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Abstract. In this paper we study the lattice properties of the Banach lattices

Lp(ν) and Lp
w(ν) of p-integrable real-valued functions and weakly p-integrable

real-valued functions with respect to a vector measure ν defined on a δ-ring.

The relation between these two spaces, the study of the continuity and some

kind of compactness properties of certain multiplication operators between

different spaces Lp and/or Lq
w and the representation theorems of general

Banach lattices via these spaces play a fundamental role.

1. Introduction

Integration with respect to vector measures defined on δ-rings are the natural

vector valued generalization of the case of integration with respect to positive σ-

finite measures. In terms of the corresponding spaces of integrable functions, this

consideration is also up to a point true. The spaces L1(ν) of integrable functions

and L1
w(ν) of weakly integrable functions with respect to a vector measure ν are

broad classes of Banach lattices of measurable functions, and in fact represent

a large family of Banach lattices. Regarding these representations, nowadays it is

well-known that order continuous Banach lattices can also be written (isometrically

and in order) as an L1(ν)-space of a certain vector measure ν on a δ-ring, and a

similar result holds for Banach lattices with the Fatou property and some additional

requirement with the spaces L1
w(ν) (see [11, Theorem 4 and Theorem 8]; see also

[4, pp. 22-23]).

The case of finite positive scalar measures is generalized using vector measures on

δ-rings. Such measures provide spaces of integrable functions that can be used for

representing any order continuous Banach lattice with a weak unit (L1(ν)) or any

Banach lattice having the Fatou property with a weak unit belonging to the order

continuous part of the space (L1
w(ν)) (see [5, Theorem 8] and [6, Theorem 2.5]).
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The corresponding representation theorems for p-convex Banach lattices having

these additional lattice properties are also known; the spaces Lp(ν) and Lpw(ν) are

involved in this case (see [7, 20]). Although all the relevant (geometric, lattice,

topological) properties of the spaces Lp(ν) of a vector measure ν on a σ-algebra

with 1 ≤ p < ∞ has been already studied (see [21, 12]), this is not the case for

the δ-ring case. The difference is important, since the case of vector measures on

a σ-algebra only covers the cases of Banach function spaces (i.e. the reference

measure space is σ-finite); for instance, Banach lattices as c0(I) or `∞(I) for an

uncountable set of indexes I can be written as spaces of p-integrable functions and

weakly integrable functions with respect to a vector measure, respectively. In fact,

these spaces represent (in the case of δ-rings) a big class of Banach lattices, as will

be shown in this paper.

The aim of this paper is to study the main properties of the spaces Lp(ν) and

Lpw(ν) of a vector measure ν on a δ-ring, the natural sets of multiplication operators

and the inclusion relations with the spaces L∞(ν) and L1(ν). After the preliminary

Section 2, Section 3 is devoted to the study of the main Banach lattice properties of

the spaces Lp(ν) and Lpw(ν). The general case 0 < p < ∞ is considered, although

for 0 < p < 1 these spaces are not necessarily Banach spaces; just consider the

case when the vector measure is a scalar measure. However, completeness is proved

also for this case. A general representation theorem for p-convex order continuous

Banach lattices with 1 < p < ∞ as Lp(ν) spaces is also given in Theorem 10 (the

case p = 1 is already know, see [11, Theorem 4] and [4, pp. 22-23]). In Section 4

the spaces of multiplication operators between spaces of p-integrable functions and

spaces of 1-integrable functions with respect to the same vector measure are com-

puted, and compactness type properties of these operators are studied, generalizing

in this way what is known in the case of σ-algebras (see [8]). Finally, Section 5

is devoted to the analysis of the spaces Lp(ν) and Lpw(ν) as intermediate spaces

of L∞(ν) ∩ L1(ν) and L∞(ν) + L1(ν), providing the vector measure version of the

classical inclusions that hold for the Lebesgue spaces Lp[0,∞].

