

UNIVERSITAT POLITÈCNICA DE VALÈNCIA

Máster Universitario en Ingeniería y Tecnología de

Sistemas Software
TESIS DE MÁSTER

Mejoras en la interacción con la
herramienta Maude-NPA

Author: Damián Aparicio Sánchez

Tutor: Santiago Escobar Román

Date: September, 2017

Departamento de Sistemas Informáticos y Computación
Universitat Politécnica de Valencia

Camino de Vera, s/n
46022 Valencia, Spain

Abstract

 The security in modern online services is increasingly more and more
vulnerable to intruder attacks. Companies like Yubiko works on devices like
Yubikey, a USB device that provides strong identification. In this thesis, we
have specified and analyzed the cryptographic protocol underneath the
Yubikey device using the Maude-NPA tool, a state-of-the-art cryptographic
protocol analyzer. During this thesis, we learned how the Yubikey protocol
works, we learn how to use the Tamarin proper, another protocol analyzer,
and how to specify and analysis this protocol using the Maude-NPA features.

Contents
1. INTRODUCTION 1

2. TAMARIN PROVER 2
 TAMARIN PROVER SYNTAX 2 2.1.
 PROTOCOL SPECIFICATION IN TAMARIN PROVER 4 2.2.

2.2.1. RULES 4
2.2.2. FACTS 5

 FIRST EXAMPLE 5 2.3.
2.3.1. SECURITY PROPERTIES 8

3. MAUDE-NPA 10
 MAUDE-NPA STRUCTURE 10 3.1.
 SPECIFYING SYNTAX 10 3.2.

3.2.1. SORTS, SUBSORTS AND OPERATORS 11
 ALGEBRAIC PROPERTIES 12 3.3.
 SPECIFYING THE STRANDS 12 3.4.

3.4.1. DOLEV-YAO STRANDS 13
3.4.2. PROTOCOL STRANDS 13
3.4.3. PROTOCOL ANALYSIS 14

4. YUBIKEY PROTOCOL 15
 GENERAL INFORMATION 15 4.1.
 YUBIKEY AUTHENTIFICATION PROTOCOL 15 4.2.
 FORMAL ANALYSIS 17 4.3.

5. YUBIKEY PROTOCOL SPECIFIED IN MAUDE-NPA 19
 PROTOCOL SYSMBOLS 19 5.1.
 STRAND SPECIFICATION 20 5.2.
 PROTOCOL ANALYSIS 22 5.3.

5.3.1. THE ABSENCE OF REPLAY ATTACKS 23
5.3.2. INJECTIVE CORRESPONDENCE 23
5.3.3. INCREASING THE COUNTER 24
5.3.4. COUNTER VALUE CONTROL 25
5.3.5. REGULAR EXECUTION 26

6. CONCLUSIONS AND FUTURE WORK 28

7. BIBLIOGRAPHY 29

 1

1. Introduction

 Nowadays there exists several security tokens having the form of a
smartcard or of an USB device, which are designed for protecting
cryptographic values from an intruder e.g: hosting service, emails, e-
commerce, online Banks, etc. They are also used to ease authentication for
the authorized users at a service. If you are using a service that verifies your
Personal Identification Number (PIN), it should not be used for checking your
flights, reading your emails, etc. It should in fact only be used when it is
necessary to check your PIN. In this way, if we can use an Application
Programing Interface (API) to separate the service from the authentificator
system, we can say that a certain amount of attacks related to user
identification are discarded. Yubikey token is an API designed with a button
that once it is touched triggers a new user. The device has as purpose the
authentication of the user against some service.

 The goal of this master thesis is to formally analyze the Yubikey protocol
API using Muade-NPA, a-state-of-art security protocol verification tool. The
complexity of this work lies in the time/order of execution process. The purpose
of this master is whether Maude-NPA is useful to specify and control this
execution process. To prove our work, we use composition to control the
global memory and its set of facts. We were able to verifiy the Yubikey
protocol.

 The master thesis has had two parts. The first part is about how security
tokens in special the Yubikey protocol API Works. This was formally discussed in
Section 4.1 the PhD thesis of Robert Künnemann [Künnemann14]. We had to
learn the syntax and funcionality of the tool Tamarin prover [Tamarin16],
another protocol analysis tool, because the Yubikey protocol was specified in
Tamarin prover. The second part was about the specification of the Yubikey
protocol and the difficulties Maude-NPA has had, as well as errors found
during the realization of this master thesis.

 The thesis is organized as follows. In Section 2 and Section 3 we briefly
present the two tools, Tamarin prover and Maude-NPA, in Section 4 how
Yubikey protocol works. We conclude in Section 5 with the specification and
verification of the protocol.

Mejoras en la interacción con la herramienta Maude-NPA

 2

2. Tamarin Prover

 Tamarin prover [Tamarin16] is a cryptographic protocol verifier which
allows the user several things at the same time to specify complex security
properties (both trace and equivalence properties), to model cryptographic
primitives by means of an equational theory, and to model protocols with
state information. The class of equational theories supported by the tool is the
class of subterm-convergent equational theories, in addition to built-in theories
for Diffie-Hellman exponentiations, bilinear pairings, multisets and equational
theories with the finite variant property.

 The Tamarin prover is a powerful tool for the symbolic modeling and
analysis of security protocols[Simon13]. It takes as input a security protocol
model, specifying the actions taken by agents running the protocol in
different roles (e.g., the protocol initiator, the responder, and the trusted key
server), a specification of the adversary, and a specification of the protocol’s
desired properties. Tamarin prover can then be used to automatically
construct a proof that, even when arbitrarily many instances of the protocol’s
roles are interleaved in parallel, together with the actions of the adversary, the
protocol fulfils its specified properties. In this thesis, we provide an overview of
this tool and its use.

 Tamarin Prover Syntax 2.1.

 The syntax of security protocols are delimited by begin and end. We
explain briefly the formal syntax in the following paragrahs, for futher detail
see[Referencia].

 security_protocol_theory = theory name begin body end

 3

 The security protocol has multiset rewriting rules that are

specified in the body.

 body =(signature_spec|rule|restriction|lemma|formal_comment)+

 signature_spec = functions|equations|builtin

 builtin = 'builtins' ':' builtins list

 builtins = 'diffie-hellman'|'hash'|'symm-encrypt'|'asymm-encrypt|'sign'

 Rules are the most important part to understand how Tamarin prover
works. The rules operate on the system’s state, which are expressed as a
multiset of facts. Facts can be seen as predicates proving state information.
Rules have a premise (left-hand side) and a conclusion (right-hand side),
separated by the arrow symbol -->. A rule can be executed when the premise
is present in the system’s state, and when the rule is executed, the system’s
state is modified according to the conclusion.

rule = 'rule' name ':' '[' facts ']' ('-->' | '--[' action facts ']->') '[' facts ']'

 Some rules contain action facts inside the arrow
(e.g., --[action facts]->). They are just like facts, but unlike regular facts the
other facts do not appear in the state, only on the trace. The security
properties are checked on the traces, this means action facts are used
afterwards to determine which agents (roles) are compromised.

