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Abstract 
 

 The security in modern online services is increasingly more and more 
vulnerable to intruder attacks. Companies like Yubiko works on devices like 
Yubikey, a USB device that provides strong identification. In this thesis, we 
have specified and analyzed the cryptographic protocol underneath the 
Yubikey device using the Maude-NPA tool, a state-of-the-art cryptographic 
protocol analyzer. During this thesis, we learned how the Yubikey protocol 
works, we learn how to use the Tamarin proper, another protocol analyzer, 
and how to specify and analysis this protocol using the Maude-NPA features.
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1. Introduction 
 

  

 Nowadays there exists several security tokens having the form of a 
smartcard or of an USB device, which are designed for protecting 
cryptographic values from an intruder e.g: hosting service, emails, e-
commerce, online Banks, etc. They are also used to ease authentication for 
the authorized users at a service. If you are using a service that verifies your 
Personal Identification Number (PIN), it should not be used for checking your 
flights, reading your emails, etc. It should in fact only be used when it is 
necessary to check your PIN. In this way, if we can use an Application 
Programing Interface (API) to separate the service from the authentificator 
system, we can say that a certain amount of attacks related to user 
identification are discarded. Yubikey token is an API designed with a button 
that once it is touched triggers a new user. The device has as purpose the 
authentication of the user against some service.  

 The goal of this master thesis is to formally analyze the Yubikey protocol 
API using Muade-NPA, a-state-of-art security protocol verification tool. The 
complexity of this work lies in the time/order of execution process. The purpose 
of this master is whether Maude-NPA is useful to specify and control this 
execution process. To prove our work, we use composition to control the 
global memory and its set of facts. We were able to verifiy the Yubikey 
protocol.  

   The master thesis has had two parts. The first part is about how security 
tokens in special the Yubikey protocol API Works. This was formally discussed in 
Section 4.1 the PhD thesis of Robert Künnemann [Künnemann14]. We had to 
learn the syntax and funcionality of the tool Tamarin prover [Tamarin16], 
another protocol analysis tool, because the Yubikey protocol was specified in 
Tamarin prover. The second part was about the specification of the  Yubikey 
protocol and the difficulties Maude-NPA has had, as well as errors found 
during the realization of this master thesis. 

 The thesis is organized as follows.  In Section 2 and Section 3 we briefly 
present the two tools, Tamarin prover and Maude-NPA, in Section 4 how 
Yubikey protocol works. We conclude in Section 5 with the specification and 
verification of  the protocol. 
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2. Tamarin Prover 
 

 

 Tamarin prover [Tamarin16] is a cryptographic protocol verifier which 
allows the user several things at the same time to specify complex security 
properties (both trace and equivalence properties), to model cryptographic 
primitives by means of an equational theory, and to model protocols with 
state information. The class of equational theories supported by the tool is the 
class of subterm-convergent equational theories, in addition to built-in theories 
for Diffie-Hellman exponentiations, bilinear pairings, multisets and equational 
theories with the finite variant property. 

 

 The Tamarin prover is a powerful tool for the symbolic modeling and 
analysis of security protocols[Simon13]. It takes as input a security protocol 
model, specifying the actions taken by agents running the protocol in 
different roles (e.g., the protocol initiator, the responder, and the trusted key 
server), a specification of the adversary, and a specification of the protocol’s 
desired properties. Tamarin prover can then be used to automatically 
construct a proof that, even when arbitrarily many instances of the protocol’s 
roles are interleaved in parallel, together with the actions of the adversary, the 
protocol fulfils its specified properties. In this thesis, we provide an overview of 
this tool and its use. 

 

 Tamarin Prover Syntax 2.1.
 

 The syntax of security protocols are delimited by begin and end. We 
explain briefly the formal syntax in the following paragrahs, for futher detail 
see[Referencia]. 

 

 security_protocol_theory = theory name begin body end 
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 The security protocol has multiset rewriting rules that are 

specified in the body. 

 

 body =(signature_spec|rule|restriction|lemma|formal_comment)+ 

 signature_spec = functions|equations|builtin 

 builtin  = 'builtins' ':' builtins list 

 builtins = 'diffie-hellman'|'hash'|'symm-encrypt'|'asymm-encrypt|'sign' 

  

 Rules are the most important part to understand how Tamarin prover 
works. The rules operate on the system’s state, which are expressed as a 
multiset of facts. Facts can be seen as predicates proving state information. 
Rules have a premise (left-hand side) and a conclusion (right-hand side), 
separated by the arrow symbol -->. A rule can be executed when the premise 
is present in the system’s state, and when the rule is executed, the system’s 
state is modified according to the conclusion. 

 

rule = 'rule' name ':' '[' facts ']' ( '-->' | '--[' action facts ']->') '[' facts ']' 

  

 Some rules contain action facts inside the arrow  
(e.g., --[action facts]->). They are just like facts, but unlike regular facts the 
other facts do not appear in the state, only on the trace. The security 
properties are checked on the traces, this means action facts are used 
afterwards to determine which agents (roles) are compromised. 

 In the last part of the specification of the protocol in Tamarin prover we 
have lemmas to specify security properties. By default, the formula below of 
the lemma is interpreted as a property that must hold for all traces of the 
protocol of the security protocol theory. 

 lemma := 'lemma' ident [lemmaattrs] ':' 

            [trace_quantifier] 

            '"' formula '"' 

            proof 

 lemmaattrs = '['('source'|'reuse'|'use_induction' |'hide_lemma=' ident)']' 

 tracequantifier := 'all-traces'|'exists-trace' 

 proof  = ... a proof as output by the Tamarin prover ... 
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 Protocol specification in Tamarin Prover 2.2.
 

 In this section, we provide an informal description about protocol 
specification model. 

 Tamarin prover models are specified using three levels, we are going to 
focus in the first two of them: 

1. Rules 
2. Facts 
3. Terms  

 

2.2.1. Rules 

 Multiset rewriting is used at the concurrent execution of the protocol 
and at the adversary. A rewriting rule has three parts, each of them is a 
sequence of facts (we have already seen the structure in the previous 
section), the rules of a posible specification model are: 

 rule FirstRule: 
 [ ]  
 --> 
 [ F('1','x'), F('2','y') ] 
 

 rule SecondRule: 
 [ F(u,v) ]  
 --> 
 [ H(u), G('3',h(v)) ] 

 In this case the initial state of the comunication is the empty multiset. A 
rule can be applied to a state if it can be instantiated such that the facts its 
left hand side are contained in the set of facts of the current state. In this case, 
the left-hand side facts are removed from the state, and replaced by the 
instantiated right hand side. 

