
EDITORIAL

EDITORIAL

Computer systems
An introduction to computers for
engineering curricula
Juan A. Vila Carbó

This book presents the contents of an introduction course to
Computer Science for engineering disciplines where the engineer
makes use of the computer not only as an “office tool” but also as
an integral part of his designs. This is the case of the curricula in
Industrial Automation, Telecommunication, or Aeronautics, where
some engineering designs really consist of embedded systems
built around a microcontroller. In all these curricula, the engineer
needs a deeper insight on the computer basics that goes beyond
the classical introduction to programming, which is considered to
be complementary to this book. This book introduces the basics
of computer structure and organization. The topics covered by
the book are Information Coding, Digital Systems, Computer
Organization, Machine Language, and the Computer Input/Output.
The approach followed to introduce all these topics is the use of
Systems Theory and abstraction as a way to deal with complexity:
a strong emphasis is put throughout the book in identifying boxes
with a well-defined functionality and a set of inputs and outputs.
Complex objects, as computers, can be usually decomposed into
a set of simpler components interconnected through their inputs
and outputs. These components define a lower level of abstraction
that allows showing up some implementation details that were
not relevant at higher levels of abstraction. All these ideas are
illustrated using examples in Matlab language which is used as a
programming tool in most engineering curricula.

Computer systems
An introduction to computers for
engineering curricula

Co
m

pu
te

r s
ys

te
m

s.
An

 in
tro

du
ct

io
n t

o c
om

pu
te

rs
 fo

r e
ng

in
ee

rin
g c

ur
ric

ul
a

EDITORIAL
UNIVERSITAT POLITÈCNICA DE VALÈNCIA

Juan A. Vila Carbó
Received his B.S. degree in Industrial
Engineering from the Universitat Politècnica
de València (UPV) in 1985 and his M.S. in
1994. He got his professorship in the field
of Computer Architecture an Technology
in 2002. His initial teaching activity was in
Computer Science. From 2005 his teaching
activity focused on the subjects of Computers
and Air Navigation in the different degrees
and masters of Aeronautical Engineering
at the UPV, specially, of the Air Navigation
degree that he actively collaborated in
its start-up and acts as coordinator. His
experience in organizing Computer Science
curricula also includes the review and update
of some curricula in east European countries
through several TEMPUS projects of the EU.
His research activity is centered in Real-
Time Systems, where he has participated
in several research projects from the
Spanish Government and the European
Commission. He has published more than
15 papers in research journals and 50
papers in conferences in this topic and has
been advisor of 4 Ph. D’s. He has currently
specialized his research in avionics and air-
traffic control systems where he collaborates
with some other groups, especially with
the Universidad Politécnica de Madrid.
He is also a collaborator of the Spanish Air
Safety Agency (AESA) for the regulations of
Unmanned Aerial Systems.

Juan A. Vila Carbó

Colección Académica

Colección de carácter multidisciplinar,
orientada a los estudiantes y cuya finalidad
es apoyar la gestión docente conforme a
los planes de estudio de las titulaciones
universitarias impartidas en la Universitat
Politècnica de València, constituyendo bi-
bliografía recomendada para el aprendizaje
de una asignatura. Los títulos de la colección
se clasifican en distintas series según el área
de conocimiento y la mayoría de ellos están
disponibles tanto en formato papel como
electrónico.

Todos los títulos de la colección están eva-
luados por el departamento de la Universitat
Politècnica de València en el que se inscribe
la materia, atendiendo a la oportunidad de
la obra para el estudiante y la adecuación
de la metodología empleada en su didáctica.

Para conocer más información sobre la
colección, los títulos que la componen
y cómo adquirirlos puede visitar la web
http://www.lalibreria.upv.es

UPVUPV

EDITORIAL
UNIVERSITAT POLITÈCNICA DE VALÈNCIA

Computer systems

An introduction to computers for engineering curricula

Juan A. Vila Carbó

 Reference Book Series

How to cite this book: Vila Carbó, J.A. (2017). Computer Systems: an introduction to
computers for engineering curricula. Valencia: Editorial Universitat Politècnica de València

The contents of this publication have been evaluated by a double –blind system as can be
consulted on the following page
http://www.upv.es/entidades/AEUPV/info/891747normalc.html

