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Abstract

The present thesis is devoted to the development of models and algorithms to
improve metabolic simulations of cyanobacterial metabolism. Cyanobacteria
are photosynthetic bacteria of great biotechnological interest to the develop-
ment of sustainable bio-based manufacturing processes. For this purpose, it
is fundamental to understand metabolic behaviour of these organisms, and
constraint-based metabolic modelling techniques offer a platform for analy-
sis and assessment of cell's metabolic functionality. Reliable simulations are
needed to enhance the applicability of the results, and this is the main goal of
this thesis.

This dissertation has been structured in three parts. The first part is devoted
to introduce needed fundamentals of the disciplines that are combined in this
work: metabolic modelling, cyanobacterial metabolism and multi-objective
optimisation.

In the second part the reconstruction and update of metabolic models of two
cyanobacterial strains is addressed. These models are then used to perform
metabolic simulations with the application of the classic Flux Balance Analysis
(FBA) methodology. The studies conducted in this part are useful to illustrate
the uses and applications of metabolic simulations for the analysis of living
organisms. And at the same time they serve to identify important limitations
of classic simulation techniques based on mono-objective linear optimisation
that motivate the search of new strategies.

Finally, in the third part a novel approach is defined based on the applica-
tion of multi-objective optimisation procedures to metabolic modelling. Main
steps in the definition of multi-objective problem and the description of an
optimisation algorithm that ensure the applicability of the obtained results, as
well as the multi-criteria analysis of the solutions are covered. The resulting
tool allows the definition of non-linear objective functions and constraints, as
well as the analysis of multiple Pareto-optimal solutions. It avoids some of
the main drawbacks of classic methodologies, leading to more flexible simu-
lations and more realistic results.

Overall this thesis contributes to the advance in the study of cyanobacterial
metabolism by means of definition of models and strategies that improve plas-
ticity and predictive capacities of metabolic simulations.






Resum

La present tesi esta dedicada al desenvolupament de models i algorismes per
a millorar les simulacions metaboliques de cianobacteris. Els cianobacteris
son bacteris fotosintetics de gran interés biotecnologic per al desenvolupa-
ment de bioprocessos productius sostenibles. Per a aquest proposit, és fona-
mental entendre el comportament metabolic d'aquests organismes, i el mod-
elatge metabolic basat en restriccions ofereix una plataforma per a I'analisi i
l'avaluacié de les funcionalitats metaboliques de les cel-lules. Es necessiten
simulacions fidedignes per a augmentar 1'aplicabilitat dels resultats, i aquest
és 1'objectiu principal d'aquesta tesi.

Aquesta dissertaci6 s'ha estructurat en tres parts. La primera part esta dedi-
cada a introduir els fonaments necessaris de les disciplines que es combinen
en aquest treball: el modelatge metabolic, el metabolisme de cianobacteris i
l'optimitzacié multiobjectiu.

En la segona part, s'adreca la reconstrucci6 i l'actualitzacié dels models meta-
bolics de dos soques de cianobacteris. Aquests models s'empren després per
a portar a terme simulacions metaboliques amb l'aplicacié de la metodologia
classica Flux Balance Analysis (FBA). Els estudis realitzats en aquesta part s6n
atils per a il-lustrar els usos i aplicacions de les simulacions metaboliques per
a l'analisi dels organismes vius. I al mateix temps serveixen per a identificar
importants limitacions de les técniques classiques de simulacié basades en
optimitzaci6 lineal mono-objectiu que motiven la cerca de noves estrategies.

Finalment, en la tercera part, es defineix una nova aproximacié basada en
l'aplicaci6 al modelatge metabolic de procediments d'optimitzacié multiobjec-
tiu. Es cobreixen els principals passos en la definicié d'un problema multiob-
jectiuila descripcié d'un algorisme d'optimitzacié que asseguren l'aplicabilitat
dels resultats obtinguts, aixi com l'analisi multi-criteri de les solucions. La fer-
ramenta resultant permet la definicié de funcions objectiu i restriccions no
lineals, aixi com l'analisi de multiples solucions optimes en el sentit de Pa-
reto. Aquesta ferramenta evita alguns dels principals inconvenients de les
metodologies classiques, el que porta a obtenir simulacions més flexibles i re-
sultats més realistes.

En conjunt, aquesta tesi contribueix a I'avang en l'estudi del metabolisme de
cianobacteris per mitja de la definicié de models i estrategies que milloren la
plasticitat i les capacitats predictives de les simulacions metaboliques.






Resumen

La presente tesis estd dedicada al desarrollo de modelos y algoritmos para
mejorar las simulaciones metabdlicas de cianobacterias. Las cianobacterias
son bacterias fotosintéticas de gran interés biotecnolégico para el desarrollo
de bioprocesos productivos sostenibles. Para este propésito, es fundamental
entender el comportamiento metabdlico de estos organismos, y el modelado
metabdlico basado en restricciones ofrece una plataforma para el andlisis y
la evaluacion de las funcionalidades metabélicas de las células. Se necesitan
simulaciones fidedignas para aumentar la aplicabilidad de los resultados, y
este es el objetivo principal de esta tesis.

Esta disertacién se ha estructurado en tres partes. La primera parte estd ded-
icada a introducir los fundamentos necesarios de las disciplinas que se com-
binan en este trabajo: el modelado metabdlico, el metabolismo de cianobacte-
rias, y la optimizacién multiobjetivo.

En la segunda parte, se encara la reconstruccién y la actualizacién de los
modelos metabdlicos de dos cepas de cianobacterias. Estos modelos se usan
después para llevar a cabo simulaciones metabdlicas con la aplicacién de la
metodologia clasica Flux Balance Analysis (FBA). Los estudios realizados en
esta parte son ttiles para ilustrar los usos y aplicaciones de las simulaciones
metabdlicas para el andlisis de los organismos vivos. Y al mismo tiempo sir-
ven para identificar importantes limitaciones de las técnicas clasicas de simu-
lacién basadas en optimizacién lineal mono-objetivo que motivan la blisqueda
de nuevas estrategias.

Finalmente, en la tercera parte, se define una nueva aproximacién basada en la
aplicacién al modelado metabélico de procedimientos de optimizaciéon multi-
objetivo. Se cubren los principales pasos en la definicién de un problema mul-
tiobjetivo y la descripcién de un algoritmo de optimizacién que aseguren la
aplicabilidad de los resultados obtenidos, asi como el andlisis multi-criterio de
las soluciones. La herramienta resultante permite la definiciéon de funciones
objetivo y restricciones no lineales, asi como el anélisis de multiples soluciones
en el sentido de Pareto. Esta herramienta evita algunos de los principales in-
convenientes de las metodologias clasicas, lo que lleva a obtener simulaciones
mas flexibles y resultados més realistas.

En conjunto, esta tesis contribuye al avance en el estudio del metabolismo de
cianobacterias por medio de la definicién de modelos y estrategias que mejo-
ran la plasticidad y las capacidades predictivas de las simulaciones metabdli-
cas.
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Aims, Structure and
Contributions of this thesis

Aims and objectives

Like every applied science, metabolic modelling is situated at the inter-
section of different disciplines. It combines mathematics, biology and
engineering principles to clarify the metabolic behaviour of living or-
ganisms with the final goal of designing new biological circuits or alter
existing ones that can be used to address new problems. Due to its ap-
plied and innovative character, this area offers many open possibilities,
but at the same time, its multidisciplinary nature poses a challenge to
researchers. The focus of the present dissertation is this intersection,
in which mathematical structures and methods are applied to describe
and analyse metabolism of living organisms, specifically cyanobacte-
rial metabolism.

In the current energy, environment and socio-economic situation, there
exist an increasing trend towards the search of efficient and sustainable
manufacturing processes. In this context the use of living organisms as
cell factories has gained increasing interest in the past years. In order to
develop competitive processes that fulfil the needs of the industry, the
natural systems have to be modified to adapt their functionality and en-
hance their productive capacities. But rational design needs planning:
it is fundamental to evaluate potential capacities and maximum yields
that can be achieved, as well as to assess how the genetic alterations on

3
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the designed cell will affect the whole system. Metabolic models and
modelling techniques are a valuable tool for these purposes.

Genome-scale metabolic models are mathematical representations of
cellular metabolism that include the description of all biochemical re-
actions known to occur at a given organism. These models represent
the network of substances (metabolites) that are transformed from one
to another through the metabolic reactions, which are in most cases
catalysed by enzymes. The variable object of study are the metabolic
fluxes, that is, the rates of the metabolic reactions, that describe how
energy and materials flow through the metabolic network.

Different methods have been used to model metabolism, but one of
the most extended approaches is constraint-based modelling, which
for many years was the only practical option for large-scale models.
Under this approach, a set of constraints are defined to describe the
limitations that metabolic systems face in natural environments which
restrict the set of allowable phenotypes (represented in the modelling
framework by flux distributions). Once the space of feasible solutions
is constrained to the set of biologically practical solutions, optimisation
can be applied to extract concrete flux distributions that represent opti-
mal phenotypes. The use of optimisation in this context is justified by
the assumption that living organisms subject to selective pressure have
evolved towards optimal or quasi-optimal performance. This optimi-
sation could involve many phenotypes of the cell (adaptation, efficient
use of substrates, efc.), but it is almost always considered on biomass

growth.

In the present work, these principles are applied to the study of the me-
tabolism of cyanobacteria. Cyanobacteria are photosynthetic bacteria
able to perform oxygenic photosynthesis and make use of sunlight and
inorganic CO; to perform their metabolic functions. These low nutri-
ent requirements have placed them in the spotlight as very promising
organisms for the development of sustainable, low-energy-consuming,
cell factories. Besides, genetic tools are available for their manipulation

to meet commercial needs.



Thus, the main objective of this thesis is:

To contribute with models and strategies to improve plasticity and
predictive capacity of simulations of cyanobacterial metabolism.

With this purpose in mind, the following specific aims have been de-
fined:

* Reconstruct and validate up-to-date metabolic networks for two
model cyanobacteria Synechocystis sp. PCC 6803 and Synechococ-
cus elongatus PCC 7942.

* Demonstrate potential applications and uses of these models to
simulate metabolic behaviour and design production strategies.

¢ Identify advantages and limitations of classic simulation methods
for constraint-based metabolic modelling.

* Propose a modelling strategy based on multi-objective evolution-
ary optimisation taking into account the main steps of the process,
from constraints and objectives definition, through the optimisa-
tion process, to solution analysis and selection.

* Validate the proposed strategy by applying it to the simulation
and analysis of metabolic behaviour of the model cyanobacterium
Synechocystis sp. PCC 6803 under different growth conditions.

Thesis structure

This dissertation is divided in three parts. In the first part, background
is given for the two main disciplines participating in this thesis: me-
tabolic modelling and multi-objective optimisation. Chapter [1]is de-
voted to explain the basic principles of metabolic modelling and to
outline some of the main simulation techniques. It also includes a
brief introduction to cyanobacterial metabolism and background on re-
constructed metabolic networks of the organisms studied in this the-
sis. Chapter 2|is dedicated to give some basic definitions and explain
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the fundamentals of multi-objective optimisation procedures that are

needed for the development of this thesis.

In the second part, contributions to metabolic modelling of cyanobac-
teria are presented. In Chapter 3| the update and assembly process
of genome-scale metabolic networks of the model cyanobacteria Syne-
chocystis sp. PCC 6803 and Synechococcus elongatus PCC 7942 is ad-
dressed. The resulting metabolic models are used in Chapter [ to per-
form simulations by means of the classic Flux Balance Analysis method-
ology. Those simulations must serve to illustrate some of the main uses
of constraint-based metabolic modelling, and at the same time conclu-
sions are extracted about advantages and limitations of classic simula-
tion strategies.

Finally, the third part is devoted to apply multi-objective optimisation
procedures to the problem of constraint-based metabolic simulations.
In Chapter |5/ a strategy and an optimisation algorithm are described
that apply the principles of multi-objective problem definition and op-
timisation to perform flux simulations. This tool is applied in Chapter
[6] for its validation through metabolic simulations of the model cyano-
bacteria Synechocystis sp. PCC 6803 under different growth conditions.

Finally, main conclusions of this dissertation are described, as well as
some future perspectives for further application of this work.

Contributions

Scientific contributions

Peer-reviewed articles

¢ Julidn Triana, Arnau Montagud, Maria Siurana, David Fuente,
Arantxa Urchueguia, Daniel Gamermann, Javier Torres, Jose Tena,
Pedro Ferndndez de Coérdoba, Javier Urchueguia. Generation
and Evaluation of a Genome-Scale Metabolic Network Model



of Synechococcus elongatus PCC 7942. Metabolites 2014, 4:680-
698

The PhD applicant mainly contributed to the curation process.

e Gabriel Kind, Maria Siurana, Erik Zuchantke, David Fuente, Lenin
G. Lemus-Zufiga, Javier Urchueguia, Robbe Wiinschiers. CellDe-
sign - An Open-Source, Web-Based Software for Metabolic Mod-
elling and Flux-Balance Analyses. Manuscript submitted to BMC
Bioinformatics in June 2017.

The PhD applicant mainly contributed with the technical guidance about
metabolic simulations and supervised the test of use done through ap-

plication of the tool in academic courses.

¢ Maria Siurana, Arnau Montagud, Gilberto Reynoso-Meza, ]. Al-

berto Conejero, Javier Sanchis, Lenin G. Lemus-Zuafiga, Javier
Urchueguia Multi-objective evolutionary algorithm allows more
accurate genome-scale flux simulations with a small set of ex-

perimental values. Manuscript in preparation.

¢ Maria Siurana, Gilberto Reynoso-Meza, Arnau Montagud, Javier

Sanchis Application and technicalities of multi-objective evolu-
tionary algorithm on genome-scale flux simulations. Manuscript
in perspective.

Participation in research project

* CyanoFactory' - Design, construction and demonstration of so-
lar biofuel production using novel (photo)synthetic cell facto-
ries. Founded by the European Union Seventh Framework Programme
(FP7/2007-2013) under grant agreement number 308518. December
2012 - November 2015.

!Final report available at cordis.europa.eu/result/rcn/184808_en.html
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Software development

Meta-MODE algorithm described in Chapter 5| will be available at the

public MATLAB® repository in the short term after publication of
this thesis.

CellDesign? web-based metabolic modelling toolbox for non-experts

described in Chapteris accessible at http://celldesign.de

Conference presentations and posters

Presentations

Maria Siurana, Arnau Montagud, Gilberto Reynoso-Meza, J. Al-
berto Conejero, Javier Sanchis, Lenin G. Lemus-Zufiga, Javier
Urchueguia. Multi-objective evolutionary algorithm for genome-
scale flux simulation. 1st International Solar Fuels Conference. Up-
psala (Sweden), May 2015.

Marina Pérez-Naveira® , Maria Siurana, Javier Urchuegufa. In-

tegration of proteomic and metabolomic data in genome-scale
metabolic models and its application to the cyanobacteria Syne-
chocystis sp. PCC 6803. XIII Symposium on Bioinformatics. Valen-
cia (Spain), May 2016.

Posters

Maria Siurana, Arnau Montagud, Javier Urchueguia. Synechocys-

tis metabolic modelling and production strategies assessment.
1st International Solar Fuels Conference (ISF-1). Uppsala (Sweden),
May 2015.

*The PhD applicant mainly contributed with the technical guidance about meta-

bolic simulations and supervised the test of use done through application of the tool

in academic courses.

*Presented by Marina Pérez-Naveira, supervised by Maria Siurana and Javier

Urchueguia during her final Bachelor thesis.
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schiers, Javier Urchueguia. CyanoDesign - A web-based tool for
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Uses of metabolic modelling
and aims of its simulations

1.1 Chapter abstract

In this chapter the fundamentals of constraint-based metabolic mod-
elling and its applications to cyanobacteria are presented.

Metabolic models are a valuable tool to reach a system-level compre-
hension of cells' biochemical functions, which is needed to rationally
design new systems for biotechnological applications. In particular,
constraint-based models allow the study of genome-wide metabolic
networks without the need of extra kinetic or concentration informa-
tion.

Genome-scale metabolic networks are reconstructed from genome an-
notation following a four-stage process. Some of those steps can be au-
tomatically implemented, but high quality reconstructions always re-
quire detailed manual curation and update. Once the topology of the
network is described, constraints are imposed that ensure the biological
pertinency of the solutions obtained from the simulation. Flux distri-
butions (i.e. sets of rates of reactions) satisfying the defined constraints

13



14 Chapter 1. Introduction to metabolic modelling

represent allowable metabolic phenotypes. To extract particular solu-
tions from the feasible space optimisation is utilised. It is worth to note
that absolute optima are not the goal of these simulations, but realistic
solutions that reconcile the biological constraints with the evolutionary
objective.

Several algorithms and tools have been described to perform constraint-
based optimisation-driven metabolic simulations. Basic principles of
all of them are the assumption of basic constraints, viz. reaction direc-
tionality and stoichiometry, steady-state mass balance, reaction/trans-
port capacity limits and nutrient availability, and the optimisation ac-
cording to a biological objective (that is usually growth). Differences
among methods lie in the inclusion of additional mechanisms to take
into consideration further biochemical knowledge that can lead to more

comprehensive solutions.

Throughout this PhD dissertation, models and methods will be dis-
cussed and developed for metabolic modelling of cyanobacteria. These
photosynthetic prokaryotes have revealed of great interest due to their
potential to develop low-cost green bio-based production processes.

1.2 Metabolic modelling in systems biology

Systems biology is an area of life sciences that aims at understanding of
living organisms at a system level (Kitano, [2001). It aims at explaining
how biological systems' characteristics and functions emerge from the
behaviour and the interactions of their molecular parts. This system-
level understanding involves four key stages (Kitano, 2001, 2002): first,
the structures forming the system must be identified, as well as their
interactions; then, an analysis of how the system behaves under var-
ious conditions has to be performed; once the system's structure and
behaviour are deciphered, mechanisms that systematically control the
state of the cell can be modulated to avoid malfunctioning or to take ad-
vantage of desirable cellular functions; finally, strategies to modify and
construct biological systems having desired properties can be devised
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based on design principles and simulations. Thus, the final goal is not
only the comprehension of biological systems, but also the reprogram-
ming of existing systems and design of new ones with applied pur-
poses such as bioengineering or biomedical applications (Ideker et al.,
2001; Kitano, 2001, 2002).

Such a holistic approach necessitates systematic data, as it is not possi-
ble to investigate a biological system as a whole without them (Chuang
et al.|, 2010). While studying the structure and behaviour of the system
(first and second steps above), it must be systematically perturbed (bi-
ologically, genetically, or chemically) and its responses must be mon-
itored. All these data have to be gathered and integrated, and ulti-
mately, mathematical models have to be formulated that describe the
structure of the system and its response to individual perturbations
(Ideker et al., 2001). Thus mathematical models are central in systems
biology to organise, understand and exploit as much information as
possible from a given biological system.

One area of active research in this field has focused on analysing me-
tabolism (Palsson) 2009; Heinemann and Sauer, 2010; Mardinoglu and
Nielsen, 2012; Mardinoglu et al., 2013; Bordbar et al., 2014; Dersch et al.,
2016)). Metabolic fluxes, which are the rates of metabolic reactions (i.e.
number of molecules traversing each metabolic reaction per unit time),
have an important role in investigating cellular physiology, as they
show how the available resources (e.g. carbon, reducing equivalents
and chemical energy) flow through the metabolism to enable cell func-
tion (Garcia Martin et al.,|2015). Metabolic phenotypes* can be defined
in terms of flux distributions through a metabolic network, which can
be interpreted and predicted using mathematical modelling and com-
puter simulation (Edwards et al., 2002a). Thus, metabolic models allow
researchers to study different genotypes and perturbed environmental
conditions, and the resulting phenotypes, constituting a valuable tool

*The term “phenotype” refers to the composite of an organism's observable char-
acteristics or traits (Johannsen, |1911). A phenotype results from the expression of an
organism's genetic code, its genotype, as well as the influence of environmental factors
and the interactions between both.
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for quick testing of the consequences of engineering approaches. They
have demonstrated being useful for several purposes, such as funda-
mental understanding of metabolic behaviour (Savinell and Palsson,
1992a\b), discovery and annotation of enzymatic functions (Reed et al.,
2006), disease study and drug discovery (Chavali et al.,, [2012), or bio-
engineering and design of bacterial strains for biotechnological appli-
cations (Yim et al., 2011)).

Several techniques have been used for the modelling, simulation and
analysis of pathways and networks involved in metabolism (Alon, 2007}
Klipp et al., 2016). The different approaches vary in the amount of de-
tail and the broadness of their scope. A simple classification can be
posed that separates available techniques between dynamic and static
constraint-based modelling approaches (Raman and Chandra, 2009).
Dynamic models are kinetic representations of cellular processes that
provide detail of dynamic interactions and dependencies among bio-
logical entities. However, the vast amount of information (kinetic pa-
rameters and concentration of all species, among others) required by
those models, and the scarcity of such data in many cases, usually lim-
its the size of the systems described through these methods (Edwards
et al, |2002a). A practical alternative to dynamic modelling strategies
are static constraint-based models. Under the scope of constraint-based
metabolic modelling, governing physicochemical and biological con-
straints are imposed that narrow the range of achievable functional
states that a metabolic system can display (Price et al.,[2004). Analysing
the resultant allowable flux distributions provides a basis for under-
standing structure and function of biochemical reaction networks at a
system level (Edwards et al., 2002a).

1.2.1 Constraint-based metabolic modelling

As stated before, constraint-based modelling allows the study of com-
ponents and operation of metabolic networks. The first step in under-
taking this task is to address the reconstruction of the network compris-
ing the metabolites, enzymes and biochemical conversions involved in
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the metabolism of a given cell (Figure . As system-level comprehen-
sion is sought, this network must include all metabolic reactions known
to occur in the system under study. A metabolic network is said to be
genome-scale when all the enzymes and metabolic functions identified

from the genome sequence are considered.

Once the topology of the network has been detailed, the constraint-
based paradigm establishes a set of assumptions and constraints that
limit the possible metabolic phenotypes. Different methods have been
described to determine and analyse the remaining feasible flux distri-
butions that represent the metabolic state of the cell. This thesis uses
methods based on optimisation of objective metabolic functions (Fig-
ure[L.I). The goal is that the analysis of the obtained flux distributions
will give insight into metabolic operation of the system and will serve
as a foundation for subsequent modifications and design procedures.

Genome-scale metabolic network reconstruction

A thorough description of the reconstruction process has been reported
by Thiele and Palsson (2010). The entire process is divided in four
stages. It starts by assembling a draft reconstruction, followed by a re-
finement of this reconstruction, and its conversion into a mathematical
model. The process is completed after validation, when a debugged,
iteratively improved network is achieved (Figure|1.2).

The first stage of the reconstruction process consists on the generation
of a draft reconstruction from the annotated genome sequence and bio-
chemical databases of the organism under study. Candidate enzymes
are identified from the genome annotation, and potential biochemical
reactions catalysed by those enzymes are retrieved from biochemical
databases such as KEGG (Kanehisa and Goto| 2000; [Kanehisa et al.
2017), BRENDA (Schomburg et al., 2000; Placzek et al., 2017) or Meta-
Cyc (Caspi et al., 2016) among others. This step can be carried out man-
ually or by using automated tools (Hamilton and Reed, 2014).
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Figure 1.1: Major steps in metabolic network reconstruction and constraint-based
analysis.
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Figure 1.2: Steps of the process to reconstruct a genome-scale metabolic network.
After Figure 1 from|Feist et al |(2009).

This preliminary reconstruction, however, usually suffers from incom-
pleteness, incorrectness and unspecificities in some reactions (Thiele
and Palsson| 2010). Some of the issues associated with the first stage of
the reconstruction are due to problems with genome annotations: lack
of updated data, incorrect annotations, missing functionalities and non-
reported transporter specificity are among the most common. Some
others are issues related with databases: unspecific metabolites, reac-
tion imbalances, or lack of detail about reaction directionality and com-
pound protonation states usually affect the resultant draft reconstruc-
tion.

In order to obtain a reliable, exhaustive and functional metabolic net-
work manual refinement is needed. During this second stage, high-
quality, organism-specific information has to be collected from litera-
ture, databases, physiological experiments, and experts' advice, to cu-
rate the reconstruction. Although the initial reconstruction step is rapid,
especially when automated, the manual curation process is labour-in-
tensive (Feist et al., 2009).

After the refinement stage, a curated reconstruction is obtained, but be-

fore it can be used for metabolic simulations, another step is needed:
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the reconstructed network has to be converted to a mathematical rep-
resentation. In this stage, the stoichiometric matrix is defined (Definition

1.1).

Definition 1.1 (Stoichiometric matrix S). The stoichiometric matrix S is
a matrix of size m x n containing the stoichiometric coefficients for the reac-
tions that constitute a metabolic network. Rows i € {1,...,m} correspond to
metabolites, and columns j € {1,...,n} to reactions. Each entry S; j is the
stoichiometric coefficient of the metabolite i participating in reaction j. The
substrates in a reaction are defined to have a negative coefficient, whereas the
products have a positive value. A stoichiometric coefficient of zero is used for
every metabolite that does not participate in a particular reaction.

Thus, the stoichiometric matrix represents the topology of the recon-
structed network with the stoichiometry of the biochemical reactions
involved. S is a sparse matrix because most biochemical reactions in-
volve only a few different metabolites (Orth et al., 2010). Usually, the

number of reactions is greater than the number of metabolites (n > m)
5

To complete the mathematical representation of the metabolic system,
some parameters must be defined that will serve to delimit actual func-
tional states of the system. This includes reaction directionality, en-
zymatic capacity, environmental conditions, and/or physiological in-
formation (if available), among others. These system parameters are
related to the constraints used for flux analysis, and they will be dis-

cussed in more detail in the next section.

The fourth stage of the reconstruction process consists of network eval-
uation and debugging. The metabolic model created at the previous
stage is tested for its ability to reproduce known cellular functionali-
ties, such as biomass precursors syntheses, among other things. This

evaluation may reveal missing, incomplete or incorrect metabolic func-

*Which causes the system of equations that appears when a steady-state mass bal-
ance is applied to be under-determined.
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tions in the reconstruction, which are corrected by iterating stages 2 and
3. Thus, the reconstruction process is an iterative procedure.

The reconstruction can be considered complete, when it has been val-
idated and verified, no severe errors remain, and it has revealed to be
sufficient for the simulation purpose for which it was generated (Thiele
and Palsson| 2010). Nevertheless, even when a functional reconstruc-
tion has been achieved, it is important to regularly revise and update it,
including last discoveries and completing (or even adapting) the previ-
ous reconstruction for new research challenges.

Constraint-based flux analysis of metabolic networks

Following the procedure described in the previous section, a metabolic
network is reconstructed and converted into a metabolic model. This
model will describe all the biochemical reactions (metabolites partic-
ipating, stoichiometry, enzymes involved and genes related to those
enzymes) for which there is proof and/or evidence of presence in the
target metabolic system. At this point, the model is prepared to be used
for flux analysis.

The unknown variable object of this analysis is the flux distribution
through the metabolic network, which will give insight into the meta-
bolic states of the cell. The first step to relate topology and stoichiome-
try of the network with fluxes is to consider the following mass balance:

dX;

W:Si,jwj, vie{l,...,m},Vje{l,...,n} (1.1)
Where X; represents concentration of metabolites (i € {1,...,m}), S; ;
is the stoichiometric matrix (Definition , and v; are the fluxes of all
reactions in the network (5 € {1,...,n}).

The matrix balance presented in Equation states that the concen-
tration change of each metabolite i over time is equal to the difference
between the rates at which the metabolite is produced and consumed
in the various reactions in which it participates.
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As explained before, the variable aimed is the flux distribution (which
is the flux values for all the reactions) represented by the vector v;. But
genome-scale information about metabolite concentrations is not usu-
ally available, therefore some assumption is needed in order to reduce
the degrees of freedom of this set of equations. This assumption is that
of steady state of the internal metabolites:

dX;
dt

= Si,j "V = 0 (12)

Consequently, there is no accumulation or depletion of intracellular
metabolites, their concentrations are not allowed to change over time,
they are therefore balanced. On the contrary, extracellular metabolites
are not balanced (they are outside the system boundaries) and these
will be the uptake of substrates and formation of products.

Steady state assumption is widely accepted in systems biology as it can
be justified by the fact that metabolic transients are faster than both cel-
lular growth rates and the dynamic changes in the organism's environ-
ment. Metabolism typically has transients that are shorter than a few
minutes and thus metabolic fluxes are in a quasi-steady state relative
to growth and typical process transients (Varma and Palsson, 1994a).
Additionally, this assumption allows researchers to avoid the need of
detailed dynamic descriptions of metabolism that account for kinetics
and regulation of individual enzymes, which has been proven difficult
to obtain.

Equation describes a static problem simpler than the previous dy-
namic problem (Equation (1.1)), but it is still under-determined (as num-
ber of reactions is greater than number of metabolites), therefore more
assumptions need to be made. It is at this point when constraints ap-
pear. Biological systems are subject to different types of constraints
that limit their cellular functions (Price et all) 2004) and to which all
viable phenotypes must comply: physico-chemical constraints, spatial
constraints, condition-dependent environmental constraints and reg-
ulatory constraints. Thus, identifying those constraints and properly
adding them as mathematical restraints to the metabolic model, will
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restrict the set of feasible solutions to biologically allowable metabolic
states.

Mass balance itself is a fundamental physico-chemical constraint. Other
important constraints of this type are thermodynamic principles that
will define reaction directionality and reversibility. Another type of
constraints that play an important role in metabolic modelling are those
related to environmental conditions, since they will describe the avail-
ability of resources (e.g. carbon, inorganic nutrients and salts, reduc-
ing molecules, efc.). Also maximum enzyme/transporter capacity can
be considered, when known, to limit corresponding rates, as well as
other physiological information such as experimental measurements of
species concentrations or fluxes. The more accurate the definition of
constraints is, the better the resultant feasible solutions will represent
actual metabolic phenotypes (Raman and Chandra) 2009).

When converting constraints into their mathematical description, gen-
erally two groups of restrictions are found: balances and bounds (Price
et al., 2004). The conservation of mass is an example of a balance re-
straint. As it is the case of Equation (1.2), balances result in equality
constraints. Sometimes physiological information is available in the
form of ratios between fluxes, which would also derive in mathemat-
ical balances. Directionality and reversibility of reactions can be ex-
pressed in terms of bounds: allowable flux values will belong to inter-
val (—o0, +00) for reversible reactions and [0, +c0) in the case of irre-
versible. Constraints related to enzyme capacity or nutrient availability
usually lead to bound constraints too, as well as other kinds of physio-
logical evidences such as experimentally measured fluxes.

After adding mathematical constraints to the model, non-feasible phe-
notypes are excluded from the set of allowable solutions. Some con-
straints are “hard” constraints that every phenotype must obey (mass
balance, reaction reversibility, enzyme capacity), others are condition-
dependent constraints that regulate the system's response to particu-
lar scenarios. However, even in the cases in which different, highly-
informative constraints can be defined (which is the ideal situation,
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but isn't always possible, depending on the availability of information
about the target metabolic system), genome-scale networks typically
include large number of reactions (from hundreds to more than one
thousand (Erdrich et al., [2015)) and the resulting system of equations
will be still grossly under-determined.

Thus, with the addition of constraints it can be analysed what the me-
tabolic network cannot do, although exact flux distributions cannot be
determined. From this point on, two main trends have arisen in the
field. Some researches have focused on studying the properties of the
constraint-defined solution spaces: topology, convex basis, extreme be-
haviours, or dependencies among fluxes (Papin et al., 2004; Braunstein
et al., 2008; Llaneras and Pic6, 2010), appear among the most popu-
lar techniques within this approach. On the other hand, in some other
cases the interest has been put in finding concrete flux distributions to
gain insights into particular behaviours and phenotypes. In such cases,
optimisation is used to select particular solutions within the feasible
space. In this thesis the emphasis will be put in this latter approach.

Optimisation has been at the heart of metabolism simulation as a way
to bypass the mathematical hurdle of solving under-determined sys-
tems of equations that are found in constraint-based genome-scale mod-
els (Stephanopoulos, (1999; Orth et al., 2010). This approach assumes the
hypothesis that organisms' evolution under selective pressure tends to-
wards optimality with respect to a metabolic function (Edwards et al.,
2002a; Raman and Chandral, [2009; Schuetz et al.| 2012 (Garcia Martin
et al.,|2015). In order to obtain significant simulation results, it is fun-
damental that the objective function mathematically imposed by the
researcher is consistent with the evolutionary objective imposed by the
environment. Objective functions must, thus, be consistent with known

cellular demands and make sense in the light of evolution.

At this point, it is important to stress that optimisation is applied in
constraint-based metabolic modelling as an instrument to cope with
the high number of degrees of freedom, that cannot be reduced only by

imposing constraints. However, it does not mean that “more optimal”
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simulation solutions are “better” approximations to actual metabolic
phenotypes. The great challenge of this discipline is therefore to define
meaningful sets of constraints and objective functions to ensure the per-
tinency of the obtained solutions. In fact, various studies point to the
fact that often actual metabolic systems operate close to optimal meta-
bolic performance, but in a quasi-optimal fashion (Ibarra et al., 2002;
Fischer and Sauer, 2005} |Schuetz et al.| 2007, 2012) due to trade-offs
among competing objectives, incomplete adaptive evolution under the
conditions examined, or observance of other important factors (further
objectives) like adaptation to diverse environments.

Together with constraint identification and description, selection of an
appropriate objective function (or functions) is a central issue to these
modelling techniques. The most commonly used objective function
for metabolic simulations is maximisation of biomass yield or growth
rate (Feist and Palsson, 2010). Importantly, “biomass formation” or
“growth” is not inherently described at a metabolic reconstruction, it
is not encoded at the genome in terms of enzymatic functions. Thus,
explicit description of what is understood by growth is needed before
facing simulations. This is usually a linear function that specifies stoi-
chiometric proportions of biomass components, such as lipids, proteins
and nucleic acids (or their precursors), as well as accounts for biosyn-
thetic and maintenance costs. However, biomass composition is not
an unvariable trait of living organisms; like all phenotypic features, it
results from both genetic and environmental factors. So, mechanisms
must be applied to account for such adaptability. In the case of linear
contexts, different biomass equations can be defined for different con-
ditions (Montagud et al., 2010).

Apart from biomass formation, other objective functions have been ex-
plored (Schuetz et al., 2007) and some of them have proven to be suit-
able for different analysis and design purposes. Some examples are
maximisation of production of ATP (metabolic energy currency used
by biological systems), minimisation of overall intracellular flux, max-

imisation of by-products of interest, or maximisation of metabolic en-
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ergy efficiency. Often different objectives are of interest for different
purposes and/or under different simulation conditions.