2. Preliminaries

2.1. Banach lattices. Let E be a Banach lattice with norm ‖ · ‖ and order ≤.

Let BE denotes the unit ball in E. A subspace F of E is an ideal of E if y ∈ F
whenever y ∈ E with |y| ≤ |x| for some x ∈ F . An ideal F in E is said to be

order dense in E if for every 0 ≤ x ∈ E there exists an upwards directed system

0 ≤ xτ ↑ x such that (xτ )τ ⊂ F and super order dense if this is the case by means

of increasing sequences. An upwards directed system (xτ )τ in E is said to be a

Cauchy system if for any ε > 0 there exists τ0 in {τ} such that ‖xτ1 − xτ2‖ < ε for

all xτ1 ≥ xτ0 and xτ2 ≥ xτ0 . A weak unit of E is an element 0 ≤ e ∈ E such that

x ∧ e = 0 implies x = 0.
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The Banach lattice E is order continuous if for every downwards directed system

in E, (xτ )τ ↓ 0 it follows that ‖xτ‖ ↓ 0. If ‖xn‖ ↓ 0 for any decreasing sequence

xn ↓ 0 in E, then E is said to be σ-order continuous.

The Banach lattice E is said to be Dedekind σ-complete if every order bounded

sequence has a supremum. We will say that E has the weak Fatou property if for

every upwards directed system 0 ≤ xτ ↑ in E such that supτ ‖xτ‖ < ∞ it follows

that there exists x = supτ xτ in E. If moreover ‖x‖ = supτ ‖xτ‖ then E will be

said to has the Fatou property. We will say that E has the weak σ-Fatou property

if for every increasing sequence 0 ≤ xn ↑ in E such that supn≥1 ‖xn‖ < ∞ there

exists x = supn≥1 xn in E. If moreover ‖x‖ = supn≥1 ‖xn‖ we will say that E has

the σ-Fatou property.

A Banach lattice E is said to be p-convex if there exists a constant M > 0 such

that ∥∥∥( n∑
j=1

|xj |p
) 1
p

∥∥∥ ≤M( n∑
j=1

‖xj‖p
) 1
p

for all n ∈ N and x1, . . . , xn ∈ E. The smallest constant satisfying the previous

inequality for all such n ∈ N and xj ’s (j = 1, . . . , n) is called the p-convexity

constant of E and is denoted by M(p)(E).

An operator T : E → F between Banach lattices is said to be an order isometry

if it is a linear isometry which is also an order isomorphism, that is, T is linear, one

to one, onto, ‖Tx‖F = ‖x‖E for all x ∈ E and T (x∧ y) = Tx∧ Ty for all x, y ∈ E.

In this case we will say that E and F are order isometric. Every positive operator

between Banach lattices is continuous (see [1, Theorem 12.3] or [15, page 2]).

The set consisting of all bounded linear maps from E into F will be denoted

by B(E,F ). A bounded linear operator T : E → F between Banach lattices is

called L-weakly compact if T (BE) is an L-weakly compact subset of F , that is, if

‖xn‖ → 0 as n→∞ for every disjoint sequence (xn)n contained in the solid hull of

T (BE). We denote by L(E,F ) this class of bounded operators and byW(E,F ) the

ideal of weakly compact operators. Note that L(E,F ) ⊂ W(E,F ) by Proposition

3.6.12 in [19]. For these an other issues related to Banach lattices, see for instance

[15], [16], [1], [19] and [24].

2.2. Integration with respect to vector measures on δ-rings. We recall

here the integration theory of Lewis ([14]) and Masani and Niemi ([17], [18]). We

refer also to [10]. Let R be a δ-ring of subsets of an abstract set Ω (i.e. a ring of sets

closed under countable intersections) and consider Rloc the associated σ-algebra to

R given by Rloc = {A ⊂ Ω : A ∩ B ∈ R, for every B ∈ R}. Denote by M(Rloc)
the space of measurable real functions on (Ω,Rloc) and by S(Rloc) and S(R) the

space of simple functions with support in Rloc and R respectively.

Let ν : R → X a set function with values in a real Banach space X such that∑
n≥1 ν(An) converges to ν(∪n≥1An) in X whenever (An)n≥1 are pairwise disjoint



4 J.M. CALABUIG, M.A. JUAN, AND E.A. SÁNCHEZ PÉREZ

sets in R with ∪n≥1An ∈ R. We will say that ν is a vector measure. Denoting

by X∗ the dual space of X, the semivariation of ν is given by ‖ν‖ : Rloc → [0,∞]

with ‖ν‖(A) = sup{|x∗ν|(A) : x∗ ∈ BX∗} for all A ∈ Rloc and where |x∗ν| is the

variation of the measure x∗ν : R → R. A set B ∈ Rloc is ν-null if ‖ν‖(B) = 0. A

property holds ν-almost everywhere (ν-a.e.) if it holds except on a ν-null set.