 For instant the rule FirstRule can be instantiated repeatedly. And for any 
instantiation of FirstRule, it will be followed by a state that contains  
[ F('1','x')] or [F('2','y') ] and in this case SecondRule can be applied to both of 
them. Each of these instantiations leads to a new successor state. 
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2.2.2. Facts 

 Facts follow the simple structure F(a1,…,an) for a fact symbol F and 
terms a1,…,an can be seen as predicates storing state information. Tamarin 
has different fact types, these are used to model interaction with the 
communications, the most used are: 

  

 Name(a1,…,an) = normal facts, produced by rules and also 
consumed by rules, hence they might appear in one state but not in 
the next. 

 In() = This fact is used to receive a message from the 
communication network, that will be controlled by adversary, and can 
only occur on the left-hand side of a rewrite rule, as normal facts, it is 
consumed  by rules. 

 Out() = This fact is used to send a message to the 
communication network that will be controlled by an adversary, and 
can only occur on the right-hand side of a rewrite rule, as normal facts, 
it is consumed  by rules. 

 Fr() = This fact must be used when generating fresh (random) 
values, and can only occur on the left-hand side of a rewrite rule, 
where its argument is the fresh term, as normal facts, it is consumed  by 
rules. 

 !Name(a1,…,an) = Special fact will never be removed from state 
once they are introduced. There are called ‘persistent facts’ 

 --[actionFacts]-> = Action facts, used to indicate that the 
message is supposed to be secret. We used  when agents' keys are 
compromised. 

 

 First Example  2.3.
 

 To understand better the specification of a protocol we are going to 
use a example [Simon16] of a communication protocol that consist of two 
messages, using Alice and Bob notation.  

C -> S: aenc(k, pkS)  
S -> C: h(k) 
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 A client C sends to the server S a new fresh key  k, encrypted with the 
public key pkS of a server S (aenc means asymmetric encryption) generated 
previously before shipping. The communication follow-up with server S 
confirms the key's receipt by sending to the client C the hash h of the key. 

 Tamarin prover uses multiset rewriting rules to operate on the system's 
state, which is expressed as a multiset (i.e., a bag) of facts. We use facts to 
store information about the state given by their arguments. The rules have a 
premise and a conclusion, separated by the arrow symbol -->. Facts in the 
conclusion will be added to the state, while the premises are removed, unless 
the fact is preceded by symbol !. 

 We start with the modeling of the infrasctructure of protocol. 

 rule Register_pk:      
 [ Fr(~ltk) ]    
 -->      
 [ !Ltk($C, ~ltk), !Pk($C, pk(~ltk)) ] 

 This rule has only a premise which is an instance of the Fr fact, a built-in 
fact that denotes a freshly generated name. 

 First, a fresh name ~ltk (of sort fresh) is generated, which is the new 
private key, and non-deterministically choose a public name C, for the role for 
whom we are generating the key-pair. Then, generates the fact !Ltk($C, ~ltk) 
(the mark ! denotes that the fact is persistent), which denotes the association 
between role C and its private key ~ltk. Finally generates the permanent fact 
!Pk($C, pk(~ltk)), which associates agent C and its public key pk(~ltk). 

 rule Get_pk:      
 [ !Pk(C, pubkey) ]    
 -->      
 [ Out(pubkey) ] 

 The second rule reads a public-key database entry and sends the 
public key to the channel using the built-in fact Out, 

 rule Reveal_ltk:      
 [ !Ltk(C, ltk) ]    
 --[ LtkReveal(C) ]->      
 [ Out(ltk) ] 

 This rule is to reveal when the private key has been compromised. This 
rule reads a private-key database entry and sends it to the channel 
(knowledge adversary). Besides, the rule has an actionfact ‘LtkReveal’ (it is 
used to determine whether role C was compromised). 
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 Recall the Alice-and-Bob notation of the protocol we want to model: 

 C -> S: aenc(k, pkS)  
 C <- S: h(k) 

 The first step is writing the rules for the client C 

rule Client_1:      
[ Fr(~k), !Pk($S, pkS) ]    
// choose fresh key 
// lookup public-key of server  
-->      
[ Client_1( $S, ~k ), Out( aenc(~k, pkS) )]  
// Store server and key for next step of thread      
// Send the encrypted session key to the server 
 
rule Client_2:      
[ Client_1(S, k), In( h(k) )        
// Retrieve server and session key from previous step      
// Receive hashed session key from network 
--[ SessKeyC( S, k ) ]->  
// State that the session key 'k'      
[]                      
// was setup with server 'S'  

 
 Next, server S aswers in one-step to a session-key setup request from the 
client C. 

rule Serv_1:      
[ !Ltk($S, ~ltkS), In( request ) ] 
// lookup the private-key      
// receive a request 
--[ AnswerRequest($S, adec(request, ~ltkS)) ]->  
// Compromise role S 
// adec = asymmetric decryption algorithm   
[ Out( h(adec(request, ~ltkS)) ) ]            
// Return the hash of the decrypted request. 

 In addition, first and second rule models the client C sending its 
message, and the second rule models the receiving of a response. The third 
rule models the server S, both receiving the message and requesting in the 
same rule. 
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2.3.1. Security properties 

 In Tamarin prover to evaluate security properties[Meier13] we must use 
lemmas and have to defined over tracers of the actions facts of the protocol 
execution. 

 As an example, to verify a lemma saying that it cannot be possible that 
a client has set up a session key k with a server S and the adversary learned 
that k unless the adversary performed a long-term key reveal on the server S. 
We will use the following syntax: 

• Ex = existential quantification  
• # = temporal variables 
• & = conjunction  
• f @ i = action constraints, restricions to control the temporal  

 variables, 'i' is optional 
• not = negation 

 Lemma proves that it cannot be posible that a client has set up a 
session key(SessKeyC) ‘key’ with a server ‘Server’ and the adversary knows 
‘key’ without having performed a long-term key reveal on ‘Server’. 