Another important issue associated to the application of optimisation
to find individual flux distributions concerns the uniqueness of the op-
timal solution. In large metabolic networks (especially in genome-scale
reconstructions), due to the existence of redundant pathways, it is fre-
quent to find alternate optima that are alternative flux distributions
with the same optimal value of the objective function (Mahadevan and
Schilling), [2003). This fact must be considered when analysing particu-
lar solutions since different pathway distributions can be an important
factor in some analyses.

Diverse optimisation techniques have been used in constraint-based
modelling. The more traditional methods used Linear Programming
(LP), but gradually other techniques were introduced to deal with new
types of optimisation problems. In the next section, a review of meth-
ods using these constraint-based optimisation-focused metabolic mod-
elling approaches is presented.

1.2.2 Simulating constraint-based metabolic models

Numerous constraint-based optimisation-driven methods have been
described throughout the last two decades for genome-scale metabo-
lic simulations (Patil et al.,|2004; |Price et al., 2004; Schellenberger et al.,
2011; Zomorrodi et al., 2012; Lewis et al., 2012; King et al., 2015).

Since the appearance of Flux Balance Analysis (FBA) (Watson, |1984), a
succession of studies and methods have been described that use diverse
optimisation techniques and constraints to analyse metabolic pheno-
types. Below, some of the most relevant examples are classified accord-
ing to their fundamentals and purposes.
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Flux Balance Analysis

Flux Balance Analysis (FBA) (for a review, see Orth et al.|(2010)) is the
main representative of a family of methods developed to analyse par-
ticular optimal flux distributions that arise after reduction of the math-
ematical solution space to a set of biologically meaningful flux vectors.

FBA has been satisfactorily applied to predict growth rates and path-
way usage of both natural and genetically modified strains of different
organisms of interest, as well as to assess the effect of different growth
conditions and media compositions (see Famili et al. (2003); Teusink
et al.[(2009); Lewis et al. (2010); Caspeta et al. (2012) for examples).

According to this method, after imposing steady-state mass balance,
and the addition of boundary constraints (derived from reaction direc-
tionality, enzyme/transport capacity and specific physiological knowl-
edge), an optimisation problem is solved, using linear programming,
to maximise/minimise an objective function which can be any linear

combination of fluxes:

mlz)ixZ (v)=cl v (1.3)
subject to:
Sv=0 (1.4)
Vjrev € (—00,+00)  je{l,...,n} (1.5)
Vjirr € [0, 400) jed{l,....,n} (1.6)
ly; S vj <y, jed{l,...,n} 1.7)

where c is a vector of weights indicating how much each reaction con-
tributes to the objective function.

The solution obtained from FBA is a vector of fluxes leading to an opti-
mal value of the objective function (e.g. biomass yield), including indi-
vidual flux values for each reaction, which is defined as one particular
optimal reaction network state. However, as explained before, this vec-
tor should be considered as one “potential” pathway distribution since,
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usually, different flux vectors can lead to the same optimal prediction
(alternate optima).

Thus, the necessity of going in depth in the study of flux variations and
their interdependencies rises. The following group of methods include
techniques used to analyse how particular fluxes can vary within the
network, and its derived effects on the objective function value, as well
as, on neighbouring reactions.

Flux variability and flux dependencies

Genome-scale metabolic networks often display metabolic redundan-
cies that confer them robustness to genetic and environmental varia-
tions. Investigation of how flux perturbations influence optimal ob-
jective performance can shed light on the system's plasticity, as well
as serve as framework for testing bioengineering approaches based on

nutrient modification or gene regulation.

One of the main issues associated to metabolic redundancies and path-
way distributions in large-scale metabolic networks, the existence of
alternate optima, has already been underlined. Flux Variability Analy-
sis (FVA) (Mahadevan and Schilling, 2003) uses an LP-based strategy to
calculate the full range of numerical values for each flux in the network
leading to same optimal value of a particular objective function.

On the other hand, robustness and sensitivity studies have been per-
formed using FBA to characterise how changes in particular fluxes (nu-
trient intakes or competing reactions, for example) may affect the opti-
mal performance of the metabolic system. These effects can be analysed
by changing one flux at a time, or by constructing the Phenotypic Phase
Planes (PhPP) that emerge from simultaneous range-wide variation of
two fluxes (Varma et al) [1993; [Edwards et al., 2002b). Other parame-
ters, such as biomass stoichiometric composition, can have an impact
on flux distribution, and they can also be analysed by using FBA-based
approaches (see Schwender and Hay|(2012) for an example).
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Finally, Flux Coupling Analysis (FCA) (Burgard et al. 2004) permits
analysing the relationship between fluxes at genome-scale metabolic
networks. It allows to identify and classify, qualitatively and quanti-
tatively, dependencies between pairs of fluxes, as well as, to examine
further consequences of those dependencies (identification of sets of
reactions severely affected by changed intake rates or gene deletions
due to flux couplings).

Mutant phenotype evaluation and strain design

As introduced in Section the final objective of systems biology is
not only to understand how natural systems work, but also to be able
to rationally modify them and design new devices and systems with
predetermined characteristics. In this context, metabolic modelling has
been applied to test and suggest engineering strategies for bioengineer-
ing design.

Genes can be deleted from (knocked out) or inserted into (knocked in)
the genetic code of a living organism to eliminate or incorporate bi-
ological functionalities. Using such genetic manipulations new cells
can be created with new capacities, as it is the case of cell factories
(i.e. bio-based systems for producing chemical commodities), or exist-
ing systems can be readjusted to become such a cell factory. If rational
design is intended, side effects of modifications have to be previously
assessed. Genome-scale metabolic simulations are a valuable tool for
this purpose, since system-level metabolic interactions are considered.

FBA has been used to test the effect of genetic variations, yet special
considerations must be taken. Although the assumption of optimal-
ity for a wild-type (i.e. “natural”, unmodified version) organism is
justifiable, the same argument may not be valid for genetically engi-
neered systems that were not exposed to long-term evolutionary pres-
sure. Specific methods for such cases are available and their main rep-
resentatives are Minimisation Of Metabolic Adjustment (MOMA) (Segre
et al., 2002) and Regulatory On/Off Minimisation (ROOM) (Shlomi et al.,
2005). MOMA employs Quadratic Programming (QP) to identify a
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point in flux space, which is closest to the wild-type point, compati-
ble with the constraints imposed by the new condition. ROOM utilises
Mixed-Integer Linear Programming (MILP) to find a flux distribution
that minimises the total number of significant flux changes with respect
to the wild-type flux distribution.

Nevertheless, methods like MOMA or ROOM can be applied to test the
effect of genetic engineering strategies, but not to devise those strate-
gies. Specific tools for strain design have been conceived that actively
search for strain engineering modifications leading to targeted overpro-
ductions. One of the earliest efforts was the OptKnock (Burgard et al.,
2003), a procedure based on bi-level optimisation that suggests gene
knockouts maximising overproduction of a target chemical and growth
by coupling biomass formation with chemical production. Later, Op-
tReg (Pharkya and Maranas, [2006) extended OptKnock to consider not
only knockouts but also finer activation and inhibition of various reac-
tions in the network. In addition, OptStrain (Pharkya et al., 2004) al-
lows for knock-ins of non-native functionalities (retrieved from a com-
prehensive universal database of biochemical reactions) to enable pro-
duction of desired biochemicals. Another tool, OptGene (Patil et al.,
2005) makes use of evolutionary programming procedures for the same
purpose as OptKnock, but with two distinctive features: evolutionary
search speeds up the process (especially when applied to large-scale
networks), and it allows definition of non-linear constraints and objec-
tives. Similarly, Genetic Design through Local Search (GDLS) (Lun et al.,
2009) also reduces computational time required to predict multiple si-
multaneous gene deletions by employing an approach based on local
search. Finally, OptForce (Ranganathan et al., 2010), thoroughly predicts
minimal sets of fluxes that must actively be forced through genetic ma-
nipulations to guarantee a pre-specified overproduction level of a de-
sired biochemical.
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Application of additional constraints

The constrains imposed in FBA to form the flux solution space are
steady-state mass balance (Equation (1.4)), reaction directionality (Equa-
tions and (1.6)), and flux bounds stated by enzyme/transporter
capacity limits or physiological measurements (Equation (1.7)). Frame-
works for imposing other kinds of constraints have been developed.

Energy Balance Analysis (EBA) (Beard et al., 2002) explicitly considers
energy balance and thermodynamics of the network reactions to en-
sure that the predicted flux vector is thermodynamically feasible. As a
consequence of the imposition of energy balance constraints biological
loops are forced to have no flux.

Dynamic FBA (DFBA) (Varma and Palsson, 1994b; Mahadevan et al.,
2002) include additional constraints to account for slow changes in the
growth environment. DFBA also allows the incorporation of kinetic
expression when the kinetics are well characterised.

Parsimonious enzyme usage FBA (pFBA) (Lewis et al., 2010) employs
FBA to optimise the growth rate, followed by minimising the net me-
tabolic flux through all gene-associated reactions in the network. The
underlying assumption is that, under growth pressure, there is a selec-
tion for strains that can process the growth substrate the most rapidly

and efficiently while using the minimum amount of enzyme.

Various methods have approached the question of integrating regu-
latory constraints into stoichiometric metabolic simulations. First of
those methods was Regulatory FBA (rFBA) (Covert et al., 2001), that
uses Boolean rules (and few dynamic parameters about protein syn-
thesis and degradation) to generate consecutive, time-step separated,
optimisation problems in which transcriptional regulation is applied
as on/off rules. A variant of the former, Steady-state Regulatory FBA
(stFBA) (Shlomi et al., 2007) combines Boolean variables for regula-
tion (r € {0,1}) with real variables for fluxes (v € R) to solve a MILP
problem, and employs FVA to explore alternative solutions. Integrated
FBA (iFBA) (Covert et al., 2008) goes one step further and incorpo-
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rates an ODE model of cell signalling, while Integrated Dynamic FBA
(idFBA) (Lee et al., 2008) also differentiates between “fast” reactions
under quasi-steady-state conditions and time-delayed “slow” reactions
in a similar way to DFBA.

Integration of omics datasets

The methods listed in the previous section that try to account for reg-
ulation effects present two main drawbacks (Lewis et al., 2012): first,
they assume binary responses for all transcription-regulatory interac-
tions, when real biological systems exhibit a range of behaviours, from
binary to continuous; second, few organisms have been studied enough
to provide adequate regulatory information to describe the required
Boolean rules. As a consequence, other methods have explored dif-
ferent approaches based on omics data integration to try to elucidate
and/or encompass regulation effects over the metabolic network, ei-
ther explicitly or implicitly.

One of the first attempts to integrate transcriptomic data into the me-
tabolic network topology was made by Patil and Nielsen! (2005). They
developed an algorithm based on hypothesis-driven data analysis to re-
veal patterns in the metabolic network that follow a common transcrip-
tional response. This algorithm enables identification of so-called Re-
porter Metabolites (metabolites around which the most significant tran-
scriptional changes occur), and a set of connected genes with signifi-
cant and coordinated response to genetic or environmental perturba-
tions. In a later development (Oliveira et al., 2008), the authors extend
the method for its use with other kinds of bio-molecular networks, to
identify further key biological features (Reporter Features).

Later, new algorithms appeared that tried to take advantage of tran-
scriptomic data, as well as other kinds of omics information, to inves-
tigate pathway activation and consequently constrain metabolic net-
works. Some of those methods use expression data to create context-
specific models, thus applying regulation by means of stoichiometric
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constraints. GIMME (Gene Inactivity Moderated by Metabolism and Ex-
pression) (Becker and Palsson, 2008) (with its later evolution Gene Inac-
tivation Moderated by Metabolism, Metabolomics and Expression (GIM3E)
(Schmidt et al., 2013)) and the Integrative Metabolic Analysis Tool (iMAT)
(Zur et al., 2010) that implements a method previously proposed by
Shlomi et al.|(2008), use different strategies to classify reactions accord-
ing to their expression levels and build context-specific models that re-
spectively maximise and minimise the usage of highly and lowly ex-
pressed reactions. The Model-Building Algorithm (MBA) (Jerby et al.,
2010) exploits literature-based knowledge, transcriptomic, proteomic,
metabolomic and phenotypic data as evidence to include relevant me-
tabolic functions at the context-specific network, while Metabolic Context-
specificity Assessed by Deterministic Reaction Evaluation (nCADRE) (Wang
et al.,[2012) uses a similar approach but adding connectivity-based evi-
dences derived from network topology analyses.

Other methods simultaneously extract information from measurements
across multiple conditions looking for a suitable set of flux distributions
across all conditions that best match the reported expression levels.
Both, Metabolic Adjustment by Differential Expression (MADE) (Jensen
and Papin| 2011) and Transcriptionally controlled FBA (tFBA) (Van Berlo
et al., 2011) use the same principles, albeit with a different formula-
tion, to decide about expression patterns by comparing measurements
across multiple conditions, that are then considered simultaneously to
obtain the final flux distribution.

There exist also algorithms in which the expression information is not
used to alter the network topology (or usage), but the bounds stated
for the corresponding reactions. The method called E-Flux (because
it combines flux and expression), directly maps normalised gene ex-
pression levels into flux bound constraints. In the first implementa-
tion of this method (Colijn et al.,2009), normalisation of the expression
level is based on expression differences across all genes; in a later study
(Brandes et al., 2012), expression level of the same gene across multiple
experiments is considered instead. In the same line, Probabilistic Reg-
ulation Of Metabolism (PROM) (Chandrasekaran and Price| 2010) goes
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one step further: given abundant gene expression data measured under
multiple conditions, generates a probabilistic model for the gene regu-
latory network, which is integrated with a constraint-based metabolic
model by setting the flux bounds proportional to the associated proba-
bilities calculated. This method provides a way to construct integrated
genome-scale regulatory-metabolic networks, nevertheless it requires
large amount of experimental data that are not always accessible for

every organism.

Consideration of resource limitations

A new trend in metabolic network reconstruction and analysis is mov-
ing towards considering not only metabolic function, but also the ma-
chinery and resources needed to perform those functions. Resource Bal-
ance Analysis (RBA) (Goelzer et al 2011), one of the firsts approaches
in this direction, introduces three additional design constraints (meta-
bolic capability constraint, translation capability constraint and density
constraint) that account for structural and resource limitations that are
found in real cells. The arising problem is equivalent to an LP opti-
misation problem, and its solution describes more accurately how the
available resources in the medium are distributed among the various
cellular subsystems.

More recently, a method has been formulated, Constrained Allocation
Flux Balance Analysis (CAFBA) (Mori et al.,[2016)), in which a single ad-
ditional global constraint on fluxes is added that encodes for the trade-
off in the allocation of cellular resources across ribosomal, transport
and biosynthetic proteins, conducing to simulation results that account
for the biosynthetic costs associated to growth.

However, the most significant step towards consideration of the over-
all metabolic costs associated to cellular operation was taken by |Ler-
man et al.|(2012). In this work, the authors present an integrated model
of metabolism and macromolecular expression, ME-model, that explic-
itly accounts for the genotype-phenotype relationship with biochemi-
cal representations of transcriptional and translational processes. This



35

new generation of metabolic models will establish a new paradigm in
the system-level modelling of cells in the next years, but nevertheless
deep knowledge is needed to reconstruct such a complete model and,
by now, they are restricted to a few, well-studied model organisms.

1.2.3 Software tools for constraint-based metabolic
modelling

There are many open-source software tools available for constraint-
based metabolic modelling. Some of them perform only a few func-
tions, but some include a wide range of operations related to recon-
struction and analysis of metabolic networks. Some of the most com-
monly used are listed below.

The Constraint-Based Reconstruction and Analysis Toolbox (COBRA Tool-
box) (Becker et al., 2007} Schellenberger et al., 2011) is a software pack-
age running in the MATLAB® environment that collects numerous tools
for simulation and analysis of metabolic phenotypes using genome-
scale models. A following development specifically developed for Py-
thon, COBRApy (Ebrahim et al.,2013), defines an object-oriented frame-
work that facilitates the representation of the complex biological pro-
cesses of metabolism and gene expression and includes parallel pro-
cessing support for computationally intensive processes.

The BioMet ToolBox (Cvijovic et al., 2010; Garcia-Albornoz et al., 2014) is
a web-based resource that offers a simple graphical user interface and
includes two sets of tools for exploiting the capabilities of genome-scale
metabolic networks: algorithms for metabolic model analysis and sim-
ulation, and algorithms for omics analysis. Some of the tools integrated
in the BioMet ToolBox are also available in a downloadable version.

OptFlux (Rocha et al. 2010) is an application, available for multiple
platforms, that includes a number of tools to support metabolic com-
putations. Algorithms are included to handle metabolic models in dif-
ferent formats, visualise metabolic networks, perform flux analysis and

simulations, and work on strain design.
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Pathway Tools (Karp et al) 2002, [2016) is a software system that sup-
ports several use cases in bioinformatics and systems biology. One of
its components, MetaFlux, allows development of metabolic flux mod-
els, FBA-based simulations (including selected and exploratory knock-

outs), and visualisation of the results in flux maps.

In the present work, PyNetMet (Gamermann et al., 2014b) has been used
for manipulation and simulation of genome-scale metabolic networks
of cyanobacteria. It is a Python library of tools, designed in an object-
oriented fashion, to efficiently manage metabolic networks and mod-
els, and perform FBA-based metabolic simulations. It was developed
in our research group, and the last version can be downloaded from

github.com/CyanoFactory/CyanoFactoryKB.
PyNetMet describes four classes:

* Enzyme objects represent biochemical reactions. Methods and at-

tributes described for this class allow verification and manage-
ment of properties like stoichiometry, reversibility, substrates and
products, efc..

* Network class defines a graph (as a set of nodes and edges) and

provides classic graph theory methods for its analysis.

* Metabolism objects are composed of enzyme objects, and represent
full metabolic networks. Methods and attributes of this class per-
mit explore and modify all features associated to the metabolic
model (stoichiometry, topology, connectivity, constraints, objec-
tive function, etc..).

* FBA class uses a metabolism object as input, and offers tools for
flux simulation and analysis. Several FBA-based methods are de-
fined that allow analysis of fluxes, reaction essentiality screening,

and robustness and sensitivity analyses among others.

Classes metabolism and FBA have been extensively used in this work to
manage metabolic models and perform FBA-based metabolic simula-

tions.
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1.3 Metabolic modelling of cyanobacteria

Cyanobacteria are photoautotrophic® prokaryotes able to perform oxy-
genic photosynthesis. These photosynthetic bacteria become of great
importance within the field of scientific research for many aspects. They
are thought to be the evolutionary ancestors of chloroplasts under the
endosymbiont hypothesis (Douglas| 1998; Raven and Allen, 2003) and
they are believed to be the organisms that changed the ancient anoxy-
genic environment to oxygenic by photosynthesis (Schopf, 2000). In ad-
dition, these organisms present a wide ecological distribution and they
can be found in a large variety of habitats (oceans, lakes, soils, and even
extreme environments) (Herrero and Flores, 2008). Since last century,
cyanobacteria have been considered model organisms for the study and
the characterisation of a multitude of biological processes, like pho-
tosynthesis and its genetic control, atmospheric nitrogen fixation, ni-
trogen, carbon and hydrogen metabolism, or tolerance to environmen-
tal stress (salinity, hight light, nutrient scarcity, etc.) (Koksharova and
Wolk, 2002).

More recently, thanks to the development and affordability of genetic
tools and molecular techniques applied to these organisms (Koksharova
and Wolk) 2002; Hess| [2011), it has been revealed the great biotechno-
logical potential of cyanobacteria for many applications (Abed et al.,
2009; Ducat et al., 2011} |Lau et al., [2015), such as production of biofu-
els (Angermayr et al., 2009; Dismukes et al., 2008; Parmar et al., 2011}
Rodionova et al., 2016), including hydrogen (Tamagnini et al., 2007} Ti-
wari and Pandey, 2012; Montagud et al., 2015), secondary metabolites
of industrial and pharmaceutical interest (Rastogi and Sinha,|[2009), and
some other products like pigments (Eriksen, 2008) or biopolymers (Li
et al., 2001) for example. Moreover, the fact that they are autotrophic
organisms with low nutrient requirements, make them even more at-

6Photoau’co’crophic organisms, or photoautotrophs, are organisms that carry out
photon capture to acquire energy from light. Generally, these organisms are also car-
bon fixators: they can use atmospheric carbon to generate molecules used in their me-
tabolism.
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tractive as production platforms (Pinto et al,, 2015), since they are able
to survive and produce using sun energy, atmospheric carbon and a
few inorganic nutrients. This way, cyanobacteria have been placed in
the spotlight as basis organisms for the development of cell factories
for industrial bioprocesses.

To date, more than 120 complete genomes of cyanobacteria have been
sequenced (numbers retrieved from NCBI Genome database (NCBI Re-
source Coordinators, 2016), excluding ‘contig” and ‘scaffold” levels, on
Sept. 29", 2017) thus enabling the creation of genome-scale reconstruc-
tions that may be used to provide insight into intracellular mechanisms
and guide the optimisation of producing strains. However, nowadays
manually curated genome-scale models have been developed only for
a few species (Baroukh et al., 2015).

Among the species for which genome-scale models have been recon-
structed, Synechocystis sp. PCC 6803 and Synechococcus elongatus PCC
7942 will be the focus of this dissertation. Table[1.1]shows the metabo-
lic reconstructions of these two model cyanobacteria reported to date.
Differences in the number of genes considered, as well as the resultant
number of reactions and metabolites, are shown. The models listed are
classified as:

Central Carbon metabolic models which include reactions from

the core carbon metabolism (i.e. glycolisis, citric acid cycle and

pentose phosphate pathway), some lumped reactions describing
photosynthesis and oxidative phosphorylation and, in some cases,
an additional set of reactions producing amino acids; or

Genome-Scale metabolic models in which all reactions annotated
in the genome are considered following the reconstruction pro-
cess described in Section An equation describing biomass
assembly from main building blocks (such as amino acids, nu-

cleotides, lipids or carbohydrates) present in cell metabolism must
be included.

Additional main differences between the reconstructed networks lie in
the degree of detail in the representation of photosynthesis, the defi-
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nition of subcellular compartments and the degree of detail in path-
ways of the peripheral metabolism (synthesis of lipids, complex carbo-
hydrates, secondary metabolites, efc.).

Synechocystis sp. PCC 6803

Synechocystis sp. PCC 6803 is a unicellular fresh water cyanobacteria,
whose complete genome was sequenced, annotated and published in
1996 by Kazusa's laboratory (Kaneko et al.,|1995,(1996, 2003). It is one of
the best studied cyanobacterial strains, with a large amount of physio-
logical and molecular data available, and it is naturally transformable’
(Pinto et al.,2012). All of that has contributed to its wide use as a model
organism, and has motivated the development of a number of molec-
ular tools for its genetic manipulation (Angermayr et al., |2009; Hess,
2011).

Another important feature that makes it even more attractive for re-
search and biotechnological applications is its adaptability. This cyano-
bacterium can grow and survive under three different trophic condi-
tions as marked by the utilised energy and carbon sources (Herrero
and Flores| [2008), namely (i) photoautotrophy, where energy comes from
light and carbon from COy; (ii) heterotrophy, where both energy and car-
bon source is a saccharide, for instance glucose; and (iii) mixotrophy, a
combination of the former two, where light is present as well as a com-
bination of two carbon sources: glucose and COx.

Synechococcus elongatus PCC 7942

Synechococcus elongatus PCC 7942 is considered a model organism since
the early 70s, when successful transformations of exogenous DNA were
performed for the first time in a cyanobacterium (Shestakov and Khyen,
1970). Its genome was sequenced, annotated and published in 1980
(van den Hondel et al.,[1980;|Van der Plas et al.,|1992;|Chen et al., 2008).

’It has the natural ability to take up and incorporate exogenous genetic material.



Table 1.1: Review of metabolic network reconstructions of the model cyanobacteria
Synechocystis sp. PCC 6803 and Synechococcus elongatus PCC 7942.

References Type Genes Reacs. Metabs.? Comps.

Synechocystis sp. PCC 6803

Yang et al. (2002) CC NA 20 15 1
Shastri and Morgan| (2005) CC NA 70 50 1
Hong and Lee|(2007) CcC 78 56 63 2
Kun et al.| (2008) GS 383 916 879 1
Navarro et al.| (2009) CcC NA 90 56 1
Ful (2009) CcP 633 831 704 1
Montagud et al. (2010) GS 669 882 790 2
Knoop et al. (2010) GS 337 380 291 1
Montagud et al. (2011) GS 811 976 922 2
Yoshikawa et al.|(2011) GS 393 493 465 2
Nogales et al.[(2012) GS 678 863 795 3
Saha et al.| (2012) GS 731 1156 996 4
Knoop et al. (2013) GS 677¢ 759 601 4
Erdrich et al.| (2014) GS - 600 571 1
Maarleveld et al.| (2014) GS 686 904 816 3
Knoop and Steuer|(2015)  GS 706 780 601 4
He et al.[(2015) GS 678 865 795 3
Mohammadi et al.| (2016) GS 692 768 557 4
This thesis GS 842 1059 920 2
Synechococcus elongatus PCC 7942

Triana et al. (2014) GS 715 851 838 2
Broddrick et al.| (2016)) GS 785 850 768 4

Reacs. = reactions; Metabs. = metabolites; Comps. = compartments

* Non-unique metabolites, species may repeat in different compartments.

® This reconstruction includes a genome-wide list of reactions but it lacks a proper
genome-scale biomass equation. It uses biomass equation formulation from the central
carbon model of [Shastri and Morgan| (2005), which leads to short-cuts in flux distribu-
tions when optimised.

¢ Authors distinguish between a core network and an augmented network including all
remaining annotated enzymes with putative metabolic function. Numbers shown here
are for the core network. The extended network accounts for 1035 genes.
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In particular, it has been used as a paradigm for the study of circadian
rhythms in prokaryotes.

Synechococcus elongatus PCC 7942 has a rod-shaped appearance, has the
ability to survive in freshwater environments with low nutrients, and
is considered an obligate autotroph (Rippka et al., 1979) (i.e. it has to
use CO; as carbon source and light as energy source). These low nu-
tritional requirements make it also a very interesting host organism for
the development of biotechnological processes.






Fundamentals on
multi-objective optimisation
procedures

2.1 Chapter abstract

In this chapter the fundamentals about multi-objective optimisation
and multi-objective optimisation procedures needed in this work to un-
derstand their application to metabolic simulation are presented.

At the beginning of this chapter some important definitions and ter-
minology are introduced. Equation (2.1) presents the general form of
a multi-objective optimisation problem. This problem can be solved
applying a Generate-First Choose-Later (GFCL) approach, which has
the advantage of providing the researcher with more information con-
tained in the Pareto set, although it requires greater understanding of
the problem at hand, and often more time.

A complete optimisation procedure based on the GFCL approach in-
volves three stages. In the first stage, the multi-objective problem (MOP)
definition, the scope of the problem, as well as the constraints and
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objectives involved, are analysed, to finally state proper MOP(s) that
should lead to sets of solutions pertinent for the situation at hand. In
order to generate the Pareto optimal solutions, a multi-objective opti-
misation process is then launched, that must be conducted by a proper
algorithm ensuring the quality of the obtained set of solutions, as well
as, the manageability of the problem. Finally, the set of solutions ob-
tained have to be analysed by an expert (the decision-maker) that will
choose the more preferable according to his/her criteria. At each of
these three stages knowledge is gained about the problem at hand that
can be used to improve any of the steps thus enhancing the quality of
the final solution(s).

In this work, this approach has been employed for the simulation of
metabolic system. At Chapter 5| details about the application of the
three steps to the constraint-based metabolic modelling framework are
provided. Through this process two pre-existing tools are exploited:
sp-MODE algorithm and LD-ToolBox. A brief explanation about these
two tools is included in the final section of the present chapter.

2.2 Background on multi-objective optimisation

A multi-objective problem (MOP) can be stated, in a general way, as

follows:
ngnZ (v) =21 (v),...,Z4(v)] (2.1)
subject to:
g(v) <0 (2.2)
h(v)=0 (2.3)
lo; <5 < Uy, jef{l,...,n} (2.4)

where v is the vector of decision variables (or decision vector) with n
components, Z (v) is the vector of objective functions (or objective vec-
tor) with ¢ > 2 components, g (v) are the inequality constraints, h (v)
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are the equality constraints, and [,; and u,; are the lower and upper

bounds, respectively, for the variable v; in the decision space.

For simplicity, minimisation of all the objective functions is assumed. If
any of the g objectives is to be maximised, the following transformation
can be applied:

max Zy, (v) = — min —Zj, (v) ke{l,2,...,q} (2.5)

If there would be no conflict between objectives, then a solution could
be found where every objective function at the objective vector attains
its optimum. However, in general, it is not possible to find a single
solution that is optimal for all objectives simultaneously, and therefore
several solutions with different trade-off levels may appear. In order
to select the “best” solutions some order relation must be defined that
allows comparison between objective vectors. To satisfy that necessity
the concepts of dominance (Definitions and and Pareto opti-
mality (Definition are introduced. In common words, an objective
vector is Pareto optimal if none of its components can be improved with-
out worsening at least one of the other components (Miettinen), 1999).

Definition 2.1 (Dominance (Miettinen, (1999)). An objective vector Z (v')
dominates another objective vector Z (v?), denoted by Z (v') = Z (v?), if
Zi (v1) < Zy (v?) forall k € {1,2...,q} and Zy, (v*) < Z (v?) for at
least one k € {1,2,...,q}.

Definition 2.2 (Strict Dominance (Miettinen, 1999)). An objective vector
Z (v') dominates another objective vector Z (v?) if Zj, (v') < Zy (v*)Vk €
{1327"'>Q}'

Definition 2.3 (Weak Dominance (Miettinen, |1999)). An objective vector
Z (v') weakly dominates another vector Z (v?) if Zy, (v') < Zp (v*)Vk €
{1,2,...,q}.

Definition 2.4 (Pareto optimality (Miettinen, (1999)). An objective vector

Z (v*) is Pareto optimal if there is no other objective vector Z (v) such that
Z (v) = Z (v*).
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Thus, Pareto optimal solutions are those for which there is no other so-
lution in the feasible space solution that dominates them. The (infinite)
set of solutions that are Pareto optimal is called the Pareto set (Defini-
tion 2.5). Each solution in the Pareto set defines an objective vector in
the Pareto front (Definition [2.6).

Definition 2.5 (Pareto set (Miettinen, 1999)). In a multi-objective problem,
the Pareto set Vp is the set including all the Pareto optimal solutions.

Definition 2.6 (Pareto front (Miettinen, |1999)). In a multi-objective pro-
blem, the Pareto front Zp is the set including the objective vectors of all the
Pareto optimal solutions in the Pareto set.

Therefore, Pareto optimal solutions are the “best” possible solutions.
However, most of the times the Pareto set is unknown, and then the
goal is to find solutions that approximate it. Figure 2.1| shows the so-
lution space of a bi-objective problem (¢ = 2) at the space of objective
vectors. The shaded area delimits the feasible space, which is the space
within solutions that satisfy the constraints fall on. The bold line rep-
resents the (infinite) a priori unknown Pareto front. The solutions rep-
resented by empty circles are dominated solutions, since other found
solutions (full circles) dominate them. The three solutions represented
by full circles are non-dominated solutions, while only the purple one
is Pareto optimal, not the other two, since other solutions (not found in
this case) dominate them. The set of non-dominated solutions (full cir-
cles) build the Pareto front approximation Z7}, and their corresponding
decision vectors build the Pareto set approximation V3.

Three more vectors appear in Figure that are interesting to char-
acterise the ranges of the Pareto front: the ideal objective vector (green
diamond), the utopian objective vector (yellow diamond) and the nadir
objective vector (red diamond). Following formal definitions are given
for those vectors:

Definition 2.7 (Ideal objective vector (Miettinen, 1999)). The ideal objec-
tive vector Z*@€ is an objective vector whose components Zi4 are obtained
by minimising each of the objective functions individually subject to the con-
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Figure 2.1: Dominance, Pareto optimality and ranges of the Pareto front.

straints, that is by solving:

HgnZk (v) Vke{l,2...,q} (2.6)
subject to:
g(v)<0 (2.7)
h(v)=0 (2.8)
lo; < vj <y, jed{l,...,n} (2.9)

Thus the ideal objective vector is a feasible solution (it satisfies the con-
straints) that is minimal for all the objectives at the same time. It is
obvious that if such a vector would exist it would be the solution of
the MOP. However, in general, this is not possible due to the com-
petition between objectives. Nevertheless, the ideal objective vector is
an important entity, since it contains all the minimal values for all the
objectives, those are the lower bounds of the (unknown) Pareto front.
Besides, even when unattainable, it must be kept in mind as a reference
point, the ideal goal (Miettinen, |1999).



48 Chapter 2. Fundamentals on MO optimisation

In practice, since the authentic Pareto front is normally unknown, it is
not possible to determine its components. Instead, a utopian objective
vector is defined as an approximation of the ideal vector. The compo-
nents of the utopian objective vector can be computed from the lower
bounds of the Pareto front approximation.

Definition 2.8 (Utopian objective vector (Miettinen, |1999)). An utopian
objective vector Z*°P' is an infeasible objective vector whose components are
formed by

gpovian — gideal ¢ YEe{1,2...,q} (2.10)

where €, > 0 is a relatively small but computationally significant scalar.

Definition 2.9 (Nadir objective vector (Miettinen, 1999)). The nadir ob-
jective vector Z"U" is the vector whose components are the upper bounds of
the Pareto front.

Again, since the Pareto front is usually not known, the components
of the nadir objective vector are usually approximated by the upper
bounds of the Pareto front approximation, and this approximation is
often taken as the true nadir objective vector.

2.3 Stages of multi-objective optimisation
procedures

There exist two main approaches to solve a multi-objective problem like
the one defined in Equation (2.1) (Mattson and Messac, [2005): the Ag-
gregate Objective Function (AOF) approach and the Generate-First Choose-
Later (GFCL) approach. In the AOF methodology, a single objective
function is built by combining the individual objectives (by means of
a weighted sum, for example), and then a mono-objective optimisa-
tion algorithm is used to optimise this single index. The disadvantage
of this methodology is that it produces a single solution, displaying
a fixed relation among the objectives, that has been actually imposed
when defining the weights. Thus, most of the information that can be
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retrieved from the Pareto front (dependence and competition between
objectives, different trade-off levels) is lost.

On the other hand, in the GFCL approach, the main goal is to gener-
ate many potentially desirable Pareto optimal solutions, and then se-
lect the most preferable solution(s) among them. Figure [2.2| shows the
whole multi-objective optimisation procedure using GFCL methodol-
ogy (Reynoso-Meza et al 2017). According to this methodology, the
first step involves the description of the variables, constraints and ob-

jectives that define the multi-objective problem (MOP). Once the pro-
blem has been carefully stated, a multi-objective optimisation process
can be performed to generate solutions that approximate the Pareto set.
In a subsequent decision-making step, the solutions are analysed by the
decision-maker, who selects the best solution(s) according to his/her
preferences and the requirements of the problem at hand.