 In the last part of the specification of the protocol in Tamarin prover we
have lemmas to specify security properties. By default, the formula below of
the lemma is interpreted as a property that must hold for all traces of the
protocol of the security protocol theory.

 lemma := 'lemma' ident [lemmaattrs] ':'

 [trace_quantifier]

 '"' formula '"'

 proof

 lemmaattrs = '['('source'|'reuse'|'use_induction' |'hide_lemma=' ident)']'

 tracequantifier := 'all-traces'|'exists-trace'

 proof = ... a proof as output by the Tamarin prover ...

Mejoras en la interacción con la herramienta Maude-NPA

 4

 Protocol specification in Tamarin Prover 2.2.

 In this section, we provide an informal description about protocol
specification model.

 Tamarin prover models are specified using three levels, we are going to
focus in the first two of them:

1. Rules
2. Facts
3. Terms

2.2.1. Rules

 Multiset rewriting is used at the concurrent execution of the protocol
and at the adversary. A rewriting rule has three parts, each of them is a
sequence of facts (we have already seen the structure in the previous
section), the rules of a posible specification model are:

 rule FirstRule:
 []
 -->
 [F('1','x'), F('2','y')]

 rule SecondRule:
 [F(u,v)]
 -->
 [H(u), G('3',h(v))]

 In this case the initial state of the comunication is the empty multiset. A
rule can be applied to a state if it can be instantiated such that the facts its
left hand side are contained in the set of facts of the current state. In this case,
the left-hand side facts are removed from the state, and replaced by the
instantiated right hand side.

 For instant the rule FirstRule can be instantiated repeatedly. And for any
instantiation of FirstRule, it will be followed by a state that contains
[F('1','x')] or [F('2','y')] and in this case SecondRule can be applied to both of
them. Each of these instantiations leads to a new successor state.

 5

2.2.2. Facts

 Facts follow the simple structure F(a1,…,an) for a fact symbol F and
terms a1,…,an can be seen as predicates storing state information. Tamarin
has different fact types, these are used to model interaction with the
communications, the most used are:

 Name(a1,…,an) = normal facts, produced by rules and also
consumed by rules, hence they might appear in one state but not in
the next.

 In() = This fact is used to receive a message from the
communication network, that will be controlled by adversary, and can
only occur on the left-hand side of a rewrite rule, as normal facts, it is
consumed by rules.

 Out() = This fact is used to send a message to the
communication network that will be controlled by an adversary, and
can only occur on the right-hand side of a rewrite rule, as normal facts,
it is consumed by rules.

 Fr() = This fact must be used when generating fresh (random)
values, and can only occur on the left-hand side of a rewrite rule,
where its argument is the fresh term, as normal facts, it is consumed by
rules.

 !Name(a1,…,an) = Special fact will never be removed from state
once they are introduced. There are called ‘persistent facts’

 --[actionFacts]-> = Action facts, used to indicate that the
message is supposed to be secret. We used when agents' keys are
compromised.

 First Example 2.3.

 To understand better the specification of a protocol we are going to
use a example [Simon16] of a communication protocol that consist of two
messages, using Alice and Bob notation.

C -> S: aenc(k, pkS)
S -> C: h(k)

Mejoras en la interacción con la herramienta Maude-NPA

 6

 A client C sends to the server S a new fresh key k, encrypted with the
public key pkS of a server S (aenc means asymmetric encryption) generated
previously before shipping. The communication follow-up with server S
confirms the key's receipt by sending to the client C the hash h of the key.

 Tamarin prover uses multiset rewriting rules to operate on the system's
state, which is expressed as a multiset (i.e., a bag) of facts. We use facts to
store information about the state given by their arguments. The rules have a
premise and a conclusion, separated by the arrow symbol -->. Facts in the
conclusion will be added to the state, while the premises are removed, unless
the fact is preceded by symbol !.

 We start with the modeling of the infrasctructure of protocol.

 rule Register_pk:
 [Fr(~ltk)]
 -->
 [!Ltk($C, ~ltk), !Pk($C, pk(~ltk))]

 This rule has only a premise which is an instance of the Fr fact, a built-in
fact that denotes a freshly generated name.

 First, a fresh name ~ltk (of sort fresh) is generated, which is the new
private key, and non-deterministically choose a public name C, for the role for
whom we are generating the key-pair. Then, generates the fact !Ltk($C, ~ltk)
(the mark ! denotes that the fact is persistent), which denotes the association
between role C and its private key ~ltk. Finally generates the permanent fact
!Pk($C, pk(~ltk)), which associates agent C and its public key pk(~ltk).

 rule Get_pk:
 [!Pk(C, pubkey)]
 -->
 [Out(pubkey)]

 The second rule reads a public-key database entry and sends the
public key to the channel using the built-in fact Out,

 rule Reveal_ltk:
 [!Ltk(C, ltk)]
 --[LtkReveal(C)]->
 [Out(ltk)]

 This rule is to reveal when the private key has been compromised. This
rule reads a private-key database entry and sends it to the channel
(knowledge adversary). Besides, the rule has an actionfact ‘LtkReveal’ (it is
used to determine whether role C was compromised).

 7

 Recall the Alice-and-Bob notation of the protocol we want to model:

 C -> S: aenc(k, pkS)
 C <- S: h(k)

 The first step is writing the rules for the client C

rule Client_1:
[Fr(~k), !Pk($S, pkS)]
// choose fresh key
// lookup public-key of server
-->
[Client_1($S, ~k), Out(aenc(~k, pkS))]
// Store server and key for next step of thread
// Send the encrypted session key to the server

rule Client_2:
[Client_1(S, k), In(h(k))
// Retrieve server and session key from previous step
// Receive hashed session key from network
--[SessKeyC(S, k)]->
// State that the session key 'k'
[]
// was setup with server 'S'

 Next, server S aswers in one-step to a session-key setup request from the
client C.

rule Serv_1:
[!Ltk($S, ~ltkS), In(request)]
// lookup the private-key
// receive a request
--[AnswerRequest($S, adec(request, ~ltkS))]->
// Compromise role S
// adec = asymmetric decryption algorithm
[Out(h(adec(request, ~ltkS)))]
// Return the hash of the decrypted request.