© Juan A. Vila Carbó

© 2017, Editorial Universitat Politècnica de València
 distribución: www.lalibreria.upv.es / Ref.: Ref.: 0613_03_01_01

Printed by: Byprint Percom, sl

ISBN: 978-84-9048-627-6
Print on demand

All rights reserved. No part of this book may be reprinted or reproduced or distributed in any form or by any electronic,
mechanical or other means, now known or hereafter invented, including photocopying and recording, or in any
information storage or retrieval system, without permission in writing from the publishers

Printed in Spain

Abstract

Computers have definitely changed the teaching of engineering and also the professional
practice: old design methods have evolved to computer based methods, numerical or fi-
nite elements methods are preferred to analytical methods, and the computer has become
the main tool for an engineer. All engineering curricula have introduced computers as a
basic subject. However there is not a consensus about the contents of that subject. There
is a common agreement that basic programming should be introduced in all curricula
and students should be also acquainted with the use the computer as a design tool for
engineering. However, some engineering curricula need a deeper insight of computers
since computer based systems (so called embedded systems) are also the goal of many
engineering projects. This the case, for example, of aeronautical engineering, where air-
craft navigation and control systems are really computers. It is also particularly true for
telecommunication systems and industrial control systems which more and more rely on
computer based systems. This book is thought as an introduction to computers for those
who will study computer based systems in further subjects.

Although not strictly required, some notions about structured programming will help the
reader to get the maximum from the book. In practice, we teach basic programming in
parallel with this course. Programs are introduced in the book from the very beginning
to formalize system’s behavior unambiguously, to illustrate algorithms, or to simulate
electronics. Programs are also used to fully understand computer concepts: for example,
an interpreter or a Turing Machine can be better understood if we implement some basic
version in software. I try to avoid in the book the arbitrary barrier between hardware and
software that lies behind some books. Almost everything that can be done in software can
also be done in hardware. It is a matter of efficiency to choose some given combination

iii

of hardware and software in a given implementation. I try to stress this idea throughout
the book.

Finally, to which extent should an engineer study the computer fundamentals? It would
be probably hard to reach a common agreement about that. This book is an attempt
to answer this question based on my own experience. An engineer is not a computer
scientist or a programmer, but he has to be capable to work jointly with programmers,
and to devise solutions which are suitable to be implemented using computer systems
or computer programs. Engineering designs are becoming more and more complex and
powerful, partly due to the use of computers. Some computer concepts, like abstract
machines, system decomposition, system specification, system implementation, ... can
be extrapolated to deal with the complexity of engineering designs. The book emphasizes
these ideas too.

I hope the reader gets really motivated by the different topics introduced in this book and
gets a conceptual view of what a computer is and how it works. This will enable him to
further readings on computer systems and applications.

Juan A. Vila Carbó

jvila@upvnet.upv.es

iv

mailto:jvila@upvnet.upv.es

Acknowledgements

I want to acknowledge Enrique Hernández Orallo, who started lecturing with me this
course in the Aerospace curricula at Universitat Politècnica de València, for all his sug-
gestions over this time and for his careful reading of the document. I also want to thank
Àngel Perles Ivars for helping me to improve the document.