GFCL
(Generate-First Choose-Later methodology)

MO Statement

MOP Definition
(What are we dealing with?)

Constraints
Definition

MO Algorithm

MO optimization process

(Generate First ...) Desirable

Charactenstics

Designer's Preferences

Decision Making Stage -
(... Choose Later) Analysis Visualization

Figure 2.2: Multi-objective optimisation procedure based on the GFCL methodology.
Figure 2.2 from|Reynoso-Meza et al| (2017).
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Under the GFCL approach, several solutions are obtained and closely
scrutinised through an overall process that constitutes a valuable tool
to understand the problem, study the underling relation between ob-
jectives, and analyse trade-off levels between them (Mattson and Mes-
sac, [2005). Nevertheless, it requires more time and attention from the
researcher. At following sections the three steps of a multi-objective
optimisation procedure based on the Generate-First Choose-Later ap-
proach are explained in further detail.

2.3.1 Multi-objective problem definition

The main goal of this stage is to articulate a multi-objective statement
that precisely describes the problem to address and ensures the ob-
tained solutions match the needs of the decision-maker. First, the con-
text must be considered: what are the variables under study, that is the
decision variables, and what rules connect them. For this purpose, gen-
erally, a parametric model is used that relates the variables among them
and describes the standards that govern the system (Mattson and Mes-
sac, 2005). This model will set some limitations to the values that the
variables can take, as they may influence each other, and will establish
the outputs that result when those variables take particular values.

Apart from the general framework and the variables at stake, it is es-
sential to define which is the aim of the procedure, what is pursued
with the analysis. This means answering questions such as: what are
the results supposed to be used for, what do the solutions represent,
what values must be avoided, what features are desirable at the set of
solutions. Answering these questions should pave the way to define
the objectives to optimise and describe the constraints to impose. To-
gether, the model, the objectives and the constraints strongly influence
the solutions that can be found through the process, and thus this is a
very important step to ensure the quality of the results (Mattson and
Messac, 2005).

In this thesis, multi-objective optimisation is applied to the problem
of metabolic simulation. The variables under study are the metabo-
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lic fluxes, and the model that encompasses them is the stoichiometric
model of the metabolic network. Physico-chemical, biological and en-
vironmental constraints that condition the metabolic operation of cells
have to be translated into mathematical bounds and balances. Suitable
objective functions that account for biologically meaningful objectives,
such as optimal resource utilisation, maximal growth yield or minimal
energy consumption, must be defined. As stressed in Chapter |1} an ac-
curate definition of constraints and objectives that properly capture the
conditions that shape the metabolic response of biological systems is a
fundamental requisite to obtain practical simulation results.

2.3.2 Multi-objective optimisation process

The multi-objective optimisation process seeks to approximate the col-
lection of decision variables arrays (that is the Pareto set approxima-
tion, V3) that give the best Pareto front approximation (Z%). For such
purpose, an appropriate algorithm must be used that fulfils the desir-
able characteristics required for the problem at hand. Some of those
characteristics are related with the expected quality of the Pareto front
approximation, as it is the case of:

e convergence (reaching the true, normally unknown, Pareto front),

* diversity (getting a useful spreading along the Pareto front ap-
proximation), and

e pertinency (obtaining useful solutions pertinent for the context).

While others concern how to deal with specific optimisation instances,
like

* constrained problems (affected by, many times non-linear, inequal-
ity or equality restrictions),

* large-scale problems (with several decision variables, on the order
of hundreds), or
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* multi-modal problems (where different decision vectors lead to the
same objective vector).

Convergence and diversity properties are considered a must in multi-
objective optimisation (Reynoso-Meza et al., 2014). An additional re-
quired characteristic regards to pertinency improvement, which means
getting reasonable solutions that fit the needs of the decision-maker.
It may happen that several solutions approximated are not practical,
due to a strong degradation in some objectives. This is a characteristic
to take into account, mainly when performing more than 2 objectives
simultaneous optimisation (Ishibuchi et al.,[2008).

In the case of metabolic simulation, the pertinency of the solutions
imply that they are adequate representations of real metabolic pheno-
types. They must present some properties expected from living organ-
isms, and perform as close as possible to known metabolic responses.
It has also to be taken into account that when working at genome-
scale, the number of decision variables (fluxes of the reactions in the
network) is typically around one thousand (Erdrich et al., 2015), and
thus the MOP will be a large-scale problem. This large amount of vari-
ables is in part due to metabolic redundancies that, at the same time,
cause the problem to be multi-modal (alternate optima (Mahadevan
and Schilling), 2003)). Besides, restrictions are needed to ensure the re-
alism of the solutions, which combined with the large number of vari-
ables, could affect convergence. In the present work, specific mecha-
nisms are proposed to deal with these special features of constraint-
based metabolic simulations.

Evolutionary multi-objective optimisation

There exist various classic techniques to solve multi-objective optimi-
sation problems (Marler and Arora, 2004), such as varying weighting
vectors, Normal Boundary Intersection (NBI) algorithm (Das and Den-
nis, 1998), e-constraint (Miettinen), 1999), Physical Programming (Mes-
sac and Mattson, [2002), or Normal Constraint (NC) algorithm (Messac
et al., 2003). But in recent times the use of evolutionary algorithms to
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treat multi-objective optimisation problems has become popular (Zhou
etal.,[2011). Several evolutionary and bio-inspired techniques regularly
appear in multi-objective evolutionary algorithms (MOEAs). The most
popular include Genetic Algorithms (GA) (Konak et al., 2006), Parti-
cle Swarm Optimisation (PSO) (Coello Coello, 2011), and Differential
Evolution (DE) (Mezura-Montes et al., 2008; |Das and Suganthan, 2010;
Das et al, 2016), although nature-inspired techniques like Artificial Bee
Colony (ABC), Ant Colony Optimisation (ACO) or Firefly algorithms
are becoming common (Yang, 2010).

In this work a multi-objective evolutionary algorithm (MOEA) is used.
Evolutionary algorithms are among the so-called population based algo-
rithms, because the concept of “population” is applied to the set of can-
didates solutions (individuals of the population). Algorithm [2.T|shows
the general structure of a MOEA (Reynoso-Meza et al., 2017). First of
all, an initial population of solutions is generated, normally on the basis
of some random distribution (line 1). The individuals at the population
are then evaluated for their fitness with respect to the objective func-
tions (line 2). With this information, non-dominated (Definition
solutions are selected to form the first approximation of the Pareto set
(line 3). Then the evolutionary process starts: at each generation a new
population of solutions is formed from their predecessors using evo-
lutionary operators (that depend on the particular evolutionary tech-
nique) (line 7); the new population is then evaluated for performance
(line 8); and the Pareto set approximation is updated with potential
preferable solutions coming from the latest population (line 10). The
process will stop when the selected solutions are thought to be close
enough to the unknown Pareto front.

The particular implementation applied here is an adaptation of the sp-
MODE algorithm (Reynoso-Meza et al., 2010) that incorporates specific
mechanisms to deal with the particular problem of metabolic simula-
tions. The principles and implementation of sp-MODE are presented
in Section[2.4.7]
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Input: optimisation parameters
Output: Pareto set approximation V;

1 Build initial population P|y with N, individuals;

2 Evaluate P|;

3 Build initial Pareto set approximation V3 |o;

4 Set generation counter G =0 ;

5 while convergence criteria not reached do

6 G=G+1;

7 Build population P’|¢; using P|g—1 with an evolutionary
technique or bio-inspired technique ;

8 Evaluate P'|; ;

9 Build Pareto set approximation V3 |g with V5 |a—1 U P'|c;

10 | Update population P|g with P'|¢ |J P|a-1

11 end

12 return V3 |g
Algorithm 2.1: Basic MOEA (Reynoso-Meza et al., 2017)

2.3.3 Multi-Criteria Decision-Making

Once the optimisation process is completed, a set of solutions is ob-

tained (the Pareto set approximation) that exhibit different levels of

trade-off between the multiple objectives. Although all of them are

non-dominated solutions not all of them are necessarily interesting for

the researcher (even if specific mechanism to ensure pertinency are ap-

plied during the optimisation process). It is he/she who has to judge

the obtained solutions and select among them that/those that better

fit the needs posed by the particular application. This analysis and se-

lection of the preferable solutions among the set of Pareto optimal solu-

tions is what takes place in the Multi-Criteria Decision-Making (MCDM)
stage. This process must be conducted by an expert, the decision-maker,
that has to understand the peculiarities of the problem at hand and be

able to choose the best solutions according to his/her preferences.
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In order to make a reasoned decision as much information as possible
from the set of solutions is needed. For this purpose, visualisation tools
have been proposed that help the decision-maker to understand objec-
tive trade-off (Lotov and Miettinen, 2008). These tools are even more
necessary when the dimensions of the problem increase, and they can
assist the decision-maker to appreciate how changes in one objective
affect all the other indexes and the overall performance. In Lotov and
Miettinen|(2008) the authors review several techniques that can be used
to visualise the Pareto front. In this work, Level Diagrams (Blasco et al.,
2008; Reynoso-Meza et al., 2013a) are used to visualise Pareto fronts in
four-dimensional objective spaces. The basis and utility of this tool are
presented in Section[2.4.2}

Apart from visualisation techniques, sometimes specific metrics are de-
fined to categorise the solutions obtained at the Pareto front approxi-
mation and guide the decision-making process (Bonissone et al., 2009).
In this work a metric is defined to select among the non-dominated so-
lutions those that better approach realistic metabolic phenotypes, by
prioritising those objectives related to known metabolic behaviours.

With the MCDM stage the multi-objective optimisation procedure is
completed. However, knowledge gained during this stage can be used
to improve the problem definition, and/or to aim for an optimisation
algorithm that enhances performance in some aspects. The complete
procedure is an organic process in which feedback should be taken
from each stage to the others to enrich the obtained results.

2.4 Tools for multi-objective optimisation

procedures

In this thesis the multi-objective optimisation procedure described in
the previous section has been applied to the problem of constraint-
based genome-scale metabolic simulations. Chapter [5|is devoted to
deeply discuss the technicalities of this application, addressing the con-
tribution of this work to the three stages of the MO optimisation pro-
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cedure. Much emphasis is put in this work in the multi-objective pro-
blem definition (constraints, objectives, preferable features, etc.). Next,
a MOEA is proposed to perform metabolic simulations by solving the
defined statements. For this purpose an existent MOEA is adapted,
by including some specific mechanisms that improve its suitability for
this problem. Finally, a previously developed visualisation tool and
an ad hoc metric are used to analyse the obtained solutions and choose
those that best represent the metabolic system under study. The present
section is devoted to introduce the two pre-existing tools employed:
(i) sp-MODE algorithm, for the optimisation process, and (ii) Level Dia-
grams Tool for the visualisation of multi-dimensional Pareto fronts.

2.4.1 Multi-objective Differential Evolution with Spherical
Pruning (sp-MODE) algorithm

The algorithm proposed in this work for metabolic simulations through
multi-objective optimisation is an adaptation of the sp-MODE? algo-
rithm described in Reynoso-Meza et al. (2010). sp-MODE is a MOEA
based on the Differential Evolution (DE) algorithm which uses a spher-
ical pruning (sp) mechanism to improve distribution of the solutions
along the Pareto front approximation. This algorithm has been already
used with success for controller design with several performance ob-
jectives and robustness requirements (Reynoso-Meza et al., 2013b).

Next, the main features of sp-MODIE, i.e. the evolutionary technique
and the pruning mechanism, as well as the algorithms generated for its
implementation, are explained. In Chapter 5, additional mechanisms
are presented which are included to the algorithm to adapt it to the
problem of metabolic simulation.

8Tool available at http://www.mathworks.com/matlabcentral/
fileexchange/39215


http://www.mathworks.com/matlabcentral/fileexchange/39215
http://www.mathworks.com/matlabcentral/fileexchange/39215
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Evolutionary technique

Differential Evolution (DE) (Storn and Price|,[1997;(Storn), 2008; Das et al.,
2016) was selected as evolutionary mechanism due to its simplicity and
proved efficacy in several optimisation instances. The most basic form
of DE was applied, which makes use of two operators: mutation (Equa-
tion (2.1T)) and crossover (Equation (2.12)) to generate the offspring of
a given population (Algorithm[2.2).

Mutation: For each target (parent) vector v’|, a mutant vector y'| is
generated at generation G according to Equation (2.11):

yi|G = ’UTI|G + F(’l)r2|G — ’UT3|G) (211)

where ry # ry # r3 # i are randomly selected; F'is usually known
as the scaling factor.

Crossover: For each target vector v'|¢ and its mutant vector y'|g, a
trial (child) vector z’|g = [:Bﬂg, e, ... ,x%]a] is created as fol-
lows:

, i j <
2| :{ Yile if rand(0,1) < Cr (2.12)

1 ; ,

! vile otherwise
where j € {1,...n} and Cr is named the crossover probability
rate.

Input: population P|g
Output: offspring O|¢ of the population

1 for i=1:SolutionsInParentPopulation do

Generate a Mutant Vector y' (Equation 2.11)) ;
Generate a Child Vector z' (Equation (2.12)) ;

4 end

5 Offspring Ol¢ = X ;

6 return O|g

W N

Algorithm 2.2: DE offspring generation mechanism

In basic (mono-objective) Differential Evolution the standard selection
mechanism is based on the value of the cost function: a child is selected
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over its parent (for the next generation) if it has a better cost value. This
selection mechanism is usually known as greedy selection. For multi-
objective optimisation the selection criterion in the basic DE is changed
from “cost value” to “strict dominance” (Definition 2.2): a child is se-

lected over its parent if the child strictly dominates its parent.

Input: optimisation parameters
Output: Pareto set approximation V;

1 Build initial population P|y with N, individuals;

N

Evaluate P,

(]

Set generation counter G = 0;

'

while stopping criterion unsatisfied do

5 G=G+1;
6 Build offspring P’| using P|¢ using DE algorithm operators
(Algorithm . ;

7 | Evaluate offspring P'|¢;
8 | Update population P|g with P|,, and P|g—_; using greedy

selection mechanism with dominance criteria. ;
9 end
10 Build Pareto set approximation V3|¢ = Pl ;

11 return V3|g
Algorithm 2.3: Multi-objective Differential Evolution (MODE) al-
gorithm

A pseudocode for the multi-objective differential evolution (MODE) is
presented in Algorithm This MODE algorithm is intended to ap-
proach the Pareto front (convergence), but it might get close to a single
solution, since it lacks any mechanism to spread the solutions along the
Pareto front approximation (diversity).

Pruning mechanism

In order to promote diversity properties of the previous algorithm, a
pruning mechanism was incorporated. The objective of this pruning is
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Figure 2.3: Spherical pruning mechanism in a bi-objective space. For each spherical
sectot, a single solution is selected according to a given metric.

to avoid dense regions in the objective space as well as avoiding miss-
ing spots. The implemented pruning mechanism is based on spherical
coordinates, normalised with respect to a reference solution. In general
terms, what it does is to divide the objective space in spherical sectors,
and then select a single solution from each sector according to a given
index (Figure 2.3). Before showing the detailed procedure (Algorithm
2.4), some formal definitions are required.

Definition 2.10 (Normalised spherical coordinates (Reynoso-Meza et al.,
2010)). Given a solution v and Z (v'), let

S(Z (v') =12 (v') l,B(Z (v"))] (2.13)

be the normalised spherical coordinates from a reference solution Z"/ where
B(Z (v'))=1[81(Z (v')),...,B4-1(Z (v'))] is the arc vector and | Z (v?) ||z
the Euclidean distance to the reference solution.

The reference solution Z"¢/ must dominate all the solutions existing
at that moment. To ensure so, the ideal vector Z¥? (Definition [2.7),
or its approximation the utopian vector Z“tPi (Definition , is used
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as a reference. Note that, since during the evolutionary process the
population of solutions is in continuous evolution, the approximation
of the Pareto front may vary and so the components of the utopian and
nadir vectors have to be assessed at each generation.

Definition 2.11 (Sight range (Reynoso-Meza et al.,2010)). The sight range
from the reference solution Z"¢/ to the Pareto front approximation Z3 is
bounded by BY and BL:

BY = [maxBi(Z (v'),...,maxB,_1(Z (v')] VZ (v') € Al (2.14)
B = [minBi(Z (v),...,minfB_1(Z (v')] VZ(v') € Al¢ (2.15)
If Zre = Z'eal it is straightforward to prove that BY = [Z,..., 2] and
Bt =1o,...,0]

The set A represents an external archive in which the best set of so-
lutions found so far during the evolutionary process are stored. A|g
represents the set of archived solutions at generation G before pruning
and A|¢ is the same set after pruning.

Definition 2.12 (Spherical grid (Reynoso-Meza et al) 2010)). Given a
set of solutions in the objective space, the spherical grid on the q-dimensional

space in arc increments Be = By, . .., B;_,] is defined as:
U __ AaL U _ pL
PR L e G S P (2.16)
61 q—1

Definition 2.13 (Spherical sector (Reynoso-Meza et al.,|2010)). The nor-
malised spherical sector of a solution v! is defined as:

’U1 _ ’v1
Ac(vl) = Vl(iz(f’w 5‘”1(?})()) ] (2.17)
1 q—1

Definition 2.14 (Spherical pruning (Reynoso-Meza et al., 2010)). Given
two solutions v' and v? from a set, v' has preference in the spherical sector
over v? iff:

[Ac(@?) = Ac(w*)] A [I1Z (v') [l < 12 (%) ]1] (2.18)

q 1/p
where || Z (v)||, = <Z Za(v)V’) is a suitable p-norm.
a=1
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Input: Archive of best solutions before pruning Alg
Output: Archive of best solutions after pruning A|q

1 Read archive /1|G;
Read and update extreme values for Z ref las
for each member in Al do

= W N

calculate its normalised spherical coordinates (Definition
2.10);

5 end
6 Build the spherical grid (Definitions[2.11{and [2.12);
7 for each member in Al do

8 ‘ calculate its spherical sector (Definition [2.13);

9 end
10 for i=1:SolutionsInArchive do
11 Compare with the remainder solutions in Alg;
12 if no other solution has the same spherical sector then
13 ‘ it goes to archive A|g;
14 end
15 if other solutions are in the same spherical sector then
16 it goes to archive A|q if it has the lowest norm (Definition
2.14);
17 end
18 end

19 return A|g

Algorithm 2.4: Spherical pruning mechanism

The complete implementation combining the DE algorithm for MO (Al-
gorithm[2.3) and the spherical pruning mechanism (Algorithm 2.4) was
named as sp-MODE algorithm (see Algorithm[2.5) (Reynoso-Meza et al),
2010). A MATLAB®-based tool is available for its free download at MAT-
LAB® Central’.

dhttp://www.mathworks.com/matlabcentral/fileexchange/39215


http://www.mathworks.com/matlabcentral/fileexchange/39215

= W N

=2}

7

10
11

12

13

Input: optimisation parameters
Output: Pareto set approximation V;

Build initial population P|y with N, individuals;

Evaluate P,

Apply dominance criterion (Definition D on P|g to get Al;

Apply pruning mechanism (Algorithm i to prune Al to get
A|0}

Set generation counter G = (;

while stopping criterion unsatisfied do

G=G+1;
Get subpopulation S| with solutions in P|g_; and A|g_1;
Generate offspring O|¢ with S| using DE operators
(Algorithm iy
Evaluate offspring O|q;
Update population P|g with offspring O|¢ according to
greedy selection mechanism.;
Apply dominance criterion (Definition on Olg U A|g-1 to
get Alg;
Apply pruning mechanism (Algorithm to prune Al to
get Alg;
end
Vi =Alg
return V3 |g

Algorithm 2.5: sp-MODE
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2.4.2 Level Diagrams visualisation tool

In this work Level Diagrams!? (Blasco et al., 2008; Reynoso-Meza et al.,

2013a) are used to visualise four-dimensional Pareto Fronts.

The Level Diagrams visualisation is based on the use of an auxiliary
variable that has the same value for all the objectives. This way, a two-
dimensional plot can be created for each objective and each decision
variable, and a given solution will display the same ordinate at all of
them. This allows traceability of the solutions in the different objective

sub-spaces.

The auxiliary variable is the distance, according to a preferred norm,
to an ideal solution, represented by the utopian objective vector (Defi-
nition 2.8). To evaluate this distance, first each objective is normalised
with respect to its minimum and maximum values in entire the Pareto
front, as shown in Equation (2.19).

R Zk (U) _ Zk,min
Zk (’U) = Zkmazr _ 7kmin

ke{l,2,...,q} (2.19)

The minimum and maximum values for each objective can be extracted
from the components of the utopian and the nadir objective vectors
(Definitions 2.8 and [2.9) respectively, which leads to Equation (2.20).

R Zk v _Zutopia
Zy (v) = @) = 7

= i — g ke{l,2,...,q} (2.20)
Applying this transformation, a normalised objective vector Z (v) =
[Zl (), 25 (v),..., 2, (v)} is obtained. Then, a p-norm || Z (v) |, is em-
ployed to calculate the distance to the utopian objective vector (Defini-

tion[2.8).

Norms commonly used are the 1-norm , the 2-norm and the co-norm.
Given the previous normalisation, distance to the utopian vector can be

©Tool available at |https://www.mathworks.com/matlabcentral/
fileexchange/62224


https://www.mathworks.com/matlabcentral/fileexchange/62224
https://www.mathworks.com/matlabcentral/fileexchange/62224
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calculated according to these norms as stated in Equations (2.21)), (2.22)
and (2.23) respectively.

1Z @) | = Z () (221)
k=1
1Z@w) =3 (ze @)’ 2.22)
k=1
1Z (v) o = max |, (v)| (2.23)

Finally, the distance calculated this way is used as the auxiliary variable
used to generate two types of graphs: at the objective sub-graphs (one for
each objective, so ¢) the ordered pairs <Zk (),]|Z (v) Hp> are plotted,
and at the decision variable sub-graphs (one for each decision variable, so
n), the ordered pairs (vj, 1Z (v) Hp) are shown.

Figure 2.4/ shows an example of application of Level Diagrams repre-
sentation to a bi-objective problem. In this low-dimensional problem
is possible to compare the 2-D objective space with the plots gener-
ated by means of LD. It can be noticed that, even in this simple case,
the distance to the utopian solution provides an added degree of in-
formation. This figure also shows how the use of a standard auxiliary
variable allows traceability of the solutions along the different objective
sub-spaces.

Whatever the selected norm is, the lower the value is, the lower the
distance to the (ideal) utopian solution. However, this does not mean
that the solution closer to the “ideal” is the best solution from the point
of view of the decision-maker (or for the particular problem at hand).
That solution could present, for example, an unacceptable degradation
in some of the objectives.

Extra metrics that represent additional criteria can be used to colour
the solutions presented at the Level Diagrams, which allows the inte-
gration of more degrees of information at the same display.
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Figure 2.4: Example of representation of the Pareto front for a bi-objective problems
using 2-D graph (a) and LD (b). Points at the same level in LD correspond on each

graphic. Figure 3 from (Reynoso-Meza et al.}[20134).
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Metabolic networks of
model cyanobacteria

3.1 Chapter abstract

In this chapter work is done in curation and assembly of the metabo-
lic networks of two model cyanobacteria: Synechococcus elongatus PCC
7942 and Synechocystis sp. PCC 6803.

The metabolic model presented in this chapter for Synechococcus was
the first genome-scale network assembled for this organism. Follow-
ing the four-stages process described in Section (preliminary au-
tomated assembly, manual refinement and curation, conversion to a
mathematical model, and network evaluation and debugging) a cu-
rated genome-scale metabolic model was obtained that allows accurate

metabolic simulations of this cyanobacterium.

Additionally, work has been done on updating Synechocystis' network
from published works: new knowledge has been incorporated and some
pathways (such as those involving electron transport and inorganic
nutrient assimilation) have been described in greater detail. The im-
plemented changes have led to noticeable simulation improvements

69
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(such as greater plasticity, greater accuracy at electron consuming path-
ways or more realistic energy needs) that allow more precise metabolic
characterisation of the cyanobacterial phenotypes and enhance the pre-
dictability of the model.

The metabolic networks of Synehcocystis and Synechococcus present many
common traits. At the end of the chapter a comparison is presented
in terms of network features (number of genes, reactions and metabo-
lites), main metabolic pathways present (with special attention to their
characteristic electron transport pathways), and network topology and

metabolites' connectivity.

Parts of the contents of this chapter are based on the following peer-

reviewed article!!:

¢ Julian Triana, Arnau Montagud, Maria Siurana, David Fuente, Arantxa

Urchueguia, Daniel Gamermann, Javier Torres, Jose Tena, Pedro Fer-
nandez de Cérdoba, Javier Urchueguia. Generation and Evaluation of
a Genome-Scale Metabolic Network Model of Synechococcus elonga-
tus PCC 7942. Metabolites 2014, 4:680-698

3.2 Introduction

In the current energy, environmental and socio-economic situation, it
exists an increasing trend towards the search of efficient and sustain-
able manufacturing processes. Within this context, the use of biological
systems as cell factories for the production of fuels, drugs and other
chemicals of industrial interest has been identified as an alternative to
traditional processes. However, the use of living organisms for biotech-
nological processes is not a new topic at all. Bio-manufacturing has
been applied since several thousand years ago to obtain traditional
products like beer, cheese, wine or bread (Zhang et al., 2016). How-
ever, the modern approach is based on rational design procedures: re-

""'The research leading to the reconstruction of Synechococcus elongatus PCC 7942
metabolic network has been done in close collaboration with Julian Triana.
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search is driven to gain better understanding of the systems and logi-
cally modifying them to obtain the desired outcome.

When facing the development of bioprocesses based on the use of liv-
ing systems as cell factories, it must be taken into account that biolog-
ical systems are tuned to optimise their own progress in their natural
habitat (Patil et al., 2004). That is why to reach development of compet-
itive processes, regarding cost and performance, genetic modifications
are needed to adapt the capacity of the host organism to the productive
necessities and to the process conditions, which is known as metabolic

engineering (Nielsen,|1997).

However, due to the complexity of cellular systems, in which metabo-
lites, genes, and proteins are interconnected through complex networks
(Furusawa et al., 2012), the introduced modifications may produce un-
expected effects. Thus, to address the rational design of systems of pro-
duction based on living organisms, proper understanding of the base
cellular metabolism is crucial. This understanding must be reached
through a global perspective that allows untangling interaction among
the different components (Patil et al., 2004). Genome-scale metabolic
models, as introduced in Chapter (1} are valuable tools to achieve such

a system-level comprehension.

The four-stage process to reconstruct a genome-scale metabolic net-
work has been reviewed in Chapter I This process starts with the
(usually automatic) identification of metabolic functions from anno-
tated genome of the organism under study, followed by manual refine-
ment of the draft network, continues with conversion of the curated
network into a mathematical model, and can be considered complete
after validation, when a functional and verified mathematical represen-
tation of all biochemical transformations occurring within the system
is achieved (Feist et al., 2009; Thiele and Palsson| 2010). However, this
process is an iterative procedure in which continuous curation, main-
tenance and update of the model is required to extend and enhance its

applicability.
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Different sources of information can be used for curation and update of
a metabolic reconstruction. Biochemical databases containing informa-
tion about reactions, genes, proteins, enzymes and molecules involved
in metabolic processes, are widely used for this purpose. KEGG (Kane-
hisa and Goto), 2000; Kanehisa et al., 2016, 2017), BRENDA (Schomburg,
et al., [2000; Placzek et al., 2017), or ChEBI (Hastings et al., |2013) are
among the most popular. Information can also be gathered from avail-
able literature (reference books and journal articles), physiological ex-
perimental datasets or genomic and phylogenetic data.

In this thesis, modelling techniques are applied to the study of the me-
tabolism of two model cyanobacteria. Cyanobacteria are photosyn-
thetic bacteria that can perform oxygenic photosynthesis making use
of solar energy and inorganic CO; to grow and perform cellular func-
tions. This property causes cyanobacteria to be in the spotlight as very
interesting host organisms for the development of solar-fuelled cell fac-
tories. In particular, Synechocystis sp. PCC 6803 and Synechococcus elon-
gatus PCC 7942 are two of the most studied species, they are naturally
transformable!? and several molecular tools have been developed for
their genetic manipulation (Hess| 2011} Pinto et al,, 2015; Kim et al.,
2017). Altogether, these properties have heighten the interest of these
species as potential cell factories and have motivated the necessity of
studying their metabolic functionalities.

This chapter is dedicated to address the update of Synechocystis' and
tirst assembly of Synechococcus' metabolic models. The resulting net-
works are then presented and, at the end of the chapter, they are com-
pared between them.

?They have the natural ability to take up and incorporate exogenous genetic mate-
rial.
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3.3 iSyn842: updated metabolic network of
Synechocystis sp. PCC 6803

3.3.1 Previous version: iSyn811

In2010, our research group published the first version of the iSyn model,
iSyn669 (Montagud et al., 2010), that was later updated to iSyn811 (Mon-
tagud et al., 2011).

One of the most important contributions of these models was the def-
inition of a genome-scale biomass equation accounting for 39 biomass
components and precursors (Table 3.1I). As explained in Chapter [} a
proper genome-scale biomass equation must account for all cell build-
ing blocks, as well as for the energy consumed during the assembly
process, and describe, as accurately as possible, the proportions among
them (Feist and Palsson, 2010). This equation is needed in almost all
constraint-based methods to represent cell growth. It is usually em-
ployed as the biological objective function when performing mono-
objective simulations. If a different objective is defined, generally, the
biomass function has to be used as a constraint, in order to consider
energy and mass associated drains. The biomass equation of reference
(Montagud et al., 2011) has been conserved in the current version of the
model.

More than five years have passed since the publication of iSyn811, and
some improvements have been done on the model in order to keep it
updated. New annotation information, new physiological discoveries,
and the application of the model to new studies have motivated this
continuous update. In the following section, some of the main changes
are reported.

3.3.2 Update process

For the construction of a detailed, up-to-date and accurate genome-
scale metabolic model of Synechocystis sp. PCC 6803 the departing point



Table 3.1: Biomass formulation in iSyn811 (Montagud et al.,|2011) and iSyn842.
All units are mmole per gram of dry cell weight (mmol/g,,)

Metabolites Coefficients ‘ Metabolites Coefficients
Aminoacids
Alanine 0.499149 Leucine 0.437778
Arginine 0.28742 Lysine 0.333448
Aspartate 0.234232 Methionine 0.149336
Asparagine  (0.234232 Phenylalanine  0.180021
Cysteine  0.088988 Proline 0.214798
Glutamine 0.255712 Serine 0.209684
Glutamate 0.255712 Threonine 0.246506
Glycine  0.595297 Tryptophan  0.055234
Histidine 0.092056 Tyrosine 0.133993
Isoleucine  0.282306 Valine  0.411184
Deoxyribonucleotides Ribonucleotides

dATP  0.0241506 AMP  0.14038929

dITP  0.0241506 UMP  0.14038929

dGTP  0.02172983 GMP  0.12374585

dCTP  0.02172983 CMP  0.12374585

Lipids

16C-lipid  0.20683718 (92,127)18C-lipid  0.03568367

(9Z)16C-lipid ~ 0.01573412 (92,127,157)18C-lipid ~ 0.01797109

18C-lipid  0.00351776 (62,92,127)18C-lipid  0.05031906

(92)18C-lipid ~ 0.03188596 | (62,92,127,157)18C-lipid  0.01448179

Carbohydrates Antenna chromophores
Glycogen  1.171.827 Chlorophylla  0.02728183
Carotenoids  0.00820225
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was the model iSyn811 (Montagud et al., 2011) on which various mod-
ifications were implemented leading to noticeable simulation improve-
ments.

Electron transport chain

Cyanobacterial energy metabolism is one of their most characteristic
traits, since they form complex electron transport chains that combine
photosynthesis and oxidative phosphorylation in the same compart-
ment, the thylakoid (Vermaas, 2001). While photosynthesis takes place
only in thylakoid membranes, oxydative phosphorylation appears both
in thylakoid and cytoplasmic membranes. Thus, in the thylakoid both
electron transport chains are present and share elements, leading to
connections between photosynthetic and respiratory electron flows (Fig-

ure3.1).

Besides, Synechocystis has a hydrogenase which contributes as a tran-
sient electron sink during light-regime changes (Khanna and Lindblad,
2015). This fact has also strongly attracted the interest over this organ-
ism, since it is an appealing candidate for hydrogen production medi-
ated by water splitting in photosynthesis.

The electron transport chain described in the previous version of the
model was already a detailed set of reactions (in contrast with lumped
reactions used in central carbon metabolic models) including the main
complexes depicted in Figure However, new information became
available since iSyn811 model was published. For instance, new reac-
tions were incorporated, such as those corresponding to the use of cy-
tochrome cM as a soluble electron transporter (from plastocyanin to ter-
minal cytochrome oxidases) and the Mehler reaction (oxygen photore-
duction directly from NADPH). Also soluble quinol transporter was
changed from ubiquinol to plastoquinol, whose synthesis was added
to the set of reactions. Finally, proton pumping stoichiometry was re-
viewed and updated. The energetic needs, especially under autotrophic
conditions, are now more precise, and the model accounts for more de-
tailed reactions at the electron transport chain.
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Figure 3.1: Outline of electron transport chain in Synechocystis’ thylakoid membranes. Abbreviations used - SDH: succinate deshydrogenase;
NDH-1: type | NADPH deshydrogenase; NDH-2: type I NADH deshydrogenase; PSII: photosystem II; PQ: plastoquinone; Cyd: cytochrome
bd-oxidase; Cyt béf: cytochrome b6f; Cyt ¢553: cytochrome c553; PC: plastocyanin; PSI: photosystem I; Fd: ferredoxin; FNR: ferredoxin-
NADP+ reductase; NR: nitrate-reductase; NiR: nitrite-reductase; Cit cM: cytochrome cM; CcO: cytochrome c-oxidase; Flv: flavoprotein;
PNT: pyridin-nucleotide transhydrogenase; BM: biomass; H2ase: hydrogenase; ATP-syn: ATP synthase;
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Electron transport carriers

Other electron carriers, such as NAD(P)H, ferredoxin and thioredoxin,
are also crucial when studying energy metabolism and biochemical
production. In this version of the model, the reactions in which they
are implied have been improved by reviewing stoichiometric incon-
sistencies inherited from public databases and adding new reactions
that allow electron exchanges between them. In this process more than
120 reactions have been modified or added to the model. After these
changes, several constraints, previously needed to avoid futile cycles,
were found to be of no use and were eliminated leading to a more flexi-
ble model able to better adapt to different environmental conditions, as

natural organisms do.