 In addition, first and second rule models the client C sending its
message, and the second rule models the receiving of a response. The third
rule models the server S, both receiving the message and requesting in the
same rule.

Mejoras en la interacción con la herramienta Maude-NPA

 8

2.3.1. Security properties

 In Tamarin prover to evaluate security properties[Meier13] we must use
lemmas and have to defined over tracers of the actions facts of the protocol
execution.

 As an example, to verify a lemma saying that it cannot be possible that
a client has set up a session key k with a server S and the adversary learned
that k unless the adversary performed a long-term key reveal on the server S.
We will use the following syntax:

• Ex = existential quantification
• # = temporal variables
• & = conjunction
• f @ i = action constraints, restricions to control the temporal

 variables, 'i' is optional
• not = negation

 Lemma proves that it cannot be posible that a client has set up a
session key(SessKeyC) ‘key’ with a server ‘Server’ and the adversary knows
‘key’ without having performed a long-term key reveal on ‘Server’.

 The mathematical representation of the security property is expressed
using action constraints in Tamarin as follows:

 ¬(∃t1, t2, Server, key.

 SesskeyC(Server, key) @ t1 ∧

 K(key) @ t2 ∧
 ¬(∃t3.LtkReveal(Server) @ t3)

 Note that t1,t2 and t3 are timepoints and therefore SesskeyC @ t1,
K @ t2, LtkRevel @ t3 events mean that the trace contains a rule instantiation
that produces the action SesskeyC, K, LtkRevel at different timepoint t1, t2, t3.
Note that they share the Server and key parameters.

 The specification of this lemma using Tamarin syntax is as follows:

lemma Client_session_key_secrecy:
"not(Ex S k #i #j.
SessKeyC(S, k) @ #i & K(k) @ #j & not(Ex #r. LtkReveal(S) @ r))"

 In the Figure 1 we show how Tamarin has verified the lemma, using
green color to highlight different parts, that mean it was successfully proven. If
we had found a counterexample, it would be colored in red.

 9

Figure 1 : Image from Tamarin prover tool

Mejoras en la interacción con la herramienta Maude-NPA

 10

3. Maude-NPA

 Maude-NPA[MNPA17] is an analysis tool used for verifying the
security of cryptographic protocols, that takes the ability to check algebraic
properties. Besides the tool is specialized to prove proofs of security as well as
to search for attacks, we have focused in this part to verify the security
guarantee of Yubikey protocol. Maude-NPA is a backwards search tool, i.e., it
searches backwards from a final state to determine whether or not it is
reachable from an initial state, in this way we can prove that final state is
unreachable.

 Maude-NPA structure 3.1.

 Maude-NPA tool consists in three sections called modules, having a
fixed format and fixed module names, The first module is the syntax of the
protocol that is focused in the statement of sorts and operators. The second
module specifies the algebraic properties of the operators. And lastly the third
module using a strand-theoretic notation or a process algebra. This module
includes the intruder capabilities (using formal model Dolev-yao), regular
strands or processes (describing the behavior of roles). It also contains analysis
strands called attacks, which describing behavior that we want to verificate.

 Specifying Syntax 3.2.

 This module is used to specify protocol and all it is relevant items in
the current version of the Maude-NPA, the syntax is specified in the module
PROTOCOL-EXAMPLE-SYMBOLS.

 11

3.2.1. Sorts, Subsorts and Operators

 In general, sorts are used to specify different types of data, that are
used for different purposes. We have a special sort called Msg that represents
what messages are going to look like in our protocol. If a protocol makes no
additional sort distinctions, i.e., if it is an unsorted protocol, there will be no
extra sorts, and every symbol will be of sort Msg.

sorts Name Nonce .
subsort Name Nonce < Msg .
subsort Name < Public .

 Most sorts are user-defined, however, there are several special sorts
that are automatically imported by any Maude-NPA protocol definition. These
are:

Msg : Sorts defined by the user must be subsorts of Msg, and no sort
defined by the user can be a supersort of Msg. This sort cannot be
empty, i.e., it is necessary to define at least one symbol of sort Msg or of
a subsort of Msg.

Fresh : The sort Fresh is used to identify terms that must be unique. This
sort is typically used as an argument of some data that must be unique,
such as a nonce, or a session key, e.g., “n(A,r)” or “k(A,B,r)” where r is a
variable of sort Fresh. It is not necessary to define symbols of sort Fresh,
i.e., the sort Fresh can be empty.

Public : The sort Public is used to identify terms that are publically
available, and therefore assumed known by the intruders. This sort
cannot be empty.

 The next step is to specify the operations, Maude-NPA is very flexible
and allows several operator declarations. We have the standard prefix sysntax
and the mix-fix syntaxs (e.g., _;_) these operator allow us to have the posibility
to determine what equational attributes we want, such as associativity,
commutativity, and identity.

prefix syntax

op Fr : Fresh -> FrNonce .
op Init : FrNonce FrNonce -> Init .
op Server : FrNonce FrNonce Counter -> Server .

Mejoras en la interacción con la herramienta Maude-NPA

 12

mix-fix syntax

op _+_ : Counter Counter -> Counter [assoc comm] .
op _;_ : StdMsg StdMsg -> StdMsg [gather (e E)] .
op _++_ : EventList EventList -> EventList [assoc id: nil prec 31] .
op _+++_ : EventList End -> EndEventList [prec 33] .

 Maude-NPA has the capacity to work with special unification
algorithms, like associative assoc, commutative comm and identity id:
keyword. Other characteristic that Maude-NPA can control using the operator
attribute
gather (e E) associativity to the left; whereas gather (E e) indicates association
to the right. Precedence[Maude16] prec number is given to natural number,
where a lower value indicates a higher priority in this parser.

 Algebraic Properties 3.3.

 Maude-NPA verification is a powerfull symbolic reachability analysis
modulo the equational theory of the protocol.

 Maude-NPA supports three algebraic properties types: (I)equational
axioms, such as commutativity, or associativity-commutativity, called axioms.
(II)Equational rules, called variant equations, and (III)equational rules for
dedicated unification algorithms, called dedicated equations. Variant and
dedicated equations are specified in the PROTOCOL-EXAMPLE-ALGEBRAIC.

var Z : Msg . var A : Name .