v

Contents

Abstract iii

Acknowledgements v

Contents vii

1 Systems 1

1.1 Black boxes and abstraction . 1

1.2 Systems . 4

1.3 Computers . 17

Problems . 22

2 Information coding 27

2.1 Basic concepts . 27

2.2 Numeral systems. 30

2.3 Encoding numerical information . 40

2.4 Text coding . 52

2.5 Redundancy and compression . 57

vii

Contents

Problems . 61

3 Digital systems 67

3.1 Introduction . 67

3.2 Boolean algebra . 68

3.3 Combinational systems . 69

3.4 Sequential systems . 76

3.5 Simulating digital systems in software . 78

Problems . 83

4 Computer organization 89

4.1 Introduction . 89

4.2 Levels of study of a computer . 90

4.3 Computer architecture . 91

4.4 Memories . 94

4.5 The Central Pocessing Unit (CPU) . 102

4.6 Microprocessors . 111

4.7 The SEP16 simulator . 114

Problems . 116

5 Machine language 121

5.1 Introduction . 121

5.2 Machine language . 122

5.3 The SEP16 instruction set . 126

5.4 Languages, translators and interpreters. 140

5.5 Assembly language . 147

5.6 Compiling programs . 150

5.7 Designing a simple Turing machine . 155

Problems . 164

6 The Input/Ouptut subsytem 171

6.1 Introduction . 171

viii

Contents

6.2 The I/O layers . 172

6.3 I/O buses . 177

6.4 Interrupts . 180

6.5 The I/O subsystem in the SEP16 . 186

Problems . 201

Solution to selected problems 203

1 Systems . 203

2 Information coding . 206

3 Digital systems . 209

4 Computer organization . 214

5 Machine language . 217

6 The computer Input/Ouptut subsytem . 221

Recommended reading list 223

Bibliography 229

ix

Chapter 1

Systems

This chapter introduces computers and their applications. Computers
are complex systems. The main goal of the chapter is to provide some key
concepts to address the study of complex systems: abstraction, black box,
system and system composition. Different types of systems, from simple sys-
tems, to automata, and computers are progressively presented. Computers
are introduced from two different perspectives: programmable machines,
and processing information systems. Finally, a classification of comput-
ers as general purpose computers and embedded systems is presented and
illustrated with some examples.

1.1 Black boxes and abstraction

Computers are complex systems: they are composed of a large number of components
with a big number of specific features that defines each component. Moreover, all these
components are interconnected and depend on each other. The overall design comprising
all the components usually has a sophisticated behavior. This does not only apply to
computers; machines, vehicles and other engineering designs are also complex. Being
able to understand and to design such systems requires a structured way of thinking. The
ideas of abstraction and black box are a good tool to face complexity.

A black box is an object which interacts with the environment through input and output
signals (see figure 1.1). A black box can be described solely in terms of its inputs, its
outputs, and how outputs relate to inputs (transfer characteristics). The key idea is that
the implementation or internals of a black box are “opaque” (black), so there’s no need to

1

Chapter 1. Systems

know how it internally works to be able to use it. In other words, we are rather interested
in what a black box does rather than in how it does it.

Figure 1.1: Black box concept. Black boxes can be described solely in terms of its inputs and its
outputs. The implementation is “opaque” .

An example of a black box can be an “adder” object. An adder can be defined as a black
box that takes two inputs and produces an output which is the arithmetic sum of the two
inputs (see figure 1.2).

adder

inputs outputs

X1

X2
Y

func%onality:%Y=%X1+X2

Figure 1.2: An adder. An adder is a black box with two inputs and an output which is defined as he
arithmetic the sum of the two inputs.

A more complex example of black box could be a vending machine. The vending ma-
chine could be modeled as a black box with two inputs and two outputs. The inputs are a
button which produces a product code that identifies the selected product, and a coin slot
for the payment of the selected product. The outputs are the product dispenser and the
output with the change of the payment (see figure 1.3). The vending machine could be
implemented in different ways, using different technologies. But from an abstract point
of view the internal mechanisms used to implement the machine are completely irrele-
vant. All we require to some possible implementation of the vending machine is to meet
the machine specifications.

2

1.1 Black boxes and abstraction

vending'machineinputs outputs

coins

product
code

coins

product

change

Figure 1.3: A vending machine.. This machine is as a black box with two inputs (product code, coins)
and two outputs (product, change).

possible operations that the machine performs: select a product, put coins, dispense the
selected product, and give the change back. Specifications should also define “abnormal”
conditions: product out of stock, not enough coins for the selected product.

Black boxes are a way of abstracting a real system. Abstraction is a process that allows
to suppress all unneeded details from an object and to retain only information which is
relevant for a particular purpose. This concept plays a central role in computer science
and engineering. There is a famous quotation by C.A.R. Hoare, a remarkable computer
scientists, stating that “In the development of the understanding of complex phenomena,
the most powerful tool available to the human intellect is abstraction” (Hoare 1972).

Let’s use the example of a car for illustrating this concept: a car is a complex object
with thousands of components and details, but for navigational purposes, i.e. to know
or to predict the car’s position, a car can be modeled as a point of mass with the follow-
ing relevant attributes: its mass, its position in space, its velocity, and its acceleration.
Things like the color of the car or the radius of the wheels are not relevant for naviga-
tion purposes. Abstraction allows to proper modeling an object by choosing the relevant
attributes for some application while abstracting the non interesting ones.

