
 CIT2016 – XII Congreso de Ingeniería del Transporte 

València, Universitat Politècnica de València, 2016. 

DOI: http://dx.doi.org/10.4995/CIT2016.2016.3512 

 

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-

ND 4.0). 

 

THE IMPACT OF SHORT TERM TRAFFIC FORECASTING 

ON THE EFFECTIVENESS OF VEHICLES ROUTES 

PLANNING IN URBAN AREAS 

 

Daniel Kubek, Paweł Więcek, Konrad Chwastek 

Cracow University of Technology, Transport Section, Poland 

 

 

ABSTRACT 

An impossibility to foresee in advance the accurate traffic parameters in face of dynamism 

phenomena in complex transportation system is a one of the major source of uncertainty. 

The paper presents an approach to robust optimization of logistics vehicle routes in urban 

areas on the basis of estimated short-term traffic time forecasts in a selected area of the urban 

road network. The forecast values of optimization parameters have been determined using 

the spectral analysis model, taking into account the forecast uncertainty degree. The robust 

counterparts approach of uncertain bi-criteria shortest path problem formulation is used to 

determining the robust routes for logistics vehicles in the urban network. The uncertainty set 

is created on the basis of forecast travel times in chosen sections, estimated by means of 

spectral analysis. 

The advantages and the characteristics are exemplified in the actual Krakow road network.  

The obtained data have been compared with classic approach wherein it is assumed that the 

optimization parameters are certain and accurate. The results obtained in the simulation 

example indicate that use of forecasting techniques with robust optimization models has a 

positive impact on the quality of final solutions. 

 

1. INTRODUCTION 

The basic and natural feature of the transport system is dynamism of phenomena and 

processes, and the dynamism is a consequence of the transport system properties: high level 

of complexity (large-scale system), large number of users (diverse transport interactions and 

behaviours), occurrence of complex and random traffic phenomena and susceptibility to 

external factors (weather, reliability of technical and road infrastructure) 

(Adamski,2003;Kubek 2015). High dynamism and randomness of processes and phenomena 

in the city transport system does influence the quality of obtained data and information which 

describe this system. Such quality can be expressed, inter alia, by means of so-called 

uncertainty and indeterminacy of data. The uncertainty of traffic information can be 

understood as an impossibility to foresee in advance the detailed traffic parameters which 

would not have any errors. For example, using historical data to plan future, real processes 

will always have a certain forecast error. Such error forms an uncertainty set for the described 

process. On the other hand, the indeterminacy of information is rooted in limitations which 

result from the technical and economic possibilities of conducting the traffic measurements. 

For instance, a traffic study in an area of the city is performed in a selected few typical and 
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representative points. The measurements are not performed for the remaining elements of 

this area, i.e. road section, intersection, intersection inlet or lane. Absence of such data causes 

indeterminacy of the obtained information. The missing data are often supplemented by 

mathematical models which have estimation errors, just like in case of forecasting methods. 

Hence, the second basic source of uncertainty of traffic information is forecasting models 

used to estimate future traffic parameters. The other source of uncertainty of traffic 

information is the accuracy of implementation of a solution in practical conditions (Ben-Tal 

and El Ghaoui and Nemirovski, 2009). 

These premises indicate that the correct approach to describe the actual objects is methods 

which allow to define the uncertain parameters, i.e. the parameters which can assume values 

from a given range. There are a few such approaches in the literature now. These are, inter 

alia, stochastic optimization, optimization in which the variables are expressed by fuzzy sets, 

and the robust optimization. The first two are rather popular methods to cope with uncertain 

data, but their basic shortcoming in application to actual problems is the assumption that the 

randomness is implemented on the basis of known probability distribution. In case of urban 

traffic, sudden changes in travel time are natural, but it is not possible to indicate the 

probability distribution which could describe such changes. Examples would be random 

traffic accidents, traffic incidents, roadworks, breakdown of the control system. These are 

so-called non-recurrent incidents which are difficult or even impossible for foresee. 