Encryption/Decryption Cancellation

eq pk(A,sk(A,Z)) = Z [nonexec] .
eq sk(A,pk(A,Z)) = Z [nonexec] .

 An equation is oriented into a rewrite rule in which the lefthand side
of the equation is reduced to the righthand side.

 For the declaration of Yubikey protocol has not been needed, and
do not need to know more about algebraic properties for this protocol.

 Specifying the strands 3.4.

 Maude-NPA used strands for protocol specification and intruder
knowladge, there are specificate in the module PROTOCOL-SPECIFICATION.

 13

3.4.1. Dolev-Yao strands

The intruder knowledge uses the formal Dolev-Yao model[Dolev83] to prove
properties, and the symbol & as the union operator for sets of strands. The
intruder strands consists of a sequence of negative node, followed by possitive
nodes. Also can consider that variables are not shared between strands, and
thus will appropriately rename them when necessary.

 For example, on the concatenation and deconcatenation if the
intruder knows X:StdMsg and Y:StdMsg, he can obtain X:StdMsg ; Y:StdMsg . If
he knows X:StdMsg ; Y:StdMsg he can obtain X:StdMsg and Y:StdMsg. Since
each intruder strand can have at most one positive node, we need to use
three strands to specify these actions:

eq STRANDS-DOLEVYAO =
:: nil :: [nil | -(X:StdMsg), -(Y:StdMsg), +(X:StdMsg ; Y:StdMsg), nil] &
:: nil :: [nil | -(X:StdMsg ; Y:StdMsg), +(X:StdMsg), nil] &
:: nil :: [nil | -(X:StdMsg ; Y:StdMsg), +(Y:StdMsg), nil]
….
...

[nonexec] .

 Note, the notation :StdMsg is not necesary if we have declarated the
variable X before.

 In order to give to the intruder the ability to generate his own sort
Counter, we would represent this using the following rule:

:: nil :: [nil | +(counter1), nil]

 We need to provide the intruder strands for all the operation that are
defined, unless one is explicitly making the assumption that the intruder can
not perform the given operation.

3.4.2. Protocol Strands

 In this part of a specification we define the messages that are sent and
received by each of roles/participants.

 We specify one strand per role, however, since Maude-NPA supports an
arbitrary number of sessions, each strand (i.e., each role) can be instantiated
an arbitrary number of times. We recall the informal specification of
FirstExample used in Tamarin prover, as follows:

Mejoras en la interacción con la herramienta Maude-NPA

 14

C -> S: aenc(k, pkS)
S -> C: h(k)

 At the specification of the protocol strands it is important to remark do it
from the point of view of the principal that controls the role. For example, in
FirstExample the client C starts out by generating a fresh symmetric key k,
encrypts it with the public key pkS of a server S (aenc stands for asymmetric
encryption), and sends it to S. She get back confirming the key's receipt by
sending the hash of the key back to the client.

 In order to represent the initiator’s strand, we model the construction of
C’s nonce explicitly as n(C,k), where r is a variable of sort Fresh belonging to
C’s strand.

eq STRANDS-PROTOCOL =

:: r ::
[nil |+(aenc(k,pkS(C,S ; n(C,r)), - (h(k)), nil]
&
:: ::
[nil | -(aenc(k,pks(C,S ; N)), +(h(k)), nil]
[nonexec] .

3.4.3. Protocol Analysis

The attacks patterns are defined in the last part of the module
PROTOCOL-SPECIFICATION and for Maude-NPA performs a backwards
reachability. In Maude-NPA, each state found during the backwards analysis
(i.e., a backwards search) is represented in five different sections separated
by the symbol ||. We will focus in two of them, first one: state Id, and
second one: set of current protocol and intruder strands. In the state id will
start with the number 0. A sort example of a type of attack pattern
representing the intruder learning the nonce generated by client:

Eq ATTACK-STATE(0) =
:: r ::
[nil |+(aenc(k,pkS(c,S ; n(c,r)), - (h(k)), nil]
|| n(c,r) inI
|| nil
|| nil
|| nil
[nonexec] .

 The intruder knowledge represents what messages the intruder knows
(symbol inI) or does not yet know (symbol !inI) at each state of a protocol
execution.

 15

4. Yubikey Protocol

 General information 4.1.

 The YubiKey is a small USB device manufactured by Yubico. The goal of
this device is to authenticate a user against network-based services. It
supports one-time passwords (OTPs) using an encryption of a secret value,
that is, a running counter and some random values representing information
encrypted using a AES-128 encryption. Also, it is indepent of the operating
system and does not require any installation because it works with USB system
drivers.

 Yubikey’s incremental success has led to its use in goverments,
universities and companies like Google, Facebook, Dropbox, CERN, etc.,
including more than 30,000 customers. [Yubico07]

 Due to its success, the Yubikey protocol has received little independent
security analysis. And it is interesting to prove security properties of the Yubikey
API for an unbounded number of fresh OTPs using the Maude-NPA tool.

 All our analysis follow the Dolev-Yao model of cryptography, when we
refer to the Yubikey or Yubikey protocol, we analysed the version 2.3 of the
device[Yubikey16].

 Yubikey Authentification Protocol 4.2.

 The Yubikey authentication server accepts an OTP only if it decrypts
under the correct AES key into a valid secret value containing a counter
larger than the last accepted counter. The counter is, thus, used as a means
to prevent replay attacks.

 The Yubikey is connected to the computer via USB port, using the
operating system’s native drivers. We will focus on the Yubikey OTP mode, that
has exactly one button. If the button is pressed, it emits a string that can be
verified only once against a server in order to receive the permission to access
a service. A request for a new authentication token is triggered by touching a

Mejoras en la interacción con la herramienta Maude-NPA

 16

button that is on the YubiKey device. As a result, some counters that are
stored on the device are incremented and some random values are
generated in order to create a fresh 16-byte plaintext having the following
concatenated fields

• the unique secret ID (6 bytes)
• a session counter (2 byte)
• a timestamp (3 byte)
• a token counter (1 byte)
• a pseudo-random value (2 bytes)
• CRC-16 value (2 bytes)

The figure 2 [Vamanu12] represent the set of field explained before:

Figure 2 : Structure of the plantext of OTPs

 The authentication protocol of the YubiKey involves three roles: (I)the
user, (II)the service and (III)the verification server. The user can have access to
the service if it provides its own valid one time password generated by the
YubiKey; the validity is verified by the verification server. The figure 3 [Merkel09]
is a simple example of the Yubikey protocol with three roles.