 The mathematical representation of the security property is expressed 
using action constraints in Tamarin as follows: 

 ¬(∃t1, t2, Server, key. 

 SesskeyC(Server, key) @ t1 ∧  

 K(key) @ t2 ∧  
 ¬(∃t3.LtkReveal(Server) @ t3) 

 Note that t1,t2 and t3 are timepoints and therefore SesskeyC @ t1,  
K @ t2, LtkRevel @ t3 events mean that the trace contains a rule instantiation 
that produces the action SesskeyC, K, LtkRevel at different timepoint t1, t2, t3. 
Note that they share the Server and key parameters. 

 The specification of this lemma using Tamarin syntax is as follows: 

lemma Client_session_key_secrecy:    
"not(Ex S k #i #j.          
SessKeyC(S, k) @ #i & K(k) @ #j & not(Ex #r. LtkReveal(S) @ r))" 

 In the Figure 1 we show how Tamarin has verified the lemma, using 
green color to highlight different parts, that mean it was successfully proven. If 
we had found a counterexample, it would be colored in red. 
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Figure 1 : Image from Tamarin prover tool 
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3. Maude-NPA  
  

 Maude-NPA[MNPA17] is an analysis tool used for verifying the 
security of cryptographic protocols, that takes the ability to check algebraic 
properties. Besides the tool is specialized to prove proofs of security as well as 
to search for attacks, we have focused in this part to verify the security 
guarantee of Yubikey protocol. Maude-NPA is a backwards search tool, i.e., it 
searches backwards from a final state to determine whether or not it is 
reachable from an initial state, in this way we can prove that final state is 
unreachable. 

 

 Maude-NPA structure 3.1.
 

 Maude-NPA tool consists in three sections called modules, having a 
fixed format and fixed module names, The first module is the syntax of the 
protocol that is focused in the statement of sorts and operators. The second 
module specifies the algebraic properties of the operators. And lastly the third 
module using a strand-theoretic notation or a process algebra. This module 
includes the intruder capabilities (using formal model Dolev-yao), regular 
strands or processes (describing the behavior of roles). It also contains analysis 
strands called attacks, which describing behavior that we want to verificate.
  

 

 Specifying Syntax 3.2.
 

 This module is used to specify protocol and all it is relevant items in 
the current version of the Maude-NPA, the syntax is specified in the module 
PROTOCOL-EXAMPLE-SYMBOLS. 
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3.2.1. Sorts, Subsorts and Operators 

 In general, sorts are used to specify different types of data, that are 
used for different purposes. We have a special sort called Msg that represents 
what messages are going to look like in our protocol. If a protocol makes no 
additional sort distinctions, i.e., if it is an unsorted protocol, there will be no 
extra sorts, and every symbol will be of sort Msg. 

sorts Name Nonce . 
subsort Name Nonce < Msg .  
subsort Name < Public . 

 Most sorts are user-defined, however, there are several special sorts 
that are automatically imported by any Maude-NPA protocol definition. These 
are:  

Msg : Sorts defined by the user must be subsorts of Msg, and no sort 
defined by the user can be a supersort of Msg. This sort cannot be 
empty, i.e., it is necessary to define at least one symbol of sort Msg or of 
a subsort of Msg.  

Fresh : The sort Fresh is used to identify terms that must be unique. This 
sort is typically used as an argument of some data that must be unique, 
such as a nonce, or a session key, e.g., “n(A,r)” or “k(A,B,r)” where r is a 
variable of sort Fresh. It is not necessary to define symbols of sort Fresh, 
i.e., the sort Fresh can be empty.  

Public : The sort Public is used to identify terms that are publically 
available, and therefore assumed known by the intruders. This sort 
cannot be empty. 

 

 The next step is to specify the operations, Maude-NPA is very flexible 
and allows several operator declarations. We have the standard prefix sysntax 
and the mix-fix syntaxs (e.g., _;_) these operator allow us to have the posibility 
to determine what equational attributes we want, such as associativity, 
commutativity, and identity. 

prefix syntax 

op Fr : Fresh -> FrNonce . 
op Init : FrNonce FrNonce -> Init . 
op Server : FrNonce FrNonce Counter -> Server . 
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mix-fix syntax 

op _+_ : Counter Counter -> Counter [assoc comm] . 
op _;_ : StdMsg StdMsg -> StdMsg [gather (e E)] . 
op _++_ : EventList EventList -> EventList [assoc id: nil prec 31] . 
op _+++_ : EventList End -> EndEventList [prec 33] . 

 

 Maude-NPA has the capacity to work with special unification 
algorithms, like associative assoc, commutative comm and identity id: 
keyword. Other characteristic that Maude-NPA can control using the operator 
attribute  
gather (e E) associativity to the left; whereas gather (E e) indicates association 
to the right. Precedence[Maude16] prec number is given to natural number, 
where a lower value indicates a higher priority in this parser. 

 

 Algebraic Properties 3.3.
 

 Maude-NPA verification is a powerfull symbolic reachability analysis 
modulo the equational theory of the protocol.  

 Maude-NPA supports three  algebraic properties types: (I)equational 
axioms, such as commutativity, or associativity-commutativity, called axioms. 
(II)Equational rules, called variant equations, and (III)equational rules for 
dedicated unification algorithms, called dedicated equations. Variant and 
dedicated equations are specified in the PROTOCOL-EXAMPLE-ALGEBRAIC. 

var Z : Msg . var A : Name .  

Encryption/Decryption Cancellation 

eq pk(A,sk(A,Z)) = Z [nonexec] .  
eq sk(A,pk(A,Z)) = Z [nonexec] . 

 An equation is oriented into a rewrite rule in which the lefthand side 
of the equation is reduced to the righthand side. 

 For the declaration of Yubikey protocol has not been needed,  and 
do not need to know more about algebraic properties for this protocol. 

 

 Specifying the strands 3.4.
 

