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Abstract 

The aim of the present Thesis is to develop models for the study of very high-
frequency phenomena associated with the coupled dynamics of a railway vehicle with 
the track. Through these models, this Thesis intends to address squeal noise as a 
particular case of rolling noise when the train negotiates a small radius curve. 

Wheel/rail interaction is the predominant source of noise emission in railway 
operations. Rolling contact couples the wheel and the rail through a very small area, 
characterised by strongly non-linear and non-steady state dynamics that differentiates 
rolling noise from any other noise problem. Wheel/rail contact problem is studied 
based on Kalker’s variational theory and the local falling behaviour of the coefficient 
of friction is introduced by means of a regularisation of Coulomb’s law. Its 
implementation shows that the influence of the falling friction on the creep curves can 
be assumed negligible, thus rolling contact is finally modelled using a constant 
coefficient of friction. 

Flexibility is introduced in railway substructures through the Finite Element (FE) 
method in order to cover the high-frequency range. This work adopts a rotatory 
wheelset model that takes computational advantage of its rotational symmetry. It also 
develops a cyclic flexible rail model that fixes the translational contact force in a 
spatial point of the mesh through a technique called Moving Element (ME) method. A 
modal approach is used to reduce significantly the number of degrees of freedom of the 
global problem and a diagonalisation technique permits to decouple the resulting modal 
equations of motion in order to reduce the computational requirements of the time 
integrator. 

Simulations in curving conditions in the time domain are carried out for constant 
friction conditions in order to study if the proposed interaction model can reproduce 
squeal characteristics for different curve radii and coefficients of friction. 

Keywords: train/track dynamic interaction, rotatory wheelset, cyclic track, wheel/rail 
rolling contact, falling friction, regularisation of Coulomb’s law, Moving Element 
Method, decoupling techniques, curve squeal. 
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Resumen 

El objetivo de la presente Tesis es desarrollar modelos para el estudio de fenómenos de 
muy alta frecuencia asociados a la dinámica acoplada de un vehículo ferroviario con la 
vía. A través de estos modelos, esta Tesis pretende abordar el fenómeno de los 
chirridos como un caso particular de ruido de rodadura en condiciones de curva 
cerrada. 

La interacción rueda/carril es la fuente predominante de ruido en las operaciones 
ferroviarias. El contacto es el responsable del acoplamiento entre la rueda y el carril a 
través de un área muy pequeña caracterizada por una dinámica fuertemente no lineal y 
no estacionaria. El problema de contacto rueda/carril se estudia mediante la teoría 
variacional de Kalker y la caída local del coeficiente de fricción se introduce por medio 
de una regularización de la ley de Coulomb, que muestra que su influencia sobre las 
curvas de fluencia se puede despreciar. Como consecuencia, el coeficiente de fricción 
se considera constante. 

La flexibilidad se introduce en las subestructuras ferroviarias a través del método de los 
Elementos Finitos (EF) para cubrir el rango de las altas frecuencias. La Tesis adopta un 
modelo de eje montado rotatorio que toma ventaja computacional de su axisimetría. 
También desarrolla un modelo de carril flexible y cíclico que fija la fuerza de contacto 
en un punto espacial de la malla mediante el método de los Elementos Móviles (EM). 
Se utiliza un enfoque modal para reducir significativamente el número de grados de 
libertad del problema global; las ecuaciones de movimiento resultantes en coordenadas 
modales se desacoplan mediante una técnica de diagonalización para aumentar las 
prestaciones computacionales del integrador temporal. 

Las simulaciones en condiciones de curva en el dominio del tiempo se llevan a cabo en 
condiciones de fricción constante con el objetivo de estudiar si el modelo de 
interacción propuesto puede reproducir las características del chirrido en curva para 
diferentes radios de curva y coeficientes de fricción. 

Palabras clave: interacción dinámica tren/vía, eje montado rotatorio, vía cíclica, 
contacto rueda/carril, caída de fricción, regularización de la ley de Coulomb, método 
de los Elementos Móviles, técnicas de desacoplamiento, chirrido en curva. 
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Resum 

L’objectiu de la present Tesi és desenvolupar models per a l’estudi de fenòmens de 
molt alta freqüència associats amb la dinàmica acoblada d’un vehicle ferroviari amb la 
via. A través d'aquests models, aquesta Tesi pretén abordar el fenomen dels grinyols 
com un cas particular de soroll de rodament en condicions de corba tancada. 

La interacció roda/carril és la font predominant de l’emissió de soroll en les operacions 
ferroviàries. El contacte acobla la roda i el carril a través d’una àrea molt reduïda que 
es caracteritza per una dinàmica fortament no lineal i no estacionària. El problema de 
contacte roda/carril s’estudia mitjançant la teoria variacional de Kalker i el descens 
local del coeficient de fricció s’introdueix per mitjà d’una regularització de la llei de 
Coulomb, que demostra que la seua influència en les corbes de fluència es pot suposar 
insignificant. Per tant, s’utilitza un coeficient de fricció constant per a modelar el 
contacte. 

La flexibilitat s’introdueix en les subestructures de ferrocarril a través del mètode 
d’Elements Finits (EF) per tal de cobrir el rang d’alta freqüència. La present Tesi 
adopta un model d’eix muntat rotatori que s’aprofita de la seua la axisimetria. També 
desenvolupa un model de carril flexible i cíclic que fixa la força de contacte en un punt 
espacial de la malla a través del mètode dels Elements Mòbils (EM). S’empra un 
enfocament modal per reduir significativament el nombre de graus de llibertat del 
problema global, al temps que s’implementa una tècnica de diagonalització que permet 
desacoblar les equacions modals de moviment per tal d’augmentar les prestacions 
computacionals de l’integrador temporal. 

Les simulacions en les condicions de corba en el domini del temps es duen a terme per 
a condicions de fricció constant per tal d’estudiar si el model d’interacció proposat pot 
reproduir les característiques del soroll grinyolant per a diferents radis i coeficients de 
fricció. 

Paraules clau: interacció dinàmica tren/via, eix muntat rotatori, via cíclica, contacte de 
rodament roda/carril, fricció descendent, regularització de la llei de Coulomb, mètode 
dels Elements Mòbils, tècniques de desacoblament, soroll grinyolant. 
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1 INTRODUCTION 

1.1 MOTIVATION AND BACKGROUND 

The present Doctoral Thesis is part of the research of railway dynamics carried out in 

the Mechanical Engineering Research Centre (CIIM) of the Universitat Politècnica de 

València (UPV). Within this line of research, dynamic models for the wheelset, the 

track and the interaction between both of them have been developed. This interaction 

affects different types of abnormal wear, e.g. rail corrugation or wheel flats, as well as 

noise problems. 

Noise appears as one of the more important environmental drawbacks of the railway 

transportation. Although its sound levels are lower than noise from aircraft and road 

traffic and less annoying in perception at the same sound level [1,2], railway facilities 

use to be located in the vicinity of urban zones being a source of considerable 

annoyance for residents. Hence, traffic operators, infrastructure administrators, train 

manufacturers and society in general all have an interest in the reduction of wheel/rail 

noise. 

Three categories of wheel/rail noise can be distinguished: rolling noise, impact noise, 

and squeal noise [3]. Rolling noise is caused by the roughness of the wheel and rail 

running surfaces; the wheelset, the rail and the sleepers radiate noise from the 

excitation introduced by the roughness in the vertical relative motion [3], while the 

carbody and the bogies do not contribute significantly [4]. Impact noise is generated by 

wheel flats, switches and crossings and rail joints, which introduce discrete 

irregularities [3]. Both are broad-band phenomena involving a large range of 

frequencies in the audible range. Squeal noise is generally a tonal sound which occurs 

when the vehicle runs over sharp curves involving high lateral forces; the literature 

associates this phenomenon with two different mechanisms, one that only can be 

associated with a falling friction coefficient and other that can be simulated with a 

constant friction coefficient. 

A better physical understanding of the noise generation process, fundamental to assess 

possible noise reduction measures, requires sophisticated wheel and rail models to 
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address a high-frequency range such as the wheel/rail noise. Nevertheless, both wheel 

and rail models demand high computational cost, sometimes unapproachable for 

standard PCs, then numerical strategies to reduce the number of degrees of freedom of 

the complete railway system are required. 

The thesis arises through an investigation into three fundamental elements in the 

train/track dynamic interaction: a realistic wheel/rail contact model, the introduction of 

an improved flexible track model and the role of the wheelset dynamics. The main 

motivation of this thesis is therefore to determine the influence of these three elements 

in the squeal noise. 

1.2 OBJECTIVES 

The aim of this thesis is the development of an efficient model for the combined 

vertical and tangential wheel/rail interaction in the high-frequency range that allows 

predicting squeal noise. The proposed objectives in the present thesis are: 

- Implementation of a three-dimensional contact model that allows considering, in the 

tangential contact problem, the transient effects; and in the normal contact problem, 

the non-Hertzian effects, such as the non-elliptical contact patch, the asymmetric 

traction distribution and the displacement of the contact patch centre respect to the 

vertical projection of the wheel centre. 

- Introduction of the falling friction coefficient in the contact formulation and study 

of its influence on the creep forces. 

- Development of a flexible cyclic track model based on the Moving Element Method 

(MEM) in order to optimise its computational efficiency. Study of the influence of 

the boundary conditions of a finite track. Implementation of three different 

configurations for the rail support: discrete supports (sleepers), Winkler bedding of 

independent springs and elastic pad layer. 

- Development of a complete wheelset/track interaction model and implementation of 

an efficient modal approach. Introduction of one decoupling technique on the modal 

equations. 
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- Analysis of the influence of the instationary wheel/rail contact in the estimation of 

curve squeal. 

1.3 OUTLINE 

The general structure of the thesis is as follows: 

Chapter 2 details one of the types of excitation detailed in the previous chapter, which 

will consist of a fundamental part of the scope of the present thesis: the friction-

induced vibrations that originate curve squeal. 

Chapter 3 provides a literature review of railway vehicle/track dynamic interaction, 

giving an overview of the most commonly used models to describe the wheelset, the 

track and the rolling contact between the wheel and the rail.  

In Chapter 4, the rolling wheel/rail contact is analysed, with the hypotheses considered 

in its modelling and the associated formulation. The instationary contact model 

employed in the thesis is presented and validated by means of comparisons to existing 

established models. Finally, falling friction coefficient is evaluated for steady-state 

contact conditions and compared to measurement data. 

Chapter 5 describes the formulation used to simulate the dynamic interaction between 

the railway vehicle and the track. Firstly, the model of the vehicle is detailed, 

consisting of a wheelset model that includes flexibility and the gyroscopic effects 

associated with the rotation. Secondly, a flexible cyclic track model is developed 

through the Moving Element Method (MEM) and the rail support is included with 

three different configurations: discrete supports (sleepers), a continuous viscoelastic 

Winkler bedding of independent springs and a finite element (FE) elastic layer 

(different material than the rail). Advanced techniques for the integration solution of 

the equation of motion are proposed, including a modal approach to reduce the 

dimension of the system, a diagonalisation method to decouple the equations and 

Magnus expansion as a new approach to address first-order linear equation systems. 

Chapter 6 presents simulation results of the interaction model. Three different studies 

are carried out as application of the implemented model. The first one evaluates the 

frequency-range extension of the complete model by adopting an efficient FE track 
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model based on MEM compared to the Timoshenko beam commonly used in the 

literature; randomly corrugated rails and wheel flats are the sources of excitation 

considered. In the second one, curve squeal is investigated using a combination of 

models for linear complex stability analysis in the frequency domain and non-linear 

wheel/rail interaction in the time domain. The third one concerns the investigation of 

stick/slip oscillations due to frictional instability; simulations are carried out with a 

constant friction law. 

The most important conclusions and the main contributions of the thesis are listed in 

Chapter 7. Future work is also proposed in this chapter. 

In the final part of the document, it is included appendices with complementary 

information about the calculation of the elastic influence coefficients for rectangular 

elements, which relate the tractions to the displacements (Appendix A) and the 

Hertzian theory to solve the normal contact problem (Appendix B). Appendix C lists 

the published papers during the development of the thesis. It is concluded with a list of 

the literature references consulted and cited therein. 
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2 CURVE SQUEAL 

2.1 INTRODUCTION 

Curve squeal is a high-frequency and strongly tonal noise which frequently appears 
when railway vehicles negotiate sharp curves or even in straight tracks for vehicles 
with independent rotating wheels. The term curve squeal may be used to include 
several different phenomena with a wide range of dominant frequencies and potentially 
with different excitation mechanisms. Some authors have made a distinction between 
‘curve squeal’ and the more intermittent, higher frequency and less tonal (more broad-
band character) noise that is sometimes called ‘flanging noise’, associated with contact 
at the wheel flange. 

Squeal is more likely to occur in unfavourable conditions, such as in small radius 
curves. According to Rudd [5] and Remington [6], the curve radius/bogie wheelbase 
ratio can be used as indicator whether squeal will occur or not. Generally, if the ratio is 
lower than 100, curve squeal is expected to occur, although squeal can also be 
encountered even for ratios higher than 100. Thompson [7] extends this criterion for 
squeal occurrence in curves of different radius: mostly no squeal for curve radii higher 
than 500 m; sporadic occurrence between 200 and 500 m; common occurrence for 
lower than 200 m. Nevertheless, field measurements and experimental tests reveal that 
the likelihood of occurrence widely differs even on apparently similar conditions [8], 
indicating an unpredictable character of squeal. Some authors have suggested that not 
only the tight curves but the deterioration of some aspects of the maintenance of the 
railway facilities increases the likelihood of occurrence [8]: insufficient lubrication 
leading to wear as well as noise; poor rail profiles leading to high stresses; or poorly 
steering rolling stock leading to increased wear and fuel consumption.  

This type of noise is usually generated in the most sensitive human ear frequency band 
between 2 and 8 kHz [7,9] and sometimes even up to 10 kHz [10], which dominates 
the radiated sound. Thompson [7], Koch et al. [11], Hsu et al. [12] and Pieringer [13] 
showed that the tonal frequency during squeal events correspond to eigenfrequencies of 
axial wheel modes with zero nodal circles and higher harmonics of these excited 
modes. Remington [14] observed a higher vibration response of the wheel compared to 
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that of the rail, and its sound radiation efficiency is also higher than the corresponding 
to the rail [7,15]. These results indicate that the tonal nature of squeal is significantly 
related to the railway wheel dynamics. The combination of the tonal nature and sound 
pressure levels of up to 130 dB at 0.9 m from the wheel [5] makes squeal one of the 
loudest and most disturbing types of railway noise. Urban areas are significantly 
exposed to the annoying tonal noise from curve squeal due to the high number of tight 
curves in cities. This explains the importance to study the fundamentals of this 
phenomenon in order to comprehend them and, after that, be able to reduce its potential 
hazard for public health. 

Curve squeal is associated with friction-induced vibrations. Rudd [5] suggested three 
different mechanisms for energising wheel squeal: longitudinal creepage due to 
differential slip, flange rubbing between the wheel flange and the gauge face on the 
rail, and lateral creepage of the wheel tyre on the top of the rail. All three phenomena 
are closely linked to the curving behaviour of the vehicle. Longitudinal creepage (1) 
occurs since the outer wheel on a wheelset has a longer running distance through the 
curve than the inner wheel and the conicity of the wheels can only partly compensate 
for this difference in running distance in tight curves. Furthermore, in small radius 
curves, the outer wheel of the leading wheelset in a bogie (and possible the inner 
trailing wheel) will run into flange contact. Especially the leading wheelset in a bogie 
rolls with a high angle of attack against the rail in tight curves, which gives rise to a 
large lateral creepage. 

Rudd finally discarded the first two mechanisms from observations that the elimination 
of longitudinal creepage (by independently driven wheels) and the absence of flange 
rubbing creepage (the situation at the inner leading wheel) do not prevent squeal [5]. 
The lateral creepage at the wheel/rail contact is nowadays widely accepted as the most 
likely reason to induce squeal noise. According to Rudd, unstable vibrations can arise 
from a falling behaviour of the wheel/rail friction coefficient, which shows dependence 
with the local slip velocity in the contact area [7,6]. These vibrations are associated 
with modes of the wheel and they will grow in amplitude until the non-linearities in the 
creep forces result in a limit cycle. The falling friction law was interpreted by Rudd as 
negative damping, in which the negative slope of the friction curve is responsible for 
feeding energy into the system in each period of vibration. These results in self-
induced and self-sustained vibrations of the wheel and rail persist as long as there is an 
external source of energy (as lateral creepage during curve negotiation). His model was 
preceded by more detailed models of curve squeal based on the concept of ‘falling 
friction’.  
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Glocker et al. [9] and Pieringer [13] recently presented a curve squeal model that 
shows stick/slip oscillations. The mechanism has been called wheel modal coupling in 
the literature [16,13], whose main characteristic is to be able to reproduce squeal with a 
constant friction coefficient. Therefore, the present thesis has chosen to refer to this 
mechanism as constant friction mechanism. Glocker and Pieringer identified one axial 
mode with zero nodal circles and two radial modes of the wheel, which occur at similar 
frequencies, as essential for the squeal mechanism. Thompson supports this research 
line [7] proposing that curve squeal originates due to friction-induced vibrations at 
frequencies corresponding to axial modes of the railway wheel; he points out that the 
wheel mobility exceeds that of the rail making the wheel to become the dominating 
noise source at squeal frequencies. By using a non-rotating wheel loaded by a 
wheel/rail contact force travelling at constant speed around the wheel perimeter, 
Thompson was able to account for the splitting of resonance peaks even though 
neglecting inertia effects due to rotation [7]. 

Pieringer et al. [17] investigated the influence of inertia effects due to wheel rotation 
on squeal predictions. Three models were compared: stationary wheel, stationary wheel 
with rotating force and full model of wheel rotation including gyroscopic effects and 
centrifugal stiffening. At 50 km/h no difference was found between the rotating force 
and the rotating wheel models. Although the rotation of the wheel delays the build-up 
of the stick/slip oscillation, the stationary wheel model was found to be sufficient to 
capture the tendency to squeal. 

Ding et al. [18] included the rail dynamics in a curve squeal model from Huang [19] in 
both frequency and time domains. Huang’s time-domain model was updated to include 
the rail dynamics in terms of an equivalent state space representation in various 
directions. Their results showed an important role of the rail especially under constant 
friction conditions, modifying the unstable frequency from 2 kHz without the rail to 1.1 
kHz when it is included. 

In order to detail the origin of the phenomenon, the behaviour of a wheelset negotiating 
a curve is explained in Section 2.2. Both falling and constant friction mechanisms are 
detailed through simple oscillator models in Section 2.3. Other excitation mechanisms 
that will be used in this work are described in Section 2.4. The chapter ends with some 
conclusive remarks in Section 2.5. 
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2.2 CURVING BEHAVIOUR 

Curve squeal can be attributed to ‘imperfect’ curving behaviour of railway vehicles. 
From a classic approach, the conicity of the wheel and the subsequent difference 
between the velocities of the inner and the outer wheels naturally steer the wheelset 
around a curve. Assuming a simplified wheelset model with conic geometry of the 
wheel profile that circulates on knife-edge rails (see Fig. 2.1), and adopting a non-slip 
rolling condition, wheelset would adopt a radial position moving laterally outwards the 
curve according to the following expression: 

 
ργ 0

00

 
re

y k =  (2.1) 

where 0e  is the half distance between contact points (0.75 m for standard track width), 

0r  the wheel radius, ρ  the curve radius and 0γ  the conicity of the wheel profile. This 
position, which will be referred as kinematic position of the wheelset in a curve, is 
approximately the quasi-static position that a wheelset in a curve would adopt on which 
no forces are applied in the track plane. Forces transmitted by the suspensions lead to 
displacements of the wheelset with respect to the kinematic position. These 
displacements induce the wheel/rail contact forces that equilibrate the wheelset in a 
curve. Assuming steady-state conditions, the forces that act in the contact are: 

a) Normal contact forces. In general, they produce a very small component in the 
track plane, except in case of flange contact. Depending on the profiles geometry, 
the range of lateral displacements from which the contact is located in the flange 
varies between 5 and 10 mm. Except in the perfectly conic wheel profiles on knife-
edge rails, a normal force appears in the lateral direction; it progressively increases 
with the lateral displacement and whose effect is known as gravitational stiffness. 

b) Creep longitudinal contact forces. They are the creep forces that appear in the 
rolling direction. Due to the moment equilibrium in the wheelset axis, they must be 
equal in module and opposite in direction in the inner and outer wheels. As 
observed in Fig. 2.1, when the lateral displacement is larger than the kinematic one, 
a velocity  at the contact point appears with an approximated value of 
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Fig. 2.1. Simplified geometric model for the wheelset (left: elevation view). 

being y∆  the radius increment with respect to the kinematic displacement. As a 
consequence of this velocity, creep forces opposite to the velocity appear on the 
wheelset. If the direction of y∆  is outward the curve, the net effect of the longitudinal 
creep forces is a torque in the vertical axis that leads to oversteer the wheelset (see Fig. 
2.2). 

 

Fig. 2.2. Longitudinal steering forces that come from a lateral displacement outwards 
the curve with respect to the kinematic position. 

c) Lateral creep forces. As shown in Fig. 2.3, the existence of an angle of rotation 
with respect to the vertical axis (yaw angle ψ ) leads to lateral forces in the 
wheel/rail contact. The velocity of the wheelset V  is sum of a component in the 
rolling direction and the lateral creep velocity ψψ VV ≈sin . When the yaw angle is 
oversteering, the forces are directed towards the centre of the curve. 
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Fig. 2.3. Lateral steering forces that come from an oversteering yaw angle. 

2.2.1 Insertion of a free wheelset in a curve 

A wheelset in conditions of zero cant deficiency on which no forces act in the track 
plane due to the primary suspension will adopt a position in which forces due to 
contact will not appear (which corresponds to the kinematic position of the wheelset in 
a curve). If lateral actions act on the free wheelset outwards the curve (i.e. “centrifugal 
forces”), they will push the wheelset beyond its kinematic displacement leading to 
longitudinal forces. In turn, these longitudinal forces will produce a torque that will 
lead to an oversteering yaw angle (thousandths of a degree). The yaw angle will 
produce creep velocities that lead to lateral forces that compensate the external action. 
Fig. 2.4 shows a sketch of the forces on the wheelset, in which it can be observed that 
there is not moment equilibrium in the direction normal to the track plane. This 
equilibrium comes from the forces transmitted by the suspension and other steering 
effects that appear in more realistic models. It must be highlighted that the critical 
velocity (hunting instability) of a free wheelset is almost zero. 
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Fig. 2.4. Forces acting on a free wheelset in a curve. 

The relative displacements with respect to the kinematic position able to equilibrate the 
wheelset are very small (there is still no reliable method to measure them in field tests 
with precision). This position may not be reached if the flange width is not enough, so 
according to Eq. (2.1) it is more likely to occur when: 

- curve radius is very small, 
- conicity of the wheel profile is very small, 
- wheel diameter is very large, 
- track width is big. 

In any of these situations, when the wheelset laterally moves less than the 
corresponding kinematic value, creep forces that understeer the wheelset arise. As a 
consequence, lateral creep forces push the wheelset outwards the curve, so that 
wheel/rail contact is produced in the flange of the wheel producing a creep force that 
equilibrates the wheelset (see Fig. 2.5). In the technical literature, the angle ψ  of the 
wheel with respect to the direction tangential to the curve (especially in cases in which 
understeers the wheelset) is known as angle of attack. 
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Fig. 2.5. Situation of flange contact due to the displacement of the wheelset outwards 

the curve in an inadequate steering case. F  is the flange normal contact force that 
compensates the lateral creep forces Y . 

2.2.2 Insertion of a bogie in a curve 

A first analysis of a bogie in a curve is carried out assuming an infinitely rigid primary 
suspension (see Fig. 2.6). In this case, the angle of attack of the leading wheelset is 
approximately ( )ρ2w , where w  is the wheelbase. This angle is relatively large 
(understeering), thus the leading wheelset will move until touching wheel flange. Note 
that in this case the angle of attack is very large, being in some cases around 0.5º. 

 
Fig. 2.6. Bogie negotiating a curve. 
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In general, railway vehicles have a very rigid but finite primary suspension; so that 
wheelsets have the possibility to reduce the angle of attack or even get a good insertion 
in the curve through a negative (oversteering) angle of attack (see Fig. 2.7). Regarding 
the second wheelset, favourable conditions for the insertion are more likely to occur 
since a negative angle of attack is reached. 

 
Fig. 2.7. Bogie negotiating a curve with the angle of attack and primary suspensions 

depicted. 

2.3 FRICTIONAL EXCITATION MECHANISMS 

Curve squeal remains a difficult problem, with the phenomenon appearing random 
rather than deterministic. According to different authors, both falling and constant 
friction mechanisms may coexist in reality [20, 21,13], but their relative importance is 
still under controversy. The measurements of friction that are available from test rigs 
are quasi-static [9]. What happens at small amplitudes and high frequencies may be 
quite different from this quasi-static behaviour that can be measured and indeed may 
not contain a negative slope at all. To illustrate both mechanisms, and the basic physics 
behind it, simple oscillator systems with friction are considered consisting of a single 
mode of vibration or a pair of modes. 
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2.3.1 Negative friction slope model 

In order to illustrate the stick/slip mechanism, a simple model of a mass on a belt 
moving at velocity 0V  can be used (see Fig. 2.8). The mass m is attached to a rigid 
foundation by a spring of stiffness k and damper c and held against the belt by a 
constant normal load N. This model can be used to represent a wheel vibrating in a 
single natural mode. The sliding velocity between the mass and the belt represents the 
steady-state lateral creep velocity (not the rolling velocity). 

 

Fig. 2.8. Friction-induced vibration of a mass spring oscillator. 

Two friction coefficients are considered to characterise the friction behaviour 
according to Coulomb’s law: the static coefficient sµ  (when there is no relative 
motion) and the kinematic one kµ  (when there is slip), with ks µµ > . The stick phase 
occurs when the mass moves at the same velocity as the belt and the friction force 
( )vT , which depends on the relative velocity uVv −= 0 , satisfies ( ) NvT sµ< . The 

spring is extended since the mass moves, until the spring force exceeds the friction 
limit and the slip phase initiates. Hence, two equations of motion are needed to 
characterise both stick and slip phases: 
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where u  represents the vibration displacement and ( )vsign  denotes the sign of the 
relative velocity v . Since it is assumed 00 >−= uVv  , the sign function may be 
removed from the above. The first equation applies whenever the relative velocity is 
non-zero 0Vu ≠  (slip condition) whereas the second equation applies if the elastic force 



2. Curve squeal  29 

ku  is lower than the static friction force ( )0T  (stick condition). However, in the case of 
a wiper-windscreen contact, the instability is observed about a non-zero sliding 
velocity and the vibration velocity u  never reaches the sliding velocity 0V  so that 

0Vu < . According to the first equation, the mass describes an harmonic motion at the 

natural frequency mk /0 =ω . Nevertheless, this frequency is affected by a non-
dimensional parameter which quantifies the relative importance of the stick and slip 
phases [7]: 

 ( ) .
00 ω

µµβ
mV
N

ks −=  (2.4) 

This parameter is usually between 0.1 and 1 for curve squeal situations [7] and it 
makes the period of oscillation longer than the natural period associated with the mass-
spring system. For small values of β  the slip phase predominates and the oscillation 
frequency is close to 0ω ; for large values of β  the stick phase predominates and the 
oscillation frequency is lower than 0ω  [7]. Moreover, as the motion is not purely 
sinusoidal, its spectrum will contain higher harmonics in addition to the fundamental 
frequency, a feature often seen in squeal measurements. 

Coulomb’s law establishes a step transition between the static sµ  and the kinematic kµ  
friction coefficients since ks µµ > . Nevertheless, the friction coefficient is often found 
to fall with increasing sliding velocity (see Section 4.5). The slope of the relation 
between force and velocity can be equivalent to a damper since it establishes a 
proportional relationship between both force and relative velocity; thus a force which 
falls in magnitude with increasing relative velocity corresponds to a negative damper. 
If there is a negative damping greater than the positive damping inherent in the 
oscillator, unstable self-excited vibration occurs [5] and its amplitude would grow 
exponentially. In reality, the non-linear effects in the creep force limit the amplitude, as 
there is a region with positive slope close to the origin of the force-creepage relation. 

Le Rouzic et al. [22] analysed the stability problem for this kind of friction-induced 
self-excited oscillators through a Hopf bifurcation leading to a cycle solution, i.e. a 
periodic vibration. Through the first Lyapunov method, the authors concluded that the 
range of instability for the slope of friction coefficient is: 

 ( )] [,2,12~ ζζµ
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where damping ratio is ( )02/ ωζ mc=  and dimensionless relative velocity is defined 

as ( )Nkvv ω/~ = . This result discards any instability for a constant friction coefficient 
( ks µµ =  and, hence, 0~ =vddµ ) due to this mechanism. 

From its non-linear formulation, the introduction of the falling friction in instationary 
contact models leads to a numerical problems in the time integration of the complete 
dynamics of a railway interaction model. Even techniques for the softening of 
Coulomb’s law such as the regularisation [23] (see Section 4.5) continue to humper the 
numerical convergence of the instationary contact process. For a time-domain model 
based on Green’s functions, Zenzerovic [24] introduced the falling friction not as local 
parameter, but as relationship between the lateral creep force and the creepage, 
obtaining stick/slip cycles in the tangential contact dynamics. 

2.3.2 Constant friction mechanism 

There is an increase of interest in the direction of mode-coupling phenomena in 
addressing curve squeal, which have been explained in a simplified form by Hoffmann 
et al. [25,26] and Sinou and Jezequel [27], through frequency-domain models. This 
type of instability can occur even considering a constant coefficient of friction, arising 
from non-conservative displacement-dependent forces. 

Fig. 2.9 shows the typical system adopted to illustrate this mechanism, in which the 
friction coefficient µ  is constant. Here the mass has two degrees of freedom and two 
springs. As the mass vibrates, variations in the normal load occur, leading to variations 
in the friction force. The modes of the wheel may have both vertical and lateral 
components and the contact angle α  of the wheel with the rail may vary. At least two 
modes are necessary to initiate this mechanism. 

By considering small oscillations around the equilibrium of steady-state sliding, the 
system in Fig. 2.9 can be mathematically described as 
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where the terms ( )21,ααijk  in the stiffness matrix depend on the orientation and 

stiffness of the springs which in turn depend on angles 1α  and 2α  [27]. HK  represents 
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the linearised Hertzian contact stiffness [30]; x and y are the vibration displacements in 
tangential and normal directions, respectively, and F and N are the corresponding 
friction and normal forces. The effect of damping in this system has been studied in 
[26] and [27] and will be briefly discussed below. The most important feature of Eq. 
(2.6) is that the stiffness matrix is non-symmetric. It can be shown [25] that if the upper 
diagonal term of the stiffness matrix 012 ≤− HKk µ , due to the value of friction 
coefficient µ , the system can become unstable.  

 

Fig. 2.9. Two-degree-of-freedom system on moving belt. 

Hoffmann et al. [25] investigated the effect of the inclination of the contact plane (or 
contact angle) between wheel and rail by analysing the real part of the eigenvalues of 
the system for different values of contact angle and friction coefficient. For the 2-
modes model of the wheel proposed in [25], instability was found for contact angles 
between 30º and 80º for a friction coefficient of at least 0.4, showing that, for these two 
modes, mode coupling can appear at relatively high contact angles. Such values of 
contact angle are typically found on the outer wheel of the front axle when the contact 
point moves toward the flange. Another interesting feature of the response due to mode 
coupling is that the effect of damping in the case of mode coupling is not 
straightforward [26,27]; in fact, an increase in damping can favour instability in some 
situations or can improve stability in others. 

In order to model this mechanism by means of time-domain models, studies in the 
literature typically apply a non-rotating wheel modelled using the FE method [29,13]. 
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Viewed from the wheel/rail contact, the rotation causes some of the wheel resonance 
peaks to split corresponding to waves travelling in opposite directions. By using a non-
rotating wheel loaded by a wheel/rail contact force travelling at constant speed around 
the wheel perimeter, Thompson was able to account for the splitting of resonance peaks 
even though neglecting inertia effects due to rotation [7]. Although most cases reported 
involve 0-nodal-circle axial modes excited at the leading inner wheel, some unusual 
occurrences have been highlighted where different phenomena are involved. Even for 
the axial modes at the leading inner wheel, the dominant mode may vary over a wide 
frequency range, with values of n from 2 to 9. The reasons for this are not clear. 

2.4 OTHER TYPES OF EXCITATION 

Two other excitation mechanisms are described below: excitation by roughness and by 
discrete irregularities. Both will be applied in Section 6.2 for some simulations in order 
to validate the Moving Element (ME) model for the rail (see Section 5.4). 

2.4.1 Excitation by roughness 

Roughness of wheel and rail running surfaces is now generally accepted as the 
predominant cause of the occurrence of rolling noise [3]. 0.1 – 30 µm is the range for 
typical roughness amplitudes, although even higher ones can occur for severely 
corrugated rail. Thompson [3] estimated that the range of wavelength of 300 µm – 10 
mm is the most important for the occurrence of rolling noise. 

Most of the available wheel/rail interaction models assume that the roughness 
distribution acts in one point even though wheel and rail make contact in a small area 
denoted contact patch. This assumption impedes that the roughness influences the 
contact-patch size and shape; thereby, the models with one-point contact assumption 
have to include the effects of roughness in their pre-processing, which are: 

- The contact-filter effect: wavelengths in the order of, or shorter than, the length of 
the contact patch in the rolling direction excite a lesser extent the system than 
longer wavelengths. 
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- The variations in the roughness profile height across the width also affect the 
wheel/rail excitation. The more correlated the roughness is across the contact patch, 
the greater this excitation is. 

Remington [30] proposed an analytic model for introducing the contact filter as a 
correction in frequency-domain models for circular contact patches. Remington and 
Webb [31] presented their ‘3D distributed point reacting spring’ (3D-DPRS) model 
introducing a Winkler bedding in the contact patch, including hence both effects 
mentioned above without adding a correction. This model permitted Thompson [32] to 
conclude that the analytic correction gives excessive attenuation at short wavelengths 
and reasonable results for wavelengths smaller than the contact-patch length when 
compared to the 3D-DPRS model. 

The contact-filter effect has barely attempted to extend to the time domain in the 
literature. The calculation of an equivalent roughness as a pre-processing step for each 
wheel position on the rail (using for instance the 3D-DPRS model) seems to be one 
way to introduce this effect. Another possibility is to directly use a more realistic 
contact model (e.g., CONTACT [142]), which considers the finite size of the contact 
patch at each time step. 

2.4.2 Excitation by discrete irregularities 

The occurrence of impact noise is mostly due to two discrete irregularities on the wheel 
and rail surfaces: wheel flats and rail joints. A wheel flat occurs when the wheel locks 
and slides along the rail because of a malfunction in the brakes or lack of wheel/rail 
adhesion; this sliding leads to flatten the wheel on one side [33]. Rail joints are present 
throughout the tracks in order to compensate thermal displacements or insulate 
electrically both rails. 

Wheel flats are generally introduced through simple analytic irregularity functions. The 
most commonly used are the proposed by Newton and Clark [34] and Wu and 
Thompson [35], who included quadratic functions to describe the dipped rail at a joint. 

These discrete irregularities cannot be ‘seen’ for one-contact point models; thereby a 
correction must also be included by calculating equivalent irregularity shapes. Wu and 
Thompson follow this procedure for wheel flats [36] and rail joints [35]. Baeza et al. 
[37] used the same equivalent irregularity shape for wheel flats, also pre-calculating 
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stiffness functions for each angular position of the wheel flat with a 3D contact model 
in order to include the changes in stiffness. 

2.5 CONCLUSIONS 

From the review of the curve squeal phenomenon, the following conclusions are 
derived: 

- Curve squeal remains a controversial problem since it appears random rather than 
deterministic. This phenomenon consists of a high-frequency tonal noise that 
arises especially in the leading wheelset of a bogie negotiating a tight curve. 

- Insertion of a wheelset in a curve is a process in which creep forces arise to steer 
the wheelset. Steering mechanism depends on wheel profile and diameter, curve 
radius, track width and stiffness of the primary suspension. In unfavourable 
conditions of the previous parameters, the wheelset moves outwards the curve, 
displacing the contact to the wheel flange that produces a normal contact force 
that re-equilibrates the wheelset. 

- Most cases reported involve 0-nodal-circle axial modes excited at the leading 
inner wheel but some unusual occurrences have been highlighted where different 
phenomena are involved. 

- Falling friction, which acts as negative damping, has been recognised the most 
accepted mechanism for the generation of squeal. 

- Recent works indicate that the instabilities associated with squeal can arise even 
for contact models with constant friction coefficient. 

- The difficulty of measuring the local contact parameters (creepages) for unsteady 
conditions at high frequencies, instead of quasi-static situations measured by test 
rigs, leads to the need of developing models that permit to distinguish the 
influence of both mechanisms. 
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3 REVIEW OF THE VEHICLE/ 
TRACK DYNAMIC 
INTERACTION MODEL 

3.1 INTRODUCTION 

In the literature, the coupled railway vehicle/track dynamics is associated with a set of 
important phenomena that are related to rolling noise, rail corrugation, 
polygonalisation and ovalisation of the wheels and, in general, the vibrational response 
originated from discrete defects, short wavelength irregularities of the rail or the 
wheels and other excitation sources generated in the contact area. The growing 
sensitivity to these problems has resulted in an increased demand of reliable 
vehicle/track interaction models in order to investigate their causes and develop 
solutions and effective treatments. 

Nowadays, almost all rail vehicles are fitted with bogies (in order to solve problems 
related to hunting instability and insertion in curve) and have two levels of 
suspensions. The classical railway dynamics, regulated by the EN 14363 [38] (and the 
former UIC518), studies the dynamic behaviour of the railway vehicle in a curve 
guidance, stability and passenger comfort, critical in a frequency range below 20 Hz. 
For this purpose, the suspensions must guarantee that the modes of the bogie and the 
carbody are in this range, isolating the passenger from the high-frequency vibrations 
[39]. Below 20 Hz, the track vibration is negligible and thus the track is considered 
rigid or only its flexibility is taken into account. Nevertheless, at higher frequencies the 
track vibration becomes more important, while the vehicle sprung masses are less 
significant [39] since the suspension decouples the bogie frame and the carbody 
dynamics from the wheelset/track interaction. 

The secondary suspension, located between the bogie and the carbody, confers to the 
carbody (assumed rigid) vibration modes whose frequencies are between 0.75 Hz for 
the vertical oscillatory carbody mode and 1.5 Hz for the carbody roll motion [39]. This 
suspension provides a cut-off frequency for the transmitted vibrations from the bogie 
around 2 Hz (and hence, the carbody structure must have natural frequencies 
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sufficiently above this limit). The bogie frame (that oscillates on the primary 
suspension) has natural frequencies in the range of 8−10 Hz, about three octaves higher 
than the carbody modes, around three octaves below the lowest frequencies of the 
unsprung masses (about 50 Hz, in this the unsprung masses oscillate on the bed of the 
ballast, P2 frequency, see Fig. 3.1(a)). The cut-off frequency associated with the 
primary suspension would be about 15 Hz. 

The wheelset and the track are located below the primary suspension. The wheelset is a 
very low-damped structure, whose response is governed by its resonances (starting 
slightly below 100 Hz). The rail is much more damped; it is an infinite system and, 
hence, there are no modes, but waves that propagate longitudinally. It has a cut-on 
frequency from which waves propagate; below this frequency, a deflection is produced 
and governed by the static behaviour. This frequency is located between 100 and 200 
Hz. Between the cut-on frequency and about 1.5 kHz, there are two waves that 
propagate in the vertical and horizontal plane for each frequency; when the frequency 
increases, the shape and number of transmitted waves become more complex. A certain 
dynamic amplification is detected for the cut-on frequency, although this motion is 
much damped. The waves along the rail are best transmitted when their wavelength is 
twice the distance between spans (see Fig. 3.1(b)): the so-called pinned-pinned 
frequencies. These waves appear in the range of 1 kHz in the vertical vibration and 
500−700 Hz in the horizontal plane, generating an important dynamic amplification 
around this frequency. 

Fig. 3.1. Rail deformed configuration for the P2 (a) and pinned-pinned (b) frequencies. 

The vehicle/track interaction occurs mainly in a frequency range (from a few tens of 
hertz to cover the spectrum of audible frequencies) for which the unsprung masses of 
the vehicle intervene. This case contrasts with those aspects related to safety against 

(a) 

 

(b) 
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derailment and rolling quality, which are analysed in a range below 20 Hz. In the 
intermediate and high-frequency range (from 20 Hz to 5 kHz), suspensions permit to 
decouple the dynamic behaviour of the unsprung masses, hence reducing the vehicle 
model to a wheelset model [40], which considers the proportional part of the carbody 
and bogie weights as a force applied to the wheelset. In this frequency range, bogie 
models consisting of a frame and two wheelsets are widely used since Popp et al. [40] 
indicate that the deformation of the bogie frame is not relevant. Thus the frame is 
commonly modelled as a rigid solid while the wheelset can be considered rigid or 
flexible. 