Inorganic nutrient assimilation pathways

Various authors have shown also interest in inorganic nutrient assimi-
lation pathways, especially nitrogen and sulphur (Burrows et al., 2009;
Takahashi et al. 2011), which imply electron consumption and thus
compete with other pathways, like hydrogen or secondary metabolites
production. In these pathways of inorganic elements incorporation, the
electron stoichiometry described in the network was reviewed and cor-
rected and new spontaneous reactions were added. Also transport re-
actions that allow alternative nutrient sources were included. In Chap-
ter [} these alternatives are investigated as interesting nutrient sources
in terms of hydrogen production (Section 4.4.3).

Global iSyn842 inspection

Apart from particular pathways and metabolic hubs, the network was
globally examined to assess some properties, like network connectivity;
and, lastly, annotation updates were considered.

In order to detect reactions fully disconnected from the network and
metabolic dead-ends (i.e. metabolites that only appear once in the whole
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network), a set of functions from PyNetMet (Gamermann et al., 2014b)
(see Section([1.2.3) specifically designed for this purpose were used. The
importance of detecting such reactions is that they are blocked under
steady state condition: there will never be flux through them and they
do not contribute to the flux map. The appearance of these discon-
nected reactions can be due to a lack of information at the time of the
reconstruction, or to differences in nomenclature. Using this update
process, about a hundred disconnected reactions were detected and
were updated, corrected or deleted depending on each case.

Information from public databases of biochemical knowledge, like for
example KEGG (Kanehisa and Goto, [2000; [Kanehisa et al., 2016, 2017),
was used as well to update names of enzymes that had changed, new
gene-enzyme-reaction assignments, or stoichiometric differences that
had been unravelled during the last years. This way, around one hun-

dred enzymes and reactions were updated and included if necessary.

Finally, experimental data obtained from collaborator' research groups
were used to check for physiological evidence of many of the reported
reactions. For instance, a wide proteomics analysis from the Chemical
Engineering at the Life Science Interface from The University of Sheffield
was used to identify enzymes detected and their EC numbers and re-
actions associated (Andrew Landels, personal communication). This
information has been used to identify blind-spots and contradictory
records in the model by double-checking the list of enzymes detected
during the proteomic analyses and present in the metabolic model.

3.3.3 Resulting iSyn842 network

The result of this tuning process is a model that consists of 1059 metabo-
lic reactions and 920 metabolites (see Table 3.2 for a comparative with
previous versions). It accounts for 540 enzymes performing 804 differ-
ent reactions. It also includes 53 transport reactions allowing the intake
of inorganic nutrients like nitrogen, sulphur, phosphate and some met-
als, and carbon substrates like sugars, aminoacids or inorganic carbon
compounds, the transport of gases, like oxygen or hydrogen, or the
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Table 3.2: Comparison of the network features of several versions of iSyn metabolic
model of Synechocystis sp. PCC 6803: iSyn669 (Montagud et al., 2010), iSyn811
(Montagud et al.,2011) and iSyn842 (present work).

Network features ‘ iSyn669 ‘ iSyn811 ‘ iSyn842
genes 669 811 842
reactions 882 956 1059

enzymatic 591 769 804
transport 20 46 53
electron transport chain 21 21 25
metabolites 790 911 920

input of photons. It further incorporates several spontaneous chemi-
cal conversions and a few artificial reactions needed for biomass sim-
ulations (such as secretion of biomass components). It is equipped
with a detailed biomass equation (Table which takes into account
amino acids, nucleic acids, lipids, carbohydrates, ribonucleotides, de-
oxyribonucleotides, and antenna chromophores. Additional file 3.1
(see page contains a complete description of the resulting iSyn842
model.

As reported above, compared with the previous version of the model,
important improvements in the simulations have been achieved as a
consequence of all the implemented changes: greater plasticity, greater
accuracy at electron consuming pathways, and more realistic energy
needs. These improvements allow for more precise metabolic charac-
terisation of the cyanobacterial phenotypes and improve the predictabil-
ity of the model. Using this model different simulations of cellular
growth and production of different substances, can be performed. Dif-
ferent mutants can be tested by easily adding or removing selected re-
actions, and several environmental conditions can be assessed by chang-
ing simulation parameters and media-related constraints. Thus, it can
be used for fluxomic and metabolic characterisation of different strains
and conditions (an example can be seen in Section [4.4.3).
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3.4 iSyf715: first metabolic network assembled for
Synechococcus elongatus PCC 7942

3.4.1 Assembly process

The process followed to reconstruct Synechococcus' metabolic model was
conducted following the four-stage process described in the previous
part of the present dissertation (see Figure[I.2).

The genome sequence and annotation were gathered from NCBI En-
trez Gene database (NCBI Resource Coordinators|, 2016). For the first
automated assembly two software were applied, Pathway Tools (Karp
et al.,|2002, 2016) and COPABI (Reyes et al., 2012), which allowed dou-
ble checking the resulting automated reconstructions. Specific func-
tions for gap filling and duplicate check from COPABI were applied.
After this first stage of automated generation of components, a draft re-
construction was obtained that accounted for 540 enzymes encoded by
672 genes, and included 898 reactions. Using the gap filling function,
incomplete pathways were completed based on probabilistic criteria of
unicity and completeness (for details of this process please check refer-
ence Reyes et al.| (2012)).

Next the draft reconstruction was examined and curated using the avail-
able sources of information (databases, literature, experiments, etc..). It
was at this stage of the process of manual refinement where the PhD.
applicant mostly contributed. First, the list of reactions added automat-
ically to fill the gaps in incomplete pathways was manually checked,
distinguishing between indispensable reactions and those that were
not. Those reactions that were essential were maintained (or added
in some cases), and the most appropriate enzyme and stoichiometry
was chosen for them based on phylogenetic proximity and sequence
comparison with cognate genes performing the same function. Non-
enzymatic (spontaneous) reactions reported in Synechococcus' metabo-
lism were added as well. Also, EC numbers and stoichiometry assigned
to the whole set of reactions were verified with databases such as KEGG
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(Kanehisa and Goto, 2000;|[Kanehisa et al.,[2016,2017), BRENDA (Schom-
burg et al., 2000; Placzek et al.,|2017) and MetaCyc (Caspi et al., 2016)
and reviewing state-of-the-art literature. Reaction reversibility was also
verified, and when no conclusive irreversibility evidence was reported,
reactions were set to be reversible. Finally, unspecific metabolite names
obtained from the databases (such as “alcohol”) were converted to the
corresponding organism-specific metabolites (Thiele and Palsson, 2010).

Next stage of the reconstruction process was to convert the network
to a mathematical model, by adding the biomass equation and system
parameters. The biomass equation considered amino acid, carbohy-
drates, chromophores, nucleic acids, and lipids as building blocks for
biomass assembly. Table shows the biomass composition consid-
ered in iSyf715. As parameters, flux bounds were added to transport
reactions carrying nutrients such as phosphate, water, sulphate, nitrate,
ammonia, as well as carbon monoxide and hydrogen peroxide.

The final stage of genome-scale network reconstruction consists in net-
work evaluation and model validation. During this process, biomass
formation was verified and obtained flux distributions were verified
to check if they used the expected set of metabolic pathways. In this
validation process some reactions were corrected. Also, some of the
reversible reactions involving NADH and NADPH were constrained
to be irreversible so that spurious trans-hydrogenation was controlled,
and internal loops thermodynamically unfeasible were removed (Thiele
and Palsson, 2010).

3.4.2 Resulting iSyf715 network

The resulting network, iSyf715, accounted for 715 genes, which en-
coded 530 enzymes and 23 transporter proteins. It included 838 metabo-
lites and 902 reactions, among which 710 were enzymatic conversions
(Table[3.4). Additionally, a set of reactions with no cognate genes was
added on the basis of biochemical evidence or physiological consider-
ations: 13 non-enzymatic conversions, 16 passive transport reactions,
and 76 non-annotated reactions.



Table 3.3: Biomass formulation in iSyf715. All units are mmole per gram of dry cell
weight (mmol/g,,)

Metabolites Coefﬁcients‘ Metabolites Coefficients

Amino acids

Alanine 0.897 Leucine 1.128
Arginine 0.526 Lysine 0.417
Aspartate 0.518 Methionine 0.194
Asparagine 0.374 Phenylalanine 0.406
Cysteine 0.102 Proline 0.512
Glutamine 0.576 Serine 0.548
Glutamate 0.614 Threonine 0.580
Glycine 0.702 Tryptophan 0.149
Histidine 0.197 Tyrosine 0.294
Isoleucine 0.628 Valine 0.638
Deoxyribonucleotides Ribonucleotides
dATP  0.0201156 AMP  0.140389293
dTTP  0.0201156 UMP  0.140389293
dGTP  0.02538445 GMP  0.123745851
dCTP  0.02538445 CMP 0.123745851
Lipids Antenna chromophores
14C-lipid 0.028 Zeaxanthin 0.00079
16C-lipid 0.0042 Beta-carotene  0.000875
18C-lipid 0.00448 Trans-lycopene  0.00820225
(9Z2)16C-lipid 0.0066 Chlorophyll a 0.0057
(92)18C-lipid 0.00625

Carbohydrates

Glycogen  1.171.827
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Table 3.4: Network features of iSyf715 metabolic model of Synechococcus elongatus
PCC 7942.

Network features ‘ iSyf715
genes 715
reactions 902

enzymatic 710
transport 41
electron transport chain 21
metabolites 838

The final model included central metabolic pathways such as the gly-
colysis/gluconeogenesis pathway, the Calvin-Benson-Bassham cycle,
the pentose phosphate pathway, incomplete reactions within the citric
acid cycle, as well as anabolic pathways involved in the biosynthesis
of amino acids, nucleotides, lipids, chlorophyll, glycogen, vitamins, co-
factors, and other secondary metabolites. Photosynthetic and respira-
tory electron transport chains were represented by a set of 21 reactions,
including light captured by photosystem II and photosystem I, inter-
mediate electron transporter complexes, cyclic electron transfer, final
oxidases, and a bidirectional hydrogenase. Additional file 3.2 (see page
contains a complete description of the resulting iSyf715 model.

3.5 Symnechocystis' vs. Synechococcus' metabolic
networks comparison

In previous sections, the process of update and reaction assembly have
been described, leading to the construction of iSyn842 and iSyf715, me-
tabolic models of Synechocystis sp. PCC 6803 and Synechococcus elon-
gatus PCC 7942, respectively. In the present section, qualitative prop-
erties of these networks, regarding network components and topology
are assessed and compared. In the following chapter flux analyses are
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conducted that help further characterise, quantitatively, main traits of
Synechocystis' and Synechococcus' metabolic networks.

Table 3.5: Comparison of iSyn842 and iSyf715 network features.

Network features ‘ iSyn842 iSyf715
genes 842 715
reactions 1059 902

enzymatic 804 710
transport 53 41
electron transport chain 25 21
metabolites 920 838

The main features of the iSyn842 and iSyf715 networks are collected in
Table Synechocystis' reconstructed network includes a greater num-
ber of genes, reactions and metabolites than Synechococcus', but before
any consideration on difference on the reconstruction are made, it must
be taken into account that those organisms have quite different num-
bers of annotated genes: Synechocystis sp. PCC 6803 has 3564 while
for Synechococcus elongatus PCC 7942 has 2661 genes leading to proteins
(numbers retrieved from KEGG database, [Kanehisa and Goto| (2000),
on May 19, 2017).

Synechocystis sp. PCC 6803 and Synechococcus elongatus PCC 7942 are
two cyanobacteria closely phylogenetically related (Gamermann et al.,
2014a) that have many traits in common. The core of their metabolic
networks, as it happens with most cyanobacteria (Baroukh et al., 2015),
is similar. In general terms, their metabolic networks can be schemati-
cally decomposed as:

* photosynthesis, to produce energy from light;
¢ Calvin-Benson-Bassham cycle, to assimilate inorganic carbon;

e glycolysis, to produce energy from glucose and generate precur-

sor metabolites;

¢ the citric acid cycle, to produce other precursor metabolites;
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¢ the pentose phosphate pathway, to produce reductive power and
precursor metabolites;

¢ oxidative phosphorylation (also termed cellular respiration), to
produce energy from reduced species;

* inorganic nitrogen and sulphur assimilation;

¢ carbohydrate and lipid synthesis, to build cell components and
store carbon; and

* synthesis (and degradation) of proteins, DNA, RNA, cofactors,
chlorophyll and other secondary metabolites from inorganic nu-
trients and precursor metabolites.

Among those pathways, their energy metabolism must be highlighted
since it is distinctive of cyanobacteria. As it has been mentioned, both
Synechocystis sp. PCC 6803 and Synechococcus elongatus PCC 7942 com-
bine elements from the photosynthetic and respiratory electron trans-
port chains at the thylakoid membranes, which gives place to many
cross-talks among pathways (Nogales et al., 2012) that are used by the
cell to regulate its energetic state. Among these alternative pathways,
both organisms have a bidirectional hydrogenase which make them
very interesting candidate organisms for the design of photosynthetic
cell factories for sustainable production of hydrogen.

However, as it was already noted in Section there is an important
difference between these two organisms: while Synechocystis sp. PCC
6803 is able to grow both under autotrophic and heterotrophic condi-
tions (as well as under the intermediate mixotrophic conditions), Syne-
chococcus elongatus PCC 7942 is an obligate autotroph that depends on
light and carbon dioxide to survive. This difference is also reflected
on the metabolic models obtained in this chapter, being the main rea-
son the absence of sugar transporters in Synechococcus' network, which
agrees with experimental observations (McEwen et al., 2013).

Regarding the topology of the networks, both iSyn842 and iSyf715 ex-
hibit the same pattern ubiquitously present in cellular networks, in
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Figure 3.2: Connectivity of metabolites in iSyn842 and iSyf715 networks.

which few highly connected nodes (termed hubs in graph theory) dom-
inate the topology by linking the rest of the less connected nodes to the
system (Jeong et al.,|2000; Barabasi and Oltvai, 2004). Figure 3.2|shows
the cumulative distribution of the number of metabolites with more
than a given number of connections. In both cases, many metabolites
have few connections while few metabolites have large number of con-
nections. Besides, both networks present a very similar distribution,
with the only difference that Synechocystis' includes more metabolites.

Finally, in Table 3.6/ the most connected species of iSyn842 and iSyf715
are shown. Metabolic hubs are common to both networks (as they
are also in other microorganisms (Montagud et al., 2010)), and com-
prise mainly cofactors (H2O, H*, Oy, ATP/ADP/AMP, POi*, P04,
NAD(P)" /NAD(P)H) that play an important role connecting reactions
and transporting energy and reductive power from one pathway to an-
other.
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Table 3.6: Most connected metabolites in iSyn842 and iSyf715 networks.

Number of neighbours

Metabolite ‘

| iSyns42 iSyf715
H,0 261 230
H* 183 153
ATP 162 153
PO}~ 124 114
ADP 120 109
P03~ 95 97
NADP* 80 61
NADPH 79 60
CO, 77 71
NAD* 66 55
NADH 62 51
O, 53 38
L-glutamate 47 44
AMP 39 41

Altogether, their main features (Table , their central metabolic path-
ways, and their topology (Figure [3.2] and Table show that the re-
constructed networks for Synechocystis sp. PCC 6803 and Synechococcus
elongatus PCC 7942 are similar in many aspects, with main differences
being their size and availability to grow on sugar substrates. In next
chapter, quantitative analyses are conducted that serve to further com-
pare these two models, which leads to finding further likenesses and
spot other differences between them.






Flux Balance Analysis
on cyanobacteria
metabolic models

4.1 Chapter abstract

In this chapter the metabolic networks of Synechococcus elongatus PCC
7942 and Synechocystis sp. PCC 6803 presented in the previous chap-
ter are used to perform flux simulations using Flux Balance Analysis
methodology. This methodology has been used to analyse and com-
pare the robustness of these metabolic networks through an analysis
of essential reactions. Next, a comparison of the flux landscapes ob-
tained with both networks under autotrophic conditions has been per-
formed that revealed significant similarities between them. And finally,
an analysis was performed with Synechocystis' metabolic network to
test the effect of perturbed culture conditions over the production of
a metabolite of interest.

These simulations serve to illustrate the applications of constraint-based
flux simulations in different studies, and to identify important features
and opportunities for the development of new simulation algorithms.

89
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Some limitations of the classic FBA methodology (such as impossibility
of accounting for regulation, necessity of hard constraints to yield re-
alistic energy costs, and impossibility of optimising several objectives
simultaneously) are identified in this chapter, and this knowledge will
be applied in Part III of this thesis dissertation to develop new algo-
rithms to extend and enrich the possibilities of the simulations.

At the final part of this chapter, a contribution to the development of
a web-based software tool, termed CellDesign, is presented. This tool
aims at facilitating the access and application of metabolic simulations
by non-experts.

Some of the results from this chapter appear in the following journal
article:

e Gabriel Kind, Maria Siurana, Erik Zuchantke, David Fuente, Lenin G.
Lemus-Zuiiiga, Javier Urchueguia, Robbe Wiinschiers. CellDesign -
An Open-Source, Web-Based Software for Metabolic Modelling and
Flux-Balance Analyses. Manuscript submitted to BMC Bioinformatics in
June 2017.

4.2 Introduction

As it has been discussed in Chapter [1, Systems Biology is a discipline
that aims at the study of biological systems with the aim of under-
standing the behaviour of living organisms from a system-level point of
view. Systems Biology also addresses the modification of existent sys-
tems and the design of new devices to perform newly desired functions
such as disease treatment, chemical production, etc.(Ideker et al., 2001;
Kitano, 2002). Analysis of metabolic fluxes contributes to the study of
biochemical functions of the cells, to the analysis of their behaviour and
to the assessment of the effect of selected modifications over the whole
system. This understanding is fundamental to address the generation
of cell factories: rationally designed living organisms that behave like
production systems (Patil et al., 2004).
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The object of study of metabolic modelling are the metabolic fluxes:
the rates of metabolic reactions, which are the number of molecules be-
ing transformed at each metabolic reaction per unit time. These fluxes
have an important role in cellular physiology, since they describe how
materials and energy flow through the metabolic network of reactions
(Garcia Martin et al., 2015). From all the different types of modelling
techniques that have been applied to the metabolism (for a good re-
view, please refer to reference Klipp et al.| (2016)), the present thesis is
focused in constraint-based metabolic modelling.

The starting point to perform constraint-based metabolic simulations is
to carefully reconstruct the metabolic network describing all biochem-
ical transformations occurring in the system, which was addressed in
the previous chapter.

Once an accurate and complete metabolic network has been obtained,
constraint-based modelling methodology imposes a steady state on the
metabolism. This allows to mathematically solve an underdetermined
problem, as the number of reactions are greater than the number of
metabolites. The rationale behind this steady-state imposition is the
fact metabolic conversions are much faster than both cellular growth
rates and the dynamic changes in the organism's environment (Varma
and Palsson, 1994a). Consequently, a steady-state mass balance is ap-
plied to the system that reduces the space of possible flux distributions.
Additionally, further constraints are defined that capture the physico-
chemical, environmental and biological limitations that real cell's meta-
bolism faces in natural environments (Price et al.,[2004). After applying
these constraints, the remaining set of biologically feasible solutions de-
scribes the diversity of metabolic phenotypes that are physically possi-
ble.

However, with the addition of constraints and the analysis of the result-
ing feasible phenotypes it can be analysed what the metabolic model
cannot do, but concrete flux distributions cannot be determined yet
(Edwards et al.,2002b). One approach applied in constraint-based mod-
elling to extract particular flux distributions from the set of feasible so-
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lutions consists on the optimisation of an objective function. This ap-
proach is based on the assumption that evolution under selective pres-
sure has caused organisms to work in an optimal or quasi-optimal me-
tabolic regime. In this sense, an objective function has to be chosen that
describes appropriately the processes and different goals that charac-
terise the metabolic behaviour of real organisms (Raman and Chandra)
2009).

The main representative of the methodologies used to calculate optimal
flux distributions from biologically constrained spaces of solutions is
Flux Balance Analysis (FBA) (see Section in Chapter[Iland Section
[.3.1]bellow). This methodology can be applied to study flux distribu-
tions in natural conditions, as well as to analyse the effect that changes
in environmental and genetic conditions have over the metabolic be-
haviour of the organism under study.

As part of the design strategy to obtain metabolic systems with desired
properties genes can be deleted (knocked out) or inserted (knocked in)
into the genetic code of an organism. Using such genetic manipula-
tions, cells with new capacities can be created, as in cell factories, or
existing systems can be readjusted to become such a cell factory. Ad-
ditionally to genetic interventions, different environmental conditions
can be tested that increase or decrease some fluxes of reactions of path-
ways that produce a metabolite of interest. Constraint-based modelling
can be used in this context to compare the metabolic flux distributions
of wild-type (non-mutated) and other mutated organism.

In this chapter, examples are presented that illustrate applications of
Flux Balance Analysis methodology on cyanobacterial metabolism. In
particular, FBA is applied to the models of Synechococcus elongatus PCC
7942 and Synechocystis sp. PCC 6803 presented in the previous chapter.
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4.3 Materials and Methods

4.3.1 Flux Balance Analysis

Flux Balance Analysis methodology was applied to simulate flux dis-
tributions. Briefly (see Section for details) and according to this
methodology, a metabolic network is represented by its stoichiometric
matrix S (as explained in Definition , and a steady-state mass bal-
ance is then applied to calculate the metabolic fluxes (gathered in vector
v). Constraints are imposed to the system that limit the range of allow-
able fluxes by considering reaction directionality, enzyme/transport ca-
pacity and specific physiological knowledge. The following linear op-
timisation problem is then stated to maximise/minimise an objective

function which can be any linear combination of fluxes:

max Z (v) = ¢ v (4.1)
subject to:
Sv=0 (4.2)
Vjrep € (—00,+00) jed{l,...,n} (4.3)
Vjirr € [0, +00) jed{l,...,n} 4.4)
Ly, Svj < uy, je{l,...,n} (4.5)

where c is a vector of weights indicating how much each reaction con-
tributes to the objective function, v; ., and vj ;. are the fluxes of the
reversible and irreversible reactions respectively, and /,; and u,, are

the lower and upper flux bounds for reaction j respectively.
Flux bounds defined for FBA simulations have two origins:

e directionality bounds (Equations and (4.4)), that establish
that reversible reactions can take negative values (meaning flux
in the direction opposite to the described by the stoichiometric
equation), while irreversible reactions can only have positive val-
ues.
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e capacity and availability bounds (Equation (4.5)), that are imposed
only on certain reactions, generally exchange reactions, and ac-
count for maximum enzyme/transport capacities and environ-
mental nutrient availability.

The most commonly used objective function for Flux Balance Analy-
sis is maximisation of biomass yield or growth rate (Feist and Palsson,
2010). As explained in Chapter |1} a biomass equation has to be defined
during the reconstruction process. This biomass equation must account
for all cell building-blocks, such as lipids, proteins and nucleic acids
(or their precursors), as well as for the energy consumed during the as-
sembly process and cell maintenance. It must describe as accurately as
possible the proportions among the considered biomass components.
This equation is used in FBA to represent cell growth and is usually
employed as biological objective function. In the case that a different
objective is defined, generally, the biomass function has to be used as
a constraint, to consider energy and mass associated drains. In this
Chapter, the biomass equations described in Tables 3.1| and [3.3| (Chap-
ter 3) for Synechocystis sp. PCC 6803 and Synechococcus elongatus PCC
7942 respectively are used as objectives to represent growth.

The solution obtained from FBA is a vector of fluxes with individual
flux values for each reaction.

In this thesis, the software tool PyNet‘Met13 (Gamermann et al., 2014b)
was used to perform FBA simulations. This Python-based toolbox (that
was briefly described in Section is designed to manipulate meta-
bolic networks and perform flux simulation and analysis.

4.3.2 Metabolic models and simulation conditions

In this chapter, the metabolic networks of Synechococcus elongatus PCC
7942 and Synechocystis sp. PCC 6803 presented in Chapter [3|are used to

perform metabolic simulations.

3Tool available at/github.com/CyanoFactory/CyanoFactoryKB


github.com/CyanoFactory/CyanoFactoryKB
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As explained in Section [I.3] Synechocystis sp. PCC 6803 is able to grow
under three trophic conditions that differ in the chosen energy and car-
bon sources (Montagud et al., 2010). These growth modes are:

(i) photoautotrophy, where energy comes from light and carbon from
CO.,

(ii) heterotrophy, where a sugar, often glucose, is the source of both

energy and carbon, and

(iif) mixotrophy, a combination of the former two, where all three ele-
ments (light, CO; and glucose) are combined.

A part from these, Synechocystis also requires a variety of trace inor-
ganic elements such as nitrogen, sulphur, phosphorus, iron, molybde-
num, magnesium and manganese.

Thus, Synechocystis sp. PCC 6803 is what is known as a facultative au-
totroph, that is, it can grow in autotrophic conditions, but it is also able
to obtain energy and carbon from reduced organic species, like glucose.
On the other hand, as it was already mentioned in Section Syne-
chococcus elongatus PCC 7942 is an obligate autotroph (Rippka et al.,
1979), which means that it can only survive under autotrophy, extract-
ing energy and reducing equivalents from light and carbon from CO,.
Thus, it is unable to use reduced organic species to survive.

In the present chapter simulations are performed to compare both me-
tabolic networks, and other simulations are conducted to explore their
productive capacities. In all cases, the autotrophic growth mode has
been chosen as it is the only trophic mode that they have in common.
Table [4.1| shows the set of constraints applied to simulate autotrophic
growth in both iSyn842 and iSyf715 models. In the case of simula-
tions conducted to assess productive capacities, as it was already high-
lighted, the ability of cyanobacteria to perform photosynthesis and grow
on sunlight, atmospheric CO; and some inorganic nutrients, is one of
the main reasons for their interest as organisms for the development of
cell factories. Thus, the goal is to design productive processes based on
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these organisms growing and producing under photoautotrophic con-
ditions.

Table 4.1: Main constraints for autotrophic growth simulations in Synechocystis’
and Synechococcus’ metabolic models. All units are mmole per gram of dry cell weight
per hour, mmol/ (g, - h).

Input fluxes ‘ Lower bound Upper bound

Light in PSI? 0 235
Light in PSI® 0 235
CO, 0 1.7
HCOy 0 1.7
NO3 0 100
SO3— 0 100
PO} - 0 100
glucoseb 0 0

® Carbon-limited conditions.  Values of light con-
straints corresponding to Synechocystis' model, ob-
tained through a two-steps optimisation process (see
Montagud et al.|(2010) for details).

° Glucose intake is disabled in Synechocystis, no glucose
transporter described in Synechococcus.

4.3.3 Essential reactions

One trait that can be used to characterise and compare metabolic net-
works and to evaluate network robustness is reaction essentiality.

The analysis consists on systematically deleting, one at a time, all the
reactions in the network and use FBA to simulate the resulting model
for growth functionality, that is, for its ability to produce biomass. To
simulate the deletion of the reaction, which at the laboratory would be
done by deleting the corresponding gene, there are two options that
are equivalent: (i) delete the corresponding column in the stoichiomet-
ric matrix, or (ii) set the corresponding upper and lower flux bounds
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equal to zero. To simulate cell growth the biomass equation is used as
objective function.

According to the growth rate obtained the reactions can be classified as:

* reactions whose deletion does not affect growth rate (resulting
growth is the same as in the wild type £5%),

* reactions whose deletion reduces the growth rate with respect to
the wild type simulation (reduction greater than 5% of wild type
growth), and

* essential reactions, whose deletion totally disrupts biomass for-

mation.

This analysis was applied on both Synechocystis' and Synechococcus' me-
tabolic networks in order to compare their network robustness.

4.3.4 Comparison of flux landscapes

In the present chapter the flux landscapes obtained from autotrophic
growth simulations of Synechocystis sp. PCC 6803 and Synechococcus
elongatus PCC 7942 are compared. For both simulations to be compara-
ble the same carbon intake constraint had to be set (see Table [4.1).

In order to compare the flux distributions, first the sets of reactions of
the two networks were analysed and a subset of common reactions was
identified and their values were plotted using a scatterplot. In this plot,
similar fluxes will be close to the y = x line, and distance from this
line can be interpreted as a measure of dissimilarity between these two
reactions in the two networks. This way, differences can be visually
identified and analysed.
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4.4 Flux Balance Analysis applied to
Synechocystis' and Synechococcus' metabolic
models

4.4.1 Essential reactions in Synechocystis' and Synechococcus'
metabolic models

Synechocystis' and Synechococcus' metabolic networks obtained at Chap-
ter Blhave been analysed in terms of reaction essentiality. In the case of
Synechocystis, essential reactions under autotrophic, heterotrophic and
mixotrophic conditions were evaluated. In the case of Synechococcus,
only autotrophic conditions were analysed.

Under autotrophic conditions, both organisms exhibit a very similar
behaviour (Figure 4.1 and Table [4.2), which was expectable, given that
they are closely related phylogenetically (Gamermann et al., 2014a).

Synechocystis (A) shows slightly higher robustness than Synechococcus
(B), given the lower percentage of reactions that cause decrease or total
disruption of growth when deleted (yellow and red codes in Figure

and Table[4.2).

(A)  Synechocystis (8)  Synechococcus

0%
1%

Figure 4.1: Essential reactions in Synechocystis’ and Synechococcus’ metabolic net-
works under autotrophic conditions. Red corresponds to no growth, yellow to reduced
growth and green to wild type growth £5%.
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Table 4.2: Essential reactions in Synechocystis’ and Synechococcus’ metabolic net-
works under autotrophic conditions.

Effect on growth Synechocystis | Synechococcus
B Mo growth 235  22.19% | 207 24.32%
Reduced growth 4 0.38% 6 0.71%

I wild type growth +5% | 820  77.43% | 638  74.97%

In the case of Synechocystis, essential reactions under heterotrophic and
mixotrophic conditions were also analysed (Figure .2 and Table [£.3).
Under autotrophic conditions (A) the proportion of reactions that cause
organism's death is slightly higher, while no reactions are found to
cause constrained growth, which altogether indicates that under these
conditions the metabolic network is less flexible to cope with impaired
reactions. If heterotrophic (B) and mixotrophic (C) modes are com-
pared, the proportion of reactions that can be deleted without causing
changes in growth greater than 5% of wild-type growth (green sectors)
is slightly higher in heterotrophy. These modes present similar amount
of essential reactions, and under mixotrophic conditions the propor-
tion of reactions that cause constrained growth is slightly higher. Fur-
thermore, independence of distribution was assessed using Pearson’s
Chi-squared test that proved non-significant for the distributions across
trophic conditions. Meaning that independence could not be rejected.

(A) AUTOTROPHY (8) HETEROTROPHY (C) MIXOTROPHY

0% 1%

Figure 4.2: Essential reactions in Synechocystis’ metabolic network under three
trophic conditions: (A) autotrophy, (B) heterotrophy, and (C) mixotrophy. Red corre-
sponds to no growth, yellow to reduced growth and green to wild type growth £5%.
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Table 4.3: Essential reactions in Synechocystis’ metabolic network under three
trophic conditions.

Effect on growth Autotrophy | Heterotrophy | Mixotrophy
B No growth 235 22.19% | 221 20.87% | 222 20.96%
Reduced growth 4 038% | 16 151% | 17 1.61%

Wild type growth £5% | 820 77.43% | 822 77.62% | 820 77.43%

However, it must be taken into account that by means of these simula-
tions what is evaluated is the direct effect of the presence (or absence)
of a given reaction in the metabolic network. Indirect effects such as
its gene's or enzyme's regulation are not being considered in this kind
of analyses. Thus, these results may vary if regulatory information is
considered. In the following part of this dissertation, an algorithm is
proposed to improve the realism of the obtained results by including
experimental data.

4.4.2 Comparison of flux landscapes of Synechocystis and
Synechococcus

As seen in Chapter 8| Synechocystis sp. PCC 6803 and Synechococcus elon-
gatus PCC 7942 metabolic networks present the same main pathways,
viz. : (i) pathways integrating the central carbon metabolism (glycoli-
sis, citric acid cycle and pentose phosphate pathway), (ii) those related
to energy metabolism (photosynthesis and oxidative phosphorylation),
(iii) pathways for the assimilation of inorganic nutrients (like nitrogen
and sulphur), and (iv) anabolic pathways for the synthesis of cell com-
ponents, biomass precursors and secondary metabolites.

Along these pathways, certain reactions are found that are common
and have the same stoichiometry. In the present section, fluxes of 451
common reactions are compared under autotrophic growth conditions.
Figure 4.3/ shows a scatter plot of the flux values of these reactions in
iSyn842 (z-axis) and iSyf715 (y-axis). Most of those fluxes have similar
values in both systems, and so they appear close to the y = « line. Only
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one reaction is separated from this line more than 1 unit (dashed lines),
which indicates strong similarity between the flux landscapes obtained
with iSyn842 and iSyf715 under photoautotrophic conditions. In fact,
Spearman correlation of these two subsets has a rho of 0.6925 with a
p-value inferior to 2.2e-16.
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Figure 4.3: Correspondence between fluxes in 451 common reactions of iSyn842 and
iSyf715 obtained under autotrohic growth conditions. Flux units are mmole per gram
of dry cell weight per hour, mmol/(g,.. - h). Dashed line marks the distance of one
unit from the diagonal.

In order to check if these subsets were statistically different from their
parent sets of data we used Kruskal-Wallis rank sum test. This test
resulted in non-significance when comparing the 451 values of com-
mon fluxes of iSyn842 to the 1059 values of this model. Same non-
significance was obtained when comparing the 451 values of common
fluxes of iSyf715 to the 902 values of this model. Thus, these subsets
have the same distributions than their parent sets of data. Figure
shows histograms of the whole sets of reaction fluxes in iSyn842 (A)
and iSyf715 (B).
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Figure 4.4: Histogram of flux values distributions of 451 common reactions in (A)
iSyn842 and (B) iSyf715.
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Additional file 4.1 (see page contains the flux distributions result-
ing from the simulations of iSyn842 and iSyf715 models under auto-
trophic conditions (see Table[4.T|for constraints), and the list of common
reactions between them.

The single dark blue point located over the y = x line in the plot in
Figure represents the reaction with the highest difference of flux
value between iSyn842 and iSyf715 of the common 451 reactions. This
reaction is trans-hydrogenation from NADPH to NADH:

1.6.1.2: NAD" + NADPH = NADH + NADP*

This reaction has no flux in the case of {Syn842 (flux = 0) while it has a
considerable flux in the case of iSyf715 (flux = 6.53, Figure . This
difference might mean that Synechococcus has preference for NADH
while Synechocystis makes more use of NADPH. However, even though
iSyf715 was validated to the best of our knowledge, it could be also
the case of a spurious trans-hydrogenation, which would require some
more constraints in iSyf715 to avoid such loops when applying FBA. In
fact, this is one of the drawbacks of this methodology, that many times
hard constraints are needed in order to avoid unpractical simulation
results as well as to account for realistic energy costs.