The third approach – robust optimization – is a method to account for data uncertainty, 

however here the variability is not described with a single, specific probability distribution 

(El Ghaoui, 2003; Bertsimas, and Brown and Caramanis, 2008). This solution is resistant to 

the fluctuations of model parameters when - for many parameter value scenarios - the 

obtained solution is at least acceptable and meets all the model conditions (model 

limitations) with high probability. The cost of such solution is the least of the worst possible 

variants.  

On the basis of aforementioned issues, it seems justified to develop and analyze the models 

describing the transport processes where the model parameters can change their values. 

Further in the paper, presented is the issue of short-term traffic forecasts – a key issue for 

the turban traffic control and management. Then, we deal with the subject of determining 

the optimum routes for logistics vehicles in the urban network using the robust optimization 

on the basis of forecast travel times in chosen sections, estimated by means of spectral 

analysis. The obtained data (results) have been compared with classic approach wherein it 

is assumed that the optimization parameters are certain and accurate (e.g. deterministic data). 

The advantages and the characteristics are exemplified in the actual Krakow road network. 

 

2. SHORT-TERM TRAFFIC PREDICTION MODELS 

2.1 Review of Methods 

The short-term traffic forecasting in urban areas has become in the last decades an important 

subject of research in the transport engineering and the urban logistics systems. The interest 

is stirred mainly by the need to develop intelligent traffic control methods, create advanced 

passenger information systems and applications which facilitate the deliveries of goods in 
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the municipal road network. The other reasons include growing traffic in urban areas and 

the development of data acquisition and processing technologies (Barceló, 2010; 

Herrera,2010; Treiber and Kesting, 2012; Vlahogianni and Golias and Karlaftis, 

2004).Short-term traffic forecasting, as an integral part of the Intelligent Transportation 

Systems, relates mostly to predicting future values of parameters such as traffic volume, 

density, speed or travel time in sections of the urban road network. Such prediction has the 

time horizon spanning from a few seconds to maximum a few hours. The values are 

estimated usually on the basis of current and historical traffic information. Transport and 

logistics companies nowadays need to have forecasts which are resistant to shorter or longer 

changes in traffic conditions. Such necessity results from growing competition in the market 

and the desire to provide increasingly reliable transport services. Making traffic forecasts on 

the urban road network level is still a challenge, mainly due to difficulties to install sensors 

in an adequate portion of the streets and to find optimum locations for these sensors. Such 

problem is discussed at length in (Gentili  and Mirchandani, 2012;  Hu and Peeta, and  Chun-

Hsiao, 2009). 

The review of foreign literature on short-term traffic forecasting shows an abundance of 

available methods and tools. Only the most often used methods and tools will be mentioned 

in this paper. A lot of attention in these publications is given to models based on non-

parametric regression models (Clark, 2003; Smith and Williams and Oswald  , 2002), 

Autoregressive Integrated Moving Average – ARIMA (Kamarianakis and  Prastacos, 2005; 

Williams, 2001). Various smoothing and filtering techniques are also frequently applied, for 

example Kalman filter models (Guo and Williams, 2010; Xie and Yuanchang and Zhang 

and Ye, 2007). Large randomness and indeterminacy in the urban traffic result in popularity 

of approaches using Bayesian networks based on the probability theory (Fei and Lu and Liu, 

2011; Ghosh and Basu and O’Mahony, 2007). These methods belong to the group of 

statistical analysis of time series which yield good results when the modelled phenomenon 

does not show sudden changes in time. When such sudden changes in traffic are present, 

which indeed is the case, the research on traffic forecasting methods focus on using the 

Artificial Intelligence tools such as models of artificial neuron networks, fuzzy reasoning 

systems, methods based on frequency analysis, and also the hybrid models. Thus, all 

advantages of these methods are used, making the forecasts more accurate and at the same 

time resistant to sudden changes in traffic. Examples of such solutions are presented with 

more detail in (Chan and Dillon and Singh and Chang, 2012; Dimitriou and Tsekeris and 

Stathopoulos, 2008; Vlahogianni and Karlaftis, 2013; Yin, 2002; Zhang and Zhang and 

Haghani, 2014). 