Abstraction is also used to refer that most of the times we will deal only with abstract
entities, i.e, conceptual models which do not match physical entities necessarily.

3

The machine specifications must clearly define the set of inputs and the set of outputs of
the machine. These includes the set of all products, their prices, and the set of accepted
coins. Additionally, they must also define the machine behavior, i.e, the sequence of

Chapter 1. Systems

1.2 Systems

The concept of system usually denotes a compound entity. A system could be defined as
a black box whose implementation is a set of interacting or interdependent components
with some given structure and interconnections between components. Each component,
in turn, can be also modeled as a system, so this becomes a recursive definition. The
most important property about a system is that it meets its specifications and it provides
added functionalities over the set of components.

In a system we may also be interested in specifying its internal structure as a set of
interconnected subsystems. Those details were hidden in a black box. But even when
we consider the internal structure of a system, it is still very important to distinguish
between its specification and its implementation.

A system specification defines its interface and the definition of its transfer logic or
functionality. The system interface comprises the definition of all the inputs and the
outputs an their corresponding types. The type of an input or an output is the range of
values that it may take. For example, the inputs and outputs of the adder object can
be defined to range over the whole set of real numbers. It is a a continuous range.
By contrast, the inputs and outputs of the vending machine are a set of enumerated
types: they can only take a finite set of values. For instance, the product_code input
may range over: {doughnut,sandwich,chocolate, lemonade,cola}. And similarly for
the coins input: {10c,20c,50c,1e,2e}.

A system implementation defines its internal components and the system structure. It es-
tablishes some particular way of implementing the system specification using some well
defined components and some way of interconnecting them. However, a system imple-
mentation is not unique: there can be different implementations of a system that meet
the same specifications. This implementation can be done using different technologies:
mechanical, electronic, ...

Validating a system consists of checking that a particular implementation meets the sys-
tem specifications. Specifications usually refer to correctness conditions in terms of
functionality: the machine performs as the specifications dictate. Two correct imple-
mentations may differ in their performance, for example their speed, weight, size, etc.
Even more, not all “correct” implementations may properly work in hazardous or critical
environments like industries or aircrafts.

Certifying a system refers to a process to check that it does not only meet the correct-
ness specifications, but also some additional performance, quality and, mostly, safety
requirements. There are usually certification procedures and standards from government
agencies for products operating in safety critical environments.

4

1.2 Systems

1.2.1 Systems composition

One of the most important properties of systems is their ability to interact and to combine
with other systems in order to configure a more complex system. Interfaces are key in
this process, since they define the sets of inputs and outputs of a system that permit
interaction across its boundary. An open system has an interface (or a set of interfaces)
that allows it to interact with the environment (or different environments) and can be
easily integrated or combined with other systems, possibly implemented by a third party.
On the contrary, a closed system does not interact with the environment. This term is
usually employed in a negative way to denote that a system cannot interoperate easily
with other systems. Interoperability is often an important design criteria.

Systems can be interconnected by linking the outputs of a system to the inputs of another
system. For example, the previously defined 2-operand adder can be used to build a
3-operand adder by combining two of them as shown in figure 1.4.

!3op.!adder

2!op.
adder

X1

X2 Y2!op.
adder

X3

Figure 1.4: System composition. A 3-operand adder can be implemented as the composition of two
2-operand adders.

1.2.2 Continuous time and discrete-time systems

We will assume that the inputs and outputs of a system are, in general, time-dependent:
Xi = Xi(t), Yi = Yi(t). This section analyzes the temporal properties of systems.

A continuous-time system is a system where inputs and outputs are defined over a con-
tinuous time domain. For example, we can define the inputs and outputs of the adder
over the time interval [0,5]. If we represent the temporal behavior of the adder with a
constant input X1(t) = 2 and a variable input X2(t) = t, we can see in figure 1.5 , that the
output Y (t) = 2+ t reflects at each instant of time t the sum of both inputs.