We will denote by L1
w(ν) the space of functions inM(Rloc) which are integrable

with respect to |x∗ν| for all x∗ ∈ X∗ where functions which are equal ν-a.e. are

identified. The space L1
w(ν) is a Banach space when endowed with the norm

‖f‖ν = sup
x∗∈BX∗

∫
Ω

|f | d|x∗ν|.

Moreover, it is a Banach lattice for the ν-a.e. pointwise order and it is an ideal of

measurable functions, that is, if |f | ≤ |g| ν-a.e. with f ∈ M(Rloc) and g ∈ L1
w(ν),

then f ∈ L1
w(ν). Even more, convergence in norm of a sequence implies ν-a.e.

convergence of some subsequence (see [18, Lemma 3.13]). A function f ∈ L1
w(ν) is

integrable with respect to ν if for each A ∈ Rloc there exists a vector denoted by∫
A
f dν ∈ X, such that

x∗
(∫

A

f dν
)

=

∫
A

f dx∗ν for all x∗ ∈ X∗.

We denote by L1(ν) the space of integrable functions with respect to ν. It is an order

continuous Banach lattice when endowed with the norm and the order structure of

L1
w(ν). Moreover, it is an ideal of measurable functions and so an ideal of L1

w(ν).

If ϕ =
∑n
i=1 aiχAi ∈ S(R) then ϕ ∈ L1(ν) with

∫
A
ϕdν =

∑n
i=1 aiν(Ai ∩ A)

for all A ∈ Rloc. In fact, the space S(R) is dense in L1(ν). The integration

operator Iν : L1(ν) → X given by Iν(f) =
∫

Ω
f dν is linear and continuous with

‖Iν(f)‖ ≤ ‖f‖ν .

A vector measure ν : R → E with values in a Banach lattice E is positive if

ν(A) ≥ 0 for all A ∈ R. In this case, the integration operator Iν : L1(ν) → E

is positive (i.e. Iν(f) ≥ 0 whenever 0 ≤ f ∈ L1(ν)) and it can be checked that

‖f‖ν = ‖Iν(|f |)‖ for all f ∈ L1(ν) (see Lemma 3.13 in [20] with the obvious

modifications in the case of δ-rings).

3. The spaces Lp(ν) and Lpw(ν)

As was said in the Introduction, the spaces Lp(ν) and Lpw(ν) of p-integrable

functions and weakly p-integrable functions are nowadays well-known when the

vector measure ν is defined on a σ-algebra. The scalar measure counterpart is

given in this case by the finite measure spaces: every countably additive positive

measure defined on a σ-algebra is bounded (finite). In the vector valued case, if

this boundedness requirement is removed the measure must be defined on a δ-ring

to make sense. In this section we introduce and study the main properties of the

corresponding spaces of p-integrable functions. We extend the definition of L1(ν)
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and L1
w(ν) for a vector measure on a δ-ring given in [17, 18] and [14] to Lp(ν) and

Lpw(ν) as follows.

Definition 1. Let 0 < p <∞ and let ν be a vector measure defined on a δ-ring of

subsets of an abstract set Ω. We say that a measurable real function f ∈M(Rloc) is

weakly p-integrable with respect to ν if |f |p ∈ L1
w(ν), and p-integrable with respect to

ν if |f |p ∈ L1(ν). We denote by Lpw(ν) the space of (equivalence classes) of weakly

p-integrable functions with respect to ν and by Lp(ν) the space of (equivalence

classes) of p-integrable functions with respect to ν.

It is clear that Lp(ν) ⊂ Lpw(ν). Moreover, they are ideals of the vector lattice

(with the |ν|-a.e. order) M(Rloc) with S(R) ⊂ Lp(ν). An homogeneous positive

function can be defined over Lpw(ν) by

‖f‖p,ν :=
∥∥|f |p∥∥ 1

p

ν
= sup
x∗∈BX∗

( ∫
Ω

|f |p d|x∗ν|
) 1
p , f ∈ Lpw(ν).