2.2 Using Spectral Analysis Techniques in Short-Term Traffic Forecasts 

Basic components of each time series include trend, constant level of variable, a cyclic 

component and a random component. This also applies to time series which describe the 

traffic data. In reality, by analysing data from individual sections of road network, in addition 

to random disturbances, a certain cyclicity can be observed (rush hours, specific days of the 

week or month, weekends, etc.). Such being the situation, using frequency analyses to make 

forecasts seems justified. The basic goal of spectral analysis is to notice the cyclicity of 

processes. The analysis assumes a waveform structure of variable stochastic processes, 
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allowing to analyse the series in the frequency domain. This is possible due to trigonometric 

functions, sine and cosine, which are often called harmonics. The number of harmonics for 

n observations is n/2 (Osińska, 2006). The period of the first harmonic is n, second - n/2, 

third - n/3. etc. Thus, the course of a given process can be presented as: 

 

 




2/

1

)]
2

cos()
2

sin([)(
n

i

iit it
n

bit
n

atfY


 (1) 

where 

i - harmonic number 

,...,,, 2211 baba  are constant values 

)(tf  - function describing the trend occurring in the series 
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For the last harmonic, it should be assumed that: 
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Using the discrete Fourier transform of the analysed time series, we obtain the spectrum 

which is a function of frequency. The determined spectrum of the analysed process allows 

to decide which frequencies are capable of explaining the series variability to the greatest 

degree, i.e. the frequencies which have the greatest impact on the variance of the forecast 

variable (Zeliaś and Pawełek and Wanat, 2003). The part of the total variance of the variable 

explained by the ith harmonic is presented by the following formulas: 
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where: 
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2  - variance of the forecast variable with trend previously eliminated 

 

3 PROBLEM OF DETERMINING ROBUST PATHS 

The Shortest Path Problem (SPP) is a very well-known and popular problem in the 

operational research. Its goal is to find a path between any two points in the road network, 

using a criterion, usually the shortest distance. In the further analysis, the SPP has been 

formulated as an uncertain model in which the data can assume values from a given range. 

The variability degree of such data has been taken from the forecast of short-term speed 

value in individual sections of the road network and has been determined by means of the 

average error of the applied forecast models.  

The uncertain models in their unmodified form, subjected to the optimization process, are 

often computationally intractable, meaning that a given mathematical model cannot be 

solved during polynomial computation time. References (Ben-Tal and El Ghaoui and 

Nemirovski, 2009; Bertsimas and Sim, 2003; Goh and Sim, 2010) present the robust 

optimization theory methods which allow to reformulate the uncertain problems to the robust 

counterparts of the original problem, which in turn are computationally tractable. Moreover, 

the reference (Ben-Tal and El Ghaoui and Nemirovski, 2009) proved that the proposed 

approach of replacing uncertain models with their robust counterparts gives better times of 

computer calculations than a deterministic model of a problem. One of the methods to 

modify the uncertain models is applying the duality theory and related theorems (the method 

was presented in (Bertsimas and Sim, 2004; Bertsimas and Sim, 2003)). The robust 

counterpart is created by using the stronger duality theorem which assumes that if an original 

problem or a dual problem has a solution, then the other also has a solution and the values 

of the objective function of both problems are equal (Bertsimas and Sim, 2003). The 

characteristics of this method as exemplified by the SPP is presented further in the paper. 