A literature review corresponding to the railway wheelset/track dynamic interaction 
modelling is carried out in this chapter. This analysis supports the study of curve squeal 
problem. The review describes different models for the three subsystems that are part 
of this problem: vehicle, track and wheel/rail contact. Taking into account the above 
mentioned aspects, the vehicle is reduced to the wheelset in the interaction problem. 
With regard to other problems that analyse the vehicle/track coupled dynamics, in 
curve squeal it is fundamental to consider the flexibility of the wheelset. Section 3.2 
shows the main published developments. 

Roughly speaking, the literature shows that the vehicle/track dynamic interaction is 
solved in the frequency and the time domain. The first one requires a linearisation of 
the vehicle, track and wheel/rail contact models, simplifying the global model and 
limiting the complexity of the problems to be addressed. On the other hand, the time-
domain models allow considering the non-linear behaviour of particular elements of 
the track, such as rail pads and the ballast, and the wheel/rail contact. In Ref. [41], an 
exhaustive review of the dynamic track models is done, a summary being presented in 
Section 3.3 and examples of methods of resolution in Section 3.5. 

The wheel/rail contact is one of the most important elements for curve squeal. 
Advancing certain keys that will be detailed later, squeal arises due to friction-induced 
vibrations, and the tribological contact conditions are the main factor that conditions 
the occurrence of this phenomenon. Section 3.4 sumarises some of the most suitable 
contact models for the study of squeal. 
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3.2 WHEELSET MODELS 

There exist three types of flexible wheelset models: multibody, continuous and finite 
element models. The first ones incorporate the flexibility by means of rigid masses 
interconnected through viscoelastic elements, hence reducing the number of degrees of 
freedom of the system and, consequently, the computational cost. But they cannot 
represent adequately the elasticity of the wheelset for intermediate and high 
frequencies. Continuous models implement the deformation of the wheelset axle 
(flexion, torsion and elongation) and the wheels (flexion and umbrella modes) and 
incorporate the gyroscopic and inertial effects due to the rotation. Szolc [42] evidenced 
that the gyroscopic effects were responsible for the separation of the resonance peak 
associated with the wheelset natural frequencies in two peaks, and the strong coupling 
between the lateral and vertical flexion. Most of the flexible wheelset models in the 
literature include the flexibility exclusively in the wheelset axle, while the wheels are 
represented as rigid solids (e.g. in Refs. [43,44]). It is insufficient for frequencies of 
interest above 200 Hz, thus the flexibility of the wheels must be implemented in order 
to get into detail on the contact. The vertical and lateral wheel deformations affect the 
creepages in the wheel/rail contact and, then, the tangential forces. 

As mentioned above, the present thesis requires capturing the high-frequency dynamics 
of the railway system to address dynamic phenomena characteristic of this range. In 
order to extend the range of validity, finite element (FE) method has been adopted for 
modelling the railway wheelset through beam elements [45–51] and three-dimensional 
solid elements [52–54]. The main inconveniences of the latter technique are found 
when the solid interacts with a non-rotating structure. The force that the non-rotating 
system exerts on the rotating one is applied at fixed spatial points, and consequently 
there is a relative motion between the load and the rotating solid (moving load 
problem). This fact requires the computation of the external force contribution to the 
generalised force term in each integration step during the simulation. The work 
presented by Fayos et al. [55], extended and applied by Baeza et al. [56] and 
Torstensson et al. [57], proposes a method that solves the above mentioned problems. 
The method is applied to undamped solids with geometry of revolution; it is based on 
Eulerian modal coordinates and provides satisfactory results. Lagrangian coordinates 
are the most frequently adopted reference in classic Mechanics; by means of this 
coordinate system, the position vectors and other kinematic properties are associated 
with material points of the solid. Eulerian coordinates are commonly used in Fluid 
Mechanics, and they relate spatial points through a fixed coordinate frame. These 
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coordinates determine spatial points through which the material flows as time passes. 
The technique exploits the properties of the solids of revolution whose mode shapes in 
a fixed coordinate frame do not depend on the rotation of the solid. Consequently the 
mode shapes of the solid are used as basis functions in order to define a generic 
displacement of the flexible solid. 

3.3 TRACK MODELS 

The track models can be classified according to their constructive ways in ballasted 
track or slab track [58]. In the ballasted tracks, the rails are supported by sleepers, and 
these in turn are supported by a ballast layer on the platform. In the concrete slab 
tracks, the rails can be embedded in a concrete slab (directly or through an intermediate 
elastic element) or supported by discrete supports embedded in the concrete. This 
permits, in turn, to distinguish between continuous supported track models and discrete 
supported track models. Another common classification concerns if the track length is 
infinite or finite. The first one is a priori closer to the reality but it must be simple in 
order to solve analytically or numerically the dynamic interaction. Finite track models 
are a possible alternative, but a sufficient length is required to avoid wave reflection in 
the edges of the track (edge effect). The track models can also be classified according 
to their method of solving the dynamic interaction: in the frequency domain and in the 
time domain. The first one is commonly associated with infinite track models and the 
second one to the finite ones. 

Knothe and Grassie [39] reviewed the modelling of the different types of supports 
through the ballast and the platform, distinguishing four different models. The simplest 
one considers the rail supported discretely by the sleepers and the ballast is under them; 
it is modelled through a spring-damper pair with coefficients extracted from 
experimental measurements. The second one represents the ballast and the platform 
together through elastic or viscoelastic half-space and it is used for the study of the 
propagation of the vibrations through the soil from the wheel/rail interaction. The third 
one represents the ballast as punctual masses under the sleepers; viscoelastic elements 
connect themselves and with the sleepers and the platform. The fourth model considers 
discrete supports and a continuous ballast layer on a 3D half-space representing the 
platform. 
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Historically, the rail has often been modelled as an Euler-Bernoulli beam, neglecting 
shear deformation and rotational inertia. Such simple beam models can only represent 
the track vertical dynamics up to about 500 Hz [39]. Using a Timoshenko beam model 
for the rail, which includes rotational inertia and shear deformation, the frequency 
range of validity of the track model can be extended, the upper limit being a subject of 
discussion. Knothe and Grassie [39] estimate that the rail can be modelled as a single 
Timoshenko beam up to 2.5 kHz if only vertical vibrations are of interest. Wu and 
Thompson [59] state that such models are adequate up to about 2 kHz since the 
occurring cross-sectional deformations of the rail (not modelled by Timoshenko beam 
models) are not important in terms of the vertical wheel/rail interaction in this 
frequency range (see also Refs. [60,61]). A Timoshenko beam model of the rail is for 
instance implemented in the wheel/rail interaction model DIFF developed by Nielsen 
and Igeland [62]. In order to include the cross-sectional deformations that become 
significant above about 1.5 kHz [63], different types of rail models are required. One 
example is the multi-layer model by Scholl [64], who represented rail head, web and 
foot by three infinitely long, homogeneous layers with different densities and Young’s 
moduli. Vibrational shapes with cross-sectional deformation can at least in principle be 
modelled by this approach. A second example is the model by Thompson [63] who 
used a detailed FE mesh for a short length of the rail, which he extended to infinity 
using periodic structure theory. Gry [65] presented a third alternative model based on a 
description of waves travelling through the rail. 

Andersson [66] showed significant cross-sectional deformation of the rail already at 
frequencies around 200 Hz. This implies that the track model needs to capture the 3D 
dynamic behaviour of the rail at higher frequencies in order to capture phenomena 
closely linked to the high-frequency domain as this thesis pretends to study. This 
requires modelling the rail by 3D solid elements through FE models, which seems 
crucial for the precise representation of the contact dynamics in the contact patch, 
which strongly depends on displacements on the rail head. This will represent one of 
the fundamental contributions of the present thesis. An alternative is to use waveguide 
finite elements, which take advantage of the 2D geometry of the rail having a constant 
cross-section, but nonetheless consider the 3D nature of the vibration by assuming a 
wave-type solution along the rail [67,13]. 

The most important subjection element of the rail is the railpad, giving viscoelastic 
properties to the rail-sleeper union. Popp et al. [40] pointed out that the behaviour of 
the base plate affects significantly the train/track interaction from 200 to 700 Hz. The 
base plate is commonly modelled as viscoelastic elements through one spring-damper 
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pair for 2D models or some spring-damper pairs for 3D models. Some models adopt 
three parameters to represent the increasing stiffness with the frequency [68]. Similar 
to the base plate, the elastic behaviour of the ballast is non-linear due to the contact 
between the stones and the sleepers. Nordborg [69] found that the inclusion of discrete 
supports is important for lower frequencies around the sleeper-passing frequency and 
for higher frequencies around the pinned-pinned resonance frequency of the rail. The 
sleeper-pinned frequency, slsl Lv /=ω , is the frequency at which the wheelset passes the 
sleepers, v  being the train speed and slL  the sleeper spacing. At the pinned-pinned 
frequency, ppω , which typically lies around 1 kHz, the bending wavelength of the rail 

corresponds to the length of two sleeper spans, slpp L2=λ , with nodes located at the 

sleeper positions. The simplest and widely used sleeper model consists of a punctual 
mass interconnected with the other elements through viscoelastic elements. When 
flexibility is required, continuous Bernoulli or Timoshenko beam models use to be 
adopted. Knothe and Grassie [39] indicate that modelling the sleepers as rigid solids is 
adequate up to 1 kHz. 

3.4 CONTACT MODELS 

The contact theories are formulations that relate kinematic magnitudes associated with 
the wheel and rail to forces transmitted in the wheel/rail contact. The different 
wheel/rail contact theories in rolling conditions developed so far can be included in the 
classification proposed by Kalker [70] according to the following criteria: modelling of 
the elastic problem, consideration of the inertial effects, representation of the transient 
process in the contact and the dimension of the contact problem. 

Considering the first criterion, Kalker distinguishes between Simplified Theories, in 
which the relationships between the displacements associated with the deformations 
and the stresses in the contact are obtained from approximated analytic expressions, 
and Exact Theories, in which the mentioned relationships are obtained from the Linear 
Elasticity Theory and semi-analytic or numerical procedures are calculated from the 
Boussinesq-Cerruti integral equations [71,72]. 

On the other hand, Dynamic Theories encompass the contact models which consider 
the inertial effects associated with the mass differentials near the contact. Quasi-static 
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Theories neglect these effects against the contact forces. According to Kalker, these 
inertial effects are only important for velocities above 500 km/h, thus the current 
models do not require Dynamic Theories. The third criterion distinguishes between 
Instationary Theories and Stationary Theories if the contact models permit to represent 
the transient process as consequence of the variation of the contact forces or consider 
insignificant its influence on the vehicle dynamics. The last criterion divides the 
contact theories between Bidimensional Theories if the displacements, deformations 
and stresses are contained on the plane defined by the longitudinal and vertical axes, 
and Tridimensional Theories which permit to represent the contact problem in a 
realistic way. 

Two other classifications can be added. Regarding the formulation of the elastic 
problem, there exist Non-Conformal Contact models (Hertzian models and the ones 
based on infinite half-space) and Conformal Contact models (mainly through finite 
elements). If the tangential force saturation is considered according to Coulomb’s law, 
the contact models are part of the Non-Linear Theories. If a linear relationship between 
forces and creepages is considered (through an infinite friction coefficient assumption), 
Linear Theories are referred. 

3.4.1 Normal contact problem 

The normal contact model applied in most of the available interaction models is the 
Hertzian contact model due to the simplicity of obtaining the normal force from the 
elastic penetration; see e.g. the models in Refs. [73,74]. This standard model goes back 
to Heinrich Hertz who published his theory “On the contact of elastic solids” in 1882 
[75]. A comprehensive description of the Hertzian contact theory is found in Refs. [28] 
and [76]. The Hertzian theory of normal contact between two bodies relies on the 
following assumptions [28]: 

- Linear elasticity: the bodies are perfectly linear elastic solids. 

- Half-space assumption: the surfaces of the bodies are non-conforming surfaces, i.e. 
they first make contact at a point (or along a line). Even under load, the dimensions 
of the contact patch are small in comparison to the dimensions of the bodies and the 
radii of curvature of the surfaces. This implies that the bodies can be considered as 
a semi-infinite elastic solid with a plane surface (an elastic half-space) for the 
purpose of stress and deformation calculations. 
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- The surfaces are perfectly smooth and can be described by quadratic functions in 
the vicinity of the contact patch. 

Under these assumptions, the contact patch is an ellipse and the normal pressure 
distribution is ellipsoidal. The case of contact over a long strip, as it occurs for two 
cylindrical bodies with their axes lying parallel, is a limit case of elliptical contact. This 
case has to be treated separately and it is not further considered here. Appendix B 
presents the relevant formulas for contact dimensions, loads and deformations in 
elliptical contact, mainly following the presentation by Lundberg and Sjövall [76].  

Real wheel and rail surfaces never meet the Hertzian assumptions exactly and, in 
consequence, the Hertzian solution can only be an approximate one. In many 
situations, the Hertzian contact theory might still be sufficient, but it is important to be 
aware of its limitations and discuss its adequacy for the wheel/rail contact on the basis 
of a literature review. The scope is hereby on non-Hertzian geometry; the influence of 
friction and plasticity is not investigated. This section also presents available non-
Hertzian contact models.  

The most important limitation of the Hertzian theory concerns the definition of the 
contact surfaces by means of constant radii of curvature of the (undeformed) bodies in 
the contact patch. The transversal radii of curvature of wheel and rail profiles are 
however defined by different radii of curvature, polynomial functions, etc. The 
standard rail profile UIC60 (used in the present thesis) consists of a sequence of 
circular arcs with the radii of 30, 80 and 13 mm [77]. As consequence, the lateral 
contact position of the wheel on the rail varies during operation and the normal traction 
distribution differs from the Hertzian distribution [77−79]. Wheel flats are other clear 
example in which radii of curvature of the wheel surface change quickly. 

The half-space assumption is valid when the bodies are non-conformal implying that 
the dimensions of the contact patch are small in comparison to the characteristic 
dimensions of the contacting bodies, e.g. the diameter and the radii of curvature. This 
assumption is reasonable for wheel/rail tread contact (Fig. 3.2(a)), but it is violated for 
flange contact and contact near the gauge corner of the rail (Fig. 3.2(b)) [80], case in 
which the flange thickness and the radius of curvature at the gauge corner are of the 
same order of magnitude as the contact length and the contact is conformal. 
Nevertheless, Yan and Fischer [77] found surprisingly good agreement in the pressure 
distribution between Hertzian theory and a FE model for one case of rail gauge corner 
contact between the rail UIC60 and the wheel UICORE. 
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 (a) Tread contact.           (b) Flange/gauge corner contact. 

Fig. 3.2. Wheel/rail contact cases. 

The limitation to one single contact patch of the standard Hertzian contact theory 
precludes the multi-point contact which uses to appear in guiding wheels in curves with 
one contact patch on the wheel tread and one on the wheel flange. Additionally, 
Hertzian contact model assumes smooth wheel and rail surfaces, but roughness 
changes the geometry of the contacting surfaces and thereby the stiffness of the contact 
and the size and shape of the contact patch. Locally, the actual pressure is several times 
higher than the maximum Hertzian one [80]. 

These deviations of the real contact conditions from the Hertzian assumptions have 
driven the development of non-Hertzian contact models. In order to solve the 3D 
contact problem for arbitrary non-Hertzian geometries, the continuum equations of 
elasticity have to be solved (see e.g. Appendix A in Ref. [81]). This is, in the most 
general case, only possible numerically, e.g. by using FE methods. If the contacting 
bodies are subject to certain regularity conditions, the constitutive relations can be 
brought into a surface mechanical form that will be described in Section 4.2. These 
constitutive equations will be utilised in Section 4.3 to detail the formulation of the 
CONTACT algorithm [81]. 

Many of the contact models published in the 1970s and 1980s for non-Hertzian 
geometry use a special type of Boundary Element (BE) approach based on the 
Boussinesq-Cerruti expressions for the elastic half-space. Only some examples are 
cited here. The best known is the Kalker’s CONTACT algorithm [81], based on the 
Exact Theory, which employees a variational method to calculate the normal and 
tangential traction distributions in a potential contact patch discretised by rectangular 
elements, in which constant contact magnitudes are assumed. Its high computational 
cost is linked to its mathematical rigor. Paul and Hashemi [82] solved the conformal 
contact problem between the rail and the wheel flange using a boundary element 
method and employing an approximated analytic expression to get the influence 
function. Le-The [83] considered the contact bodies as revolution solids with quasi-
parallel axes, thus the contact patch and the normal traction distribution were virtually 
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symmetrical about the 2x -axis and perpendicular to the rolling direction 1x . Thereby, 
the contact patch is discretised in strips in the 1x -direction, and each strip has a semi-
elliptical traction distribution which remains constant in each 2x  strip. Le-The found 
that particular wheel/rail profiles combinations clearly resulted in non-elliptical contact 
patches. 

Nowadays, there exist two lines of development for non-Hertzian normal contact 
models: FE formulations and low computational cost formulations. The first line 
allows incorporating complex contact geometries and non-linear effects but the 
computational cost for 3D models is still very high even for current very powerful 
computers. The second line intends to develop approximated contact formulations with 
rapid solution in order to implement them to dynamic train/track interaction for high 
frequencies. In turn, this second line is divided into two by Piotrowski and Chollet 
[84]: multi-Hertzian models and virtual elastic penetration models. Pascal and Sauvage 
[85] developed a method with a set of ellipses which replace multi-point contact and 
non-elliptical contact patch. Regarding the virtual elastic penetration models, Ayasse 
and Chollet [86], and Piotrowski and Kik [87], the contact patch is estimated from the 
virtual elastic penetration of two undeformed surfaces. Additionally, the Square Root 
Simplified Theory (SRST) proposed by Alonso and Giménez [88] does not need to 
consider the undeformed wheel/rail distance as quadratic function as Hertzian theory 
does, allowing real profiles.  

3.4.2 Tangential contact models 

Regarding the models for the tangential contact, Cattaneo [89] and later Mindlin [90] 
proposed independently an analytic solution to the non-rolling 2D tangential contact 
problem between two cylinders when there exists partial slip on the contact patch. 
Based on Mindlin’s methodology, Carter [91] developed in 1926 the first rolling 
contact theory for railway dynamics, considering the friction effect and the elasticity of 
the solids in contact. Carter formulated a non-linear theory which allows obtaining in 
an exact way the tangential contact forces between a cylinder of radius R  and infinite 
length, and an infinite plane (both are close to infinite half-spaces) from the creepages, 
considering a 2D stationary problem. A year after, Fromm [92] solved the 2D rolling 
contact problem for two cylinder with the same elastic properties without considering 
them as infinite half-spaces. 
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Theories developed by Kalker prevail in the topic of the tangential problem in non-
Hertzian contacts. The most detailed, fully transient and non-linear theory is Kalker’s 
Variational Contact Theory [81], which he called the Exact Theory. This theory is 
implemented in Kalker’s CONTACT program. Details about the formulation and 
implementation of Kalker’s variational theory will be found in Section 4.3, where the 
method will be extended to a falling friction coefficient through the Coulomb’s 
regularisation; friction coefficient will be dependent of the slip velocity using two 
characteristic parameters: the static and the kinematic coefficient. 

Kalker’s variational method is based on the principle of maximum complementary 
energy. The model consists of two algorithms: NORM for the normal contact and 
TANG for the tangential problem. Both algorithms apply an iterative solution 
procedure, which Kalker calls active-set algorithm [81]. The potential contact patch is 
discretised into regular elements in which pressure and tractions are constant. The 
NORM algorithm solves the normal contact problem and determines the contact shape 
and size, along with the normal pressure distribution. The contact deformations are 
obtained from the elastic half-space assumption. It is because Kalker implemented the 
exact Boussinesq-Cerruti equations for the elastic half-space influence coefficients, that 
he called this theory ‘exact’. 

The TANG algorithm solves the kinematic equation (see Section 4.3.2) for the 
transient rolling contact for each discretisation element in contact. The division of the 
contact patch in stick and slip regions is determined, along with the distribution of 
tangential tractions. The model can handle both vanishing and large creepages, making 
it very versatile for many practical problems. 

To sum up, Kalker’s variational theory, in its general formulation, is applicable to 
[93,94]: 

- transient processes; 

- Hertzian and non-Hertzian contacts; 

- considerations with any combination of the three creepages; 

- contact of bodies made out of different materials; 

- cases with varying normal force, creepages and/or contact geometry. 
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Kalker’s model is limited by the elastic half-space assumption. Conformal contact 
cannot, therefore, be solved using this model. In addition, the price is high for this 
detailed and capable rolling contact model in terms of high computation time [95]. 

An effort to minimise the computational cost while retaining accuracy was made by 
Kalker in 1967 and resulted in the Exact Theory [81,96], a semi-analytic technique for 
the calculation of the tangential contact force from the Hertzian theory and assuming 
an infinite friction coefficient (equivalent to consider full-stick in the contact patch). 
Later, Kalker developed the FASTSIM algorithm [95] based on the Simplified Theory 
[97] in order to solve the stationary tangential contact problem with a low 
computational cost. In this model, the displacements in a point depend exclusively on 
the tractions applied in that point through the flexibility coefficients L  (adjusted by 
comparing with the results of the Exact Theory), as a Winkler bedding. 

FASTSIM joins an acceptable precision, with deviations around 10% from CONTACT 
if the spin is small, and a very low computational cost, being 1000 times faster than 
CONTACT [81], which has led it to be the most widely used model for the dynamic 
wheelset/track interaction. According to Kalker [81], this approach is considered to 
have the best precision-to-computational cost ratio [98], but it is, however, a steady-
state model. 

Vermeulen and Johnson [99] extended the Carter’s theory to a 3D problem with two 
spheres in rolling contact, considering the longitudinal and transversal creepages but 
neglecting the spin, and adopting the Hertzian theory. They also carried out an inexact 
assumption of the shape and position of the stick zone inside the contact patch, which 
penalises the precision of the method. To include the effects of spin, Shen et al. [100] 
extended the model of Vermeulen and Johnson. Shen et al. note that with increasing 
spin creepage the differences between their method, Kalker’s FASTSIM and Kalker’s 
variational theory increase. 

Polach [101] developed a tangential contact model for the case of large creepages. 
Under these circumstances the contact is dominantly in slip and the resulting tangential 
force is close to the traction limit. Polach applied Kalker’s Linear Theory to determine 
contact shear stiffness and to approximate the effects of spin. The effects of running on 
the traction limit were included by different reduction factors. These factors are 
determined by comparison of measurements and simulation results [101]. However, the 
model is limited to elliptical contact patches and stationary contact conditions. 
Additionally, Knothe and Groβ-Thebing [102] developed a non-steady state linear 



48 Advanced techniques for time-domain modelling of high-freq. train/track interaction 

model which calculates complex creepage coefficients dependent of the frequency for 
small harmonic oscillations of the creepage from a reference state. 

The precision and computational cost of a contact model are key factors for the 
dynamic simulation. Vollebregt et al. [103] compared results of some contact models 
with CONTACT, concluding that USETAB [104], based on the interpolation of 
tabulated contact parameters (extracted from CONTACT), and FASTSIM give a better 
precision for the tangential forces than the Linear Theory [105], the Vermeulen and 
Vermeulen’s model [99], Shen and Li’s model [106] and Polach’s model [107], when 
high spin creepages appear in the contact. 

Significant work in extending Kalker’s Simplified Theory to transient processes has 
been made by Shen and Li [106], Alonso and Giménez [108] and Guiral et al. [109]. 
Shen and Li considered the case of moderate creepage and small spin in the transient 
case. They included transient effect by including the term tu ∂∂ κ  (where κu  is the 
displacement in the κ -direction) in the kinematic equation of the simplified model. 
Good correlation with the variational theory results was found, except for the case with 
significant spin. 

To better describe transient effects, Alonso and Giménez [98] introduced an additional 
term next to Kalker’s flexibility coefficient. While Shen and Li [106] used Kalker’s 
flexibility coefficient for both stationary and transient terms, Alonso and Giménez 
introduced the dynamic flexibility coefficient. This additional coefficient is related 
only to the transient term. The contact patch was assumed to be elliptical and only one 
creepage was considered to vary in time. They pointed out that the model can be easily 
extended to include non-Hertzian contacts [98,108]. Guiral et al. [109] extended the 
model by Alonso and Giménez [98] to address a more general case. An arbitrary 
combination of creepages was included, along with the variation of the normal contact 
force. Good agreement with Kalker’s variational theory results was found in the case of 
large harmonic variation of creepages. Some researchers have developed the original 
algorithm to extend its validation range: Alonso and Giménez considered non-elliptical 
contact patches [108]. Additionally, Vollebregt [110] has recently presented a new 
version of the software, FASTSIM2, which allows representing the contact magnitudes 
with a higher precision requiring a lower number of elements to calculate the tangential 
forces. 

Significant research is nowadays concentrated on improving the Simplified Theory to 
include falling friction laws, rather common in curve squeal modelling. Uncertainties 
whether a transient contact model is needed are part of the explanation (see Section 
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3.4.3). Originally, Kalker developed the model with a constant friction coefficient in 
mind, but a slip-velocity dependent friction law can be implemented as well. This was 
done by Croft [16] and Pieringer [94], who implemented the friction model from Kraft 
[111]. They, however, had issues with multiple solutions of the tangential contact 
problem and unphysical instabilities. Périard [74], Huang et al. [112] and Squicciarini 
et al. [113,114] implemented a falling friction law in FASTSIM for squeal modelling 
purposes. Xie et al. [115] applied it for simulations of the vehicle curving behaviour to 
determine input creepages for the squeal model. Vollebregt and Schuttelaars [116] and 
Giménez et al. [117] also performed work on including the slip-velocity dependent 
friction law into FASTSIM. Vollebregt [118] implemented a falling friction law, but 
introduced what he calls ‘friction memory’ to reduce the irregularity of results. This 
topic is still a subject of on-going research. 

3.4.3 Transient contact conditions during squeal 

Most existing models assume quasi-stationary contact, independent of the temporal 
history of the contact conditions, since it has been traditionally considered that the 
transient effects in the wheel/rail contact does not have significant influence in the 
dynamic interaction [81]. Nevertheless, if the contact parameters present high-
frequency temporal variations when a particle runs across the contact patch, the 
transient effect must be considered in the modelling. Curve squeal, for instance, leads 
to fast changes in contact conditions, which are expressed via the contact variables 
defined on the contact particle level. In this case of fast changing conditions, a particle 
will ‘see’ a significant change during the time it travels through the contact patch. Such 
conditions are called transient contact conditions, and contact models able to describe 
such processes, transient contact models. 

Let assume a contact length in the rolling direction 1a  to characterise contact 
conditions and a characteristic wavelength L  used to describe the rate of change of a 
contact variable. For a low-frequency motion of the contact variable, 1aL >>  and the 
contact variable along the contact patch would be approximately the same, hence the 
variation along 1a  could be neglected without introducing a significant error in the 
results. However, for a high-frequency motion characterised by 1aL ≈ , the variable 
change would significant and this should not be neglected. Knothe and Groβ-Thebing 
[102,119] used the ratio 1aL  of the characteristic motion wavelength L  and the 
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contact length in the rolling direction 1a  to characterise contact conditions. A ratio 
101 <aL  characterises transient conditions [119]. Although they consider rail 

corrugation, the same approach can be used to determine conditions during squeal. A 
case of 2=ω kHz squeal with 50=V km/h rolling velocity and 121 =a mm contact 
length gives the characteristic motion wavelength of 007.0== ωVL m and the 1aL  
ratio is 0.58. The contact conditions during squeal are, thus, transient. 

Whether a transient contact model is required for squeal modelling is still not clear. 
Refs. [102,119] established a criteria to estimate when a transient model is required 
(not to introduce important errors in calculations). However, in response Kalker [81] 
compared steady-state and transient analyses results of a rail corrugation case. The 
steady-state approach resulted in a slight overestimation of the frictional work 
compared to the full transient model results. Kalker concluded that the effect of 
transient contact conditions is not pronounced, questioning conclusions of Ref. [102]. 
He concludes that transient contact processes can be described as a succession of 
steady-states. 

Baeza et al. [23] investigated the influence of transient processes on contact variables. 
A harmonically varying force was imposed on the contact and the resulting creepages 
were observed. In cases with rapid force variations, steady-state models did not give 
satisfactory results. Differences between steady-state and transient model results were 
found to depend on the 1/ aL  ratio. Specific values that would define the validity limit 
of steady-state models were not given. 

3.5 TRAIN/TRACK DYNAMIC INTERACTION 
MODELS 

3.5.1 Frequency-domain models 

The dynamic interaction models in the frequency domain are based on the previous 
receptance calculation/measurements of the vehicle and the track, after being excited 
by a force applied at a point. In this type of models, it is assumed a steady-state 
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dynamic interaction and a linear behaviour of the vehicle/track system, being the 
response proportional to the excitation. 

Knothe and Grassie [39] make a distinction between receptance from a static punctual 
force and a moving punctual force. Additionally, they distinguish between discrete 
supports and continuous supports. Among the models based on receptances from a 
static punctual force, Grassie et al. [120] represented the rail as a Timoshenko beam 
supported by a continuous layer of rigid or elastic sleepers. This model permitted to 
calculate two resonances of the track: the P2 resonance just above 100 Hz (rail and 
sleepers oscillate on the ballast) and the P11/2 resonance between 300 and 500 Hz (rail 
oscillates in phase opposition to the sleepers). Being a continuously supported track 
model, it cannot predict the behaviour of the track around resonances related to the 
discrete supports of the rail, such as the pinned-pinned resonance. 

This limitation was solved by Ripke and Knothe [121] by introducing discrete supports 
and calculating the direct vertical and lateral receptances for the excitation force 
applied in the sleeper and the half span as shown in Fig. 3.3. The receptances 
calculated by these authors are used in this section to present the main resonances and 
anti-resonances in the vertical receptance (Fig. 3.3(a)), which can be important 
regarding the wheel/rail interaction force magnitude and the irregular wear that can 
induce. The first resonance, known as P2 resonance, appears between 50 and 200 Hz, 
depending on the track properties. At this frequency, the rails and sleepers vibrate in 
phase on the ballast, which provide stiffness and a high damping, so that the 
corresponding peaks appears wide and flat. The second resonance, P11/2, appears at a 
frequency between 300 and 500 Hz, depending on the stiffness baseplates. At this 
resonance, the rails and sleepers vibrate in antiphase and its corresponding peak also 
appears flat due to the fact that most of the damping at this frequency is provided by 
the ballast. The third resonance, known as pinned-pinned, occurs in the range between 
700 and 1200 Hz. At this resonance, the rails vibrate with a wavelength that is twice 
the span, with nodes located on the sleepers, when the excitation force is applied on a 
point located on the half-span. This is a low-damped resonance, so that the 
corresponding peak is tight since only the rail provides damping in this case. 

Two antiresonances are also detected in Fig. 3.3(a). At the first one, between the two 
first resonances, the sleeper vibrates between the rail and the ballast, acting as a 
dynamic absorber of vibrations, while the rail barely moves. The second antiresonance 
appears at a frequency above the pinned-pinned resonance, when the excitation force is 
applied on a sleeper, indicating that the stiffness of the rail at this position and the 
corresponding frequency is very high. 
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In the lateral receptance (see Fig. 3.3(b)), similar to the vertical one, it can be observed 
that the resonance frequencies are lower than the previous case, while the receptance 
magnitudes are higher since the track is more flexible in the lateral direction. The first 
pinned-pinned resonance appears at 560 Hz and the second one, in which the head and 
the foot of the rail vibrate in antiphase around 2 kHz. 

 
                           (a)                                                          (b) 

Fig. 3.3. Direct receptances of a UIC60 rail on rigid sleepers, 0.6 m of span. The 
excitation is applied at the sleeper or at the half-span. (a) Vertical receptance; (b) 

lateral receptance. From Refs. [122,123]. 

When considering moving harmonic excitation force, Ilias and Knothe [124] and Ilias 
and Müller [125] observed that the moving force influenced significantly the response 
of the track around the pinned-pinned frequency, dividing it in two resonance peaks, 
whose separation increased with the velocity of the force, as observed in Fig. 3.4. The 
latter authors gave approximated expressions for both peaks of the pinned-pinned 
resonance from the frequency of this resonance for zero-velocity, the velocity of the 
moving force and the span. The authors also investigated the most realistic case, 
consisting of considering the excitation from a moving mass (a moving wheelset) 
driving along a rail with a sinusoidal corrugation. Fig. 3.5 shows the relationship 
between displacement and vertical force (transmission ratio) of the track originated by 
a moving mass, as a function of the speed of the moving mass and the frequency. The 
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authors observed that the peaks of the first resonances were displaced towards lower 
frequencies when speed increases. The pinned-pinned resonance is also divided into 
two peaks, whose separation increases with the speed; but the difference of the 
amplitudes of both peaks is due to the modulation of the normal force, which is 
maximum in the frequency range close to the pinned-pinned resonance. Therefore, at 
the frequency corresponding to the pinned-pined resonance which appears with the 
static force model and with the moving irregularity model, an antiresonance will appear 
with the moving mass model. 

Additionally, Ilias and Müller carried out a comparison of several excitation models. 
They observed that the A2 (moving force) in Fig. 3.6 and A3 models (moving mass) 
could represent the division of the maximum normal contact force associated with the 
division of the pinned-pinned resonance, while the A1 model (static force) could not 
represent that effect. 

 

 

 
 

 

Fig. 3.4. Direct vertical receptances of a UIC60 rail on rigid sleepers, 0.6 m of span, as 
a function of the speed of the moving excitation force. From Ref. [125]. 
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Fig. 3.5. Transmission ratio (displacement/force) of a UIC60 rail on rigid sleepers, 0.6 
m of span, as a function of the speed of the moving mass. From Ref. [125]. 

 
     (a)                                                                  (b) 

Fig. 3.6. Variation of the wheel/rail normal contact force as a function of the excitation 
frequency, using different excitation models (A1 static force model; A2 moving force 

model; A3 moving mass model). (a) Wheel located on the sleeper; (b) wheel located on 
the half-span. From Ref. [125]. 

The most well-known frequency-domain model for the calculation of rolling noise is a 
model going back to Remington [14,30,126,127], which has been generalised and 
further improved by Thompson [63,128–130]. His formulation is implemented in the 
software package TWINS [131] which is widely used in industry today. 



3. Review of the modelling of the vehicle/track dynamic interaction 55 
 

The range of validity of the linearity assumption necessary in frequency-domain 
models has been investigated by Wu and Thompson [59] using a time-domain model 
for roughness excitation. They found that non-linearities in the contact model cannot be 
neglected in the cases of severe roughness and/or a low static contact preload, which 
can cause loss of contact between wheel and rail. These results have been confirmed by 
Nordborg [69], who used both a frequency-domain model and a time-domain model 
based on Green’s functions to study non-linear effects in the vertical interaction. If the 
response to discrete irregularities such as wheel flats and rail joints is to be calculated, 
time-domain models are the only option. They are able to capture the discrete nature of 
the phenomena and model the loss of contact that is likely to occur [35,36]. As curve 
squeal is an intrinsically non-linear and transient phenomenon, time-domain models are 
also here the only option if the magnitude of squeal is to be predicted. 

3.5.2 Time-domain models 

Time-domain models present a higher computational cost as main disadvantage against 
the frequency-domain models. Nevertheless, the computational power of the current 
computers has made these models the preferred ones by most researchers, permitting 
them to introduce non-linearities from the ballast, baseplates, the wheel/rail contact and 
the interaction transient phenomena. These models are divided in two sets [39]: FE and 
semi-analytic models. The FE models consider a finite track with at least 15 spans to 
reduce the influence of the boundary conditions at the edges. The 3D models are 
limited in general to the vertical dynamics (and the longitudinal in some cases) due to 
the high number of degrees of freedom. Ilias [132] used a combination of both 
techniques in the time domain: the FE method was employed to simulate the vertical 
and longitudinal motion of the track, while the lateral dynamics was introduced 
through the transformation of the receptances to the time domain. The only non-
linearity considered was the wheel/rail contact. 

Nielsen and Igeland [102] studied the vertical dynamic behaviour of a bogie on a rail 
discretely supported by sleepers on elastic bedding. They analysed the bogie-track 
dynamic interaction with different irregularities such as: sinusoidal corrugation on the 
rolling surface of the rail, a wheel flat and a sleeper badly supported on the ballast. The 
interaction problem was solved in the time domain by applying a modal superposition 
technique to describe the track. 
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Anderson and Abrahamsson [133] extended the DIFF model [62] to consider the 
vertical, longitudinal and lateral dynamics in order to analyse the wear; the new version 
was called DIFF3. The vehicle model was reduced to a bogie model, with a rigid frame 
and the wheelset consisted of two rigid wheels and a rigid or elastic axle. The axle was 
model through FEM and a modal reduction was carried out to decrease the number of 
degrees of freedom. They employed a contact model which permitted to detect the 
contact zone and calculate the normal and tangential contact forces. Comparing the 
results using a rigid and flexible axle, they observed that the longitudinal force of the 
rigid axle was much higher. For the vertical force, the differences were not significant. 

Nielsen and Oscarsson [134] proposed a numerical method to consider the non-
linearities of the track associated with the ballast, baseplates and the platform, in a 
train/track dynamic interaction model developed previously [62]. This model included 
a lumped vehicle model, a linear FE track model and adopted a non-linear wheel/rail 
contact model. In the new model, a complex modal superposition technique is adopted 
in order to decouple the equations of motion of the linear track model developed 
previously by one of the authors [135]. The non-linearities of the track are considered 
applying equivalent transient forces to the corresponding nodes of the track FE model. 
An alternative, more computationally efficient approach has been demonstrated by Wu 
and Thompson [36]. They modelled the dynamics of the track using a single 
differential equation obtained from a transfer function. Their technique is, however, not 
suitable to include track models with discrete supports.  

Infinite track models based on wave propagation seem to be a very promising approach 
to represent the track by moving Green’s functions that describe the dynamic behaviour 
of the track in a moving contact point. This approach is computationally efficient and 
allows including discrete supports. This technique, going back to Manfred Heckl’s 
proposal for a railway simulation program [136], has been used by Nordborg [69] and 
recently by Mazilu [26]. As a matter of course, the wheel can also be represented by 
Green’s functions. This approach has been chosen by Maria Heckl and Abrahams [137] 
who formulated a squeal model for the wheel represented as an annular disc. Pieringer 
[133] has recently developed a model which represents the wheels and rails through a 
set of impulsional response functions to study the squeal noise, modelling the 
wheel/rail contact as instationary and non-Hertzian from the Kalker’s variational 
theory. 

Correa et al. [138] have applied a modified method of the polynomial rational fraction 
to transform their track model from the frequency domain to the time domain. The 
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dynamic vertical interaction in the time domain is used to study the dynamic effects 
arising from the passage of the wheel on rail defective welds. 

3.6 CONCLUSIONS 

Curve squeal is recognised as a complex problem, which seems random rather than 
deterministic, associated with different phenomena that require different modelling 
approaches and different treatments. The falling and constant friction coefficient 
mechanisms appear as two accepted mechanisms of squeal, but their relative 
importance remains as the main controversy on this topic. 

The modelling for instationary contact seems fundamental for the adequate approach to 
this high-frequency phenomenon and it has represented much of the effort of 
researchers. Kalker’s variational theory as an Exact Theory achieves the necessary 
level of detail required to capture the high-frequency stick/slip cycles in the contact 
area and the consequences on the tribology of the creep forces. The non-linearities 
introduced by Coulomb’s law make the contact dynamics a complex and time-
consuming numerical problem. Therefore, frequency-domain models can be discarded 
since they require linearised models and cannot predict amplitudes of the contact 
parameters, which can be used as good indicators of squeal. In addition, the 
introduction of a falling friction coefficient that falls from a static to a kinematic value 
with the slip velocity requires numerical techniques that soften the contact equations. 
The difficulty of measuring the local contact parameters (creepages) for unsteady 
conditions at high frequencies, instead of quasi-static situations measured by test rigs, 
also leads to the need of developing such models. 

For the high-frequency range, scope of the present Thesis, the modelling of the vehicle 
can be reduced to the modelling of the wheelset. This range requires models that 
introduce flexibility through FE techniques. Curve squeal seems to be associated 
closely with one or more 0-nodal-circle wheel axial modes excited at the leading inner 
wheel, but some unusual occurrences have been highlighted where different 
phenomena are involved. The inertial and gyroscopic effects associated with the 
rotation of the wheelset should be included in a detailed high-frequency dynamic 
formulation since some authors indicate their influence in the build-up of the stick/slip 
oscillations. Moreover, the inclusion of the rail dynamics is pointed out as relevant 
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factor especially under constant friction conditions. Flexible and finite beam models 
usually employed in the literature do not model the real geometry of the rail profile, 
neglecting the influence of the contact point location on the contact dynamics. In 
addition, these models do not account FOR the cross-sectional deformation of the rail, 
hence limiting the frequency range up to 1.5 kHz, below the range of study required for 
curve squeal. New efficient modelling techniques need to be developed in order to 
overcome the previous limitations while preserving the rail length, thus minimising 
wave reflections at the rail edges. 
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4 WHEEL/RAIL ROLLING 
CONTACT MODEL 

4.1 INTRODUCTION 

Wheel/rail interaction models intended for noise prediction should cover the frequency 
range from approximately 100 Hz to 5 kHz. At frequencies below 100 Hz the human 
perception of sound is substantially reduced; the rolling noise spectrum decreases 
rapidly above 5 kHz [139]. As squeal is linked to the wheel being excited in one of its 
resonances [7], squeal may also occur at higher frequencies (see e.g. Ref. [140]). The 
main squeal tones are nevertheless covered by a frequency range up to 5 kHz [7]. Such 
wheel/rail interaction models are denoted high-frequency models to distinguish them 
from models of the classical vehicle/track dynamics considering, for instance, running 
stability, curving behaviour and passenger comfort, which typically include frequencies 
up to 20 Hz [39]. 