The following well-known inequalities involving positive real numbers will be

necessary through the paper (see for instance [20, Section 2.2]).

Lemma 2. Let a, b ∈ [0,+∞). Then the following inequalities hold.

(a+ b)r ≤ ar + br and |ar − br| ≤ |a− b|r, for 0 < r ≤ 1.(1)

ar + br ≤ (a+ b)r ≤ 2r−1(ar + br), for r ≥ 1.(2)

|ar − br| ≤ r · |ar−1 + br−1| · |a− b|, for r ≥ 1.(3)

Since ‖ · ‖ν is a norm, straightforward calculation using the previous Lemma

show that ‖ · ‖p,ν is in fact a quasi-norm. We also use the notations ‖ · ‖Lpw(ν)

and ‖ · ‖Lp(ν) when an explicit reference to the space is convenient. In what follow

we prove some fundamental topological and lattice properties of the spaces Lp(ν)

and Lpw(ν). We write some of the proofs for the aim of completeness, since our

arguments follow the lines of the ones that prove the corresponding results for the

case of vector measures on σ-algebras (see [20, Ch.2, Ch.3] and [12, 21]). However,

there are several technical things that makes the proofs slightly different. One of

the reasons is that we are not working in the setting of the Banach function spaces.

For instance, in our spaces convergence of a sequence in the norm still implies ν-

a.e. convergence of the sequence, but we have to use the result given in [18, Lemma

3.13] instead of [20, Proposition 2.2 (ii)], that is used in [20].

When 1 ≤ p <∞, ‖ · ‖p,ν is actually a lattice norm. To prove this result we need

first the following lemma, that will be useful also in next sections.

Lemma 3. Let q, r, s > 0 such that 1
q = 1

r + 1
s and let f ∈ Lrw(ν) and g ∈ Lsw(ν).

Then, fg ∈ Lqw(ν) and ‖fg‖q,ν ≤ ‖f‖r,ν‖g‖s,ν .
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Proof. Without loss of generality, it suffices to assume that ‖f‖r,ν = ‖g‖s,ν = 1.

By using Young’s inequality

‖fg‖qq,ν =
∥∥|f |q|g|q∥∥

ν
≤ q

r

∥∥|f |r‖ν +
q

s

∥∥|g|s∥∥
ν

=
q

r

∥∥f‖r,ν +
q

s

∥∥g∥∥
s,ν

=
q

r
+
q

s
= 1.

�

The same arguments prove that the result is also true in the case of Lp(ν).

Proposition 4. Let 0 < p <∞ and ν a vector valued measure on a δ-ring. Then

(1) for 1 ≤ p < ∞, (Lpw(ν), ‖ · ‖p,ν) and (Lp(ν), ‖ · ‖p,ν) are Banach lattices

with the ν-a.e. order, and

(2) for 0 < p < 1, (Lpw(ν), ‖·‖p,ν) and (Lp(ν), ‖·‖p,ν) are quasi Banach lattices

the ν-a.e. order.

Proof. We only prove the case of Lpw(ν). Let (fn)n≥1 be a Cauchy sequence in

Lpw(ν). Due to the equality |a− b| = |a+− b+|+ |a−− b−| for a, b ∈ R and the ideal

property of Lpw(ν) we can assume that fn ∈ Lpw(ν)+ for all n ∈ N.

Step 1. Completeness for 0 < p < 1. Applying inequality (1) in Lemma 2 to fn

and fm and taking quasinorms we have

∥∥|fpn − fpm|∥∥ν ≤ ∥∥|fn − fm‖p∥∥ν .
Therefore, (fpn)n≥1 is a Cauchy sequence in L1

w(ν) and so it has a limit f ∈ L1
w(ν).