The only other reaction placed outside the threshold of 1 unit distance
from the diagonal is the point with flux values iSyn842 flux = 0 and
iSyf715 flux = 1.51. The corresponding reaction is:

3.6.1.1 : HyO + diphosphate — 2 PO3—

which is hydrolysis of diphosphate to form two molecules of phos-
phate.

Interestingly, Figure 4.3| also shows that most of the reactions are be-
tween the ranges of -5 and 5 mmol/(g,,, - h), while only a few show
higher values, but never higher than 20 mmol/(g,. - h). Among the
highest fluxes, the point at the (15,15) crossing of the plot represents
ATP synthesis at the ATP-ase (E.C. 3.6.3.14), and the point at the (-8,-7)
of the plot corresponds (considering the direction of the flux) to elec-
tron transfer from thioredoxin to NADPH catalysed by enzyme 1.8.1.9.
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4.4.3 Testing physiological perturbed conditions in
Synechocystis sp. PCC 6803

It has been already mentioned that most of the work done in this thesis
was motivated by the participation in a European project of the Seventh
Framework Programme, CyanoFactory, which aimed at the design of
cell factories based on cyanobacteria to produce biofuels, specifically
hydrogen. Within this framework the metabolic model of Synechocystis
sp. PCC 6803 described in Chapter [3 was used to test environmental
and genetic conditions to enhance Hy production.

Assessment of nitrogen and sulphur substrates to enhance Hy
production

As it was seen in Chapter [3] (FigureB.1)), Synechocystis sp. PCC 6803 has
a complex electron transport chain that combines elements from both
photosynthesis and oxidative phosphorylation (Vermaas, 2001). These
crosstalks cause that electrons flowing through this part of the network
can reach many alternative pathways (Nogales et al., 2012): they can
stay within the electron transport network to increase the ATP /NADPH
ratio through different cyclic routes; or can be directed to other path-
ways, including COs fixation (through the Calvin-Benson-Bassham cy-
cle) and inorganic nitrogen and sulphur reduction, to be used to synthe-
sise biomass components; or they can end in final electrons sinks, such
as reduction of oxygen into water or protons into hydrogen, that are
used by the cell to adjust to high or changing light conditions. Thus, hy-
drogen production competes for electrons with many other pathways.

Nitrogen and sulphur assimilation pathways are among the pathways
that consume electrons from the electron transport chain. Since they
are related to nutrient assimilation, changes in the growth media can be
done in order to increase the amount of electrons available to produce
hydrogen. In this section, a substrate study is described whose goal
was to determine the best sources of inorganic nitrogen and sulphur
that would increase the hydrogen production.
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Previous studies had pointed that inhibiting (Gutthann et al., 2007) or
disrupting (Baebprasert et al., 2011) the nitrate assimilation pathway
and feeding ammonia to Synechocystis, instead of nitrate or nitrite, in-
creased hydrogen production was achieved (Figure (A) and (B)).
Apart from regulatory effects that may occur (especially in the case of
gene disruption), one of the main reasons for this increase in hydrogen
evolution is the electrons saved from being used in nitrate reduction to
nitrite and ammonia that can be then redirected to other electron sinks,
like hydrogen production.

Figure[.6represents the main steps of nitrogen (red) and sulphur (blue)
assimilation pathways. Both pathways receive their electrons directly
from ferredoxin, that obtains them from the electron transport chain.
Considering these observations, the effect of changing nitrogen and sul-
phur sources over maximum Hy yield was investigated through FBA
simulations of iSyn842.

The standard mineral BG-11 medium (Rippka et al., [1979) contains ni-
trate (NOj ') and sulphate (SOZ_) as nitrogen and sulphur sources re-
spectively. The species considered in this study were the framed ones
in Figure nitrate (NO3), nitrite (NO,) and ammonia (NHJ) as
nitrogen sources; and sulphate (SO3™), sulphite (SO37), thiosulphate
(8203_), sulphide (5?7), cysteine (Cys), methionine (Met) and gluta-
thione as sulphur sources. Previous studies from |Gutthann et al.| (2007)
and Baebprasert et al.| (2011) pointed to the use of different sources of
nitrogen. In the case of sulphur, no previous study was found in litera-

ture in which different species were tested for hydrogen production.

The simulations where performed solving a sequence of optimisation
stages in which different objective functions were considered:

* Biomass formation: In this study the biomass formulation defined
in iSyn842 model (Table 3.1) was applied, as it is standard in me-
tabolic FBA simulations (see Section [1.2.1] and [Feist and Palsson
2010)).
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Figure 4.5: Experimental vs. simulated data of hydrogen production in Synechocys-
tis sp. PCC 6803 with different nitrogen sources. (A) Ammount of photo-hydrogen
produced in normal Synechocystis cultures with normal (+Mo) and inhibited (+W)
nitrate reductase enzyme. Adapted from Figure 6 (Gutthann et al.| 2007), improve-
ment of hydrogen production when the enzyme nitrate reductase is inhibited by the
presence of tungstate (+W) and ammonia is present as sole nitrogen source. (B) From
Figure 6 (Baebprasert et al.,|2011), improvement of hydrogen production in mutants
with the nitrate assimilation pathway disrupted. (C) Simulated hydrogen produc-
tion at a given growth rate with different sources of inorganic nitrogen. Simulations
were carried out under photoautotrophic conditions, with fixed amount of photons and
COq, at a fixed growth ratio (maximum growth for this carbon intake) using Algo-
rithm[4.1} and allowing the input of different nitrogen sources: nitrate (NO3), nitrite
(NO2) and ammonia (NH4).
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* Intake of nitrogen source n: defines the reaction flux that describes
transport of the given nitrogen source

neN = {NO;;NO;;NHI}

* Intake of sulphur source s: defines the reaction flux that describes
transport of the given sulphur source

seS = {SOi_; SO%‘; SQO:?_; 5% Cys; Met;glutathione}

* Hydrogen production: defines the positive flux of the bi-directional
hydrogenase reaction, i.e. the hydrogen production

rm, : NADPH + 2 Ht = H,

Algorithm [£.T|shows the sequence of steps followed to obtain the max-
imum growth and hydrogen yields achievable if the cells are grown on
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a culture media containing each of the nitrogen and sulphur sources
considered. First (lines 1-4), a simulation is run maximising biomass
production under autotrophic conditions with standard BG-11 nitro-

gen and sulphur sources:
OSUNO; <1000, v, =0,Vne N |n#NOy; (4.6)
0 < vgpe- <1000, v,=0, Vs€.7|s# SO3~ (4.7)

From this simulation the value of normal growth under autotrophic
conditions in standard BG-11 media is obtained (line 5).

Next, for each alternative substrate considered (t), if it is a nitrogen
source (lines 7-9), nitrogen intake is restricted to ¢t and sulphur source
is set to be SO?™:

0<wv <1000, v,=0,Vne N |n#£t (4.8)
0< vg02- < 1000, vs=0, Vse€ . |s# SO;" 4.9)

And if alternate sulphur sources are considered (lines 10-12), nitrogen
is limited to be NOj3 and sulphur intake is restricted to ¢ :

0 < wyp; <1000, v, =0, Vne N |n#NOs (4.10)
0<wv <1000, vs=0,Vse.|s#t (4.11)

Then the biomass formation is constrained to the value obtained from
the first optimisation (line 13):

Ubiomass — W (412)

and a new simulation is run minimising the intake of the given nitrogen
or sulphur species to obtain the minimum flux v}, needed to achieve
normal growth using this nitrogen or sulphur source (lines 14-16).

Finally, a last simulation is run (lines 17-20) maximising hydrogen pro-
duction while biomass formation is fixed to be equal to ;» and the max-
imum intake of the substrate under study is set to v}, :

0<wv <, (4.13)



Input: metabolic network and constraints
Output: maximum growth and hydrogen yields with each
considered nitrogen and sulphur source
1 Set constraints to autotrophic growth (Table ;
2 Set nitrogen and sulphur sources to BG-11 species (Equations
and @.7)) ;
3 Set objective function to maximise biomass formation ;
4 Calculate flux distribution v|; using FBA methodology ;
5 Extract from v|; the flux of biomass formation p ;
6 for each substrate t considered do
7 ift € ./ then

8 Restrict nitrogen sources to ¢ (Equation (4.8)) ;

9 Restrict sulphur sources to SO~ (Equation (£.9)) ;
10 elseif ¢t € . then
1 Restrict nitrogen sources to NO; (Equation {.10)) ;
12 Restrict sulphur sources to ¢ (Equation {.11)) ;
13 Constrain flux of biomass formation to be equal to u

(Equation (4.12)) ;

14 Set objective function to minimise intake of the given

substrate ;
15 Calculate flux distribution v|, using FBA methodology ;

16 Extract from v|, the flux of substrate intake v!,, ;

17 Set upper bound of flux of substrate intake to v, (Equation
@13 ;

18 Constrain flux of biomass formation to be equal to u
(Equation (4.12));

19 Set objective function to maximise hydrogen production ;

20 Calculate flux distribution v|3 using FBA methodology ;
21 Extract from v|3 the flux of hydrogen production vy, ;

22 Store the pair ;2 and vy, at row t of the matrix of results R
23 end
24 return R

Algorithm 4.1: Sequence of steps to evaluate maximum hydrogen
yield in presence of different nitrogen and sulphur sources.
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This complex process is needed to approach the most optimal combi-
nation of substrate intake, growth and hydrogen production by using
the mono-objective linear optimisation-based methodology employed
in Flux Balance Analysis. It will be seen later in this thesis that multi-
objective optimisation paradigm can be applied to metabolic simula-
tions to permit the consideration of several simultaneous objectives.

The results obtained at the simulations of alternative nitrogen sources
(Figure page qualitatively match experimental observations
reported by previous works (Gutthann et al., 2007; Baebprasert et al.,
2011). Both experimental and simulated data show that the amount of
hydrogen produced can be increased by using more reduced nitrogen
sources. This is due to the fact that the form in which Synechocystis is
able to assimilate nitrogen is as ammonia, and so all the electrons that
are not used to reduce the nitrogen to this form (8 mmol of electrons
per mmol of nitrogen) are available to produce hydrogen.

In Figure 4.7} the effect of using alternate nitrogen and sulphur sources
can be seen separately (A and B) and combined (C). In the case of sul-
phur, an increase is observed from SO?~ to other inorganic sources (like
SO3~,S203™ or S*7) which is due to the savings in electrons that do are
not used to reduce the inorganic sulphur (up to 8 mmol of electron
per mmol of sulphur). When using cysteine or glutathione a higher
increase is possible, because these molecules are also sources of car-
bon and electrons. However, with methionine as source of sulphur no
increase is observed. This may be due to the fact that electrons avail-
able in methionine molecules cannot be extracted through catabolic re-
actions, and thus cannot be used to produce hydrogen. The effect of
changing sulphur sources is less dramatic than using alternate nitro-
gen sources. This is because the amount of sulphur needed for growth
is significantly smaller, and thus fewer electrons are consumed in total
to reduce the oxidized sources to produce sulphide.

Additional file 4.2 (see page [249) contains the flux distributions result-
ing from all the simulations performed in this study.
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Figure 4.7: Results of the simulation of hydrogen production at a given growth rate
with different sources of nitrogen and sulphur. Simulations were carried out under
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and sulphur sources leading at best maximum optimal hydrogen production.
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The conclusions of this study show that by choosing the appropriate
source of these inorganic substrates, maximum optimal Hy production
can be increased substantially (Figure (©)). Besides, numeric results
of the simulations can be used to assist experimental design of growth
media by calculating the minimum amount of each nitrogen or sulphur

source needed at a given growth rate.

4.5 Development of software tools for FBA

simulations

Metabolic models and Flux Balance Analysis are valuable tools to anal-
yse metabolic behaviour of cells and to guide design of new strains
by assessing how different modifications in media or genomes can af-
fect growth or productivity of desired metabolites. In order to easy the
access of different scientific communities to perform this kind of me-
tabolic simulations using metabolic models, it is important to provide
user-friendly open-source tools. In this sense, and as a part of the men-
tioned European research project, the PhD applicant has collaborated
with the research group led by Dr. Rébbe Wiinschiers from the Univer-
sity of Applied Sciences Mittweida in the creation of CellDesign!4.

CellDesign is a web-based environment that allows non-specialist re-
searchers to simulate and evaluate environmental and genetic pertur-
bations, and design and integrate parts and devices into the cell wild
type represented by a metabolic model.

For the design of this tool two key aspects were taken into considera-
tion. First the system should be easy to use. To accomplish this goal,
a deep study of similar existing tools was performed, that allowed to
realise that many of these tools are oriented to experts (i.e. COBRA
Toolbox (Becker et al., 2007 Schellenberger et al., 2011) or COBRApy
(Ebrahim et al., 2013) come to mind). The second aspect to be consid-
ered was the information architecture: an appropriate structure should

"“Home pagehttp://celldesign.de


http://celldesign.de
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allow the user to organize, select and show all the information in a
straightforward way. They were identified the tool inputs (main set-
tings, experiment customization) and outputs (results summary and
visualization), so that the relationship between both remains coherent
and modular, ensuring that the system is flexible and scalable.

The PhD applicant was part of the team that designed and built this
tool. Her role focused on the technical guidance about metabolic simu-
lations, use of PyNetMet for these, and promote and supervise the use
of this tool in a Bachelor's level metabolic engineering and modelling
course throughout three years as Teaching Assistant.

The alpha version was available at the end of 2014, when it was pre-
sented to the researchers integrating the CyanoFactory research project
(most of them with an experimental background). It was also tested as
an educational tool in a curse on metabolic engineering and modelling
from 2014 until 2017. With the feedback obtained from the consortium
partners and students, some new desirable features were identified and
implemented, which contributed to improve the user-interface doing it
friendlier for non-experts.

In the current version of CellDesign users can load a pre-built model
or create their own from a template, and also some pre-defined mod-
els (including the i{Syn842 model presented in Chapter [3) are avail-
able. Reactions and metabolites can be added, modified or deleted, and
changes can be saved in the same model or as a new one. The layout is
organized by tabs: the first tab is devoted to reactions and their features
(metabolites involved, stoichiometry, reversibility, constraints), the sec-
ond tab presents metabolites and their features (reactions in which the
metabolite is produced or consumed, external/internal), at the third
tab the settings of the simulation can be adjusted (objective, type of
simulation, formats of the results), and at the fourth tab the results are
presented after running the simulations. CellDesign uses an updated
version of PyNetMet (Gamermann et al., 2014b) to calculate metabolic
fluxes through Flux Balance Analysis, that are shown using different
graphical resources (bar plots, flux maps and tables), with some addi-
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tional information about the simulation, and can also be exported in

different formats.

4.6 Conclusions of this chapter

In this chapter uses of Flux Balance Analysis have been illustrated us-
ing the metabolic networks of two model cyanobacteria described in
Chapter 3| Different analyses have been performed to assess the ef-
fect of gene knock-outs on growth rate, to quantitatively compare the
flux landscapes of the two cyanobacteria, and to test the effect of mod-
ifications in growth media on the production of a chemical of interest,
namely hydrogen. These examples emphasize the convenience of using
simulation techniques to assess design strategies, that require reduced
time and materials investment, before trying them in the laboratory.

However, the variety of analyses that can be performed with FBA, is
limited. Some limitations have been pointed out in the present chap-
ter such as impossibility of accounting for regulation effects, neces-
sity of hard constraints to avoid futile cycles and to match realistic en-
ergy costs, and impossibility of optimising several simultaneous objec-
tives. Limitations that lead us to require the use of other algorithms
to extend and enrich the possibilities of solutions. In the following
Part of this dissertation, an algorithm is presented that is based on
multi-objective evolutionary optimisation and aims at addressing these
limitations, without losing the simplicity of constraint-based metabolic
simulations that is one of their greatest strength.

Finally, a web-based software tool has been presented that aims at fa-
cilitating the access of non-specialists to these modelling techniques
and providing an open platform for analysis and assessment of design
strategies.
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Meta-MODE:

a multi-objective
evolutionary algorithm for
constraint-based flux
simulations

5.1 Chapter abstract

In this chapter a new tool for genome-scale metabolic simulations based
on multi-objective optimisation is described. The presented algorithm,
referred to as Meta-MODE, is used in order to solve a multi-objective
optimisation process based on differential evolution applied to metabo-
lism simulation. It incorporates specific mechanisms to improve perti-
nency of the obtained solutions, as well as to prepare the algorithm to
deal with the large-scale, strongly constrained, and multi-modal opti-
misation problem that arises when performing genome-scale constraint-

based flux simulations. It also includes the mathematical formulation
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of a set of constraints and objectives relevant to ensure the biological
meaningfulness of the solutions.

The resultant algorithm aims to avoid some of the main drawbacks of
classic methods for constraint-based metabolic analysis, like the need of
defining a fixed equation accounting for biomass assembly, the strong
dependency of the solutions on the selected objective or the limitations
encountered to define informative constraints or objectives that exceed
the mathematical capabilities of linear and/or mono-objective optimi-
sation techniques.

A comprehensive description of the mathematical formulation of the
algorithms and processes involved in this simulation tool is presented
in the present chapter. In the next chapter, an extensive example of
application of this tool is discussed.

5.2 Introduction

As it has been discussed in Chapter (I, Systems Biology aims at the
study of living organisms as a whole, trying to understand how a cell's
behaviour emerges from the interaction of its molecular parts (Ideker
et al., 2001; Kitano, 2002). In particular, analysis of metabolic fluxes can
assist researchers in determining physiological states of the cells. Dif-
ferent phenotypes arising from different genotypes and environmental
conditions can be studied to investigate metabolic functions and aid in
rational design of biological systems performing desired roles. Meta-
bolic models and, specifically, constraint-based metabolic models, pro-
vide a functional tool for this purpose.

The starting point to perform constraint-based metabolic simulations is
to carefully reconstruct the metabolic network describing all biochem-
ical transformations occurring in the system. The variable object of
study are the metabolic fluxes, that describe how materials and energy
are converted and flow through this network. In order to delimit the
set of practical flux distributions that characterise feasible phenotypes,



121

a combination of constraints must be imposed that specify physico-
chemical, environmental and biological limitations affecting real meta-
bolic systems. Flux distributions remaining in the biologically feasible
solution space will represent allowable metabolic phenotypes. Thus, a
precise and complete description of the governing constraints is a key
issue in this modelling technique. Meaningful, often complex, rules are
needed to properly account for real metabolic restrains.

In order to extract particular flux distributions from the set of all the
allowable solutions, optimisation is applied based on the assumption
that evolution under selective pressure has made organisms perform
in an optimal (or quasi-optimal) metabolic regime. In this regard, it
is crucial that the mathematical objective function appropriately repre-
sents the evolutionary objective. Thus, selection of proper biological
objectives is another essential point to obtain meaningful results.

However, it is difficult to account for all mechanisms and processes
that can favour evolutionary advantage of an organism as a single ob-
jective. Often, living systems face complex situations (adaptation to
shifting conditions, multiple functions, external threats, etc.) in which
they are forced to find a trade-off between different, seldomly opposed
objectives (Schuetz et al., 2012} Metallo and Vander Heiden, 2013). Clas-
sic optimisation algorithms described for constraint-based metabolic
modelling (see Section for a review) are mainly based on mono-
objective optimisation techniques, which don't allow consideration of
competing metabolic goals. Only a few research works have applied
multi-objective procedures to perform flux simulations (Nagrath et al.,
2007, 2010; Schuetz et al., 2012).

Apart from considering solely single objectives, some of the classical
tools suffer from other important limitations, like (i) depending on the
definition of a biomass equation, (ii) producing results strongly depen-
dent on objective functions, (iii) being restricted to linear constraints
and/or linear objective functions, or (iv) yielding too optimally unreal-
istic flux distributions.
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As it was mentioned in Section[I.2.1, many methods rely on the defini-
tion of a function describing biomass assembly . Usually, this function
is a fixed stoichiometric combination of biomass components and pre-
cursors. This approach, has satisfactorily been used to solve simple
FBA-based optimisation problemsl5, but it has significant shortcom-
ings. First, like all phenotype traits, biomass composition is a result
of both genetic and environmental factors, and thus it may vary under
different conditions. A way to circumvent this drawback is to define
different biomass equations for the distinct combinations of conditions,
but this way the final trait (biomass composition) is imposed before-
hand, instead of emerging as a consequence of the studied conditions.

A second implication of using single (even when assorted) biomass
functions to account for growth objective is that the resulting flux dis-
tribution will strongly depend on the elements present in this equation
and their proportions. Accurate determination of biomass components
and their corresponding coefficients is a hard task (see Feist and Pals-
son| (2010) for a detailed description of the process), and thus it is con-
venient to attenuate the effect that errors in these results may have on
the final flux distributions.

Another common feature among FBA-based methods is that they turn
to Linear Programming optimisation techniques, which forces all the
relations stated among constraints and conditions to be linear. Even
methods that employ non-linear optimisation techniques to consider
non-linear objectives usually limit their constraints to linear functions.
Non-linear rules and relationships often appear to control metabolic
behaviour (Metallo and Vander Heiden, 2013) and thus, it is important
to provide means to consider such relationships when performing me-

tabolic simulations.

Nevertheless, even if the selected optimisation algorithms allow for
the inclusion of non-linear rules, the way to define metabolic regula-
tion is not straightforward (for example Covert et al. (2001) and Shlomi
et al.| (2007) add gene regulation to the optimisation process, but more

15See section IFlux Balance Analysisl at pagefor a description of this method.
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equations and parameters are needed). Deciphering all the underlying
regulation mechanisms and expressing them in terms of mathematical
rules requires great amounts of information and a deep knowledge of
the system which is not always at hand. However, nowadays with the
advent of high-throughput technologies, the field of systems biology
has amassed plentiful omics data, which supposes a great opportunity
for metabolic modelling. Since the results displayed by experimental
measurements are a consequence of the internal regulation of the sys-
tem, combining those data with metabolic models can aid to implicitly
consider their effects. Furthermore, sets of data obtained under differ-
ent genetic and/or environmental conditions may show different be-
haviour. Thus, available data can be included within metabolic simula-
tions to heighten their predictive capabilities and their plasticity when
dealing with perturbed conditions.

In this work, a tool is proposed that uses a multi-objective evolutionary
optimisation algorithm to perform constraint-based steady-state flux
simulations of genome-scale metabolic networks. This tool aims to
offset some of the limitations found in classic algorithms, with the fi-
nal goal of increasing predictability and improving accuracy of simula-
tions.

Due to the multi-objective character of the proposed tool, it allows for
considering multiple, potentially competing objectives, which aligns
better with the situation occurring with adaptive evolution. In addi-
tion, simultaneous optimisation of various metabolic functions allows
for the analyses of their interdependences. As a result of the optimisa-
tion process, instead of obtaining a single optimal flux distribution, as it
is the case of FBA, a set of solutions is achieved, each of them describing
different trade-offs between objectives. These solutions, in general, will
appear to be suboptimal for single objectives considered separately, but
they might match with more realistic flux distributions.

On the other hand, this multi-objective optimisation algorithm is based
on differential evolution, and so it is flexible to admit non-linear con-

straints and objectives. The way constraints are handled during the
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optimisation process eases the definition of restrictions, that can be de-
scribed in a simple way without needing intricate or cryptic mathemat-
ical definitions.

Furthermore, this tool gives a framework to include experimental in-
formation that can be used throughout the simulation process to tune
the results. Using this tool, as it will be described in following sec-
tions, measured metabolic fluxes are included in a way that they do
not hardly restrain the solution space, but they favour the appearance
of solutions that quantitatively match the experimental measurements.

The following sections of this chapter are devoted to thoroughly de-
scribe the applied strategy, and to explain in detail the implementation
of the algorithm. A broad example of application of this simulation tool
is later addressed in Chapter 6]

5.3 Multi-objective metabolic flux analysis

As it was explained in Chapter [2} in order to implement a successful
multi-objective approach, three fundamental steps are required: the
multi-objective problem (MOP) definition, the multi-objective optimi-
sation process, and the multi-criteria decision-making (MCDM) stage.
In the context of constraint-based flux simulations, these three steps
will extend the phases of metabolic flux analysis that were shown in
Figure [1.T] (Chapter [T} page [18). Starting from the stoichiometry of
the metabolic network, previously carefully reconstructed and mathe-
matically represented, the multi-objective metabolic flux analysis stage
comprises the following steps (Figure[5.1):

15%) During the MOP definition, a set of constraints must be identi-
tied that ensure the solutions remaining at the feasible space ap-
propriately symbolise practical metabolic phenotypes. Besides,
suitable objective functions, that represent biologically relevant
objectives, must be defined. Together, constraints and objectives
must guarantee the pertinency (in this context, meaning the valid-
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ity of the solutions from a metabolic point of view) of the obtained
solutions.

27d) In the multi-objective optimisation process an appropriate al-
gorithm is used to find the set of solutions that form the best
Pareto front approximation, given the defined MOP. This algo-
rithm must include the necessary mechanisms to ensure conver-
gence, diversity and pertinency of the solutions of the obtained
Pareto front approximation, and to deal with the specific prop-
erties of the optimisation problem (constraints, large scale and
multi-modality’®). In the present work a multi-objective evolu-
tionary algorithm (MOEA) is used. It is based on the sp-MODE!
algorithm defined by Reynoso-Meza et al.|(2010) (see Section[2.4.1|
for a description).

3'd) In the MCDM stage the solutions obtained from the optimisa-
tion algorithm are visualised and examined. Among them, those
that are thought to best represent the actual metabolic behaviour
of the system, are selected. These selected solutions can then be
analysed to contribute to further comprehension of the metabo-
lic functioning of the system under study. Interestingly, multiple,
slightly different, solutions that represent equally Pareto-optimal
metabolic phenotypes can be selected in this process, thus enrich-
ing the results of these simulations.

5.3.1 Addressing special features of flux simulations

When applying a multi-objective evolutionary algorithm to determine
flux distributions at a genome scale the optimisation problem that arises
has some special characteristics that must be considered. First, it will
be a large-scale problem, since the decision variables set is the set of
all reaction rates, typically around 1000 (in some cases even more than

' A multi-modal optimisation problem is that in which different decision vectors,
that is vectors of variables, lead to the same objective vector

7Tool available at http://www.mathworks.com/matlabcentral/
fileexchange/39215
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2000) when working at genome scale (Erdrich et al., 2015). It will be
also a strongly constrained problem, even if the amount of boundary
constraints is minimised, as the steady state condition sets out one
equality constraint per metabolite, usually from several hundreds to
more than one thousand. Besides, due to the diversity of internal (of-
ten redundant) pathways, different combinations of internal fluxes are
possible for an identical output, even when an absolute optimum is
considered (alternate optima (Mahadevan and Schilling, 2003; Schuetz
et al., 2007)), which makes the problem also multi-modal. But not ev-
ery combination is valid from the point of view of cellular metabolism:
several solutions can describe a mathematically feasible and optimal
distribution which is not biologically meaningful. Therefore, it is also
important to consider the pertinency of the resultant flux distributions.

In order to address these particular features, specific mechanisms have
to be considered during the MOP definition and the MO optimisation
process to ensure both that the optimisation algorithm can deal prop-
erly with the problem at hand, and that the results it generates are prac-
tical for the purpose at hand.

Parsimony

It is common that living organisms exhibit several redundant path-
ways in their metabolic networks, which gives them plasticity to adapt
to and survive under different environmental conditions (Gtiell et al.,
2014). When using these metabolic networks for optimisation-based
simulations this redundancy leads to alternate solutions with different
internal flux distributions, even when boundary restrictions are applied
to input and output reactions. This effect is magnified when stochas-
tic procedures are used to generate candidate solutions. In particular,
flux landscapes may appear with excellent nutrient consumption and
product yield features that include unrealistically high fluxes at internal
cyclic pathways. In order to avoid such undesirable solutions and to fa-
cilitate the appearance of biologically meaningful flux distributions, the
principle of parsimony is applied in this work: the optimisation process
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is driven so that flux vectors with lower overall metabolic activity are

favoured.

In terms of biological meaning, strains that require lower overall flux
through the metabolic network represent a parsimonious enzyme us-
age, which, in the end, means reduced expenses for enzyme synthesis
(Schuetz et al., 2007; [Lewis et al., 2010).

The inclusion of a parsimonious criterion during the optimisation helps
both to ensure the obtained solutions are pertinent, and to meliorate
internal distribution of the fluxes through pathways, avoiding futile
cycles and unproductive extremely high fluxes.

Closeness to experimental fluxes

Nowadays, with high-throughput technologies, the field of systems
biology has gained access to sets of physiological data that were not
achievable in former times. '3C-based metabolic flux analysis studies
allow for determining in vivo sets of metabolically steady-state reac-
tion rates that can be combined with metabolic models to heighten the
predictive capabilities of computational simulations and their plastic-
ity when dealing with perturbed conditions. The algorithm described
here enables the inclusion of experimental fluxes within the optimisa-
tion process in such a way that the calculated fluxes are close to the
experimental ones.

But the amount of metabolic fluxes that can be obtained from in vivo
experiments is limited, and much smaller than the number of variables
to determine. The Meta-MODE algorithm, that will be described in
Section uses a few experimental values to adjust the whole set of
fluxes. This mechanism provides a way to deal with multi-modality
and improves the pertinency of the solutions, as the flux landscapes
obtained must be coherent with the biological reality described by the
experimental data. Therefore, the resultant flux vectors will better ap-
proximate the real pathway distribution.
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Pairwise flux ratios

Organisms and cells have evolved a variety of mechanisms to modu-
late reaction rates through metabolic pathways. Among them, it is well
known that cell control systems often detect and adjust the relative flux
proportions around certain metabolic hubs (Metallo and Vander Hei-
den| |2013). Important examples of ratios that can be used to charac-
terise the physiologic state of a cell are the P/O (Phosphate/Oxygen)
ratio, the ratio between NADH and ATP synthesis, or the ratio between
linear and cyclic electron flow in photosynthetic organisms (Dong and
Weli, 2004; [Kwon et al., 2013). This kind of information is sometimes
obtainable through specific experimental setups and it would be very
valuable to regulate the flux response of a metabolic network.

However, a ratio between two fluxes is not a linear relationship and so
there is no straightforward way to include this information when us-
ing linear optimisation. Researcher could use iterations of constraint-
based simulations in order to force a given ratio between two reactions,
but such strategies imply a methodological artifice that frequently re-
duces the plasticity of the model, highly limiting its predictive value.
In contrast, the use of evolutionary optimisation techniques facilitates
the definition of non-linear constraints and objectives, thus allowing
the incorporation of flux ratios to improve the metabolic response of
the simulations. In Meta-MODE, the ratio between the flux of a pair
of reactions can be defined, and the solutions will be selected such that
the proportion between these fluxes respects the given value, without
enforcing individual values for each reaction.

Anchor points

During an evolutionary optimisation process successive populations
of solutions are generated from their predecessors, evaluated, and se-
lected so that they optimise the defined objectives. To start this process,
an initial population is needed. Typically, the initial population is gen-
erated stochastically, selecting random individuals from the decision



130 Chapter 5. Meta-MODE: a MOEA for flux simulations

space. However, in the case of flux simulations, given the large amount
of variables, and the strong constraint imposed by the steady state, the
proportion of feasible solutions is quite low, so it is not to be expected
that randomly selected flux vectors satisty this condition. To deal with
this situation, anchor points (Definition were added to the initial
set of solutions.

Definition 5.1 (Anchor points). Given the multi-objective optimisation pro-
blem stated at Equation @.1)), anchor points (v**) are points that correspond
to the optimal value of the individual objectives in the feasible space. That is,
those that are solution of the problem

min 7 (v), ke{l,2,...,q}

subject to

Thus, anchor points are solutions of the problem (since they are inside
the feasible space) that are optimal for individual objectives. As they
are solutions they satisfy all the constraints, so they form a starting set
of feasible flux vectors; and they are optimal for individual objectives,
so they will be at the ending parts of the Pareto front. The addition
of anchor points among the initial population, together with other ran-
dom vectors, improves the convergence to feasible solutions and de-
creases the computational cost of the algorithm.

5.4 MOP definition for metabolic flux simulation

In this thesis, an approach is proposed based on multi-objective op-
timisation to perform constraint-based metabolic simulations. Taking
into account what was introduced in Section 2.2labout MOPs, and what



131

was explained in Section about constraint-based flux analysis, the
MOPs stated for constraint-based metabolic simulations will be of the

form:
mgn Z(v)=[Z1(v),Z2(v),..., 24 (v)] (5.1)
subject to:
Sv=0 (5.2)
Vjrep € (—00,+00) jed{l,...,n} (5.3)
Vjirr € [0,400)  je{l,...,n} (5.4)
Ly, Svj < uy, jed{l,...,n} (5.5)
g(v)<0 (5.6)
h(v)=0 (5.7)
where:

Z (v) is the vector of objective functions,

S is the stoichiometric matrix,

v is the vector of fluxes,

Vjrev are the fluxes of the reversible reactions,
vjirr are the fluxes of the irreversible reactions,
ly; is the lower flux bound for reaction j,

uy; is the upper flux bound for reaction j,

g (v) are other inequality constraints'®, and

h (v) are other equality constraints'’.

As it has been stressed in this dissertation, the definition of constraints
and objectives that properly describe the limitations and challenges
that cells must face during evolution under selective pressure is cru-
cial to ensure the biological meaningfulness of the solutions that will

'8Like for example closeness or ratio constraints defined later in this chapter.
YLike for example in the case of fixing biomass production rate to experimental
value of growth rate.
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be obtained later at the optimisation process. In this section, the con-
straints and objectives proposed in this work to state appropriate multi-
objective problems for constraint-based metabolic simulations are de-
scribed.

5.4.1 Definition of metabolic constraints

As most of the optimisation problems, flux simulations of genome-scale
metabolic networks require considering constraints. The most common
kind of constraints at any optimisation problem are the bound con-
straints, which define the boundary of the decision space. In the case
of metabolic steady-state flux simulations, apart from lower and upper
bounds for each reaction flux, it is essential to ensure each metabolite's
mass balance . Besides, other constraints can be convenient to improve
pertinency of the obtained solutions. Below, the different kinds of con-
straints pre-defined in Meta-MODE are described.

Flux bounds

Flux bounds that appear in constraint-based metabolic flux analysis
mainly comprise two types:

e directionality bounds (Equations and (5.4)), that establish
that reversible reactions can take negative values (meaning flux in
the opposite direction to the one described by the stoichiometric
equation), while irreversible reactions can only have positive val-
ues. In practice, in numerical simulations, numbers much higher
than normal flux values (usually 100 or 1000) are used to repre-
sent oo (see Section [4.4.2in Chapter [ for normal ranges of meta-
bolic fluxes).