As mentioned in the previous chapter, Kalker stated in Ref. [70] that the transient 
effects in the wheel/rail contact are not especially relevant in the railway dynamic 
simulation, hence it is enough to consider the variations of the contact magnitudes as a 
succession of stationary states. Therefore, most contact models used in simulations of 
train/track dynamic interaction are stationary. Nevertheless, some railway problems are 
closely related to fast temporal variations in the contact magnitudes, e.g. short wave 
corrugation, rolling noise and squeal noise, and the transient process in the wheel/rail 
contact can become more important, especially when 10/ 1 <aL  as Knothe and Groβ-
Thebing [102,119] stated. In curve squeal in particular, the dynamics in the contact are 
crucial to describe the stick/slip process in the contact patch, cyclic process in which 
part of the contact area moves into adhesion and slipping conditions, successively. 
According to the literature [5], this process could be essential to explain the mechanism 
for the occurrence of squeal. 

The assumption of an elliptical wheel/rail contact patch located on the same vertical 
than the centre of the wheel does not correspond to the reality since the Hertzian 
assumptions do not fit the reality. The presence of roughness or corrugation can 
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significantly affect the shape of the contact patch and the normal traction distribution. 
Notwithstanding, simulations with the wheelset negotiating sharp curves will be carried 
out in Section 6.3, in which contact near the wheel flange can occur; thereby, the 
Hertzian half-space assumption is not met since the dimensions of the contact patch 
can be around the same order of the geometry radii that define the wheel and rail 
curvatures, and multi-contact point can occur in this type of geometry. 

With this purpose, the wheel/rail contact problem is modelled through Exact Theories. 
The resolution of the contact problem is made through the following steps (see sketch 
of Fig. 4.1): 

 

Fig. 4.1. Wheel/rail contact problem. 

1. From the generalised coordinates associated with the wheelset, calculation of the 
positions and velocities of the contact point relative to the rail. 

2. Normal contact problem. Determination of the wheel/rail contact area and the 
normal traction distribution. 

3. Tangential contact problem. Calculation of the tangential traction distribution. 

4. Integration of the tractions over the contact area in order to calculate the resultant 
forces. 

This chapter begins with the description of the wheel/rail rolling contact in Section 4.2, 
studying the behaviour of elastic bodies in rolling contact, and developing the elastic 
(influence coefficients) and the kinematic formulations for half-spaces representing the 
solids in contact. Section 4.3 details the numerical algorithm employed in the present 
thesis for solving the normal and the tangential problems, based on Kalker’s variational 
theory; the tangential contact model in steady-state conditions is also derived. The 
numerical errors of the method are evaluated in Section 4.4. A falling friction 
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coefficient characterised by kinematic and static values is introduced in the steady-state 
algorithm, finding a numerical discontinuity around the stick and the slip regions due 
to the separated set of equations employed in the original method. Section 4.5 
implements the regularisation of Coulomb’s law as an efficient numerical strategy to 
avoid this discontinuity. The influence of the falling friction on the rolling contact 
parameters and a comparison to experimental data from test-bench is presented in 
Section 4.6. This chapter ends with the main conclusions in Section 4.7. 

4.2 WHEEL/RAIL ROLLING CONTACT MODEL 

Contact theories provide laws which allow relating the tangential forces to the 
creepages. The complexity of the real problem comes from its 3D nature, so that there 
will be force and creepages in the rolling direction and also in the lateral direction. 
Solving the wheel/rail contact problem requires determining the size and shape of the 
contact patch, normal and tangential distributions, displacement and local slip velocity 
distributions and forces and moment transmitted through the contact. Previously, it is 
needed to know the wheel and rail profile geometry around the contact, the penetration 
(or approach) between them, the relative velocities between wheel and rail, the material 
properties and tribological state of the surface in contact. Sometimes, some inputs and 
previous results can be interchanged. For instance, instead of prescribing penetration, 
the normal force can be considered as input to obtain the penetration as output; or 
tangential forces as input instead of creepages. When forces are considered as inputs 
from which movement is calculated, the problem is known as direct dynamic problem; 
otherwise, inverse dynamic problem. In railway contact models, penetration and 
creepages are used as inputs to obtain the forces and moment in the contact (inverse 
problem). 

If both bodies in contact behave elastically equal (the same displacements for the same 
actions), then the elastic quasi-identity conditions are met. More concretely, the elastic 
quasi-identity is met if both bodies behave elastically as infinite half-spaces and if their 
mechanical properties (Young’s modulus and Poisson’s ratio) match. Thus the 
properties of the elastic quasi-identity are: 

- In the normal contact problem, the normal displacements due to the tangential 
tractions are not considered in the formulation. 
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- In the tangential contact problem, the contribution of the normal tractions on the 
tangential displacements is not considered in the formulation. 

- The tangential conditions do not influence the normal contact problem. It is then 
possible to solve the normal problem and, once known the contact area, calculate 
the tangential problem. 

The dimensions of the contact area in the wheel/rail contact are between 1 and 4 cm, 
thus the curvature radii are much higher than the dimensions of the contact patch. This 
is a case of non-conformal contact. The main consequences of the non-conformal 
contact are the following: 

- Since both contact surfaces are close to be parallel, it is possible to establish a 
normal direction and a plane tangential to the contact. 

- If a wheel point is going to contact other rail point once a normal load is 
transmitted, both points will be on a line whose direction is the normal one to the 
contact. 

- The assumption of solids behaving elastically as infinite half-spaces can be 
considered. Hence, quasi-identity conditions are met and the normal contact 
problem does not depend on the tangential one (since both solids in contact are 
made of the same material). 

Conformity conditions (contact area and curvature radii are similar) can be met 
whether the wheelset is laterally displaced and the contact is located e.g. between the 
flange and the tread of the wheel profile; this is the case for the vehicle negotiating a 
sharp curve, condition in which curve squeal can occur. Nevertheless, the present thesis 
adopts the non-conformal contact model in order to simplify the contact formulation, as 
assumed in recent works for curve squeal [13,17,44,94]. 

As initial step to solve the contact problem, it is needed to establish a formulation that 
relates displacements, tractions and slip velocities by means of elasticity equations and 
kinematic constraints that must be satisfied in the contact.  
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4.2.1 Elastic model 

A reference system is defined in order to model the elastic problem. An inertial 
reference system 321 XXX  moving with the vehicle with a velocity (corresponding to 
the rolling or longitudinal velocity) V is adopted (see Fig. 4.2). The origin of the 
system is the theoretical contact point (point where wheel and rail profiles would be in 
contact if both were rigid). The 1X -axis refers to the rolling direction and the 2X -axis 
is associated to the lateral direction in such a way that 21XX  is the tangential contact 
plane. The 3X -axis is normal to the contact in a positive direction towards the wheel. 
The precise definition of these axes will be carried out in Section 5.6. 

 

Fig. 4.2. Reference system used in the contact. 

Let define ( )21, xxp j  as the traction in a point ( )21, xx  according to the jX -direction. 

( )21, xxu j  is the field of the displacements the jX -direction associated with the 

deformations in the contact. The normal problem, which permits to calculate the 
contact area, involves tractions 3p  and displacements 3u  normal to the contact. The 

tangential problem is associated with the tractions 1p  and 2p  and the displacements 1u  

and 2u . From now, the magnitudes contained in the tangential plane will be referred 

using the notation τp , τu  and τx  will be utilised (hence, 2,1=τ ). Taking into account 
it is not needed to locate a point outside the contact plane 03 =x , it is defined 

( )21, xx=x  (and hence, ( )xjj pp ≡  and ( )xjj uu ≡ ). The relationship between the 
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tractions and deformations fields is based on the application of the Elasticity Theory. In 
general, the elastic models that relate both tractions and deformations in the contact 
area are used to find the influence coefficients ( )yx,ijA , defined as the displacement in 

the point x  in the i-direction when a unitary traction is applied in the j-direction of the 
point y . The elastic half-space is one of the few geometries in 3D elasticity for which 
the influence functions are explicitly known; in the general case they can only be 
evaluated numerically. Thus the half-space assumption considerably simplifies the 
solution of the three-dimensional contact problem. 

Assuming linear elastic behaviour of the bodies in contact, the superposition principle 
is applied, thus the constitutive equation that describes the displacements field in the 
contact area is calculated through the extended integral on the frontier of the contact 
area C∂ : 

 ( ) ( ) ( ) ( ) ,3,2,1   ,d ,
3

1

==∑ ∫
= ∂

ispAu
j C

jiji yyyxx  (4.1) 

where the integral is extended to the contact surface through the integration variable 
vector { }T

21, yy=y . There exists a cross influence between the tangential and the 
normal problem. Assuming properties of elastic quasi-identity, it is not useful to study 
the contribution of normal stresses over normal displacements and vice versa as 
detailed in Section 3.4.1, so that the formulation for normal problem will be: 

 ( ) ( ) ( ) ( ),d , 3333 ∫
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=
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spAu yyyxx  (4.2) 

and for the tangential problem: 
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spAu yyyxx  (4.3) 

where ∫
∂C

sd  indicates the extended integral in the contact area. 

When the non-conformity condition is met in the wheel/rail contact, the displacements 
close to the contact are similar than the ones in an infinite half-space. Eq. (4.1) 
particularised to an infinite half-space is known as Boussinesq-Cerruti integral (the 
influence functions for the elastic half-space have been derived by Boussinesq [71] and 
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Cerruti [72] and may also be found in Ref. [81]), with analytical solutions for some 
types of load distributions. One of these is a constant pressure on a rectangle surface. 

Let define an infinite half-space which occupies 03 <x . There exists a rectangle on it of 
dimensions 21 22 bb ×  loaded by a constant traction 3p . The rectangle is centred at the 

origin ( )T0,0=x , corresponding the dimensions 12b  and 22b  to the 1X - and 2X -

directions, respectively. The displacements in the 3X -direction on the surface of the 
half-space are calculated through the following expression: 
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where E  and ν  are Young’s modulus and Poisson’s ratio, respectively. 

Now, two tangential tractions in the 1X - and 2X -directions on the rectangle are 

applied. The displacement in the 1X -direction on the surface of the half-space is 
calculated through: 

 ( ) ( ) ( ) ( ) ( )( ) ( )[ ],,,1,
2
1, 22141212211211 pxxJpxxJxxJ

E
xxu νν

π
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+−+
+

=  (4.5) 

and in the 2X -direction is 
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where: 
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For more details about the functions 1J , 4J  and 4J  (used for the definition of the 
influence coefficients), see Appendix A. 

4.2.2 Kinematic model 

The methodology employed to model the kinematics of the contact is a general 
approach in Continuum Mechanics of the type proposed by Mase and Mase [141]. In 
order to model the kinematic of the contact, let take the “configuration” concept, 
commonly employed in Continuum Mechanics, which permits to model displacements 
and velocities of flexible solid points (see Fig. 4.3). The reference configuration 
corresponds to an arbitrary and fixed (non-dependent of time) position of the 
undeformed solid. Frequently, it is chosen the one that the undeformed solid occupies 
in the instant 0=t , but it can be even defined a position that the solid cannot 
physically occupy. The deformed configuration corresponds to a space occupied by a 
flexible solid in the instant t . It is defined the intermediate configuration between the 
reference one and the undeformed one, known as non-deformed. This one depends (the 
same than the deformed one) on time and it presents the property that the 
transformation from the deformed configuration to the undeformed one consists of a 
small displacement. 
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Fig. 4.3. Reference configuration, non-deformed and deformed one. 

According to the scheme presented in Fig. 4.3, the position of a material particle which 
in the reference configuration occupies the position x , is calculated as 

 ,udxr ++=  (4.10) 

where d  is the vector that describes the displacement of the rigid solid from the 
reference position, and u  is the displacement vector associated with the deformations. 
Vectors r , d  and u  are functions of x  and t . The reason that justifies this approach 
is that there exist formulations to model the kinematic of rigid bodies (Euler angles, 
equation of the velocities field, etc.) and others to model small displacements 
associated with deformations (linear elasticity, vibrations, etc.). Eq. (4.10) is derived 
with respect to time by means of the material derivative denoted by tDD : 

 .
D
D

D
D

D
D

ttt
udr

+=  (4.11) 

The use of the material derivative of the displacements associated with the 
deformations, defined as 1DD xVtt ∂∂+∂∂= , comes from the moving nature of the 
contact load, which requires accounting the convective term since the reference system 
is moving with a velocity V. 
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4.2.2.1 Kinematics of the normal contact 

Based on the proposed methodology, the configurations shown in Fig. 4.4 have been 
defined for the rail and the wheel: 

- The reference configurations for the rail and the wheel correspond to the positions 
of both undeformed solids when they have an only one contact position (assuming 
that both solids are rigid), known as theoretical contact point. The reference system 
associated with the rail 321 XXX  is centred on this theoretical contact point, 
according to the criteria defined in Section 4.2.1. A function ( ) =21, xxh  

( ) ( )2121 ,, xxzxxz wr −  measures the distance between both wheel and rail surfaces, 
according to 3X -direction. This function, known as distance between undeformed 
surfaces, depends on the geometry of both surfaces and the relative position 
between them. 

- The undeformed wheel configuration corresponds to the movement of the rigid 
solid itself of the wheel. The rail does not move, hence it matches the reference and 
undeformed configurations. The component of the wheel displacement normal to 
the contact plane, known as elastic penetration between the undeformed surfaces or 
approach δ , is of interest. 

- The deformed configuration will be the final position in the wheel/rail contact. In 
this configuration, the displacements associated with the deformation in the 3X -

direction of the wheel wu3  and the rail ru3  will be calculated. 

 

Fig. 4.4. Reference configuration, non-deformed and deformed one for the rail and the 
wheel. 
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According to the Newton’s Third Law, the wheel traction distribution wp3  is equal, but 

with opposite sign, to the rail traction distribution rp3 . As a consequence of this, and 
taking into account that both solids have an identical response to the same type of 
actions (since they behave elastically as half-spaces), the displacements associated with 
the deformations of the wheel wu3  and the rail ru3  are equal and with opposite sign. 

From now, 3u  and 3p  are referred to the rail ( wr uuu 333 −== , and wr ppp 333 −== ). 
According to this, the following expression is satisfied: 

 ( ) ( ).,2, 21321 xxuxxh −=δ  (4.12) 

4.2.2.2 Kinematics of the tangential contact 

Creepages are defined in the tangential contact problem as the reduced magnitudes that 
represent the tangential velocity of the contact point for slip conditions. In order to 
calculate them, assuming rigid wheelset and rigid track, the undeformed velocity of the 
nominal contact point is computed through the equation of the velocity field: 

 ,rωvv ×+= G  (4.13) 

being Gv  the velocity of the centre of mass of the wheelset referred to the 321 XXX  
system, ω  the angular velocity of the wheelset and r  the position vector which links 
the centre of mass with the theoretical contact point. Therefore, the component 3v  must 
be zero (if a contact model based on kinematic constraints is adopted) or very small (if 
a contact model with a penalty formulation is taken). The components 1v  and 2v  are 
defined as creepages respect to the longitudinal and lateral directions; using 
adimensionalised magnitudes (with no units), tangential creepages are: 

 .2,1   , == τξ τ
τ V

v  (4.14) 

Fundamentally due to the wheel conicity, a spin velocity also appears between wheel 
and rail. The spin is, hence, the component normal to the contact of the absolute 
angular velocity vector of the wheelset ω . The spin creepage is estimated similarly to 
the tangential creepages, but with units in [rad/m] in this case: 

 .
· 3

Vsp
iω

=ξ  (4.15) 
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Once defined the creepages, the kinematic of the tangential contact is derived from Eq. 
(4.11). Let assume the points of the rail rP  and wheel wP  in contact. The difference in 
both point velocities will correspond to the relative slip velocity between both surfaces 
(or local slip velocity) s : 

 ,
D

D
D

D
tt

rw rrs −=  (4.16) 

being rr  and wr  the position vectors of the contact points rP  and wP . According to 
Eq. (4.11), the velocity of both bodies can be described through the movement of the 
rigid solid and the displacements associated with the deformations as: 
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being w  the velocity associated with the undeformed configuration, which is computed 
through the equation of the velocities field: 
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where spω  is the spin term. Vectors u , s  and w  are in the 21XX  contact plane (they 

contain longitudinal and lateral components), and they are functions of the point 
{ }T

21, xx=x within the contact area. Taking into account that the displacements 
associated with the wheel deformations are equal and with opposite sign than the rail 
ones, rw uuu −== , and developing the material derivative, the tangential components 

of the local slip velocity can be calculated as 
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The formulation for the tangential contact problem for steady-state conditions will be 
required in Section 4.6 in order to address a tribological study of the influence of the 
falling friction on creep curves. The original instationary method is modified in order 
to obtain the steady-state solution of the rolling contact problem. By introducing the 
constitutive Eq. (4.3) in Eq. (4.19), the instationary kinematic equation for the 
tangential contact results 
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The partial derivative with respect to t in Eq. (4.20) is zero if the steady-state 
conditions are imposed: 
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Since y  is the integration variable in Eq. (4.21), it is independent of 1x . Therefore, the 

derivative ( ) 1xp ∂∂ yκ  is zero. Thus Eq. (4.21) results 
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4.3 NUMERICAL ALGORITHM 

In the present thesis, the contact problem is addressed through a methodology that 
solves the normal problem and later the tangential one following CONTACT algorithm 
[81,142]. CONTACT is based on a spatial discretisation of the contact patch as a 
variation of the so-called Boundary Elements (BE) method, in which each magnitude is 
considered constant and equal to the value in the centre of the element. Once 
established a reference system 321 XXX  and the contact plane 03 =x , it is defined the 
potential contact area as a rectangular region on the contact plane that contains, at least, 
all the points of the contact area. The potential contact area is discretised in a regular 
mesh with rectangular elements of dimension 21 22 bb × . 

The fundamental assumption adopted consists of considering that the traction 
distribution is constant for each element of the mesh. Therefore, it is defined a traction 

I
jp  as the one which appears in the I-th element of the mesh in the j-direction. I

ju  are 

the displacements, wIrII zzh ,, −=  are the undeformed distance and Iw  the velocity 
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associated with the undeformed configuration, respectively, all of these calculated in 
the centre of the I-th element of the mesh. Ix1  and Ix2  are the coordinates of the I-th 
element. Assuming elastic quasi-identity conditions are met, it is possible to uncouple 
the normal problem from the tangential one. 

4.3.1 Algorithm for solving the normal contact problem 

This methodology is based on NORM [81] algorithm from CONTACT, which solves 
the normal contact problem. Let consider that the J-th rectangle of the potential contact 
area is loaded with a normal pressure Jp3 . According to the Linear Elastic Theory, the 
normal displacement of the I-th element of the mesh will be 

 ,3333
JIJI pDu =  (4.23) 

where IJD33  is the elastic influence coefficient and it is easily calculated through Eq. 

(4.4) replacing 1x  by JI xx 11 −  and 2x  by JI xx 22 −  and making 13 =Jp  (see Appendix A). 
Applying the superposition principle, the constitutive equation permits to calculate the 
displacements due to the loads in the contact: 
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where the summation is extended to all the N  elements of the contact area. Replacing 
Eq. (4.24) in Eq. (4.12), the following expression is obtained: 
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JIJII pDhδ  (4.25) 

Eq. (4.25) provides a linear equations system, where the normal tractions are the 
unknowns. The problem is to know which elements of the potential contact area are 
part of that area. For the dynamic interaction model, as the points of the elastic half-
space are coupled, the vertical displacements of the rail, ( )irI tw , , and the wheel nodes, 

( )i
wI tw , , on the potential contact patch at the current time step are introduced in the 

NORM algorithm to evaluate the normal problem time step by time step. The rail, rIr , , 
and wheel roughness, wIr ,  can be also included as inputs to consider irregularities on 
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the surfaces in contact. A new variable to compute the distance between the deformed 
bodies is defined: 

 ( ) ( ) .,,,, wIrI
i

wI
i

rIII rrtwtwd −+−+= δ  (4.26) 

The contact conditions are formulated as 

 ,0≥Id  (4.27) 

 ,03 ≥
Ip  (4.28) 

 .03 =
II pd  (4.29) 

If contact occurs in a surface element, the distance is zero and the contact pressure is 
positive. If contact does not occur, the distance is positive and the pressure is zero. A 
negative value of the distance would mean the two bodies penetrate into each other, 
which is physically impossible. A negative contact pressure would correspond to 
adhesion. Both penetration and adhesion are excluded by Eqs. (4.27) to (4.29). 

Eqs. (4.25) to (4.29) form a non-linear equation system that completely describes the 
normal contact problem at each time step. An explicit equation for Iu3  is only available 

for the element that are in contact, where 0=Id ; from Eqs. (4.25) and (4.26): 

 ( ) ( ) ,,,,,
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rIII rrtwtwhu +−+−−=  (4.30) 

and it is a priori unknown which elements are in contact. 

An efficient iterative method to solve the normal contact problem is the algorithm 
proposed by Kalker [81]. He used a variational method and formulated the normal 
contact problem as a minimisation problem of an appropriate energy functional. To 
solve this problem, Kalker developed his active set algorithm NORM. The reason why 
this algorithm is called active set algorithm is as follows. The solution, in the form of 
the contact pressure distribution, is subjected to the inequality constraint 03 ≥

Ip . The 
elements in the potential contact patch are divided into two sets. 

In the following, the indices I  and J  denote an element in the set of elements forming 
the potential contact patch P , i.e. PI ∈  and PJ ∈ , if not stated differently. The 
potential contact patch consists of the contact patch C  and the exterior area E . The set 
of elements where the inequality constraint is active, i.e. 03 =

Ip , is called the active set 
A . The remaining elements form the set N . In the normal contact problem, the active 
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set thus comprises the elements which are not in contact, i.e. EA =  and CN = . 
Initially, an assumption is made about which elements belong to the active set. The 
active set is then updated step-by-step in the algorithm until the final solution is found. 
In detail, the active set algorithm used works as follows: 

1. Initially, all elements are placed in the active set EA =  (which means 03 =
Ip  in all 

elements). 

2. The distance is calculated for all elements from Eq. (4.26), which reduces to 

 ( ) ( ) ,,,,, wIrII
i

wI
i

rII rrhtwtwd −++−=  (4.31) 

since 03 =
Iu  (due to 03 =

Ip  in all elements). 

3. All points with a negative distance, 0<Id , are removed from the set E  and added 
to the set of contact elements C . 

4. For the elements in the contact set C , the distance is zero and the surface 
displacement Iu3  is calculated from Eq. (4.30). 

5. The contact pressure of all elements in contact is evaluated by setting up Eq. (4.24) 
for all cN  elements in C : 

 ,   ,
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3333 CIpDu
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 (4.32) 

and solving the resulting linear equation system for the unknown Jp3 . 

6. All elements with negative pressure, 03 <
Ip , are removed from C  and added to E . 

7. Steps 4-6 are repeated until no negative pressure is present anymore. 

8. It has to be verified whether the solution found fulfils Eq. (4.27). Therefore the 
displacement Iu3  is calculated for all elements in E  with Eq. (4.24) and the distance is 
evaluated according to Eq. (4.26). 

9. If there are any points with negative distance, 0<Id , these points are removed from 
the exterior area E  and added to the contact patch C . 
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10. Steps 4-9 are repeated until no negative distance is present anymore. 

At the end of this iterative procedure, the size and shape of the contact zone and the 
contact pressure distribution are known. The contact deformation compensates only for 
part of the rigid slip and wheel/rail dynamic response contribution. The rest is 
compensated through slip, which is the difference between the rigid slip and a 
combination of the contact deformation and the wheel/rail dynamic contribution. 

4.3.2 Algorithm for solving the tangential contact problem 

This methodology is based on TANG [81] algorithm from CONTACT, which solves 
the tangential contact problem. Let consider that the J-th rectangle of the potential 
contact area is loaded with a normal pressure Jp3 . Following a procedure analogous to 
the normal problem and according to the Linear Elastic Theory, the tangential 
displacements of the I-th element of the mesh will be (for 2,1 =τ ): 
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where IJDτκ  is the elastic influence coefficient (see Appendix A). Hence, the integral 
throughout the contact area that define the kinematic relationship of Eq. (4.20) can be 
replaced by the summation of the contributions of each element of the contact mesh: 
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The temporal discretisation establishes an approximation to the partial time derivative 
tu I ∂∂ τ  by means of finite differences: 
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where t∆  is the time step and Iu 0τ  represents the displacements in the I-th element of 
the mesh associated with the traction distribution calculated at a previous instant tt ∆− , 
applied in a mesh delayed with respect to the current one a distance tV∆  in the 1X -
direction. 
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It is important to highlight that the method depends on time because it is an integration 
algorithm of an ordinary differential equations system. By definition, tVx ∂=∂ 1 ; hence, 
for the temporal discretisation: 

 .1 tVx ∆=∆  (4.36) 

Replacing Eq. (4.36) in the tangential kinematic equation (4.34), it results: 
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For each element in contact ( 03 <
Ip ), there are two corresponding equations for 2,1=τ . 

I-th element is slipping if the local slip velocity is not zero ( 0>Is ), which occurs 

when the tangential tractions reach the friction bound: 

 ( ) ( ) ,   ,
2

2
2

13 SIppp III ∈+=µ  (4.38) 

being µ  the friction coefficient between the wheel and rail surfaces. If in the I-th 

element the slip conditions are met, then Is1  and Is2  are unknowns and the tangential 
tractions of this element are calculated in function of the local slip velocity following 
the Coulomb’s law: 
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Conversely, in the elements in which there exist adhesion conditions, the local slip 
velocity is zero ( 0>Is ), and the unknowns will be the tangential tractions Ip1  and Ip2 . 

The problem is now knowing which elements in the contact area are slipping or in 
adhesion. 

An efficient algorithm to solve the non-linear set of equations (4.37)–(4.39) is based on 
Kalker’s active set algorithm TANG [81], also summarised in Ref. [143]. This 
algorithm, which has been used here, is very similar to the algorithm NORM described 
previously and works as follows. The set of contact elements is divided into two sets, 
the active set A  and the set of remaining elements N . The active set comprises the 

elements where the constraint ( ) ( ) ( )23
2

2
2

1
III ppp µ≤+  is active. This is the case for the 

elements in the slip zone, where ( ) ( ) ( )23
2

2
2

1
III ppp µ=+ , i.e. SA = . Consequently, the set 
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N  consists of the elements in the stick zone; i.e. HN = . The steps in the algorithm, as 
used here, are: 

1. Initially all elements are placed in the stick zone H  (i.e. the initial estimation of the 
active set is =A Ø). 

2. For the current division of the contact zone into stick zone and slip zones, the non-
linear system of equations consisting of Eq. (4.38) and  

 ,   ,0 HIsI ∈=τ  (4.40) 

 ,   ,01221 SIspsp IIII ∈=−  (4.41) 

is solved for the unknown tractions, making use of the definition of Isτ  in Eq. 
(4.37). Eq. (4.41), which is taken from reference [143], replaces Eq. (4.39) and 
allows in contrast to Eq. (4.38) also that the slip occurs in the direction of the 
tangential traction (not only in the opposite direction). 

3. All elements in H  with tangential tractions exceeding the traction bound, i.e. 

( ) ( ) ( )23
2

2
2

1
III ppp µ>+ , are removed from H  and added to S . 

4. Steps 2 and 3 are repeated until there are no stick elements anymore that exceed the 
traction bound. 

5. Now, it has to be verified whether the slip in all slip elements is opposite to the 
tangential tractions. All elements violating this condition are removed from S  and 
added to H . 

6. Steps 2-4 are repeated until the slip is opposite to the tangential tractions in all slip 
elements. 

The non-linear equation system in step 2 is solved via Newton-Raphson iteration [144] 
using an initial estimation of the solution. An error function is set to the left member of 
Eq. (4.37) as objective function. The resulting equation is 
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Hence, successive iterations will seek that the error function approaches zero, 

( ) ( ) 0
2

2
2

1 =+= III fff , within a set tolerance, so that Eq. (4.37) is satisfied. At the 

end of the iterative procedure, the division of the contact zone in stick and slip zones 
and the tangential stresses are known. 

Once solved the tangential problem, the resulting forces are obtained by integrating 
(adding the contribution of each element) the tractions Jpτ  throughout the contact area. 

Since the rectangular dimensions of element J  are JJ bb 21 22 × , the total forces are 
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The algorithm presented in this subsection has a number of computational 
disadvantages listed below: 

- The elements in the slip zone S  present twice unknowns that the elements in the 
stick zone H . For high creepages, the total number of unknowns doubles, 
quadrupling the dimension of the Jacobian matrix needed for the Newton-Raphson 
iteration. 

- It is required to check iteration by iteration the state of each element, in order to 
verify if it is in the slip zone S  or stick zone H , as well as estimations to predict if 
the element will change its state to control possible numerical divergences in next 
time steps. 

- The Jacobian matrix is bad conditioned. Both sets of equations fragment the 
Jacobian matrix, featuring important jumps in the order of magnitude of its 
elements depending on their location in the matrix. The active control of the 
Jacobian conditioning further increases the computational cost. 

- Strong non-linearity of the set of equations (4.37)–(4.41) to be solved. Step from H  
to S  or vice versa impedes smooth numerical convergence of the solution. 
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4.3.2.1 Algorithm for steady-state conditions 

The discretisation of the contact area into a regular mesh is also applied in the steady-
state tangential formulation [145] previously derived from the instationary one in 
Section 4.2.2.2. From Eq. (4.22), the kinematic equation is written as (for 2,1 =τ ): 

 ( ) ( ) ( ).d ,2
1

2

1 1
∑∑ ∫
= = ∂

∂
∂

+=
N

J C

J
J

II

J

sp
x

AVws
κ

κ
τκ

ττ yyyx  (4.44) 

By assuming half-space elastic behaviour of the solids, a closed-form solution of the 
integrals in Eq. (4.44) can be obtained. The corresponding integrals can be arranged in 
a matrix, giving 
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4.3.2.2 Implementation of the tangential algorithm in a study case 

Eq. (4.44), together with the previous Eqs. (4.38) and (4.39), are applied to calculate 
the tangential traction and slip velocity distributions for a 2D study case; the contact 
data and kinematic parameters of the case are detailed in Tables 4.1 and 4.2. These 
three equations are simplified to a 2D tangential problem by reducing the contact patch 
to a contact line in the rolling direction 1X  ( 1=τ ), discretised uniformly into =1N 200 
elements. Friction coefficient has a constant value of 35.0=µ , the normal contact force 

3F  is introduced as a constant input and both wheel and rail are made of a type of 
rubber much softer than steel. The rolling velocity is very slow (25.0×10-3 m/s), thus 
the time needed for stabilising the tangential distribution is on the order of seconds. 

Fig. 4.5(a) represents two numerical solutions for the traction distribution: a snapshot 
of the instationary solution (from Eq. (4.37)) for the instant t=15 s once the solution is 
stabilised after the contact transient; and the steady-state solution. Both curves 
perfectly overlap in the figure, as expected. The stick zone is located in the rear part 
with respect to the wheel speed (right side) of the contact line. During the transient, the 
traction increases but still maintains a margin with respect to the bound curve ( )13 xpµ , 
proportional to the ellipsoidal contact pressure distribution. 
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When an element in the stick zone reaches ( )13 xpµ , it does not pull over since it cannot 
generate more friction that opposes the slip, so slides remaining on the bound curve; 
Fig. 4.5(b) shows how the slip velocity of the corresponding element is 01 >s . The 
elements in the slip zone are located on the outer discontinuous curve at the leading 
part of the contact line (left side), which correspond to the elements with non-zero slip 
velocity. 

In Fig. 4.5(a), both curves for the tangential traction fit accurately the dashed curve 
corresponding to Carter solution [91]. This solution is analytically calculated through a 
stationary and exact non-linear theory for the tangential contact forces between a 
cylinder and an infinite plane subjected to longitudinal creepage and constant friction 
coefficient. This can be interpreted as the tangential formulation adopted in this thesis 
reproduces accurately the contact process for simple cases. 

Shear modulus, G  [N/m2] 1.0×106 
Poisson’s ratio, ν  [-] 0.28 
Roller 1 radius, 11r  [mm] 337.5 
Roller 2 radius, 21r  [mm] 337.5 
Roller 1 radius, 12r  [mm] 0 
Roller 2 radius, 22r  [mm] 1.0×109 (flat) 
Normal contact force, 30F  [N] 470.5 
Longitudinal creepage, 1ξ  [-] -8.0×10-3 

Table 4.1. Material and geometric contact data. 

Rolling velocity, V  [m/s] 25.0×10-3 
Time step, t∆  [s] 0.01 
Friction coefficient, µ  0.35 
Number of elements in spatial discretisation, 1N  200 

Table 4.2. Parameters of the model. 
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(a) 

   
 (b) 

Fig. 4.5. (a) Tangential traction distribution. : Carter analytic solution; : 
instationary contact model; : steady-state numerical model; : maximum 

tangential force that can be transmitted ( )13 xpµ . (b) Slip velocity distribution. 
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4.4 NUMERICAL ISSUES 

Kalker’s tangential variational theory [81] is potentially a good approach since it is 
based on realistic assumptions of the rolling contact problem and does not introduce 
unrealistic hypotheses as Simplified Theories do. Nevertheless, the literature shows 
cases of numerical errors associated with continuity problems in the tangential traction 
distribution for high creepages when the entire contact patch slides (full-slip) 
[116,146–148]. These continuity problems become more important when adopting 
Kalker’s Simplified Theory [97] to solve the tangential problem. Vollebregt [118] 
presents traction distribution plots with peaks following a saw-teeth shape in the stick 
zone when using FASTSIM algorithm [95]. He points out that these instabilities appear 
in transient rolling scenarios using CONTACT and also in steady-state situations 
adopting FASTSIM. Despite getting a numerical strategy to avoid these peaks in a later 
work, he ignores the origin of these, even if they are physically possible or associated 
with FASTSIM algorithm itself. 

This section pretends to investigate the numerical errors associated with the algorithm 
implemented so far. For this purpose, in Section 4.4.1 the instationary method is firstly 
evaluated for different spatial/temporal discretisations. The influence of a falling 
friction coefficient is studied in Section 4.4.2 for the instationary theory and the steady-
state formulation derived from the first one. 

4.4.1 Numerical errors due to spatial/time discretisations 

A parameter investigation to study how the spatial/temporal discretisations influence 
the traction distribution in the instationary tangential contact model proposed is carried 
out. Again, the contact model has been simplified to a 2D case, considering a contact 
line instead of an area. The contact parameters imposed are the corresponding to the 
Table 4.2, with a longitudinal creepage =1ξ -0.008. The curves shown in the figures 
below correspond to snapshots of the tangential traction distribution along the contact 
patch for an instant (around t=15 s) in which the solution is stabilised after the transient 
process. The solution for the steady-state formulation is also plotted and perfectly 
overlaps again the previous ones. 

Eq. (4.36) related both spatial 1x∆  and temporal t∆  steps through the rolling velocity 
V. The kinematic equation (4.37) for the instationary tangential contact is formulated in 
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terms of 1x∆ , which depends on the number of elements 1N  adopted in the mesh. Only 
a uniform discretisation is considered in this study. 

In Figs. 4.5, =1N 200 elements were used to discretise the contact line. For both cases 
depicted in Figs. 4.6(a) and (b), two less refined meshes are implemented, with =1N 30 
and =1N 20 elements, respectively. Fig. 4.6(a) shows that the grid resolution seems not 
to be critical for the continuity and stability of the solution since even for =1N 30 (85% 
less refined than Fig. 4.5) the traction solution follows adequately Carter analytic 
solution in the stick region (right side). Nonetheless, it affects the precision of the 
solution and the most noticeable deviation is produced around the stick/slip transition 
point. 

For =1N 20 elements (90% less refined in Fig. 4.6(b)), an oscillating solution is 
developed with remarkable peaks, reproducing a saw-teeth shape in the stick region. 
Hence, for the 2D case studied, the problems in the continuity and precision of the 
solution arise when increasing the length of the line elements ten times, indicating that 
the spatial-dependent formulation of Eq. (4.37), in terms of 1x∆ , presents a strong 
numerical robustness. 

 
            (a) 
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(b) 

Fig. 4.6. Tangential traction distribution and slip velocity for =1ξ -0.008: (a) =1N 30; 
(b) =1N 20 elements. : Carter analytic solution; : instationary contact 
model; : steady-state numerical model; : maximum tangential force 

that can be transmitted ( )13 xpµ . 

If Eq. (4.37) was defined in terms of the temporal step t∆  after the temporal 
discretisation proposed in Eq. (4.35), this had led to continuity problems in the 
numerical algorithm, as seen below. For this instationary formulation, three cases with 
different time steps have been evaluated and plotted in Figs. 4.7: (a) s 05.0=∆t , (b) 

s 1.0=∆t  and (c) s 2.0=∆t . The three plots show snapshots of the instationary solution 
once stabilised. 

Fig. 4.7(a) shows an identical solution than Fig. 4.5(a), which fits accurately Carter 
solution. After doubling the time step, Fig. 4.7(b) shows a saw-teeth shape for the 
tangential traction in the stick region (right side) instead of a smooth solution as a 
consequence of the poor resolution in time adopted. This traction distribution is similar 
than the results reported by Vollebregt [118] when using FASTSIM algorithm. When 
doubling again the time step t∆  in Fig. 4.7(c), the number of peaks after the stick/slip 
transition point is reduced but the amplitude of the peaks is notably larger. Hence, it is 
deduced that the saw-teeth distribution mentioned in the literature can emerge, as one 
possible factor, from a poor time discretisation with a time-dependent formulation of 
the kinematic equation for the tangential contact problem. 
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(a) 

 
(b) 
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(c) 

Fig. 4.7. Tangential traction distribution for =1ξ -0.008 and 2001 =N : (a): s 05.0=∆t ; 
(b) s 1.0=∆t ; (c) s 2.0=∆t . : Carter analytic solution; : instationary 
contact model; : maximum tangential force that can be transmitted ( )13 xpµ . 

4.4.2 Numerical errors due to a falling friction coefficient 

The effect of the implementation of a velocity-dependent friction coefficient on the 
robustness of the instationary tangential algorithm is investigated. The inclusion of a 
new non-linear term makes the physics strongly non-linear, and multiple solutions 
could satisfy the rolling contact problem equations. 

An exponential falling model for the local slip velocity-dependent friction coefficient is 
chosen in the present work since it is widely used in the literature as a simplification of 
the Stribeck’s friction law [22], without considering the hydrodynamic ascending 
regime for high slip velocities. Based on the experimental results from Ref. [149], in 
which the total tangential force is stabilised for high creepages, a constant kinematic 
friction coefficient was taken into account, giving the following formula 

 ( ) ( ) ,e ss µµµµµ c
ksk

−−+=  (4.46) 
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where sµ  and kµ  are the static and the kinematic friction coefficients, respectively. µc  
is an exponential parameter, which is defined from the local slip velocity for a value 
1% above the kinematic friction coefficient, denoted as s . From this definition: 

 ( ) ( ), 01.0 ksk µµµµ −+=s  (4.47) 

and µc  can be written as 

 ( ).01.0log
s

−=µc  (4.48) 

4.4.2.1 Falling friction on the instationary tangential contact model 

A falling friction coefficient is included in the instationary contact model. For the case 
evaluated in Fig. 4.8, the local friction curve is characterised by a kinematic coefficient 
of 35.0=kµ , a static coefficient of 40.0=sµ  and a local slip saturation value 2.0=s  
m/s. The 2D case detailed in Tables 4.2 and 4.3 is studied. 

This falling behaviour makes the algorithm unstable. Both coefficients force the 
solution to jump from the static bound to the kinematic one. Nevertheless, this new 
non-linearity, which should soften the falling transition, multiplies the number of 
possible solutions. So that the traction for the element that reaches the static bound 
seems to jump to different solutions until the algorithm stops computing even for small 
creepages, see zoomed view. 

Multiple options to drive the solution to the expected one, as well as different 
definitions −linear, arctangential, etc.− for the falling behaviour apart from the 
exponential function used in Eq. (4.46), have been tested with unsatisfactory results. 
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(a) 

  Zoomed view 

 
(b) 

Fig. 4.8. Tangential traction distribution for 004.01 −=ξ  and two friction coefficients: 
35.0=kµ  and 40.0=sµ . (a) Full view; (b) zoomed view where the numerical solution 

jumps to different solutions until the algorithm stops. : instationary numerical 
model; : ( )13 xpkµ ; : ( )13 xpsµ . 
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4.4.2.2 Falling friction on the steady-state tangential contact model 

The main advantage of the steady-state tangential contact model derived above is that 
permits to estimate the steady-state solution of the tractions thorough the contact area 
[145]. The convergence problems of the temporal solution once included falling 
friction are hence avoided, finding a numerical solution. This has been the main reason 
for the development of the aforementioned formulation and a crucial step for a further 
study of the effect of this falling behaviour on the rolling parameters, carried out in 
Section 4.6. 