 Maude-NPA used strands for protocol specification and intruder 
knowladge, there are specificate in the module PROTOCOL-SPECIFICATION.   
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3.4.1. Dolev-Yao strands  

The intruder knowledge uses the formal Dolev-Yao model[Dolev83] to prove 
properties, and the symbol & as the union operator for sets of strands. The 
intruder strands consists of a sequence of negative node, followed by possitive 
nodes. Also can consider that variables are not shared between strands, and 
thus will appropriately rename them when necessary. 

 For example, on the concatenation and deconcatenation if the 
intruder knows X:StdMsg and Y:StdMsg, he can obtain X:StdMsg ; Y:StdMsg . If 
he knows X:StdMsg ; Y:StdMsg he can obtain X:StdMsg and Y:StdMsg. Since 
each intruder strand can have at most one positive node, we need to use 
three strands to specify these actions: 

eq STRANDS-DOLEVYAO = 
:: nil :: [ nil | -(X:StdMsg), -(Y:StdMsg), +(X:StdMsg ; Y:StdMsg), nil ] & 
:: nil :: [ nil | -(X:StdMsg ; Y:StdMsg), +(X:StdMsg), nil ] & 
:: nil :: [ nil | -(X:StdMsg ; Y:StdMsg), +(Y:StdMsg), nil ] 
…. 
... 

[nonexec] . 

 Note, the notation :StdMsg is not necesary if we have declarated the 
variable X before. 

 In order to give to the intruder the ability to generate his own sort 
Counter, we would represent this using the following rule: 

:: nil :: [ nil | +(counter1), nil ]  

 We need to provide the intruder strands for all the operation that are 
defined, unless one is explicitly making the assumption that the intruder can 
not perform the given operation. 

 

3.4.2. Protocol Strands 

 In this part of a specification we define the messages that are sent and 
received by each of roles/participants. 

 We specify one strand per role, however, since Maude-NPA supports an 
arbitrary number of sessions, each strand (i.e., each role) can be instantiated 
an arbitrary number of times. We recall the informal specification of 
FirstExample used in Tamarin prover, as follows: 
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C -> S: aenc(k, pkS) 
S -> C: h(k) 

 At the specification of the protocol strands it is important to remark do it 
from the point of view of the principal that controls the role. For example, in 
FirstExample the client C starts out by generating a fresh symmetric key k, 
encrypts it with the public key pkS of a server S (aenc stands for asymmetric 
encryption), and sends it to S. She get back confirming the key's receipt by 
sending the hash of the key back to the client. 

 In order to represent the initiator’s strand, we model the construction of 
C’s nonce explicitly as n(C,k), where r is a variable of sort Fresh belonging to 
C’s strand. 

eq STRANDS-PROTOCOL = 

:: r :: 
[ nil |+(aenc(k,pkS(C,S ; n(C,r)), - (h(k)), nil ] 
& 
::  ::  
[ nil | -(aenc(k,pks(C,S ; N)), +(h(k)), nil ] 
[nonexec] . 

 

3.4.3. Protocol Analysis 

The attacks patterns are defined in the last part of the module  
PROTOCOL-SPECIFICATION and for Maude-NPA performs a backwards 
reachability. In Maude-NPA, each state found during the backwards analysis 
(i.e., a backwards search) is represented in five different sections separated 
by the symbol ||. We will focus in two of them, first one: state Id, and  
second one: set of current protocol and intruder strands. In the state id will 
start with the number 0. A sort example of a type of attack pattern 
representing the intruder learning the nonce generated by client: 

Eq ATTACK-STATE(0) = 
:: r :: 
[ nil |+(aenc(k,pkS(c,S ; n(c,r)), - (h(k)), nil ] 
|| n(c,r) inI 
|| nil 
|| nil 
|| nil 
[nonexec] . 

 The intruder knowledge represents what messages the intruder knows 
(symbol inI) or does not yet know (symbol !inI) at each state of a protocol 
execution. 
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4. Yubikey Protocol 
 

 General information   4.1.
 

 The YubiKey is a small USB device manufactured by Yubico. The goal of 
this device is to authenticate a user against network-based services. It 
supports one-time passwords (OTPs) using an encryption of a secret value, 
that is, a running counter and some random values representing information 
encrypted using  a AES-128 encryption. Also, it is indepent of the operating 
system and does not require any installation because it works with USB system 
drivers. 

 Yubikey’s incremental success has led to its use in goverments, 
universities and companies like Google, Facebook, Dropbox, CERN, etc., 
including more than 30,000 customers. [Yubico07] 

 Due to its success, the Yubikey protocol has received little independent 
security analysis. And it is interesting to prove security properties of the Yubikey 
API for an unbounded number of fresh OTPs using the Maude-NPA tool. 

 All our analysis follow the Dolev-Yao model of cryptography, when we 
refer to the Yubikey or Yubikey protocol, we analysed the version 2.3 of the 
device[Yubikey16]. 

 

 Yubikey Authentification Protocol 4.2.
 

 The Yubikey authentication server accepts an OTP only if it decrypts 
under the correct AES key into a valid secret value containing a counter 
larger than the last accepted counter. The counter is, thus, used as a means 
to prevent replay attacks. 

 The Yubikey is connected to the computer via USB port, using the 
operating system’s native drivers. We will focus on the Yubikey OTP mode, that 
has exactly one button. If the button is pressed, it emits a string that can be 
verified only once against a server in order to receive the permission to access 
a service. A request for a new authentication token is triggered by touching a 
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button that is on the YubiKey device. As a result, some counters that are 
stored on the device are incremented and some random values are 
generated in order to create a fresh 16-byte plaintext having the following 
concatenated fields 

• the unique secret ID (6 bytes)  
• a session counter (2 byte) 
• a timestamp (3 byte) 
• a token counter (1 byte) 
• a pseudo-random value (2 bytes) 
• CRC-16 value (2 bytes) 

The figure 2 [Vamanu12] represent the set of field explained before: 

 

 

  

 

Figure 2 : Structure of the plantext of OTPs  

 The authentication protocol of the YubiKey involves three roles: (I)the 
user, (II)the service and (III)the verification server. The user can have access to 
the service if it provides its own valid one time password generated by the 
YubiKey; the validity is verified by the verification server. The figure 3 [Merkel09] 
is a simple example of the Yubikey protocol with three roles. 