Figure 3 : Yubikey OTP Validation Flow

 17

 The authentication protocol consists of two exchanged messages. The
first message is sent from the service to the verification server with its
identification number pid, a nonce and the one time password (OTP)
received from a user.

 The second message is the response from the server after the
verification of the password is made and consists of the password, the validity
status, the nonce sent by the client and a HMAC (keyed-hash Message
Authentication Code) over these fields using a shared key between the client
and server.

 A Yubikey stores a pid(public id), sid(secret id), and the AES k(key), and
is used in the following authentication protocol:

 The user provides a client C with the Yubikey’s output pid, otp,e.g., by
performing it in a web form.

C -> S : pid,otp,nonce

S -> C : otp,nonce,hmac(keysc,otp,status,Nonce),status

 Here nonce is a randomly chosen value between 8 and 20 bytes and
hmac is a Message Authentication Code (MAC) over the parameters using a
key present on the server and the client. By status, we denote additional status
information given in the response, containing an error code that indicates
either success or where the verification of the otp failed, plus (in case of
success) the value of the internal timestamp, session counter and token
counter when the key was pressed.

 The server S accepts the token if either the session counter is bigger
than the last one received, or the session counter has the same value but the
token counter is incremented. It is possible to verify whether the timestamp is in
a certain window with respect to the previous timestamp received, however,
the model that we have specified in Maude-NPA does not include the timing
of messages, therefore we ignore this (optional) check.

 Formal Analysis 4.3.

 The only formal specification in the literature is given in the PhD thesis of
Robert Künnemann[Künnemann14, Künnemann12]. In that paper, a
specification of Yubikey in Tamarin is given. In the following, we describe such
a specification.

Mejoras en la interacción con la herramienta Maude-NPA

 18

 The first rule is the initialisation of Yubikey, a fresh prublic ID(pid), secret
ID(sid) and Yubikey-key(k) are saved on the server and the Yubikey.

Fr(k), Fr(pid), Fr(sid)
−[Protocol(), Init(pid, k), ExtendedInit(pid, sid, k)]→
!Y(pid,sid),Y_counter(pid, ′1′),Server(pid,sid, ′1′), !SharedKey(pid, k)

The Fr facts guarantee that each instantiation of this rule replaces k, pid and
sid by different fresh names. Y_counter is the current counter value stored on
the Yubikey.

The next rule models how the counter is increased when a Yubikey is plugged
in

Y_counter(pid, otc), In(tc)
−[Yubi(pid, tc),Smaller(otc, tc)]→
Y_counter(pid, tc)

Note that the intruder has to input tc. By requiring the intruder to produce all
counter values, we can ensure that they are in !K, i. e., the adversary’s
knowledge.

 When the button is pressed, an encryption is output in addition to
increasing the counter:

!Y(pid, sid), Y_counter(pid, tc), !SharedKey(pid, k), In(tc), Fr(npr),
Fr(nonce)
−[YubiPress(pid, tc)]→
Y_counter(pid, tc +′ 1′), Out(⟨pid, nonce, senc(⟨sid, tc, npr⟩, k)⟩)

 The output can be used to authenticate with the server, in case that
the counter inside the encryption is larger than the last counter stored on the
server:

Server(pid, sid, otc), In(⟨pid, nonce, otp⟩), !SharedKey(pid, k), In(otc)
−[Login(pid, sid, tc, otp), LoginCounter(pid, otc, tc), Smaller(otc, tc)]→
Server(pid, sid, tc)

otp = senc(⟨sid,tc,pr⟩,k)

 19

5. Yubikey protocol specified in Maude-NPA

 The purpose of this master thesis is to prove that Yubikey can be
specified in the Maude-NPA protocol analyzer and that the most interesting
security properties can be verified. In this section we describe our efforts to
specify the protocol in Maude-NPA and to analyze five interesting properties.

 Protocol sysmbols 5.1.

 In the following we show how to specify the sorts, operations for Yubikey
protocol in the Maude-NPA’s syntax.

sorts Event End EventList StdMsg GlobalMsg Fr FrNonce EndEventList .
sorts Y Ycounter Server SharedKey Senc Init ExtendedInit Yubi Smaller YubiPress Login
 LoginCounter Counter .

subsorts EventList StdMsg GlobalMsg EndEventList < Msg .
subsort Event < EventList .
subsort FrNonce Y SharedKey Senc Counter < StdMsg .
subsorts Ycounter Server < GlobalMsg .
subsorts Init ExtendedInit Yubi Smaller YubiPress Login LoginCounter < Event .
subsort Counter < Public .

op Fr : Fresh -> FrNonce .
op Init : FrNonce FrNonce -> Init .
op ExtendedInit : FrNonce FrNonce FrNonce -> ExtendedInit .
op Y : FrNonce FrNonce -> Y .
op Ycounter : FrNonce Counter -> Ycounter .
op Server : FrNonce FrNonce Counter -> Server.
op Yubi : FrNonce Counter -> Yubi .
op Smaller : Counter Counter -> Smaller .
op 1 : -> Counter .
op _+_ : Counter Counter -> Counter [assoc comm] .
op SharedKey : FrNonce FrNonce -> SharedKey .
op _;_ : StdMsg StdMsg -> StdMsg [gather (e E)] .
op empty : -> GlobalMsg .
op _@_ : GlobalMsg GlobalMsg -> GlobalMsg [assoc comm id: empty] .
op senc : StdMsg FrNonce -> Senc .
op YubiPress : FrNonce Counter -> YubiPress .
op Login : FrNonce FrNonce Counter StdMsg -> Login .
op LoginCounter : FrNonce Counter Counter -> LoginCounter .
op yubikey : -> Role .
op nil : -> EventList .

Mejoras en la interacción con la herramienta Maude-NPA

 20

op _++_ : EventList EventList -> EventList [assoc id: nil prec 31] .
op _+++_ : EventList End -> EndEventList [prec 33] .
op end : -> End .

 We are going to focus on explaining few important operations, two of
the most important for to make Yubikey protocol works, is the operator _++_
and _+++_ used for control temporal variables (These are the @ the action
constraints in Tamarin). We decided to create a sort End to avoid a finite
ejecution of the first strand and also, control the end of the Yubikey protocol.

 The Yubikey protocol uses the time/cycle of execution to control the
execution process. Maude-NPA does not have the ability to control them. For
that we developed the way to simulate with composition a set of facts to
control global memory. Thus, we made the operator _@_ to represent this
global memory.