Nevertheless, the current numerical algorithm results insufficient to find a suitable 
solution, as seen in Fig. 4.9. The figure plots the contact traction distribution for two 
different friction values: the kinematic coefficient, 35.0=kµ , and the static 

coefficient, 45.0=sµ , larger than the previous one. From both values, the friction 
coefficient is implemented through the model proposed in Eq. (4.46). Carter solution is 
also depicted, considering a single friction coefficient kµ . Fig. 4.9 also shows the 
bound limits established by the kinematic and the static friction coefficients. 

The steady-state numerical solution presents a peak and a subsequent dip around the 
stick/slip transition point as a discontinuity between both regions. This anomaly is not 
interpreted as physical, but a numerical error. This can be explained from the abrupt 
change of introducing a new variable (slip velocity) governing the friction coefficient 
in Eq. (4.47). The transition between the stick and the slip regions introduces two new 
equations in the system, Eqs. (4.37) and (4.39), when the transition element goes from 
adhesion H  to slipping S . This leads to solving a different system in the slip region, 
doubling the unknowns and the number of equations respect to the stick zone. As a 
consequence, the numerical solution suffers a discontinuity between both regions. 

The numerical disadvantages have been listed previously in Section 4.3.2, which 
compromise not only the continuity and physical reliability of the solution, but also the 
efficiency (time consumption) of the code. The regularisation of Coulomb’s law, 
addressed in the next section, is proposed and implemented to overcome this problem 
associated with the numerical algorithm derived from Kalker’s variational theory. 
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Fig. 4.9. Tangential traction distribution for falling exponential friction coefficient. 
: static and kinematic bounds; : Carter analytic solution; : 

steady-state numerical solution. 

4.5 REGULARISATION OF COULOMB’S LAW ON 
A STEADY-STATE TANGENTIAL CONTACT 
PROBLEM 

4.5.1 Introduction of the regularisation of Coulomb’s law 

The original Kalker’s method needs to establish in Eqs.(4.37)−(4.42) the elements of 
the mesh that are in adhesion and those that are slipping, making the algorithm less 
efficient and introducing certain problems of continuity between stick and slip regions 
in the contact area. In order to avoid the problems associated with the separation of the 
elements in two different sets, an alternative procedure is proposed, based on the 
regularisation of Coulomb’s law, where the local traction distribution is formulated 
from the local slip velocities through a smooth fitting function. This technique permits 
not to make distinction between both stick H  and slip S  sets of equations, while it 
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relates the two unknown variables through a softer approach of Coulomb’s law, from 
which the distribution of tangential tractions vanishes as independent variables. 

Figs. 4.10 show three models for the friction coefficient. The right plot is a zoomed 
view of the left one. The figure represents the 31 pp  ratio vs. the local slip velocity 
through different approaches. In continuous trace, the curve represents a typical falling 
friction coefficient following Eq. (4.46). The other curves adopt regularisation, and 
they present differentiable functions with a high gradient close to zero slip velocity. In 
dashed trace the regularisation adopts a constant friction coefficient; in dotted line it 
takes the former falling friction coefficient model. 

 

Fig. 4.10. Different friction coefficient models. ––––: falling friction coefficient 
through Eq. (4.45), being 45.0=kµ , 40.0=kµ  and 41015.1 ×=µc  s/m. 

         

 
   

   
  

 

 
: 

regularisation of Coulomb’s law with constant friction coefficient 40.0=µ . : 
regularisation of Coulomb’s law. 

Let assume now constant friction coefficient µ . The following approach applies such 
adjustment: 

 .arctan2 3
I

III
I spp

s

s
τ

τ
µ

επ 












−≈  (4.49) 

This equation converges to the Coulomb’s law when ε  approaches 0. The parameter ε  
must be chosen small enough such that the error of the regularisation is minimised, but 
the convergence to the solution is compromised if ε  is too small. The present work 
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adopts 810−=ε  m/s, which allows obtaining results in good agreement with the original 
Coulomb’s law and avoids convergence problems. 

Introducing Eq. (4.49) in (4.37), the solution of the contact problem is obtained through 
the system 
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and operating to establish an error function compatible with the Newton-Raphson 
scheme: 
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As can be seen, there are two equations for two unknowns, given the relationship 
( ) ,2,1  ,, 21 =≡ κκκ

JJJJ sspp  established by Eq. (4.49). At the same time, this regularisation 
cannot distinguish between elements in the stick zone H  and the slip zone S , without 
ceasing to be well established constraint associated with Coulomb’s law. The 
regularisation introduces hence important computational advantages with respect to the 
previous algorithm based on Kalker’s variational theory: 

- There is no need to implement strategies to check if elements change their state 
(from H  to S  or vice versa). 

- The number of unknowns is fixed: two per element of the contact patch. 

- There is no need to implement strategies to check if elements change their state 
(from H  to S  or vice versa). 

- The Jacobian is well conditioned due to it is calculated from only Eq. (4.51). 
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- The constraint introduced by Coulomb’s law is softened, preventing from numerical 
divergence. All the contact parameters are smooth distributions even in the border 
between the stick/slip areas. 

- This regularisation also facilitates to implement a friction coefficient µ  that 
depends on the local slip velocity. 

Although the regularisation makes the stick/slip separation vanish and Js  of the J-th 

element is then always above zero, the text will continue to differentiate both zones if 
traction distribution is on the bound curve characterised by 3pµ  (slip zone) or it is not 
(stick zone). This distinction pretends to facilitate the comprehension of the plot 
descriptions. 

When replacing µ  by ( )sµ  in Eqs. (4.46) to (4.48) to introduce the falling friction 
coefficient, the regularisation does not prevent from the non-convergent behaviour 
shown in the previous Section 4.4.2. The amount of non-linear terms that makes the 
traction distribution jump into multiple possible solutions around the stick/slip 
transition point during the simulation until the algorithm becomes totally uncontrolled 
and stops. Multiple techniques to drive the solution have been tested without success, 
being one topic for future research. This numerical problem leads to limit the 
simulations of the complete train/track system carried out in Chapter 6 to a constant 
friction coefficient. 

Finally, the study has been restricted to the steady-state tangential problem in Section 
4.5.2. The simplification allows avoiding the previous numerical instabilities and 
obtaining a reliable steady-state tangential traction distribution. This will allow the 
study of the influence of the falling friction on the rolling contact parameters in the 
creep curves (Section 4.6). 

4.5.2 Regularisation on a steady-state tangential contact problem 

Introducing the regularisation given by Eq. (4.49) in the kinematic equation (4.45) for 
steady-state conditions, and operating to establish an error function compatible with the 
Newton-Raphson scheme, it results: 
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Results from calculations performed using the proposed model are presented. For the 
2D case previously addressed (Tables 4.2 and 4.3), Fig. 4.11 shows the corresponding 
numerical solution for the tangential contact algorithm with regularisation. This model 
produces indistinguishable results compared with Carter solution, avoiding the 
discontinuity in the form of peak/dip in the transition element seen in Fig. 4.9. 
Additionally, the time consumption to get the solution is reduced a 45% respect to the 
simulation plotted in Fig. 4.9. Therefore, the regularisation reveals as an interesting 
mathematical tool to smooth the equations system behaviour and make the algorithm 
more robust, faster and efficient without loss of precision and reliability to the 
theoretical solution. 

 

Fig. 4.11. Tangential traction distribution for falling exponential friction coefficient. 
: static and kinematic bounds; : Carter analytic solution; : 

steady-state numerical solution with regularisation. 
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4.6 STUDY OF FALLING FRICTION EFFECT ON 
ROLLING CONTACT PARAMETERS 

4.6.1 Introduction 

The rolling contact model proposed in this chapter is used for a tribological study to 
evaluate how the falling friction effect affects the contact parameters that characterise 
the creep curves. For this purpose, the original instationary method has been modified 
in Section 4.3.2.1 in order to obtain the steady-state solution of the rolling contact 
problem, and the regularisation of Coulomb’s law implemented in Section 4.5.2 allows 
introducing the falling friction behaviour on the steady-state formulation. 

Fig. 4.12 shows the creep force vs. creepage when both a constant finite and an infinite 
friction coefficients are considered. The same plot presents the expected creep force 
when a falling friction coefficient is adopted, which is differentiated by a local 
minimum that would explain stick/slip phenomena. 

 

Fig. 4.12. Behaviour of the creep force on the friction coefficient: ∞=µ  (adhesion 

model), =µ constant finite value, and ( )sµµ =  as a function of the slip velocity s . 

Some researchers have developed rolling contact theories that represent the dependence 
of the friction coefficient on the slip velocity, generally by two coefficients of friction 
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(static/kinematic). These models are either Simplified Theories [150,151] that somehow 
simplify the relationships between the contact traction distributions and the 
displacements in the contact patch, or they are based on the Kalker’s tangential 
variational theory [81] (Exact Theory). These Simplified Theories are adjusted to 
converge to the results from the Exact Theories, giving a good agreement when 
comparing the velocity of the wheel/rail contact point (creepages) and forces [81]. 
However, this agreement does not occur for the local slip velocities [152] and 
consequently, high errors resulting in the slip velocities seem to make the Simplified 
Theories inadequate to model the contact process through a non-constant friction 
coefficient that depends on the slip velocity. 

Kalker’s variational theory adopted in this thesis is potentially a good approach since it 
is based on realistic assumptions of the rolling contact problem and does not introduce 
unrealistic hypotheses as Simplified Theories do. The implementation of the velocity 
dependent friction coefficient makes the physics strongly nonlinear, and multiple 
solutions could satisfy the rolling contact problem equations. The aforementioned 
regularisation implemented in the steady-state algorithm prevents the saw-teeth shape 
shown in the computed contact traction distribution when using FASTSIM algorithm 
[116], which is either considered as a reliable solution by some authors, or a numerical 
error. This implementation leads to a formulation that contains local parameters that 
define the friction coefficient as a function of the slip velocity (Eqs. (4.46) to (4.48)). 
These parameters are also related with the global parameters that characterise the creep 
curves. 

The present approach adopts experimental results published in [149]. The literature 
shows creep curves measured in real field experiments (see examples provided in Refs. 
[118] and [153]) in order to study the locomotive traction capability. In such cases, the 
longitudinal creepage typically reaches values of 50% and higher whereas the creepage 
is lower than 3% in most of the railway dynamic problems within the scope of the 
present paper. 

The Linear Contact Theory [97] neglects the local slip velocity (it is a so-called 
adhesion theory), and according with this theory the total force 1F  is 111ξf , being 11f  
the creep (Kalker’s) coefficient. The maximum longitudinal force per wheel in typical 
European networks rarely exceeds 50 kN and a typical creep coefficient 11f  is around 
1.5×107 N. If only the displacements associated with the elastic deformations would 
explain the creepage value, in this unfavourable scenario the creepage will be (through 
Linear Theory equation) only 0.3%. Consequently, creepages larger than 5% must be 
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dominated by the slip velocity at the wheel/rail contact point, the full contact patch is 
slip area, and the role of the displacements associated with the elastic deformations is 
negligible. 

Below creepages of 5%, the creep-force relationship presents a high gradient and the 
possible accuracy of the creepage measurement in a real railway vehicle cannot permit 
to obtain good precision if the creepage is low. The needed accuracy is reached in the 
laboratory bench of the Ref. [149] (with a 0.05% of error in creepage), for slightly 
larger creepages than the ones of the saturation conditions, which is the case of interest 
in the main problems in railway dynamics. The proposed approach tries to reproduce 
these experimental results where the displacements associated with the elastic 
deformations must be considered in the physical model. 

4.6.2 First analysis through a 2D approach 

The study is first focused on analysing the effect of adopting two different friction 
coefficients on the creep-force curves in a 2D contact approach from the steady-state 
formulation presented Section 4.5.2. Fig. 4.13 presents different creep curves for a 
fixed kinematic coefficient =kµ 0.30 and increasing values of the static coefficient. 
Tangential tractions are normalised by the normal load, thus the saturation value of all 
the curves matches kµ . As shown in this figure, when both kinematic and static value 
are the same (constant friction coefficient), the creep curve reproduces the expected 
behaviour reported in the literature, which serves as a base for Simplified Theories. 
When increasing the static value, a maximum appears around the creepage value of 
0.01. 

Following with this parameter study, the static value is set now to 0.45 and the 
kinematic one increases from 0.30 to 0.45. As expected, Fig. 4.14 shows that the 
maximum is more pronounced for higher differences between static/kinematic 
coefficients. Two observations must be highlighted: firstly, higher values of kµ  

displace the maximum to higher creepages; secondly, for a fixed sµ , the higher the fall 

in the friction law is considered (lower kµ ), the sooner and more pronounced the 
reduction of the creep-curve initial slope will be. 
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Fig. 4.13. Creep force curve setting the kinematic friction coefficient 30.0=kµ  and 

increasing the static one sµ  ( : 30.0=sµ ; : 35.0=sµ ; : 
40.0=sµ ; : 45.0=sµ ). 

 
Fig. 4.14. Creep force curve setting the static friction coefficient 45.0=sµ  and 

increasing the kinematic one kµ  ( : 30.0=kµ ; : 35.0=kµ ; : 
40.0=kµ ; : 45.0=kµ ). 
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The dependence of creep curves on vehicle velocity V is depicted in the Fig. 4.15, 
where the total force is lower for intermediate creepages when increasing velocity. 
Thus, the magnitude of the maximum decreases for higher velocities reaching earlier 
the saturation value. 

 

Fig. 4.15. Creep force curve setting the static friction coefficient 40.0=sµ  and the 
kinematic one 30.0=kµ  and increasing the vehicle velocity ( : 15=V m/s; 

: 25=V m/s; : 35=V m/s; : 40=V m/s). 

Figs. 4.16 to 4.18 summarise the behaviour of previous curves depicting the normalised 
difference between the maximum longitudinal force F


 with respect to the saturation 

point F


, defined as ( ) 3FFF


− . Fig. 4.16 verifies that the creep-force maximum is 
more pronounced (close to a linear behaviour) compared to the saturation value when 
increasing sµ . It is interesting to point out that, for a difference about 0.15 between 

both coefficients ( 35.0=kµ and 50.0=sµ ), the normalised force difference is about 
0.008 (or 6% for the relative percentage difference), while Ref. [154] showed 
estimations with higher differences, about 22% for similar velocity conditions. On the 
other hand, when kµ  increases, the force peak decreases while kµ  is approaching the 

fixed sµ  coefficient, as expected (see Fig. 4.17); its reduction seems to be close to an 
exponential behaviour. Finally, Fig. 4.18 shows that the magnitude of the maximum is 



100 Advanced techniques for time-domain modelling of high-freq. train/track interaction 

reduced similarly to that of the previous figure while increasing the vehicle velocity V , 
without varying its creepage position. 

It is also interesting to investigate how the initial slope of the normalised creep force 
vs. creepage is influenced by the previous three parameters analysed. In Fig. 4.19, the 
ordinate axis represents the increasing values of sµ , kµ  (□ indicates that sk µµ = ) and 
V×10-2 for each corresponding curve. The abscissa axis shows the initial slope of the 
creep curve or the initial ratio between the normalised creep force and the creepage. 
Curve (a) and (b) indicate that this initial slope increases with both friction coefficients 

sµ  and kµ , with a more remarked influence in the case of the static one. Conversely, 
when increasing the vehicle speed, the initial slope is reduced as seen in curve (c). 

 

Fig. 4.16. Difference between the maximum and saturation values of the creep force 
setting the kinematic friction coefficient 35.0=kµ  and increasing the static one sµ . 
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Fig. 4.17. Difference between the maximum and saturation values of the creep force 
setting the static friction coefficient 45.0=sµ  and increasing the kinematic one kµ . 

 

Fig. 4.18. Difference between the maximum and saturation values of the creep force 
setting the static friction coefficient 40.0=sµ  and the kinematic one 30.0=kµ  and 

increasing the vehicle velocity. 
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Fig. 4.19. Evolution of the initial slope of the creep force curve when increasing 

independently three parameters. : sµ  (a); : kµ  (b); : V (c). 

4.6.3 Parameters of the rolling contact model 

A methodology is proposed for relating the contact global properties associated with 
creepage velocities and total longitudinal forces, with local properties such as local slip 
velocity and dependent friction characteristics. These relationships avoid adopting 
incompatible contact parameter sets and allow estimating the local parameters that 
characterise the friction coefficient from the global parameters that describe the creep 
curve. 

Fig. 4.20 schematises the main relationships that involve the tangential rolling contact 
problem. On the left, Fig. 4.20(a) shows a model of the local slip-velocity dependence 
of the friction coefficient. This model is associated with the local parameters of the 
wheel/rail contact corresponding to Eq. (4.46); the static, sµ , and the kinematic, kµ , 
friction coefficients and the critical local slip velocity, s . Fig. 4.20(b) sketches the 
tangential contact relationship of the global parameters, following the results proposed 
in Ref. [154] for the rolling contact in the presence of a falling friction coefficient. The 
creep-total force curve presents a maximum of the contact force at the force-creepage 
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pair ( )ξ
,F . The total tangential force saturates at F


 for large creepage values, and the 

creepage from which this happens is ξ


. 

            
  (a)                                                                   (b) 

Fig. 4.20. Sketch of global and local parameters of the wheel/rail contact. 

A mathematical relationship between the local parameters ( )sks
,,µµ  and creep 

parameters ( )ξξ


,,, FF  can be revealed from the relationship between local slip velocity 
and contact tractions in Eq. (4.49) for steady-state condition. This would permit to set 
the local parameters of the present tangential contact model from any experimental 
creep-total force curve in order to reproduce the behaviour of the contact forces in 
global terms from a physical model evaluated locally in every contour element of the 
mesh covering the contact patch. 

The saturation force F


 is obtained when the actual friction coefficient is kµ  for all the 
elements of the mesh, that is 

 .
1

321∑
=

=
N

J

JJJ
k pbbF µ

  (4.53) 

Let consider the case where the total force is F


 and the creepage is ξ


. This case is 
reached when there is just one element where the local slip velocity is s  (the other 
elements have sI ≥s ). This element must be at the leading edge of the contact patch. 

Without loss of generality, let consider now a 2D contact case, where the element at the 
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leading position is numbered as L . Eq. (4.49) can be written for the present case as 
follows: 

 .2
1

3
1

11
1 ∑

= ∂
∂

+==
N

J

J
k

LJ
L p

x
DVVss µξ

  (4.54) 

It must be pointed out that the friction coefficient model associated with Eq. (4.46) 
does not attain the precise kinematic value kµ . The kinematic friction coefficient kµ  is 

assumed to be ( )sµ , obtaining the following constrain equation 

 ( ) .2
1

3
1

11
1 ∑

= ∂
∂

+==
N

J

J
LJ

L ps
x

DVVss  µξ  (4.55) 

The peak force F


 and the creepage ξ


 are related through the following equation 

 .0
,

=
∂
∂

ξξ 
F

F  (4.56) 

The derivative of Eq. (4.56) can be obtained by means of finite differences. Eqs. (4.46), 
(4.55) and (4.56) constrain the values of the local parameters and the global parameters 
( )ξξ


,,, FF . Consequently, no more than four parameters can be set. Hence these 

equations permit to make a reliable approach for the local parameters that characterise 
the tangential contact model from the global parameters extracted from any 
experimental creep curve. sµ , kµ  are needed for the definition the falling friction 

coefficient in Eq. (4.46), and s  permits to evaluate the exponential µc  from Eq. (4.48). 

4.6.4 Comparison to experimental data 

The present approach adopts experimental results published in Ref. [149] (see the test-
bench picture in Fig. 4.21). The literature shows creep curves measured in real field 
experiments (see examples provided in Refs. [118] and [153]) in order to study the 
locomotive traction capability. In such cases, the longitudinal creepage typically 
reaches values of 50% and higher whereas the creepage is lower than 3% in most of the 
railway dynamic problems within the scope of the present thesis. 
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Fig. 4.21. Rolling contact test-bench in CEIT. 

The tangential contact model is now extended to the 3D formulation presented in 
Section 4.3 and compared to the measurements made in CEIT (Centre for Technical 
Research and Studies –in English– in San Sebastian, Spain) by using its rolling contact 
scaled test-bench developed in Ref. [149]. Both wheel and rail are substituted by two 
steel rollers. The rotational velocity of one of the rollers is 500 rpm and the brake 
torque of the other is incremented with intervals of 20 Nm. This permits to increase the 
longitudinal creepage while the lateral one is set for each experiment. The material and 
the geometrical properties for this case are detailed in Table 4.3.  

Shear modulus, G  [N/m2] 8.0×108 
Poisson’s ratio, ν  [-] 0.28 
Roller 1 (wheel) radius, 11r  [mm] 170 
Roller 1 (wheel) radius, 12r  [mm] 300 
Roller 2 (rail) radius, 22r  [mm] 1.0×106 (flat) 
Equivalent vehicle speed, V  [km/h] 125 
Spin creepage, spξ  [-] 0 

Table 4.3. Scaled magnitudes values of the test-bench for each case. 
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Four different measured creep curves are presented for creepages up to 2.5%, varying 
the normal load (compressing both rollers) and the lateral creepage for each case. Table 
4.4 compiles the corresponding values for each case. Results from FASTSIM and the 
proposed model have been plotted in Figs. 4.22(a) to (d) (corresponding to the cases 
from a to d) together with the experimental measurements. 

 Case a Case b Case c Case d 
Normal contact force, 3F  [kN] 2.0 2.1 2.3 2.3 
Lateral creepage, 2ξ  [º] 0 0 0.025 0.120 
Friction coefficient, µ  [-] 0.60 0.48 0.60 0.60 

Table 4.4. Test-bench set values for each case. 

FASTSIM solution is found from the friction coefficient µ  set in the test-bench for 
each case. In order to evaluate the present tangential contact model, the local 
parameters ( )sks

,,µµ  are needed to define the local falling friction curve ( )sµ  and 
hence run the tangential set of equations (4.53)–(4.56). The procedure detailed in the 
previous Section 4.6.3 is followed by detecting the characteristic points ( )ξ

,F  and 

( )ξ
,F  of each experimental creep-force curve. Table 4.5 gathers the results obtained, 

which fit the measurements presented in Ref. [149]. 

 Case a Case b Case c Case d 
Static friction coefficient, sµ  [-] 0.61 0.49 0.61 0.60 
Kinematic friction coefficient, kµ  [-] 0.59 0.45 0.58 0.57 
Local slip saturation value, s  [m/s] 0.51 0.41 0.46 0.47 

Table 4.5. Parameters of the falling friction coefficient curve. 

Experimental sets in Figs. 4.22(a) and (b) seem to certify the non-negligible effect of 
the slip-dependent friction coefficient as indicated by the falling behaviour of the total 
tangential force after the maximal transmitted force. Hence, it suggests that the rolling 
contact problem cannot be modelled in a realistic way through Simplified Theories, but 
it requires physical and exact theory that permits to include a variable friction 
coefficient. Furthermore, as mentioned previously, Fig. 4.22(a) and (b) show that 
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experimental curves from CEIT present a less pronounced falling behaviour than creep 
curves for real locomotives. Together with the previous cases, in Figs. 4.22(c) and (d) 
it can be perceived how the total force measured for low creepages tends to be below 
the theoretical initial slope (defined by the Young’s modulus) that FASTSIM fits. It 
seems to indicate that falling friction reduces the effect of the static coefficient even for 
low creepages (when it is assumed that no percentage of the area of contact is slipping). 
The numerical creep curve obtained evaluating the proposed steady-state model 
reproduces rather well this behaviour. As seen in Figs. 4.22(a) to (d), the creep curve 
matches the initial slope of the FASTSIM solution for low creepages, but decreases 
gradually adapting to the behaviour of the experimental data, even for negative 
creepages. The falling friction law by adopting a second coefficient kµ  lower than sµ  
seems to reduce the initial slope of the curve compared to a single µ  curve. 

Without coinciding perfectly to the experimental set, the location and magnitude of the 
maximum matches notably well for Figs. 4.22(a) and (b), indicating that the previous 
procedure seems to be valid for relating both global and local curves. Finally, the curve 
is forced to match the saturation value for higher creepages through the kinematic 
coefficient estimated, showing hence that the difference between both maximum and 
saturation value is not strongly pronounced. 

 
          (a) 
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           (b) 

 
           (c) 
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           (d) 

Fig. 4.22. Theoretical-experimental comparison of creep force curve (––––: numerical 
solution from the proposed model; : FASTSIM solution; : experimental set 1 

from CEIT ; ○: experimental set 2 from CEIT). 

4.7 CONCLUSIONS 

As regards to the development of an instationary 3D contact model, which is one of the 
central cores of the thesis, the following conclusions are derived: 

 The theoretical fundamentals of the wheel/rail contact problem and the 
corresponding formulation have been presented. 

 For the normal contact problem, Kalker’s NORM algorithm has been presented as a 
non-Hertzian model. In this method, the contact patch is discretised in rectangular 
elements in which the contact magnitudes are constant. The formulation of the 
tangential contact problem is based on Kalker’s TANG algorithm. The normal 
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problem is independent of the tangential one since quasi-identity conditions are 
assumed. 

 TANG algorithm shows numerical problems associated with the distinction 
between the stick and the slip regions inside the contact area, represented by two 
different sets of equations. 

 In order to avoid the previous discontinuity, a new approach has been adopted 
modifying the original method by means of the regularisation of Coulomb’s law, 
which eliminates the presence of such peaks. An additional advantage of the 
implementation of the regularisation is a significant reduction of the computational 
costs when compared to the original method thanks to the saving in the number of 
equation unknowns. 

 Another contribution of this chapter is the implementation of a method for 
introducing a falling friction coefficient in rolling contact mechanics. This method 
is suitable for creepages that slightly exceed the saturation conditions (lower than 
3% if the solids in contact are made of steel), which correspond to the creepage 
range in most of the railway dynamic studies. The technique adopts steady-state 
conditions and the friction coefficient is a function of the local slip velocity through 
a simplified Stribeck curve (an exponential function characterised by the static and 
kinematic coefficients).  

- The implementation of the velocity-dependent friction coefficient adds new 
variables that frequently have been chosen ad hoc in the literature. The present 
work develops the constrain equations that establish mathematical relationships 
between the different parameters associated with the falling friction rolling 
contact problem. These constrain equations facilitates to build models that 
produce realistic results from experimental data. This respect, the proposed model 
reasonably fits the experimental creepage vs. creep-force curves obtained from 
high-precision test-bench measurements. 

- The appearance of the creepage vs. creep-force curves obtained from the proposed 
methodology does not differ markedly from the one of a single friction 
coefficient. This conclusion is in accordance with previous test-bench 
measurements that present a slight decrease of the tangential force once the 
maximum is reached.  
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- A global model that fits all the creepage range level is to the authors’ best 
knowledge, undone. By considering the negligible role of the displacements due 
to the elastic deformation in high creepage conditions, the present model can be 
adequate in traction locomotive problems if a suitable Stribeck curve is adopted. 
In such case, the above presented constrain equations associated with the 
parameter set have to be reconsidered. 
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5 VEHICLE/TRACK DYNAMIC 
INTERACTION MODEL IN THE 
TIME DOMAIN 

5.1 INTRODUCTION 

The complexity of the train/track interaction comes from the vibration coupling 
between the railway vehicle and the track, in which wheel/rail contact forces couple 
both sub-systems and their surface imperfections, such as rail roughness and wheel out-
of-roundness, excite the global system. Unwanted phenomena such as damage of the 
rolling surfaces in the form of high levels of noise and vibration [7], wheelset axle 
fatigue [155], corrugation [156] and stress damage may appear in some cases due to 
large levels of vibration and dynamic fluctuations of the contact forces. 

Vehicle models in high-frequency wheel/rail interaction models are generally simple. 
As the primary and secondary suspensions of the vehicle isolate the bogie and car body 
from the wheelset at frequencies of more than a few hertzs, the vehicle dynamic 
behaviour in the interaction model is sufficiently described by the dynamics of the 
wheelset. Knothe and Grassie [39] state that the vehicle’s unsprung mass (including 
wheelset, bearings and axle-mounted components) is even satisfactorily represented as 
a rigid body for vertical interaction. If, however, lateral wheel/rail interaction is to be 
considered, more advanced wheel models are required, which include the wheel’s 
flexibility [39]. FE models have strongly entered in railway research incorporating 
recently flexibility in the wheelset in order to widen the frequency range of analysis 
[7,157]. The main objective has been to extend the frequency range above 1 kHz to 
address rolling noise [3,158] and, only very recently, further works have considered the 
inertial effects due to wheelset rotation running on a tangent [159] and curved track 
[160]. 

This chapter is organised as follows. Section 5.2 describes the substructuring technique 
adopted for the train/track interaction model. A flexible and rotatory wheelset model in 
a generic track developed in this research group is detailed in Section 5.3; this model 
adopts Eulerian and modal approaches. Section 5.4 itemises the Moving Element 
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Method (MEM) used for the modelling of a 3D flexible finite rail; this method is based 
on a moving reference system associated with the vehicle. Section 5.5 formulates 
advanced techniques for the temporal solving of the train/track interaction. Section 5.6 
introduces the wheel/rail contact forces into the railway system. This chapter closes 
with the conclusive remarks in Section 5.7. 

5.2 GENERATION OF THE TRAIN/TRACK 
INTERACTION MODEL THROUGH 
SUBSTRUCTURING TECHNIQUES 

The implementation of a realistic train/track interaction model has an important 
repercussion in the computational cost of the simulation. Therefore, this thesis 
combines a cyclic track model with a substructuring technique [161,162] in order to 
simulate the dynamic interaction between the vehicle and the track in the time domain. 

The global system is divided in substructures of less complexity of analysis and the 
connection coordinates between the substructures are chosen, as well as the interior 
ones. Once defined the reduced equations of motion of each substructure, these are 
assembled through constraint equations to describe the compatibility of forces and 
displacements between the substructures. Impedance binding or modal union 
techniques can be adopted whether the reduction has carried out in physical or modal 
coordinates, respectively. In the impedance binding techniques mass, damping and 
stiffness matrices are assembled; while in the union modal techniques vibration modes, 
related to uncoupled differential equations systems, are assembled. 

The substructuring method adopted in the present thesis considers three types of 
substructures (see Fig. 5.1): vehicle, rails and rail supports. Each substructure is 
described independently of the others by means of a set of ordinary differential 
equations. The different substructures are related to each other through external forces: 
the vehicle and the rails are connected through the contact forces, and the rails and the 
rail supports through the forces transmitted to the bedplate [162]. These forces are 
calculated from the displacements and velocities of the vehicle/track system. The 
numerical solving of the vehicle/track interaction in the time domain permits to 
consider the presence of non-linearities in the system, such as the unsteady contact 
process. 
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Fig. 5.1. Substructures of the train/track system and connection forces between 

substructures. 

5.3 FLEXIBLE AND ROTATING WHEELSET 
MODEL 

The present thesis adopts a model developed by Martínez-Casas et al. [160] for a 
flexible wheelset negotiating a curved track, based on a previous work for a tangent 
track [159]. This section details the equation of motion that takes into account the 
gyroscopic and inertial effects associated with the rotation of the wheelset and derived 
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through an Eulerian-modal approach introduced by Fayos et al. [55]. This approach 
also reduces the dimension of the dynamic system and thus the computational cost. 

Fig. 5.2 shows the reference frames and position vectors used to describe the motion of 
the wheelset in a curve. In order to model the flexible wheelset travelling on curved 
track, two reference frames are considered. The first one is an inertial frame X0Y0Z0 
which is fixed at an arbitrary point. The second is a trajectory coordinate frame 
XTYTZT that follows the theoretical motion of the wheelset centred on the track. The 
system XTYTZT is centred in the undeformed configuration of the wheelset, with the 
XT-axis parallel to the forward speed, the YT-axis parallel to wheelset axis and the ZT-
axis pointing upwards. A vector referred to the fixed and trajectory frame is denoted by 

0a  and a , respectively. 

 
Fig. 5.2. Reference frames and position vectors. The undeformed configuration of the 

wheelset is shown in dashed trace; a generic position of the flexible wheelset is 
sketched in solid contours. 

The coordinates that are implemented in the wheelset model do not follow the material 
points of the solid, which is the most common procedure in Mechanics, nonetheless 
they are associated with spatial points (Eulerian approach). The position vector 0r  of a 
material particle, which is in the spatial position u  at instant t  for the undeformed 
configuration, can be defined by means of the following formula: 

 ( )( ),,+ += 00 tuwuTpr  (5.1) 
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where 0p  is the position vector of the track frame; w  corresponds to the displacement 
vector due to the elastic deformation and small rigid body displacement of the solid; T  
is the rotation matrix that relates the trajectory frame of the track to the fixed frame.  

Considering that the coordinate frame is chosen so that the wheelset rotation velocity 
Ω is in the second axis YT, the angular velocity tensor Ω~  is defined as follows: 
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The velocity due to the rigid body spinning is: 

 ( ) ,~~T
321 uuJuΩv ΩΩvvv ====  (5.3) 

where ( )T13 ,0,~ uu −=u . The velocity of the particle is computed through the material 
derivative of 0r , and in the trajectory frame that is 
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 (5.4) 

where p  is the speed of centre of the track frame (expressed in the trajectory frame) 

and TTω T~ =  the angular velocity matrix of the track frame. The two first velocity 
terms are associated with translational and rotational movement of the track frame, 
respectively; w  represents the velocity of the spatial point due to the flexibility; the 
term JuΩ  is the velocity due to the rigid body spinning; and the last term is the 
convective velocity associated with the Eulerian coordinate system. 

In order to obtain the expression of the kinematic energy for the wheelset, the square of 
the particle velocity is obtained, which reads: 
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 (5.5) 

 

Due to its geometry of revolution, the displacement vector w  can be calculated 
through superposition of mode shapes in the non-rotating trajectory frame XTYTZT: 

 ( ) ( ) ( ),=, tt ww quΦuw  (5.6) 

where )(uΦw  is the mode shape functions matrix of the free-boundary wheelset and 

)(twq  is the Eulerian-modal coordinate vector. The small rigid body displacements of 
the solid are considered in this approach through the rigid body modes of the wheelset. 
It must be pointed out that the mode shape functions do not depend on time since the 
rotation of the solid does not change the mode shapes functions in spatial coordinates, 
because of the axial symmetry of the wheelset. Once the formula Eq. (5.6) is applied in 
Eq. (5.5), the kinematic energy results in the following expression: 
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Once the kinematic energy is known, the two terms of Lagrange equation are computed 
as follows: 

,d~~d~

d~d~~

d~~d~~

d~d~d~~

d~~d~~d=

T
2

T
2

T
TT

TT

TTTTTT

TT
T

TT
T

w

V
i i

w

i
i i

w

iV
i i

w

i

w

V

w

i i

w

i
w

V
i i

w

i
w

w

V

w

i i

w

iV
i i

w

i

V

ww

V

www

V

w

V

w

V
i i

w

iVw
K

v
u

u
u

uΩv
u

uΩ

v
u

uΩv
u

uΩ

v
u

uΩv
u

uΩ

vΩvv

vv
u

uΩvE

qΦΦuJΦ

qΦΦqΦωΦ

qΦωΦuωΦ

uJωΦqΦωΦqΦωωΦ

uωωΦpΦpωΦ
q

∫ ∑∑∫ ∑

∫ ∑∫ ∑

∫ ∑∫ ∑

∫∫∫

∫∫ ∑∫












∂
∂















∂
∂

+













∂
∂

+















∂
∂

+










∂
∂

+















∂
∂

+













∂
∂

+

+++

+













∂
∂

+








∂
∂

ρρ

ρρ

ρρ

ρρρ

ρρρ







 (5.8) 



120 Advanced techniques for time-domain modelling of high-freq. train/track interaction 

,d~~

dd~~

dd~d~~

d~~d~d~~

d~d~d~

d~d~d=
D
D

2T2

3,1

T2
T

2

T2
T

2T

T
T

T

T
TT

TTT
T

w

V
i j ji

w

ji
w

w

V
i i

w

i
ww

V
i i

w

i
i i

w

i

V

w

V
i i

w

i
w

V
i i

w

i
w

w

V

w

i i

w

iV

w

V
i i

w

i

V
i i

w

i
w

V
i i

w

i
www

V

ww

w

V

w

V

w

V

w
w
K

v
uu

uuΩ

v
u

uΩv
u

u
u

uΩ

vΩv
u

uΩv
u

uΩ

v
u

uΩvΩv
u

uΩ

v
u

uΩv
u

uΩv

vvvE
t

qΦΦ

qΦΦqΦΦ

EuΦuJΦqΦωΦ

qΦωΦuJωΦuωΦ

pΦqΦΦqqΦωΦ

qΦωΦuωΦpΦ
q

∫ ∑∑

∫ ∑∫ ∑∑

∫∫ ∑∫ ∑

∫ ∑∫∫ ∑

∫ ∑∫ ∑∫

∫∫∫















∂∂
∂

+












∂
∂

−










∂
∂















∂
∂

+

−













∂
∂

+










∂
∂

+















∂
∂

++













∂
∂

+















∂
∂

+










∂
∂

+++

++








∂
∂

=

ρ

ρρ

ρρρ

ρρρ

ρρρ

ρρρ






(5.9) 

with 















=−=

100
000
001

JJE . 

The equation of motion of the flexible and rotating wheelset is derived by means of 
Lagrange equation. Considering Eqs. (5.8) and (5.9) and taking into account that 
matrix ω~  is anti-symmetric, the following equation is obtained: 
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The modal properties are computed from a FE model; therefore it is adequate to use the 
FE methodology for computing the equation of motion numerically. The mode shape 
functions are obtained into the e-th element of the FE mesh as follows: 

 ( ) ( ) ,,ew
FE

ew ΦuNuΦ =  (5.11) 

where ( )uNe  is the basis (or shape) function matrix of the e-th element, and ew,
FEΦ  the 

mode shapes computed in the nodes of the e-th element through the FE model. 

This approach allows obtaining the matrices of the equation of motion by means of the 
matrices of the elements. These matrices have to be assembled in global matrices by 
following the standard FE assembling technique [159]. The first matrix in Eq. (5.10) is 
obtained by means of the approach in Eq. (5.11) as follows: 
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where en  is the number of elements in the FE mesh, V  is the volume domain 

associated with the undeformed solid and eV  is the volume of the e-th element. 
Defining the e-th element matrix eV  as 
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the following compact expression of V~  is obtained: 
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Following the same procedure as in Eq. (5.12), the remaining matrices of the equation 
of motion are obtained: 
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resulting the following equation of motion for the flexible wheelset running along a 
curved track: 
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Matrices V~  and P~  are associated with the inertial force due to Coriolis acceleration 
originated by the rotations of the wheelset and track frames, respectively; matrix A~  is 
related to the force due to the convective acceleration; C~  is the centrifugal stiffening 
matrix; matrix S~  introduces the inertial force due to the convective velocity and the 
angular velocity of the track frame; matrix R~  takes into account the force due to the 
tangential acceleration of the track frame that is associated with the deformed 
configuration; matrix B~  considers the centrifugal effect due to the deformation of the 
solid that is associated with the track frame rotation; D~  is the wheelset modal stiffness 
matrix, a diagonal matrix formed by the squares of the undamped natural frequencies 
of the free-boundary wheelset; vector c~  is the modal force due to the centrifugal effect 
associated with the wheel rotation in the undeformed configuration; vector U~  contains 
the constant forces associated with Coriolis effect; vector H~  accounts for the forces 
due to the tangential acceleration of the track frame that is associated with the 
undeformed configuration; N~  is the generalised force vector of the centrifugal forces 
related to track frame rotation; vector G~  accounts for the centrifugal effects associated 
with the translation motion of the track frame; vectors cQ  and sQ  contain the 
generalised forces acting on the flexible wheelset resulting respectively from wheel/rail 
contact forces and from the forces applied by the primary suspension. The details of the 
numerical methodology are detailed in Ref. [160]. 

5.4 CYCLIC AND FLEXIBLE TRACK MODEL 
BASED ON THE MOVING ELEMENT METHOD 

Historically, a frequency-domain approach has been used to address the moving load 
problem by means of the Fourier Transform Method (FTM) and a moving coordinate 
system. Mathews [163,164] considered an arbitrary load moving along an infinite beam 
resting on an elastic foundation and solved the problem by using FTM. Jézéquel [165] 
utilised the same methodology for an Euler-Bernoulli infinite beam (considering the 
rotational and transverse stiffness) with a Winkler foundation subjected to a 
concentrated force moving with constant speed. Other extended focus is based on a 
time-domain approach based on Timoshenko flexible beam model [166] which 
considers a simply supported infinite beam subjected to moving loads.  
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These mentioned works consider rail beams as continuum and solve the equation of 
motion through an analytic approach. This makes them inappropriate when replacing a 
moving load by a complete moving vehicle system of massive number of degrees of 
freedom; for instance, the Timoshenko beam is only valid up to 1.5 kHz for lateral rail 
vibration and up to 2 kHz for vertical vibration [7]. Therefore, researchers have widely 
been using the well-known Finite Element Method, which physically discretises the 
track into a finite number of elements. Numerical time-stepping integrators are needed 
to solve the resulting equations of motion after assembling the element matrices. FEM 
permits to extend the range of validity above the previous limit of 1.5 kHz and allows 
hence the complete wheelset/track model to comprise high frequency dynamic 
phenomena. 