However, computer circuits and computer programs are “discrete-time” systems. A
discrete-time system is a system where the time domain is a discrete set of values. An ex-
ample of such domain could be t = {0,1,2,3,4,5}. In a discrete-time system inputs are
sampled at some given time instants in the domain, while outputs are reevaluated each

5

Chapter 1. Systems

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

1

2

3

4

5

6

7

X1
X2
Y

Figure 1.5: Continuous-time system. Response of the adder in continuous time.

time the inputs are sampled. Figure 1.6 shows the behavior of the adder for a discrete-
time domain t = {0,1,2,3,4,5}. Inputs may or may not be defined for instants not in
the domain (for example for t = 1.5), but the system only samples its inputs on the time
instants in the domain (shown as triangles in the figure 1.6). Another interesting question
concerns the system response between two discrete-time instants. In principle this value
is undefined, but most discrete-time systems keep the last value of the outputs (like in the
dotted line of Y in figure 1.6) until they are reevaluated the next time instant.

Most computer-based systems and applications are discrete-time systems by nature. For
example, consider a web-site that provides the exchange rate between currencies. The
exchange rates are updated at finite intervals of time: for example every hour.

The sampling period is defined as the time difference between two consecutive samples.
In general it is constant, but in some cases nonuniform sampling is also used. The sam-
pling period for the adder example is constant and equal to 1 sec (sampling frequency
is 1Hz = 1 time/sec.). A continuous-time system can be considered a system with an
infinite sampling frequency.

Discrete-time signals (inputs and outputs) are typically written as a function of an integer
index k. This way, notation Y (k) (or Yk) stands for the value of Y at discrete-time instant
k, while Y (k+1) (or Yk+1) stands for the value of Y in the next discrete-time instant.

6

1.2 Systems

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

1

2

3

4

5

6

7

X1
X2
Y

Figure 1.6: Discrete-time system..Response of the adder in discrete time with a sampling frequency
of 1Hz.

1.2.3 Stateful and stateless systems

There are two main types of systems according to the nature of the transfer function that
defines how outputs relate to inputs: stateful and stateless systems.

A stateless system is a system where the outputs at time t only depend on the inputs at
that particular instant of time t. If we denote the set of inputs as X(t) = {Xi(t), i : 1 . . .n}
and the set of outputs as Y (t) = {Yj(t), j : 1 . . .m}, it holds that:

Y (t) = f
(
X(t)

)
(1.1)

For example the adder object (in either of its versions: continuous or discrete-time) could
be an example of such a system.

A stateful system, simply referred as a “system” most of the times, is a system whose
outputs at time t depend not only on the current inputs at time t, but also on the history
of inputs over time. In a discrete-time system this dependence of previous outputs can
also be expressed in a recursive way as follows:

7

Chapter 1. Systems

Y (k) = f
(
X(k), Y (k−1)

)
Y (k−1) = f

(
X(k−1), Y (k−2)

)
Y (k−2) = f

(
X(k−2), Y (k−3)

)
. . .

(1.2)

An example of a stateful system system could be an accumulator. The functionality of
this system is to “accumulate”, i.e., to perform the summation of all previous inputs over
time. The transfer function of this system could be expressed as:

Y (k) = X(k)+Y (k−1) (1.3)

Figure 1.7 shows the temporal behavior of the accumulator for an example of input data.

0 1 2 3 4 5 6
0

1

2

3

4

5

6

X
Y

Figure 1.7: Accumulator. An example chronogram of the accumulator.

An example of a real accumulator could be the coin bank of a vending machine. This
bank keeps the total amount of money collected in the machine over a period of time.

Stateful systems are defined by their state. On the contrary, stateless systems lack any
state. The state of a system is the set of variables that describes enough the system in
order to determine its future behavior. For example, in a vehicle, its position in space,
its velocity, and its acceleration are typical state variables; knowing these variables, it is
possible to determine the future system state. In the accumulator example, the state is the
total amount of accumulated units. Knowing this value and the new input value, it can
be determined the future state of the accumulator. Formally, we will define the system
state as a function of the system outputs:

8

1.2 Systems

Z(k) = g
(
Y (k)

)
(1.4)

For example, the total amount of an accumulator can be defined as a state variable Z1
whose value is Z1(t) = Y (t). We can also define another state variable Z2 that indicates
when “the accumulator is full”. This variable a discrete variable that may only take two
values {true, f alse}1. The predicate “the accumulator is full” will be said to be true if
the total amount is ≥ 500. It will be false otherwise. We can express this function using
a predicate Z2(t) = Y (t)≥ 500.

