11: continue
12: end if
13: end for
14: for all w in t2 do
15: if w in m then
16: bow[w] = max(m.similarity(w, t1))
17: else
18: continue
19: end if
20: end for
21: values = (w f or w in selected_words)
22: sim = sum(values)/values.size()
23: return sim

=0

This alignment algorithm performs a bidirectional alignment by looking to
align every possible word in the first sentence 1 with every word in sentence 2 and
vice versa. When a direct alignment cannot be made (i.e. the word in sentence 1
is not found in sentence 2), the alignment is made by calculating the similarities
between the word of the sentence 1 and every possible word of sentence 2 and
choosing the closest word.

This alignment method has two prior versions depending on how selected_words
is described. On the one hand, the selected words are all the words in the dictio-
nary, that is, all the words in the pair of sentences being evaluated, regardless
their presence in the model m and therefore their alignment, which could not
have been accomplished. We call this “Counting All” (CA). On the other hand,

24
Experimentation.

Method and evaluation

the selected words are only those words in which the alignment between the pair
of phrases could be made. This means that if a word in the dictionary had a value
of 0 because it could not be found in the model m, it does not count as a part of the
normalization. We call this “Counting Only Appearances” (COA). As the authors
of [47] do not state whether they count all words or not, for this experiment we
try both versions, CA and COA.

Also, note that in the alignment method, a similarity measure is used in order
to find the closest word when it is not found directly, so either the cosine (CS) or
the Euclidean similarity (ES) can be used. As the authors in [47] do not specify
this either, we calculate the alignment similarities by using both cosine and Eu-
clidean similarities for this step, so we can compare later. However, this leads
to another two posterior variations of the alignment algorithm, one that is done
with the cosine similarity (CS) and other that is calculated with the Euclidean
similarity (ES), meaning that, combined with the two prior versions, there are
four different alignment method variations: CA-CS, CA-ES, COA-CS and COA-
ES. For this first experiment, we use all of them and see which one gives best
results on training and evaluate it with the test set.

For the combination of methods, a linear function takes the similarity results
of the methods to build a new similarity. The learning of the factor of each sim-
ilarity result (so as the bias term of the linear function) is made by calculating a
linear least squares solution for the linear function that best explains the target
results, given by the 324 pairs of labeled phrases (training set). For the testing
phase, an inference using the linear model and the weighs calculated in training
is made with the 251 pair of phrases and then the results are compared with the
labels and using the PCC to calculate the correlation between the results and the
target.

In summary, six vectors of sentence similarities are calculated, which store the
calculated similarities between each pair of sentences:

1. VA-CS: Vector Aggregation and Cosine Similarity

2. VA-ES: Vector Aggregation and Euclidean Similarity

3. CA-CS: Alignment method, Counting All and Cosine Similarity

4. CA-ES: Alignment method, Counting All and Euclidean Similarity

5. COA-CS: Alignment method, Counting Only Appearances and Cosine Sim-
ilarity

6. COA-ES: Alignment method, Counting Only Appearances and Euclidean
Similarity

And by taking a subset of those vectors, a combined method (COMB) is built
by using the information each method outputs with a linear function. In the first
experiment, we combine VA-CS, VA-ES and the best result of the alignment in
training to

4.2 Experiment results 25

4.2 Experiment results

Once the word vectors are trained, the similarities VA, CA and COA can be cal-
culated without any kind of training method, so they are ready to be used. In a
real-case scenario, the procedure would be to evaluate the quality of the differ-
ent similarities by calculating the PCC in a development set, take the best results,
and apply them to perform the inference by the system. Note that this inference
could not be tested, and it might not be optimal for the new inference domain.
In this experiment, we are going to simulate that environment by looking which
similarity reports best results for the training set and establishing our outcome
score by applying that same system to the training test.

The PCC values of the systems fed with Model 1 and Model 2 for the training
and test sets are shown in table 4.2 and 4.3 respectively.

Similarity measure Pearson for training set Pearson for test set ∇
VA-ES 0.647 0.592 5.5
VA-CS 0.507 0.561 -5.4
CA-ES 0.683 0.643 4.0
CA-CS 0.690 0.679 1.1
COA-ES 0.712 0.658 5.4
COA-CS 0.713 0.682 3.1
COMB (VA-ES + VA-CS + COA-CS) 0.749 0.683 6.6

Table 4.2: Results of every similarity measure for the Training set (Model 1)

Similarity measure Pearson for training set Pearson for test set ∇
VA-ES 0.646 0.574 7.2
VA-CS 0.517 0.547 -3.0
CA-ES 0.680 0.650 3.0
CA-CS 0.697 0.682 1.5
COA-ES 0.715 0.653 6.2
COA-CS 0.721 0.681 4.0
COMB (VA-ES + VA-CS + COA-CS) 0.752 0.675 7.7

Table 4.3: Results of every similarity measure for the Training set (Model 2)

In both tables 4.2 and 4.3, the “∇” column represents the absolute decrement
of the PCC of the test results when compared to the training results. However, it
is worth noting that the only measure in which the training set is used to adjust
parameters in order to make predictions for the evaluation set is in the combi-
nation method, since for all the other methods, only the word vectors are used,
which are trained using an external source of information.

4.3 Analysis and comparison of results

From table 4.2, some prior conclusions can be taken before even comparing with
the results of [47]. First and most important, it is the fact that despite the best

26
Experimentation.

Method and evaluation

result of our model for training is relatively good, the results of the same sys-
tem in the evaluation are not that good. However, even the two systems that
are independent of any external implementations details (VA-ES and VA-CS) fail
to give the same results as in training, which makes us think that the training
and test labeling made in SemEval 2014 and SemEval 2015 respectively, are not
consistent enough, which is understandable, as calculating a bounded similarity
measure between two texts can be a highly subjective task. However, if that is
not taken into account, along with the fact that VA-CS gives better results on test
that on training, we can see a correlation between the improvements of each sys-
tem between training and test, which shows us that if the combined method in
test is failing to get the same results as in training, is just because the similarity
measures in which it is based are failing as well.

If we take a look at the results of [47], we will see that despite our results do
not show an overall improvement when compared with the best result, they are
still good if we compare them to the other SemEval 2015 teams, and that shows
the strength of the method itself. Tables 4.4 and 4.5 show our results compared
with the best teams of SemEval 2015 and [47].

Something that is also remarkable is the fact that the Model 2 performs worse
than the Model 1 even given the fact that the word vectors have been trained
with roughly 12 % more data. This shows that GloVe does not necessarily benefit
from more data to train the word embeddings, unlike the experiments in [47],
that show an improvement with Word2Vec when the Model 2 is used.