Two fundamental problems of considering a fixed global coordinate system in the FE 
model are:  

(a) There is the need of truncating the infinitely long track into a finite one with two 
corresponding artificial boundary ends, but the vehicle is moving forwards to the 
‘downstream’ side; thereby, the rail length required for reasonable simulation time-
spans (without the vehicle exceeding the ‘downstream’ end), while preserving the 
refinement of the mesh, leads to an unapproachable number of degrees of freedom 
in the FEM. 

(b) The vehicle moves along the elements with time, thus the load vector has to be 
updated at each time step of the integrator scheme. 

Problem (a) is solved by adopting cyclic boundary conditions at the model edges (same 
displacements and derivatives) as presented in Ref. [162]. The cyclic track approach 
models a circumferential constant radius track negotiated by a set of identical vehicles, 
uniformly distributed in such a way that each vehicle is set at a constant distance L 
apart from the adjacent ones and travel at the same velocity V. The model can be 
interpreted as an infinite track negotiated by an infinite number of identical vehicles 
separated uniformly by a distance L and travels at the same velocity V. The constant 
distance L will be set large enough to avoid the dynamic interaction between the 
vehicles and cyclic boundary conditions are introduced at the ends of the model. 
Hence, due to the periodicity of the structure and the loading conditions, the study of 
the track is reduced to a single section having finite length L. The approach adopts a 
substructuring technique where rails and sleepers are treated separately. Different 
sleeper bay distances have been considered in order to take into account the dynamics 
of a constant radius curved track. 



5. Dynamic vehicle/track interaction model in the time domain 125 

5.4.1 Formulation of the 1D Moving Element Method 

To overcome problem (b), Koh et al. [167] presented a formulation called Moving 
Element Method (MEM) based on a relative coordinate system attached to the moving 
railway vehicle travelling at a constant velocity V, instead of a fixed coordinate system. 
This method was initially adopted for a finite Euler-Bernoulli beam (1D). A new class 
of finite elements associated with the moving coordinate system is defined. This 
relative motion requires considering the material derivative for the formulation of the 
rail dynamics. The concept was afterwards extended to 2D moving elements in order to 
study moving load on continuum [168]. 

The rail is modelled as an infinite Euler-Bernoulli beam with Young’s modulus E , 
second moment of area I  and mass per unit length m . The beam is supported on a 
viscoelastic foundation whose stiffness and damping per unit length are k  and c , 
respectively. It is subjected to a dynamic force F  at the wheel contact point, which is 
moving with a constant velocity V. The moving coordinate associated with the moving 
force/vehicle is defined as 

 ,Vtxxr I −−=  (5.27) 

where Ix  is the fixed coordinate of node I . The material derivative, tt ∂∂≡DD  

,rV ∂∂−  is used again to introduce the convective terms of the kinematic energy due 
to the moving reference system in the Lagrange equation. The governing equation for 
the rail beam in terms of the vertical displacements is obtained through a Galerkin’s 
approach and, letting the displacement shape function be N , it can be shown that the 
element mass, damping and stiffness matrices are, respectively, 
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where ( ) r,  denotes partial derivative with respect to r . For beam elements, it is 

common to use the following Hermitian cubic polynomials as shape functions 
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corresponding to the vertical and angular degrees of freedom ( )2211 ,,, θθ yy  of each 
element, where θ  denotes rotation. Based on these shape functions, the element 
matrices can be derived. The element matrices are then assembled in the usual manner 
to form the corresponding structure matrices for the rail beam. 

5.4.1.1 Study of the influence of the model parameters of a 1D finite 
cyclic rail using a ME approach 

In this subsection, the 1D Moving Element cyclic rail model is evaluated to check the 
influence of the rail length, vehicle speed, refinement and type of the spatial 
discretisation. Since the MEM approach solves the temporal range limitation of the 
finite rail models locating the vehicle in a fixed position, this parameter study pretends 
to figure out how the model edges affects the receptance function of the rail model and 
from what approximated length (dependent on the configuration of other model 
parameters) permits to neglect their influence. 

Fig. 5.3 shows the fundamental effect of the model edges on the receptance: reflected 
waves in the mid-frequency range (from around 0.1 to 2 kHz) considering 70 spans 
(70·0.6=42 m). The influence of the vehicle speed does not appear clear in this figure; 
therefore, Figs. 5.4 and 5.5 depict receptances for 0 and 100 km/h, respectively, 
increasing the length of the rail in order to see if these reflected waves are mitigated 
when the rail is longer, as expected. 
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Fig. 5.3. Receptances of the 1D ME rail model for different vehicle speeds. Fixed 500 
elements, 70 spans of length and uniform discretisation (lower figure: zoomed view 
around 1 kHz). : 0=V  km/h; : 50=V  km/h; : 100=V  km/h; 

: 150=V  km/h; : 200=V  km/h. 

Fig. 5.4, especially its zoom capture, shows how these model reflections are important 
for 70 spans. As the spatial discretisation is more refined, the amplitude of these 
reflections markedly decreases; for 200 spans (200·0.6=120 m), these appear to be 
practically attenuated. These 120 m will be considered a reference length to avoid these 
reflected waves from the model edges. It can be observed a similar trend in Fig. 5.5; for 
a larger vehicle speed (100 km/h), the reflections are notably lower than in the previous 
case. The figure also shows how this effect is attenuated for higher speeds. 
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Fig. 5.4. Receptances of the 1D ME rail model for different refinements. Fixed 500 

elements, vehicle speed 0=V  km/h and uniform discretisation (lower figure: zoomed 
view around 1 kHz). : 70 spans elements; : 100 spans; : 150 

spans; : 200 spans. 

 
Fig. 5.5. Receptances of the 1D ME rail model for different refinements. Fixed 500 

elements, vehicle speed 100=V  km/h and uniform discretisation (lower figure: zoomed 
view around 1 kHz). : 70 spans elements; : 100 spans; : 150 

spans; : 200 spans. 
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Now, the influence of the vehicle speed on the receptance is studied. In order to avoid 
the effect of the finite length, 200 spans have been set to neglect the previous 
reflections in the mid-frequency range. As seen in Fig. 5.6, the receptances practically 
coincide with each other and these reflections appear sufficiently mitigated. In the 
zoom view, small discrepancies when reproducing the second resonance peak around 
1.7 kHz are observed; this peak goes down when the vehicle speed is increasing. 

 

Fig. 5.6. Receptances of the 1D ME rail model for different vehicle speeds. Fixed 500 
elements, 200 spans of length and uniform discretisation (lower figure: zoomed view 
around 1 kHz). : 0=V  km/h; : 50=V  km/h; : 100=V  km/h; 

: 150=V  km/h; : 200=V  km/h. 

The refinement of the ME beam is also a factor to consider. Fig. 5.7 shows that the 
number of elements for a uniform spatial discretisation does not affect significantly the 
receptance from 200 elements for a finitely long rail of 200 spans and a vehicle speed 
of 100 km/h. For 100 elements, only the second resonance peak is markedly displaced 
and the inherent reflections appear slightly larger. 
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Fig. 5.7. Receptances of the 1D ME rail model for different number of elements in the 

spatial discretisation. Fixed vehicle speed 100=V  km/h, 200 spans of length and 
uniform discretisation (lower figure: zoomed view around 1 kHz). : 200=exN ; 

: 300=exN ; : 500=exN ; : 1000=exN elements. 

Different types of refinement have been tested for the 1D ME beam model and for the 
3D ME model in later sections in order to refine the mesh only around the contact zone 
and increase gradually the element size to the edges. This strategy can reduce 
significantly the number of elements (and hence, degrees of freedom) compared to a 
uniform and refined mesh. It aims to study how the spatial discretisation affects the 
mentioned reflections from the model edges. Besides the uniform one, three growing 
functions have been implemented increasing the length of the elements from the 
contact point. The length of the central element is 1 cm. These three functions are: 
linear, linear-uniform (linear along the 60% of the beam and uniform for the 20% and 
20% of the lateral parts) and parabolic. The last one presents convergence problems for 
the solution, so it has not been depicted in Fig. 5.8. This figure shows how the uniform 
and linear-uniform discretisations maintain reflections enough attenuated (both 
practically overlap), while the linear one presents much larger amplitudes for these 
reflections probably due to the C1 discontinuity of the element size. It concludes that 
the linear-uniform one can be a useful discretisation for the 3D MEM in order to 
reduce the number of elements. 
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Fig. 5.8. Receptances of the 1D ME rail model for different refinement models. Fixed 
500 elements, vehicle speed 100=V  km/h, 200 spans of length (lower figure: zoomed 
view around 1 kHz). : uniform; : linear; : linear-uniform spatial 

discretisation. 

5.4.2 3D Moving Element Method 

Andersson [66] showed significant cross-sectional deformation of the rail already at 
frequencies around 200 Hz. This implies that the track model needs to capture the 3D 
dynamic behaviour of the rail at higher frequencies. A waveguide FE model (WANDS 
software) is commonly used for 3D rails [13,67], which takes advantage of the 2D 
geometry of the rail having a constant cross-section, but nonetheless consider the 3D 
nature of the vibration by assuming a wave-type solution along the rail. 

An alternative is to model the rail by 3D solid elements. One of the most relevant 
contributions of the present thesis is the extension of the MEM concept to a tangent 3D 
track extruded from the UIC60 profile (see Fig. 5.9), adopting a FE technique and 
introducing cyclic boundary conditions. The new methodology is herein referred to as 
the 3D Moving Element Method (3D MEM). The 3D MEM avoids the moving vehicle 
exceeding the ‘downstream’ boundary end ─ problem (a) ─ since this class of moving 
rail elements is attached to the vehicle. The wheel/rail contact area is always 
positioned at the same railhead element (longitudinally in the middle of the rail) 
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instead of crossing from one element into another. This has two immediate and 
important consequences: firstly, there is no need to update the force or displacement 
vectors in the contact patch ─ problem (b) ─ because it is fixed on the same element; 
secondly, it permits to refine the mesh just around the fixed contact patch, where forces 
and displacements are more pronounced. Both are hence important advantages in terms 
of computational cost compared to the FE models commonly employed. This 
formulation permits to widen the frequency range of validity of the Timoshenko beam 
model used in previous works of this research group [159,160]. 

The 3D MEM formulation developed in this section is utilised to compute numerically 
the resulting linear equation of motion, obtaining the element matrices and assembling 
them in global matrices by following the standard FE technique. These global matrices 
are not time dependent, and therefore they can be pre-calculated before the simulation 
starts and enable to adopt a modal approach. 

 

 

 

 

 

 

 

 

Fig. 5.9. Finite element mesh of the UIC60 rail. Deformed and undeformed 
configuration. 

Both the MEM and the FEM need the following mathematical step: 
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 .∑ ∫∫ =
elements

volume
element

volume
solid

ff  (5.35) 

As seen, the integral of the function f  over the volume of the solid is the sum of the 
integrals over the finite element volume. This is correct if some conditions of 
continuity are satisfied. The MEM needs to compute the integral in Eq. (5.35)¡Error! 
Marcador no definido. with f  being the second derivative of the shape functions. In 
the proposed model, quadratic shape functions are used with C0 continuity between 
elements. Thus, Eq. (5.35) can only be applied if the maximum order of differentiation 
is 1 [169], which means that integration by parts is necessary in the current formulation 
to obtain lower order derivatives. This is a classic problem in FEM shell elements. The 
present model solves this mathematical gap on the convective acceleration term 
previously presented (see Eq. (5.16)), which has not been treated in previous works. 

Let consider a fixed Cartesian coordinate system 321 xxx  while the mass of the rail 
‘flows’ backwards with velocity V , see Fig. 5.9. An Eulerian position vector u  
defined through the coordinate system 321 xxx  is considered. Vector u  defines the 
position of a spatial point and it does not depend on time. Vector ( )t,uww ≡  is the 
displacement of a material point that occupies the position u  at the instant t  with 
respect the undeformed configuration. The position vector of the material point is 

 ( )., tuwur +=  (5.36) 

The cyclic boundary condition is satisfied if the displacements and the velocities at the 
left edge of the model are equal to the ones of the right edge, that is 
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In the following sections, it is deduced the convective terms of the equation of motion 
associated with the Eulerian approach adopted by means of two methodologies: based 
on the virtual work associated with the inertial forces, and based on the Lagrange 
equation. Both obtain the same expression for the equation of motion. 
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5.4.2.1 Based on the virtual work associated with the inertial forces 

In order to calculate the virtual work associated with the inertial forces, the acceleration 
has to be previously calculated. The velocity and, subsequently, acceleration of the 
material point are computed through the material derivative as follows 
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The virtual work associated with the inertial forces is 
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The convergence of the last integral, which contains a second-order derivative of the 
displacements, cannot be guaranteed due to the aforementioned continuity problem. 
The third term of Eq. (5.40) can be integrated by parts giving 
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The surface integral can be only computed into the lateral surfaces corresponding to the 
rail edges. It has been selected a rail length L  long enough to have negligible 
displacements at the model edges; thereby the integrand is close to zero and the surface 
integral can be disregarded. Hence, the convergence of Eq. (5.40) is hence guaranteed 
for more refined spatial discretisations of the model, resulting as 
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Now, the FE interpolation is adopted. The mesh is moving with 321 xxx  frame and 
consequently the material of the rail flows into this mesh. The displacements in the 
volume of the e-th element eV  are computed by means of the shape functions ( )uNe  as 
follows 

 ( ) ( ) ( ) ,   if      ,, eee Vtt ∈= uwuNxw  (5.43) 
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ew  being the nodal displacements. If Eq. (5.43) is implemented in Eq. (5.42), the 
following expression is obtained: 
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The stiffness matrix eK  is the standard one in the FE method since the potential energy 
associated with the elastic deflection does not distinguish between the Eulerian and the 
Lagrangian coordinates. Consequently, the global equation of motion is 
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where: 
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Matrix eC  is associated with the inertial force due to the convective velocity, eA  is 

related to the convective acceleration, e
cF  and e

supF  are the force vectors that contain 

respectively the contact normal and tangential forces from the wheel/rail interaction 
applied in the head of the rail in its middle longitudinal position and the rail pad forces. 
Nodal coordinates are implemented in a global displacement vector ,w  obtaining the 

global matrices KACM ,,,  and the global vectors cF  and supF . 
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5.4.2.2 Based on the Lagrange equation 

From the FE interpolation already adopted, see Eq. (5.43), the second option develops 
the Lagrange equation for each finite element considering a convective derivative since 
an Eulerian approach is adopted: 
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where the Lagrangian for the e-th element is defined through its kinetic and potential 
energies, e

V
e
K

e EEL −= . Replacing in the previous equation: 
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Now, both kinematic and potential energies for the e-th element are developed through 
the convective derivative from Eq. (5.38): 
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The 
e

e
KE

w∂
∂  term is now deduced: 
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and the convective derivative of the previous term is computed: 
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As seen in Eq. (5.51), the kinematic energy is in this case coupled with the 

displacements, so the 
e

e
KE

w∂
∂  term from the Lagrange equation Eq. (5.50) is not zero. 
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Finally, the 
e

e
VE

w∂
∂  term gives the FE standard stiffness: 
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Replacing Eqs. (5.54)−(5.56) in the left member of Eq. (5.50), 
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which results the same formulation obtained in Eq. (5.45), once replaced the second-
order derivative integral term by first-order derivative one from Eq. (5.41) to guarantee 
the convergence of the solution. It confirms the robustness of the formulation 
developed for the extension of the ME method to a 3D model. 
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5.4.3 Rail support models 

The rail support is the basis on which the rail rests. Three options has been 
contemplated and implemented in the dynamic interaction model presented in this 
thesis: discrete rail supports (sleepers), an elastic layer and a Winkler bedding. The 
interaction between the rail and the bedplate has been implemented through a 
substructuring technique in the time domain. This technique separates the track system 
in both elements, with their own reference systems, and they are analysed 
independently using their corresponding theoretical models that allow defining the 
equations of motion. Both substructures interrelate through external forces 
corresponding to the forces transmitted to the bedplate, calculated from the relative 
displacements and velocities between both subsystems, see Section 5.6.  

The first option is to include sleepers as discrete rail supports introduced in the form of 
lumped parameter systems, see Fig. 5.10. The rail pads are modelled as lumped 
viscoelastic elements generating the interaction forces between the rails and the 
sleepers, represented as lumped masses. Ballast dynamics is neglected here, being not 
relevant for the dynamic behaviour of the wheelset, but the equivalent ballast stiffness 
and damping are accounted for by means of lumped spring and dashpot elements 
connected to the sleepers. 

 

 

Fig. 5.10. Details of the track model. Left: sleeper bays. Right: sleeper and rail pad. 

The second option is to consider continuously supported rails. This option has been 
implemented to represent the continuously supported rail of type BV50 used in Section 
6.3, which is a common Swedish rail type. The model incorporates a viscoelastic pad 
layer under the rail, so that a uniformly meshed layer is located under the meshed 
BV50 profile and both are then extruded to generate a 3D meshed structure. This layer 
is directly connected node-to-node with the rail profile mesh, but their material 
properties are different. 
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The third option is the Winkler bedding, which consists of a uniform discrete 
viscoelastic layer implemented through independent discrete springs and dampers 
under each node of the underside rail surface, connecting it to the ground. It is a 
commonly used simplification to represent the dynamics of (a) discrete supports 
(sleepers) and (b) continuous support. 

For discrete supports, an averaged vertical stiffness per squared metre is calculated 
from the stiffness of the ballast of the sleepers 

b
k3 . This stiffness is distributed 

uniformly node per node. Considering sln  sleepers of width b  under a finite rail of 
length L , 

 .33
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k bb
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slsl ==  (5.58) 

Adding the contribution element by element, local corner nodes receive the half 
contribution since these are connected to other corner node of the adjacent element. 
The uniform vertical damping is estimated in the same way. Finally, the small 
longitudinal and lateral contributions are also included in order to stabilise the model 
on the tangential plane. They are estimated as 100/32,1 bb

kk = . 

For continuously supported rails, the equivalent contribution is estimated through the 
constitutive equations for plaques, assuming thickness is much lower than width of the 
plaque ( bhp << ). The vertical stresses are calculated from 
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where pE  and pν  are the Young’s modulus and the Poisson’s ratio of the material of 

the continuous support, respectively. From the vertical displacement 3w , the relative 
displacement 33ε  is defined as 
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Integrating the vertical stresses, the vertical force on the underside surface results 
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The corresponding vertical force for a Winkler bedding would be defined by a uniform 
equivalent stiffness throughout the surface:  
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xxxxwkxxxxwxxkF
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 (5.62) 

From Eqs. (5.61) and (5.62), this equivalent stiffness results 
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Now, it is deduced the convective terms of the equation of motion associated with 
the Winkler bedding adopted based on the associated virtual work. The 
corresponding Lagrange equation is now 
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The potential energy associated with the Winkler bedding is 
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where winkK  is a 3×3 matrix which includes the longitudinal, lateral and vertical 

equivalent stiffness estimated above. The 
e

e
wVE

w∂
∂ ,  term is computed:  
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Developing again the total derivative,  
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the generalised force associated with the Winkler damping is: 
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where winkC  is a 3×3 matrix with equivalent damping estimated. Since 
e
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, δδ Qw= , the damping term is deduced: 
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Therefore, the total equation of motion for Winkler bedding includes three new terms 
respect to Eq. (5.45): 
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where the element matrices are: 
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5.4.4 Pseudo-static deformation of the track based on MEM 

The effect of the vehicle speed on the 3D MEM has been evaluated for the pseudo-
static deformation of the rail supported on a viscoelastic Winkler bedding with a 
stiffness per unit length of 107 N/m2 and a damping per unit length of 4900 Ns/m2 
[167]. The ‘pseudo’ prefix is added because it cannot be considered a static case since 
there is a load moving along the rail. For the Eulerian approach taken, the load is fixed 
in a spatial point while its corresponding speed is introduced in the formulation. For 
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this purpose, the centreline of the rail has been selected to represent the deformation. 
Fig. 5.11(a) shows a negligible influence for the Winkler foundation used, in 
agreement with Thompson [7]. The pseudo-static deformation for 150 km/h has been 
compared to the results given by the 1D MEM detailed in Section 5.4.1, which has 
been implemented for this purpose. Fig. 5.11(b) shows a good agreement between both 
models, with a discrepancy of 3% at the contact point. 
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Fig. 5.11. Pseudo-static deformation of the finitely long rail supported on a viscoelastic 
foundation: (a) different moving load speeds; (b) different ME models for V = 150 

km/h. 

5.5 METHOD FOR THE TIME SOLUTION OF THE 
TRAIN/TRACK INTERACTION 

As explained in Section 1.2, one of the main objectives of the present thesis is to 
develop different numerical techniques to enhance the computational efficiency of the 
railway interaction model. The substructuring strategy employed in this work permits 
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to introduce the coupling between the different elastic substructures of the global 
system through external forces calculated from the corresponding displacements and 
velocities. This requires small time steps to ensure the convergence of the solution. 
MATLAB offers ode functions as efficient routines for solving ordinary differential 
equations, but the dimension of the FE problem (it can be close to a million of degrees 
of freedom) makes their use unfeasible. Hence, modal techniques are usually adopted 
to reduce significantly the dimension of the problem while losing as little information 
as possible. 

The present work adopts a modal transformation and develops a static modal correction 
to compensate the gain displacement due to this transformation. Additionally, an 
innovative decoupling technique is proposed to simplify the solving procedure and 
reduce the time consumption. 

5.5.1 Modal approach for reducing the dimension of the problem 

It is assumed a rail discretely supported by sleepers, so the modal approach is 
implemented on Eq. (5.45). The global displacement vector of the rail can be expressed 
through superposition of mode shapes: 

 ( ) ( ) ( ),=, tt rrr quΦuw  (5.75) 

where ( )uΦΦ rr ≡  is the mode shape function matrix of the cyclic boundary rail and 

( )trq  is the modal coordinate vector. Matrix rΦ  is built solving the eigenproblem from 
the global standard matrices M  and K , truncating in m  number of modes and 
normalising with respect to the mass matrix in order to make the system more efficient. 
Since the matrices of the equation of motion are symmetric, rΦ  is orthonormal 

( T1 rr ΦΦ =
− ). 

The small rigid body displacements of the solid are considered through the rigid body 
modes of the rail. It must be pointed out that the mode shape functions do not depend 
on time since the ‘flow’ of the mesh through the material coordinates does not change 
the mode shape functions in spatial coordinates, because the cross-sectional area 
remains invariable after the extrusion of the profile.  
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Once the modal transform of Eq. (5.75) is applied in Eq. (5.45), the resulting equation 

is pre-multiplied by TrΦ . The modal equation of motion results as 

 ( ) ,~~~ 2
T2 FΦqAKqCq rrrr VV =−+−   (5.76) 

where the modal matrices are calculated from the global matrices as follows: 

 ,
0

0~ 2T









==


rrr ωΦKΦK  (5.77) 

 ,~ T rr ΦCΦC =  (5.78) 

 ,~ T rr ΦAΦA =  (5.79) 

rω  being the undamped natural frequencies. Since matrix rΦ  is orthonormal, it 

diagonalises K~ , while C~  and A~  are not diagonalised, thus the equation of motion is 
not decoupled. As recommended in the literature [7], a standard damping loss factor of 

01.0=ζ  is introduced in the rail. Therefore, a new modal damping matrix is included in 
the modal equation of motion as a diagonal matrix: 

 .
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


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


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


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
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
rrrc ω

ζζC  (5.80) 

Hence, the modal equation of motion is 

 ( ) ( ) .~~~ 2~ T2 FΦqAKqCCq rrrr VV =−+−+  ζ  (5.81) 

The methodology adopted for the calculation of the interaction forces F  will be 
explained in Section 5.6. Eq. (5.81) is a linear second-order differential equation 
system and then the matrices are calculated only once at the beginning of the 
simulation. Now, the previous equation of motion is cast into first-order (state-space) 
form by adopting a new variable rQ  as vector of length rN2  ( rN  is the number of 
degrees of freedom of the rail mesh): 

 ,








= r

r
r

q
qQ


 (5.82) 

and Eq. (5.81) results in a linear first-order differential equation system 



5. Dynamic vehicle/track interaction model in the time domain 145 

 ,~~~ FQBQA =+ rr  (5.83) 

where: 
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 ,
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0AKB V  (5.85) 
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
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
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=≡
0
FΦFF tt

r
 (5.86) 

Eq. (5.83) is pre-multiplied by the diagonal matrix 1~ −A  to make the system more 
efficient: 

 ( ) .~~ ~~ 11 FAQBAQ −− =+ rr  (5.87) 

Note that BA ~~ 1−  is 
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 (5.88) 

5.5.2 Static modal correction 

This section presents the formulation of a technique that corrects the static gain 
displacement of the solution from the modal approach. This estimates the deviations in 
the static solution between the non-reduced procedure and the modal transformation. 
From Eq. (5.85), the modal matrix B~  can be written as: 

 .0
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 (5.89) 

Now, B~  is expressed in physical coordinates through an inverse modal transformation 
as follows 
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 ( ) ; ~
m

mTm

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








−
==

M0
0KΦBMΦB eqrr  (5.90) 

hence, the equivalent physical stiffness matrix computed from the modal 
transformation corresponds to the first rN  rows and columns of the mB  matrix: 

 ( ) .:1,:1
mm

rr NNeq BK =  (5.91) 

Therefore, the solving methodology based on the modal approach gives an 
approximated stiffness matrix m

eqK , introducing a small but non-negligible deviation 

respect to the original stiffness matrix AKK 2Veq −=  from the formulation deduced in 

Eq. (5.45). This deviation is the responsible for the static error introduced by the modal 
approach in the solution. The static response is computed as  

 ( ) ,
1m

T
modal FKw

−
=st  (5.92) 

while the static response from the original stiffness matrix is 

 ( ) .
12physic FAKw
−

−= Vst  (5.93) 

The static modal correction, ϑ , is simply estimated as the difference between both 
approaches: 

 ( ) ( ) . 
1m

T
12modalphysic FKAKww 



 −−=−=

−−
Vststϑ  (5.94) 

Hence, this deviation can be easily corrected by adding this static deviation in the 
computed solution from the modal technique: 

 .modalcorr ϑ+= ww  (5.95)  

Fig. 5.12 shows how this static modal correction works satisfactorily for a 1D ME 
model for UIC60 rail of 100 m of length supported by a Winkler bedding and subjected 
to a vertical constant moving force of 60 kN applied in the contact point of the rail (no 
wheel/rail interaction is considered in this example). The 1D mesh is longitudinally 
uniform and it consists of 5000 nodes. The black line has been simulated by solving the 
corresponding equation of motion for physic coordinates. The light-grey line shows the 
solution solving the modal equation of motion using 50 vibration modes. The deviation 
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in the steady-state response reached for both simulations is compensated by the ϑ  
term, which adjusts the modal solution to the physic one (dark-grey line). 

 
Fig. 5.12. Vertical displacement of the central node on the upper side of the rail. 

: result from physic coordinates (104 dof); : from modal coordinates 
(50 modes); : from modal coordinates and corrected by ϑ . 

5.5.3 Method for decoupling the system after a modal approach 

Solving the eigenproblem from the matrix BA ~~ 1−  without truncation, it is obtained m  
conjugated pairs of eigenvectors { }rξ  and eigenvalues rλ . The eigenmatrix results 

{ } { }( )...*
rr ξξ=Ξ  and the eigenvalues diagonal matrix, ( )...diag *

rr λλ=λ . From the 
definition of the eigenvectors calculated: 

 ( ) . ~~ 11 λΞBAΞ =−−  (5.96) 

A new transformation is adopted at this point, so that the modal vector Q  can be 
expressed through: 

 .= sΞQ  (5.97) 
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Replacing Eq. (5.97) in Eq. (5.87), pre-multiplying by 1−Ξ  and considering the 
relationship expressed in Eq. (5.96), the linear first-order coupled equation system 
becomes in a decoupled equation system due to λ  is a diagonal system: 

 ,~ Gsλs =+  (5.98) 

where 

 .~~~ 11 FAΞG −−=  (5.99) 

The unknowns of Eq. (5.98) can be separated in m2  independent equations, 
simplifying hugely the solving procedure: 

 .,...1    , ~
~

** mr
Gss
Gss

rrrr

rrrr =






=+
=+

λ
λ



  (5.100) 

At this point, the computational cost can be halved by removing the conjugated pairs of 
{ } { }( )...*

rr ξξ=Ξ  and ( )...diag *
rr λλ=λ : 

 { } { }( ),...1 mξξ=Θ  (5.101) 

 ( )....diag 1 mλλ=Γ  (5.102) 

Hence, instead of the transformation expressed in Eq. (5.97), an equivalent 
transformation after discarding the conjugated pairs is adopted: 

 ,= pΘQ  (5.103) 

and finally, Eq. (5.100) of m2  independent equations is reduced to m  independent 
equations system: 

 ,,...1     ,~ mrHpp rrrr ==+ λ  (5.104) 

where 

 ( ) ,~~ pinv~ 1FAΘH −=  (5.105) 

where pinv  is the Moore-Penrose pseudoinverse for the non-square matrix Θ . The 
main advantage of getting a diagonalised formulation and, hence, decoupled linear 
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first-order equations is that they can be solved analytically time step by time step 
through  

 ( ) ( ) ( ) ( ) .,...1      ,1
~

1 mretHetptp t

r

irt
irir

rr =−+= ∆∆
+

λλ

λ
 (5.106) 

This technique is also applied in the wheelset formulation detailed in Section 5.2. A 
comparative with MATLAB ode45 routine has been carried out for a harmonic contact 
force applied in the contact point. The decoupling strategy reduces the time 
consumption and, additionally, the user has control over the time step (ode routines use 
a variable time step to get an efficient convergence process step by step).  

Time step adopted in case of continuous supports is =∆t 3.6·10-5 s; if it is increased, 
the integration solution becomes divergent. Setting this time step in the software, the 
time consumption per iteration is reduced around 30% compared to ode45 routine. 
Even advanced numerical package NAG has been tested for the railway interaction 
model, giving time consumptions around 15% higher than the decoupling technique 
developed in this section. 

A predictor-corrector technique has been implemented in order to increase the 
maximum time step to make the solution converge. Using Eq. (5.106), an intermediate 

(predictor) solution ( )1ˆ +ir tp  allows calculating a new force term ( )1
~̂

+ir tH  through Eq. 

(5.105) for a new ( )1
~̂

+itF . In order to soften the convergence of the method, the term 

rĤ~  can be also estimated from: 

 ( ) ( ) ( ) .,...1      ,~̂1~~̂
1 mrtHhtHhH irirr =−+= +  (5.107) 

where h  is a homogenising constant, with a value between 0 and 1. Using again Eq. 
(5.106), the solution for the next time step is estimated: 

 ( ) ( ) ( ) .,...1      ,1
~̂

1 mreHetptp t

r

rt
irir

rr =−+= ∆∆
+

λλ

λ
 (5.108) 

This predictor-corrector scheme permits to increase the time step around a 40% without 
losing precision in the integration solution, but doubles the time consumption since the 
estimation of the force must be calculated twice for each time step, see Table 5.1. 
Hence, Eq. (5.106) is directly implemented. 
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5.5.4 Simpson and Magnus integrators for solving the modal 
system 

An alternative proposed in this work for solving the modal Eq. (5.83) is based on 
converting this equation into a homogeneous linear differential equation. For the first 
step, Z  vector is defined: 

 .
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Z  (5.109) 

Using this coordinate transformation, Eq. (5.83) can be defined as 
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The analytic solution for the previous matrix equation is 

 ( ) ( ) ( ),,
1

1
i

tt
i tet ii ZZ Ω +=+  (5.111) 

where ( ) ( )∫
+

=+
1

d ,1
i

i

t

tii tt ττΠΩ . For an ordinary homogeneous differential matrix 

equation, the numerical integration for time-dependent matrices can be done applying 
Simpson’s method using three-point Newton-Cotes quadrature rule: 
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This method has been tested and shows a similar precision than the above procedure 
corresponding to Eq. (5.106) for time steps 25% larger, see Table 5.1. Nevertheless, it 
also requires an additional intermediate calculation point ( ) 21++ ii tt , as in the 
predictor-corrector scheme, doubling then the computational time needed for each 
iteration. 

Magnus integrators [170] are more sophisticated methods for numerical integration. As 
a rule, ( )tΠ  is evaluated at the Gauss-Legendre points but, in order to correct 
Simpson’s method, Magnus also evaluates ( )tΠ  at equispaced points. The last term of 
the following equation corrects Simpson’s method: 

http://en.wikipedia.org/wiki/Newton%E2%80%93Cotes_formulas
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where the conmutator is defined as 

 ( ) ( )[ ] ( ) ( ) ( )iiiii ttttt ΠΠΠΠΠ 111, +++ −= . (5.114) 

This is a fourth-order estimation respect to the time step t∆ :  

 [ ]( ) ( ) ( ).,, 5
11

4 totttt iiii ∆+= ++ ΩΩ  (5.115) 

This method also requires an additional intermediate calculation point ( ) 21++ ii tt , 
hence it needs more computational time for each iteration than Eq. (5.106) although it 
obtains convergent results with similar precision for time steps 52% longer, see Table 
5.1. The maximum time step is limited by the convergence criteria established by 
Magnus [170]: 

 ( ) .d
1

2 πττ <∫
+i

i

t

t

Π  (5.116) 

Magnus also proposes an equally valid expression for the same order and convergence 
criteria which allows not using an intermediate point [170]: 

 [ ]( ) ( ) ( )( ) ( ) ( )[ ].,
12
3  

2
, 1

2

11
4

+++
∆

−+
∆
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Using this new fourth-order estimation, time steps until 28% larger than 3.6·10-5 s used 
for Eq. (5.106) have been evaluated without decreasing significantly the convergence 
and precision of the integration solution. Therefore, Eq. (5.117) increments the 
computational velocity for the numerical integration. Nevertheless, for the complete 
wheelset/track interaction model, time steps evaluated have had to be reduced after 
finding convergence problems for simulation times larger than 0.5 s while the 
diagonalisation procedure has shown a stronger numerical robustness for the 
interaction problem. So finally, Eq. (5.106) has been the integration method adopted 
for the present thesis. Table 5.1 summarises the above-mentioned results: 
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Maximum 
time step 
(×10-5 s) 

Averaged time 
consumption per 

iteration (s) 

MATLAB ode45 variable 2.7 
NAG variable 2.4 
Decoupling method, Eq. (5.106) 3.6 1.2 
Decoupling predictor-corrector method, Eq. (5.108) 5.0 1.9 
Simpson integrator, Eq. (5.112) 4.5 2.1 
Fourth-order Magnus integrator 1, Eq. (5.113) 5.5 2.1 
Fourth-order Magnus integrator 2, Eq. (5.117) 4.6 1.0 

Table 5.1. Maximum time steps for obtaining convergent integration solution and time 
consumptions per iteration for a conventional PC in each modal method. 

5.5.5 Magnus expansion for periodic interaction forces 

This subsection develops a complete formulation of an analytic approximation for first-
order linear differential matrix equations in which the time-dependent terms are 
periodic based on Magnus expansion detailed in Ref. [170]. This method has 
successful applications in Quantum Mechanics. This approach pretends to take 
advantage of the periodic behaviour of interaction forces from the sleepers. This is 
implemented through a Winkler bedding with periodic stiffness and damping. The 
mathematical approach is considered relevant since its application in railway dynamics 
would permit to calculate the vibrating field of the train/track interaction system 
analytically, without the need for a numerical simulation in the time domain. 

The approach is formulated in detail below. Nevertheless, its implementation has not 
resulted successful for various reasons. No convergence is found from the second-order 
terms of the solution for railway applications. Additionally, it requires the contact force 
is constant or with the same period than the sleepers action; thereby, its applicability is 
a priori limited to an isolated track without interaction with the vehicle. Nevertheless, 
the method is considered by the author as a promising tool for the next generation of 
railway simulators if an intense further work is dedicated to the adaptation of the 
associated equation of motion to the convergence criteria of Magnus expansion [170]. 
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As explained in Section 5.4, the Eulerian approach adopted for the rail leads that 
sleepers are moving backwards with velocity V  respect to the reference system 
associated with the vehicle. Hence, a particular spatial point of the mesh of the rail 
underside ‘sees’ a sleeper with a period VLT slsl = , where slL  is the span or 
longitudinal distance between sleepers; hence, the corresponding frequency in radians 
is slTπω 2= . A new time magnitude is defined for computational convenience, 
subtracting the covered periods: 

 [ [.,0floor*
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T
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−=  (5.118) 

The action of the sleepers is introduced as a harmonic Winkler bedding which 
introduces the corresponding additional time-dependent stiffness and damping 
matrices. These matrices are located in the right member of Eq. (5.71). The new 
equation of motion results: 
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where 

 ( ) ( ) ( ) ( )( )( )( ), ***1* wKCKwCFMG tVttt www ++−= −   (5.121) 

and the external force F  from the contact must be considered periodic with the same 
period slT  or constant. From Eq. (5.111), the analytic solution for the previous matrix 
equation is 

 ( ) .0
* ZZ Ωet =  (5.122) 

where ( ) .d 
*

0∫=
t

ττΠΩ  Magnus expansion formulates an estimation for the matrix Ω : 
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 [ ] [ ] [ ] ( ),4321 o+++= ΩΩΩΩ  (5.123) 

where the expressions for the matrices of first, second and third-order, respectively, are 
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Since the force term ( )*tG  is periodic, the matrix ( )*tΠ  can be written as Fourier series: 
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From the above equation, the conmutators from Eqs. (5.125) and (5.126) can be 
developed as 
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where qppq ΠΠB =  and qrppqrrpq ΠBBΠC ==  (in terms of computational efficiency, 

this last relationship is important). The sum of the conmutators gives 
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Once detailed the explicit expressions of the above conmutators, Eqs. (5.124), (5.125) 
and (5.126) can be analytically integrated. 

First-order term: 
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Second-order term: 
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where 
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Third-order term: 
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where 

{ }

{ }
36

   0

ddd
6
1

3*

0 0 0

***
* * *

***

trqp

ttteee
t t t

abc
tiqtiptir

a b

cba

====

∫ ∫ ∫ ωωω

 

{ } ( )
33

**

6
22   0

*

ω
ωω ω

p
etpitpirq

tip+++−
−===  

{ } 33

2*22*

12

222
   0

*

ω

ωωω

q

tqtiqei
rp

tiq 




 +−+−

===  

{ } ( )( ) ( )( )
33

**

12
112   0

*

ω
ωω ω

r
etritiriiqp

tir++−++−
===  

{ } 33

2*22*

12

222
   0 ,

*

ω

ωωω

p

tptipei
rpq

tip 




 +−+−

=−==  

{ }
( ) ( ) ( )( )( )

( ) 322

*22

6
2   0

**

ω
ωωω

qpqp
tqpippqqeqpepir

tiptqpi

+

++++−
==

+
 

{ } 33

2*22*

12
222   0 ,

*

ω
ωωω

p
tiptpieiqpr

tip −+−
=−==

−
 

{ } ( )( ) ( ) ( )( ) ( )

( ) 322

*22

6
2   0

**

ω
ω ωω

rprp
etrpprpirerppiq

trpitir

+

+++++−
−==

+
 



158 Advanced techniques for time-domain modelling of high-freq. train/track interaction 

{ } ( )
33

**

6
22   0 ,

*

ω
ωω ω

q
etqitqipqr

tiq−+−++
−=−==  

{ } ( ) ( )( )( )
( ) 322

*22

6
1   0

**

ω
ω ωω

rqrq
etrqriqqeiriqp

tirtiq

+
++++−+−

==  

( ){ }
( ) ( )( ) ( ) ( )( )( )

( ) 322

*222

6
2   

**

ω
ωωω

qppq
tqpqqpipeqpqieqpr

tiptqpi

+
+++−+−−

+−==
+−

 

{ } ( )( )
33

**

6
22    ,

*

ω
ωω ω

p
etpitpiprpq

tip−+−++
−−=−==  

{ }
( ) ( ) ( )( )( )

( ) 322

*22

6
  

***

ω
ω ωωω

qpqp
etqipiqqpiqeipepr

tiptqpitip

+
+−+++−

−==
+−

 

{ } ( ) ( )( )( )
( ) 322

*22

6
1  

**

ω
ω ωω

rprp
etrprippeirippq

tirtip

+
++++−+−

−==  

{ }
( ) ( )

.
)()(

1
)(

11
)(

1
6

   else
****

3 













+++
−

+
+

−
+

−
+

+
−

=
+++

rqpqp
e

rpp
e

rp
e

qpr
e

q
i trqpitrpitirtir ωωωω

ω
 

 (5.136) 

The first order term contains the mean value of the steady-state solutions, while the rest 
have its harmonic contributions. No figures are shown because no-convergence is 
found for t∆ >10-10 s due to the convergence criteria from Eq. (5.116) is not satisfied 
for larger time steps. This occurs due to the large magnitude of the stiffness matrix 
(around 1010 N/m2). A re-sizing of the matrix involved in Eq. (5.45) could be a strategy 
to increase the suitable time step. Further work is proposed to take advantage of this 
powerful mathematical tool for dynamic interaction problems. 