Using the state concept, a stateful system can be redefined in a more general way as:

Y (k) = f
(
X(k),Z(k−1)

)
with Z(k−1) = g

(
Y (k−1)

)
(1.5)

Keeping the system state requires using a new type of component in the system imple-
mentation that has the so called memory property. The memory property allows a system
to store and to hold the value of a system variable over time.

A register is introduced as the most elementary stateful system, i.e, the most elementary
system with the memory property. The register can be defined as a system that samples
an input value and provides an output that matches this value until the next instant of
time:

Y (k) = X(k−1) (1.6)

Figure 1.8 shows a register and an example of its temporal behavior. The figure shows a
clock signal which is a pulse that indicates the discrete instants of time where the signal
has to be sampled. The register keeps the sampled value as its outputs until it is triggered
again by a new CLK signal. The black thick line shows how the output is memorized
until the next clock pulse despite the input changes.

Once the register example has been introduced, an accumulator can be easily constructed
by combining a register and an adder as shown in figure 1.9. The solution consists of
connecting the output of the adder to the register, so it can be “frozen” (or memorized).
This frozen output serves as one of the inputs for the adder the next instant of time.
Connecting one output to one input causes a loop in the system. This structure is known
as a feedback system. To properly understand such a system you need to consider that
the output of each subsystem is delayed (at least some infinitesimal amount of time) with

1This is usually called a boolean variable.

9

Chapter 1. Systems

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0

X

Y

CLK

register
X

CLK
Y

Figure 1.8: A register. A register scheme and chronogram. The chronogram shows the input, the
output, and the clock signal.

respect its input. This way, the adder always gets the previous output of the accumulator
(and not the current one).

accumulator

adder
X1

register
CLK

Figure 1.9: Accumulator structure. The accumulator can be constructed by combining a register and
an adder.

1.2.4 Implementing systems in software

Systems can be implemented and simulated in software using a programming language.
The notion of stateless system perfectly matches the concept of a function in a structured
programming language. System inputs are mapped to a function input argument while
system outputs are mapped to the function return values.

10

1.2 Systems

1 function Y=adder(X1,X2)
2 % Returns the sum of X1 and X2
3 Y=X1+X2;
4 end
5
6 >> z=adder(3,2)
7 z =
8 5

This a time-discrete implementation since the function is invoked at some given time
instants.

System composition can be easily achieved by making use of the return value of a func-
tion as the input argument of another function. As an example consider implementing
the 3-operand adder using a 2-operand adder:

1 function Y=adder3(X1,X2,X3)
2 % Returns the sum of X1, X2 and X3
3 temp=adder(X1,X2);
4 Y=adder(temp,X3);
5 end
6
7 z=adder3(2,3,5)
8 z =
9 10

Sateful systems offer some more difficulty, since we need to implement the memory
property. This can be implemented in MATLABr using “persistent” variables (other
languages would require “global” variables). This variables hold their value across invo-
cations.

11

For example, the adder can be easily implemented as a MATLABr function:

Chapter 1. Systems

1 function Y=accumulator(X)
2 % Returns the previous output value plus X
3 persistent reg;
4 if isempty(reg)
5 reg=0;
6 end
7 reg=adder(X,reg);
8 Y=reg;
9 end

10
11 >> z=accumulator(1)
12 z =
13 1
14 >> z=accumulator(3)
15 z =
16 4

The use of persistent variables does not meet the concept of “pure function” in program-
ming. Pure functions are stateless: outputs are a function of current inputs exclusively.
However, persistent variables are useful to illustrate the memory property and to imple-
ment stateful systems. On the other hand, stateless systems perfectly match the concept
of pure function.

1.2.5 Finite-state machines

A finite-state machine is an automaton whose behavior can be described by a finite num-
ber of states (Kohavi and Jha 2010). The machine can be in exactly one of a finite number
of states at any given time. An example of a finite-state machine could be the vending
machine of figure 1.3. The vending machine behavior can be described by four possible
states:

• Idle: waiting for some product to be selected.

• Waiting coins: waiting for the product to be paid.

• Serving product: delivering the product to the customer.

• Returning coin: returning the coin if the product has been cancelled.

Initially the machine is in idle state waiting for some product to be selected. Selecting a
product activates the machine that shows the product price and then evolves to an state
where it waits a coin to be deposited in a slot or to cancel the selection. Putting a coin

12

For example, the accumulator example could be implemented in MATLABr as follows:

1.2 Systems

makes the machine to serve the product and going back to the idle state after some time.
Canceling the selection makes the machine to return the coins and return to the idle state.