 An example of the global memory operator:

{yubikey -> yubikey ;; 1-1 ;; Ycounter(pid:FrNonce,counter2:Counter) @
 mem:GlobalMsg},nil]

 We have three parts in this synchronization message, (I) yubikey ->
yubikey is for represent how role send and how role recibe this strand, (II) to determine
is a one to one message, (III) The Event/s has occurred before.

 Strand specification 5.2.

 We follow the active Dolev-Yao intruder model[Dolev83], where the
intruder has full control of the communicacion channel and can intercept
messages, generate new messages, fake previously seen messages. In this
model, all the intruder capabilities are specified using two kind of strands:
composing (of the form -(X1),…,-(Xn), +(F(X1,...,Xn)) and decomposing (of the
form -(F(X1,...,Xn)), +(Xi))

eq STRANDS-DOLEVYAO =

:: nil :: [nil | -(pid), -(sid), +(Y(pid,sid)), nil] &
:: nil :: [nil | -(pid), -(counter1), +(Ycounter(pid,counter1)), nil] &
:: nil :: [nil | +(counter1), nil] &
:: nil :: [nil | -(pid), -(sid), -(counter1), +(Server(pid,sid,counter1)), nil] &
:: nil :: [nil | -(key), -(pid), +(SharedKey(pid,key)), nil] &
:: r :: [nil | +(Fr(r)), nil] &
:: nil :: [nil | -(X:StdMsg), -(K:FrNonce), +(senc(X:StdMsg,K:FrNonce)), nil] &
:: nil :: [nil | -(K:FrNonce), -(senc(X:StdMsg,K:FrNonce)), +(X:StdMsg), nil] &
:: nil :: [nil | -(X:StdMsg), -(Y:StdMsg), +(X:StdMsg ; Y:StdMsg), nil] &
:: nil :: [nil | -(X:StdMsg ; Y:StdMsg), +(X:StdMsg), nil] &
:: nil :: [nil | -(X:StdMsg ; Y:StdMsg), +(Y:StdMsg), nil]
[nonexec] .

 21

The strands of this protocol are specified as follows:

 eq STRANDS-PROTOCOL =

 :: rk,rpid,rsid ::
 [nil |
 +(Init(Fr(rpid:Fresh),Fr(rk:Fresh)) ++
 ExtendedInit(Fr(rpid:Fresh),Fr(rsid:Fresh),Fr(rk:Fresh))),
 +(Y(Fr(rpid:Fresh),Fr(rsid:Fresh))),

 +(SharedKey(Fr(rpid:Fresh),Fr(rk:Fresh))),
 {yubikey -> yubikey ;; 1-1 ;; Ycounter(Fr(rpid:Fresh), 1) @
 Server(Fr(rpid:Fresh),Fr(rsid:Fresh),1)},nil]
 &

 This first strand is the initialisation of a Yubikey. A set of three fresh,
identifiers are used: public ID(rpid), secret ID (rsid) and Yubikey-key (rk). They
are “created” and assigned by the server and the Yubikey. For each
instantiation of this strand we have different Fresh names.

 The Yubikey is identified by its public ID (rpid). The message ‘Y’ is sent to
the comunication channel and it stores the corresponding secret ID (rsid). The
message ‘SharedKey’ is also sent to the communication channel storing the
corresponding key ‘rk’, which is shared with the Server. Both sent messages
are used to associate the secret ID to both the Server and the Yubikey for
further authentication. Ycounter is initialiazed in the global memory with the
current counter value stored on the Yubikey.

 :: nil ::
 [nil | {yubikey -> yubikey ;; 1-1 ;; Ycounter(pid:FrNonce,counter1:Counter) @
 mem:GlobalMsg},
 -(counter2:Counter),
 -(EL:EventList),
 +(EL:EventList ++ Yubi(pid:FrNonce,counter2:Counter) ++
 Smaller(counter1:Counter,counter2:Counter)),
 {yubikey -> yubikey ;; 1-1 ;; Ycounter(pid:FrNonce,counter2:Counter) @
 mem:GlobalMsg},nil]
 &

 The second strand represents another Yubikey begins plugged. This
strand checks that the new associated counter is smaller than any previous
one by using the predicate Smaller. The protogol manages that this new
counter is smaller the previous one, with the event Smaller. This is used to know
whether Yubikey appeared before in the communication channel. Note that
the adversary has to input counter2, we will explain this in the protocol analysis
section.

Mejoras en la interacción con la herramienta Maude-NPA

 22

 :: rnpr,rnonce ::
 [nil | {yubikey -> yubikey ;; 1-1 ;; Ycounter(pid:FrNonce,counter2:Counter) @
 mem:GlobalMsg},
 -(Y(pid:FrNonce,sid:FrNonce)),
 -(SharedKey(pid:FrNonce,key:FrNonce)),
 -(counter2:Counter),
 -(EL:EventList),
 +(EL:EventList ++ YubiPress(pid:FrNonce,counter2:Counter)),
 +(pid:FrNonce ; Fr(rnonce:Fresh) ; senc(sid:FrNonce ; counter2:Counter ;
 Fr(rnpr:Fresh),key:FrNonce)),
 {yubikey -> yubikey ;; 1-1 ;; Ycounter(pid:FrNonce,counter2:Counter + 1) @
 mem:GlobalMsg}, nil]
 &

 This third strand is follow-up of the first one. When the Yubikey button is
pressed an encryption is sent (senc event). The whole sent message can be
used to authenticate with the server. In addition to increasing the value
counter:

 :: nil ::
 [nil | {yubikey -> yubikey ;; 1-1 ;; Server(pid:FrNonce,sid:FrNonce,counter1:Counter) @
 mem:GlobalMsg},
 -(SharedKey(pid:FrNonce,key:FrNonce)),
 -(pid:FrNonce ; nonce:FrNonce ; senc(sid:FrNonce ; counter2:Counter ; npr:FrNonce,
 key:FrNonce)),
 -(counter1:Counter),
 -(EL:EventList),
 +(EL:EventList ++ Login(pid:FrNonce,sid:FrNonce,counter2:Counter,senc(sid:FrNonce ;
 counter2:Counter ; npr:FrNonce, key:FrNonce)) ++
 LoginCounter(pid:FrNonce,counter1:Counter,counter2:Counter) ++
 Smaller(counter1:Counter,counter2:Counter) +++ end), nil]
 [nonexec] .

 In the last part of the specification this strand is for when the server
receives a petition of login and is acepted if the condition that the counter
inside the encryption is larger than the last counter stored on the server.

 Protocol Analysis 5.3.