5.6 CALCULATION OF INTERACTION FORCES 

5.6.1 Calculation of wheel/rail contact forces 

Both wheelset and rail interrelate through contact forces considered as external forces 
calculated from the relative displacements and velocities between both subsystems. 
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Eqs. (5.26) and (5.106) are coupled by the wheel/rail contact forces, which can be 
defined as a function of the wheelset and rail modal coordinates ( )rw pq , , where pp ≡r  
coordinate used for the rail formulation in order to clarify the nomenclature, and their 
time derivatives ( )rw pq  , . The calculation of the contact forces is performed within the 
time step integration of the equations of motion for the wheelset and the rail. First, the 
motion (position and velocity) of the contact points on wheel and rail surfaces is 
determined. Then, the normal and tangential wheel/rail contact forces are computed as 
a function of the relative wheel/rail motion at the contact point. Finally, the generalised 
forces on the vehicle and rail coordinates are defined based on the principle of virtual 
work. 

Using the modal superposition principle, the vectors wr
ic,w  of the wheel/rail 

displacements at the contact point (with i = 1,2 representing the inner and outer wheel) 
are computed from Eqs. (5.6), (5.75) and (5.103): 

 ( ) ( ) ,,,,,,
ww

ic
wrr

ic
rw

ic
r

ic
wr

ic quΦpΘuΦwww u −=−=∆  (5.137) 

with w
ic,u  and r

ic,u  the position of the contact point on the wheel and the rail, 

respectively, and 
:,:1 rNΘΘu =  takes the displacements rows for the rail second-

transformation matrix. In the same way, the velocity vectors of the wheel and rail, w
ic,w  

and r
ic,w  respectively, define the wheel/rail velocity wr

ic,w∆  as 

 ( ) ( ) ,,,,,,
ww
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wrr
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rw

ic
r

ic
wr

ic quΦpΘuΦwww u   −=−=∆  (5.138) 

where 
:,2:1 rr NN +=ΘΘu  takes the velocities rows for the rail second-transformation 

matrix. If the model considers the effect of geometric imperfections in the rail due to 
irregularity and rail roughness, the term )( 

,
irrr

icx  is added to the second bracket of Eq. 
(5.138). 

The model of wheel/rail contact used to reproduce the dynamic coupling between the 
vehicle and the track adopts an incremental technique to define the elastic penetration 
for the normal problem and the creepages for the tangential one. This penetration is 
calculated by projecting the relative wheel/rail displacements in the contact point along 
the direction normal to the contact plane. 
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The incremental procedure starts from a pre-processing step in which the complete 
railway system is run in the multibody dynamic simulation software [171]. This 
software obtains the steady-state solution for the displacements of the whole vehicle in 
the curve, from which the complete dynamic model developed in this thesis starts the 
simulation (from now, dashed magnitudes will refer to steady values). The software 
also provides information of the contact: lateral displacements for both wheels and rails 
(inner and outer), normal angle, curvatures and size of the contact patch, creepages and 
creep (contact) forces. The Eulerian approach in both wheelset and rail models (see 
Section 5.3 and 5.4, respectively) permits to fix the contact zone despite of the 
translational movement of the vehicle and the rotation of the wheelset. Hence, the 
geometrical data allow detecting the contact point in the wheelset and rails meshes 
where the both contact forces are applied. The normal angle in both rails determines 
the normal direction from the vertical axis. The creepages and creep (contact) forces on 
the both contact patches will be used as stationary values for the incremental technique 
adopted. 

An ERRI-wagon is selected; more details of this model are given in Section 6.4. Note 
that a constant friction coefficient is considered since robust software for the unsteady 
contact process with falling friction coefficient has not been successfully achieved so 
far in this thesis. The inclination γ  of both rails is 1/40 and the contact point is not in 

the nominal position (lateral displacement 0≠∆ wry ). The normal force N  is calculated 

as the vertical creep force 3F  projected on the normal direction, whose angle from the 

vertical axis is θ . In the same way, the rolling radius 11r  for contact estimations must 
be corrected according to the normal direction. 

Two options were contemplated and implemented to locate the point where the contact 
forces are applied in both wheel and rail: (a) to find the closest nodes of each mesh; (b) 
to use the shape functions of the contact elements to calculate the displacements and 
velocities of the exact contact points from the displacements and velocities of the nodes 
of the contact elements. The first option is computationally more efficient since it 
requires less calculation, but the differences can be non-negligible especially in case of 
flange contact for small radius curves. Option (b) was finally used. A subroutine to 
calculate the four curvatures 11r , 12r , 21r  and 22r  from the corresponding wheel and rail 
profiles and the contact point has also been implemented. 

The change in the location of the contact point due to the instantaneous deformation of 
the wheelset is neglected in the calculation of the contact forces. This simplification is 
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justified because the magnitude of the elastic wheel deformation (in the order of 1–
10·10-5 m) is much smaller than the rigid lateral movement of the wheelset relative to 
the rail, which is between 5·10-3 and 10-2 m, depending on the track gauge, rail profiles 
and wheel profile. An alternative approach would be to compute the position of the 
contact point and the contact parameters at each time step of the numerical integration, 
considering also the deformation of the wheelset as in Ref. [159]. However, this 
approach would entail a much more CPU intensive calculation, whereas the focus in 
this work is to keep the computational effort as low as possible, while retaining in the 
model the main effects of wheelset and rail flexibility for the problem studied. 

The orientation of the local wheelset reference frame is needed for the calculation of 
creepage from the incremental procedure. The present formulation assumes a 
negligible roll rotation ( 01 ≈φ , 01 ≈φ ). The rotation velocity of the wheelset and its 
yaw rotation are defined, respectively, as 

 ,
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2
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r
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==Ω φ  (5.139) 

 ,3 rR
V

=φ  (5.140) 

where V  is the vehicle speed and rR  the curve radius. Integrating to obtain the 
corresponding angular displacements: 

 ,22 tφφ =  (5.141) 

 ,33 ψφφ += t  (5.142) 

where ψ  is the angle of attack. With the angular displacements considered as Euler 
angles, the rotational matrices can be calculated: 
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From the local angular velocity defined as ( )32,,0 φφ =wω , its intermediate orientation 
after the rotation in the 3x -axis results 
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and the angular velocity in global coordinates finally results 
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This is needed for the definition of the local reference frame in the contact point. The 
unit vector 1x  corresponding to the longitudinal local direction in each instant is 
defined as 
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=  (5.147) 

where 3x  is the normal unitary vector 3x . From both vectors, the lateral unitary vector 
that completes the orthonormal base is 

 .312 xxx ×−=  (5.148) 

At this point, the wheel/rail displacement from Eq. (5.137) is corrected taking into 
account the initial position of the wheelset, w

cw , and rail, r
cw . This corresponds to the 

pseudo-static state that is previously calculated by means of a static equilibrium from 
the creep forces given by the multibody software.  

 ( ) ( ).w
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wr
c wwwww −−−=∆  (5.149) 

The incremental approach is computed by projecting the relative wheel/rail 
displacements in the contact point along the direction normal to the contact plane: 

 ( ) .3
T

xw ⋅∆=∆ wr
cδ  (5.150) 
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Now, the creepages for each instant are calculated adopting an incremental estimation 
once calculated the wheel/rail material velocity from Eq. (5.138), the local reference 
frame and the pseudo-static creepages given by the multibody software: 
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 .spsp ξξ =  (5.153) 

From Hertzian theory, the elastic penetration δ  can be estimated from Eq. (B.6) (see 
Appendix B) once the material properties (both wheelset and rail are made of steel, see 
Table 4.1), curvatures in the contact point and normal force are known: 
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Once obtained δ  from Eq. (5.154) and δ∆  from Eq. (5.150), the total normal force in 
the contact patch 3F  can finally be estimated again from Eq. (B.6) and adding the 
incremental penetration to the pseudo-static one: 
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From the normal normal force 3F , the normal problem can be solved adopting an 
Hertzian or non-Hertzian (Kalker’s algorithm) model. Since both wheelset and rail are 
made of the same material and, hence, the normal problem is decoupled from the 
tangential one [81], the tangential contact problem is addressed using the formulation 
based on Kalker’s variational theory developed in Section 4.3, also applying 
regularisation of Coulomb’s law. This permits to calculate the longitudinal and lateral 
forces, 1F  and 2F , respectively. 1F , 2F  and 3F  are applied in the wheel and in the rail 
(with opposite sign) in the corresponding contact points as external actions. 
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5.6.2 Calculation of forces in the rail supports 

In case of considering a Winkler bedding or an elastic pad layer as continuous rail 
support, both are integrated in the FE model of the rail (in the global matrices that 
define the complete rail model). Therefore, a substructuring technique is only needed in 
case of discrete supports (see Fig. 5.10), in which external forces must be included 
between the corresponding points of the rail underside and the sleepers, and between 
the sleepers and the ground. The particularity of the ME rail model is that the reference 
frame is moving with the vehicle since an Eulerian approach is adopted; thereby, the 
fixed position of the contact point implies that the sleepers position is moving 
backwards (opposite to the vehicle speed sense) with velocity V . This location is 
calculated for each instant ( Vtxx slsl −= 0,11 , where slx 0,1  is the initial location of the 

sleepers) and an implemented routine finds the corresponding element and position on 
the rail underside just above each sleeper. Again, two options has been implemented to 
locate the point where the interaction forces are applied in both rail and sleeper: (a) to 
find the closest nodes of the each mesh; (b) to use the shape functions of the contact 
elements to calculate the displacements and velocities of these points from the 
displacements and velocities of the nodes of the contact elements. Option (b) is finally 
selected. 

The same procedure used in Eqs. (5.137) and (5.138) is taken to estimate the 
rail/sleeper incremental displacements, slr

p
 w∆ , and velocities, slr

p
 w∆ . The rail/sleeper 

interaction force is produced through the railpad stiffness pk  and damping pc : 
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The sleeper and the rail underside surface receive the forces slr F  and slr F−  in the 

corresponding point, respectively. In the same way, the ballast acts on the sleeper from 
its displacement, slw∆ , and velocity slw∆ : 
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5.7 CONCLUSIONS 

As regards to the development of a wheelset/track interaction model in the time 
domain, the following conclusions are derived: 

 A complete methodology to model the dynamics of damped flexible wheelset has 
been presented, based on previous works of this research group [55,56,159,160]:  

- This method models damped elastic solids of revolution rotating about their axis 
of revolution. It is based on a modal approach where the modal properties of the 
non-rotating solid form the modal basis of the system. The final formulation 
consists of a set of linear ordinary differential equations where the coefficients are 
time-independent. Therefore, the matrices are calculated only once at the 
beginning of the simulation, leading to a considerable reduction of computational 
cost. 

- By introducing a trajectory coordinates set describing the large motion of the 
wheelset along the curved track and assuming small relative movements of the 
wheelset with respect to the trajectory frame, the terms appearing in the wheelset 
equations of motion can be efficiently computed, keeping the time required to 
carry the numerical simulation within acceptable limits.  

 As one of the main contributions of the thesis, a new 3D model for a finitely long 
railway track has been formulated through the Moving Element Method (MEM) in 
order to improve the modelling in the high-frequency domain. 

- The model considers an Eulerian coordinate system attached to the moving 
vehicle instead of a fixed coordinate system and it adopts cyclic boundary 
conditions. This approach permits to decrease the computational cost compared to 
the FE models commonly used. 

- The matrices corresponding to a Winkler bedding has been included in the 
formulation in case this type of rail is utilised. If discrete supports are modelled, a 
lumped system consisting of rail pad, sleeper and ballast is adopted. A 
continuously supported rail is the third option implemented, in which a 
viscoelastic layer is aggregated under the rail. 

- Wheel/rail contact forces are estimated through an incremental technique. From 
small displacements of the corresponding wheel and rail contact points and the 
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estimation of the elastic penetration, the normal contact force and creepages are 
determined, which permit to calculate the tangential forces. 

 A modal approach is adopted for both wheelset and rail models. A static modal 
correction is also developed in order to compensate the deviation in the static 
response introduced by the modal transformation. 

- A decoupling technique is applied to diagonalise the matrices involved in the 
linear equation of motion systems, reducing the time consumption of the 
numerical integration. 

- Simpson and Magnus integrators have been implemented and tested in the modal 
system equation. The previous decoupling method has shown a faster 
computational velocity and a more robust behaviour. 

A formulation for periodic interaction forces on the rail has been developed based on 
Magnus expansion. Further work is needed to extend this theoretical contribution for 
dynamic interaction problems. 
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6 APPLICATIONS OF THE 
WHEELSET/TRACK 
INTERACTION MODEL 

6.1 INTRODUCTION 

In the present chapter, the dynamic train/track interaction model implemented in this 
thesis is run for different simulation cases divided in three sections. The first one 
(Section 6.2) pretends to test the 3D track model based on the Moving Element Method 
developed in Section 5.4, which permits to extend the range of validity of the 
Timoshenko beam considered in earlier studies of this research group. Simulation 
results are presented and discussed for different excitation sources including random 
rail roughness and singularities such as wheel flats. All the simulation cases are carried 
out for a Timoshenko beam and a 3D MEM track model when the vehicle runs on a 
tangent track in order to point out the differences in the contact forces above the range 
of validity of the Timoshenko beam. 

The other two subsections run simulations in curving conditions. Assuming that 
railway curve squeal arises from self-excited vibrations during curving, Section 6.3 
proposes a time-domain approach based on the Green’s functions [33,34] for the 
evaluation of the stick/slip oscillations induced by the frictional instability in a work 
developed in collaboration with Chalmers University of Technology. Additionally, the 
linear stability is investigated through complex eigenvalue analysis in the frequency 
domain. The influence of the wheel/rail friction coefficient and the direction of the 
resulting creep force on the occurrence of squeal are investigated for vanishing train 
speed. 

Section 6.4 runs a set of simulations with a wheelset negotiating a tight curve in order 
to investigate the stick/slip oscillations due to frictional instability. This research line 
pretends to confirm whether the coupling between normal and tangential dynamics can 
originate squeal as Section 6.3 seems to demonstrate theoretically and many 
researchers defend. Simulations are carried out with a constant friction law. 
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6.2 CONTRIBUTIONS OF THE 3D MEM TRACK 
MODEL IN THE HIGH-FREQUENCY DOMAIN 
FOR A SINGLE WHEELSET 

6.2.1 Introduction 

This section presents different results that test the track model based on the ME 
approach and compare it with the Timoshenko beam model used so far in the research 
group to which the author belongs. Simulations for a train/track model are carried out 
when the complete system is excited by random rail roughness and wheel flats. These 
results are gathered in Ref. [174]. 

All the simulations consider the vehicle running at 300 km/h through a tangent track 
and the system is excited up to 8.5 kHz; each case is run separately for a Timoshenko 
beam and a 3D MEM modelling the track. Both models are compared by the vertical 
and lateral contact forces obtained from the simulations above the range of validity of 
the Timoshenko beam (from 1.5 to 8.5 kHz) in order to study the contributions of the 
3D MEM in the high-frequency range. 

For the vehicle/track interaction model, a substructuring technique is followed, 
permitting to divide the whole system into three substructures: the vehicle, the rails and 
the discrete rail supports. The equations of motion of each substructure are coupled by 
the wheel/rail contact forces and by the forces generated at the rail pads (see Sections 
5.6.1 and 5.6.2, respectively). 

Considering the same materials for both bodies, the tangential contact is coupled with 
the normal contact, but not vice versa [81]. Hertzian model is adopted here for the 
normal contact and the model developed in Section 4.3 is the software used for the 
tangential contact that depends on the normal contact force and creepages. Wheel/rail 
displacements and velocities are updated at each time step to evaluate the online 
contact forces. 

6.2.2 Vehicle model 

The vehicle is confined to one flexible and rotating wheelset [160]. The effect of low 
frequency curving dynamics of the complete vehicle needs however to be included in 
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the model, in order to obtain suitable mean values for the creepages and contact forces, 
which affect the coupled wheelset/track vibration also at higher frequency. This is 
accomplished by prescribing the forces applied by the primary suspension to the 
wheelset in the vertical plane and the yaw rotation of the bogie at the primary 
suspension. The approach followed in this section is to consider one single wheelset 
and to reproduce the steady-state curving effects by prescribing appropriate forces at 
the primary suspension: these forces are derived from the results of a low-frequency 
multibody simulation in which the whole vehicle is considered, but all bodies are 
assumed to behave as rigid. Compared to considering the complete bogie with two 
flexible wheelsets, this approach allows to reduce substantially the time required for 
the simulation, because the additional degrees of freedom of the second wheelset and 
of the bogie frame are not included in the analysis, and also because the time 
consuming procedure required to evaluate the contact forces at each time step is carried 
out for two wheels instead of four, whereas the low-frequency simulation of the whole 
vehicle requires a very short simulation time, on account of the assumption of 
neglecting the flexibility of all bodies. 

The wheelset model adopted is the flexible and rotatory one detailed in Section 5.3. 
400 vibration modes of the wheelset have been considered, covering a frequency range 
up to 8.5 kHz. It should be noted that the wheelset is a very stiff and low damped solid 
and consequently few modes above the maximum frequency of study are required to 
minimise errors due to modal truncation. In order to ensure that the contact forces and 
creepages are correctly initialised, the steady-state forces applied in the wheelset at the 
axle-boxes via the primary suspension along the ZT and YT axes of the trajectory 
coordinate frame (see Fig. 5.2 in Section 5.3) are prescribed in Eq. (5.26) to match the 
values obtained in the low-frequency simulation. In this way, the steady-state ZT 
component of the contact forces on the two wheels and the sum of the steady-state 
contact forces along the YT axis are correctly reproduced by the flexible wheelset/track 
model. Furthermore, the longitudinal stiffness of the primary suspension is introduced 
in Eq. (5.26) and the longitudinal displacements (i.e. directed along axis XT) of the 
bogie at the primary suspension are prescribed to match the values obtained from the 
low-frequency simulation. By doing so, the steady-state longitudinal and lateral creep 
forces on both wheels are correctly initialised in the high-frequency model. As shown 
in the results, cf. comments to Table 6.2, this procedure allows obtaining a very good 
agreement of the steady-state forces for the rigid body model of the complete vehicle 
and for the model of the single flexible wheelset. 
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The low frequency multibody simulation is performed using software ADTreS 
developed at Politecnico di Milano [175] and considers a vehicle formed by one 
carbody, two bogies and four wheelsets. It refers to the trailed car of a concentrated 
power train for high speed passenger service. The vehicle is equipped with a solid axle 
wheelset with monobloc, light design wheels. The track considered features UIC60 
rails and track parameters are based on the EUROBALT project [175], considering a 
‘stiff’ track. Table 6.1 summarises the input data used to set up the simulation model. 
All the above described boundary conditions are applied in the flexible wheelset model 
Eq. (5.26) by appropriately setting the terms in vector sQ . These consist of the 
generalised forces associated with the modal coordinates q  of the concentrated forces 
applied at the axle-box seats, defined as explained above in this section. 

Wheelset model data  Track model data  
Mass of wheelset [kg] 1375 Sleeper bay [m] 0.6 
Axle load [kN] 120 Sleeper number 70 
Primary susp. long. stiffness [MN/m] 7.5 Sleeper mass [kg] 324 
Primary susp. lateral stiffness [MN/m] 7.1 Track bed stiffness [MN/m] 200 
Primary susp. vertical stiffness [MN/m] 0.81 Track bed damping [kN s/m] 150 
Primary susp. long. damping [kN s/m] 100 Rail pad stiffness [GN/m] 1 
Primary susp. lateral damping [kN s/m] 100 Rail pad damping [kN s/m] 50 
Primary susp. vertical damping [kN s/m] 30 Rail section UIC60 

Table 6.1. Simulation parameters and properties. 

  Outer wheel Inner wheel 

 
Rigid Flexible Rigid Flexible 

  multibody  wheelset multibody wheelset 
Vertical force [kN] 69.57 70.01 49.82 49.71 
Lateral force [kN] 5.68 5.91 -3.75 -3.99 
Longitudinal force [kN] 14.39 15.16 -14.39 -15.16 

Table 6.2. Steady-state wheel/rail contact forces for the rigid multibody model of the 
entire vehicle and for the single flexible wheelset model. 
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6.2.3 Track model 

Timoshenko beam is used in this section to compare with the 3D MEM. This model 
allows including vertical/lateral bending and torsional deformations. Rail vibration is 
formulated as modal superposition for the unconstrained rail with cyclic boundary 
conditions, hence resulting into a set of decoupled 1-dof (degrees of freedom) 
equations. According to Ref. [7], for one single Timoshenko beam the frequency range 
of validity is up to 1.5 kHz for lateral rail vibration and up to 2 kHz for vertical 
vibration. In order to minimise errors caused by modal truncation, all the rails modes of 
vibration falling in the range below 8.5 kHz has been considered. A procedure for 
obtaining an optimised number of modes was proposed in Ref. [162]. The lateral and 
vertical displacements of the rail axis and the torsion and the rotations of the cross-
section are, respectively: 

 ( ) ( ) ( ) ,3,2   ,, ,1,1 ==∑ ττττ
r

rr tqxWtxw  (6.1) 

 ( ) ( ) ( ) ,3,2,1   ,, ,1,1 =Ψ=∑ jtqxtx
r

rjrjjψ  (6.2) 

where ( )1, xW rτ  and ( )1, xrjΨ  are the r-th modal functions of the Timoshenko periodic 

beam, and ( )tq r,κ  are the modal coordinates associated with torsional, lateral and 

vertical rail vibrations, respectively. The resulting r-th equation of motion for the 
cyclic track model in modal coordinates take the form: 

 ,2 2
rrrrrrr fqqq =++ ωωξ   (6.3) 

being rω  the r-th undamped frequency and rξ  the modal damping. The modal forces 

rf  are computed from the wheel/rail contact and rail pad forces acting on the track. In 
this way, the displacements of the rail in the present contact point can be evaluated 
from the displacements and rotations of the rail axis as follows: 

 ( ) ,
T

,3,2,1,3,2, iiiiiiir ww ψψψEx =  (6.4) 

where ir ,x  is the vector of contact point displacements in i-th rail ( 2,1=i ), and the 

matrix iE  relates the displacements in rail axis and contact points. 
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A 3D flexible finitely long rail through the ME technique (see Section 5.4) is also used 
in this section. For the simulations carried out, 400 vibration modes of each rail have 
been considered, covering a frequency range up to 8.5 kHz. 

6.2.4 Wheel/rail contact model 

The model of wheel/rail contact used for these simulations is different than the 
developed in Section 5.6, as a result of the collaboration with Politecnico di Milano. To 
reproduce the dynamic coupling between the vehicle and the track, a pre-tabulated, 
multi-Hertzian contact model [176] is adopted. Prior to the simulation, wheel/rail 
contact geometry is processed starting from measured or theoretical wheel and rail 
profiles and the contact parameters required to compute wheel/rail contact forces are 
stored in a contact table. According to this procedure, the change in the location of the 
contact point due to the instantaneous deformation of the wheelset is neglected in the 
calculation of the contact forces. This simplification is justified because the magnitude 
of the elastic wheel deformation is much smaller than the rigid lateral movement of the 
wheelset relative to the track. 

The parameters stored in the contact table are the contact angle, the variation of the 
wheel rolling radius with respect to the nominal one, the curvatures of the wheel and 
rail profiles in the contact point region and an undeformed distance which is equal to 
zero for the geometric contact point and greater than zero for the other potential contact 
points. More details of the process used to derive the contact table can be found in 
[177]. With respect to the theory presented there, note that the effect of the angle of 
attack is neglected in this work and thus leading to a simplified planar contact problem. 

In order to compute the contact forces at time t, the relative wheel/rail lateral 
displacement is computed and the contact tables are interpolated, finding the contact 
parameters for one or more wheel/rail potential contact points. Then, for each i-th 
potential contact point of the j-th wheel/rail couple the normal problem is solved. To 
this aim, the elastic penetration is computed by projecting the relative wheel/rail 
displacements in the contact point along the direction normal to the contact plane, 
which is defined by the contact angle parameter in the contact table. Eq. (5.150) is 
followed to obtain the incremental penetration. The normal force is computed as 
function of the elastic penetration according to Hertz’s formulae in Eq. (5.155) using 
the profile curvatures retrieved from the contact table. The creep forces are then 
computed as function of the creepages, computed according to Eqs. (5.151)−(5.153). 
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Finally, the normal and creep forces obtained at each i-th contact point are projected 
along the trajectory frame XTYTZT and summed over all active contacts occurring in 
the same wheel/rail couple, and the components of the resulting contact forces along 
the modal coordinates q  are derived by standard application of the principle of virtual 
work, providing vector cQ  in Eq. (5.26). 

6.2.5 Results 

Figs. 6.1 and 6.2 show the time history of the vertical and lateral contact forces 
respectively for excitation caused by randomly corrugated rails, assuming a corrugation 
spectrum corresponding to the ISO 3095 limit [178], which establishes a third-octave 
band spectrum of the rail roughness. As expected, the dynamic fluctuations of the 
vertical and lateral contact forces show a complex waveform, arising from the dynamic 
response of the wheelset/track system to broadband random excitation. The results for 
both track models present a similar trend and mean values, although higher frequency 
content is observed for the 3D MEM in the vertical contact force. 

An alternative plot for the wheel/rail contact force is made in the frequency domain. 
Fig. 6.3 represents the third-octave band spectrum of the vertical contact forces. There 
appear peaks in the antiresonances of the track frequency between the P2 and pinned-
pinned frequencies in the 100–300 Hz band, and also in the band between 900 and 
1400 Hz, whereas the smaller responses are at the P2 frequency (below 100 Hz), 
pinned-pinned frequency (below 1 kHz) and at a resonance frequency below 3 kHz. It 
can be observed that the Timoshenko beam shows greater vertical contact forces in the 
low and medium frequency range (up to 1 kHz, range of validity for the Timoshenko 
beam), while the 3D MEM shows higher frequency content for higher frequencies (1–
8.5 kHz band). These higher harmonics seem to be crucial to describe the high-
frequency noise, as rolling and squeal noise. 
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Fig. 6.1. Vertical wheel/rail contact forces for 300 km/h of speed on a randomly 
corrugated tangent track. Amplitudes corresponding to the ISO 3095 limit. 
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Fig. 6.2. Lateral wheel/rail contact forces for  300 km/h of speed on a randomly 
corrugated tangent track. Amplitudes corresponding to the ISO 3095 limit. 
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Fig. 6.3. Frequency domain plot of the vertical wheel/rail contact forces when the 
vehicle circulates at 300 km/h speed on a randomly corrugated tangent track. 

Amplitudes corresponding to the ISO 3095 limit. 

Figs. 6.4 and 6.5 show the time history of the vertical and lateral contact forces with 
both rail models caused by a wheel flat when the wheelset runs over a perfectly even 
tangent track. In the simulations, a rounded geometry of the wheel flat with size 0.05 m 
is adopted. Intense dynamic effects are observed in both contact forces, initially leading 
to the occurrence of full loss of contact in the wheels, then followed by a severe impact 
causing peaks, and finally by a transient vibration that generates further dynamic 
fluctuations in all the force components. Results for both track models present again 
similar trends and mean values, the differences between both models being small in 
terms of duration of the contact loss. The maximum value of the vertical contact force, 
however, is larger when the 3D MEM is used. These results may indicate vertical 
contact forces will cause accelerated damage and degradation of the contacting 
surfaces as well as increased noise and vibration. The first overloading for this model is 
about 2.7 times the steady-state load, being 2.5 times for the Timoshenko beam. For 
the second overloading, the 3D MEM reaches 2.1 times the steady-state load, while 
Timoshenko approach yields 1.7. Finally, a higher frequency content in vertical contact 
force with the 3D ME model is observed. 
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Fig. 6.4. Vertical wheel/rail contact forces when the vehicle circulates at 300 km/h 

speed on a perfectly even tangent track in presence of a 0.05 m wheel flat. 
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Fig. 6.5. Lateral wheel/rail contact forces when the vehicle circulates at 300 km/h 

speed on a perfectly even tangent track in presence of a 0.05 m wheel flat. 
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Fig. 6.6 represents the third-octave band spectrum of the vertical contact forces caused 
by a wheel flat. The Timoshenko beam shows a slightly higher vertical contact force in 
low-medium frequency range up to 450 Hz, but the 3D MEM reveals a markedly 
content for higher frequencies (450 Hz – 8.5 kHz band). These results are consistent 
with the previous figure in time domain, concluding that the 3D MEM describes the 
high-frequency dynamics more accurately than the Timoshenko model. 
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Fig. 6.6. Frequency domain plot of the vertical wheel/rail contact forces when the 
vehicle circulates at 300 km/h speed on a perfectly even tangent track in presence of a 

0.05 m wheel flat. 

6.2.6 Discussion 

Results for the vertical and lateral contact forces are presented for two types of 
excitation: randomly corrugated tangent track and excitation arising from a wheel flat 
when the wheelset runs over a perfectly even track at 300 km/h. The 3D MEM and 
Timoshenko beam have been compared in all the simulations. Both models show a 
similar behaviour in the low and mid frequency domain for two excitation cases, where 
similar trends and mean values are observed. 
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In the randomly corrugated track case considered, the Timoshenko beam model shows 
a larger vertical contact force in low and mid frequency range up to 1 kHz (range of 
validity for the Timoshenko beam), but the 3D MEM shows a higher frequency content 
for the 1–8.5 kHz band. These higher harmonics seem to be crucial to describe the 
high-frequency phenomena, such as rolling and squeal noise. 

For wheel flat excitation, the first and second overloading of the vertical contact force 
using 3D MEM are larger than those obtained with the Timoshenko beam model. 
Therefore, it may be expected to cause accelerated damage and degradation of the 
contacting surfaces as well as increased noise and vibration. In frequency domain, the 
Timoshenko beam shows slightly greater vertical contact forces in low and mid 
frequency range up to 450 Hz, but the 3D MEM model shows a remarkably higher 
frequency content in the 450 Hz – 8.5 kHz band. 

Finally, these results validate the 3D MEM as an efficient flexible track model whereas 
it reproduces consistently the contrasted behaviour of the Timoshenko beam for its 
range of validity according to the literature. It is concluded that the proposed 3D MEM 
track model seems to be suitable to describe the high-frequency dynamics associated 
with different railway phenomena such as short pitch rail corrugation, wheel flat 
excitation, axle fatigue, rolling, squeal and braking noise. 

6.3 LINEAR STABILITY ANALYSIS AND NON-
LINEAR TIME-DOMAIN SIMULATION FOR A 
SINGLE WHEELSET NEGOTIATING A CURVE 

6.3.1 Introduction 

The first approach to the curve squeal phenomenon along the period of the thesis was 
possible thanks to the collaboration with the Department of Applied Mechanics in 
Chalmers University of Technology. As explained in Section 2.2, wheel/rail creep 
forces allow for steering of railway vehicles; but in unfavourable conditions, such as in 
small radius curves, this ability sometimes coincides with the generation of a high-
frequency tonal noise referred to as curve squeal. Curve squeal originates due to 
friction-induced vibrations at frequencies corresponding to axial modes of the railway 
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wheel [7]. At squeal frequencies, the wheel mobility exceeds that of the rail making the 
wheel to become the dominating noise source [7]. Hence, in the development of 
models for squeal prediction, it is of fundamental importance to accurately capture the 
high-frequency dynamic wheel behaviour. 

Two instability mechanisms for squeal noise identified and explained in the literature 
review are: the constant friction mechanism [25] and the negative friction-velocity 
slope associated with ‘negative damping’ [5]. Most available models for curve squeal 
in the literature are formulated in the frequency-domain and adopt the negative friction-
velocity slope as instability mechanism. In the related research area of automotive disc 
brake squeal, the constant friction mechanism in combination with linear complex 
eigenvalue analysis is recognised as one of the most accepted investigation procedures 
[179]. 

In this section, curve squeal of the Stockholm metro (details are found in Ref. [180]) is 
investigated using a combination of models for linear complex stability analysis in the 
frequency domain and non-linear wheel/rail interaction in the time domain. On one 
hand, the model for complex stability analysis of railway tread brake squeal presented 
in Ref. [181] is further developed to simulate curve squeal. On the other hand, the 
model for non-linear wheel/rail interaction adopted in this section is the one developed 
in Ref. [13]. The same submodels are used in both squeal models as far as possible to 
ensure comparability. The application of two different types of models allows the 
comparison and evaluation of a frequency and time-domain approach for curve squeal. 
Especially, the capability of the linear stability analysis to predict the onset of squeal 
and the squeal frequencies is evaluated. Conditions similar to those of a 120 m radius 
curve on the Stockholm metro exposed to severe curve squeal are studied [182]. 

6.3.2 Wheel and track models 

Viewed from the wheel/rail contact, the rotation causes some of the wheel resonance 
peaks to split corresponding to waves travelling in opposite directions. By using a non-
rotating wheel loaded by a wheel/rail contact force travelling at constant speed around 
the wheel perimeter, Thompson was able to account for the splitting of resonance peaks 
even though neglecting inertia effects due to rotation [7]. The introduction of a rotating 
flexible wheelset in Ref. [55,160] (see Section 5.3), which fully accounts for inertia 
forces such as gyroscopic forces and centrifugal stiffening, allows an important step in 
finding these wheel resonance peaks. 
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Table 6.3 lists the parameters of a C20 wheel parameters meshed with solid quadratic 
elements. The vehicle model does not include the wheel axle nor the bogie frame. 

Young’s modulus, wE  [GPa] 207 
Poisson’s ratio, wν  [-] 0.29 
Density, wρ  [kg/m3] 7820 
Wheel mass, rm  [kg/m] 657 
Wheel radius, wr  [mm] 0.39 
Dof number 122880 

Table 6.3. C20 wheel parameters. 

As a consequence the dynamic interaction below 250 Hz is neglected. Clamped 
boundary conditions are modelled at the inner surface of the wheel hub. Wheel modal 
damping ζ  is introduced according to the approximate values by Thompson [7]: 
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where n is the number of nodal diameters of the eigenmode. The number of degrees of 
freedom is reduced through modal expansion retaining a truncated set of 200 modes 
corresponding to a highest eigenfrequency of about 13 kHz. Point receptances of the 
wheel calculated in the wheel/rail contact node are shown in Fig. 6.7. 

 
Fig. 6.7. Magnitudes of wheel receptance calculated for excitation at the wheel/rail 

contact node.  : vertical point receptance,  : lateral point receptance. 
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The track is represented by a rail supported by a uniform viscoelastic Winkler bedding. 
Its structural flexibility is included by the 3D MEM approach from Eq. (5.71). A rail 
with BV50 profile is modelled with solid quadratic elements (20-nodes). The mesh 
corresponds to a longitudinal element length throughout the model of 5 cm for a 
uniform longitudinal mesh. Cyclic boundary conditions are modelled at the rail ends. 
Table 6.4.details the rail parameters. The Winkler bedding is modelled with a uniform 
distribution of vertical stiffness and damping equivalent to a discrete rail. The stiffness 
and damping in the longitudinal and lateral directions are modelled as 10% and 80% 
from previous values, respectively. Modal synthesis retaining a truncated set of the 
2000 lowest frequency modes is performed. Point receptances calculated in the 
wheel/rail contact node are shown in Fig. 6.8. These receptances are close to the 
calculated ones by Pieringer [13] for the same parameters but using WANDS software 
[13,67] based on waveguide finite elements, which takes advantage of the 2D geometry 
of the rail having a constant cross-section and it considers the 3D nature of the 
vibration by assuming a wave-type solution along the rail. 

Young’s modulus, rE  [GPa] 207 
Poisson’s ratio, rν  [-] 0.29 
Density, rρ  [kg/m3] 7860 
Rail length, L  [mm] 42 
Dof number 406065 
Winkler vertical stiffness, 3,wk  [MN/m] 43.7 
Winkler vertical damping, 3,wc  [kNs/m] 12.6 

Table 6.4. BV50 rail parameters. 

 
Fig. 6.8. Point receptance calculated at the BV50 rail contact node in vertical ( ) and 

lateral ( ) directions.  : vertical-lateral cross point receptance. 
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6.3.3 Wheel/rail contact model 

The wheel/rail contact is solved using an implementation of Kalker’s variational 
method [81], which includes the algorithms NORM and TANG for normal and 
tangential contact, respectively. The local friction model applied in each contact 
element is Coulomb’s law. 

In Ref. [180], simulations for conditions corresponding to those in the studied curve on 
the Stockholm metro resulted in a lateral displacement and an angle of attack of the 
leading wheelset in a bogie of approximately y = 14 mm and ψ = 1.2°, respectively 
(see the sketch in Fig. 2.4 of Section 2.2.1). This case is modelled here for the low rail 
contact. The vertical preload is 55 kN. A nominal S1002 wheel profile and BV50 rail 
profile with inclination 1:40 are used. The contact angle is 5.1 mrad. 

In the non-linear time-domain simulation, NORM and TANG are solved in each time 
step giving the contact pressure distribution, the tangential tractions and the division of 
the contact zone into stick and slip zones. The stability analysis requires the coupled 
equations of motion to be linearised around the quasi-static curving condition. In these 
simulations, the normal contact problem is modelled by a linear normal contact 
stiffness =HK 1.057 GN/m corresponding to the slope of the force-displacement curve 
obtained with NORM at the vertical preload. 

For large angle of attack as considered here, the complete contact zone is in slip at the 
onset of unstable vibrations [180]. In the limit cycle obtained in the time-domain 
simulation, the contact zone changes periodically between full slip and partial slip. As 
the stability analysis only considers the onset of unstable vibrations, it is sufficient to 
model full slip in the wheel/rail contact in this numerical approach. In order to allow 
for a direct comparison of the time- and frequency-domain approaches, time-domain 
simulations are performed for the linearised wheel/rail system as well.  

The stability analysis described above requires the coupled equations of motion to be 
linearised around the quasi-static curving condition. The normal contact force is 
calculated as  

 , ,3 δlinHKF =  (6.6) 

expression linearised from Eq. (5.155): 
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The elastic penetration is estimated as 
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where cn  is the unit normal vector of the contact plane and r
cu  and w

cu  are the contact 
node displacement vector of rail and wheel. In order for Eq. (6.6) to be introduced into 
Lagrange equations it is transformed into a generalised force vector. Utilising 
Newton’s third law, the following is obtained for the coupled wheel/rail system:  
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The external tangential generalised force vector is then calculated as:  
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where 
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and where ( )cϕt  is a unit vector acting in the plane of the wheel/rail contact in the 
direction given by ϕ , where º0=ϕ  corresponds to the longitudinal (vehicle travelling) 
direction on the rail. 

6.3.4 Solution procedure 

Both squeal models incorporate the wheel, track and contact models previously 
described. The solution procedure for the linear stability analysis and the non-linear 
time-domain model are briefly described in the following. 
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6.3.4.1 Linear stability analysis 

Homogenous equations of motion for the coupled wheel/rail system are assembled by 
considering Eq. (5.26) for the rotating wheelset, Eq. (5.81) for both rails (inner inn and 
outer out) supported by a uniform viscoelastic Winkler bedding, and the previous Eqs. 
(6.9) and (6.11) for the simplified wheel/rail contact formulation proposed for the 
linear stability analysis: 
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Linear stability is investigated through complex eigenvalue analysis. Eq. (6.15) is cast 
into first-order (state-space) form as:  

 ,~~ 0zBzA =+ wrwr   (6.15) 
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Eq. (6.15) represents a linear non-symmetric (caused by inertia effects due to 
convective terms and the friction coupling) eigenvalue problem that is solved in the 
considered frequency range below 8.5 kHz. Unstable eigenmodes of the coupled 
train/track system are indicated by positive real-parts of the associated eigenvalues. 
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The magnitude of the positive real-part gives the rate of growth of the vibration 
amplitude of the associated eigenmode.  

6.3.4.2 Non-linear time-domain simulations 

In the time-domain model, wheel and rail are represented by impulse response 
functions or Green’s functions [172,173] that are calculated from the wheel and rail 
receptances at the contact point by inverse Fourier transform. As the wheel and the rail 
model incorporate effects of the train speed, the movement of the contact point around 
the wheel and along the rail is included in the Green’s functions. Instead of performing 
time integration, the wheel and rail displacements are obtained by convoluting the time 
series of contact forces with the pre-calculated Green’s functions. This procedure is 
relatively computationally efficient. The contact forces are calculated by solving the 
proposed normal and tangential contact models online in each time step. The detailed 
solution procedure is described in Ref. [65].  

If squeal does not occur, the time series of the contact forces is (approximately) 
constant during quasi-static curving. If squeal occurs, an unstable vibration builds up 
which stops growing when it reaches the limit cycle.  

6.3.5 Results 

Negotiation of a C20 trainset through a curve of radius 120 m is considered. Conditions 
corresponding to the low rail contact of the leading wheelset in the second bogie are 
modelled. Both the influence of wheel/rail friction and of the direction of the resulting 
creep force on the occurrence of squeal is studied. The results presented in this section 
have been calculated for vanishing vehicle speed. 

6.3.5.1 Linear stability analysis 

Onset of instability is investigated for varying friction level and direction of the 
resulting creep force. The coloured markers in Fig. 6.9 correspond to eigenvalues that 
develop positive real-parts. In the following, the eigenmode associated with the largest 
magnitude positive real-part is referred to as the dominating unstable eigenmode. 
Instability is predicted from friction coefficient 0.2 and 0.5 upwards for the wheel in a 
purely under-radial (ϕ=π/2) and over-radial steering position (ϕ=3π/2), respectively. In 
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addition, Fig. 6.9 shows the dominating unstable eigenmode to be influenced by the 
direction of the resulting creep force. For example instability is not predicted for a 
resulting creep force acting in the longitudinal direction (ϕ=0 or ϕ=π) independent of 
the friction level. 