 

Figure 3 : Yubikey OTP Validation Flow 
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 The authentication protocol consists of two exchanged messages. The 
first message is sent from the service to the verification server with its 
identification number pid, a nonce and the one time password (OTP) 
received from a user.  

 The second message is the response from the server after the 
verification of the password is made and consists of the password, the validity 
status, the nonce sent by the client and a HMAC (keyed-hash Message 
Authentication Code) over these fields using a shared key between the client 
and server. 

 A Yubikey stores a pid(public id), sid(secret id), and the AES k(key), and 
is used in the following authentication protocol:  
 

 The user provides a client C with the Yubikey’s output pid, otp,e.g., by 
performing it in a web form.  
 

C -> S : pid,otp,nonce 

S -> C : otp,nonce,hmac(keysc,otp,status,Nonce),status 

 

 Here nonce is a randomly chosen value between 8 and 20 bytes and 
hmac is a Message Authentication Code (MAC) over the parameters using a 
key present on the server and the client. By status, we denote additional status 
information given in the response, containing an error code that indicates 
either success or where the verification of the otp failed, plus (in case of 
success) the value of the internal timestamp, session counter and token 
counter when the key was pressed. 

 The server S accepts the token if either the session counter is bigger 
than the last one received, or the session counter has the same value but the 
token counter is incremented. It is possible to verify whether the timestamp is in 
a certain window with respect to the previous timestamp received, however, 
the model that we have specified in Maude-NPA does not include the timing 
of messages, therefore we ignore this (optional) check. 

 

 Formal Analysis 4.3.
 

 The only formal specification in the literature is given in the PhD thesis  of 
Robert Künnemann[Künnemann14, Künnemann12]. In that paper, a 
specification of Yubikey in Tamarin is given. In the following, we describe such 
a specification. 
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 The first rule is the initialisation of Yubikey, a fresh prublic ID(pid), secret 
ID(sid) and Yubikey-key(k) are saved on the server and the Yubikey. 

 

Fr(k), Fr(pid), Fr(sid) 
−[ Protocol(), Init(pid, k), ExtendedInit(pid, sid, k)]→ 
!Y(pid,sid),Y_counter(pid, ′1′),Server(pid,sid, ′1′), !SharedKey(pid, k) 

 

The Fr facts guarantee that each instantiation of this rule replaces k, pid and 
sid by different fresh names. Y_counter is the current counter value stored on 
the Yubikey. 

The next rule models how the counter is increased when a Yubikey is plugged 
in 

Y_counter(pid, otc), In(tc)  
−[ Yubi(pid, tc),Smaller(otc, tc)]→ 
Y_counter(pid, tc) 

 

Note that the intruder has to input tc. By requiring the intruder to produce all 
counter values, we can ensure that they are in !K, i. e., the adversary’s 
knowledge. 

 When the button is pressed, an encryption is output in addition to 
increasing the counter: 

!Y(pid, sid), Y_counter(pid, tc), !SharedKey(pid, k), In(tc), Fr(npr), 
Fr(nonce) 
−[ YubiPress(pid, tc)]→ 
Y_counter(pid, tc +′ 1′), Out(⟨pid, nonce, senc(⟨sid, tc, npr⟩, k)⟩) 

 

 The output can be used to authenticate with the server, in case that 
the counter inside the encryption is larger than the last counter stored on the 
server: 

Server(pid, sid, otc), In(⟨pid, nonce, otp⟩), !SharedKey(pid, k), In(otc)  
−[Login(pid, sid, tc, otp), LoginCounter(pid, otc, tc), Smaller(otc, tc) ]→  
Server(pid, sid, tc) 

otp = senc(⟨sid,tc,pr⟩,k) 
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5. Yubikey protocol specified in Maude-NPA 
 

 The purpose of this master thesis is to prove that Yubikey can be 
specified in the Maude-NPA protocol analyzer and that the most interesting 
security properties can be verified. In this section we describe our efforts to 
specify the protocol in Maude-NPA and to analyze five interesting properties. 

 Protocol sysmbols 5.1.
 

 In the following we show how to specify the sorts, operations for Yubikey 
protocol in the Maude-NPA’s syntax. 

sorts Event End EventList StdMsg GlobalMsg Fr FrNonce EndEventList . 
sorts Y Ycounter Server SharedKey Senc Init ExtendedInit Yubi Smaller YubiPress Login 
 LoginCounter Counter .  

subsorts EventList StdMsg GlobalMsg EndEventList < Msg . 
subsort Event < EventList . 
subsort FrNonce Y SharedKey Senc Counter < StdMsg . 
subsorts Ycounter Server < GlobalMsg . 
subsorts Init ExtendedInit Yubi Smaller YubiPress Login LoginCounter < Event . 
subsort Counter < Public . 

op Fr : Fresh -> FrNonce . 
op Init : FrNonce FrNonce -> Init . 
op ExtendedInit : FrNonce FrNonce FrNonce -> ExtendedInit . 
op Y : FrNonce FrNonce -> Y . 
op Ycounter : FrNonce Counter -> Ycounter . 
op Server : FrNonce FrNonce Counter -> Server. 
op Yubi : FrNonce Counter -> Yubi . 
op Smaller : Counter Counter -> Smaller . 
op 1 : -> Counter . 
op _+_ : Counter Counter -> Counter [assoc comm] . 
op SharedKey : FrNonce FrNonce -> SharedKey . 
op _;_ : StdMsg StdMsg -> StdMsg [gather (e E)] . 
op empty : -> GlobalMsg .  
op _@_ : GlobalMsg GlobalMsg -> GlobalMsg [assoc comm id: empty] . 
op senc : StdMsg FrNonce -> Senc . 
op YubiPress : FrNonce Counter -> YubiPress . 
op Login : FrNonce FrNonce Counter StdMsg -> Login .  
op LoginCounter : FrNonce Counter Counter -> LoginCounter . 
op yubikey : -> Role . 
op nil : -> EventList . 
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op _++_ : EventList EventList -> EventList [assoc id: nil prec 31] . 
op _+++_ : EventList End -> EndEventList [prec 33] . 
op end : -> End . 