System Pearson ∆
Baseline 0.529 0.0
RTM-DCU 0.582 5.3
UMDuluth 0.594 6.5
COMB (VA-ES + VA-CS + COA-CS) 0.683 15.4
ExBThemis 0.706 17.7
T. López et al. [47] 0.713 18.4

Table 4.4: Comparison of our results (Model 1) with the teams at SemEval 2015 and [47]

System Pearson ∆
Baseline 0.529 0.0
RTM-DCU 0.582 5.3
UMDuluth 0.594 6.5
COMB (VA-ES + VA-CS + COA-CS) 0.675 14.6
ExBThemis 0.706 17.7
T. López et al. [47] 0.723 19.4

Table 4.5: Comparison of our results (Model 2) with the teams at SemEval 2015 and [47]

In both 4.4 and 4.5 tables, the ∆ column represents the absolute improvement
of the system represented of that row with respect to the baseline.

CHAPTER 5

Further experimentation

This chapter focuses on possible improvements to our method. We try different
variations of the original method discussed in the last chapter and see how these
changes improve or worsen the performance results of the system.

5.1 Increasing training iterations

The most straightforward method to try to obtain better results using GloVe is
by increasing the training iterations when estimating the word vectors from the
corpus. This has been done for the Model 1, meaning that instead of the default
parameters specified in section 4.1, we trained the model with the same parame-
ters but with MAX_ITER=50. Table 5.1 shows the differences between the original
model and this one.

Similarity method Training iter. Pearson for training Pearson for test

VA-ES 20 0.647 0.592
50 0.647 0.574

VA-CS 20 0.507 0.561
50 0.554 0.543

CA-ES 20 0.683 0.643
50 0.676 0.650

CA-CS 20 0.690 0.679
50 0.718 0.688

COA-ES 20 0.712 0.658
50 0.716 0.649

COA-CS 20 0.713 0.682
50 0.741 0.685

COMB (VA-ES + VA-CS +
COA-CS)

20 0.749 0.683
50 0.758 0.686

Table 5.1: Comparison between Model 1 trained with 20 and 50 iterations

Note that almost all methods benefit from increasing the training iterations.
However, the proportion of the increased PCC is minimal, showing that the model
already reached a local optimum and that those extra 30 iterations were beyond

27

28 Further experimentation

0 5 10 15 20 25 30 35 40 45 50
0

1 · 10−2

2 · 10−2

3 · 10−2

4 · 10−2

5 · 10−2

6 · 10−2

7 · 10−2

8 · 10−2

9 · 10−2

0.1

Number of iterations

C
os

t

Figure 5.1: GloVe: Decreasing cost function value as iterations go through

the point where the phenomenon of diminishing returns started affecting the
model. In other words, at that point, we are already out of the curve that shows
the increasing performance as more iterations occur in the training phase, as can
be seen in plot 5.1.

5.2 COMB method using all six similarity measures

Given the combination method used, which relies on a linear combination of the
already existing similarities to build a new similarity that fits as much as possible
the target similarity values, a new idea is to bring more similarities to the pool so
the resulting linear expression is more versatile because of the increased number
of terms. To do this, instead of doing the combination (COMB-3) of three methods
(VA-ES + VA-CS + COA-CS), we combine (COMB-6) all the six methods (VA-ES +
VA-CS + CA-ES + CA-CS + COA-ES + COA-CS). Table 5.2 shows the differences
between the two combination methods.

Combination method Pearson for training set Pearson for test set
Model 1 2 1 2
COMB-3 0.749 0.752 0.683 0.675
COMB-6 0.752 0.755 0.682 0.667

Table 5.2: Comparison between the results of the original combination method and the
improved combination method

We can see a slight improvement in training, but also a slight worsening in
the evaluation, probably because the linear function is overfitting. However, the
changes are minimal, so we conclude that the extra information contributed to
the system by the three added methods is insignificant.

5.3 Vector Aggregation without stop words 29

5.3 Vector Aggregation without stop words

Since vector aggregation relies on building a vector that summarizes the phrase
meaning, we consider that stop words do not add any useful information build-
ing phrase embeddings for two reasons: the first one is that just because stop
words are very common, they appear in almost every phrase, making the result-
ing vectors skew in the vector space, resulting in a less informed phrase vector.
The second one is that the intrinsic meaning a stop word can have makes it use-
less to determine a phrase meaning.

So for the two VA methods (VA-CS and VA-ES), a new method for each one
is derived, VA-CS-NoSW and VA-ES-NoSW, that are the two variations but with
the stop words being removed out of the phrases before joining the word vectors
to build the resulting phrase embedding. The set of Spanish stop words we use
is the one that can be found in the NLTK Corpus package of NLTK for Python. A
subsample of 30 of all the 313 Spanish stop words of NLTK can be found in table
5.3.

Spanish stop words
de, la, que, el, en, y, a, los,

del, se, las, por, un, para, con,
no, una, su, al, lo, como, más,

pero, sus, le, ya, o, este, sí, porque

Table 5.3: List of the Spanish stop words provided in the NLTK Corpus

The table 5.4 shows the results of both the NoSW variations with their respec-
tive original methods for both Model 1 and Model 2.

Similarity method Pearson for training set Pearson for test set
Model 1 2 1 2
VA-ES 0.647 0.646 0.592 0.574
VA-ES-NoSW 0.727 0.734 0.640 0.620
VA-CS 0.507 0.517 0.561 0.547
VA-CS-NoSW 0.708 0.72 0.643 0.629

Table 5.4: Comparison between VA-NoSW methods with their respective VA method

The results above show a clear improvement in all cases of the VA methods
when the stop words are removed.

5.3.1. COMB method with Vector Aggregation without stop words

Because removing the stop words has proven to be a good choice when building
phrase embeddings by the means of vector aggregation, we could think that the
new info provided by this two new similarity measures (VA-ES-NoSW and VA-
CS-NoSW) can be good for the combination model. In this case, the six original
similarity measures plus the two new ones will be used. The table 5.5 shows the

30 Further experimentation

Combination method Pearson for training set Pearson for test set
Model 1 2 1 2
COMB-3 0.749 0.752 0.683 0.675
COMB-8 0.776 0.785 0.710 0.692

Table 5.5: Comparison between the original combination method and the combination
method of all the similarities

results of the new combination model (COMB-8) when compared to the original
(COMB-3).

As the results confirm, the extra information provided by the VA-NoSW meth-
ods do increase our results by a significant amount, reaching state-of-the-art re-
sults, and almost improving the results of [47].

5.4 Exploring the Combinatorial Space of the COMB
method

In section 5.3.1 we have not only shown that two better VA methods can be ob-
tained if we remove the stop words of the phrase before building the phrase em-
bedding, but we have also demonstrated that they add new info to the combined
method, as the contribution of the two new NoSW methods introduce clear im-
provements to our system.