* capacity and availability bounds (Equation (5.5)), that are imposed
only at certain reactions, generally exchange reactions, and ac-
count for maximum enzyme/transport capacities and environ-

mental nutrient availability.
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Mass balance under steady state

Equation (5.2) establishes a steady-state mass balance around every in-
ternal metabolite in the network. These steady-state balances become
equations that set out one equality constraint per metabolite.

There exist some metabolites considered external, which means they are
out of the system boundaries. Here the word “system” refers to the
mathematical representation of the cell, not the physical cell. This way,
external metabolites don't have to be necessarily secreted (or incorpo-
rated from) outside the cell membrane. They are metabolites that are
excluded from the mass balance, and thus they can accumulate or be
consumed. Consideration of such especial metabolites is fundamen-
tal to describe inputs, outputs, accumulation of substances (such as re-
serve substances) and net production of components, like biomass.

Closeness to experimental fluxes as constraints

Previously, in Section it has been pointed how inclusion of in vivo
measured sets of fluxes can help to improve the quality of the obtained
solutions. One way to include this information is as an optimisation
constraint. In order to ensure the calculated fluxes are close to the
experimental ones, different ways to measure the divergence between
them have been defined in the algorithm.

One option is to apply the concept of deviation. First, individual devi-
ations between each experimental value and the corresponding calcu-
lated value at a given flux vector are evaluated as relative deviations

with respect to the experimental value:

|’U:xp o ,Ugalc|
oFT

0e = eck (5.8)
where F is the set of reactions with experimental flux measurements.

To represent these individual deviations as a single value, several op-
tions are available among the simulation settings: norm of the vector
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Figure 5.2: Behaviour of the criteria for the selection of a value of deviation from
individual deviations with respect to the experimental fluxes. The options available
in Meta-MODE are: Norm: norm of the vector of individual deviations; SumDesv:
cumulative sum of the individual deviations; MaxDesv: maximum of the individual
deviations, MedianDesv: median of the individual deviations; MeanDesv: mean of
the individual deviations; NumFlux; number of fluxes with deviation greater than a
given threshold.

0, cumulative sum of the relative deviations, or mean, median or max-
imum of the relative deviations, as well as the number of fluxes with
deviation greater than a given threshold. .An example of the behaviour
of the different criteria is shown in Figure 5.2

The other option available in the algorithm to calculate the closeness
between experimental and calculated flux values uses a similarity coef-
ficient based on the standard fuzzy metric. Prior to define the proposed
metric, it is necessary to introduce some previous definitions to explain
what is the standard fuzzy metric.
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Definition 5.2 (Fuzzy metric space in the sense of George and Veera-
mani (George and Veeramani, [1994)). The 3-tuple (X, M, ) is said to be a
fuzzy metric space if X is a non-empty set, * is a continuous t-norm and M is
a fuzzy set on X x X x )0, +oo[ satisfying the following conditions:

M (z,y,t) >0 (5.9)
M (z,y,t) =1 ifand onlyif z =y (5.10)
M (z,y,t) = M (y, z,t) (5.11)
M (z,y,t)« M (y,2,8) < M (x,z,t + s) (5.12)
M (z,y,-) : ]0,+oo[ — [0, 1] is left continuous (5.13)

x,y,z€ Xandt,s >0

Definition 5.3 (Fuzzy metric). (George and Veeramani, 1994) If (X, M, )
is a fuzzy metric space, then (M, x) is said to be a fuzzy metric in X.

Definition 5.4 (Standard fuzzy metric). (George and Veeramani,|{1994) Let
(X, d) be a metric space. Define a x b = ab for any a,b € [0, 1]. Let M, be the
function defined in the set X x X x]0, +oo] as follows:

Mq(z,y,1) (5.14)

- t+d(z,y)

Then, the function My is a fuzzy metric induced by the metric d. My is called
the standard fuzzy metric.

As the authors remark in |George and Veeramani (1994), a fuzzy metric
M (x,y,t) defined according to Definitions 5.2 and [5.3| can be thought
of as the degree of nearness between z and y with respect to ¢. It is
identified M (z,y,t) = 1 with = y (identical points), and M (z,y,t) =
0 with oo (infinitely separated points). Thus, a fuzzy metric constitutes
a good measure of the closeness between two points, in this case, two
fluxes, with respect to a certain reference value ¢.

In this work a metric is defined based on the standard fuzzy metric to
measure closeness between experimental and calculated fluxes taking

as d the Euclidean distance between the fluxes, and as ¢ the experimen-
tal flux (Equation (5.15)).
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ol

l —
M(Uga c? ,v:xp’ ’,U::EPD - |’U§xp| + |,U§IEP _ Ugalc‘ (515)

Given equations (5.8) and (5.15) the relation between ¢ and M is:

1 1- M
M= — d o=
irs ™ M

(5.16)

It is important to take into account that M accounts for similarity while
0 accounts for deviation, so they must be treated oppositely: in the case
of M the aimed values will be high (high similarity), while when con-
sidering 0 low values will be pursued (low deviation).

Other user-defined distances or metrics can be easily included to the
algorithm to describe closeness between experimental and calculated
fluxes. The selection of one particular method depends on the purpose
and characteristics of the given simulation.

Closeness to experimental fluxes can be used both as a constraint, es-
tablishing an upper limit for the admissible deviation (lower limit for
the desired closeness), or as an objective, aiming at the minimum pos-
sible deviation (maximum possible closeness).

When closeness to experimental fluxes is used as a constraint, to obtain
a single value that represents the set of deviation/closeness values, it is
preferable to use criteria that focus on individual values, such as max-
imum, minimum or number of fluxes trespassing a threshold, rather
than norm, sum, median or mean which refer to the set as a whole.

Pairwise flux ratios as constraints

As discussed in Section including previous knowledge about re-
actions that are known to keep a proportion between their relative rates
in nature can also enhance pertinency of the resulting flux distributions.
Those proportions (or ratios) can be incorporated into the simulation as
constraints. To have a measurement of how similar are the calculated
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ratios to the stated ones, again the concepts of relative deviation (Equa-

tion (5.18)) or similarity (Equation(5.19)) can be applied.

,vcalc

calc __ “T1
Prige = - calc r1,r2 € P (5.17)
Ve
erp calc
Prir2 — Prig2
57»1,7@ = —emp s r1,T9 € P (518)
prl,r2
exp
prl,r2
Mryry =7 - l ri,rg € P (5.19)
calc
Pr1r2 + Prir2 = Prigr2

where P is the set of reactions with information about ratios.

Like in the case of experimental fluxes, researchers can define other
metrics to account for divergence or nearness between calculated and
experimental ratios. Also, the information about ratios can be applied
both as constraint and as objective.

5.4.2 Definition of metabolic objectives

There exist different objective functions that have been frequently used
in the field of systems biology to perform constraint-based optimisa-
tions of genome-scale metabolic networks. Among the most popu-
lar are the maximisation of biomass (or other extracellular products)
yield, the minimisation of the overall intracellular flux, the minimisa-
tion of nutrient consumption and the minimisation of ATP production
(Schuetz et al., 2007). When applied independently to a mono-objective
(linear or non-linear) optimisation problem, most of these objectives
need additional constraints (growth rate limits, maintenance energy
drains, bounds for some cofactor use ...) in order to obtain solutions
that properly account for the behaviour of actual metabolic systems
(Price et al., 2004; Schuetz et al., 2007). The algorithm described here
allows the researchers to simultaneously optimise multiple competing
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objectives, thereby mimicking how organisms operate. Using this strat-
egy, the amount of further constraints can be reduced which gives more
plasticity to the simulations and avoids overfitting.

Various kinds of objectives are available at Meta-MODE that are hereby
described in detail.

Maximisation/minimisation of single reaction flux

This is the simplest type of objective that can be set in Meta-MODE.
Examples of application are the minimisation of ATP production (aim-
ing at an efficient use of energy (Savinell and Palsson) (1992a} Schuetz
et al., 2007)) or the maximisation of a desired product secretion (when
analysing producing capacities). In this case the cost associated to the
objective is the flux of the corresponding reaction, with the appropriate
sign: positive for minimisation and negative for maximisation.

Zreacy (v)=v, te {L R ,TL} (5.20)

Product of two reactions

Even when a multi-objective scheme is proposed, sometimes it can be
interesting to consider competing objectives simultaneously, for exam-
ple if they are required to be coupled. Such is the case of the coupled
yield of two reactions (typically biomass and some product of interest)
(Patil et al.,, 2005; Montagud et al., 2011). In this case the product of
the two reactions of interest is taken as the corresponding cost (again
negative sign is established for maximisation and positive for minimi-
sation).

ZpTOdjl,jQ (’U) = vj, X Vj, , jl,jg € {1, ... ,n} (521)
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Growth

When linear optimisation is used to perform metabolic simulations, in
order to account for growth, it is necessary to describe a biomass formu-
lation based on a fixed linear combination of metabolites. Even when
multiple biomass equations can be defined to try to consider different
physiologic situations, at the moment of the simulation only one can be
used as either objective or constraint. This fact makes the simulation to
be tightly constrained by the chosen biomass composition.

In this context, one of the great advantages of using an evolutionary
optimisation algorithm is that non-linear objectives can be considered,
just like that of non-rigid biomass formation.

At Meta-MODE growth is considered as a pool of biomass components,
with no pre-defined proportion among them. In order to maximise the
growth yield, several drains of individual biomass precursors are de-
fined as separated reactions, and the unconstrained sum of fluxes of
those individual reactions, with negative sign, is established as the cost
associated to this objective:

Zgrowth (v) ==Y v, j€B (5.22)
J
where B is the set of reactions describing individual biomass precursor

drains.

This way, the algorithm allows the simulation to evolve biomass com-
ponents in an unrestricted way. When experimental fluxes are used
during the simulation process, either as objective or as a constraint,
these values will influence the production fluxes of biomass elements.
Therefore, the algorithm allows the study of the proportion of those
biomass components under different growth conditions, as they are re-
sults of the simulation, instead of pre-established constraints.
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Parsimony as objective

The technical and biological importance of including a parsimonious
criterion during the optimisation process was already justified in Sec-
tion[5.3.1] It helps to avoid solutions containing extremely high fluxes
or mathematical artefacts with no biological meaning, thus improving
the pertinency of the obtained solutions.

The parsimony criterion was introduced as a design objective. This
objective aims at a low overall metabolic activity, that is, low values of
the sum of reaction rates. To do so, the total sum of the absolute value
of fluxes was taken as the associated cost. Since some of the reactions
are described as reversible, they can have negative fluxes, which is why
the absolute value of the fluxes was considered and not their sign, since
the sign only designates the direction of the reaction and the reaction
rate is related only to the module.

Zpars (V) =Y |vj] (5.23)
7j=1

When the algorithm tries to minimise this cost, it is trying to minimise

the overall sum of reaction rates.

Closeness to experimental fluxes as objective

As mentioned in the previous section, closeness of the calculated flux
values to the experimental ones can be used as a constraint or as a de-
sign objective (or both). When using it as an objective, the correspond-
ing cost will consider the deviation ¢ (or the similarity M) between both
sets and greater costs will be assigned to greater deviations (lower sim-
ilarities).

Zdev (’U) =D (524:)

chos ('U) =-C (525)
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where D and C are the unidimensional values chosen to represent,
respectively, the deviation or closeness between two sets of experimen-
tal and calculated fluxes. As explained before, different options are
available at the algorithm to represent all the individual deviations as a
single value: norm of the vector, cumulative sum of coordinates, maxi-
mum, minimum, mean, or median of coordinates, as well as the num-
ber of fluxes trespassing a given threshold (Figure[5.2). When closeness
to experimental fluxes is used as an objective, it is preferable to use cri-
teria that better capture the nature of the entire set of values, such as
norm, sum, median or mean, rather than max, min or number of fluxes
beyond a given threshold, that focus more on individual values.

Pairwise flux ratios as objectives

Like in the case of sets of measured fluxes, information about in vivo
flux ratios can help tuning the response of the model to better repro-
duce the real metabolic behaviour of the organism under study. Flux
ratios can be also included as optimisation constraint, as design objec-
tive, or both as constraint and objective. If applied as objective, either
deviation (9) or similarity (/) between the calculated and the experi-
mentally measured ratios can be considered:

Zratfdev (U) = 5r1,r2 (526)

Zrat_sim ('U) = _MT17T‘2 (527)

where §,, ,, is the relative deviation calculated according to Equation
(5.18) and M, ,, is the similarity calculated by means of the standard
fuzzy metrics as stated in Equation (5.19). Thus, greater discrepancies
are allowed, but with higher costs.
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5.5 Multi-objective optimisation process: the
Meta-MODE algorithm

In the previous section , the required constraints and pursued ob-
jectives applicable to constraint-based flux simulations where described
in detail. Thus, the multi-objective problem was formulated, the next
step is to describe how the optimisation process is conducted.

In this work a Multi-Objective Evolutionary Algorithm (MOEA) is ap-
plied to solve the MOPs defined according to the previous section. This
algorithm is based on the sp-MODE? algorithm (Reynoso-Meza et al.,
2010) that was introduced in Section However, sp-MODE algo-
rithm by itself can't deal properly with the particular problem of me-
tabolic simulations. As commented before, this problem requires an
algorithm with the following properties:

* Convergence to the (unknown) Pareto front.
* Diversity of solutions along the Pareto front approximation.

* Metabolic pertinency of the solutions at the Pareto front approxi-

mation.
* Mechanisms to deal with a constrained problem.
* Mechanisms to deal with a large-scale problem.
* Mechanisms to deal with a multi-modal problem.

The tuning parameters in Tables |5.1| and [5.2] are used in order to im-
prove the convergence of the algorithm. Furthermore, as explained
in Section anchor points (Definition are incorporated within
the initial population to improve convergence. The parameters pre-
sented, together with the inclusion of anchor points within the initial
population also allow that the algorithm addresses the large-scale pro-
blem. Diversity is addressed with the spherical pruning mechanism

2 Tool available at http://www.mathworks.com/matlabcentral/
fileexchange/39215
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explained in Section the space covered by the Pareto front approx-
imation is divided in spherical sectors and only one solution is selected

from each sector (Figure 2.3 page [59).

Table 5.1: Tuning guidelines for DE’s parameters.

’ Parameter ‘ Value ‘ Comments ‘
DE algorithm
F 0.5 Recognized as good initial choice
(Scaling factor) according to Storn and Price (1997)
Value recognized for highly ) o
Cr L0 non-separable problems according
(Crossover rate) to Reynoso-Meza et al.|(2011) and

Das and Suganthan| (2010).
50 individuals is proposed by

Np
50
(Population size) default (Reynoso-Meza et al.,|[2010).

Table 5.2: Tuning guidelines for the pruning mechanism as described in |Reynoso-
Meza et al |(2017).

Parameter ‘ Value ‘ Comments

Spherical pruning mechanism

It has been proposed for
100 bi-objective problems, to bound the
approximated Pareto front to 100

design alternatives.

It has been proposed for 3-objective
Be 110, 10] problems, to bound the
(Arcs) ’ approximated Pareto front to

10? = 100 design alternatives.

It has been proposed for
m—1 m-objective problems, to bound the
[m, ..., m] | approximated Pareto front to m™ !

design alternatives.

D It has been proposed as default

(p-norm) value.
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Even when, given the characteristics of the problem at hand, conver-
gence and diversity can be achieved by adjusting the parameters of the
algorithm, that is insufficient for the other points. Metabolic pertinency
of solutions is improved by stating a multi-objective constrained opti-
mization problem, applying the constraints and objectives commented
above. For this purpose, a penalty scheme is used, with the guide-
lines stated in [Reynoso-Meza et al. (2012). Particular constraints and
objectives proposed in this work to improve metabolic pertinency are
closeness to experimental fluxes, pairwise flux ratios and parsimony.
These mechanisms also help to deal with the multi-modal problem, as

explained in Section

The current section is devoted to describe these mechanisms introduced
in this work to deal with the specific problem of genome-scale constraint-
based metabolic flux analysis.

5.5.1 Mechanisms to improve metabolic pertinency
Parsimony

Two approaches are included in the proposed algorithm to improve
parsimony of the solutions: on the one hand, parsimony is introduced
as objective, as described in previous section (Equation (5.23)); on the
other hand, a routine has been incorporated in the algorithm that filter
out spurious flux loops (Algorithm [5.1). In order to cut down compu-
tational efforts, a list of previously identified reactions that may lead
to flux loops (reactions with opposite sense and same metabolites) is
given to the algorithm as part of the metabolic network description.

Closeness to experimental fluxes

As explained in the previous section, similarity between experimental
and calculated fluxes is considered by the algorithm either in terms of
deviation or closeness. In both cases, individual deviations (Equation
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Input: simulation parameters and vector of calculated fluxes v
Output: vector of calculated fluxes with simplified/cleaned
loops v’
Read list of potential loops ; /* from parameters x/
for each potential loop do
Read list of reactions involved in the loop;
Check reactions' direction and reversibility;
Extract from v reactions' flux values;
Calculate net flux though the loop ¢;
if » = 0 then
‘ Assign null flux to all reactions involved in the loop;
else
Identify reaction ¢ of the loop with higher activity;
Assign flux ¢ to reaction ¢;
Assign flux ¢ to reactions up and downstream from
reaction t needed to satisfy mass balance;
Assign null flux to the rest of reactions involved in the

loop;
end
Update v with the new flux distribution to create v’;

return v’

Algorithm 5.1: Look for loops function
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(5.8)) or closeness coefficients (Equation (5.15)) are calculated from a set
of measured fluxes and their corresponding values in the flux vector.
Different criteria are available in the algorithm to choose a single value
that represents the vector of individual coefficients. Algorithms|5.2land
show the process for deviation and closeness indexes respectively.

Pairwise flux ratios

Pairwise constraints and objectives are treated by the algorithm in a
way similar to the closeness to experimental fluxes. In the case of ra-
tios, individual single values of deviation or similarity are calculated
according to Equations and (5.19). In this case, those values are
used directly to apply constraints and objectives based on flux ratios

(see Sections and bellow).

5.5.2 Handling constraints

In the proposed algorithm, bound constraints and optimisation con-
straints are treated in a different way. Bound constraints directly define
the limits of the space within which random solutions are generated by
the evolutionary process. To deal with optimisation constraints the al-
gorithm uses penalty functions that add additional costs, proportional
to the constraint violation, to the objective function. The description of
the specific processes and penalty functions defined in the algorithm to
handle bounds and optimisation constraints can be found below.

Flux bounds constraints

Bounds for flux values accounting for reaction directionality and en-
zyme/transport capacity limits (see Section[5.4.1) , are provided as part
of the simulation parameters. At every moment the algorithm ensures
that the generated random solution vectors are within the space de-
fined by these limits: individuals of the initial population are directly
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Input: simulation parameters and vector of calculated fluxes v

Output: deviation from experimental fluxes D

Read matrix containing the indexes of reactions with
experimental measurements (e € £) and the corresponding
measured values;

for all reactions with experimental measurement (e € E) do
‘ Calculate relative deviations (Equation (5.8));

end

switch deviation criterion do

case Norm do /x norm of the vector
| D=dl;
case Sum do /* cumulative sum
D=5 4
eckE
case Max do /* maximum value
D = max{} ;
max{d (e)}
case Median do /* median of the wvalues
D = median{é (e)};
edian{s (c)}
case Mean do /* mean of the values
D = mean{é (e)};
wcan (i (c))
case NumFlux do /* # fluxes over threshold
Read deviation threshold DevT hr;
S={e:d0(e) > DevThr,ec E};
D =S|
end
return D

*/

*/

*/

*/

*/

*/

Algorithm 5.2: Deviation from experimental fluxes




Input: simulation parameters and vector of calculated fluxes v

Output: closeness to experimental fluxes C

Read matrix containing the indexes of reactions with
experimental measurements (e € £) and the corresponding
measured values;

for all reactions with experimental measurement (e € E) do
‘ Calculate fuzzy closeness (Equation (5.15));
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end

switch closeness criterion do

case Norm do /* norm of the vector
| O =|M|;
case Sum do /% cumulative sum
C=> M
eckE
case Min do /* minimum value
C = min{M ;
min{M (e)}
case Median do /* median of the values
C = median{M ;
median{M (¢))
case Mean do /* mean of the values
C = M ;
mean{ M (e)}
case NumFlux do /* # fluxes under threshold
Read closeness threshold ClosT hr;
S ={e:M(e) < ClosThr,ec E};
C=19|
end
return C

*/

*/

*/

*/

*/

*/

Algorithm 5.3: Closeness to experimental fluxes
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assembled inside this space, and at each generation the offspring indi-
viduals are checked and migrated within the bounds if needed.

Mass balance constraint

The steady-state mass balance stated in Equation defines a set
of equality constraints, one per each internal metabolite, that must be
fulfilled. Algorithm [5.4] describes the penalty function used in Meta-
MODE to penalise mass balance inconsistencies.

Input: simulation parameters and vector of calculated fluxes v
Output: mass balance constraint violation penalty PenMassCon

1 PenMassCon = 0;

2 Calculate the balance vector § = S * v;

3 for each element in 5 do

4 Compare the value of the balance to a given admissible error
€

5 if |3,| > € then

6 ‘ PenMassCon = PenMassCon + |[34|

7 end

8 return PenMassCon

Algorithm 5.4: Penalty function for mass balance constraint vio-
lation

First, a null value is assigned to the constraint violation penalty (line
1), and then the vector containing the resulting fluxes for the individ-
ual balances is calculated (line 2). For each element of this vector, the
balance is checked comparing the obtained value to a (small) admis-
sible error (line 4). In the case that the mass balance is not fulfilled
the absolute value of the discrepancy is added to the constraint viola-
tion penalty (line 6). The final value of the constraint violation penalty,
which contains the sum of all discrepancies, is returned when the loop
is completed (line 8).
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Closeness constraints

Closeness constraints can be included in the simulation, by fixing a
limit for the maximum admissible deviation or the minimum desired
closeness. Algorithm [5.5]shows the penalty function to account for this

kind of constraints.

Input: simulation parameters and vector of calculated fluxes v
Output: closeness to experimental fluxes constraint violation
penalty PenClosenessCon
1 if closeness constraints are applied then
2 switch selected metric do
3 case relative deviation (Equation (5.8)) do
4 Calculate deviation from experimental fluxes D
(Algorithm [5.2);
5 Compare the value with the admissible limit M axDev;
6 if D > MaxDev then
7 ‘ PenClosenessCon = D — MaxDev;
8 case fuzzy closeness (Equation (5.15)) do
9 Calculate closeness to experimental fluxes C
(Algorithm ;
10 Compare the value with the admissible limit MinClos;
11 if C < MinClos then
12 ‘ PenClosenessCon = MinClos — C;
13 end
14 else
15 PenClosenessCon = 0
16 end
17 return PenClosenessCon

Algorithm 5.5: Penalty function for closeness to experimental

fluxes constraint violation

In the case that closeness constraints are considered, the first step is to
choose the preferred metric to account for divergencies (line 2): pre-
programmed metrics include relative deviation (Equation (5.8)) and
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fuzzy closeness (Equation (5.15)), but researchers can use their own
metrics if needed. In any case, the value of the parameter (deviation or
closeness) is calculated and compared with the admissible limit (lines
4 to 5 and 9 to 10). If the parameter exceeds the limit, the difference
between them is taken as constraint violation penalty (lines 7 and 12).
As expected, greater penalties are imposed to greater deviations (lower
closeness).

If the criterion selected at Algorithm 5.2 (or is NumFlux it will re-
turn the number of fluxes beyond a given threshold, and so the value
for the MaxzDev (MinClos) parameter must be the maximum (mini-
mum) number of fluxes accepted to violate the threshold.

As mentioned before, when closeness to experimental fluxes is used
as a constraint, it is preferable to use deviation/closeness criteria that
focus on individual values, such as Max, Min or NumFlux, rather than
Norm, Sum, Median or Mean which refer to the set as a whole.

Ratio constraints

Ratio constraints are managed in a very similar way to closeness con-
straints, as it is shown in Algorithm

5.5.3 Initial population

The first step of a multi-objective evolutionary optimisation process is
always to assemble an initial population. As it was explained in Section
in Meta-MODE anchor points are inserted in the initial set of in-
dividuals to improve convergence and reduce computational cost. An-
chor points (Definition[5.1)) are solutions of the problem that are optimal
for individual objectives. However, sometimes the objectives consid-
ered are quite complex, and algorithms can last too long to find the ab-
solute optimum of each individual objective. In such cases, faster meth-
ods will be considered to search for very advantageous (even when not
optimal) solutions instead. These solutions can be surpassed during
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Input: simulation parameters and vector of calculated fluxes v
Output: ratio constraint violation penalty PenRatioCon

if ratio constraints are applied then
Compute ratio between calculated fluxes (Equation (5.17));
switch selected metric do

case relative deviation do

Calculate deviation §,, ,, from experimental ratio
(Equation (5.18));

Compare the value with the admissible limit
MaxRatDev;

if 0y, y, > MaxRatDev then
‘ PenRatioCon = 6, r, — MaxRatDev;

case fuzzy closeness do

Calculate closeness M, ,, to experimental ratio
(Equation (5.19));

Compare the value with the admissible limit
MinRatClos;

if M,, ,, < MinRatClos then

PenRatioCon = MinRatClos — M, r,;

end

PenRatioCon =0

return PenRatioCon

Algorithm 5.6: Penalty function for ratio constraint violation
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the optimisation process if better combinations are found, so not taking
the absolute optima from the beginning does not exclude those optima
from being present at the final Pareto set.

Algorithm [5.7| describes the general directions used in Meta-MODE to
calculate anchor points: first the considered constraints are read from
the set of simulation parameters (line 1). Then, for each objective, the
algorithm checks its mathematical formulation and selects the appro-
priate algorithm to calculate a flux distribution optimal for the given
objective (lines 3 and 4). For all the objectives, if additional non-linear
constraints (closeness to experimental fluxes or pairwise flux ratios) are
considered, the optimal flux distribution calculated initially must be re-
calculated so that the obtained flux vector fulfils all the imposed restric-

tions (lines 5 to 8).

Input: simulation parameters
Output: flux vectors of anchor points v Ve {1,2,...,q}

1 Read constraints applied;
2 for each objective k do

3 Check mathematical formulation of objective k;
4 Calculate optimal flux distribution using the appropriate
algorithm (see below) ;

5 if closeness constraints are applied then

6 Recalculate optimal flux distribution to fulfil closeness
constraints (Algorithm 5.8, Section 5.5.3);

7 if ratio constraints are applied then

8 Recalculate optimal flux distribution to fulfil ratio
constraints (Algorithm Section[5.5.3));

9 end
10 return v**, Vk € {1,2,...,q}
Algorithm 5.7: Anchor points calculation scheme in Meta-MODE

The calculation is performed following this sequence, instead of en-
suring constraint fulfilment from the beginning, because it results in a
faster algorithm: preceding solutions are used as initial points for sub-
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sequent optimisations which speeds up the process. Next, the steps
taken to calculate the initial optimal flux distribution depending on the
objectives considered, and to recalculate the solutions to meet the ap-
plied non-linear constraints, are detailed.

Initial calculation of the optimal flux distribution

Since anchor points must be optimal for individual objectives, a mono-
objective optimisation problem has to be solved for every objective.
Depending on the nature of the objective in question an appropriate
algorithm will be chosen.

Maximisation/minimisation of single reaction flux Once more, the sim-
plest option is when the objective function is the maximisation or min-
imisation of a single reaction flux. In this case, linear programming is
used to optimise the selected reaction, subject to bound constraints and
mass balance constraints:

n%inZ(U) = te{l,....,n} (5.28)

max Z (v) = —n%inZ(v) = —v te{l,...,n} (5.29)
subject to:

S-v=0 (5.30)

Loy <vj <wuy,  je{l,...,n} (5.31)

Thus, the problem is equivalent to solve a FBA problem.

Growth When growth objective is considered, the aim is to maximise
all the individual reactions that are part of the biomass components.
Although non-fixed proportions among them are pursued, to calculate
the anchor points linear programming is applied, maximising them all

in a ratio of one to one.

max Z (v) = ¢! v (5.32)
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S.v=0 (5.33)
ly; S vj <y, je{l,...,n} (5.34)

with ¢, = 1Vt € Band ¢, = 0Vt ¢ B, where B is the set of reactions
describing individual biomass precursor drains.

Which is equivalent to solve an FBA problem, with objective function
determined by the vector of weights c. This method is applied, instead
of selecting some non-linear optimisation algorithm, because it acceler-
ates the computation and the results obtained are good enough to serve
as seeds for Pareto optimal growth solutions.

Parsimony The aim of the parsimony objective is to minimise the sum
of fluxes through the metabolic network. If there were no flux bounds,
the obvious solution would be the null vector, that is, no flux in any
reaction. However, when bound constraints are applied, some intake
fluxes may appear that have positive minima, so a flux vector must be
found that has minimal activity but not zero. In this case, again a strat-
egy based on linear programming is preferred due to its faster response:

all non-reversible reactions are minimised with equal coefficients.

min Z (v) = ¢! v (5.35)

subject to:
S-v=0 (5.36)
ly; < vj <y, jed{l,...,n} (5.37)

with ¢, =1Vt ¢ Rand ¢, = 0Vt € R, where R is the set of reversible
reactions.

Only non-reversible reactions are minimised because minimising re-
versible reactions would result in maximising their negative flux (ab-
solute value is not a linear function unless its domain is restricted to
non-negative or non-positive numbers and thus it cannot be used as an

objective function for linear programming).
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Closeness to experimental fluxes The aim of closeness objective is to min-
imise the difference between the experimental and the calculated fluxes.
The ideal solution would be whose fluxes would be identical to the ex-
perimental ones. But some problems can appear that make impossible
to precisely fit all the values: numerical and computational precision
errors, small experimental errors at the in vivo measured fluxes, and in-
consistencies between the metabolic network used for *C-based flux
determination and the genome-scale network used for simulation are
the most common sources of disagreement. This fact makes it neces-
sary to consider some small percentage error.

Taking this into account, the strategy used to calculate the anchor points
for closeness objective is as follows: upper and lower bounds of the re-
actions with experimental fluxes are modified so that they take into
account the experimental values + the error; linear programming is
used to optimise some function (in this case it is programmed to use
the same objective function as for the Parsimony objective because this
objective must always stay); if no solution is found that satisfy the con-
straints, the error is increased and the process repeated until a feasible
solution is found. This way, an iterative process is used to find a flux
distribution coherent with the experimental values, with the smallest
bound error.

min Z (v) = ¢! v (5.38)
v
subject to:
S-v=0 (5.39)
Ly, S vj < uy,; jed{l,...,n} (5.40)
veP x (1 —error) < v < v x (1 + error) ecE (5.41)

with ¢, = 1Vt ¢ Rand ¢, = 0Vt € R, where R is the set of reversible
reactions. And where E is the set of reactions with experimental flux

measurements.
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Pairwise flux ratios  When ratios are used as objective, the aim is also to
minimise discrepancy between calculated values and a reference one.
But in this case there is an important difference: no individual values
must be forced, only their proportion. Thus, the strategy used for close-
ness is not suitable now, as it involved setting a fixed value for each
flux. In this case, a non-linear optimisation was preferred to maintain
the freedom of the individual values. MATLAB® fmincon interior point
algorithm is used to solve the optimisation problem:

min Z (v) = Zyqt (5.42)

subject to:
S-v=0 (5.43)
Ly, < vj < uy, je{l,...,n} (5.44)

with Z,.; calculated as stated in Equation (5.26)) or (5.27) (page|141).

Recalculation to meet non-linear constraints

Anchor points calculated following the instructions detailed in the pre-
vious section satisfy both bound and mass balance constraints, which
are the constraints that must always be considered in steady-state flux
simulations. But, as it was justified previously, other non-linear con-
straints such as closeness and ratio constraints contribute to improve re-
alism of the obtained solutions. Then, in cases where these constraints
are applied the previous anchor point flux distributions must be recal-
culated to satisfy them.

Closeness constraints '3C-based metabolic flux analyses allow deter-
mining in vivo fluxes of some internal reactions with respect to a car-
bon substrate intake reaction which is used as a reference. Thus, all the
values of the fluxes obtained are expressed as a proportion to the ref-
erence. This fact is leveraged in Meta-MODE to describe a routine (Al-
gorithm that modifies the flux bounds of the reactions with experi-

mental information taking into account the experimental value and the
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admissible discrepancy limit (maximum deviation or minimum close-
ness) fixed in the simulation parameters set. The new bounds will be
calculated as described in Equations (5.45) and (5.46).

ve" x (1 — MazxDev) < ve < v x (14 MaxDev) eck
(5.45)
vt X 2—* < v, < V8P X 1 eel
c MinClos) = ¢ = ¢ MinClos
(5.46)

where F is the set of reactions with experimental flux measurements.

Once the bounds have been updated, a new optimisation problem is
solved to obtain a new flux distribution that is optimal for the corre-
sponding objective and satisfies closeness constraints.

Input: simulation parameters and preliminary flux distribution
of an anchor point v*|g
Output: flux distribution of an anchor point v* fulfilling

closeness constraints

[

Extract from v*|y the value of the reference flux v}, ,;
2 for each flux with experimental information e do

3 Calculate the value of the flux v; according to vy, ;

4 Calculate lower and upper bounds for flux e based on the
value v} and the admissible discrepancy limit (Equation
or (546));

5 Calculate v* by solving a new optimisation problem with the

new bounds and an appropriate objective function

(Equations from (5.28) to (5.44));

6 end

7 return v*

Algorithm 5.8: Recalculation of anchor points to satisfy closeness

constraints
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Ratio constraints In the case of establishing ratios between reaction
rates, there is no reference reaction that can be used to readjust the flux
bounds. Instead, a new optimisation problem is formulated including
non-linear constraints based on deviation/closeness with respect to the

expected ratio (Equations (5.47) and (5.48)), and an appropriate objec-
tive function, depending on the objective (Algorithm[5.9).

Ory o — MazxRatDev <0 (5.47)

MinRatClos — My, , <0 (5.48)

where 0,, ,, is deviation calculated as stated in Equation , M, r, is
closeness calculated as stated in Equation (5.19), and Max RatDev and
MinRatClos are the maximum admissible deviation and minimum ad-
missible closeness, respectively.

In Meta-MODE the MATLAB® fmincon interior point algorithm is used
to solve the resultant constrained non-linear multi-variable optimisa-

tion problem.