Note that f ≥ 0 ν-a.e. as in L1
w(ν) convergence in norm of a sequence implies ν-a.e.

convergence of some subsequence. Fix n ∈ N. Using inequality (3) in Lemma 2

with r := 1
p , Lemma 3 with q := p, r := p

1−p and s := 1 and again (1) and (2) in

Lemma 2 but now with r := 1
p − 1 we obtain

∥∥|fn − f 1
p |
∥∥
p,ν

≤
∥∥|(fpn)

1
p − f

1
p |
∥∥
p,ν
≤ 1

p

∥∥|(fpn)
1
p−1 + f

1
p−1| · |fpn − f |

∥∥
p,ν

≤ 1

p

∥∥|(fpn)
1
p−1 + f

1
p−1|

∥∥
p

1−p ,ν

∥∥|fpn − f |∥∥ν
≤ 1

p
max{2

1−2p
p , 1}

(
‖fpn‖

1−p
p

ν + ‖f‖
1−p
p

ν

)∥∥|fpn − f |∥∥ν
≤ 1

p
max{2

1−2p
p , 1}

(
sup
m∈N
‖fm‖1−pp,ν + ‖f‖

1−p
p

ν

)∥∥|fpn − f |∥∥ν .
hence fn → f

1
p in Lpw(ν) and consequently Lpw(ν) is complete.

Step 2. Completeness for p ≥ 1. Fix n,m ∈ N. As in the previous case use

inequality (3) in Lemma 2(1) and Lemma 3 with q := 1, r := p
p−1 and s := p to



THE SPACES OF p-INTEGRABLE FUNCTIONS Lpw(ν) AND Lp(ν) 7

obtain

‖fpn − fpm‖ν ≤ p
∥∥|fp−1

n + fp−1
m | · |fn − fm

∥∥
ν

≤ p
∥∥|fp−1

n + fp−1
m |

∥∥
p
p−1 ,ν

∥∥fn − fm∥∥ν
≤ p

(∥∥|fp−1
n

∥∥
p
p−1 ,ν

+ ‖fp−1
m |

∥∥
p
p−1 ,ν

)∥∥fn − fm∥∥ν
= p

(∥∥|fn∥∥p−1

p,ν
+ ‖fm|

∥∥p−1

p,ν

)∥∥fn − fm∥∥ν
≤ 2p

(
sup
k∈N

∥∥|fk∥∥p−1

p,ν

)∥∥fn − fm∥∥ν .
Therefore (fpn)n≥1 is a Cauchy sequence in L1

w(ν). Hence there is a limit f ∈ L1
w(ν).

Again f ≥ 0 ν-a.e. by the same argument as the one used above. We will show

that f
1
p is the limit of (fn)n≥1 in Lpw(ν). Indeed inequality (1) in Lemma 2 gives

‖fn − f
1
p ‖p,ν =

∥∥|fn − f 1
p |p
∥∥ 1
p

ν
≤
∥∥|fn|p − |f 1

p |p
∥∥ 1
p

ν
=
∥∥fpn − f∥∥ 1

p

ν
.

Hence Lpw(ν) is complete.

Step 3. ‖ · ‖p,ν is a lattice norm for 1 ≤ p <∞. Let f, g ∈ Lpw(ν). Inequality (3)

in Lemma 2 and Lemma 3 with r := p, s := p
p−1 and q := 1 yield that

‖f + g‖pp,ν =
∥∥|f + g|p

∥∥
ν

=
∥∥|f + g| · |f + g|p−1

∥∥
ν

≤
∥∥|f | · |f + g|p−1

∥∥
ν

+
∥∥|g| · |f + g|p−1

∥∥
ν

≤
∥∥f∥∥

p,ν
·
∥∥|f + g|p−1

∥∥
p
p−1 ,ν

+
∥∥g∥∥

p,ν
·
∥∥|f + g|p−1

∥∥
p
p−1 ,ν

=
∥∥|f + g|p−1

∥∥
p
p−1 ,ν

(∥∥f∥∥
p,ν

+
∥∥g∥∥

p,ν

)
=

∥∥|f + g|p
∥∥ p−1

p

ν

(∥∥f∥∥
p,ν

+
∥∥g∥∥

p,ν

)
=

∥∥f + g
∥∥p−1

p,ν

(∥∥f∥∥
p,ν

+
∥∥g∥∥

p,ν

)
.

hence ‖f + g‖p,ν ≤ ‖f‖p,ν + ‖g‖p,ν and ‖ · ‖p,ν is a norm. That it is also a lattice

norm is direct since ‖ · ‖ν is. In fact this is also obviously true for the quasi-norm

‖ · ‖p,ν if 0 < p < 1. The proofs are similar for the space Lp(ν). �

Remark 5. As it was already mentioned, S(R) ⊂ Lp(ν). Moreover S(R) is a dense

set in Lp(ν). Indeed, let f ∈ Lp(ν)+, then fp ∈ L1(ν) and by the density of S(R)

in L1(ν) there exists an increasing sequence 0 ≤ (ϕn)n≥1 converging to fp ν-a.e.

and in the norm of L1(ν). Clearly, (ϕ
1
p
n )n≥1 ∈ S(R) ⊂ Lp(ν) and ϕ

1
p
n ↑ f ν-a.e.