However, in section 5.2 we have seen that it is not always a good choice to
add more similarities to the combined method, as overfitting can occur, mak-
ing our model give good results for training but worse results for the evaluation
set. In an attempt to improve our model even more, we have tried all possible
combinations of the eight similarity measures to see which one is giving the best
results on training and evaluate if the best result in the evaluation phase is also
improved. Given N similarity models, the number of all possible combinations is
determined by ∑N

i=1 (
N
i), which in our case is ∑8

i=1 (
8
i) = 255.

Nevertheless, it would be naive to check every possibility of, for example,
choosing only one model to create the combined model, and hope it will perform
better than a more complex model combining more methods, so we have estab-
lished a lower bound on the number of models that should be used to build the
combined model in 5, so the number of models to evaluate is ∑8

i=5 (
8
i) = 93.

The table 5.6 shows the results of the best combination found in training com-
pared to our best combination until now (COMB-8).

Combination method Pearson for training set Pearson for test set
Model 1 2 1 2
COMB-8 0.776 0.785 0.710 0.692
Best COMB 0.776 0.784 0.710 0.693

Table 5.6: Comparison between the best combination and COMB-8

5.4 Exploring the Combinatorial Space of the COMB method 31

In both models, the best combination was the result of combining all mod-
els except VA-ES, but as the results show, the difference is negligible, so we can
conclude that every similarity is bringing useful information to the system, as
there is no subset of combinations that performs better than just combining all
the similarities.

Finally, the estimated similarity values of our best system for the pair of phrases
we have shown as an example in 2.1 can be found in 5.7.

Compared pair of phrases Target value Estimated value
El espécimen es excepcional por las partes conservadas: un cráneo y mandíbula y un molde interno de la caja craneal.
El espécimen comprende la mayor parte de la cara y mandíbula con los dientes y un molde interno de la caja craneal. 4 3.57

Time “100´´ es una lista de las 100 personas más influyentes según la revista Time.
La primera lista fue publicada en 1999 con las 100 personas más infuyentes del siglo 20. 3 2.81

La “marinera´´ es un baile de pareja suelto, el más conocido de la costa del Perú.
La marinera es el baile nacional del Perú, y su ejecución busca hacerse con derroche de gracia, picardía y destreza. 2 1.89

La “cripta de Santa Leocadia´´ está situada en el interior de la catedral de Oviedo, Asturias.
Esteban Báthory fue sepultado en la cripta de la catedral de Wawel en Cracovia. 1 1.27

El río atraviesa la importante ciudad de Puebla de Zaragoza, la cuarta más poblada del país.
El “Grêmio Esportivo Bagé´´ es un club de fútbol brasileño, de la ciudad de Bagé en el estado de Rio Grande do Sul. 0 0.46

Table 5.7: Examples of the results of our best system for the pairs of phrases shown
before.

CHAPTER 6

Final conclusions and future work

6.1 Final conclusions

From this experiments we can conclude that word embeddings are indeed a pow-
erful tool not only to capture semantic information of words, but also to build
more complex systems to calculate, analyze and compare the meaning of more
complex data, like phrases. We have seen that if the representation space of the
vectors is big enough, we can build phrase embeddings that approximate con-
siderably good the meaning of the phrase, showing that a correlation of 70% can
be achieved when calculating the similarity between two phrases, and this is ac-
complished only by using a single trained word embedding model, meaning that
there is no need to train any other model as extension in order to calculate these
similarities.

Despite our inability to achieve better results than the best system to date,
(and although we are only a tenth of a percent point worse), we have discovered
ways of increasing the performance of our simple system that was built origi-
nally to compare our results with the state-of-the-art systems. This means that
those improvements that we made to our model to increase its accuracy are po-
tential improvements that can be done to other systems, like the one built with
Word2Vec in [47], in order to achieve even better results. We have also seen that
even if both approaches are built only upon word embeddings, the behavior of
the used metrics vary, showing that the word embeddings themselves are con-
siderably disparate.

Also, a light evaluation of the training time using GloVe has shown that train-
ing word embeddings for a large corpus like Wikipedia, made of more than 450
million words, is more than feasible, because the entire training only takes a few
hours in a normal computer. Therefore, GloVe can be more attractive in those
cases where several models have to be trained and/or when the corpus the model
is trained with is very big.

Finally, we have seen that in the case of GloVe, extending the corpus that
is used to train the word embeddings does not necessarily improve the perfor-
mance, even if the text comes from standard corpora like Europarl or Ancora-ES.
This is most likely because the word vectors of GloVe are more domain-specific,
meaning that if texts from Wikipedia are going to be evaluated by using word em-
beddings, those word embeddings should also be trained from Wikipedia texts.

33

34 Final conclusions and future work

6.2 Future work

As future work, we would like to test our two improvements made to the first
GloVe model, which are (1) the removal of the stop words before building phrase
embeddings by vector aggregation and (2) considering more than three similar-
ities to combine to calculate the new similarity, but with Word2Vec, to see if the
best results of [47] can be improved.

We also establish a new line of work in which several or all the computer
similarities are combined together by a more powerful machine learning method
than calculating the linear least squares solutions. We are especially interested in
training an Artificial Neural Network that takes as input the similarities reported
by N methods and outputs a new similarity, which is desired to be as close to the
target as possible.

Other alignment methods to calculate the similarity between two phrases are
also a good option, since they are very likely to provide complementary infor-
mation that the similarities described in this thesis do not capture, and therefore
potentially improve any further combination methods. However, care must be
taken when learning methods based on combinations to prevent overfitting as
much as possible.

Finally, we would like to evaluate the steps taken in this work in English and
see if the results are similar or not, and if they are, compare the results of our
system in English with state-of-the-art systems in English semantic text similarity.

Bibliography

[1] Eneko Agirre, Carmen Banea, Claire Cardie, Daniel M Cer, Mona T Diab,
Aitor Gonzalez-Agirre, Weiwei Guo, Inigo Lopez-Gazpio, Montse Maritx-
alar, Rada Mihalcea, et al., Semeval-2015 task 2: Semantic textual similarity,
english, spanish and pilot on interpretability., SemEval@ NAACL-HLT, 2015,
pp. 252–263.

[2] Satanjeev Banerjee and Ted Pedersen, An adapted lesk algorithm for word sense
disambiguation using wordnet, International Conference on Intelligent Text
Processing and Computational Linguistics, Springer, 2002, pp. 136–145.

[3] Daniel Bär, Torsten Zesch, and Iryna Gurevych, Dkpro similarity: An open
source framework for text similarity., ACL (Conference System Demonstra-
tions), 2013, pp. 121–126.

[4] Marco Baroni, Georgiana Dinu, and Germán Kruszewski, Don’t count, pre-
dict! a systematic comparison of context-counting vs. context-predicting semantic
vectors., ACL (1), 2014, pp. 238–247.