 We are going to focus on explaining few important operations,  two of 
the most important for to make Yubikey protocol works, is the operator _++_ 
and _+++_  used for control temporal variables (These are the @ the action 
constraints in Tamarin). We decided to create a sort End to avoid a finite 
ejecution of the first strand and also, control the end of the Yubikey protocol. 

 The Yubikey protocol uses the time/cycle of execution to control the 
execution process. Maude-NPA does not have the ability to control them. For 
that we developed the way to simulate with composition a set of facts to 
control global memory. Thus, we made the operator  _@_ to represent this 
global memory. 

 An example of the global memory operator: 

{yubikey -> yubikey ;; 1-1 ;; Ycounter(pid:FrNonce,counter2:Counter) @ 
 mem:GlobalMsg},nil ] 

 We have three parts in this synchronization message, (I) yubikey -> 
yubikey is for represent how role send and how role recibe this strand, (II) to determine 
is a one to one message, (III) The Event/s has occurred before. 

 

 Strand specification 5.2.
 

 We follow the active Dolev-Yao intruder model[Dolev83], where the 
intruder has full control of the communicacion channel and can intercept 
messages, generate new messages, fake previously seen messages. In this 
model, all the intruder capabilities are specified using two kind of strands: 
composing (of the form -(X1),…,-(Xn), +(F(X1,...,Xn)) and decomposing (of the 
form -(F(X1,...,Xn)), +(Xi)) 

eq STRANDS-DOLEVYAO =  

:: nil :: [ nil | -(pid), -(sid), +(Y(pid,sid)), nil ] & 
:: nil :: [ nil | -(pid), -(counter1), +(Ycounter(pid,counter1)), nil ] & 
:: nil :: [ nil | +(counter1), nil ] & 
:: nil :: [ nil | -(pid), -(sid), -(counter1), +(Server(pid,sid,counter1)), nil ] & 
:: nil :: [ nil | -(key), -(pid), +(SharedKey(pid,key)), nil ] & 
:: r   :: [ nil | +(Fr(r)), nil ]  & 
:: nil :: [ nil | -(X:StdMsg), -(K:FrNonce), +(senc(X:StdMsg,K:FrNonce)), nil ] & 
:: nil :: [ nil | -(K:FrNonce), -(senc(X:StdMsg,K:FrNonce)), +(X:StdMsg), nil ] & 
:: nil :: [ nil | -(X:StdMsg), -(Y:StdMsg), +(X:StdMsg ; Y:StdMsg), nil ] & 
:: nil :: [ nil | -(X:StdMsg ; Y:StdMsg), +(X:StdMsg), nil ] & 
:: nil :: [ nil | -(X:StdMsg ; Y:StdMsg), +(Y:StdMsg), nil ]  
[nonexec] . 
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The strands of this protocol are specified as follows: 

 eq STRANDS-PROTOCOL =  

 :: rk,rpid,rsid :: 
 [nil | 
 +(Init(Fr(rpid:Fresh),Fr(rk:Fresh)) ++             
  ExtendedInit(Fr(rpid:Fresh),Fr(rsid:Fresh),Fr(rk:Fresh))), 
 +(Y(Fr(rpid:Fresh),Fr(rsid:Fresh))), 
 
 +(SharedKey(Fr(rpid:Fresh),Fr(rk:Fresh))), 
 {yubikey -> yubikey ;; 1-1 ;; Ycounter(Fr(rpid:Fresh), 1) @ 
 Server(Fr(rpid:Fresh),Fr(rsid:Fresh),1)},nil ] 
 & 

 This first strand is the initialisation of a Yubikey. A set of three fresh, 
identifiers are used: public ID(rpid), secret ID (rsid) and Yubikey-key (rk). They 
are “created” and assigned by the server and the Yubikey. For each 
instantiation of this strand we have different Fresh names. 

  The Yubikey is identified by its public ID (rpid). The message ‘Y’ is sent to 
the comunication channel and  it stores the corresponding secret ID (rsid). The 
message ‘SharedKey’ is also sent to the communication channel  storing the 
corresponding  key ‘rk’, which is shared with the Server. Both sent messages 
are used to associate the secret ID to both the Server and the Yubikey for 
further authentication. Ycounter is initialiazed in the global memory with the 
current counter value stored on the Yubikey. 

 :: nil ::  
 [nil | {yubikey -> yubikey ;; 1-1 ;;  Ycounter(pid:FrNonce,counter1:Counter) @ 
 mem:GlobalMsg},  
 -(counter2:Counter),  
 -(EL:EventList), 
 +(EL:EventList ++ Yubi(pid:FrNonce,counter2:Counter) ++     
  Smaller(counter1:Counter,counter2:Counter)), 
 {yubikey -> yubikey ;; 1-1 ;; Ycounter(pid:FrNonce,counter2:Counter) @ 
 mem:GlobalMsg},nil ]  
 & 

 The second strand represents another Yubikey begins plugged. This 
strand checks that the new associated counter is smaller than any previous 
one by using the predicate Smaller. The protogol manages that this new 
counter is smaller the previous one, with the event Smaller. This is used to know 
whether Yubikey appeared before in the communication channel. Note that 
the adversary has to input counter2, we will explain this in the protocol analysis 
section. 
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 :: rnpr,rnonce ::  
 [nil | {yubikey -> yubikey ;; 1-1 ;;  Ycounter(pid:FrNonce,counter2:Counter) @ 
 mem:GlobalMsg}, 
 -(Y(pid:FrNonce,sid:FrNonce)), 
 -(SharedKey(pid:FrNonce,key:FrNonce)), 
 -(counter2:Counter),  
 -(EL:EventList), 
 +(EL:EventList ++ YubiPress(pid:FrNonce,counter2:Counter)), 
 +(pid:FrNonce ; Fr(rnonce:Fresh) ; senc(sid:FrNonce ; counter2:Counter ;   
  Fr(rnpr:Fresh),key:FrNonce)), 
 {yubikey -> yubikey ;; 1-1 ;; Ycounter(pid:FrNonce,counter2:Counter + 1) @ 
 mem:GlobalMsg}, nil]  
 & 

 This third strand is follow-up of the first one. When the Yubikey button is 
pressed an encryption is sent (senc event). The whole sent message can be 
used to authenticate with the server. In addition to increasing the value 
counter: 

 :: nil :: 
 [nil | {yubikey -> yubikey ;; 1-1 ;;  Server(pid:FrNonce,sid:FrNonce,counter1:Counter) @ 
 mem:GlobalMsg}, 
 -(SharedKey(pid:FrNonce,key:FrNonce)), 
 -(pid:FrNonce ; nonce:FrNonce ; senc(sid:FrNonce ; counter2:Counter ; npr:FrNonce, 
 key:FrNonce)),  
 -(counter1:Counter), 
 -(EL:EventList), 
 +(EL:EventList ++ Login(pid:FrNonce,sid:FrNonce,counter2:Counter,senc(sid:FrNonce ; 
  counter2:Counter ; npr:FrNonce, key:FrNonce)) ++    
  LoginCounter(pid:FrNonce,counter1:Counter,counter2:Counter)  ++  
  Smaller(counter1:Counter,counter2:Counter) +++ end), nil] 
 [nonexec] . 