The spectrum of the real-parts of the eigenvalues calculated for μ=0.7 and ϕ=90° is 
shown in Fig. 6.10. The dominating unstable eigenmode at 430 Hz is found to 
correspond to a coupled wheel/rail vibration comprising the axial wheel mode with two 
nodal diameters (and zero nodal circles) and bending of the rail primarily in the lateral 
direction. The eigenmode corresponding to the peak at eigenfrequency 1140 Hz 
involves a vibration of the wheel mode with three nodal diameters. 

Fig. 6.11 shows the spectrum of the real-parts of the eigenvalues calculated for µ=0.7 
and ϕ=270°. Positive real-parts result at approximate frequencies 8220 Hz and 9264 
Hz, which correspond to axial wheel modes with 10 and 11 nodal diameters, 
respectively. 

 

Fig. 6.9. Largest magnitude real-part of eigenvalues calculated for varying directions of 
the resulting creep force (acting in angle ϕ with respect to the vehicle running 

direction) and a wheel/rail friction coefficient in the range between 0 and 0.7. Unstable 
modes outlined with coloured markers. Black stars correspond to stable conditions. 
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Fig. 6.10. Real-parts of eigenvalues calculated for ϕ=90° and µ=0.7. Eigenmodes 
associated with the largest magnitude real-parts are outlined. 

 

Fig. 6.11. Real-parts of eigenvalues calculated for ϕ=270° and µ=0.7. Eigenmodes 
associated with positive real-parts are outlined. The contribution from the track in the 

current eigenmodes was found insignificant (not shown here). 

6.3.5.2 Non-linear time-domain simulations 

The calculations for creep force directions ϕ=90° and ϕ=270° and the friction 
coefficient µ varying from 0.1 to 0.7 have been repeated with the time-domain model 
both including the linear and the non-linear contact model. A lateral creepage with 
absolute value of 2% has been assumed. The time step is 1.8×10-5 s and the spatial 
resolution in the contact area is 0.25 mm and 1 mm in longitudinal and lateral 
directions. The total simulated time is 3.5 s. If squeal occurs in the linear model, the 
amplitude of the vibration grows to infinity. In the non-linear model, a limit-cycle with 
finite amplitude is reached, where the contact zone changes periodically between full 
slip and partial slip. 
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The results are given in Fig. 6.12 in terms of the main frequency component of the 
lateral contact force. For comparison, the corresponding results from the stability 
analysis are also shown again. The power spectra of the lateral contact force for µ=0.7 
and creep force directions 90° and 270° are given in Figs. 6.13 and 6.14, respectively. 

 
    (a)             (b) 

Fig. 6.12. Frequency of the highest peak in the spectrum of the lateral contact force 
obtained in the linear time-domain (TD lin) and the non-linear time-domain 

simulations (TD nlin) in comparison to the frequency belonging to the largest positive 
real-part from the linear stability analysis (SA) for different friction coefficients: under-

radial wheelset position, ϕ=90° (a) and over-radial wheelset position, ϕ=270° (b). 

In the under-radial case, the results of the linear time-domain model agree with the 
results from the stability analysis in terms of the instability region and the main 
frequency component at 430 Hz, Fig. 6.12(a). The three peaks in the spectrum for 
µ=0.7, Fig. 6.13(a) agrees with the three main peaks in the spectrum of the real-parts of 
eigenvalues, see Fig. 6.11. The simulations with the non-linear time-domain model still 
give the same instability region and involve the same mode at 430 Hz, see Fig. 6.12(a), 
but the spectrum of the lateral contact force now shows also higher harmonics and the 
peak at the second harmonic is for most cases higher than the fundamental frequency, 
see Fig. 6.13(b). 

In the over-radial case, results from the time-domain simulations are still similar to the 
stability analysis, see Fig. 6.12(b), but instability occurs at a slightly higher friction 
coefficient (0.6 instead of 0.5) and the main frequency component shifts from 8220 Hz 
to 9266 Hz for most squeal cases. A comparison of Fig. 6.11 and Fig. 6.14 shows that 
for µ=0.7, the same main unstable modes are detected with both models, but the order 
is reversed. 
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                   (a) 

 
             (b) 

Fig. 6.13. Power spectrum of the lateral contact force for ϕ=90° and µ=0.7 obtained 
with the linear time-domain model (a) and the non-linear time-domain model (b). 

  (a) 

 
  (b) 

Fig. 6.14. Power spectrum of the lateral contact force for ϕ=270 and µ=0.7 obtained 
with the linear time-domain model (a) and the non-linear time-domain model (b). 
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6.3.6 Discussion 

The linear stability analysis and the linear time-domain model give similar results, 
which supports that the models have been implemented correctly. The results are 
however not identical, which is reasonable since the same problem has been solved 
with two fundamentally different procedures. In addition, although the same submodels 
have been used in both the time- and frequency-domain approaches, there are still some 
small modelling differences. Currently, the time-domain model does for example not 
include the longitudinal dynamics of wheel and track, but only the lateral and vertical, 
while all three directions are included in the stability analysis. Another difference 
follows from the fact that the first value of the Green’s functions in the time-domain 
model is set to zero. This value describes the instantaneous displacementof the contact 
point (partly due to the local deformation close to the contact point) at the wheel (or 
rail) in the moment a force is applied. Setting the first value of the Green’s function to 
zero implies that in the time-domain approach the local instantaneous deformation at 
the contact point is only modelled in the contact model, while in the linear stability 
analysis there are in addition contributions from the FE-models of wheel and rail. 

Comparing the linear and non-linear time-domain simulations reveals, on the one hand, 
the non-linear character of squeal since strong higher harmonics may be present and 
the main frequency component may differ between linear and non-linear simulations. 
On the other hand, the linear time-domain simulations and the linear stability analysis 
perform well in the prediction of the instability range and the unstable mode with the 
largest positive real part in the stability analysis corresponds in most of the investigated 
cases to the dominant unstable mode in the non-linear time-domain simulations. 

In this discussion, it should be kept in mind that the magnitude of the real part of 
unstable modes in the stability analysis only provides the rate of growth of the 
instability and is not a selection criterion between different unstable modes. Massi et 
al. [183], who compared a linear and a non-linear approach for brake squeal, point out 
that the magnitude of the real part of unstable modes is not a selection criterion 
between different unstable modes. As the real part of the eigenvalue only provides the 
rate of growth of the instability, the system does not necessarily become unstable at the 
frequency corresponding to the largest positive real part. Instead they propose that “the 
modes involved in the squeal phenomenon are those characterised by larger amplitude 
of the deformed shape at the contact zone”. In addition, Massi et al. found that the 
complex eigenvalue analysis over-predicts the unstable regions in the parameter space 
in comparison to the non-linear time-domain simulations. 
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6.4 INVESTIGATION OF STICK/SLIP 
OSCILLATIONS IN CURVING CONDITIONS 
FOR CONSTANT FRICTION 

6.4.1 Introduction 

As a contribution to the controversial from the physical mechanism that originates 
curve squeal, the enhanced wheelset/track dynamic interaction model presented in this 
thesis is evaluated in curving conditions for constant friction in order to investigate 
whether these conditions can be sufficient to generate instabilities in the contact 
dynamics. In Section 2.1, this mechanism has been called constant friction mechanism, 
in contrast with the falling friction coefficient [5], based in the negative-damping effect 
caused.  

In this section, curve squeal is investigated for two tight curve radii of 500 and 120 m 
and for different friction coefficients, which remain constant along the simulation. For 
these conditions, longitudinal creepage occurs since the outer wheel on a wheelset has 
a longer running distance through the curve than the inner wheel and the conicity of the 
wheels can only partly compensate for this difference in running distance. The leading 
wheelset in a bogie rolls with a high angle of attack against the rail in tight curves, 
which gives rise to a large lateral creepage. The simulations are run using the linear 
complex stability analysis in the frequency domain and the numerical time integration 
in the time domain. 

6.4.2 Wheelset, track and contact models 

Following the procedure detailed in Section 6.2.2, the vehicle is confined to one 
wheelset with primary suspension. The wheelset has been modelled as a flexible and 
rotating wheelset [55,160], in which Eulerian-modal coordinates are employed. 400 
vibration modes of the wheelset have been considered, covering a frequency range up 
to 8.5 kHz in order to address the high-frequency range in which curve squeal occurs. 

In order to reproduce the steady-state curving effects, appropriate forces are prescribed 
at the primary suspension; these forces are derived from the results of low-frequency 
multibody simulation in which the whole vehicle is considered, but all bodies are 
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assumed to behave as rigid. The contact forces are applied in the contact patch that is 
reduced to a contact point. The stiffness of the primary suspensions is included in the 
wheelset model on the corresponding nodes where they are located. The weight of the 
axle boxes is introduced as discrete vertical forces. The weight of the wheelset is also 
included uniformly along the mesh using the FE method for its distribution. These 
implementations permit to calculate the pseudo-static deformed configuration of 
wheelset and rail. 

The effect of low-frequency curving dynamics of the complete vehicle needs however 
to be included in the model in order to obtain suitable mean values for the creepages 
and contact forces. This is accomplished by prescribing the forces applied by the 
primary suspension to the wheelset in the vertical plane and the yaw rotation of the 
bogie at the primary suspension. While running through a curve, the wheelset develops 
steady-state values of the creepages and contact forces that are substantially different 
from the case of tangent track running. On account of the non-linearities of wheel/rail 
contact, these steady-state contact forces and creepages strongly affect the coupled 
wheelset/track dynamics in the entire frequency range addressed by the study, and 
therefore need to be properly taken into account in the numerical simulation procedure. 
It is also worth noticing that the elastic coupling of different wheelsets in the vehicle, 
typically via the primary suspensions and bogie frame, affects the steady-state contact 
forces and creepages in the curve. The low frequency multibody simulation is 
performed using multibody dynamic simulation software [171]. An ERRI-wagon is 
selected. It refers to the trailed car of a concentrated power train for high speed 
passenger service. The leading wheelset considered for the simulations is meshed with 
12340 solid quadratic elements (20-nodes) and includes a total of 260145 degrees of 
freedom. It is equipped with a solid axle wheelset with monobloc, the brake discs and 
light S1002 design wheels.  

The track is represented by a rail supported by a uniform viscoelastic Winkler bedding. 
Its structural flexibility is included by the 3D MEM approach from Eq. (5.71). A rail 
with UIC60 (60 kg/m) profile and 42 m length is modelled with 8452 solid quadratic 
elements (20-nodes) and includes a total of 170175 degrees of freedom. This 
corresponds to a uniform-linear longitudinal mesh in which the element length 
increases linearly from the central element to 60% of the half-length of the rail on each 
side, while the remaining 40% presents uniform element lengths. The central element 
length is 1 cm. Cyclic boundary conditions are modelled at the rail ends. The rail and 
the Winkler bedding present the same mechanical properties than the rail used in the 
previous set of simulations (see Section 6.3.2). Modal synthesis retaining a truncated 
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set of the 2000 lowest frequency eigenmodes is performed, covering a frequency range 
up to 9.0 kHz. 

In order to compute the contact forces at the instant t, the wheel/rail contact model 
adopted is based on the incremental method described in Section 5.6. The parameters 
that define the normal and tangential dynamics, approach and creepages, respectively, 
start from the pseudo-static deformations of wheelset and rail. These are pre-calculated 
from the quasi-static contact forces provided by the multibody. The relative wheel/rail 
displacement is computed, from which the incremental penetration and creepages are 
calculated for each instant. Again, the time step is 5.0×10-6 s and the spatial resolution 
in the contact area is 0.25 mm and 1 mm in longitudinal and lateral directions. The 
total simulated in each simulation in time is 1.0 s. 

6.4.3 Results 

It is intended to evaluate the interaction model in curving conditions with a constant 
coefficient of friction in order to see if the constant coefficient mechanism is sufficient 
itself to generate instabilities in the contact dynamics that can be potentially associated 
with curve squeal. Table 6.5 presents the relevant input data corresponding to eight 
simulations carried out for two curve radii and four friction coefficients. The vehicle 
speed V  is set for both curve radii to make the non-compensated acceleration zero. 
Table 6.6 gathers the pseudo-static solution for the lateral displacements and creepages 
for both wheels of the leading wheelset corresponding to each simulation case 
computed by ADAMS multibody software. 

Simulation Curve radius,  
rR  [m] 

Vehicle speed,  
V  [km/h] 

Friction  
coeff., µ  [-] 

I 120 39.13 0.20 
II   0.32 
III   0.40 
IV   0.60 
V 500 79.86 0.20 
VI   0.32 
VII   0.40 
VIII   0.60 

Table 6.5. Study cases simulated by the complete wheelset/track interaction model 
proposed. 



194 Advanced techniques for time-domain modelling of high-freq. train/track interaction 

Simulation Lat. variation 
contact point 
outer wheel, 

w
outy∆  [mm] 

Lat. variation 
contact point 
inner wheel, 

w
inny∆  [mm] 

Lat. creepage 
inner wheel, 

inn,2ξ  [-] 

Lat. creepage 
outer wheel, 

out,2ξ  [-] 

I 14.4 -32.8 0.0169 -0.0194 
II 14.5 -35.1 0.0171 -0.0234 
III 14.5 -36.2 0.0171 -0.0268 
IV 14.5 -38.3 0.0172 -0.0437 
V 14.0 -30.7 0.0052 -0.0056 
VI 14.3 -32.5 0.0048 -0.0055 
VII 14.3 -33.3 0.0046 -0.0055 
VIII 14.4 -34.6 0.0046 -0.0056 

Table 6.6. Pseudo-static lateral variations of the position of the contact point (with 
respect to the nominal contact point) and creepages for each simulation case. 

Table 6.7 contains the quasi-static conditions of the leading wheelset for Simulation 
VII, with the lateral and vertical displacements of its centre of gravity, the angle of 
attack and the forces from the carbody. Table 6.8 lists the lateral variations of the 
position of the contact point (with respect to the nominal contact point) for both 
wheels, the contact contact angle, creepages and creep forces for Simulation VII 
(chosen for illustration purposes). ADAMS software uses the sign criteria defined by 
XTYT in Fig. 5.2. All these values are used as mean values in the incremental contact 
algorithm adopted. 

Lateral displacement, COGy∆  [mm]  6.2 
Vertical displacement, COGz∆  [mm]  0.4 
Angle of attack, ψ  [º] -0.264 

Longitudinal force, X  [N]  162 

Lateral force, Y  [N] -1770 

Vertical force, Z  [N] -109620 

Table 6.7. Simulation VII: Quasi-static conditions for the leading wheelset. 

 



6. Applications of the wheelset/track interaction model 195 

Rail lat. var. contact point, ry∆  [mm] -4.8/-29.8 
Rolling radius, 11r  [mm] -459.7/465.6 
Normal angle, θ  [º] -0.56/33.40 
Longitudinal creepage, 1ξ  [-] -0.0037/-0.0059 
Spin creepage, spξ  [-] -0.021/-1.185 
Longitudinal creep force, 1F  [N] -13672/13512 
Lateral creep force, 2F  [N] -15243/17223 
Vertical creep force, 3F  [N] -52072/57783 

Table 6.8. Simulation VII: Quasi-static conditions for the inner/outer wheels of the 
leading wheelset. 

6.4.3.1 Linear stability analysis 

The complex linear stability analysis is detailed in Section 6.3.4.1. The contact 
formulation is linearised using a normal contact stiffness linHK ,  that depends on the 
contact conditions. The complete wheelset/track model in curve is computed and its 
corresponding eigenvalues are calculated for each simulation case. In order to analyse 
the influence of the rotating terms in the wheelset formulation, both interaction models 
with and without rotation ( 0=Ω ) are evaluated. 

Fig. 6.15 plots the real-part of the eigenvalues that develop positive values in 
Simulation III. Results obtained reveal that rotation completely modifies the 
distribution and magnitude of the unstable eigenmodes. The largest positive real-parts 
are associated with the dominating unstable eigenmodes corresponding to 1743 and 
2221 Hz for the rotating case. It is observed that the most unstable modes are found for 
the rotating wheelset in a range between 1.5 and 2.2 kHz and even for higher 
frequencies, the real-parts are larger than the corresponding to the non-rotating 
wheelset. The exception is found for the peak at 168 Hz in the non-rotating case. 
Therefore, the stability analysis indicates for this simulation case that the rotating terms 
are instabilising the dynamics of the complete system 

Fig. 6.16 depicts the deformed configuration (out of scale) of both rails and wheelset 
for the most unstable mode corresponding to 1743 Hz. Assuming that curve squeal is 
interpreted as self-induced unstable vibrations, this mode can be associated with the 
mode that is more prone to squeal in the curving and friction conditions set in 
Simulation III. The inner wheel presents a more pronounced deformation 
corresponding to the (2,0) mode with 2 nodal diameters and 0 nodal circles. The 
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corresponding inner rail presents a more marked deformation in the lateral as in the 
vertical directions. 

Rotating terms of the wheelset have similar effects in the rest of cases simulated. For 
Simulation VII (same friction and larger curve radius than the previous case), Fig. 6.17 
shows that the largest real-part is again found at 1743 and 2221 Hz for the rotating 
case. Nevertheless, the unstable modes for the non-rotating case present more 
pronounced eigenvalue real-parts in this simulation, being higher than the rotating case 
from 2.5 kHz. Results suggest that the rotating terms for larger curve radii slightly 
instabilise the response of the wheelset/track system in the range of 1−2.2 kHz, but 
their contribution for higher frequencies displaces the unstable frequencies and reduces 
their eigenvalue positive real-parts. Table 6.9 gathers the main unstable frequencies 
and the real-part of the largest case for the eight simulations cases evaluated for 
rotating and non-rotating wheelset model. 

 
Fig. 6.15. Real-parts of eigenvalues for rotating (black) and non-rotating (grey) 

wheelset model (Simulation III). 
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Fig. 6.16. Deformed configuration for the outer and inner rails and the wheelset 
corresponding to the largest eigenvalue real-part for the rotating wheelset model 

(Simulation III). 

 
Fig. 6.17. Real-parts of eigenvalues for rotating (black) and non-rotating (grey) 

wheelset model for Simulation VII. 

  20.0=µ  32.0=µ  40.0=µ  60.0=µ  
=rR  

120 m 

0>Ω  1742(100.4) 1743(87.8), 2221 1743(84.4), 2221 1742(75.8), 2221 

0=Ω  4201, 7138(3.1) 170(6.7), 1544, 5037 168(13.6), 1544 165(45.4) 

=rR  
500 m 

0>Ω  1741(107.8) 1742(105.3) 1743(104.2) 1745(101.8) 
0=Ω  1648(6.9) 170(16.6), 1648, 7137 170(28.9), 1647, 7136 170(69.2), 1646  

Table 6.9. Main unstable frequencies in Hz (and real-part of the corresponding 
eigenvalue in brackets) through complex eigenvalue analysis of the complete system 

with and without rotating terms in the wheelset model. 
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The largest real-part in the rotating case corresponds to the same frequency around 
1743 Hz for both curve radii, indicating an irrelevant influence on the complex stability 
analysis. This frequency slightly increases for higher friction coefficients, while the 
eigenvalue real-part decays significantly, obtaining higher values for the curve radius 
of 500 m. The non-rotating model presents a largest real-part around 170 Hz for both 
curves and other main unstable frequencies in the high-frequency range around 1544: 
1648 Hz for the curve radius of 120 m, and 7136 Hz for 500 m. Eigenvalue real-parts 
are much lower than the rotating case. This indicates that rotation leads to instabilise 
the railway system. 

6.4.3.2 Non-linear time-domain simulations 

From the simulation cases run, tangential contact force is analysed. Fig. 6.18 presents 
the time response corresponding to Simulation VII. The amplitude of the tangential 
oscillations of the inner wheel is shown in Fig. 6.18(a) while the outer one is depicted 
in Fig. 6.18(b). The inner wheel shows an oscillating response that converges around a 
mean value of -12.8 kN and high amplitudes around 8.5 kN, ten times higher than the 
outer wheel. Much higher amplitudes for the tangential contact forces in the inner 
wheel have also been found in the rest of the simulations. These results are in 
agreement with the observations that indicate that highest squeal noise amplitudes are 
usually generated by the leading inner wheel of a bogie [4]. 

 
(a) 
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(b) 

Fig. 6.18. Time response of the lateral contact force 2F  corresponding to Simulation 
VII for the inner (a) and outer (b) wheels. 

Fig. 6.19 (zoomed views) compares the tangential contact force and the tangential 
traction limit defined by friction coefficient times normal contact force for Simulation 
VII. The inner wheel (Fig. 6.19(a)) presents cycles defined by a stick phase when the 
tangential total force (continuous line) is below the traction bound (dashed line), and 
the slip phase when both curves overlap. Step 1 marked in Fig. 6.19(a) corresponds to 
the stick phase (partial stick) in which the contact area is divided into a stick zone 
located in the leading edge and a slip zone that surrounds the previous one, as seen in 
Fig. 6.20(a)). Step 2 corresponds to the slip phase in which the contact area is in full 
slip: all the boundary elements in the contact area are slipping as seen in Fig. 6.20(b). 
For the outer wheel, Fig. 6.19(b) shows that the tangential force is continuously below 
the traction bound without reaching full slip at any time. Hence, these stick/slip cycles 
are only observed in the inner wheel and they can be interpreted as self-induced 
vibrations in curving conditions that come from the railway dynamics itself. 
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(a) 

 
(b) 

Fig. 6.19. Zoom on time response of the contact forces (corresponding to Simulation 
VII); ──: lateral force 2F ; - - - : traction bound 3Fµ ; some selected steps are marked 

with Arabic numerals. (a) Inner wheel; (b) outer wheel. 
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(a) 

 
(b) 

Fig. 6.20. Division of the contact zone in stick ( ) and slip ( ) zones in the time steps 
1 and 2 marked in Fig. 6.19(a). (a) Step 1, (b) step 2. 
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The frequency spectrum of the tangential contact force of the inner wheel is evaluated 
and shown in Fig. 6.21. It reveals strongly tonal peaks for particular frequencies in the 
high-frequency domain which correspond to the expected response of curve squeal 
phenomenon according to the literature [7]. For the simulations carried out, these peaks 
arise from the complex physical process that governs the contact dynamics throughout 
the computation. These results confirm that the wheelset/track model implemented in 
this work is able to reproduce this high-frequency tonal response even with a constant 
coefficient of friction and, hence, this mechanism is revealed as sufficient for the 
generation of squeal in curving conditions. The frequencies at which these peaks occur 
are associated with the oscillating frequencies of the stick/slip and the traction bound 
(corresponding to the normal contact force) cycles previously visualised, especially if 
most of the cycle is in full slip. The stick/slip frequencies are or close to be multiples of 
the traction bound frequency. As observed in Fig. 6.19(a), there is a stick/slip 
frequency around 4.8 kHz, which is three times higher than the one associated with the 
dashed limit (around 1.6 kHz). Other stick/slip contributions are around 3.2 and 6.4 
kHz (two and four times, respectively). 

 

Fig. 6.21. Frequency spectrum of the tangential contact force corresponding to 
Simulation VII. 
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Table 6.10 summarises the frequency peaks corresponding to the tangential contact 
force for the inner wheel in all the simulations carried out. It is shown that all the cases 
present a tonal behaviour in the high-frequency domain but with no clear tendencies. 
For the curve radius of 120 m, the main peaks are found at high frequencies: 7.4 kHz 
for =µ 0.20 and 0.60, and 4.5 kHz for =µ 0.32 and 0.40. For the curve radius of 500 
m, peaks are found however in lower frequencies around 1.6 kHz, and the maximum 
amplitudes are associated with higher coefficients of friction. These results suggest that 
high friction values favour a more pronounced tonal response in curving conditions, 
which is in agreement with the well-known fact that low friction conditions (wet 
weather, lubrication) reduce the likelihood of squeal [13]. Anyway, this parameter 
study should be extended to establish consistent relationships between squeal 
characteristics and curve radius and friction coefficient. 

 20.0=µ  32.0=µ  40.0=µ  60.0=µ  

m 120=rR  6.8, 7.4(1.2), 8.0 1.4, 4.5(1.1) 4.5(2.1), 8.0 1.4, 1.6, 2.2, 7.4(0.5) 

m 500=rR  3.8(1.0), 7.7 1.6(1.4), 3.8, 6.1, 7.7 1.6(1.7), 3.2, 4.8, 6.4 1.6(2.2), 3.2, 4.8, 6.4 

Table 6.10. Main squeal frequencies in kHz (in bold for the main peak and in brackets 
for the amplitude in kN) from the lateral contact forces of the inner wheel. 

As explained in the introduction, the squeal mechanism for constant friction has been 
associated in the literature with the wheel modal coupling since squeal frequencies 
found in measurements are close to some natural frequencies of the wheel [7]. Recent 
works that model the wheel as an individual substructure have found that the excited 
natural frequencies correspond to axial wheel modes with zero nodal circles (m=0) 
[9,13]. It is interesting at this point to evaluate the modes associated with the 
frequencies associated with the peaks in amplitude and gathered in Table 6.10 for a 
complete wheelset instead of separated wheel models for the inner and the outer ones. 
The classification of the wheelset modes has been made by visualising the deformed 
configuration associated with each mode considering the torsional, axial and radial 
contributions from the axle and the brake discs. Table 6.11 details the closest wheelset 
modes associated with the main squeal frequencies. Only frequencies in bold exactly 
correspond to a wheelset mode. Axial wheel mode (2,0,a) with two nodal diameters 
and zero nodal circles corresponds to the main frequency of 1.6 kHz for Simulation 
VII. Axial wheel modes with zero nodal circles are associated with squeal frequencies 
up to 4.5 kHz, which agrees with the literature [7,13]. Radial wheel modes and axial 
axle modes appear for higher frequencies. 
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Frequency [Hz] Closest wheelset modes, (n,m) Simulation 
1361 Axial (0,0,a) wheel mode II 
1607 Axial (2,0,a) wheel mode  VI, VII 
3213 Axial (4,0,a) wheel mode VII, VIII 
3841 Radial axle mode V, VI 
4518 Axial axle mode II, III 
4819 Radial (3,1,r) wheel mode VII, VIII 
6053 Radial (4,0,r) wheel mode VI 
6425 Axial axle mode VII, VIII 
7449 − I, IV 
7680 Axial axle mode V, VI 
7958 − III 

Table 6.11. Closest wheelset modes associated with the main squeal frequencies for the 
inner wheel. Frequencies in bold correspond exactly to wheelset modes. 

The influence of the rotating matrix terms V~ , A~ , C~  and S~  associated with the 
angular velocity of the wheelset in Eq. (5.26) is evaluated on the previous simulations 
in curving conditions. Fig. 6.22 shows the comparison using a rotatory and non-
rotatory wheelset in the interaction model, where relevant discrepancies arise in the 
frequency content of the lateral contact forces. For the curve radius of 500 m 
(Simulation VI), the non-rotating simulation (dashed line) presents more content in the 
high-frequency range, as seen in Fig. 6.22(a). The pronounced peaks around 1.6, 3.8 
and 6.1 kHz are substantially more mitigated for the rotating case (solid line). Another 
interesting observation is that the unstable frequencies are slightly shifted to higher 
values for the rotating case since the values of the natural frequencies vary depending 
on the angular velocity following a monotone behaviour. In the simulation under study, 
it can be deduced that forward modes are especially influencing the curving dynamics 
in the occurrence of squeal. For the curve radius of 120 m (Simulations III and IV), the 
frequency content is appreciably higher than the previous one, especially in the range 
of 1−4 kHz as seen in Figs. 6.22(b) and (c). The attenuation of the rotating case with 
respect to the non-rotating one is not so clear in this range, but the frequency shift of 
the rotating peaks to the right can be appreciated. Fig. 6.22(c) shows that that the non-
rotating case are strongly attenuated in the range of 7−9 kHz. 
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(a) 

 
(b) 
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(c) 

Fig. 6.22. Freq. spectrum of the lateral contact force of the inner wheel using a rotating 
wheelset model (──), and a non-rotating one (- - -) for Sim. VI (a), III (b), IV (c). 

6.4.4 Discussion 

The occurrence of squealing for constant friction values has been investigated for 
curving conditions. Time simulations are run for the wheelset negotiating tight curves 
in order to evaluate the tangential contact and to investigate curve squeal for constant 
friction parameters during the curve. Results give only limited insight into the precise 
underlying mechanism. They find strong unstable tangential contact forces with 
stick/slip oscillations for the inner wheel. The associated frequency spectrum reveals a 
strong tonal behaviour in the high-frequency domain. Therefore, the model proposed in 
this work permits to reproduce the unstable and tonal response that characterises squeal 
phenomenon in curving conditions even with constant friction. It is hence concluded 
that the constant friction mechanism is sufficient for squeal generation. 

These results are also in good agreement with some observations reported in the 
literature about squeal. The unstable frequencies are associated with stick/slip cycles 
that arise from the non-linearities that govern the contact dynamics [9,13]. The unstable 
peaks decrease their amplitudes for low friction values, in line with the fact that low 
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friction conditions reduce the likelihood of squeal [7]. Curve radius (associated with 
lateral creepage and lateral contact position) and frictional properties are key 
parameters with significant influence on the frequency content and intensity of curve 
squeal [5,7]. On other hand, results confirm that the rotation of the wheelset has a 
crucial influence on curve squeal. The inclusion of the terms associated with the 
rotation shifts squeal frequencies and it strongly affects the frequency content 
(amplitude of the tonal peaks) in the high-frequency range. 

The complexity of the contact dynamics and the introduction of the complete wheelset 
instead of separated wheel models arise as direct responsible of curve squeal since its 
linearisation in the linear stability analysis gives completely different unstable 
frequencies than the time-domain model. Hence, it permits to conclude that the 
comprehension of the curve squeal phenomenon requires detailed unsteady and non-
linear contact models, because simplifications do not permit to address this complex 
physical process. 

6.5 CONCLUSIONS 

In this chapter, the models described in the thesis have been integrated in a train/track 
dynamic interaction model that contains a non-Hertzian and instationary contact model 
and a flexible and rotatory wheelset model. A cyclic track model based on the ME 
technique is also introduced and compared to Timoshenko beam, which is commonly 
utilised in the literature. This complete interaction model is used for running 
simulations in curving conditions in order to address curve squeal. 

Section 6.2 focuses on the deviations in the frequency content of the vertical and lateral 
contact forces between 3D MEM and Timoshenko beam for two types of excitation: 
randomly corrugated tangent track and excitation arising from a wheel flat when the 
wheelset runs over a perfectly even track at 300 km/h. 

 These results validate the 3D MEM as an efficient flexible track model whereas it 
reproduces consistently the contrasted behaviour of the Timoshenko beam for its 
range of validity (low and mid-frequencies) according to the literature. 

 For both types of excitation, the 3D MEM shows a remarkably higher frequency 
content for the 1–8.5 kHz band. These higher harmonics seem to be crucial to 
describe the high-frequency phenomena, such as rolling and squeal noise. 
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 The proposed 3D MEM track model seems to be suitable to describe the high-
frequency dynamics associated with different railway phenomena such as short 
pitch rail corrugation, wheel flat excitation, axle fatigue, rolling, squeal and braking 
noise. 

In Section 6.3, two different numerical approaches for railway curve squeal have been 
presented: a model for linear complex stability analysis and a model for non-linear 
time-domain simulations. Both squeal models have been applied for conditions similar 
to those of a 120 m radius curve on the Stockholm metro exposed to severe curve 
squeal. 

 In both models, the frictional instability arises due to geometrical coupling. 

 For an over-radial position of the wheelset no or only weak instability is detected, 
while pronounced squeal occurs for an under-radial position above a threshold of 
the wheel/rail friction coefficient. All identified squeal frequencies correspond to 
axial modes of the wheel with zero nodal circles. 

 In the evaluated cases, both models show similar tendencies in terms of the 
instability range in the parameter space, but they differ in the predicted squeal 
frequencies. This can partly be attributed to the different nature of the squeal 
models and the fact that the magnitude of the real part of unstable modes in the 
stability analysis is not a selection criterion between different unstable modes. 

 Another possible reason for the obtained differences in squeal predictions are small 
modelling differences between both models. This point needs further investigation 
and will be addressed in future work. 

In Section 6.4, a new approach has been adopted for the estimation of the contact 
forces in curving conditions. The pseudo-static state of the wheel/rail system is given 
by multibody dynamic simulation software. From the pre-calculated pseudo-static 
wheel and rail displacements, the vertical and tangential dynamics are described by 
small displacements. The normal force is defined by a non-linear simplified normal 
relationship from the elastic penetration deviation calculated in each step of the 
simulation and the tangential forces are estimated from the creepages derived by using 
the same approach. A set of eight time-domain simulations for curve radii of 120 and 
500 m and friction coefficients of 0.20, 0.32, 0.40 and 0.60 has been carried out. 
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 Time-domain simulations find strong unstable lateral contact forces with 
stick/slip oscillations. The inner wheel is the one that presents higher mean 
values and more pronounced peaks in the lateral contact force. 

 Both parameters studied, curve radius and frictional properties, are key 
parameters with significant influence on the frequency content and amplitude 
of curve squeal. 

 In the frequency spectrum, discrete tonal peaks are detected. These 
pronounced stick/slip peaks decrease their amplitudes for low friction values. 
Squeal frequencies do not exactly correspond to wheelset modes. 

 The constant friction mechanism is hence revealed as a sufficient physical 
mechanism to generate squeal without the need to include a falling friction 
coefficient. 

 The rotation of the wheelset has a crucial influence on curve squeal, shifting 
the squeal frequencies and affecting decisively the frequency content 
(amplitude of the tonal peaks) in the high-frequency range. 

 The linearisation of the contact dynamics is revealed as insufficient to address 
curve squeal. This phenomenon is strongly dependent of the unsteady and non-
linear physical processes that take place in the contact area. 
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7 CONCLUSIONS AND FUTURE 
WORK 

7.1 CONCLUSIONS 

The main objectives of the thesis, concerning the development of a simulation tool to 
address railway high-frequency phenomena and able to consider non-Hertzian and 
instationary effects in the wheel/rail contact model, have been achieved satisfactorily. 
The most relevant conclusions of the developed work are described below chapter by 
chapter, pointing out the contributions made. 

The study of curve squeal has been the ultimate purpose that has justified the 
development of advanced models for the analysis of railway dynamic interaction in the 
high-frequency domain. Curve squeal is a high-frequency and strongly tonal noise 
which frequently appears when railway vehicles negotiate sharp curves. The particular 
conclusions related to the review of works about curve squeal carried out in Chapter 2 
are detailed below. 

 Insertion of a wheelset in a curve is a complex process that determines curve squeal, 
in which creep forces arise to steer the wheelset. Steering mechanism depends on 
wheel profile and diameter, curve radius, track width and stiffness of the primary 
suspension. 

 Falling friction, which acts as negative damping, has been recognised the most 
accepted mechanism for the generation of squeal. 

 Recent works indicate that the instabilities associated with squeal can arise even for 
contact models with constant friction coefficient from the coupling between the 
normal and tangential directions in the contact dynamics. 

 Most cases reported involve 0-nodal-circle axial modes excited at the leading inner 
wheel but some unusual occurrences have been highlighted where different 
phenomena are involved. 
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Train/track dynamic interaction models in the mid and high-frequency range (from 
about 20 Hz to 5 kHz) are classified in Chapter 3 mainly according to the vehicle 
modelling, the track modelling, the wheel/rail contact and the solving strategies for the 
resulting equation of motion system.The conclusive remarks are listed below: 

 The literature divides between finite and infinite track models. The first ones 
present a boundary effect that originates a reflection of the generated waves at the 
model edges that interact again with the vehicle, introducing errors in the 
simulation. In order to minimise this effect, important lengths must be adopted. The 
infinite track models are divided in two groups: the frequency-domain models and 
the ones based on the wave propagation along periodic structures (Green’s 
functions). Both groups require adopting hypotheses of linearity about the mechanic 
properties of the track. 

 The wheel/rail contact models are classified according to the elastic theory on 
which they are based (Exact Theories or Simplified Theories), if the inertial effects 
are or not considered (Dynamic Theories or Quasi-Static Theories), if instationary 
processes are or not considered (Instationary Theories or Steady-State Theories), 
and depending on the dimension of the contact problem (2D Theories or 3D 
Theories). Regarding the hypotheses used when solving the normal and tangential 
problems, theories are also classified as follows: if Hertzian hypotheses are or not 
considered in the normal problem (Hertzian or non-Hertzian models), and if 
hypotheses of linearity are or not adopted in the calculation of the tangential forces 
(Linear Theory or non-linear models). With regard to the formulation of the elastic 
problem, contact models can also be divided in Non-Conformal Contact models and 
Conformal Contact models. 

 It is usually considered that the elastic quasi-identity hypothesis is satisfied, which 
leads to decouple the normal and tangential contact problem. In the train/track 
dynamic interaction models, it is usual to solve the normal problem by means of a 
linear (frequency-domain) or non-linear (time-domain) Hertzian spring. 
Nevertheless, there exists a growing interest in the development of non-Hertzian 
normal contact models: advanced FE models or approximated models of low 
computational cost. The last ones can be divided in two groups: multi-Hertzian 
methods and virtual elastic penetration methods. In the tangential problem, it is 
common to implement steady-state models of low computational cost, such as 
Kalker’s Linear Theory [105], Shen’s et al. model [100] or FASTSIM [95]. It is 
unusual the implementation of non-Hertzian and instationary model, such as 
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CONTACT [70,81]. The transient contact conditions during squeal are also 
described. 

 The methods for solving the equations of motion from the train/track interaction 
model are classified in: frequency domain, associated with a linear system and a 
lower computational cost; time domain, related to the non-linear behaviour of the 
elements of the train/track system and a higher computational cost. Linear Theory 
and FASTSIM algorithm are also described in the chapter as commonly used in the 
literature as simplifications of the tangential contact problem. Since they do not 
consider transient effects, instationary contact models are needed to explain high-
frequency phenomena such as curve squeal. 

As regards to the development of a 3D contact model (Chapter 4), the following 
conclusions are derived: 

 The theoretical fundamentals of the wheel/rail contact problem and the 
corresponding formulation have been presented. Based on Kalker’s variational 
theory, a 3D non-Hertzian and instationary contact model has been presented. In 
this model, the contact patch is discretised uniformly in rectangular elements in 
which the contact magnitudes are constant. 

 The instationary tangential contact formulation has been modified to meet steady-
state conditions. 

 As one of the contributions of this thesis, a new approach has been adopted 
modifying the original method by means of the regularisation of Coulomb’s law for 
the tangential contact problem. 

- This numerical strategy relates the tangential traction to the slip velocities, 
reducing by approximately half the number of unknowns of the contact 
equations system. Hence, the algorithm becomes more efficient. 

- The regularisation permits the introduction of a falling friction coefficient (with 
different kinematic and static values) in the steady-state tangential contact 
model, eliminating the discontinuity in the traction solution around the stick/slip 
transition. This discontinuity has been reported in the literature when using 
CONTACT algorithm [81]. 
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 Another contribution of this thesis is the implementation of a method for 
introducing a falling friction coefficient in rolling contact mechanics. This method 
is suitable for creepages that slightly exceed the saturation conditions (lower than 
3% if the solids in contact are made of steel), which correspond to the creepage 
range in most of the railway dynamic studies. The technique adopts steady-state 
conditions and the friction coefficient is a function of the local slip velocity through 
a simplified Stribeck curve. 

- The implementation of the velocity-dependent friction coefficient adds new 
variables that frequently have been chosen ad hoc in the literature. The present 
work develops the constrain equations that establish mathematical relationships 
between the different parameters associated with the falling friction rolling 
contact problem. These constrain equations facilitate to build models that 
produce realistic results from experimental data. This respect, the proposed 
model reasonably fits the experimental creepage vs. creep-force curves obtained 
from high-precision test-bench measurements. 

- The appearance of the creepage vs. creep-force curves obtained from the 
proposed methodology does not differ markedly from the one of a single friction 
coefficient. This conclusion is in accordance with previous test-bench 
measurements that present a slight decrease of the tangential force once the 
maximum is reached. 

- A global model that fits all the creepage range level is to the authors’ best 
knowledge, undone. By considering the negligible role of the displacements due 
to the elastic deformation in high-creepage conditions, the present model can be 
adequate in traction locomotive problems if a suitable Stribeck curve is adopted. 
In such case, the above presented constrain equations associated with the 
parameter set have to be reconsidered. 

In Chapter 5, the train/track dynamic interaction modelling is described in order to 
cover the high-frequency domain to address the squeal noise problem. 

 In the frequency range of interest for the study of the railway noise, particularly 
squeal noise, the train model can be reduced to a wheelset model. Flexibility and 
inertial effects associated with the rotation have been included in the model 
developed in UPV [55,159,160] and employed in the present thesis. In this chapter, 
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the formulation of the flexible and rotatory wheelset model based on the use of 
Eulerian-modal coordinates has been summarised. 

 This chapter has also presented one of the most important research contributions of 
this thesis: a new 3D model for a cyclic finitely long railway track that has been 
formulated through the Moving Element Method (MEM) and developed as a FE 
approach in order to improve the modelling of the high-frequency dynamics. The 
model considers an Eulerian coordinate system attached to the moving vehicle 
instead of a fixed coordinate system and it adopts cyclic boundary conditions. This 
approach permits to decrease the computational cost compared to the FE models 
commonly used. 