[5] Alberto Barrón-Cedeno, Paolo Rosso, Eneko Agirre, and Gorka Labaka, Pla-
giarism detection across distant language pairs, Proceedings of the 23rd Interna-
tional Conference on Computational Linguistics, Association for Computa-
tional Linguistics, 2010, pp. 37–45.

[6] Jacob Benesty, Jingdong Chen, Yiteng Huang, and Israel Cohen, Pearson cor-
relation coefficient, pp. 1–4, Springer Berlin Heidelberg, Berlin, Heidelberg,
2009.

[7] Samy Bengio and Georg Heigold, Word embeddings for speech recognition, Fif-
teenth Annual Conference of the International Speech Communication As-
sociation, 2014.

[8] Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Jauvin, A
neural probabilistic language model, Journal of machine learning research 3
(2003), no. Feb, 1137–1155.

[9] Giacomo Berardi, Andrea Esuli, and Diego Marcheggiani, Word embeddings
go to italy: A comparison of models and training datasets., IIR, 2015.

[10] Ergun Biçici, Rtm-dcu: Predicting semantic similarity with referential translation
machines, (2015).

35

36 BIBLIOGRAPHY

[11] Kuan-Yu Chen, Shih-Hung Liu, Berlin Chen, Hsin-Min Wang, and Hsin-Hsi
Chen, Novel word embedding and translation-based language modeling for extrac-
tive speech summarization, Proceedings of the 2016 ACM on Multimedia Con-
ference, ACM, 2016, pp. 377–381.

[12] Rudi L Cilibrasi and Paul MB Vitanyi, The google similarity distance, IEEE
Transactions on knowledge and data engineering 19 (2007), no. 3.

[13] Stéphane Clinchant and Florent Perronnin, Aggregating continuous word em-
beddings for information retrieval, Proceedings of the Workshop on Continuous
Vector Space Models and their Compositionality, 2013, pp. 100–109.

[14] William W Cohen, Data integration using similarity joins and a word-based in-
formation representation language, ACM Transactions on Information Systems
(TOIS) 18 (2000), no. 3, 288–321.

[15] Günes Erkan and Dragomir R Radev, Lexrank: Graph-based lexical centrality
as salience in text summarization, Journal of Artificial Intelligence Research 22
(2004), 457–479.

[16] Ruiji Fu, Jiang Guo, Bing Qin, Wanxiang Che, Haifeng Wang, and Ting Liu,
Learning semantic hierarchies via word embeddings., ACL (1), 2014, pp. 1199–
1209.

[17] Evgeniy Gabrilovich and Shaul Markovitch, Computing semantic relatedness
using wikipedia-based explicit semantic analysis., IJcAI, vol. 7, 2007, pp. 1606–
1611.

[18] Daniel Gildea and Daniel Jurafsky, Automatic labeling of semantic roles, Com-
putational linguistics 28 (2002), no. 3, 245–288.

[19] Wael H Gomaa and Aly A Fahmy, A survey of text similarity approaches, Inter-
national Journal of Computer Applications 68 (2013), no. 13.

[20] Patrick AV Hall and Geoff R Dowling, Approximate string matching, ACM
computing surveys (CSUR) 12 (1980), no. 4, 381–402.

[21] Christian Hänig, Robert Remus, and Xose De La Puente, Exb themis: Ex-
tensive feature extraction from word alignments for semantic textual similarity.,
SemEval@ NAACL-HLT, 2015, pp. 264–268.

[22] Graeme Hirst, David St-Onge, et al., Lexical chains as representations of context
for the detection and correction of malapropisms, WordNet: An electronic lexical
database 305 (1998), 305–332.

[23] Aminul Islam and Diana Inkpen, Second order co-occurrence pmi for determin-
ing the semantic similarity of words, Proceedings of the International Confer-
ence on Language Resources and Evaluation, 2006, pp. 1033–1038.

[24] , Semantic text similarity using corpus-based word similarity and string
similarity, ACM Transactions on Knowledge Discovery from Data (TKDD) 2
(2008), no. 2, 10.

BIBLIOGRAPHY 37

[25] Matthew A Jaro, Probabilistic linkage of large public health data files, Statistics in
medicine 14 (1995), no. 5-7, 491–498.

[26] Jay J. Jiang and David W. Conrath, Semantic similarity based on corpus statistics
and lexical taxonomy, arXiv preprint cmp-lg/9709008 (1997).

[27] Daniel Jurafsky and James H. Martin, Speech and language processing, Always
learning, Prentice Hall, Pearson Education International, 2014.

[28] Sakethram Karumuri, Viswanadh Kumar Reddy Vuggumudi, and Sai Cha-
ran Raj Chitirala, Umduluth-blueteam: Svcsts-a multilingual and chunk level se-
mantic similarity system., SemEval@ NAACL-HLT, 2015, pp. 107–110.

[29] Tom Kenter and Maarten De Rijke, Short text similarity with word embeddings,
Proceedings of the 24th ACM International on Conference on Information
and Knowledge Management, ACM, 2015, pp. 1411–1420.

[30] Youngjoong Ko, Jinwoo Park, and Jungyun Seo, Improving text categorization
using the importance of sentences, Information processing & management 40
(2004), no. 1, 65–79.

[31] Peter Kolb, Disco: A multilingual database of distributionally similar words, Pro-
ceedings of KONVENS-2008, Berlin (2008).

[32] , Experiments on the difference between semantic similarity and relatedness,
(2009).

[33] Matt Kusner, Yu Sun, Nicholas Kolkin, and Kilian Weinberger, From word em-
beddings to document distances, International Conference on Machine Learn-
ing, 2015, pp. 957–966.

[34] Thomas K Landauer and Susan T Dumais, A solution to plato’s problem: The la-
tent semantic analysis theory of acquisition, induction, and representation of knowl-
edge., Psychological review 104 (1997), no. 2, 211.

[35] Mirella Lapata and Regina Barzilay, Automatic evaluation of text coherence:
Models and representations, IJCAI, vol. 5, 2005, pp. 1085–1090.

[36] C Leacock and M Chodorow, Combining local context and wordnet sense simi-
larity for word sense identification. wordnet, an electronic lexical database, 1998.

[37] Michael Lesk, Automatic sense disambiguation using machine readable dictionar-
ies: how to tell a pine cone from an ice cream cone, Proceedings of the 5th annual
international conference on Systems documentation, ACM, 1986, pp. 24–26.

[38] Yuhua Li, Zuhair A Bandar, and David McLean, An approach for measuring se-
mantic similarity between words using multiple information sources, IEEE Trans-
actions on knowledge and data engineering 15 (2003), no. 4, 871–882.