 In the last part of the specification this strand is for when the server 
receives a petition of login and is acepted if the condition that the counter 
inside the encryption is larger than the last counter stored on the server. 

 

 Protocol Analysis 5.3.
 

 In this section we describe how we have analyzed the Yubikey protocol 
with Maude-NPA to prove the following verification properties. 

 The following four properties escribe in the PhD thesis of Robert 
Künnemann [Künnemann14] were proved. And the last attack verification is to 
obtain a regular execution of the Yubikey protocol. 
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5.3.1. The absence of replay attacks 

 ¬(∃i, j, pid, sid, x, otp1, otp2. 
 Login(pid, sid, x, otp1) @ i ∧ Login(pid, sid, x, otp2) @ j ∧ ¬(i = j)). 

The first property is about the absence of replay attacks, there are no 
two distinct logins that accept the same counter value. 

eq ATTACK-STATE(1) 
 = empty 
 ||     
 ((EL0:EventList ++ Login(pid,sid,c6:Counter,X:StdMsg) ++ EL1:EventList ++   
  Login(pid,sid,c6:Counter,Y:StdMsg) ++ EL2:EventList)  
  inI, X:StdMsg != Y:StdMsg) 
 || nil 
 || nil 
 || nil 
  [nonexec] . 

Note, the condition X:StdMsg != Y:StdMsg would not be necesary to 
validate the property, the condition helped to reduce the search space. 

Execution result: 

reduce in MAUDE-NPA : summary(1,0) . 
 result Summary: States>> 1 Solutions>> 0 

reduce in MAUDE-NPA : summary(1,1) . 
 result Summary: States>> 0 Solutions>> 0 

The result means that cannot reach an initial state and has a finite 
search space, proving it secure. 

 

5.3.2. Injective correspondence 

Second property is an injective correspondence between pressing the 
button on a Yubikey and a successful login: 

∀ pid, sid, x, otp, t2. 
   Login(pid,sid,x,otp)@t2 ⇒ 
   ∃t1.YubiPress(pid, x)@t1 ∧ t1 < t2 

    ∧ ∀otp2, t3.Login(pid, sid, x, otp2)@t3 ⇒ t3 = t2 

A successful login must have been preceded by a button press for the 
same counter value. Furthermore, there is not second, distinct login for this 
counter value. 
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eq ATTACK-STATE(2)    
 = empty 
 ||  
 ((EL:EventList ++ YubiPress(pid:FrNonce,c4:Counter) ++ EL1:EventList ++   
 Login(pid:FrNonce,sid:FrNonce,c4:Counter,X:StdMsg) 
   ++ EL2:EventList ++        
  Login(pid:FrNonce,sid:FrNonce,c5:Counter,Y:StdMsg))  
  inI, c4:Counter != c5:Counter) 
 || nil 
 || nil 
 || nil 
 [nonexec] . 

Execution result: 

reduce in MAUDE-NPA : summary(1,0) . 
 result Summary: States>> 1 Solutions>> 0 

reduce in MAUDE-NPA : summary(1,1) . 
 result Summary: States>> 0 Solutions>> 0 

The result means that cannot reach an initial state and has a finite 
search space, proving it secure. 

 

5.3.3. Increasing the counter 

For the third fact, the counter values associated to logins are increasing 
over the time, which implies that all successful logins have different counter 
value. 

∀ pid, otc1, tc1, otc2, tc2, t1, t2, t3. Smaller(tc1, tc2)@t3  

  ∧ LoginCounter(pid, otc1, tc1)@t1 

  ∧ LoginCounter(pid, otc2, tc2)@t2 

  ⇒ t1 < t2 

 

eq ATTACK-STATE(3) 
  = empty 
 || 
 ((EL:EventList ++ LoginCounter(pid:FrNonce,c1:Counter,c2:Counter) ++   
 Smaller(c1:Counter,c2:Counter) ++ EL1:EventList ++    
 LoginCounter(pid:FrNonce,c3:Counter,c4:Counter) ++    
 Smaller(c3:Counter,c4:Counter) +++ end) inI)  
 || nil 
 || nil 
 || nil 
 [nonexec] . 

 

 



 

 25 

Execution result: 

reduce in MAUDE-NPA : summary(3,0) . 
 result Summary: States>> 1 Solutions>> 0 

reduce in MAUDE-NPA : summary(3,1) . 
 result Summary: States>> 0 Solutions>> 0 

The result means that cannot reach an initial state and has a finite 
search space, proving it secure. 

 

5.3.4. Counter value control 

Another property stronger than the previous property is controling the 
counter values are different over the time. Note, that Tamarin can use 
invariant and Maude-NPA not. 

∀ pid, otc1, tc1, otc2, tc2, t1, t2. LoginCounter(pid, otc1, tc1)@t1  
  ∧ LoginCounter(pid, otc2, tc2)@t2 ∧ t1 < t2 

  ⇒ ∃z.tc2 = z+tc1 

eq ATTACK-STATE(4) 
 = empty 
 || 
 ((EL0:EventList ++ Login(pid,sid,c6:Counter,X:StdMsg) ++ EL1:EventList ++   
 Login(pid,sid,c6:Counter,Y:StdMsg) ++ EL2:EventList)  
  inI, X:StdMsg != Y:StdMsg), 
 ((EL5:EventList ++ YubiPress(pid,c5:Counter) ++ EL6:EventList ++ 
  Login(pid,sid,c5:Counter,X:StdMsg) ++ EL7:EventList) inI) 
 || nil 
 || nil 
 || nil 
 [nonexec] . 