 In this section we describe how we have analyzed the Yubikey protocol
with Maude-NPA to prove the following verification properties.

 The following four properties escribe in the PhD thesis of Robert
Künnemann [Künnemann14] were proved. And the last attack verification is to
obtain a regular execution of the Yubikey protocol.

 23

5.3.1. The absence of replay attacks

 ¬(∃i, j, pid, sid, x, otp1, otp2.
 Login(pid, sid, x, otp1) @ i ∧ Login(pid, sid, x, otp2) @ j ∧ ¬(i = j)).

The first property is about the absence of replay attacks, there are no
two distinct logins that accept the same counter value.

eq ATTACK-STATE(1)
 = empty
 ||
 ((EL0:EventList ++ Login(pid,sid,c6:Counter,X:StdMsg) ++ EL1:EventList ++
 Login(pid,sid,c6:Counter,Y:StdMsg) ++ EL2:EventList)
 inI, X:StdMsg != Y:StdMsg)
 || nil
 || nil
 || nil
 [nonexec] .

Note, the condition X:StdMsg != Y:StdMsg would not be necesary to
validate the property, the condition helped to reduce the search space.

Execution result:

reduce in MAUDE-NPA : summary(1,0) .
 result Summary: States>> 1 Solutions>> 0

reduce in MAUDE-NPA : summary(1,1) .
 result Summary: States>> 0 Solutions>> 0

The result means that cannot reach an initial state and has a finite
search space, proving it secure.

5.3.2. Injective correspondence

Second property is an injective correspondence between pressing the
button on a Yubikey and a successful login:

∀ pid, sid, x, otp, t2.
 Login(pid,sid,x,otp)@t2 ⇒
 ∃t1.YubiPress(pid, x)@t1 ∧ t1 < t2

 ∧ ∀otp2, t3.Login(pid, sid, x, otp2)@t3 ⇒ t3 = t2

A successful login must have been preceded by a button press for the
same counter value. Furthermore, there is not second, distinct login for this
counter value.

Mejoras en la interacción con la herramienta Maude-NPA

 24

eq ATTACK-STATE(2)
 = empty
 ||
 ((EL:EventList ++ YubiPress(pid:FrNonce,c4:Counter) ++ EL1:EventList ++
 Login(pid:FrNonce,sid:FrNonce,c4:Counter,X:StdMsg)
 ++ EL2:EventList ++
 Login(pid:FrNonce,sid:FrNonce,c5:Counter,Y:StdMsg))
 inI, c4:Counter != c5:Counter)
 || nil
 || nil
 || nil
 [nonexec] .

Execution result:

reduce in MAUDE-NPA : summary(1,0) .
 result Summary: States>> 1 Solutions>> 0

reduce in MAUDE-NPA : summary(1,1) .
 result Summary: States>> 0 Solutions>> 0

The result means that cannot reach an initial state and has a finite
search space, proving it secure.

5.3.3. Increasing the counter

For the third fact, the counter values associated to logins are increasing
over the time, which implies that all successful logins have different counter
value.

∀ pid, otc1, tc1, otc2, tc2, t1, t2, t3. Smaller(tc1, tc2)@t3

 ∧ LoginCounter(pid, otc1, tc1)@t1

 ∧ LoginCounter(pid, otc2, tc2)@t2

 ⇒ t1 < t2

eq ATTACK-STATE(3)
 = empty
 ||
 ((EL:EventList ++ LoginCounter(pid:FrNonce,c1:Counter,c2:Counter) ++
 Smaller(c1:Counter,c2:Counter) ++ EL1:EventList ++
 LoginCounter(pid:FrNonce,c3:Counter,c4:Counter) ++
 Smaller(c3:Counter,c4:Counter) +++ end) inI)
 || nil
 || nil
 || nil
 [nonexec] .

 25

Execution result:

reduce in MAUDE-NPA : summary(3,0) .
 result Summary: States>> 1 Solutions>> 0

reduce in MAUDE-NPA : summary(3,1) .
 result Summary: States>> 0 Solutions>> 0

The result means that cannot reach an initial state and has a finite
search space, proving it secure.

5.3.4. Counter value control

Another property stronger than the previous property is controling the
counter values are different over the time. Note, that Tamarin can use
invariant and Maude-NPA not.

∀ pid, otc1, tc1, otc2, tc2, t1, t2. LoginCounter(pid, otc1, tc1)@t1
 ∧ LoginCounter(pid, otc2, tc2)@t2 ∧ t1 < t2

 ⇒ ∃z.tc2 = z+tc1

eq ATTACK-STATE(4)
 = empty
 ||
 ((EL0:EventList ++ Login(pid,sid,c6:Counter,X:StdMsg) ++ EL1:EventList ++
 Login(pid,sid,c6:Counter,Y:StdMsg) ++ EL2:EventList)
 inI, X:StdMsg != Y:StdMsg),
 ((EL5:EventList ++ YubiPress(pid,c5:Counter) ++ EL6:EventList ++
 Login(pid,sid,c5:Counter,X:StdMsg) ++ EL7:EventList) inI)
 || nil
 || nil
 || nil
 [nonexec] .

Note, that the condition X:StdMsg != Y:StdMsg would not be necessary
for the property.

 Execution result:

reduce in MAUDE-NPA : summary(4,0) .
 result Summary: States>> 1 Solutions>> 0

reduce in MAUDE-NPA : summary(4,1) .
 result Summary: States>> 14 Solutions>> 0

reduce in MAUDE-NPA : summary(4,2) .
 result Summary: States>> 21 Solutions>> 0

reduce in MAUDE-NPA : summary(4,3) .
 result Summary: States>> 28 Solutions>> 0

reduce in MAUDE-NPA : summary(4,4) .
 result Summary: States>> 21 Solutions>> 0

Mejoras en la interacción con la herramienta Maude-NPA

 26

reduce in MAUDE-NPA : summary(4,5) .
 result Summary: States>> 7 Solutions>> 0

reduce in MAUDE-NPA : summary(4,6) .
 result Summary: States>> 0 Solutions>> 0

The result means that cannot reach an initial state and has a finite
search space, proving it secure.