[39] Chin-Yew Lin and Eduard Hovy, Automatic evaluation of summaries using n-
gram co-occurrence statistics, Proceedings of the 2003 Conference of the North
American Chapter of the Association for Computational Linguistics on Hu-
man Language Technology-Volume 1, Association for Computational Lin-
guistics, 2003, pp. 71–78.

38 BIBLIOGRAPHY

[40] Dekang Lin, Extracting collocations from text corpora, First workshop on com-
putational terminology, Montreal, Canada, 1998, pp. 57–63.

[41] Bing Liu, Sentiment analysis and opinion mining (introduction and survey), Mor-
gan & Claypool Publishers.

[42] Hugo Liu and Push Singh, Commonsense reasoning in and over natural lan-
guage, Knowledge-based intelligent information and engineering systems,
Springer, 2004, pp. 293–306.

[43] Tao Liu and Jun Guo, Text similarity computing based on standard deviation,
Advances in Intelligent Computing (2005), 456–464.

[44] Ying Liu and Chengqing Zong, Example-based chinese-english mt, Systems,
Man and Cybernetics, 2004 IEEE International Conference on, vol. 7, IEEE,
2004, pp. 6093–6096.

[45] Kevin Lund and Curt Burgess, Producing high-dimensional semantic spaces from
lexical co-occurrence, Behavior Research Methods, Instruments, & Computers
28 (1996), no. 2, 203–208.

[46] Kevin Lund, Curt Burgess, and Ruth Ann Atchley, Semantic and associative
priming in high-dimensional semantic space, Proceedings of the 17th annual
conference of the Cognitive Science Society, vol. 17, 1995, pp. 660–665.

[47] Tomás López Solaz, José Antonio Troyano Jiménez, Francisco Javier Or-
tega Rodríguez, and Fernando Enríquez de Salamanca Ros, An approach to
the use of word embeddings in a textual similarity task for spanish texts, Proce-
samiento del Lenguaje Natural (2016), no. 57, 67–74.

[48] Jayant Madhavan, Philip A Bernstein, AnHai Doan, and Alon Halevy,
Corpus-based schema matching, Data Engineering, 2005. ICDE 2005. Proceed-
ings. 21st International Conference on, IEEE, 2005, pp. 57–68.

[49] Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze, Intro-
duction to information retrieval, Cambridge University Press, New York, NY,
USA, 2008.

[50] Katja Markert and Malvina Nissim, Metonymy resolution as a classification task,
2002.

[51] Irina Matveeva, Gina-Anne Levow, Ayman Farahat, and Christian Royer,
Generalized latent semantic analysis for term representation, Proc. of RANLP,
2005.

[52] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean, Efficient esti-
mation of word representations in vector space, arXiv preprint arXiv:1301.3781
(2013).

[53] Tomas Mikolov and One Hacker Way, Using neural networks for modeling and
representing natural languages., COLING (Tutorials), 2014, pp. 3–4.

[54] George A Miller, Wordnet: a lexical database for english, Communications of
the ACM 38 (1995), no. 11, 39–41.

BIBLIOGRAPHY 39

[55] Andriy Mnih and Geoffrey E Hinton, A scalable hierarchical distributed lan-
guage model, Advances in neural information processing systems, 2009,
pp. 1081–1088.

[56] Frederic Morin and Yoshua Bengio, Hierarchical probabilistic neural network
language model., Aistats, vol. 5, 2005, pp. 246–252.

[57] David Nadeau and Satoshi Sekine, A survey of named entity recognition and
classification, Lingvisticae Investigationes 30 (2007), no. 1, 3–26.

[58] Eric Nalisnick, Bhaskar Mitra, Nick Craswell, and Rich Caruana, Improving
document ranking with dual word embeddings, Proceedings of the 25th Inter-
national Conference Companion on World Wide Web, International World
Wide Web Conferences Steering Committee, 2016, pp. 83–84.

[59] Roberto Navigli, Word sense disambiguation: A survey, ACM Computing Sur-
veys 41 (2009), no. 2, 1–69 (en).

[60] Jian-Yun Nie, Cross-Language Information Retrieval, Synthesis Lectures on Hu-
man Language Technologies 3 (2010), no. 1, 1–125 (en).

[61] Stephan Oepen, Marco Kuhlmann, Yusuke Miyao, Daniel Zeman, Dan
Flickinger, Jan Hajic, Angelina Ivanova, and Yi Zhang, SemEval 2014 Task
8: Broad-coverage semantic dependency parsing, Proceedings of the 8th Interna-
tional Workshop on Semantic Evaluation (SemEval 2014), 2014, pp. 63–72.

[62] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu, Bleu: a
method for automatic evaluation of machine translation, Proceedings of the 40th
annual meeting on association for computational linguistics, Association for
Computational Linguistics, 2002, pp. 311–318.

[63] Eui-Kyu Park, Dong-Yul Ra, and Myung-Gil Jang, Techniques for improving
web retrieval effectiveness, Information processing & management 41 (2005),
no. 5, 1207–1223.

[64] Alan Parker and James O. Hamblen, Computer algorithms for plagiarism detec-
tion, IEEE Transactions on Education (IEEE T EDUC) 14, no. 2, 94–99.

[65] Siddharth Patwardhan, Incorporating dictionary and corpus information into a
context vector measure of semantic relatedness, Ph.D. thesis, University of Min-
nesota, Duluth, 2003.

[66] Siddharth Patwardhan, Satanjeev Banerjee, and Ted Pedersen, Using mea-
sures of semantic relatedness for word sense disambiguation, CICLing, vol. 2588,
Springer, 2003, pp. 241–257.

[67] Jeffrey Pennington, Richard Socher, and Christopher D Manning, Glove:
Global vectors for word representation., EMNLP, vol. 14, 2014, pp. 1532–1543.

[68] Martin Potthast, Benno Stein, and Maik Anderka, A wikipedia-based multilin-
gual retrieval model, Advances in Information Retrieval (2008), 522–530.

40 BIBLIOGRAPHY

[69] Francisco Rangel, Paolo Rosso, Moshe Moshe Koppel, Efstathios Stamatatos,
and Giacomo Inches, Overview of the author profiling task at pan 2013, CLEF
Conference on Multilingual and Multimodal Information Access Evaluation,
CELCT, 2013, pp. 352–365.

[70] Philip Resnik, Using information content to evaluate semantic similarity in a tax-
onomy, arXiv preprint cmp-lg/9511007 (1995).

[71] Hinrich Schütze, Automatic word sense discrimination, Computational linguis-
tics 24 (1998), no. 1, 97–123.

[72] Richard Socher, Francois Chaubard, and Rohit Mundra, CS 224d: Deep Learn-
ing for NLP1, (2016).

[73] Lucia Specia, Sujay Kumar Jauhar, and Rada Mihalcea, Semeval-2012 task 1:
English lexical simplification., SemEval@NAACL-HLT (Eneko Agirre, Johan
Bos, and Mona T. Diab, eds.), The Association for Computer Linguistics,
2012, pp. 347–355.