The same corresponding inequalities used to prove the completeness of Lpw(ν) can

be used to take an inequality like ‖f − ϕ
1
p
n ‖p,ν ≤ K‖fp − ϕn‖ν and conclude the

result. The extension to the general case is routine. Consequently, Lp(ν) is a closed

ideal in Lpw(ν).

We study now the convexity behavior of our spaces.

Proposition 6. Let 0 < p < ∞. The spaces Lpw(ν) and Lpw(ν) are p-convex with

p-convexity constants M(p)(Lpw(ν)) = M(p)(Lp(ν)) = 1. Moreover, for 0 < p < 1,
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if L1
w(ν) (resp. L1(ν)) is 1

p -convex, then Lpw(ν) (resp. Lp(ν)) is a Banach lattice,

since it can be renormed with the lattice norm

|||f |||p := inf{
n∑
j=1

‖fj‖p,ν : |f | ≤
n∑
j=1

|fj |, fj ∈ Lpw(ν), j = 1, . . . , n}, f ∈ Lpw(ν).

Proof. Fix f1, . . . , fn, n ∈ N, and compute∥∥( n∑
j=1

|fj |p
) 1
p
∥∥
p,ν

=
∥∥ n∑
j=1

|fj |p
∥∥ 1
p

ν
≤
( n∑
j=1

∥∥|fj |p∥∥ν) 1
p =

( n∑
j=1

∥∥fj∥∥pp,ν) 1
p .

We have clearly that Lpw(ν) (and Lp(ν)) is p-convex with p-convexity constant

M(p)(Lpw(ν)) = M(p)(Lp(ν)) ≤ 1.

Moreover, the p-convexity constant is M(p)(Lpw(ν)) = M(p)(Lp(ν)) = 1. Indeed

letting n = 1 in the inequality above
∥∥(|f |p)

1
p

∥∥
p,ν

=
∥∥f∥∥

p,ν
= (
∥∥f∥∥p

p,ν
)

1
p and so

M(p)(Lpw(ν)) = M(p)(Lp(ν)) ≥ 1.

Let us show that |||f |||p = ‖f‖p,ν for all f ∈ Lpw(ν). From the definition of ||| · |||p
it is clear that |||f |||p ≤ ‖f‖p,ν just taking f1 = f ∈ Lpw(ν). On the other hand,

let f ∈ Lpw(ν) and ε > 0 and choose n ∈ N and f1, . . . fn ∈ Lpw(ν) such that

|f | ≤
∑n
j=1 |fj | and

∑n
j=1 ‖fj‖p,ν ≤ |||f |||p + ε. First of all note that the same

argument used to prove that M(p)(Lpw(ν)) = 1 yields that M( 1
p )(Lpw(ν)) = 1. On

the other hand since L1
w(ν) is 1

p -convex with 1
p -convexity constant M( 1

p )(L1
w(ν)),

we have

‖f‖p,ν =
∥∥|f |p∥∥ 1

p

ν
≤
∥∥( n∑

j=1

|fj |
)p∥∥ 1

p

ν
=
∥∥( n∑

j=1

(|fj |p)
1
p
)p∥∥ 1

p

ν

≤
(
M( 1

p )(Lpw(ν))
( n∑
j=1

∥∥|fj |p∥∥ 1
p

ν

)p) 1
p =

n∑
j=1

∥∥fj∥∥p,ν ≤ (|||f |||p + ε).

As ε is arbitrary, ‖f‖p,ν ≤ |||f |||p. Now, the first condition of quasinorm and this

equality yields |||f |||p = 0 if and only if f = 0. The other two conditons in the

definition of the norm follow easily from the definition of ||| · |||p. Finally it is clear

that it is a lattice norm. �

Proposition 7. Let 0 < p <∞. Then the space Lpw(ν) has the σ-Fatou property.