The Robust Shortest Path Problem (RSPP) model was developed on the basis of (Bertsimas 

and Sim, 2004; Bertsimas and Sim, 2003) and previous research in (Kubek,2014a; Kubek, 

2014b). The RSPP can be presented using the graph theory, where it is assumed that: there 

is a directed graph G = (V,A), where V = {1,2,…,n} is the set of vertices, and 

A = {(i,j): i˄jV, i≠j} is the set of directed graph arcs. To each arc (i,j) from the set A 

assigned were weights: travel time T and the arc length D. It is assumed that the travel time 

can take values from the set T = {Tij[Tij
med-Tij

dev, Tij
med+Tij

dev], (i,j)A}, where Tij
med 

means the expected travel time, and Tij
dev means the possible deviation from the expected 

travel time. The problem is to find the optimum connection between two points in the 

network: {org,des}V, in terms of the used criterion, taking into account some degree of 

data uncertainty. The criterion comprises two aspects: path length expressed as the travel 

time, and the distance travelled. The goal is to find the path in the network which has the 

shortest time and length. There are the following variables in the model: 

-  - means whether the arc (i,j) is in the path, 

-  - additional variable which corresponds to the optimal solution of the original 

problem (uncertain model). 

}1,0{ijx

0ijy

http://creativecommons.org/licenses/by-nc-nd/4.0/


 CIT2016 – XII Congreso de Ingeniería del Transporte 

València, Universitat Politècnica de València, 2016. 

DOI: http://dx.doi.org/10.4995/CIT2016.2016.3512 

 

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-

ND 4.0). 

 

-  - additional dual variable, resulting from the linearization of the SPP 

uncertain model, 

-  - additional dual variable, resulting from the linearization of the SPP uncertain 

model. 

The criterion function of the RSPP model consists of two members: minimization of time 

and minimization of distance, and can take the following form: 
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The criterion function (8) has been written in the normalized form. The normalization has 

been introduced due to the fact of adding two different criteria with varying units of measure. 

Parameters F1
min, F1

max mean respectively the minimum/ maximum travel time in a given 

network, and parameters F2
min, F2

max - respectively the minimum/ maximum length of path 

in a given network where the distance was the criterion. The additional parameter Q was 

introduced in order to be able to assign appropriate weights to a given member of the 

criterion. The limitation (9) corresponds to the criterion of time in which the travel time 

uncertainty was accounted for. In addition to dual variable, the inequality also includes a 

new parameter  which in the literature on the subject matter is interpreted as level of 

conservatism of the obtained solution. In practice, it determines the number of coefficients 

of criterion function costs matrix for which there are deviations from the average value. The 

expression (10) is the second model criterion – minimization of the total path length (11). 

Limitations (12) and (13) relate to the dual variables which guarantee the correctness of the 

robust solution of the original problem. The last limitations result from determination of the 

type of variables. 

This model accounts for data fluctuations expressed by travel time. The main goal of such 

formulation of the SPP is to find such path between any two points for which the travel time 

will be the least of the worst possible scenarios, with simultaneous minimization of the route 
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distance. This is not, however, a classic min-max approach as the deviation value is 

controlled by the parameter . Its value can be changed in real decision-making process, and 

the applied value should depend on the subjective views of the decision maker. For example, 

when the weather deteriorates, it can be assumed that the traffic flow will be reduced, so the 

level of uncertainty of the travel time will increase, hence  should be greater.  

 

4 CASE STUDY 

4.1. Assumptions and Data 

The models presented in previous arts of the paper have been used to check what advantages 

and disadvantages can be obtained by using robust models in determining the paths/ routes 

in a city. Currently, to determine routes of their vehicles some transport companies use 

computer software or portals where one can check the foreseen travel time. However, as it 

was already mentioned, the transport system is dynamic, and the forecasting models included 

in the software or portals have their forecasting error. The possibility to change the travel 

time is not accounted for, which can be bring notable benefits to transport companies, as this 

paper proves.  