[74] Peter Turney, Mining the web for synonyms: Pmi-ir versus lsa on toefl, Machine
Learning: ECML 2001 (2001), 491–502.

[75] Katarzyna Wegrzyn-Wolska and Piotr S Szczepaniak, Classification of rss-
formatted documents using full text similarity measures, International Confer-
ence on Web Engineering, Springer, 2005, pp. 400–405.

[76] Yonghui Wu, Jun Xu, Yaoyun Zhang, and Hua Xu, Clinical abbreviation dis-
ambiguation using neural word embeddings, Proceedings of the 2015 Workshop
on Biomedical Natural Language Processing (BioNLP), 2015, pp. 171–176.

[77] Zhibiao Wu and Martha Palmer, Verbs semantics and lexical selection, Proceed-
ings of the 32nd annual meeting on Association for Computational Linguis-
tics, Association for Computational Linguistics, 1994, pp. 133–138.

[78] Will Y Zou, Richard Socher, Daniel M Cer, and Christopher D Manning,
Bilingual word embeddings for phrase-based machine translation., EMNLP, 2013,
pp. 1393–1398.

APPENDIX A

Auxiliar scripts

A.1 remove_tokens.py

1 #!/usr/bin/env python
2 # -*- coding: UTF-8 -*-
3

4 import re
5 import argparse
6 import os
7 from time import time
8 from nltk.tokenize import RegexpTokenizer
9

10 def parse_args():
11 parser = argparse.ArgumentParser(description='Remove tokens and normalize text')
12 parser.add_argument('input_path', metavar='input',
13 help='relative path to the input file')
14 parser.add_argument('output_path', metavar='output',
15 help='relative path to the output file')
16 return parser.parse_args()
17

18 def deleteContent(pfile):
19 pfile.seek(0)
20 pfile.truncate()
21

22 if __name__ == "__main__":
23 args = parse_args()
24

25 f = open(args.input_path, 'r')
26 o = open(args.output_path, 'a')
27 deleteContent(o)
28

29 print ('Removing tokens...')
30 t0 = time()
31

32 for line in f.readlines():

41

42 Auxiliar scripts

33 line = (re.sub(u'''<[^>]*>|-rrb-|-lrb-|-rsb-|-lsb-|\.|,|°''', '', line))
34 tokenizer = RegexpTokenizer('[a-záéíóúàèìòù0-9ñçŭı̌ńŕýĺǵśźćńüöëïäčďěňřšťůž]+')
35 line = tokenizer.tokenize(line)
36 line = ' '.join(line)
37

38 line = (re.sub('\s\s+|\n|\r', ' ', line))
39 if(line not in ["", " ", "\n", "\r"]):
40 o.write(" "+line)
41

42 f.close()
43 o.close()
44 print ('Done in %.3f seconds.' % (time()-t0))
45 print ('Results saved in file "%s"' % args.output_path)

A.2 experiment.py 43

A.2 experiment.py

1 #!/usr/bin/env python
2 # -*- coding: UTF-8 -*-
3

4 from __future__ import division
5 import argparse
6 import re
7 import numpy as np
8

9 from scipy.spatial.distance import cosine
10 from scipy.spatial.distance import euclidean
11 from scipy.stats import pearsonr
12

13 from nltk.tokenize import RegexpTokenizer
14 from nltk.corpus import stopwords
15

16

17 parser = argparse.ArgumentParser()
18 parser.add_argument('--vocab_file', default='vocab.txt', type=str)
19 parser.add_argument('--vectors_file', default='vectors.txt', type=str)
20 parser.add_argument('--training_X',
21 default='../data/train/input_wikipedia.txt', type=str)
22 parser.add_argument('--training_y',
23 default='../data/train/tags_wikipedia.txt', type=str)
24 parser.add_argument('--test_X',
25 default='../data/test/input_wikipedia.txt', type=str)
26 parser.add_argument('--test_y',
27 default='../data/test/tags_wikipedia.txt', type=str)
28 parser.add_argument('--verbose', default='0', type=int)
29

30

31 args = parser.parse_args()
32 verbose = args.verbose
33

34 print('\nReading vocabulary file...')
35 with open(args.vocab_file, 'r') as f:
36 words = [x.rstrip().split(' ')[0] for x in f.readlines()]
37 print('Reading vectors file...\n')
38 with open(args.vectors_file, 'r') as f:
39 vectors = {}
40 for line in f:
41 vals = line.rstrip().split(' ')
42 vectors[vals[0]] = map(float, vals[1:])
43

44 vocab_size = len(words)
45 # vocab takes the word as string and returns the ID

44 Auxiliar scripts

46 vocab = {w: idx for idx, w in enumerate(words)}
47 # ivocab takes the ID and returns the word
48 ivocab = {idx: w for idx, w in enumerate(words)}
49

50 vector_dim = len(vectors[ivocab[0]])
51 W = np.zeros((vocab_size, vector_dim))
52 for word, v in vectors.iteritems():
53 if word == '<unk>':
54 continue
55 W[vocab[word], :] = v
56

57 # Normalize each word vector to unit variance
58 print('Normalizing vectors...')
59 W_norm = np.zeros(W.shape)
60 d = (np.sum(W ** 2, 1) ** (0.5))
61 W_norm = (W.T / d).T # W_norm takes the ID and returns the word embedding
62

63 # Summary:
64 # vocab: takes the word and returns ID
65 # W_norm: takes the ID and returns the embedding
66

67 def get_embedding(word):
68 return W_norm[vocab[word]]
69

70 with open(args.training_X,'r') as f:
71 content = f.readlines()
72 X_train = [x.strip() for x in content]
73 X_train = [x.split('\t') for x in X_train]
74

75 with open(args.training_y,'r') as f:
76 content = f.readlines()
77 y_train = [x.strip() for x in content]
78 y_train = [float(x) for x in y_train]
79

80 with open(args.test_X,'r') as f:
81 content = f.readlines()
82 X_test = [x.strip() for x in content]
83 X_test = [x.split('\t') for x in X_test]
84

85 with open(args.test_y,'r') as f:
86 content = f.readlines()
87 y_test = [x.strip() for x in content]
88 y_test = [float(x) for x in y_test]
89

90 def clean_text(text):
91

92 tokenizer = RegexpTokenizer(
93 '[a-záéíóúàèìòù0-9ñçŭı̌ńŕýĺǵśźćńüöëïäčďěňřšťůž]+')
94

A.2 experiment.py 45

95 cleaned_text = re.sub(''':|;|'|"|\?|¿|¡|!|$|%|/|\(|\)|\-|
96 \.|,|º|...|#|«|»|¡|²|³''', '', text)
97 cleaned_text = re.sub('Á', 'á', cleaned_text)
98 cleaned_text = re.sub('É', 'é', cleaned_text)
99 cleaned_text = re.sub('Í', 'í', cleaned_text)