The machine can change from one state to another in response to some external inputs;
the change from one state to another is called a transition. The events that can trigger
transitions in a vending machine are:

• push: selecting some product on the machine keyboard.

• coin: putting a coin in the slot to pay the product.

• cancel: cancelling the selection.

• time: event that denotes that 3 seconds elapsed from the last transition.

A finite-state machine is defined by the list of its states, its initial state, and the transitions
between states. The finite-state is usually defined by a state diagram or a state transition
table. A state diagram is a graph where states are represented as nodes and transitions
are represented as arrows between states. Figure 1.10 shows the state diagram of the
vending machine.

Figure 1.10: State diagram of the vending machine. Nodes represent states and arrows represent
transitions.

A state transition table is a table that specifies the next state of the machine upon the oc-
currence of a transition. Figure 1.11 shows the transition table of the vending machine. It
is equivalent to the state diagram of figure 1.10, but it specifies thoroughly all transitions.

Note that a finite-state machine is a stateful machine since the next state is always a
function of the previous state and the event. The current state needs to be memorized in
order to properly respond to a new event.

13

Chapter 1. Systems

Figure 1.11: Transition table of the vending machine. It specifies the next state after the occurrence
of a transition.

Finite state machines can be better understood through a program that simulates them.
The program of figure 1.12 provides an implementation of the skeleton of a vending
machine as a finite-state automaton. If you are not still familiar with programming,
do not worry, just run the program and see how it works to get a flavor of what an
state automaton is and skip the rest of this paragraph. The program implementation
can be introduced as a programming exercise and properly understood when you are
already familiar with programming basics. But if you are keen to know how it has been
implemented, the main ideas are outlined next.

The system state needs to be a persistent variable. The key of this implementation is
table tr_table in line 11. It provides the new state as a function of the previous state
and the event. Inputs like push, coin or cancel need to be specified as a user input. The
time event is handled is a different way: it is produced automatically after a pause of 3
seconds.

A sample execution of the vending machine program is shown in figure 1.13. Lines 1-12
show a normal cycle of the vending machine. Notice how “non-expected” inputs, like
the one of line 15, or invalid events, like the one of line 23, are handled.

Vending machines are nowadays implemented using a small computer inside. But think
in one of those antique and beautiful mechanical implementations of the 50s and the 60s.
The implementation was completely different, but their behavior was yet the same of
the program of figure 1.12. The vending machine is a nice example of an automaton.
Although beautiful, the internal machinery of old vending machines was so specific for
this application that it could not be reused to solve any other task. With the years, com-
puter based implementations would replace these old implementations. The next section
explains why a computer is strictly more powerful than a finite-state automaton.

14

1.2 Systems

1 function vending_machine
2 clc; clear all;
3 persistent state;
4 if isempty(state)
5 state=1; % Idle state
6 next_state=1;
7 end
8
9 state_names={’Idle’, ’Waiting coin’, ’Serving product’, ’Returning

coin’};
10 event_names={’push’, ’coin’, ’cancel’, ’time’};
11 tr_table=[2,4,1,1;
12 2,3,4,2;
13 3,3,1,1;
14 4,4,1,1];
15
16 while(true)
17 % In states 1 and 2 some keyboard typing is needed
18 if (state==1 || state==2)
19 event=input(’1.- push, 2.- coin, 3.-cancel\nSelect an event:

’);
20 if (event<1 || event>3)
21 fprintf(2,’Invalid event\n’);
22 next_state=state;
23 else
24 fprintf(’Event: %s\n’,event_names{event});
25 next_state=tr_table(state,event);
26 end
27 % States 3 and 4 are time triggered
28 else
29 event=4;
30 fprintf(’Event: %s\n’,event_names{event});
31 pause(3);
32 next_state=tr_table(state,event);
33 end
34
35 state=next_state;
36 fprintf(’State: %s\n\n’,state_names{state});
37 end
38 end

Figure 1.12: Matlab program of the vending machine. Table tr_table provides the new state as
a function of the previous state and the event. The state needs to be a persistent variable.

15

Para seguir leyendo haga click aquí

http://www.lalibreria.upv.es/portalEd/UpvGEStore/products/p_613-3-1