5.3.5. Regular execution

Fort he last validate property we decided to make a regular execution
of Yubikey. To determine if since the beginning you can reach the end.

 eq ATTACK-STATE(5)
 = :: rk,rpid,rsid ::
 [nil ,
 +(Init(Fr(rpid),Fr(rk)) ++ ExtendedInit(Fr(rpid),Fr(rsid),Fr(rk))),
 +(Y(Fr(rpid),Fr(rsid))),
 +(SharedKey(Fr(rpid),Fr(rk))),
 {yubikey -> yubikey ;; 1-1 ;; Ycounter(Fr(rpid),1) @ Server(Fr(rpid),Fr(rsid),1)}|nil]
 &

 :: rnpr,rnonce ::
 [nil , {yubikey -> yubikey ;; 1-1 ;; Ycounter(Fr(rpid),1) @ Server(Fr(rpid),Fr(rsid),1)},
 -(Y(Fr(rpid),Fr(rsid))),
 -(SharedKey(Fr(rpid),Fr(rk))),
 -(1),
 -(Init(Fr(rpid),Fr(rk)) ++ ExtendedInit(Fr(rpid),Fr(rsid),Fr(rk))),
 +(Init(Fr(rpid),Fr(rk)) ++ ExtendedInit(Fr(rpid),Fr(rsid),Fr(rk)) ++ YubiPress(Fr(rpid),1)),
 +(Fr(rpid) ; Fr(rnonce) ; senc(Fr(rsid) ; 1 ; Fr(rnpr),Fr(rk))),
 {yubikey -> yubikey ;; 1-1 ;; Ycounter(Fr(rpid),1+ 1) @ Server(Fr(rpid),Fr(rsid),1)} | nil]
 &

 :: nil ::
 [nil , {yubikey -> yubikey ;; 1-1 ;; Server(Fr(rpid),Fr(rsid),1) @ Ycounter(Fr(rpid),1 +1)},
 -(SharedKey(Fr(rpid),Fr(rk))),
 -(Fr(rpid) ; Fr(rnonce) ; senc(Fr(rsid) ; 1 ; Fr(rnpr), Fr(rk))),
 -(1),
 -(Init(Fr(rpid),Fr(rk)) ++ ExtendedInit(Fr(rpid),Fr(rsid),Fr(rk)) ++ YubiPress(Fr(rpid),1)),
 +(Init(Fr(rpid),Fr(rk)) ++ ExtendedInit(Fr(rpid),Fr(rsid),Fr(rk)) ++ YubiPress(Fr(rpid),1)
 ++ Login(Fr(rpid),Fr(rsid),1,senc(Fr(rsid) ; 1 ; Fr(rnpr), Fr(rk)))
 ++ LoginCounter(Fr(rpid),1,1) ++ Smaller(1,1) +++ end) | nil
 || empty
 || nill
 || nil
 || nil
 [nonexec] .

 27

Execution results:

reduce in MAUDE-NPA : summary(5,0) .
 result Summary: States>> 1 Solutions>> 0

reduce in MAUDE-NPA : summary(5,1) .
 result Summary: States>> 3 Solutions>> 0

reduce in MAUDE-NPA : summary(5,2) .
 result Summary: States>> 9 Solutions>> 0

reduce in MAUDE-NPA : summary(5,3) .
 result Summary: States>> 21 Solutions>> 0

reduce in MAUDE-NPA : summary(5,4) .
 result Summary: States>> 46 Solutions>> 0

reduce in MAUDE-NPA : summary(5,5) .
 result Summary: States>> 17 Solutions>> 0

reduce in MAUDE-NPA : summary(5,5) .
 result Summary: States>> 3 Solutions>> 0

reduce in MAUDE-NPA : summary(5,5) .
 result Summary: States>> 0 Solutions>> 1

For this attack pattern Maude-NPA finds an initial state, proving
the regular execution of Yubikey protocol.

Mejoras en la interacción con la herramienta Maude-NPA

 28

6. Conclusions and future work

 The conclusions that we have drawn from this master thesis is that the
Yubikey protocol can be specified and analyzed in Maude-NPA. The whole
process has been challenging for us in many ways, specially specifying a high
level protocol and controlling the order of execution of its facts thanks to
strand composition.

 During the process of specification and analysis we have found errors
of strand composition and associativity within Maude-NPA, not related to the
Yubikey protocol. However, one of our objectives was to test Maude-NPA
and finding bugs was a good sign.

 For future work, an interesting possibility will be to specify the YubiHSM
protocol that uses exclusive-or, since Maude-NPA is one of the few tools able
to work with exclusive-or. YubiHSM is also a USB device focused in server
security. If the secrets stored on these servers are compromised, it can result in
the compromise of all cryptographic keys and passwords resident on the
server. This type of high security protocols would be a great challenge to be
specified and analyzed in Maude-NPA.

 29

7. Bibliography

D. Dolev & A. Yao. On the security of public key protocols.
IEEE Transaction on Information Theory, vol. 29, no. 2.1983

Künnnemann, Robert. Foundations for analyzing security
APIs in the symbolic and computa- tional model.
Cryptography and Security. École normale supérieure de
Cachan - ENS Cachan, 2014.

Künnemann, Robert and Graham, Steel. YubiSecure?
Formal security analysis results for the Yubikey and
YubiHSM. International Workshop on Security and Trust

 Management. Springer, Berlin, Heidelberg, 2012.

Clavel, M., Durán, F., Eker, S. Escobar, S., Lincoln, P., Martı-
Oliet, N., Meseguer, J., & Talcott, C. (2016). Maude
manual (version 2.7.1). SRI International, Menlo Park.

Santiago Escobar, Catherine Meadows, José Meseguer.
Muade-NPA. Version 3.0. 2017.

Meier, Simon, et al. The TAMARIN prover for the symbolic
analysis of security protocols. International Conference on
Computer Aided Verification. Springer, Berlin, Heidelberg,
2013.

Meier, Simon, Benedikt Schmidt. Initial Example for the
Tamarin Manual. 2016. url: https://goo.gl/9rSrj7.

Meier, Simon. "Advancing automated security protocol
verification." PhD diss., 2013.

Merkel, Dirk. Yubikey. Linux Journal 2009, no. 177 (2009): 1.

Tamarin Prover Manual, 2016. url: https://goo.gl/vu3UaL.

[Künnemann14]

[Künnemann12]

[Simon13]

[Simon16]

[Merkel09]

[Meier13]

[MNPA17]

[Maude16]

[Tamarin16]

[Dolev83]

Mejoras en la interacción con la herramienta Maude-NPA

 30

L. Vamanu. Formal Analysis of Yubikey. Master’s thesis,
INRIA, 2012.

Yubico Inc. Homepage, 2007. url:
https://www.yubico.com.

The YubiKey Manual - Yubico Authenticator User's Guide.
YubicoAB. 2016. url:
http://www.yubico.com/documentation.

[Yubico07]

[Vamanu12]

[Yubikey16]