100 cleaned_text = re.sub('Ó', 'ó', cleaned_text)
101 cleaned_text = re.sub('Ú', 'ú', cleaned_text)
102

103 cleaned_text = cleaned_text.lower()
104

105 cleaned_text = tokenizer.tokenize(cleaned_text)
106 cleaned_text = ' '.join(cleaned_text)
107

108 return cleaned_text
109

110 for i in range(len(X_train)):
111 X_train[i][0] = clean_text(X_train[i][0])
112 X_train[i][1] = clean_text(X_train[i][1])
113

114 for i in range(len(X_test)):
115 X_test[i][0] = clean_text(X_test[i][0])
116 X_test[i][1] = clean_text(X_test[i][1])
117

118 for split in ['train', 'test']:
119

120 if(split == 'train'):
121 X = X_train
122 y = y_train
123 elif(split == 'test'):
124 X = X_test
125 y = y_test
126 # Word embeddings of the train/test phrases
127 X_WE = []
128 # Word embeddings of the train/test phrases without stop words
129 # (for vector aggregation purposes)
130 X_WE_no_sw = []
131

132 string_sw_vector = []
133

134 for i in range(len(X)): # for each couple of phrases
135 firstPhraseEmbeddings = []
136 secondPhraseEmbeddings = []
137

138 firstPhraseEmbeddings_no_sw = []
139 secondPhraseEmbeddings_no_sw = []
140

141 for j in range(len(X[i][0].split(' '))): # 1st phrase
142 word = X[i][0].split(' ')[j]
143 try:

46 Auxiliar scripts

144 embedding = get_embedding(word)
145 firstPhraseEmbeddings.append(embedding)
146 if word not in stopwords.words('spanish'):
147 firstPhraseEmbeddings_no_sw.append(embedding)
148 except KeyError:
149 if verbose > 0:
150 print '''KeyError: Word Embedding of word "%s"
151 cannot be found. Skipping word...''' % word
152

153 # phrase to compare (2nd)
154 for j in range(len(X[i][1].split(' '))):
155 word = X[i][1].split(' ')[j]
156 try:
157 embedding = get_embedding(word)
158 secondPhraseEmbeddings.append(embedding)
159 if word not in stopwords.words('spanish'):
160 secondPhraseEmbeddings_no_sw.append(embedding)
161 except KeyError:
162 if verbose > 0:
163 print '''KeyError: Word Embedding of word "%s"
164 cannot be found. Skipping word...''' % word
165

166 X_WE.append([firstPhraseEmbeddings, secondPhraseEmbeddings])
167 X_WE_no_sw.append([firstPhraseEmbeddings_no_sw,
168 secondPhraseEmbeddings_no_sw])
169

170 # Phrase Embeddings of the train/test phrases
171 X_PE = []
172 # Phrase Embeddings without taking into account stopwords
173 X_PE_no_sw = []
174

175 # Build phrase embeddings by vector aggregation (summing all
176 # vectors in a phrase and dividing by the number of summed vectors)
177 for dualphrase in X_WE:
178 phrase1 = dualphrase[0]
179 phrase2 = dualphrase[1]
180 summed_embeddings1 = map(sum, zip(*phrase1))
181 summed_embeddings2 = map(sum, zip(*phrase2))
182

183 summed_embeddings1 = [x/len(dualphrase[0]) for x in
184 summed_embeddings1]
185 summed_embeddings2 = [x/len(dualphrase[1]) for x in
186 summed_embeddings2]
187

188 X_PE.append([summed_embeddings1, summed_embeddings2])
189

190 # Build phrase embeddings without stopwords
191 for dualphrase in X_WE_no_sw:
192 phrase1 = dualphrase[0]

A.2 experiment.py 47

193 phrase2 = dualphrase[1]
194 summed_embeddings1 = map(sum, zip(*phrase1))
195 summed_embeddings2 = map(sum, zip(*phrase2))
196

197 summed_embeddings1 = [x/len(dualphrase[0]) for x in
198 summed_embeddings1]
199 summed_embeddings2 = [x/len(dualphrase[1]) for x in
200 summed_embeddings2]
201

202 X_PE_no_sw.append([summed_embeddings1, summed_embeddings2])
203

204

205 # remember: y is the vector of true scores for X
206 cosine_similarities = []
207 euclidean_similarities = []
208

209 cosine_similarities_no_sw = []
210 euclidean_similarities_no_sw = []
211

212 for i in range(len(X_PE)):
213 cos_similarity = (1.0-cosine(X_PE[i][0], X_PE[i][1]))
214 cosine_similarities.append(cos_similarity)
215

216 # Euclidean similarity based on Euclidean distance.
217 # This is only one of many ways
218 euc_similarity = (1/(1 + euclidean(X_PE[i][0], X_PE[i][1])))
219 euclidean_similarities.append(euc_similarity)
220

221 # In another loop for readability purposes
222 for i in range(len(X_PE_no_sw)):
223 cos_similarity = (1.0-cosine(X_PE_no_sw[i][0], X_PE_no_sw[i][1]))
224 cosine_similarities_no_sw.append(cos_similarity)
225

226 euc_similarity = (1/(1 + euclidean(X_PE_no_sw[i][0], X_PE_no_sw[i][1])))
227 euclidean_similarities_no_sw.append(euc_similarity)
228

229

230

231

232

233 print ('\n')
234 print ('##')
235 if(split=='train'):
236 print ('############# Training set #############')
237 elif(split=='test'):
238 print ('############### Test set ###############')
239 print ('##')
240

241

48 Auxiliar scripts

242 print ('\n')
243 print ('Pearson Correlation Coefficient for Euclidean: %.3f' %
244 pearsonr(euclidean_similarities, y)[0])
245 print ('Pearson Correlation Coefficient for Cosine: %.3f' %
246 pearsonr(cosine_similarities, y)[0])
247 print ('Pearson Correlation Coefficient for Euclidean (no stopwords): %.3f' %
248 pearsonr(euclidean_similarities_no_sw, y)[0])
249 print ('Pearson Correlation Coefficient for Cosine (no stopwords): %.3f' %
250 pearsonr(cosine_similarities_no_sw, y)[0])
251

252

253 aligned_cosine_similarities_COA = []
254 aligned_euclidean_similarities_COA = []
255

256 aligned_cosine_similarities_CA = []
257 aligned_euclidean_similarities_CA = []
258

259 for dualphrase in X:
260 phrase1 = dualphrase[0].split()
261 phrase2 = dualphrase[1].split()
262