The analysis was performed for the real road network in Krakow, Poland (Figure 1). As the 

continuous traffic measurement is not implemented, the traffic data were generated in the 

traffic simulator AIMSUN 8.0. This software allows a micro-simulation of road traffic. The 

simulations were calibrated with actual traffic detection performed by induction loops 

installed in Krakow’s road network which provided data on hourly number of vehicles 

during a day, for one full week, from 72 induction loops in total. In the analysis we used four 

days of the week, Monday, Tuesday, Wednesday, Thursday, and the time was limited to 15 

hours, i.e. from 7.00 to 21.00. The remaining hours are night-time, hence taking them into 

account does not make much sense. A traffic micro-simulation was made for each hour on 

the basis of calibrated O-D (origin – destination) matrix. The level of fit of simulation results 

and actual data was established by a coefficient of determination. Its average value was 

78.2% and it fluctuated in the [70%, 86%] range. The data obtained from the simulator were 

accepted as actual data, and then used as input in our analysis. 
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Figure 1 Analysed Krakow’s road network. 

 

The actual data were used to check the accuracy level of the forecasting model based on the 

spectral analysis of time series. The model was trained on the data from the first three days, 

and then a forecast was made for the next period, i.e. one hour for each section of the road 

network, that is for 685 sections. The forecast error was determined as a relative average 

error in relation to the actual value. In this case, the average error was 24.29 %, but for the 

half of the sections the error was below 12%. In further investigation, the average forecast 

error for every sections was used to create a set of travel time uncertainties in the RSPP 

model. Typical values of forecast travel time for a given section in comparison with actual 

data are given in Figure 2. 

 

 

Figure 2 Typical travel time variability obtained from the AIMSUN simulator in 

comparison with the forecast data. 

 

4.2. Simulation Results 

In order to present the obtainable effects of using uncertain models and robust optimization 

of the shortest path problem, we calculated 90 paths for randomly selected pairs of points 

(network intersections) on the basis of deterministic data and data which include uncertainty. 

The deterministic paths are to show the situation which currently occurs in transport 

companies – determining the vehicle routes from the data which are accurate by definition. 

In the other simulation, we determined the paths for the same pairs of points according to 

the presented RSPP model where the average forecast error established the set of 

uncertainties. In both cases the weight of sub-criteria Q was  60/40 % for the time and the 

path length, respectively. This ratio was indicated by one of the leading transport companies 

which provides global transport and logistics services. The level of conservatism was set to 

=10. The calculations are to show that despite using advanced forecasting methods, the 

differences in paths routing significantly affect the final costs. Please note that the presented 

simulations do not account for the dynamism of the transport system and non-recurrent 

situations, i.e. the road incidents. The changeability in travel time values is assumed to be an 
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uncertainty set created only by forecasting model. The obtained results are presented in 

Table 1. 

 

Table 1 Positive and negative aspects of optimization for the SPP 

 

Reduction 
Travel time Distance 

Amount Min. Average Max. Amount Min. Average Max. 

Positive 19 1,84% 11,25% 24,55% 6 3,27% 4,74% 6,50% 

Negative 0 0,00% 0,00% 0,00% 13 -22,16% -7,90% 0,00% 

Neutral 71 0,00% 0,00% 0,00% 71 0,00% 0,00% 0,00% 

 Mean 10,17 % Mean -4,29 % 

 

Out of 90 cases, over 21% of robust paths have shown a sufficient resistance to changes of 

travel time, which resulted in a positive reduction. The reduction here is understood as a 

difference between the cost of the deterministic solution and the cost of the robust solution, 

in relation to the former. The robust solution has caused losses in distance in about 2/3 cases 

but the extension was lower than possible travel time profits. Most of solutions have neither 

increased costs nor generated costs in the form of extended time or distance. To sum up this 

analysis, a rather intuitive conclusion can be drawn: bypassing traffic jams or bottlenecks in 

road network results in higher costs relating to the path length. However, in the light of 

shifting priorities of transport companies toward better customer service and service quality, 

the possibility of increasing the effectiveness of the be parameters can be interesting.  