Note, that the condition X:StdMsg != Y:StdMsg would not be necessary 
for the property. 
 

 Execution result: 

reduce in MAUDE-NPA : summary(4,0) . 
 result Summary: States>> 1 Solutions>> 0 

reduce in MAUDE-NPA : summary(4,1) . 
 result Summary: States>> 14 Solutions>> 0 

reduce in MAUDE-NPA : summary(4,2) . 
 result Summary: States>> 21 Solutions>> 0 

reduce in MAUDE-NPA : summary(4,3) . 
 result Summary: States>> 28 Solutions>> 0 

reduce in MAUDE-NPA : summary(4,4) . 
 result Summary: States>> 21 Solutions>> 0 
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reduce in MAUDE-NPA : summary(4,5) . 
 result Summary: States>> 7 Solutions>> 0 

reduce in MAUDE-NPA : summary(4,6) . 
 result Summary: States>> 0 Solutions>> 0 

The result means that cannot reach an initial state and has a finite 
search space, proving it secure. 

 

5.3.5. Regular execution 

Fort he last validate property we decided to make a regular execution 
of Yubikey. To determine if since the beginning you can reach the end. 
 
 eq ATTACK-STATE(5) 
 =  :: rk,rpid,rsid :: 
 [nil , 
 +(Init(Fr(rpid),Fr(rk)) ++ ExtendedInit(Fr(rpid),Fr(rsid),Fr(rk))), 
 +(Y(Fr(rpid),Fr(rsid))), 
 +(SharedKey(Fr(rpid),Fr(rk))), 
  {yubikey -> yubikey ;; 1-1 ;; Ycounter(Fr(rpid),1) @ Server(Fr(rpid),Fr(rsid),1)}|nil ]   
 & 
  
 :: rnpr,rnonce ::  
 [nil , {yubikey -> yubikey ;; 1-1 ;; Ycounter(Fr(rpid),1) @ Server(Fr(rpid),Fr(rsid),1)},  
 -(Y(Fr(rpid),Fr(rsid))), 
 -(SharedKey(Fr(rpid),Fr(rk))), 
 -(1), 
 -(Init(Fr(rpid),Fr(rk)) ++ ExtendedInit(Fr(rpid),Fr(rsid),Fr(rk))), 
 +(Init(Fr(rpid),Fr(rk)) ++ ExtendedInit(Fr(rpid),Fr(rsid),Fr(rk)) ++ YubiPress(Fr(rpid),1)), 
 +(Fr(rpid) ; Fr(rnonce) ; senc(Fr(rsid) ; 1 ; Fr(rnpr),Fr(rk))),  
 {yubikey -> yubikey ;; 1-1 ;; Ycounter(Fr(rpid),1+ 1) @ Server(Fr(rpid),Fr(rsid),1)} | nil] 
 & 
 
 :: nil :: 
 [nil , {yubikey -> yubikey ;; 1-1 ;; Server(Fr(rpid),Fr(rsid),1) @ Ycounter(Fr(rpid),1 +1)}, 
 -(SharedKey(Fr(rpid),Fr(rk))), 
 -(Fr(rpid) ; Fr(rnonce) ; senc(Fr(rsid) ; 1 ; Fr(rnpr), Fr(rk))), 
 -(1),  
 -(Init(Fr(rpid),Fr(rk)) ++ ExtendedInit(Fr(rpid),Fr(rsid),Fr(rk)) ++ YubiPress(Fr(rpid),1)), 
 +(Init(Fr(rpid),Fr(rk)) ++ ExtendedInit(Fr(rpid),Fr(rsid),Fr(rk)) ++ YubiPress(Fr(rpid),1) 
  ++ Login(Fr(rpid),Fr(rsid),1,senc(Fr(rsid) ; 1 ; Fr(rnpr), Fr(rk)))   
 ++ LoginCounter(Fr(rpid),1,1) ++ Smaller(1,1) +++ end) | nil 
 || empty 
 || nill 
 || nil 
 || nil 
 [nonexec] .  
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Execution results: 

reduce in MAUDE-NPA : summary(5,0) . 
 result Summary: States>> 1 Solutions>> 0 

reduce in MAUDE-NPA : summary(5,1) . 
 result Summary: States>> 3 Solutions>> 0 

reduce in MAUDE-NPA : summary(5,2) . 
 result Summary: States>> 9 Solutions>> 0 

reduce in MAUDE-NPA : summary(5,3) . 
 result Summary: States>> 21 Solutions>> 0 

reduce in MAUDE-NPA : summary(5,4) . 
 result Summary: States>> 46 Solutions>> 0 

reduce in MAUDE-NPA : summary(5,5) . 
 result Summary: States>> 17 Solutions>> 0 

reduce in MAUDE-NPA : summary(5,5) . 
 result Summary: States>> 3 Solutions>> 0 

reduce in MAUDE-NPA : summary(5,5) . 
 result Summary: States>> 0 Solutions>> 1 

 

For this attack pattern Maude-NPA finds an initial state, proving 
the regular execution of Yubikey protocol. 
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6. Conclusions and future work 
 

 The conclusions that we have drawn from this master thesis is that the 
Yubikey protocol can be specified and analyzed in Maude-NPA. The whole 
process has been challenging for us in many ways, specially specifying a high 
level protocol and controlling the order of execution of its facts thanks to 
strand composition. 

            During the process of specification and analysis we have found errors 
of strand composition and associativity within Maude-NPA, not related to the 
Yubikey protocol. However, one of our objectives  was to test Maude-NPA 
and finding bugs was a good sign. 

            For future work, an interesting possibility will be to specify the YubiHSM 
protocol that uses exclusive-or, since Maude-NPA is one of the few tools able 
to work with exclusive-or. YubiHSM is also a USB device focused in server 
security. If the secrets stored on these servers are compromised, it can result in 
the compromise of all cryptographic keys and passwords resident on the 
server. This type of high security protocols would be a great challenge to be 
specified and analyzed in Maude-NPA. 
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