263 t1 = set(phrase1)
264 t2 = set(phrase2)
265

266 #vocabset = t1.union(t2)
267

268 bow_euclidean = {}
269 bow_cosine = {}
270

271 # Initialize dictionaries
272 for w in t1:
273 bow_euclidean[w] = 0
274 bow_cosine[w] = 0
275

276

277 for w in t2:
278 bow_euclidean[w] = 0
279 bow_cosine[w] = 0
280

281 # Alignment algorithm described in Lopez-Solaz, T. et al.
282 for w in t1:
283 if w in t2:
284 bow_euclidean[w] = 1
285 bow_cosine[w] = 1
286 elif w in vocab: # Check if there is a word embedding in our model
287 embedding = get_embedding(w)
288 # Calculate the similarity between w and each word of phrase2
289 embeddings_phrase2 = [get_embedding(x) for x in t2 if x
290 in vocab]

A.2 experiment.py 49

291 cos_sims = [1.0-cosine(embedding, x) for x in
292 embeddings_phrase2]
293 euc_sims = [(1.0/(1 + euclidean(embedding, x)))
294 for x in embeddings_phrase2]
295 max_cosine_sim = max(cos_sims)
296 max_euclidean_sim = max(euc_sims)
297

298 bow_euclidean[w] = max_euclidean_sim
299 bow_cosine[w] = max_cosine_sim
300

301 else:
302 continue
303

304 for w in t2:
305 if w in vocab:
306 embedding = get_embedding(w)
307 # Calculate the similarity between w and each word of phrase1
308 embeddings_phrase1 = [get_embedding(x) for x in t1 if x
309 in vocab]
310 cos_sims = [1.0-cosine(embedding, x) for x
311 in embeddings_phrase1]
312 euc_sims = [(1.0/(1 + euclidean(embedding, x))) for x
313 in embeddings_phrase1]
314 max_cosine_sim = max(cos_sims)
315 max_euclidean_sim = max(euc_sims)
316

317 bow_euclidean[w] = max_euclidean_sim
318 bow_cosine[w] = max_cosine_sim
319

320 else:
321 continue
322

323 # COA = Counting Only Appearances
324 values_cos_COA = [bow_cosine[w] for w in bow_cosine.keys()
325 if bow_cosine[w] > 0] # select those similarities that are not 0
326 values_euc_COA = [bow_euclidean[w] for w in bow_euclidean.keys()
327 if bow_euclidean[w] > 0]
328

329 aligned_cosine_similarity_COA = sum(
330 values_cos_COA)/len(values_cos_COA)
331 aligned_euclidean_similarity_COA = sum(
332 values_euc_COA)/len(values_euc_COA)
333

334 aligned_cosine_similarities_COA.append(
335 aligned_cosine_similarity_COA)
336 aligned_euclidean_similarities_COA.append(
337 aligned_euclidean_similarity_COA)
338

339 # CA = Counting All

50 Auxiliar scripts

340 values_cos_CA = [bow_cosine[w] for w in bow_cosine.keys()]
341 values_euc_CA = [bow_euclidean[w] for w in bow_euclidean.keys()]
342

343 aligned_cosine_similarity_CA = sum(
344 values_cos_CA)/len(values_cos_CA)
345 aligned_euclidean_similarity_CA = sum(
346 values_euc_CA)/len(values_euc_CA)
347

348 aligned_cosine_similarities_CA.append(
349 aligned_cosine_similarity_CA)
350 aligned_euclidean_similarities_CA.append(
351 aligned_euclidean_similarity_CA)
352

353

354 print ('''Pearson Correlation Coefficient for Aligned,
355 Counting Only Appearances (Euclidean): %.3f''' %
356 pearsonr(aligned_euclidean_similarities_COA, y)[0])
357 print ('''Pearson Correlation Coefficient for Aligned,
358 Counting Only Appearances (Cosine): %.3f''' %
359 pearsonr(aligned_cosine_similarities_COA, y)[0])
360

361 print ('''Pearson Correlation Coefficient for Aligned,
362 Counting All (Euclidean): %.3f''' %
363 pearsonr(aligned_euclidean_similarities_CA, y)[0])
364 print ('''Pearson Correlation Coefficient for Aligned,
365 Counting All (Cosine): %.3f''' %
366 pearsonr(aligned_cosine_similarities_CA, y)[0])
367

368

369 x1 = euclidean_similarities
370 x2 = cosine_similarities
371 x3 = euclidean_similarities_no_sw
372 x4 = cosine_similarities_no_sw
373 x5 = aligned_euclidean_similarities_COA
374 x6 = aligned_cosine_similarities_COA
375 x7 = aligned_euclidean_similarities_CA
376 x8 = aligned_cosine_similarities_CA
377

378 # Original experiment
379 # x = [x1, x2, x6]
380

381 # COMB method using all six similarity measures
382 # x = [x1, x2, x5, x6, x7, x8]
383

384 # COMB method with Vector Aggregation without stop words
385 x = [x1, x2, x3, x4, x5, x6, x7, x8]
386

387

388 # Stack 1-D arrays of similarities as columns into a 2-D array

A.2 experiment.py 51

389 X = np.column_stack(x+[[1]*len(x[0])])
390

391 if(split=='train'):
392 beta_hat = np.linalg.lstsq(X,y)[0]
393

394 print ('LLS solution weights = ' + str(beta_hat))
395

396 estimated_output = np.dot(X,beta_hat)
397

398 print ('''Pearson Correlation Coefficient for Linear Least Squares
399 (Using training set solution (weights) to LLS): %.3f''' %
400 pearsonr(estimated_output, y)[0])

	Contents
	List of Figures
	List of Tables
	Introduction
	Motivation
	Objectives
	Structure of the report

	Related work
	Classification of the task and methods
	String-Based Similarity
	Corpus-Based Similarity
	Knowledge-Based Similarity
	Description of the SemEval 2015 Task on Semantic Text Similarity

	State-of-the-art systems in Spanish text similarity
	Best systems of SemEval 2015
	Other state-of-the-art systems based on word embeddings

	Tools and methods for learning word embeddings
	Word2Vec
	Feedforward Neural Net Language Model (NNLM)
	Hierarchical Softmax
	Continuous Bag-of-Words Model
	Continuous Skip-gram Model

	GloVe: Global Vectors
	Co-occurrence probability ratios
	Weighted least squares regression model and cost function
	GloVe method summarized

	Comparison between Word2Vec and GloVe models

	Experimentation. Method and evaluation
	Experiment description and setup
	Experiment results
	Analysis and comparison of results

	Further experimentation
	Increasing training iterations
	COMB method using all six similarity measures
	Vector Aggregation without stop words
	COMB method with Vector Aggregation without stop words

	Exploring the Combinatorial Space of the COMB method

	Final conclusions and future work
	Final conclusions
	Future work

	Bibliography
	Auxiliar scripts
	remove_tokens.py
	experiment.py