5. SUMMARY 

The problem dealt with in the paper indicates that despite many advanced methods of short-

term urban traffic forecasting, there is a clear need for using robust models to determine the 

routes of vehicles which provide transport services inside cities. High variability and 

indeterminacy is a natural feature of traffic, particularly in urbanized areas. Hence, in order 

to obtain more effective and reliable data it makes sense to account for uncertainty of forecast 

data while planning the routes for urban logistics vehicles. The results obtained in the 

calculation example indicate that use of forecasting techniques with robust optimization 

models has a positive impact on the quality of final solutions. The approach presented in the 

paper can be used with success in practical operation of transport and logistics companies.  

 

REFERENCES 

1. ADAMSKI A. (2003) Inteligentne systemy transportowe: sterowanie, nadzór i zarządzanie. 

Wydawnictwo AGH, Kraków.  

2. BARCELÓ, JAUME et al (2010) Travel time forecasting and dynamic origin-destination 

estimation for freeways based on bluetooth traffic monitoring. Transp.Res. Rec.: J. Transp. 

Res. Board. 2010. 2175 (1). P. 19–27. 

3. BEN-TAL A. & EL GHAOUI L. & NEMIROVSKI A. (2009) Robust optimization. New 

Princeton University Press, Jersey. 

4. BERTSIMAS, D. & BROWN D.B. & CARAMANIS C. (2008) Theory and Applications of 

Robust Optimization. SIAM Review, Tom 53(3). 

5. BERTSIMAS, D. & SIM M. (2004) Price of Robustness. Operations Research, Tom 54(1) 

http://creativecommons.org/licenses/by-nc-nd/4.0/


 CIT2016 – XII Congreso de Ingeniería del Transporte 

València, Universitat Politècnica de València, 2016. 

DOI: http://dx.doi.org/10.4995/CIT2016.2016.3512 

 

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-

ND 4.0). 

 

6. BERTSIMAS, D. & SIM M. (2003) Robust discrete optimization and network flows. 

Mathematical Programming, Tom 98, 

7. CHAN, K.Y. & DILLON, T.S. & SINGH, J. & CHANG, E. (2012) Neural-network-based 

models for short-term traffic flow forecasting using a hybrid exponential smoothing using a 

hybrid exponential smoothing and levenberg-marquardt algorithm. IEEE Transactions on 

Intelligent Transportation Systems. 2012a.  13 (2), P. 644–654. 

8. CLARK, STEPHEN (2003) Traffic prediction using multivariate nonparametric regression. J. 

Transp. Eng. 129 (2), P. 161–168. 

9. DIMITRIOU, L. & TSEKERIS T. & STATHOPOULOS, A. (2008) Adaptive hybrid fuzzy 

rule-based system approach for modeling and predicting urban traffic flow. Transportation 

Research Part C: Emerging Technologies. 16 (5), P. 554–573. 

10. EL GHAOUI L. (2003) Uniwersytet w Berkeley. Robust Optimization and Applications. 

[Online] [Zacytowano: 19 maj 2015]  

11. FEI, X. & LU, C.-C. & LIU K.A. (2011) Bayesian dynamic linear model approach for real-

time short-term freeway travel time prediction. Transportation ResearchPart C: Emerging 

Technologies. Vol. 19 (6) P. 1306–1318. 

12. GENTILI  M. & MIRCHANDANI P.B. (2012)  Locating sensors on traffic networks: models, 

challenges and research opportunities. Transportation Research Part C: Emerging 

Technologies. Vol.24. P. 227–255. 

13. GHOSH, B. & BASU B. & O’MAHONY M. (2007) Bayesian time-series model for short-term 

traffic flow forecasting. Journal of Transportation Engineering. 133 (3). P. 180–189. 

14. GOH J. & SIM M. (2010) Distributionally Robust Optimization and Its Tractable 

Approximations. Operations Research. Tom 58(4) 

15. GUO J. & WILLIAMS B.M. (2010) Real-time short-term traffic speed level forecasting and 

uncertainty quantification using layered Kalman filters. Transportation Research Record. Vol. 