Input: simulation parameters and preliminary flux distribution
of an anchor point v*|g
Output: flux distribution of an anchor point v* fulfilling
closeness constraints

1 Define non-linear constraints (Equation (5.47) or (5.48));
2 Calculate v* by solving a new optimisation problem with an

appropriate objective function (Equations from (5.28) to (5.44));

3 return v*

Algorithm 5.9: Recalculation of anchor points to satisfy ratio con-

straints

When closeness and ratio constraints are simultaneously considered,
the re-calculation sequence will ensure that the final anchor points sat-
isfy them both, because the modified flux bounds defined to account for
closeness constraints (Algorithm will also apply to solve the non-
linear optimisation problem defined for ratio constraints (Algorithm

59).
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This way, (almost) optimal solutions for individual objectives are found
that satisfy all the constraints imposed to the problem. These anchor
points will be included in the initial population to improve conver-
gence of the algorithm and reduce computational cost, as previously
explained.

5.5.4 Evaluation of the population

To evaluate the performance of the individuals that constitute the pop-
ulation of flux vectors at a given generation, a cost function has to be
defined. This cost function will serve to compute costs associate to the
different design objectives and, if needed, will account for penalty costs
for constraint violation. Later, dominance criteria will be applied based
on those costs.

Algorithm describes the cost function built for Meta-MODE. First,
for each individual (flux vector) in the population (set of flux vectors)
the various costs associated to the different design objectives are cal-
culated using the corresponding equations described at Section [5.4.2]

IDefinition of metabolic objectives| (lines 1 to 16). Then, each individual

is tested for constraints observance: mass balance, closeness and ratio
constraints are checked and total penalty for constraint violation is ob-
tained as the sum of the individual penalties (lines 18 to 21). If the total
penalty is not zero, then the cost vector of the given individual is modi-
fied: for each objective the worst cost value of all the population for that
objective is taken and the total penalty is summed (lines 22 to 25). This
way, the flux vectors that transgress constraints will have cost values
worse than all the individuals in the Pareto set, thus ensuring they will
be dominated. The addition of the constraint violation penalty helps to
order the transgressor individuals so that if some of them need to be
incorporated to the population the least bad are selected.
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Input: simulation parameters and set of flux vectors
X = {vl,...,vNP}
Output: set of cost vectors { Z*,..., ZVr}

for each individual v do
for each objective k do
switch type of objective do
case Max/min single reaction flux do

‘ Calculate cost Zj, (v) using Equation (5.20);
case Product of two reactions do

‘ Calculate cost Zj, (v) using Equation (5.21);
case Growth do

‘ Calculate cost Z;, (v) using Equation (5.22);
case Parsimony do

‘ Calculate cost Z, (v) using Equation (5.23);
case Closeness to experimental fluxes do

‘ Calculate cost Zj, (v) using Equation (5.24) or (5.25);

case Pairwise flux ratios do
‘ Calculate cost Zj, (v) using Equation (5.26) or (5.27);

end

end

end

for each individual v do

Calculate penalty for mass balance constraint violation
PenMassCon (Algorithm [5.4);

Calculate penalty for closeness constraint violation
PenClosenessCon (Algorithm ;

Calculate penalty for ratio constraint violation PenRatioCon
(Algorithm 5.6);

Calculate total penalty for constraint violation
PenCon = PenMassCon + PenClosenessCon + PenRatioCon;

if PenCon > 0 then

for each objective k do

7y, zgnezchk—l—PenCon; /* worst cost of
objective k for the whole set of flux

vectors plus total penalty =*/

end
end
return {Z',..., Z""}

Algorithm 5.10: Cost function of Meta-MODE
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5.5.5 Algorithm proposed for multi-objective metabolism
optimisation: Meta-MODE

In previous sections equations and procedures have been described
that are needed to build a multi-objective optimisation algorithm suit-
able for steady-state flux simulations. Taking them into account it is
possible to rewrite Algorithm [2.5/(sp-MODE) to adapt it to the problem
under study. Consequently, Meta-MODE algorithm has been created,
and a complete description of the operations is shown at Algorithm

The input data for the algorithm is the complete set of simulation pa-
rameters: the metabolic network of the organism under study, the list
of selected objectives, vectors describing flux bounds, the list of chosen
constraints and the related information needed to apply them (exper-
imental fluxes or known flux ratios, selected metrics and admissible
thresholds), as well as other optimisation parameters inherited from
sp-MODE, such as population size, number of arcs for the spherical
pruning or stopping criteria.

After loading the complete list of input parameters, an initial popula-
tion, including anchor points, is generated and evaluated, and non-
dominated individuals are selected. Then successive generations of
flux vectors are created from their predecessors, using differential evo-
lution operators, and the new individuals are once more evaluated and
subjected to dominance filters. At every generation, the complete set
of selected individuals is analysed to look for the best values for indi-
vidual objectives, which leads to anchor points updating if the previ-
ous ones have been surpassed. Then, the spherical pruning mechanism
is applied to obtain a new approximation of the Pareto set and front.
When one of the stopping criteria (usually maximum number of func-
tion evaluations, or maximum number of generations) is satisfied, the
algorithm terminates and the Pareto set and Pareto front approxima-
tions are returned as a result together with a list of parameters includ-
ing all the input values and some report variables of the optimisation
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Input: simulation parameters
Output: Pareto set approximation V3

Read simulation parameters;

Calculate anchor points v**, Vk € {1,2,...,q} (Algorithm ;

Build initial population P|y with N, individuals;

Add anchor points to P|o ;

Evaluate P|j using cost function (Algorithm ;

Apply dominance criterion (Definition ) on P|g to get Al;

Apply pruning mechanism (Algorithm ) to prune Al to get
Alo;

Update anchor points v** = ixg‘ Z, Yk e {1,2,...,q};
vEL|o

Set generation counter G = 0 ;
while stopping criterion unsatisfied do

G=G+1;
Get subpopulation S|g with solutions in P|g_; and A|g_1;
Add anchor points to S|g;
Generate offspring O|¢ with S|g using DE operators
(Algorithm ;
Evaluate offspring O|¢ using cost function (Algorithm 5.10);
Update population P|g with offspring O|¢ according to
greedy selection mechanism;
Apply dominance criterion (Definition on O|gJA|g-1to
get Alc;
Update anchor points v** = inf Zj, Vk € {1,2,...,q};
veEA|g
Apply pruning mechanism (Algorithm to prune A|¢ to
get Alg;
end
Vp = Alg;
return V3 |g

Algorithm 5.11: Meta-MODE
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process (starting and finishing time, number of generations and func-

tional evaluation achieved, and Pareto front extremes).

5.6 Conclusions of this chapter

In this chapter, a new tool to perform steady-state metabolic flux sim-
ulations by means of multi-objective optimisation has been presented.
The optimisation kernel of this tool is based on a previous evolutionary
algorithm (Reynoso-Meza et al., 2010), but several specific mechanisms
have been added to improve pertinency of the obtained solutions, as
well as to prepare the algorithm to deal with the large-scale, strongly
constrained and multi-modal optimisation problem that arises when
performing genome-scale constraint-based flux simulations. The resul-
tant algorithm, Meta-MODE, aims to avoid some of the main draw-
backs of classic methods for constraint-based metabolic analysis, like
the need of defining a fixed equation accounting for biomass assem-
bly, the strong dependency of the solutions on the selected objective or
the limitations encountered to define informative constraints or objec-
tives that exceed the mathematical capabilities of linear and/or mono-
objective optimisation techniques. This tool is used in the next chapter
to simulate flux landscapes using the metabolic network of Synechocys-
tis sp. PCC 6803 under different trophic conditions, and it is bench-
marked against the classic Flux Balance Analysis algorithm.



Multi-objective optimisation
procedure applied to
metabolic simulations of
Synechocystis sp. PCC 6803

6.1 Chapter abstract

In this chapter, the multi-objective optimisation tool for metabolic sim-
ulations described in the previous chapter (Meta-MODE) is applied to
the study of the metabolic network of Synechocystis sp. PCC 6803. It
is used to simulate five different growth conditions, that range from
pure autotrophy to pure heterotrophy through different combinations
of both regimes, in order to demonstrate the plasticity that this formula-
tion confer to the simulation results. Besides, the results obtained with
Meta-MODE are compared with classic mono-objective FBA simula-
tions (with and without consideration of experimental internal fluxes)
in order to benchmark the proposed tool.

The results of this study show that using the multi-objective algorithm
proposed in this work, metabolic simulations can be performed in which
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the inclusion of a few internal fluxes obtained from measurements al-
lows to readjust the whole flux distribution, thus avoiding the neces-
sity of imposing hard restrictions. Besides, the inclusion of this experi-
mental information and the mathematical formulation of the objectives
within this tool also allow to avoid the necessity of a biomass equa-
tion to account for biomass formation; instead, under this scheme, the
biomass composition arises as a consequence of the studied conditions,
instead of being imposed beforehand.

The solutions obtained from simulations with Meta-MODE describe a
quasi-optimal state in which a balance is found between metabolic per-
formance and metabolic pertinency. It is shown in this chapter that
these solutions approximate the experimental data closer than other
classic methods that have already proved their applicability. Finally,
the results show that the algorithm is flexible to tally experimental ob-
servations under different environmental conditions adapting the flux
behaviour to the specific situation.

Contents of this chapter appear in the following journal article:

¢ Maria Siurana, Arnau Montagud, Gilberto Reynoso-Meza, ]. Alberto
Conejero, Javier Sanchis, Lenin G. Lemus-Zufiga, Javier Urchueguia
Multi-objective evolutionary algorithm allows more accurate genome-
scale flux simulations with a small set of experimental values.
Manuscript in preparation.

6.2 Introduction

As introduced in Chapter (1}, the study of intracellular flux landscapes
of microorganisms is widely used in biotechnology in order to gain
knowledge on the metabolic potentialities of a targeted organism. Re-
liable, reproducible and realistic simulations are needed to foster in-
dustrial uses of production platforms. Models have also to cope with
the plasticity of their metabolic behaviour when responding to envi-
ronmental and genetic perturbations, let them be caused by adaptation

or human intervention.
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Optimisation has been at the heart of metabolism simulation as a way
to bypass the mathematical hurdle of solving under-determined sys-
tems of equations that are found in constraint-based genome-scale me-
tabolic modelling and as an approximation to study biological growth
and metabolic behaviour (Stephanopoulos et al.,|1999; Orth et al., 2010).
For some time, researchers have been using mono-objective optimisa-
tion algorithms to solve such problems. These linear-programming-
based mono-objective algorithms solved appropriately some biotech-
nological problems such as Flux Balance Analysis, but, unfortunately,
present some limitations like being restricted to single objectives, mak-
ing difficult the definition of non-linear constraints or objectives, or
needing hard constraints like biomass equation or energy expenses to
reflect observed metabolic responses.

In order to be able to optimise for more than one objective function in
mono-objective algorithms some mathematical tweaks or constructions
had to be done: either performing serial optimisations where the result
of the former was fed as constraint in the latter or building an objective
function as a weighted drain of different variables and optimising for
it, like in the case of biomass formation in metabolic models.

Alternatively, multi-objective optimisation allows having a set of ob-
jective functions that are simultaneously optimised and, more interest-
ingly, allows spotting dependencies upon them and define strategies
to fine tune their behaviour. Pareto fronts are described as a decision-
making tool that gathers all the points that represent an optimal trade-
off between different objectives. These Pareto points will be optimal
for the set of objectives established by researchers and allow them to
browse among these objectives and to choose one, or several, that suit
their needs. Pareto fronts and sets have been used widely in science
(Kung et al., 1975)), economics (Greenwald and Stiglitz, |1986) and tech-
nology (Martinez-Iranzo et al 2009) as a tool that clarifies dependen-
cies and trade-offs among different optimisation objectives. Further-
more, this kind of analysis would represent a leap in systems biology,
allowing researchers to optimise for different functions or non-linear
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objective functions using non-linear constraints, of great importance for

biological fluxes' study.

Also, accurate flux balance analysis optimisation requires the compila-
tion of a set of boundary limits, such as drain of substrates and produc-
tion of by-products. These boundary limits, are typically acquired from
experiments and literature, and are usually tiresome to gather and even
sometimes cryptic to understand.

In Chapter |5 of this dissertation, a multi-objective evolutionary algo-
rithm was presented that allows the simulation of metabolism min-
imising the use of these boundary limits, with the inclusion of a few
experimental flux values, and retrieving metabolic flux landscapes that
are much closer to the real ones. Additionally, Meta-MODE algorithm,
due to its evolutionary nature, allows the use of non-linear constraints,
and the maximisation of non-linear objectives.

In this chapter this algorithm is applied to the genome-scale metabolic
model of Synechocystis sp. PCC 6803 described in Chapter [3|to simulate
its metabolic response under different trophic conditions.

6.3 Materials and Methods

6.3.1 Metabolic model and simulation conditions

The present study has been conducted using the metabolic network of
Synechocystis sp. PCC 6803 presented in Chapter 3 As explained in
Section (13| this cyanobacterium can grow under three trophic condi-
tions that differ in the chosen energy and carbon sources. These growth

modes are:

(i) photoautotrophy, where energy comes from light and carbon from
CO,,

(ii) heterotrophy, where a sugar, often glucose, is the source of both

energy and carbon, and
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(iii) mixotrophy, a combination of the former two, where all three ele-
ments (light, CO3 and glucose) are combined.

In the case of heterotrophy, some authors, like Vermaas (1996), consider
different variants:

(a) dark heterotrophy, where the cyanobacteria is grown in the dark-

ness?!,

(b) light-activated heterotrophy, where the cyanobacteria is grown in
darkness after a short period of light exposure, and

(c) photoheterotrophy (or light heterotrophy), where the cyanobacteria
is grown in presence of light but this light is not used as energy
source, , i.e. the photosynthesis is not done completely (not to
be confused with mixotrophy, where the photosynthesis is com-
pletely used).

The case of photoheterotrophy is a growth mode that can be induced in
the laboratory. Under this mode, the cyanobacteria is grown in pres-
ence of light, which can lead to the activation and operation of some
cellular processes, but it cannot make use of this light as energy source
because of the inhibition of the photosynthetic function by means of the
addition of some chemical or by genetic modification.

It is of note that this organism requires other substances in order to
sustain growth such as nitrogen, sulphur, phosphorus, chlorine, and

metals like magnesium, molybdenum, sodium or iron among others.

In this study four of these growth modes are simulated (Table [6.1)), viz.
light-activated heterotrophy (hereafter called heterotrophy), photohet-
erotrophy, mixotrophy and photoautotrophy). In order to determine
the specific constraints that characterise each mode, some experimental
information is needed. In this study this information has been obtained
from the journal articles specified in Table The measurements and

?'Some authors have pointed to the inability of Synechocystis sp. PCC 6803 to grow
under complete darkness unless previously exposed to a pulse of light (minutes) (An-
derson and Mcintosh| [1991), which is the growth mode called light-activated hetero-
trophy.
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growth conditions described in the articles have been translated to con-
straints (see next section) with the aim of reproducing in silico the con-
ditions of the in vivo experiments, which allows for comparison.

Table 6.1: Growth modes of Synechocystis sp. PCC 6803 simulated in this study.

Mode Carbon Energy Light Photosynthesis Data
source source exposure from
Photoautotrophy COq light continuous active [1]
Mixotrophy CO; + glucose light + glucose continuous active [2,3]
Photoheterotrophy glucose glucose continuous inhibited [2]
Heterotrophy' glucose glucose pulse absent [3]

t Light-activated heterotrophy (Anderson and Mcintosh}|1991).
[1]Young et al.|(2011); [2]|[Nakajima et al.|(2014); [3]Yang et al.|(2002).

Biomass-glucose yield

A good index to measure metabolic efficiency in glucose-consuming
microbial cultures is biomass-glucose yield (Y, 5) (Stephanopoulos et al.,
1999). In this work, the mass-mass yield is used, which is defined
as grams of biomass produced per gram of glucose consumed. Since
carbon obtained from glucose is incorporated into biomass precursor
molecules, this yield is expected to be less than one when glucose is
the only carbon source. If other sources are added, like in the case of
mixotrophic conditions where CO; is also a carbon source, this yield
can achieve greater values.

In this work biomass-glucose yield is used to compare solutions ob-
tained by different simulation methodologies, and under different en-
vironmental conditions. This yield was calculated from the different
simulation results as growth rate divided by glucose consumption rate
(in grams). The experimental value was calculated in the same way
(from experimental rates extracted from references indicated in table
60.1) and verified with values provided by the corresponding journal
articles.

As shown in Table data for the simulation of mixotrophic condi-
tions were extracted from two different bibliographic sources. These
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works describe two variants of mixotrophic cultivation and can be clas-

sified according to their biomass-glucose yields:

(i) Experiment from Nakajima et al, (2014), presents higher Yy/g,
which corresponds to higher contribution of CO; and light. This
condition is tagged as mixotrophic (H).

(ii) Experiment from [Yang et al|(2002) results in lower Yx /g, which
corresponds to lower contribution of CO; and light. This condi-
tion is tagged as mixotrophic (L).

6.3.2 Optimisation statements

Two approaches have been applied in this chapter to simulate metabo-
lic flux landscapes of the cyanobacterium Synechocystis sp. PCC 6803:
mono-objective optimisation using the FBA methodology, and multi-
objective optimisation by means of the algorithm described in Chapter
Next, the particular optimisation problems stated for each case are
explained.

Mono-objective optimisation

To benchmark the solutions obtained with the MO method proposed
in this work against classic methods used in constraint-based metabo-
lic modelling, Flux Balance Analysis (FBA) has been applied as repre-
sentative of the classic methods. Briefly (see Section for details)
and according to this methodology, a metabolic network is represented
by its stoichiometric matrix S (as explained in Definition , and a
steady-state mass balance is then applied to calculate the metabolic
fluxes through the network (gathered in vector v). Constraints are im-
posed to the system that limit the range of allowable fluxes by consid-
ering reaction directionality, enzyme/transport capacity and specific
physiological knowledge. The following linear optimisation problem
is then stated to maximise/minimise an objective function which can

be any linear combination of fluxes:
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qu)le (v)=c! v (6.1)
subject to:
Sv=0 (6.2)
Vjrev € (—00,400) jed{l,...,n} (6.3)
vjirr € [0,+00)  je{l,...,n} (6.4)
lo; S vj <y, je{l,...,n} (6.5)

where c is a vector of weights indicating how much each reaction con-
tributes to the objective function, v; ., and vj ;. are the fluxes of the
reversible and irreversible reactions respectively, and [,; and u,; are
the lower and upper flux bounds for reaction j respectively.

In the present work, the considered objective Z is the maximisation
of growth yield, the most common function used in constraint-based
metabolic simulations (Feist and Palsson), 2010). Formulation of the
equation accounting for biomass assembly (the biomass equation) of
iSyn842 model was presented in Chapter 3| (Table 3.1} page[74).

Different optimisation statements of this form are defined by substitut-
ing the corresponding flux bounds for the different trophic conditions.
Two different approaches have been applied for the definition of these
bounds:

(i) Simulations labelled as "FBA" use the classic approach according
to which flux bounds are defined for some intake reactions on the
basis of experimental measurements and growth conditions. In
this case those values are obtained from literature (see Table
and Additional file 6.1).

(ii) Simulations labelled as "FBA_exp" include information about in-
ternal flux measurements retrieved from literature (see Table[6.T).
A set of 10 internal fluxes (common to all simulation conditions)
was selected (Table [6.2] and Figures from [6.1) to [6.5). Bounds are
imposed to those fluxes with experimental data allowing an error
of £25% of the experimental value. Minimal additional bounds
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related with experimental set-up (light, glucose, CO2 and some
other nutrients availability) are extracted from the description of
the experiments included in Table[6.1] (see Additional file 6.2).

In no case the experimental measurements of growth were applied to
tune or constrain the simulations, with the aim of using these values as
a benchmark.

Multi-objective optimisation

The main goal of this chapter is to illustrate the functionality of the
multi-objective optimisation tool for constraint-based flux simulations
presented in Chapter 5| Here, this tool is applied to optimise MOP
statements of the form (see Section[5.4):

Ingn Z(v)=1[Z1(v), 22 (v),...,Z4(v)] (6.6)

subject to:
S-v=0 (6.7)
V) rev € [—100, 100] jefl,....n} (6.8)
Vjirr € [O, 100] j € {1, ey n} (69)
ly; S vj <y, je{l,...,n} (6.10)
max{de (Vjexp)} < 0.25 jed{l,...,n} (6.11)

where:

S is the stoichiometric matrix,

v is the flux vector,

Vjrev are the fluxes of the reversible reactions,

vjirr are the fluxes of the irreversible reactions,

ly; is the lower flux bound for reaction j,

uy, is the upper flux bound for reaction j,

Vjezp are the fluxes of those reactions with experimental informa-

tion, and



Table 6.2: Experimental fluxes considered for the simulations with Meta-MODE and FBA_exp. First two rows contain the fluxes at the
reference reactions in mmol/q . n. For all trophic modes with glucose intake (heterotrophy, photoheterotrophy and mixotrophy) the reference
reaction is the phosphorylation of glucose to glucose-6-phosphate (first step of glycolysis), while in the case of autotrophy the reference reaction
is HyCOg intake. Flux values of all remaining reactions are expressed as a percentage of flux at the reference reaction. See page[xx|for the list
of acronyms.

Reaction W“HMMM Autotrophy Mixotrophy (H) Mixotrophy (L) Photoheterotrophy Heterotrophy
CMP  H2CO3_in 3.70 - - - -
GLK 2.7.1.2a - 0.53 0.38 0.58 0.85
PGI 5.3.1.9b -19.00 5.66 86.10 -144.83 5.70
ENO 421.11 23.60 215.09 211.00 103.45 142.20
RPE 51.3.1 -75.90 -186.79 -146.90 117.24 56.50

RPI 53.1.6 35.60 83.02 64.50 -63.79 -33.70
TK2 22.1.1b -38.50 -98.11 -76.40 56.90 26.40
TK1 22.1.1a -37.30 -90.57 -70.50 60.34 30.10
PDH 1.2.4.1 11.80 98.11 161.80 46.55 117.50
CIS 2331 3.20 20.75 56.80 8.62 42.50
ICD 1.1.1.42 3.00 20.75 13.90 8.62 9.30

ICL &4.1.3.1 0.20 0.00 42.90 0.00 33.20
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Figure 6.1: Experimental fluxes considered for the simulations with Meta-MODE
and FBA_exp under autotrophic conditions (Young et al.l|2011). Reactions whose flux
was not used at the simulations are represented by grey arrows. Reactions whose flux
was used at the simulations are represented by black arrows. In these latter reactions,
arrow thickness and label show flux values expressed as a percentage of flux at the
reference reaction (HoCOs intake).See page or the list of acronyms.
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Figure 6.2: Experimental fluxes considered for the simulations with Meta-MODE
and FBA_exp under mixotrophic (H) conditions (Nakajima et al., 2014). Reactions
whose flux was not used at the simulations are represented by grey arrows. Reactions
whose flux was used at the simulations are represented by black arrows. In these latter
reactions, arrow thickness and label show flux values expressed as a percentage of flux
at the reference reaction (phosphorylation of glucose to glucose-6-phosphate). See page
or the list of acronyms.
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Figure 6.3: Experimental fluxes considered for the simulations with Meta-MODE
and FBA_exp under mixotrophic (L) conditions (Yang et al.,|2002). Reactions whose
flux was not used at the simulations are represented by grey arrows. Reactions whose
flux was used at the simulations are represented by black arrows. In these latter reac-
tions, arrow thickness and label show flux values expressed as a percentage of flux at
the reference reaction (phosphorylation of glucose to glucose-6-phosphate). See page
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Figure 6.4: Experimental fluxes considered for the simulations with Meta-MODE
and FBA_exp under photoheterotrophic conditions (Nakajima et al., 2014). Reactions
whose flux was not used at the simulations are represented by grey arrows. Reactions
whose flux was used at the simulations are represented by black arrows. In these latter
reactions, arrow thickness and label show flux values expressed as a percentage of flux
at the reference reaction (phosphorylation of glucose to glucose-6-phosphate). See page

pexffor the list of acronyms.
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Figure 6.5: Experimental fluxes considered for the simulations with Meta-MODE
and FBA_exp under heterotrophic conditions (Yang et al., )2002). Reactions whose
flux was not used at the simulations are represented by grey arrows. Reactions whose
flux was used at the simulations are represented by black arrows. In these latter reac-
tions, arrow thickness and label show flux values expressed as a percentage of flux at
the reference reaction (phosphorylation of glucose to glucose-6-phosphate). See page

fexjfor the list of acronyms.
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de (Vjeap) is the vector deviation from experimental fluxes (Equation

(5.8)),

and Z (v) is the objective vector, within which the following objectives
are defined:

Z1 (v): Maximise growth (Equation (5.22))
Z3 (v): Minimise ATP synthesis (Equation (5.20))

Zs3 (v): Minimise median deviation from experimental fluxes (close-

ness) (Equation (5.24))
Z4 (v): Minimise total sum of fluxes (parsimony) (Equation (5.23))

The selection of these four objectives implies the combination of two
objectives accounting for high metabolic performance (hight produc-
tion of biomass components, Z; (v), with low energy expenses, Z, (v))
and two objectives aiming at the metabolic pertinency of the solutions
(resembling real measurements, Z3 (v), and avoiding unrealistic high
fluxes, Z4 (v)). As explained before, maximisation of growth is the most
common objective function applied in constraint-based metabolic sim-
ulations, and it represents the evolutionary advantage of fast-growing
phenotypes (Savinell and Palsson,|1992a; Feist and Palsson,[2010). Min-
imisation of ATP synthesis implies efficient use of energy and, together
with maximisation of growth, results in the cell aiming to grow while
using the minimum amount of energy necessary, thereby conserving
ATP (Savinell and Palsson, [1992a; [Knorr et al., [2007). Inclusion of the
closeness objective aims to minimise the deviation between calculated
and experimentally measured flux values, which helps to shape the
whole flux landscape based on the information available for a small set
of fluxes. And finally, minimisation of the total sum of fluxes helps to
improve metabolic pertinency since it helps to avoid solutions contain-
ing extremely high fluxes or futile cycles with no biological meaning,
and biologically it represents parsimonious usage of enzymes which
means reduced expenses for enzyme synthesis (Schuetz et al., 2007}
Lewis et al., [2010).

The set of constraints included in the above statement are:
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Steady-state mass balance (Equation (6.7)).

* Reaction reversibility (Equations and (6.9)).

Flux bounds (Equation (6.10)).

Closeness constraints (Equation (6.11)).

Closeness constraints are handled along the optimisation process by
means of the penalty function described in Algorithm The sets of
internal flux measurements have been extracted from the journal ar-
ticles listed in Table and are the same 10 internal fluxes used for
the FBA_exp simulations (Table [6.2] and Figures from [6.1] to [6.5). The
maximum deviation allowed was 25%.

This set of 10 internal fluxes (common to all simulation conditions, see
Table has been used for the closeness objective and constraints. Re-
markably, none of them were the growth value (or any of the biomass
components). Again, growth or biomass components from the exper-
imental datasets were not used as inputs or constraints in any way??
which allows using the experimental growth values as benchmark.

Minimal additional flux bounds related with experimental set-up (light,
glucose, CO, and some other nutrients availability) were imposed. The
corresponding values, extracted from the description of the experiments
included in the selected journal articles, were the same as the ones used
for the FBA_exp simulations (see Table [6.1|and Additional file 6.3).

Optimisation tools

To solve the mono-objective optimisation problems stated above, the
software tool PyNetMet23 Gamermann et al.| (2014b)) was used. This
Python-based toolbox (briefly described in Section is designed to
manipulate metabolic networks and perform flux simulation and anal-

ZThe only constraints imposed to the reactions yielding biomass components are
the reversibility bounds, imposed as stated in Equations and
BTool available at/github.com/CyanoFactory/CyanoFactoryKB
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ysis. In this chapter it has been applied to solve the FBA and FBA_exp
instances.

For the multi-objective optimisation approach, a MATLAB®-based im-
plementation of the Meta-MODE algorithm (Algorithm [5.11)) presented
in Chapter [5|has been applied.

6.3.3 Solution visualisation and selection (MCDM stage)

Transformation of growth objective units

As it was explained in Chapter [f] (Section [5.4.2), in Meta-MODE the
growth objective is defined as the sum of all fluxes yielding biomass
components (with negative sign for maximisation). The units of these
fluxes in iSyn842 are defined to be mmol/y . p, that is, millimole per
gram of dry cell (biomass dry weight) per hour. Consequently, those
are also the units of the growth objective function. However, usually
the growth rate is measured at the laboratory in 2! (which comes from
9/g - n), and thus the units must be converted to address comparisons. To
do so, for each individual biomass precursor millimoles are converted
to grams and then all weights of biomass components are summed:

p=> vj-M"™ .10, jeB (6.12)

J
where B is the set of reactions describing individual biomass precursor
drains, and M®™ is molar weight of the biomass precursor drained in

reaction j.

The value of the growth objective is shown in all figures using these
units.
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Visualisation plots

Level Diagrams visualisation was used to visualise all four components

of the resulting Pareto fronts, by means of the LD-ToolBox?* (

Meza et al., 2013a) developed for MATLAB®.

Reynoso-

Also 3-D plots showing three of the four objectives were depicted for
comparison purposes. The selected objectives for these visualisations
were at the x-axis Z; (v) (growth); at the y-axis Z, (v) (parsimony); and
at the z-axis Z3 (v) (closeness). The reason of choosing this combina-
tion is because parsimony and closeness are critical objectives that aim
at improving biological meaningfulness of the solutions, while growth
objective is an objective aiming at best metabolic performance which
was considered critical due to its relation with the FBA's “biomass” ob-
jective.

Parsimony-closeness trade-off score

For the selection of solutions among the Pareto front, an index has been
defined based on the trade-off between the two pertinency-based ob-
jectives, that is between Z4 (v) (minimisation of total sum of fluxes -
parsimony), and Z3 (v) (minimisation of median deviation from experi-
mental fluxes - closeness).

First, the values of these two objectives are normalised with respect to

their minimum and maximum values in the entire Pareto front:

) Zk v _Zutopia

- : - k=13,4 6.13
Z’?adzr . Z]t:topza [ ] ( )

Then, a weighted distance is defined that prioritises the closeness ob-
jective over the parsimony objective by assigning a greater weight to
deviation:

MTool available at |https://www.mathworks.com/matlabcentral/
fileexchange/62224
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W= \/ (Zpars @))2 + (2% Zae @))2 (6.14)

The reason for giving more importance to closeness than to parsimony
is because closeness objective is related to actual measured values, thus
it is a highly trustworthy index, while parsimony is based on the intu-
ition that living systems will tend to minimise enzyme usage, but there

is no reference value of the “normal” total sum of fluxes.

This index has been used in the representation of the Pareto front ap-
proximations to colour the dots that represent the solutions at each Pa-
reto set. As it is defined by a (weighted) distance, better solutions in
terms of metabolic pertinency will have lower values. With this idea
on mind the solutions are ranked and the chosen (five) solutions are
the ones with lower values of this index.

Similarity measure and clustering dendrograms of fluxes

In order to evaluate similarity between flux vectors, a fuzzy metric
based on the standard fuzzy metric (Definition Chapter |5, page
135) was used. This metric can be defined to calculate similarity be-
tween any two flux values, given a reference:

’Uref|
M = 6.15
('Ula V2, v’r‘@f) |'U7~ef‘ + ”Ul . ,02| ( )

In this work, experimental values are always used as reference values.
Thus, this metric compares the difference between v; and v, with re-
spect to the value of the flux measured for this same reaction. If the
difference between v; and v, is big compared with the experimental
value, the similarity coefficient will be close to 0; if the difference be-
tween v; and v; is small compared with the experimental value, the
similarity coefficient will be close to 1.

This metric was used in this study to compare the solutions from differ-
ent simulation methods. The flux values of the subset of reactions with
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experimental measurements were extracted from the different simula-
tion solutions (columns in the table below). These vectors of fluxes
were pairwise compared between them and with the experimental val-
ues using the metric above. For each pair of vectors, the median of the
similarities was taken. This way, for each pair of flux vectors a single

similarity value is obtained.

H Flux vectors

Reactions with
method 1 | method 2 . Experimental
measurements

1 - - PN -

9 - - PR -

These median similarities where later used to depict dendrograms in
which “more similar” solutions will appear clustered together. Two
families of dendrograms were plotted: (i) in one case, only the sub-
set of 10 internal fluxes, common to all conditions (Table [6.2), used to
define closeness constraints and objective, was considered; and (ii) in
the other case, extended sets of fluxes including all the measurements
available for each condition were used (33, 23, 19, 21 and 19 fluxes for
the autotrophic, mixotrophic (h) and (1), photoheterotrophic and het-
erotrophic conditions respectively, among which the subset of 10 was
always included).

This way, it can be checked if the obtained fluxes resemble the exper-
imental values used to tune the simulations and if, by adjusting this
small subset, other fluxes are also close to the real values.

6.3.4 Convergence and stochastic behaviour

Since Meta-MODE is an algorithm based on differential evolution that
uses stochastic techniques both to build the initial population and to
derive offspring individuals from their parents, it is important to verify
the stability of the obtained solutions. In Figure [6.6|an approximation
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of the front hypervolume (Branke et al., 2008) against generations is
shown. Dots are drawn for the solution with median hypervolume at a
given generation while lines represent first and third quartiles. Notably,
the hypervolume is used here to monitor the evolution of the front size
and shape, but not as a “quality” measurement®. Thatis, it will be used
in order to gain some insight about convergence rate of the algorithm
and therefore, being able to suggest a reasonable amount of generations

(or function evaluations).
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Figure 6.6: Convergence and stochastic behaviour of the Meta-MODE simulations
under all five simulation conditions.

To perform this analysis, for each condition 51 repeats of the simula-
tion were run, and results were gathered every 10 generations until
1000 generations were reached. As it can be seen in Figure the
algorithm yields stable Pareto front approximations from around 200
generations for all conditions studied. All results shown in this chapter
correspond to generation 400, in particular to the solution showing me-
dian hypervolume. Therefore, this value is suggested altogether with
the parameters of Tables 5.1]and 5.2 as a set of suitable parameters in
order to use this algorithm with other organisms.

¥ As explained in Chapter when using optimisation techniques to simulate meta-
bolism emphasis is put in the realism of the solutions, more than in the mathematical
optimality.
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6.4 Results and discussion

Additional file 6.4 (see page [250) contains the results of all simulations
performed in this chapter, as well as the complete lists of experimental
fluxes available from literature for each growth mode.

6.4.1 Pareto front approximations obtained with
multi-objective optimisation algorithm

Figures from|[6.7]to show the obtained Pareto front approximations
for all five conditions simulated, i.e. (i) photoautotrophy (Figure [6.7),
(ii) mixotrophy with higher CO; component (H) (Figure[6.8), (iii) mixo-
trophy with lower COy component (L) (Figure , (iv) photohetero-
trophy (Figure [6.10), and (v) heterotrophy (Figure [6.11).