 The train/track interaction is solved in the time domain through a substructuring 
technique of the elements of the system: the wheelset and the track, which in turn 
consists of the rail, the bedplate and/or the sleepers. 

 An important effort in the development of new techniques for the temporal solving 
of the train/track interaction has been made along the thesis. Apart from the 
Eulerian approach adopted in both wheelset and rail models to enhance the 
efficiency of the interaction modelling, a modal approach has been adopted in both 
elements separately in order to reduce the dimension of the complete system. This 
modal is accompanied by a static modal correction to minimise the errors associated 
with the truncation of the modal shapes taken in both models. Additionally, a 
diagonalisation technique has been developed to decouple the equations of motion 
of both wheelset and rail models, making the solving technique even more efficient. 
Simpson and Magnus integrators and Magnus expansion open a new research line 
to enhance the computational efficiency of the numerical integration. 

In Chapter 6, the models described in the thesis have been integrated in a train/track 
dynamic interaction model that contains a flexible and rotatory wheelset model, a 
cyclic track model based on the ME technique and a non-Hertzian and instationary 
contact model. This complete interaction model has focused on curved track 
simulations in order to address curve squeal. 

 Results from Section 6.2 validate the 3D MEM as an efficient flexible track model 
whereas it reproduces consistently the contrasted behaviour of the Timoshenko 
beam for its range of validity (low and mid-frequencies) according to the literature. 
For both randomly corrugated tracks and wheel flats as types of excitation, the 3D 
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MEM shows a remarkably higher frequency content for the 1–8.5 kHz band. These 
higher harmonics seem to be crucial to describe the high-frequency phenomena, 
such as rolling and squeal noise. Hence, it seems to be suitable to describe the high-
frequency dynamics associated with different railway phenomena such as short 
pitch rail corrugation, wheel flat excitation, axle fatigue, rolling, squeal and braking 
noise. 

 Two different numerical approaches for railway curve squeal have been presented 
in Section 6.3: a model for linear complex stability analysis and a model for non-
linear time-domain simulations. Both squeal models have been applied for 
conditions similar to those of a 120 m radius curve on the Stockholm metro exposed 
to severe curve squeal. In both models, the frictional instability arises due to 
geometrical coupling. 

- In the evaluated cases, both models show similar trends in terms of the 
instability range in the parameter space, but they differ in the predicted squeal 
frequencies. This can partly be attributed to the different nature of the squeal 
models and the fact that the magnitude of the real part of unstable modes in the 
stability analysis is not a selection criterion between different unstable modes. 
Another possible reason for the obtained differences in squeal predictions are 
small modelling differences between both models. This point needs further 
investigation and will be addressed in future work. 

 A new approach has been adopted in Section 6.4 for the estimation of the contact 
forces in curve conditions. Based on ADAMS/RAIL pseudo-static results, the 
vertical and tangential dynamics are described by an incremental procedure. A 
train/track interaction model in curving conditions for constant friction has been 
implemented through a flexible and rotatory wheelset and two finite MEM rails, 
coupled by a non-linear and instationary contact model. Time-domain simulation 
has been carried out taken the curve radius and the friction coefficient as study 
parameters. 

- Strong unstable lateral contact forces with stick/slip oscillations (partial 
stick/full slip cycles) are found for the inner wheel. In the frequency spectrum, 
pronounced tonal peaks arise around discrete unstable frequencies associated 
with curve squeal. These frequencies are close to certain wheelset resonances, 
leading to the wheel modal coupling as a sufficient physical mechanism to 
generate squeal without the need to include a falling friction coefficient. Both 
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parameters studied have a significant influence on the frequency content and 
intensity of this phenomenon. 

- The rotation of the wheelset has a crucial influence on curve squeal. The 
rotatory terms introduced in the equation of motion of the wheelset have a 
substantial impact on the time-domain simulations, shifting the squeal 
frequencies and affecting the frequency content (amplitude of the tonal peaks) in 
the high-frequency range. 

- The linear stability analysis through complex eigenvalue calculation is not valid 
as an approximate tool to evaluate curve squeal in the cases evaluated in this 
section. The non-linear character of the contact dynamics is revealed decisive 
for the physical approach to this phenomenon. Hence, Simplified Theories seem 
not to be valid to address this problem. 

7.2 FUTURE WORK 

The work developed in the present thesis pretended to implement a complete train/track 
dynamic interaction model that permitted to run simulations when the vehicle 
negotiates tangent and curved tracks. In order to make it computationally efficient, only 
the leading wheelset with primary suspension is used to model the vehicle, and the 
contact model considers the contact point fixed during the time simulation and the 
friction coefficient has the same values along the curved track for real conditions. 
These simplfications could be overcome following the lines proposed above: 

 A new complete vehicle model that includes the dynamic of the carbody and the 
axle boxes as sprung masses has been recently developed in this research group. 
This model permits to run the insertion in the curve, whose results are used as initial 
conditions for the curving negotiation without depending on external software. 

 The development of a new contact algorithm that permits the efficient calculation of 
the position of the contact point at each instant is crucial for accurate simulations. 

 The tribological study carried out in this thesis points out that falling friction 
coefficient has a negligible influence for steady-state contact conditions. 
Nevertheless, its influence in dynamic contact conditions could not be studied 
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despite the multiple numerical strategies tested for the inclusion of the slip-velocity 
dependent friction coefficient in the instationary tangential contact model. This is a 
topic that should be investigated and the implementation of the regularisation of 
Coulomb’s law seems to be a promising starting point. 

 The resulting calculation times for the simulations run for curving conditions have 
been larger than 10 h in a standard PC for a time integration of 1 s. This 
computational cost is considered too large in engineering applications. Magnus 
integrators seem to be a good alternative for increasing the calculation velocity but 
further work in their numerical applications is needed. Additionally, Magnus 
expansion permits to find a pseudo-analytic integration solution for periodic 
interaction forces. This method opens a new way to address linear differential 
equation problems with time-dependent stiffness and damping matrices for discrete 
supports. 

 Complementary work should be carried out to analyse the influence of different 
parameters on the squeal generation, extending the curve radius and friction cases 
and modifying other parameters such as creepages, vehicle speed, normal load or 
even roughness of the running surfaces as possible instability mechanisms. 

 The work carried out in this thesis has the immediate objective of developing an 
algorithm for the calculation of the acoustic radiated power of the railway system. 
This model uses as input data the normal surface velocities of the wheels and rails 
given by the dynamic simulation. The obtained results will permit to find which 
wheel (or rail) modes are mainly responsible for squeal. 
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APPENDIX A 

Influence coefficients for the elastic half-
space 

The normal contact model described in Section 4.3 and the tangential contact model 
described in Section 4.4 are based on influence coefficients for the elastic half-space. 
These coefficients are given in Kalker’s book [24] and are listed here for convenience 
in the form needed in this work. 

The coefficients are valid for the case where the potential contact patch between wheel 
and rail is divided into pN  rectangular elements with side lengths 1x∆  and 2x∆ , see 

Fig. A.1, and the traction is taken as piecewise constant over the mesh of rectangles. 
Kalker gave the coefficients for the case where the two contacting bodies are made of 
different materials. Here it is additionally assumed that the two bodies, i.e. wheel and 
rail, are made of the same material, which has a modulus of rigidity G  and a Poisson’s 
ratio ν . 

 

Fig. A.1. Potential contact patch divided into rectangular elements with side lengths 
1x∆  and 2x∆ . 
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The influence coefficient IJ
ijD  gives the displacement in i -direction at the centre of 

element I  due to a unit traction in j -direction in element J . The coefficients are 
obtained as 
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The remaining coefficients IJD13 , IJD31 , IJD23  and IJD32 , which would be responsible for 
the coupling between the normal and tangential directions, are zero for identical 
materials of the two bodies. 

The functions 1J  to 4J  depend on the variables a , b , c  and d  giving the distances in 
x′ - and y′ -directions between the centre of element I  and the corners of element J : 
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and ( )II xx ,2,1 , ′′  and ( )JJ xx ,2,1 , ′′  are the locations of the centres of elements I  and J , 

respectively. 

The function 1J  to 4J  are given by 

 ( ) ( ) ( ) ( ) ( )acgbcgadgbdgdcbaJ ,,,,,,,1 +−−=  (A.7) 
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 ( ) ( ) ( ) ( ) ( )cagcbgdagdbgdcbaJ ,,,,,,,2 +−−=  (A.8) 

 ( ) ( ) ( )dcbaJdcbaJdcbaJ ,,,,,,,,, 213 +=  (A.9) 

 ( ) ( ) ( ) ( ) ( )cahcbhdahdbhdcbaJ ,,,,,,,4 −++−=  (A.10) 

where the functions g  and h  are defined as 

 ( ) ( )( )yxhyxyxg ,ln, +=  (A.11) 

 ( ) 22, yxyxh +=  (A.12) 

and ln denotes the natural logarithm. 



 



223 
 

APPENDIX B 

Hertzian model for normal contact 

In the approach adopted in this section, non-conformal contact is assumed in which the 
contact patch is much lower than the dimensions of the bodies in contact. With this 
assumption, both bodies can be considered as half-spaces. This hypothesis is 
commonly accepted in the wheel/rail contact modelling and gives precise results when 
the railway axes circulate centred on the track. Assume that two non-conforming 
surfaces are brought into contact without loading. They only touch in one point that is 
taken as origin O  of a Cartesian coordinate system 321 xxx . The 21xx -plane is the 
tangent plane to the surfaces at the origin, and the 3x -axis is the common normal to the 
two surfaces pointing into wheel. The surfaces of the wheel and the rail can be 
described by quadratic functions in the vicinity of the contact point assuming the fourth 
Hertzian hypothesis, see Section 3.5.1: 
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where wr1  and wr2  are the principal radii of curvature of surface of the wheel at the 
origin, i.e. the minimum and maximum values of the radius of curvature of all possible 
cross-sections of the profile, which are found in perpendicular planes denoted the 

31 xxw - and the 32 xxw -planes). The variables rr1  and rr2  are the principal radii of 

curvature of the rail surface at the origin, found in the 31 xxr - and the 32 xxr -planes. Each 
radius of curvature is positive if the curvature centre is located inside the body (convex 
surface) and negative if the curvature centre is located outside (concave surfaces). ψ  is 

the angle between 31 xxw - and 31 xxr -planes. 

In the railway case, the wheel rolling radius, rr1 , and the rail transverse radius of 

curvature, wr2 , are generally positive, while the wheel transverse radius of curvature, 
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rr2 , can be positive or negative [184]. The rail radius in the rolling direction, wr1 , is 
assumed to be infinite. Wheel and rail radii of curvature are determined at the 
geometric point of contact. The geometric contact point depends on the wheel and rail 
profiles and the translational and angular position of the wheel on the rail and it is 
calculated considering both bodies as rigid. From Eqs. (B.1) and (B.2), the distance 
between the undeformed surfaces is 
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r
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with suitable orientation of the 1x - and 2x -axes. The variables 1r  and 2r  denote the 
principal relative radii of curvature of the surfaces, which can be calculated from the 
principal radii of curvature of both surfaces, wr1 , wr2 , rr1 , rr2 , and the angle ψ  [32]. 

When both bodies are pressed together with a load 3F , they are locally deformed and 
the contact point develops into a contact ellipse with semi-axes 1a  and 2a  where, by 
definition, 21 aa > . Distant points in the two bodies approach by a distance δ . The ratio 
of the semi-axes of the contact ellipse, 21 aaA = , depends only on the relative principal 
radii of curvature, 1r  and 2r . The final equations for the semi-axes, 1a  and 2a , and the 
approach of distant points, δ , are: 
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wE , wν  and rE , rν  are the Young’s modulus and the Poisson’s ratio of the wheel and 
the rail, respectively. m  and n  coefficients depend on the ρρ KK /* , where *

ρK  is 

defined as 
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m  and n  coefficients are determined by θ : 

 ( )./cos *1
ρρθ KK−=  (B.11) 

 

Table B.1. m  and n  coefficients function of θ  (in º) [31]. 

 

From the Hertzian assumptions [31] detailed in Section 3.5.1, the equation of the 
contact patch is ellipsoidal: 
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The pressure distribution in the contact patch is also ellipsoidal: 
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where the maximum contact pressure occurs at the origin: 
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Fig. B.1 shows an example of an ellipsoidal normal distribution defined by Eqs. (B.13) 
and (B.14) on the elliptical contact patch; material and geometric conditions are taken 
from Table 4.1 from Section 4.3. MATLAB function surf interpolates the discrete 
values to make the plotted surface continuous; this function has been used in the above 
figure. Nevertheless, the contact patch is meshed uniformly through rectangular 
boundary elements. In each BE element, the contact pressure is constant with the value 
of the centre of the element. 

 

Fig. B.1. Implementation of the Hertzian contact model into a wheel/rail interaction 
model. The lower figure represents the overhead view, showing the elliptical contact 

patch.  

In many interaction models operating in the time domain, a single non-linear spring is 
introduced as contact model between wheel and rail. The characteristic of this spring, 

( )δ3F , is obtained from Eq. (B.6): 
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The factor HK  is a function only of the principal relative radii of curvature and the 
material parameters. Frequently, Eq. (B.15) is further simplified. The characteristic is 
linearised for frequency-domain models around the elastic penetration, 0δ , 
corresponding to static preload, 30F . The stiffness of the linear Hertzian spring, linHK , , 

is obtained from the tangential gradient in the point ( )
030 , Fδ : 
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APPENDIX C 
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This Appendix lists the papers in journals and conferences related to the Thesis in 
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• 3D Moving Element Method (MEM) to model the track is proposed.
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Abstract The existence of a wheel–rail friction coefficient

that depends on the slip velocity has been associated in the

literature with important railway problems like the curving

squeal and certain corrugation problems in rails. Rolling

contact models that take into account this effect were

carried out through the so-called Exact Theories adopting

an exact elastic model of the solids in contact, and Sim-

plified Theories which assume simplified elastic models

such as Winkler. The former ones, based on Kalker’s

Variational Theory, give rise to numerical problems; the

latter ones need to adopt hypotheses that significantly

deviate from actual conditions, leading to unrealistic

solutions of the contact problem. In this paper, a method-

ology based on Kalker’s Variational Theory is presented, in

which a local slip velocity-dependent friction law is con-

sidered. A formulation to get steady-state conditions of

rolling contact by means of regularisation of the Cou-

lomb’s law is proposed. The model allows establishing

relationships in order to estimate the global properties

(creepage velocities vs. total longitudinal forces) through

local properties (local slip velocity vs. coefficient of fric-

tion) or vice versa. The proposed model shows a good

agreement with experimental tests while solving the

numerical problems previously mentioned.

Keywords Rolling contact � Falling friction coefficient �
Coulomb’s law regularisation

1 Introduction

Rolling contact models are widely used in railway tech-

nology in order to compute wheel–rail contact forces or

estimate wheel and rail wear. With few exceptions, these

contact theories implement the original Coulomb’s law

with a constant friction coefficient. Nevertheless, the

existence of a coefficient of friction falling with the slip

velocity has been associated (together with another mech-

anisms) with corrugation of rails [1], or squeal noise in

narrow curves [2]. Figure 1 shows the creep force versus

creepage when both a constant finite and an infinite friction

coefficients are considered. The same plot presents the

expected creep force when a falling friction coefficient is

adopted, which is differentiated by a local minimum that

would explain stick–slip phenomena.

Some researchers have developed rolling contact theo-

ries that represent the dependence of the coefficient of

friction on the slip velocity, generally by two coefficients

of friction (static/kinematic). These models are either

Simplified Theories (see definition in [3], and examples in

[4, 5]), that somehow simplify the relationships between

the contact traction distributions and the displacements in

the contact area, or they are based on the Kalker’s tan-

gential Variational Theory [3], that introduces a half-space

elastic model in the formulation (Exact Theory). The

Simplified Theories are adjusted to converge to the results

from the Exact Theories, giving a good agreement when

comparing the velocity of the wheel–rail contact point

(creepages) and forces [3]. However, this agreement does

not occur for the local slip velocities [6] and consequently,
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Abstract 
 
The dependence of the coefficient of friction on the local slip velocity has been 
associated in the literature with many important railway problems such as the squeal 
noise that occurs in narrow curves, certain types of corrugation of rails, braking, etc. 
In order to consider this effect, some researchers have tried to develop models 
usually based on simplified theories from Kalker that would not be adequate for 
considering falling friction coefficient.  

In this paper a methodology based on Kalker’s variational theory is presented, in 
which a local slip velocity-dependent friction law is considered. It is proposed a 
formulation to get, firstly, steady-state conditions of contact through an exact elastic 
model and secondly, macro-properties (creepage velocities versus total longitudinal 
forces) through local-properties (local slip velocity versus coefficient of friction) and 
vice versa. Additionally, the unsteady variational theory by Kalker is modified by 
introducing a regularisation of the Coulomb law. Numerical and computational 
improvements and non-stationary convergence strategies will be discussed. 

Keywords: rolling contact, non-steady state rolling contact, steady-state rolling 
contact, exact rolling contact theory, falling friction coefficient, Coulomb law 
regularisation. 

1  Introduction 
 
The existence of a coefficient of friction that falls with the slip velocity has been 
associated with certain corrugation problems (e.g. rutting, see Reference [1]) or 
squeal noise in narrow curves [2]. Some researchers have developed rolling contact 
theories that consider the dependence of the coefficient of friction on the slip 
velocity, by means of two coefficients of frictions (static/kinematic). These models 
are either simplified theories [3][4] that have not been tested with sufficient 

©Civil-Comp Press, 2014
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Railway Technology: Research, Development and 
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Civil-Comp Press, Ajaccio, Corsica, France. Paper 190 
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ABSTRACT 

As it is well known, there are various phenomena related to railway train-track interaction, 

some of them caused by the high–frequency dynamics of the system, such as rolling noise, 

squeal noise and short-pitch rail corrugation. Due to these phenomena and some others 

unsolved so far, a large effort has been made over the last 40 years in order to define suitable 

models for studying train-track interaction. In most of the early works the vehicle was modelled 

as a rigid body system. Later, the introduction of the wheelset flexibility in the model was 

required to have a more realistic representation of the wheel–rail interaction effects at higher 

frequencies. Recently, more advanced train-track interaction models have been developed for 

vehicle running on straight track and negotiating a curved track, where the rails are modelled by 

means of Timoshenko beam elements with cyclic boundary conditions. Thus, the rail model is 

valid up to 1.5 kHz for lateral vibration and up to 2 kHz for vertical vibration. Therefore, this 

confines the frequency range of validity for the complete train-track model to 1.5 kHz. 

The aim of this paper is to propose an improvement of the train-track interaction models so as to 

extend their range of validity above 1.5 kHz. With this purpose, a track model based on the 3D 

Moving Element Method (MEM) is developed to replace the Timoshenko beam considered in 

earlier studies, adopting cyclic boundary conditions and Eulerian coordinates. The MEM 

approach considers a mobile finite element (FE) mesh which moves with the vehicle speed, so 

the mass of the rail ‘flows’ with the velocity of the vehicle but in the opposite direction through 

the mesh. The MEM permits to fix the contact area in the middle of the finitely long track and, 

hence, to refine longitudinally the mesh only around the contact area. This Eulerian-modal 

approach reduces substantially the number of degrees of freedom of the problem whereby, 

together with a refinement just around the fixed contact area, the computational cost of the 

proposed model is much lower than FEM models widely used. Simulation results for the 

proposed modelling approach are presented and discussed for different excitation sources 

including random rail roughness and singularities such as wheel flats. All the simulation cases 

are made for a Timoshenko beam and a 3D MEM rail models, in order to point out the 

differences in the contact forces above the range of validity of the Timoshenko beam. 

1. INTRODUCTION 

The complexity of the train-track interaction comes from the vibration coupling between the 

railway vehicle and a flexible track, in which wheel–rail contact forces couple both sub-systems 

and their surface imperfections, such as rail roughness and wheel out-of-roundness, excite the 

global system. Unwanted phenomena such as damage of the rolling surfaces in the form of high 

levels of noise and vibration [1], corrugation [2], rolling contact fatigue [3] and dynamic 

stresses may appear in some cases due to large level of vibration and large dynamic fluctuations 

of the contact forces, which need to be carefully considered in order to avoid failures due to 

metal fatigue. 
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Abstract 
 
Railway curve squeal arises from self-excited vibrations during curving. In this 
paper, a combination of frequency- and a time-domain approach for curve squeal is 
applied in order to compare and evaluate the two different approaches. In the 
frequency-domain, linear stability is investigated through complex eigenvalue 
analysis. The time-domain model is based on the Green's functions approach and 
uses a convolution procedure to obtain the system response. To ensure 
comparability, the same submodels are implemented in both squeal models. The 
wheel model includes a single flexible wheel and accounts for inertia effects due to 
rotation adopting Eulerian coordinates. The track is modelled using the moving 
element method technique corresponding to a finite element mesh that travels with 
the vehicle speed. Coulomb's law with a constant friction coefficient is applied to 
model the local friction characteristics in the contact zone. The frictional instability 
arises due to geometrical coupling. The rolling contact model applied is Kalker's 
variational method in the time domain and a linearized version of this method in the 
frequency domain. Conditions similar to those of a curve on the Stockholm metro 
exposed to severe curve squeal are studied with both squeal models. The influence 
of the wheel-rail friction coefficient and the direction of the resulting creep force on 
the occurrence of squeal is investigated for vanishing train speed. The results of both 
models show similar tendencies, but differ in the predicted squeal frequencies.  
 
Keywords: curve squeal, instability, wheel-rail interaction, stability analysis, time 
domain, non-linearity, friction. 
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Summary
In this study, a simulation tool for rail corrugation analysis which is based on a feedback process accounting for 
the dynamic vehicle-track interaction in the time domain, and for the damage due to wear at the wheel-rail 
contact patch is used. The vehicle-track interaction model comprises a rotating flexible wheelset model, a cyclic 
track model based on a substructuring technique and a three-dimensional, non-Hertzian and non-steady-state 
wheel-rail contact model based on the variational theory by Kalker. Archard’s wear model together with the 
non-Hertzian and non-steady-state contact model are used to compute the wear depths on the running surfaces 
of rails. The aim of this work is to analyse the combined effect of the dynamics of the rotating flexible wheelset, 
the vertical stiffness of railpads and the quasi-static curving behaviour of a wheelset on rail corrugation growth 
in large curves. Results confirm that the inertial effects caused by the wheelset rotation give rise to rail 
corrugation growth with wavelength 110 mm only on the low rail due to the simultaneous excitation of the 
backward wheel mode with two nodal diameters and the forward third bending mode (B-F modes) at 142 km/h. 
This may be an original wavelength-fixing mechanism, whose effects are significantly magnified when stiff 
railpads are considered. 

1 Introduction
It is well known that the development of rail corrugation is closely related to certain resonances and 
antiresonances of the vehicle-track coupled system, which act as wavelength-fixing mechanisms. Moreover, 
wear is the damage mechanism responsible for most of the types of corrugation identified so far [1]. Roughness 
existing on the running surfaces of rails, even if they are brand new or recently ground together with the 
discontinuous support of the track by sleepers can excite the complex dynamics of the vehicle-track system and 
give rise to rail corrugation. Additionally, the onset of rail corrugation can be triggered by the presence of 
discrete defects on the running surfaces of rails, such as wheelburns, dipped joints and bad welds [2].   
Nevertheless, after more than a century of field observations of rail corrugation and three decades of 
mathematical modelling, a definite solution to this problem is still lacking. The most effective treatments of rail 
corrugation (grinding and friction modifiers) are unable to avoid its reappearance and cause high maintenance 
costs to railway administrators. In this situation, simulation tools of rail corrugation can play an important role 
in identifying the mechanisms lying behind its formation and growth and possibly help to find solutions.   
In this sense, further research is required to gain a better understanding of the influence of the dynamics of the 
wheelset on rail corrugation, since most of the wheelset models implemented into vehicle-track interaction 
models for corrugation analysis are rigid ones. On the other hand, the stiffness of railpads has proven to have a 
relevant influence on rail corrugation growth [3-5] but to the authors’ knowledge, its combined effect with the 
dynamics of the wheelset has not been studied yet. Moreover, the study of the influence of the wheel-rail contact 
conditions arising when a vehicle negotiates a curve on rail corrugation growth deserves special attention since 
curves are known to be prone to develop corrugation, even if they have large radii.    
In this paper, the simulation tool to analyse rail corrugation growth presented in [6] is used. It is based on a 
feedback process accounting for the dynamic vehicle-track interaction in the time domain, and for the damage 
due to wear at the wheel-rail contact patch. The vehicle-track interaction model comprises a rotating flexible 
wheelset model [7], a cyclic track model based on a substructuring technique [8] and a three-dimensional, non-
Hertzian and non-steady-state wheel-rail contact model based on the variational theory by Kalker [9]. Archard’s 
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Summary 
Railway curve squeal arises from self-excited vibrations during curving. In this paper, a frequency- and a time-
domain approach for curve squeal are compared. In particular, the capability of the frequency-domain model to 
predict the onset of squeal and the squeal frequencies is studied. In the frequency-domain model, linear stability 
is investigated through complex eigenvalue analysis. The time-domain model is based on a Green's functions 
approach and uses a convolution procedure to obtain the system response. To ensure comparability, the same 
submodels are implemented in both squeal models. The structural flexibility of a rotating wheel is modelled by 
adopting Eulerian coordinates. To account for the moving wheel‒rail contact load, the so-called moving element 
method is used to model the track. The local friction characteristics in the contact zone is modelled in 
accordance with Coulomb's law with a constant friction coefficient. The frictional instability arises due to 
geometrical coupling. In the time-domain model, Kalker's non-linear, non-steady state rolling contact model 
including the algorithms NORM and TANG for normal and tangential contact, respectively, is solved in each 
time step. In the frequency-domain model, the normal wheel/rail contact is modelled by a linearization of the 
force-displacement relation obtained with NORM around the quasi-static state and full-slip conditions are 
considered in tangential direction. Conditions similar to those of a curve on the Stockholm metro exposed to 
severe curve squeal are studied with both squeal models. The influence of the wheel-rail friction coefficient and 
the direction of the resulting creep force on the occurrence of squeal is investigated for vanishing train speed. 
Results from both models are similar in terms of the instability range in the parameter space and the predicted 
squeal frequencies. 

1 Introduction 
Creep forces at the wheel/rail interface allow for steering of railway vehicles. In unfavorable conditions in small 
radius curves, this ability may coincide with the generation of a high-frequency tonal noise referred to as curve 
squeal. Curve squeal originates from self-excited vibrations of the railway wheel and occurs at frequencies 
corresponding to its axial normal modes [1]. 
At the squeal frequencies, the wheel mobility exceeds that of the rail making the wheel to become the 
dominating noise source [1]. Hence, in the development of models for squeal prediction, it is of fundamental 
importance to accurately capture the high-frequency dynamic wheel behaviour. Studies in the literature typically 
apply a non-rotating wheel modelled using the finite element method [2-4]. Fayos et al. [5] adopted Eulerian 
coordinates to develop a model of a rotating flexible wheelset that fully accounts for inertia forces such as 
gyroscopic forces and centrifugal stiffening. In [6], Pieringer et al. investigated the influence of wheel rotation 
on squeal predictions using the wheel model from [5,7]. While wheel rotation did not impact on the tendency to 
squeal and the resulting lateral contact forces in this study, it was recommended to investigate the influence of 
wheel rotation on the radiated sound.  
The track represents a complex structure in terms of modelling. Cross-sectional deformation occurs already at 
frequencies around 200 Hz [8], which implies that the three-dimensional dynamic behaviour of the rail has to be 
accounted for at higher frequencies. One modelling alternative is to use waveguide finite elements that combine 
a discretization of the two-dimensional cross-section geometry of the rail with an analytical wave-type solution 
along the rail [4,9]. Koh et al. [10] presented a mathematical formulation of a railway track adopting Eulerian 
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EXTENDED ABSTRACT 

1. Introduction 

The interaction between a railway vehicle and the track is a very complex problem due to the 
vibrational coupling of both sub-systems through the forces appearing in the contact area. 
These contact forces depend on the surface imperfections, such as rail roughness and wheel 
out-of-roundness. Unwanted phenomena such as damage of the rolling surfaces in the form of 
high levels of noise and vibration [1], corrugation [2], wheelset axle fatigue [3] and stress 
damage are related to the large dynamic oscillation of the contact forces. 

Although railways are generally considered an environmentally friendly mean of 
transportation, wheel-rail noise generation is one of their few environmental drawbacks. Curve 
squeal noise, the most annoying type of noise which generally appears when the train negotiates 
a sharp curve, is generated above 5 kHz according to the literature [1]. In order to get a better 
understanding of the phenomena, finite element (FE) wheel models have been introduced in 
railways research to take the flexibility of the wheelset into account, thus extending the 
frequency range; only very recently, further works have considered the inertial effects due to 
wheelset rotation running on a tangent [3] and curved track [4]. Additionally, a FE cyclic track 
model with a refined mesh in the contact area has been developed in [5] to extend the frequency 
range of validity of the track models commonly used (Timoshenko beam, [6]). 

In this paper, some simulations for a curved track are carried out in the time domain using both 
the aforementioned wheelset and the track models and including the dynamics of the carbody 
and the bogie frames through two alternative strategies. Then, the results are compared with the 
simulations of a model using a Timoshenko beam, in order to verify if the proposed 
high-frequency interaction model can predict squeal noise by the occurrence of peaks in the 
tangential forces. 

 

2. Overview of the mathematical approach 

An Eulerian-modal approach is adopted for the FE wheelset model (see Fig. 1(a)), in which 
)(uΦ  is the mode shape function matrix of the free-boundary wheelset. This matrix does not 

depend on time since the rotation of the solid does not change the mode shape functions in fixed 
coordinates due to the axial symmetry of the wheelset. The modal properties are computed from 
a FE technique, resulting the following modal equation of motion 

 ( ) ( )( ) scΩΩΩΩΩ QQGNHUcqDBRSCAqPVq ++ +~-~+~-~ 2-~ = ~+~-~+~ 2+~-~+ ~ 2~ 2+ 22 , (1) 
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Durante los últimos años, el modelado de la dinámica del vehículo ferroviario y la interacción 
vehículo-vía ha sido objeto de una intensa investigación, obteniéndose modelos matemáticos 
avanzados y potentes herramientas para la simulación numérica. Sin embargo, en la mayoría de los 
casos estos modelos consideran el vehículo circulando sobre una vía recta, despreciando los efectos 
relacionados con curva, cuando realmente existen una serie de fenómenos de interacción vehículo-
vía específicos de la negociación de una curva. Por ejemplo: la generación de chirridos (squeal) y
algunos tipos de corrugación del carril. El objetivo de este trabajo es definir un modelo para la 
interacción dinámica del vehículo completo con ejes flexibles y una vía flexible en curva. Es un 
modelo general, pero debido a que se asumen pequeños desplazamientos de los sólidos con respecto 
a un sistema de coordenadas de trayectoria, se obtiene una formulación eficiente que reduce los 
tiempos de simulación con respecto a otros planteamientos existentes en la literatura, haciendo por 
tanto que el modelo sea atractivo para su uso práctico, como puede ser en la etapa de diseño de un 
nuevo vehículo o vía. En este artículo, el modelo propuesto se aplica para analizar el efecto de un 
plano de rueda para diferentes condiciones de circulación, combinando velocidades del vehículo, 
radios de curva y peraltes. 

1. Introducción 
Durante los últimos años, el modelado de la dinámica del vehículo ferroviario y la interacción vehículo-vía ha sido 
objeto de una intensa investigación, obteniéndose modelos matemáticos avanzados y potentes herramientas para 
la simulación numérica. 

Si se analiza el estado del arte, se deduce que hay dos enfoques diferentes para este problema: por un lado, se han 
desarollado modelos denominados de baja frecuencia, los cuales consideran la dinámica de todo el vehículo sobre 
vía rígida en un rango de frecuencias que rara vez excede de 20 Hz [1]. Estos modelos suelen definirse según un 
planteamiento de dinámica multicuerpo, lo cual permite analizar el comportamiento dinámico del vehículo, tanto 
en vía recta como curva, teniendo en cuenta los efectos no lineales relacionados con los grandes desplazamientos 
del sistema. 

Y por otro lado, los modelos de interacción entre vehículo y vía que normalmente incluyen descripciones 
matemáticas más refinadas para la dinámica de la vía y están dirigidos a analizar un rango de frecuencias más 
amplio, haciendo posible el estudio del ruido de rodadura y de fenómenos de degradación como la corrugación de 
los carriles. Estos modelos por lo general sólo consideran las masas no suspendidas del vehículo, y a menudo 
adoptan un modelo simple de contacto rueda-carril, como una rigidez herciana en dirección normal y fuerzas de 
pseudo-deslizamiento lineales en dirección tangencial. Por lo general, los efectos en curva son despreciados. 

Sin embargo, actualmente hay un interés práctico en ciertos fenómenos de interacción vehículo-vía que se 
producen específicamente en vías curvas. Los chirridos (squeal) se originan cuando el eje circula en curvas 
cerradas de radio pequeño. Según la literatura, el origen de este fenómeno se ha asociado a que el coeficiente de 
fricción se reduce con la velocidad de deslizamiento [2], mientras que otros autores afirman que se puede explicar 
a partir de una raíz inestable [3]. Además, ciertos tipos de corrugación se pueden encontrar en el carril interno de 
la curva, y algunos autores asocian la frecuencia de la corrugación con una frecuencia natural del sistema [4]. 

Para poder analizar los fenómenos mencionados anteriormente, se requiere que se considere a la misma vez la 
interacción dinámica de alta frecuencia del vehículo-vía mediante la flexibilidad de los ejes y la vía, y los efectos 
de baja frecuencia asociados al comportamiento en curva del vehículo (el cual depende fundamentalmente de las 
características del bogie y de la suspensión primaria), a la geometría real de la rueda y del carril y a la relación no 
lineal entre las fuerzas de contacto y las velocidades de pseudo-deslizamiento. Esto requiere por tanto un enfoque 
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En el ámbito ferroviario existen varios fenómenos muy conocidos relacionados con la interacción 
dinámica del vehículo y la vía y originados por la dinámica de alta frecuencia del sistema, tales 
como el ruido de rodadura del vehículo, los chirridos (squeal) y la corrugación de longitud de onda 
corta para circulaciones en vías curvas. Debido a estos fenómenos y algunos otros no resueltos a 
día de hoy, durante los últimos años se han llevado a cabo numerosos estudios sobre modelos de 
interacción dinámica vehículo-vía. Con el fin de tener una representación más precisa de los 
fenómenos de interacción a alta frecuencia, se necesita incorporar la flexibilidad del eje y del carril 
en los modelos correspondientes. En los trabajos de interacción vehículo-vía publicados 
recientemente, los carriles se modelan mediante vigas de Timoshenko, siendo válida esta 
aproximación hasta 1.5 kHz. Con el objetivo de extender el rango de validez, en este artículo se 
desarrolla un modelo de vía 3D basado en el Método de Elementos Móviles (MEM) para reemplazar 
la aproximación de vigas de Timoshenko utilizada en los estudios previos. Dicho planteamiento 
considera una malla móvil de elementos finitos del carril que se mueve junto al vehículo, por lo que 
la masa del carril “fluye” a través de su malla a la velocidad del vehículo en sentido opuesto al 
movimiento. Por lo tanto, la técnica MEM permite fijar el área de contacto en la mitad de la longitud 
del carril y refinar la malla solamente en su entorno. Adicionalmente se adopta un planteamiento 
modal del carril, reduciendo sustancialmente ambas estrategias el coste computacional y haciendo 
idóneo el modelo para simulaciones dinámicas de alta frecuencia en tiempos razonables. Se 
presentan y discuten diversos resultados de varias simulaciones dinámicas llevadas a cabo con 
diferentes fuentes de excitación, como rugosidad aleatoria del carril y singularidades como planos 
de rueda. Todas las simulaciones se han realizado tanto para el modelo 3D propuesto del carril 
como para el modelo de vigas de Timoshenko, con el fin de analizar y comparar las diferencias 
entre las fuerzas de contacto de ambos planteamientos en el dominio de alta frecuencia. 

1. Introducción
La complejidad de la interacción dinámica vehículo-vía procede de la vibración acoplada entre el vehículo 
ferroviario y la vía flexible, donde las fuerzas de contacto rueda-carril acoplan ambos subsistemas. La excitación 
del sistema global viene originada por las imperfecciones presentes en las superficies del carril y de la rueda, tales 
como rugosidades y planos de rueda. En algunos casos, y debido a grandes niveles de vibraciones y elevados 
valores dinámicos de las fuerzas de contacto, aparecen fenómenos inesperados como daños severos en las 
superficies de rodadura, originando altos niveles de ruido y vibración [1], corrugación en los carriles [2], fatiga en 
el contacto de la rodadura [3] y considerables tensiones dinámicas. En consecuencia, la metodología utilizada debe 
considerar de forma rigurosa la dinámica de alta frecuencia, con el fin de ser capaz de contemplar dichos 
fenómenos y evitar el fallo por fatiga de los componentes mecánicos. 

Durante los últimos 40 años, se han desarrollado diversos modelos dinámicos apropiados de interacción vehículo-
vía, y algunos más recientes incorporan la flexibilidad del eje para ampliar el rango de análisis en frecuencia [1,4].
Además, para abordar el fenómeno de ruido de rodadura citado anteriormente y extender el rango de frecuencia 
válido por encima de 1 kHz, se han planteado modelos de Elementos Finitos (EF) en el ámbito ferroviario [5,6],
pero sólo en trabajos recientes se ha considerado la flexibilidad y los efectos inerciales debidos a la rotación del 
eje sobre vía recta [3] y vía curva [7]. Con el fin de ampliar el rango de frecuencias válidas, en este trabajo se 
considera dicho modelo de eje en vía recta, el cual tiene en cuenta los efectos giroscópicos e inerciales asociados 
a la rotación del mismo haciendo uso de coordenadas modales Eulerianas, lo cual reduce en consecuencia el coste 
computacional.  

En las publicaciones más recientes sobre modelos de interacción, los carriles vienen representados como vigas de 
Timoshenko con condiciones de contorno cíclicas [8], siendo válido dicho modelo hasta 1.5 kHz en la dinámica 
lateral y 2 kHz en la vertical [1], fijando en 1.5 kHz el rango válido de frecuencias para el modelo completo 
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Resumen: La interacción dinámica entre un vehículo ferroviario y la vía se presenta como un 
problema complejo dado el acoplamiento vibracional entre ambos subsistemas a través de las 
fuerzas que aparecen en el área de contacto. Aunque el transporte ferroviario se considera 
generalmente respetuoso con el medio ambiente, el ruido proveniente de la interacción 
rueda-carril es un inconveniente relevante que ha recibido especial atención en las últimas 
décadas.

Los chirridos en curva, ruido de fuerte carácter tonal en el dominio de las altas frecuencias, 
aparecen generalmente cuando el tren negocia una curva cerrada. Con el objetivo de 
alcanzar una mejor comprensión del fenómeno, se han implementado modelos de Elementos 
Finitos (EF) de la rueda para incluir su flexibilidad y extender así el rango de frecuencias;
recientes trabajos han introducido también los efectos inerciales debidos a la rotación del 
eje. Por otra parte, se ha desarrollado un modelo flexible de vía cíclica mediante un tipo de 
elementos finitos conocido como Moving Elements (ME), que permite refinar la malla 
únicamente alrededor del área de contacto.

En el presente artículo, se han llevado a cabo distintas simulaciones en el dominio del tiempo 
para circulación en vía curva considerando dos radios de curva y cuatro coeficientes de 
fricción distintos, evaluándose las fuerzas de contacto tangenciales en busca de 
inestabilidades que puedan estar asociadas a este fenómeno de chirridos en curva. A su vez, 
se ha estudiado la influencia de los efectos giroscópicos asociados a la rotación del eje.
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RESUMEN 

En este artículo, con el fin de analizar el crecimiento de la corrugación en carriles ferroviarios, se 
utiliza una herramienta de simulación basada en un proceso retroalimentado que considera la 
interacción dinámica vehículo-vía en el dominio del tiempo y el daño debido al desgaste en el 
contacto rueda-carril [1]. El modelo de interacción vehículo-vía comprende un modelo de eje 
montado flexible rotatorio [2], un modelo de vía cíclica [3] y un modelo de contacto tridimensional, 
no herciano y no estacionario basado en la teoría variacional de Kalker [4]. El sistema vehículo-vía 
es excitado mediante rugosidad pseudoaleatoria en los carriles, de reducida amplitud [5]. Se emplea 
el modelo de Archard para el cálculo del desgaste y la tasa global de crecimiento de la corrugación 
[6] para predecir la evolución del defecto. 

En trabajos previos de los autores [1, 7], se estudió el efecto de la excitación de dos resonancias 
coincidentes del eje flexible rotatorio en el crecimiento de la corrugación. En el presente trabajo se 
extiende el estudio realizado en [1] con el objetivo de analizar el efecto combinado de la dinámica 
del eje montado, la rigidez vertical de las placas de asiento de los carriles y las condiciones existentes 
en el contacto rueda-carril cuando el eje delantero de un bogie circula por una curva de radio elevado 
en el crecimiento de la corrugación. Los resultados obtenidos muestran que las placas de asiento de 
elevada rigidez vertical pueden incrementar significativamente el crecimiento de la corrugación a 
determinadas longitudes de onda. 
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