2175. P. 28–37 

16. HERRERA JUAN C. et al. (2010) Evaluation of traffic data obtained via GPS-enabled mobile 

phones: The Mobile Century field experiment. Transp. Res. Part C: Emerg. Technol. Vol. 18 

(4), P. 568–583. 

17. HU, SH.-R. & PEETA, S. & CHUN-HSIAO CHU.  (2009) Identification of vehicle sensor 

locations for link-based network traffic applications. Transportation Research Part B: 

Methodological. Vol. 43 (8–9), P. 873–894. 

18. KAMARIANAKIS Y. &  PRASTACOS, P. (2005) Space–time modeling of traffic flow. 

Comput. Geosci. Vol. 31 (2), P. 119–133. 

19. KUBEK D. (2014b)Wyznaczanie odpornych ścieżek w warunkach miejskich, Czasopismo 

Logistyka [CD]. Nr 4. P. 3965-3971. 

20. KUBEK D. (2015) Zastosowanie optymalizacji odpornej w problematyce wyznaczania tras 

pojazdom - charakterystyka oraz kierunki badań, Czasopismo Logistyka. nr 3, [w druku] 

21. KUBEK D. (2014a) Wyznaczanie tras typu „robust” dla pojazdów logistyki miejskiej. 

Czasopismo Logistyka [CD]. Nr 3, P. 3461-3470 

22. OSIŃSKA M.(2006)  Ekonometria Finansowa. PWE. Warszawa. 

23. SMITH BRIAN L. & WILLIAMS, BILLY M. & OSWALD  R. KEITH. (2002) Comparison 

of parametric and nonparametric models for traffic flow forecasting. Transp. Res. Part C: 

Emerg. Technol. Vol. 10 (4). P. 303–321. 

24. TREIBER, M. & KESTING, A. (2012) Validation of traffic flow models with respect to the 

spatiotemporal evolution of congested traffic patterns. Transportation Research Part C: 

Emerging Technologies. Vol. 21 (1), P. 31–41  

25. VLAHOGIANNI E.I. & GOLIAS, J.C. & KARLAFTIS M.G. (2004) Short-term traffic 

forecasting: overview of objectives and methods. Transportation Reviews. Vol. 24 (5). P.533–

557.  

26. VLAHOGIANNI, E.I. & KARLAFTIS M.G. (2013) Testing and comparing neural network 

and statistical approaches for predicting transportation time series. Transportation Research 

Record Journal of the Transportation Research Board.Vol 2399 

http://creativecommons.org/licenses/by-nc-nd/4.0/


 CIT2016 – XII Congreso de Ingeniería del Transporte 

València, Universitat Politècnica de València, 2016. 

DOI: http://dx.doi.org/10.4995/CIT2016.2016.3512 

 

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-

ND 4.0). 

 

27. WILLIAMS BILLY M. (2001) Multivariate vehicular traffic flow prediction: evaluation of 

ARIMAX modeling. Transportation Research Record Journal of the Transportation Research 

Board. 1776 (1), P. 194–200. 

28. XIE Y.& YUANCHANG & ZHANG Y. & YE Z. (2007) Short-term traffic volume forecasting 

using Kalman filter with discrete wavelet decomposition. Comput.- Aid. Civ. Infrastruct. Eng. 

Vol. 22 (5), P. 326–334. 

29. YIN, HONGBIN et al. (2002) Urban traffic flow prediction using a fuzzy-neural approach. 

Transportation. Research. Part C.Vol. 10 (2). P. 85–98. 

30. ZELIAŚ A. & PAWEŁEK B. & WANAT S. (2003) Prognozowanie Ekonomiczne. PWN, 

Warszawa.  

31. ZHANG Y. & ZHANG Y. & HAGHANI A.  (2014) A hybrid short-term traffic flow 

forecasting method based on spectral analysis and statistical volatility model. Transportation 

Research. Part C. Vol. 43. P. 554–573. 

 

http://creativecommons.org/licenses/by-nc-nd/4.0/