In these figures the Pareto fronts are depicted using three dimensional
plots that exclude one of the objectives (ATP production), as well as
using Level Diagrams (LD). The great advantage of Level Diagrams
representation is that it allows to visualise all components of the Pareto
front when more than three objectives are considered. Besides, it eases
the analysis of independent objectives, as well as to spot their interde-
pendences.

An interesting trait that can be observed in the Level Diagrams plots, is
that the solutions that show lower normalised distance to the utopian
solution (vertical axis in LD visualisation, see Section are not
exactly the same that show better parsimony-closeness trade-off, al-
though they are always close by. This fact illustrates that metabolic
reality often implies quasi-optimal flux distributions, which highlights
the importance of using multi-objective approaches in order to analyse
further Pareto optimal states (instead of a single optimal solution). The
biggest differences are seen in the case of heterotrophic growth, which
will be discussed later in detail (Section [6.4.4).

If objectives are analysed individually from the LD plots in Figures
to some important observations arise. Looking at objective
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Figure 6.9: Pareto front approximation found with Meta-MODE under mixotrophic (L) conditions from E 2002)
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Z1 (v) (growth) it can be seen that, in most of the cases, the best solu-
tions appear grouped together within a narrow value range. Moreover,
except in the case of autotrophic simulations (that will be discussed
later in Section[6.4.4), these values are close to the experimental values.
Even more, better solutions, both in terms of proximity to utopian so-
lution (vertical axis in LD) and closeness-parsimony trade-off (dark red
colour), better match the experimental growth values.

It is important to note that experimental information related with bio-
mass formation or growth was not used during the optimisation pro-
cess to tune or constrain the results; thus, this fitting between in silico
and in vivo growth rates has to be underlined as a validation of the
method and the set of constraints and objectives used.

Looking at objective Z3 (v) (closeness), it can be seen that, as expected,
solutions with higher deviation are painted in more blue colours (far
from the defined weighted sum of metabolic pertinency). The same
effect, although a bit less marked, is observed in the case of objective
Z4 (v) (parsimony), solutions with higher sum of fluxes appear more
blue coloured. This was to be expected, since the index used to account
for metabolic pertinency (and illustrated by the colouring) was defined
based on these two objectives, with greater weight on the closeness ob-

jective.

6.4.2 Trade-off between objectives
Trade-off between closeness and parsimony as a measure of realism

From the Level Diagrams it can be seen that some kind of trade-off
exists between closeness and parsimony objectives. In order to better
observe this phenomenon, these two objectives have been represented
in bi-dimensional objective spaces (Figure B). Looking over each
closeness-parsimony figure from left to right, it can be seen that in
all cases, at the left part, it is not possible to reduce deviation with-
out increasing the total sum of fluxes. This fact points out that, even
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when cells try to perform their metabolic functions aiming at greatest
efficiency, the flux levels that have been reported from actual systems
(closeness objective is based on internal fluxes measured from real cells)
demand a minimum of metabolic activity to be achieved. In most cases
(except in simulations under heterotrophic conditions) it can be ob-
served that some solutions can be found that suffer degradation of both
objectives. It can be seen that the defined weighted distance (encoded
by the colour scale) has been designed in such a way that it favours the
solutions that appear around the point in which minimal deviation is
achieved without further degradation in parsimony.

Metabolic performance vs. metabolic pertinency

Figure A, also shows the relation between objective Z; (v) (max-
imisation of growth) and objective Z; (v) (minimisation of ATP synthe-
sis). As it is to be expected, greater growth rates imply greater energy
demands. Even more, the relationship between these two objectives
appears to be linear, with coefficient of determination (R?) greater than
0.91 in all cases®. It can be seen that the solutions marked in dark red
colours (i.e. solutions closer to the closeness-parsimony utopia) in gen-
eral show medium levels of growth and ATP synthesis.

Altogether, the bi-objective spaces plotted in Figure show that the
quasi-optimal solutions proposed as better solutions based on weighted
distance to the closeness-parsimony ideal (Equation (6.14)), exhibit good
levels of fulfilment in both metabolic performance (growth-energy trade-
off) and metabolic pertinency (closeness-parsimony trade-off). For the
following analyses presented in this section, five solutions were se-
lected from each Pareto front according to best metabolic pertinency
criterion.

% Autotrophy: R? = 0.9997. Mixotrophy (H): R* = 0.9105. Mixotrophy (L): R? =
0.9327. Photoheterotrophy: R? = 0.9668. Heterotrophy: R? = 0.9691
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Effect of flux trough central pathways on the objective functions

In order to analyse how the flux through the central metabolic path-
ways affects the values of the objective functions Level Diagrams have
been plotted (Figures from to that show the values of the ob-
jectives as well as the values of flux at a set of selected reactions (Table

0.3).

In relation with metabolic performance, as it was to be expected, in gen-
eral, greater fluxes through all pathways correspond to greater growth
(as it is also observed when analysing the relationship between growth
and parsimony). Particular differences between trophic conditions can
be observed for example in the 6-phosphofructokinase (PFK) and Ru-
BisCO (RBCO) reactions: the greater the contribution of glucose (se-
quenced from heterotrophy to autotrophy) the greater the dominance
of PFK over RBCO and vice versa.

Regarding metabolic pertinency, it can be observed that, even when
these reactions where not used as reference for the closeness objective,
since they are closely related to other reactions at the same pathways
that were among the experimental values used, the flux values that
show good scores in terms of metabolic pertinency (dark red colours)
are distributed around concrete values. This effect is specially visible in
the case of the fumarate hydratase (FUMH), that shows a small interval
of values in all trophic modes. This fact shows that using a small set of
experimental values helps to adjust a greater set of fluxes, that is, the
accuracy of the flux distribution, and as a consequence the metabolic
pertinency, is improved by using experimental information from only
a few reactions.

As for the distribution of fluxes observed through the different path-
ways under different growth conditions, it is remarkable the case of
the enzyme RuBisCO (RBCO) which shows the activity of the Calvin-
Benson-Bassham cycle. This enzyme shows greater flux in the case of
autotrophy, and its flux decreases while the contribution of the auto-
trophic component decreases, reaching null values in the case of hetero-
trophy. Another reaction that displays a characteristic change among
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Figure 6.13: Pareto front and Pareto set approximations found with Meta-MODE under autotrophic conditions from _Kczxw et al. _;NQH i

(A) Level Diagrams of the four objectives: Zy (v): growth; Zy (v): min. ATP; Zs (v): closeness; Zy (v): parsimony. Vertical line in the
diagram of growth objective shows experimental growth.

(B) Level Diagrams of the flux values at four selected reactions from different central carbon pathways ( HmEmE.
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Figure 6.15: Pareto front and Pareto set approximations found with Meta-MODE under mixotrophic (L) conditions from EE
(A) Level Diagrams of the four objectives: Zy (v): growth; Zy (v): min. ATP; Zs (v): closeness; Zy (v): parsimony. Vertical line in the
diagram of growth objective shows experimental growth.

(B) Level Diagrams of the flux values at four selected reactions from different central carbon pathways ( HmEmE.
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Figure 6.17: Pareto front and Pareto set approximations found with Meta-MODE under heterotrophic conditions from EE
(A) Level Diagrams of the four objectives: Zy (v): growth; Zy (v): min. ATP; Zs (v): closeness; Zy (v): parsimony. Vertical line in the
diagram of growth objective shows experimental growth.

(B) Level Diagrams of the flux values at four selected reactions from different central carbon pathways ( HmEmE.
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trophic conditions is the transketolase (TAL) that shows the inversion
of the pentose phosphate pathway according to the availability of light
and COa: the flux at this reaction moves more to the positive values as
the heterotrophic component is more important.

6.4.3 Comparison between mono and multi-objective
optimisation approaches

In order to benchmark the algorithm proposed in this work, the results
of Meta-MODE have been compared to the results of the commonly
used FBA, as well as to an FBA that incorporates as constraints the in-
formation on 10 internal reactions for which experimental values were
available (Table[6.2), termed FBA_exp (see Section[6.3).

Metabolic efficiency and agreement with observed fluxes

Figure shows a comparison among the values obtained from the
five solutions selected from Meta-MODE's Pareto set for each of the
four objectives and the corresponding values calculated from the solu-
tions obtained from the two mono-objective methods. It is important to
highlight that since FBA and FBA_exp are mono-objective optimisation
algorithms not all the four values shown for these methods are “objec-
tive” values. In these mono-objective methods, the optimised function
was maximisation of growth (first value from the left in Figure
defined as flux through the biomass equation. The other three values
were calculated from the flux distribution of the mono-objective opti-
mal solutions. The values shown in these plots have been normalised
with respect to maximum and minimum values in the set of solutions
of all three methods, so that minimum value translates to 0 and maxi-
mum value translates to 1. In the case of growth, also the experimental
value was added.

It can be observed in Figure that the behaviour of the two mono-
objective methods has in general an opposite trend to the Meta-MODE:



AUTOTROPHY MIXOTROPHY (H) ©) ] MIXOTROPHY (L)

(A 1 (B) 1
,”l’l
0.8 / 08 08
[ [ )
=5 =5 3
© © ©
> 06 f\ > 06 \ > 06 \ \
Q Q )
T 04 S 04 T 04 \/
g 2 AN 2 7N
(@] ¢] O
02 02 02
0% 03¢ 0
growth (1)  ATPsyn.(]) mediandev.(])sumfluxes(]) growth (1) ATPsyn.(]) mediandev.(|) sumfluxes(|) growth (1)  ATPsyn.(]) mediandev.(])sumfluxes(])
D) A PHOTOHETEROTROPHY B ; HETEROTROPHY
"
08 \/ 08 \
[ [
= =
£ 06 < 06 Meta-MODE
2 2 FBA_exp
—_—
g g X / FBA
o o
5] 04 o 04 A ¢ Experimental growth
S ol
(] (]
0.2 02
0 0
growth (1)  ATPsyn.(]) mediandev.()sum fluxes () growth (1) ATPsyn. (]) mediandev.()sumfluxes(])
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¢ Regarding growth, in general, FBA tends to yield solutions with
growth rate values quite higher than the obtained with Meta-
MODE. FBA_exp results in intermediate growth values.

* In terms of ATP synthesis, even for greater growth values, both
FBA and FBA_exp simulations predict lower energy requirements
than Meta-MODE.

* Deviation from experimental fluxes in the case of FBA is always
much greater than the Meta-MODE results, while FBA_exp some-
times achieves intermediate values.

¢ And finally, relative to parsimony, FBA and FBA_exp show also
lower values for the total sum of fluxes, even with greater growth
rates than Meta-MODE.

Overall, taking into account the values for the four functions, FBA so-
lutions show very high metabolic efficiency, they achieve high growth
rates with low energy (ATP) and activation (sum of fluxes) require-
ments. However, regarding closeness to observed behaviour, they fail
in approximating experimental flux values. In the case of FBA_exp, the
general trend of the solutions is quite similar to those of FBA, which
was expectable since they use the same principles. However, the addi-
tion of the experimental measurements to the set of constraints moder-
ately moves the results from extreme metabolic performance towards a
better metabolic pertinency.

Estimation of growth rate and yield

If the focus is put on growth (left value in plots from Figure , tak-
ing into account the experimental values, it can be seen that, in general,
FBA, and to a lesser extent FBA_exp, tend to overestimate growth rate.
And, as it was already remarked, they predict low energy requirements
to achieve those growth rates. To evaluate the realism of the metabo-
lic efficiency displayed by each kind of simulations, biomass-glucose
yields were calculated (Table [p.4]and Figure[6.19). In the case of Meta-
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MODE values, the mean and standard deviation of the five selected
values are shown.

Table 6.4: Biomass/glucose yield (Y ,s) shown by solutions from the different sim-
ulation methods under different trophic conditions. Standard deviations are shown
between parentheses for Meta-MODE.

mixo (H) mixo (L) photohetero hetero

Experimental 1.10 0.87 0.53 0.50
Meta-MODE 1.21 (0.06) 0.85(0.05) 0.48 (0.01)  0.45 (0.04)
FBA_exp 1.23 0.86 0.59 0.55
FBA 1.63 1.04 0.74 0.61
0.6

—— Meta-MODE
—¥—FBA_exp
051 FBA

047

03r

02r

01r

Deviation from experimental yield

3

-0.1 ’ ’ ’ =
mixotrophy (h) mixotrophy (I)  photoheterotrophy  heterotrophy

Figure 6.19: Deviation from experimental value of biomass/glucose yield (Yx;s)
shown by solutions from the different simulation methods under different trophic con-
ditions. Standard deviations are shown by error bars for Meta-MODE.

Both Figures and show that the results of the multi-objective
simulation are as closer to the experimental values of yield and growth

than the ones from FBA and FBA_exp. Meta-MODE is closer to the
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experimental values of biomass-glucose yield and growth in the het-
erotrophic, photoheterotrophic and mixotrophic (H) conditions. In the
particular case of autotrophic simulations (Figure A), none of the
tested methods is able to approximate the experimental growth, which
will be discussed later (Section [6.4.4).

Interestingly, Meta-MODE always produces lower values of yield and
growth than FBA or FBA_exp. These mono-objective algorithms use
techniques to bring their growth and yield values closer to the experi-
mental ones by adding maintenance costs that are meant to reflect en-
ergy costs (for maintenance, cell division, etc.) not contained in the me-
tabolic model. Meta-MODE algorithm is able to better reflect realistic
metabolic efficiency without those mathematical constructs.

Closeness to measured internal fluxes

Using the fuzzy metric described in Section [6.3] (Equation (6.15)), the
similarity between flux vectors obtained from different methods and
sets of experimental fluxes was evaluated. These similarity values were
then used to plot the clustering dendrograms shown in Figures and
Figure shows the dendrograms obtained considering only the
subset of 10 fluxes, common to all conditions (Table[6.2), that have been
used to define closeness constraints and objective. Figure shows
the clusters obtained with the extended sets of measured fluxes (see
Additional file 6.4 for the complete sets of measured fluxes).

As it can be seen, mono-objective simulations based on classic FBA
methodology appear in all cases far from experimental values, while
multi-objective simulations performed with Meta-MODE algorithm are
close to the experimental set and always cluster in the same group
as experimental values. FBA_exp simulations display an intermedi-
ate agreement with experimental fluxes. It must be taken into account
that information about part of these experimental fluxes (the subset of
10) was included during the optimisation process in Meta-MODE and
FBA_exp and not in normal FBA.
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Condition-specific biomass composition of simulations based on

multi-objective optimisation

As it was explained in Chapter|[I} mono-objective linear optimisation al-
gorithms for simulating metabolic fluxes rely on definition of biomass
equations describing fixed proportions of biomass components. On the
contrary, in Meta-MODE biomass evolution is considered as the inde-
pendent production of biomass elements, without the description of a
specific biomass equation. In fact, this algorithm allows the study of the
proportion of those biomass components as a result of the simulation.

In this study, five different environmental conditions were considered
for which internal flux measurements were available from literature.
Using this information, and considering closeness to measured fluxes
as an objective, the proportion of biomass components observed in the
selected solutions appear to be adjusted to match the flux distributions

observed in vivo.

Figure shows the proportions of biomass components obtained
from the simulations carried out with the different methods. FBA and
FBA_exp always exhibit the same biomass composition, since it was
previously fixed through the biomass equation. However, the solutions
obtained using Meta-MODE display a range of different biomass com-
positions for the different simulated environmental conditions. Fur-
thermore, the multiple solutions obtained from the Pareto front ap-
proximation for each simulation show slightly different compositions,
while they present similar performance in terms of the four objectives
considered. This fact highlights the interest of considering multiple
non-dominated solutions, instead of one single mono-objective optimal
flux distribution, which better captures the diversity observed in actual

cells.

Some observations can be extracted from the biomass compositions
shown in Figure In all conditions the greatest part of the biomass
is made of amino acids, and the distribution among them is not even,
some amino acids appear to have greater contribution than others. In
the cases of autotrophic and the two mixotrophic simulations, the con-
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tribution of other metabolites is very low (they are present, even when
the small proportion is not perceptible in the bar plot). In the cases
of heterotrophic and photoheterotrophic conditions the contribution of
lipids, nucleotides and trace elements is more noticeable, especially in
the case of photoheterotrophy. Comparing the biomass compositions
obtained from multi-objective simulations with the biomass equation
fixed in the case of mono-objective algorithms, it can be concluded that
the proposed biomass equation in mono-objective simulations (taken
from Montagud et al,| (2011)) is more adequate for simulations under
heterotrophy and, with some limitations, photoheterotrophy.

6.4.4 Different trophic conditions exhibit different
behaviour in simulation results

In this chapter the multi-objective optimisation algorithm proposed in
this work for metabolic simulations has been tested under five trophic
conditions. The results from those simulations shown at this section
present some common characteristics that have been exposed. How-
ever, they present some particularities depending on the studied con-
ditions.

The first thing that must be taken into account is the degree of flexi-
bility that each condition implies. Those conditions in which the cell
can make use of glucose, CO; and sunlight at the same time, i.e. mixo-
trophic conditions, give the system much flexibility, and allow for a
better reorganisation of internal fluxes. This makes it easier for the
system to achieve states closer to the ideal state, and thus both meta-
bolic performance and metabolic pertinency requirements can be ful-
filled in an easier way. This fact can be observed in Figures[6.8and
where the agreement between distance to the utopian solution (vertical
axis in Level Diagrams) and weighted distance to the ideal closeness-
parsimony trade-off (colour code) is almost perfect.

On the other hand, under more restricted situations, like the case of

heterotrophic and photoheterotrophic conditions, the system is more
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constrained, and moving toward more pertinent solutions has a bigger

cost on metabolic performance and thus, it is more difficult to approach
the ideal solution (see Figures and [6.10).

The case of autotrophic conditions needs its own separated analysis. It
can be seen in Figures[6.7| (Pareto front in LD) and (comparison of
methods), that none of the tested methods was able to appropriately es-
timate experimental growth rate since all methods overestimated this
objective. This fact contrasts with all the other conditions studied in
which Meta-MODE, and FBA _exp in some cases, approximated the val-
ues quite well. Some reasons for these discrepancies can be related to
the model, the experimental fluxes and the intrinsic complexity of auto-
trophic metabolism. With respect to the model, it could be possible that
the pathways implied in autotrophy need further revision and verifi-
cation in order to ensure that they represent adequately autotrophic
metabolism. However, if the case would be that the metabolic model is
incomplete or inaccurate in describing light-driven reactions, it would

also affect, even when in a lesser extent, mixotrophic simulations.

Furthermore, apart from agreement between measured and estimated
growth, the performance of the solutions of autotrophic simulations in
terms of distance to the ideal solutions and metabolic pertinency are
as good as the ones obtained from mixotrophic simulations (see LD in
Figure[6.7). This fact suggests that the simulation was able to fulfil the
optimisation requirements, which were high metabolic efficiency (max-
imisation of growth and minimisation of ATP synthesis), moderated
metabolic activity (minimisation of total sum of fluxes) and closeness
to experimental fluxes (minimisation of deviation); but the emerging
value of growth did not concur with the experimental one. At this point
it could be interesting to mention that the technique used to retrieve in-
ternal metabolic fluxes at the laboratory under autotrophic conditions
differ from the standard technique applied when glucose (or other or-
ganic molecules) is used as carbon source. The fact that the only car-
bon input under autotrophy is CO,, which is a single carbon molecule,
makes it necessary to turn to a special procedure called Isotopically Non-
Stationary Metabolic Flux Analysis (INST-MFA) (see |Young et al.| (2011)
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for details), which measures carbon fluxes under metabolic steady state
but not isotopic steady state. It could be possible that the cause of the
discrepancy between measured and simulated growth could reside, at
least in part, in the method used to measure the fluxes, which could
have an effect on the accuracy of the data obtained. However, further
simulations and analyses are needed to assess the sources of this dis-
crepancy.

6.5 Conclusions

The aim of this chapter was to prove the use and application of the
simulation tool based on multi-objective evolutionary optimisation de-
scribed in the previous chapter and to assess its performance in com-
parison to well-established methods. For this, it has been applied to
simulate Synechocistis' metabolic network under five trophic conditions,
and it has been compared with the classic FBA method based on mono-
objective linear optimisation.

The results provided in this chapter show that using the multi-objective
algorithm proposed in this work, metabolic simulations can be per-
formed in which the inclusion of a few internal fluxes obtained from
measurements allows to readjust the whole flux distribution, thus avoid-
ing the necessity of hard, sometimes difficult to validate, restrictions
that try to reflect costs and limitations that the cells must face.

The solutions chosen from simulations with Meta-MODE show a quasi-
optimal state in which a balance is found between metabolic perfor-
mance and metabolic pertinency. Thanks to the observation of the Pa-
reto front, instead of obtaining a single mono-objective optimal solu-
tion, it was possible to analyse the trade-off between objectives and to
realise that solutions less optimal in terms of metabolic efficiency better
describe the observed behaviours. This also raises the question if this
optimality, even assuming it is a biological objective, is something ever
reached in nature.
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This methodology also avoids the necessity of a biomass equation to
account for biomass formation. Instead, under this scheme, the bio-
mass composition arises as a consequence of the studied conditions,
instead of being imposed beforehand. As a result of the simulation,
slightly different phenotypes, including biomass composition, will ap-
pear that match the known internal fluxes and show quasi-optimal me-
tabolic performance.

With the use of measured fluxes the results of these simulations have
been validated. It has been shown that, with the inclusion of a reduced
subset of experimental fluxes, the obtained flux distributions resemble
those described in literature, and they approximate the experimental
data closer than other classic methods that have already proved their
applicability.

Finally, it has been shown that the algorithm proposed here is flexi-
ble to tally experimental observations under different environmental
conditions adapting the flux behaviour to the specific situation. This
way, it has been seen that trophic modes that offer the cell more varied
sources of carbon and energy confer it more plasticity, which allows
reaching more efficient states closer to the ideal performance. On the
other hand, more restricted conditions limit the operability of the cell
and lead to less optimal phenotypes.

Overall, this chapter shows that the use of multi-objective approaches
to simulate metabolic phenotypes offers interesting opportunities to
further analyse implications of different factors over the metabolic per-
formance of the cell. The simulations performed in this way relax some
impositions needed in classic approaches, which gives them more plas-
ticity to adapt to different simulation conditions. The final aim of meta-
bolic modelling is to describe, as accurately as possible, the behaviour
of metabolic systems, and their response to perturbed conditions. Thus,
itis advantageous to have a simulation tool that appropriately describes
real metabolic traits, such as growth, and shows plasticity to perform
well under changing conditions, when some experimental information

is available.
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However, the tool proposed in the present work is, in its current state,
limited to analysis purposes and could not be used for prediction, since
experimental fluxes are needed from in vivo experiments. Further work
is needed to include additional simulation techniques in order to make
possible the prediction of the metabolic response to genetic and/or
environmental perturbations taking advantage of the wild type mea-
surements as a reference. Some ideas have been planned in this sense
that make use of techniques similar to MOMA and ROOM (see Section
that can be easily combined with the current objectives and con-
straints due to the multi-objective and evolutionary characteristics of
the algorithm. These ideas will be the following areas of research of
present PhD candidate.
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Conclusions and closing
remarks

The main objective of this thesis was to contribute, with models and
algorithms, to metabolic modelling techniques in cyanobacteria. These
organisms are photoautotrophic bacteria that can perform oxygenic pho-
tosynthesis to obtain energy from sunlight and carbon from inorganic
COg. Their low energetic requirements, make them very interesting or-
ganisms for the design of cell factories. For this purpose, the natural
organisms have to be modified to enhance their productive capacities
and improve their robustness. But rational design needs planning: it
is crucial to assess the effect that genetic and environmental modifi-
cations will have on the whole metabolism of the organisms and how
it will affect their performance. Constraint-based metabolic modelling
offers the opportunity to perform genome-scale simulations that con-
tribute to the understanding of the metabolic behaviour of the cells and
their response under perturbed conditions.

In order to obtain reliable simulation results, both accurate metabolic
models and functional simulation algorithms are needed. The aim of
this thesis was to provide tools to enhance the plasticity and the pre-
dictive capacities of the constraint-based simulations of cyanobacteria.
Following this goal, in Chapter[3|reconstruction of metabolic models of
two cyanobacterial species was addressed. Consideration of as much
accurate information as possible during the reconstruction process is
fundamental to obtain a functional model that enables the analysis of
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genome-scale flux distributions. Besides, continuous update and im-
provement of the models with knowledge retrieved from last discov-
eries is important to enhance the simulations and ensure their appli-
cability. The metabolic model of Synechocystis sp. PCC 6803 obtained
in this chapter includes important improvements with respect to the
previous version, that lead to better description of the energy metabo-
lism, which turns into more realistic energy costs, and fewer amount
of constraints, which contributes to greater plasticity. The metabolic
model of Synechococcus elongatus PCC 7942 presented in this chapter
was the first genome-scale metabolic reconstruction of this organism.
It has been qualitative and quantitatively compared with Synechocystis'
network and it was observed that these two organisms have many com-
mon traits. Further improvement of these models would involve, be-
sides continuous inclusion of up-to-date metabolic knowledge, a more
accurate definition of biomass components, including classification of
the proteins by function. Such level of detail exceeds the published ex-
perimental information available by now in these organisms, but when
possible, it would notably improve the mathematical definition and
simulation of cell growth.

In Chapter 4] Flux Balance Analysis methodology was applied to per-
form simulations with the models reconstructed in the previous chap-
ter. Using this algorithm several studies were conducted to assess me-
tabolic robustness, natural and perturbed physiological states and pro-
ductive capacities of the two cyanobacteria. It would be extremely in-
teresting to have experimental data available in order to verify the re-
sults of the simulations performed in this chapter. Nevertheless the ex-
periments needed to obtain these data are beyond the scope of present
PhD thesis. This would however make an excellent future collaborative
project with experimental colleagues.

Despite the variety of analyses that can be performed with FBA, im-
portant limitations of this approach were detected that motivated the
research made in the following part of this thesis. Among these limita-
tions, it is important to note the limited range of mathematical func-
tions that can be used under this linear approach to describe infor-



221

mative biological constraints and objectives, the reliance on hard con-
straints to tailor simulations, and the strong dependency of the sim-
ulation results on a single objective function that must describe the
complexity of metabolic behaviour. Altogether these limitations moti-
vate the search of new approaches that circumvent them without losing
the convenient simplicity of constraint-based simulation techniques.
In this PhD thesis fundamentals of multi-objective optimisation proce-
dures are applied to the field of constraint-based metabolic modelling
with the aim of improving plasticity and reliability of the obtained so-
lutions. For this purpose, in Chapter (5 a multi-objective framework is
presented to define and optimise multi-objective problems that ensure
the metabolic pertinency of the solutions. The optimisation algorithm
presented in this chapter includes a set of mechanisms to deal with
the resulting optimisation statements. This multi-objective evolution-
ary tool avoids some of the main drawbacks of classic mono-objective
linear optimisation methods: it allows definition of multiple biologi-
cally significant objectives, it enables the use of non-linear functions
to describe metabolic constrains and objectives, and it allows the inte-
gration of experimental data that serve to define soft constraints which
relaxes the impositions made in classical approaches to obtain practical
solutions.

This multi-objective metabolic modelling methodology is used in Chap-
ter [f] in order to validate its applicability and to benchmark the re-
sults with the obtained from widely applied methods. The results ob-
tained in this chapter prove that the proposed methodology is appli-
cable to genome-scale metabolic simulations and it presents important
advantages. Importantly, it allows the analysis of a collection of Pareto
optimal solutions, and permits the exploration of trade-off and rela-
tion between objectives, which further enriches the analysis. Thanks
to this property it was possible to observe that the simulation results
present an equilibrium between metabolic performance and metabolic
pertinency, which points out that metabolic systems operate in a quasi-
optimal metabolic state that cannot be fully described from a mono-
objective perspective. Besides, the non-linear constraints and objective
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functions defined in this work ease the description of meaningful rules
that govern metabolic behaviour. The obtained results have proved
to better approach important metabolic characteristics like growth rate
and biomass yield.

In order to further validate the applicability and interest of the multi-
objective evolutionary algorithm proposed in this thesis to perform me-
tabolic simulations, it would be interesting, in future projects, to take
advantage of the enormous amount of experimental information avail-
able for better studied model organisms, like Escherichia coli and Sac-
charomyces cerevisiae. In these organisms several works have been con-
ducted towards strain characterisation; using data from such studies
would allow to analyse in more detail the characteristics of the solu-
tions obtained with this simulation tool and compare them with the
well-characterised metabolic behaviour of these organisms.

Regarding the expansion and improvement of the current simulation
tool, the future perspectives for this work are promising. The multi-
objective approach described in this thesis can be extended to broaden
the range of possibilities that it can offer to the metabolic simulation
toolbox. Integration of other types of experimental data, such as meta-
bolomic, transcriptomic, and proteomic data, have to be in the scope of
future works. New strategies must be defined to appropriately include
these different kinds of measurements, keeping in mind the inherent
complexity of the relationship between these different levels of infor-

mation.

Furthermore, the line of analysis must be crossed to contribute to the set
of tools that address the tuning and redesign of engineered organisms.
Additional simulation techniques must be added in order to make pos-
sible the prediction of the metabolic response to genetic and/or envi-
ronmental perturbations taking advantage of the wild type measure-
ments as a reference. Some ideas have been planned in this sense that
make use of techniques similar to those used by algorithms like Minimi-
sation Of Metabolic Adjustment (MOMA) and Regulatory On/Off Minimi-
sation (ROOM) that can be easily combined with the current objectives
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and constraints due to the multi-objective and evolutionary character-
istics of the algorithm. Multi-objective optimisation and multi-criteria
decision making approaches can be applied to evaluate, compare and
actively search metabolic engineering strategies that guide experimen-
tal efforts in order to design efficient and environmentally-friendly cell
factories for the production of high-value products, such as biofuels,
drugs or refined chemicals.

From the algorithmic point of view there is space to notable improve-
ments in terms of performance. In this work the attention was focused
on verification of the quality of the final solutions, in terms of metabolic
pertinency, to validate the multi-objective problem defined in this the-
sis. The next step is now to conduct further investigations to assess the
performance of different algorithms to solve this multi-objective pro-
blem. A collaborative work in this sense is now starting.

In this PhD thesis the groundwork was laid for the application of a
new optimisation and analysis framework to the field of constraint-
based metabolic modelling. From this point on, new strategies and
techniques can be developed that should contribute to the set of tools
available for simulation and design of living metabolic systems.
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Appendices

Additional file 3.1 - iSyn842

Text file with the stoichiometric model of Synechocystis sp. PCC 6803,
iSyn842, in OptGene (Patil et al.|, 2005) format.

Additional file 3.2 - iSyf715

Text file with the stoichiometric model of Synechococcus elongatus PCC
7942, iSyf715, in OptGene (Patil et al.,[2005) format.

Additional file 4.1 - Flux landscapes syn-syf

Excel file with the flux distributions resulting from the simulations of
iSyn842 and iSyf715 models under autotrophic conditions (see Table[4.1]
at page 96| for constraints), and the list of common reactions between
them.

Additional file 4.2 - Substrate study

Excel file with the flux distributions resulting from all the simulations
performed for the substrate study to enhance Hy production (Section

4.4.3).
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Additional file 6.1 - Constraints FBA

Excel file with all the constraints used during the simulations performed
with FBA algorithm under five growth conditions.

Additional file 6.2 - Constraints FBA_exp
Excel file with all the constraints used during the simulations performed

with FBA including information about internal flux measurements un-

der five growth conditions.

Additional file 6.3 - Constraints Meta-MODE

Excel file with all the constraints used during the simulations performed
with Meta-MODE algorithm under five growth conditions.

Additional file 6.4 - Fluxes, objective values and growth yield

Excel file with the results of the simulations performed with the three
methods compared in Chapter [6f growth and biomass/glucose yield
values, objective values and flux distributions.



	Abstract
	Resum
	Resumen
	Contents
	Main acronyms
	Main symbols
	List of Algorithms
	List of Figures
	List of Tables
	Aims, Structure and Contributions of this thesis
	I Introduction
	Uses of metabolic modelling and aims of its simulations
	Chapter abstract
	Metabolic modelling in systems biology
	Constraint-based metabolic modelling
	Simulating constraint-based metabolic models
	Software tools for constraint-based metabolic modelling

	Metabolic modelling of cyanobacteria

	Fundamentals on multi-objective optimisation procedures
	Chapter abstract
	Background on multi-objective optimisation
	Stages of multi-objective optimisation procedures
	Multi-objective problem definition
	Multi-objective optimisation process
	Multi-Criteria Decision-Making

	Tools for multi-objective optimisation procedures
	sp-MODE algorithm
	Level Diagrams tool



	II Works on metabolic modelling of cyanobacteria
	Metabolic networks of model cyanobacteria
	Chapter abstract
	Introduction
	iSyn842: updated metabolic network of Synechocystis sp. PCC 6803
	Previous version: iSyn811
	Update process
	Resulting iSyn842 network

	iSyf715: first metabolic network assembled for Synechococcus elongatus PCC 7942
	Assembly process
	Resulting iSyf715 network

	Synechocystis  vs. Synechococcus  metabolic networks comparison

	Flux Balance Analysis on cyanobacteria metabolic models
	Chapter abstract
	Introduction
	Materials and Methods
	Flux Balance Analysis
	Metabolic models and simulation conditions
	Essential reactions
	Comparison of flux landscapes

	Flux Balance Analysis applied to Synechocystis and Synechococcus metabolic models
	Essential reactions in Synechocystis and Synechococcus metabolic models
	Comparison of flux landscapes of Synechocystis and Synechococcus
	Testing physiological perturbed conditions in Synechocystis sp. PCC 6803

	Development of software tools for FBA simulations
	Conclusions of this chapter


	III Metabolic modelling by means of multi-objective optimisation techniques
	Meta-MODE: a multi-objective evolutionary algorithm for constraint-based flux simulations
	Chapter abstract
	Introduction
	Multi-objective metabolic flux analysis
	Addressing special features of flux simulations

	MOP definition for metabolic flux simulation
	Definition of metabolic constraints
	Definition of metabolic objectives

	Multi-objective optimisation process: the Meta-MODE algorithm
	Mechanisms to improve metabolic pertinency
	Handling constraints
	Initial population
	Evaluation of the population
	Algorithm proposed for multi-objective metabolism optimisation: Meta-MODE

	Conclusions of this chapter

	Multi-objective optimisation procedure applied to metabolic simulations of Synechocystis sp. PCC 6803
	Chapter abstract
	Introduction
	Materials and Methods
	Metabolic model and simulation conditions
	Optimisation statements
	Solution visualisation and selection (MCDM stage)
	Convergence and stochastic behaviour

	Results and discussion
	Pareto front approximations obtained with multi-objective optimisation algorithm
	Trade-off between objectives
	Comparison between mono and multi-objective optimisation approaches
	Different trophic conditions exhibit different behaviour in simulation results

	Conclusions

	Conclusions and closing remarks
	References
	Appendices