Proof. First, remark that f ∈ Lpw(ν) if and only if
∥∥|f |p∥∥

ν
<∞ since f ∈ L1

w(ν) if

and only if ‖f‖ν < ∞. Now, let 0 ≤ (fn)n≥1 be an increasing sequence in Lpw(ν)

such that supn ‖fn‖p,ν <∞. By the measurability of fn there exists f := supn fn ∈
M(Rloc). Using the same argument as the one in the proof of the completeness

of Lpw(ν), we have that f ≥ 0. Let us show that ‖f‖p,ν < ∞. Consider the

increasing sequence 0 ≤ (fpn)n≥1 ∈ L1
w(ν) and fix x∗ ∈ BX∗ . Then for every n ∈ N,

fpn ∈ L1(|x∗ν|) and by the Monotone Convergence Theorem∫
Ω

|f |p d|x∗ν| = lim
n→∞

∫
Ω

|fn|p d|x∗ν| ≤ lim
n→∞

∥∥|fn|p∥∥ν = sup
n∈N

∥∥|fn|p∥∥ν <∞.
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Hence |f |p ∈ L1
w(ν) and f ∈ Lpw(ν). Consequently, Lpw(ν) has the weak σ-Fatou

property. Moreover,
∥∥|f |p∥∥

ν
≤ supn

∥∥|fn|p∥∥ν , hence ‖f‖p,ν ≤ supn
∥∥|fn|∥∥p,ν . On

the other hand, 0 ≤ fn ≤ f for every n ∈ N, then ‖fn‖p,ν ≤ ‖f‖p,ν for every

n ∈ N and supn ‖fn‖p,ν ≤ ‖f‖p,ν . Taking into account both inequalities we have

supn ‖fn‖p,ν = ‖f‖p,ν , so Lpw(ν) has the σ-Fatou property. �

Proposition 8. Let 0 < p <∞. Then the space Lp(ν) is order continuous.

Proof. First, show that Lp(ν) is σ-order continuous. To this aim, take (fn)n≥1

a decreasing sequence in Lp(ν)+ with inf fn = 0, that is, such that fn ↓ 0 ν-

a.e. Then (fpn)n≥1 is a decreasing sequence in L1(ν)+ such that fpn ↓ 0 ν-a.e.

The σ-order continuity of L1(ν) yields limn→∞ ‖fpn‖ν = 0, so limn→∞ ‖fpn‖
1
p
ν =

limn→∞ ‖fn‖p,ν = 0 and Lp(ν) is σ-order continuous. Now, since Lpw(ν) has the

σ-Fatou property, it is Dedekind σ-complete ([24, Theorem 113.1]) and as Lp(ν) is a

closed ideal in it, it is also Dedekind σ-complete ([16, Theorem 25.2]). Proposition

1.a.8 in [15] yields that Lp(ν) is then order continuous. �

Example 9. It is easy to find examples of Lp(ν) spaces which have not the σ-Fatou

property and Lpw(ν) spaces which are not order continuous. In fact, under certain

requirements having these properties implies the coincidence of Lp(ν) and Lpw(ν)

(for instance, when the δ-ring is a σ-algebra, see the comments at the end of this

section). For example, take the δ-ring R of all the finite subsets of N and the vector

measure η : R → c0 given by η({n}) := en, where (en)n is the canonical basis of c0.

It is known that in this case L1(η) = c0 and L1
w(η) = `∞ (see [10, Example 2.2]).

Just looking at the definition makes clear that for all 0 < p < ∞, Lp(η) = c0 and

Lpw(η) = `∞. The first one do not have the σ-Fatou property, and the second one

is not order continuous. If we define the same vector measure but having values

in the space `q, 1 ≤ q ≤ ∞, instead that in c0, it is shown in [10, Example 2.2]

that L1(η) = L1
w(η) = `q; for 1 ≤ p < ∞, then Lp(η) = Lpw(η) = `pq that is order

continuous and has the Fatou property.

The following result gives a representation theorem for abstract order continuous

and p-convex Banach lattices. It generalizes the one in [12, Proposition 2.4] (see

also [20, Proposition 3.30] for a complex version).

Theorem 10. Let 1 < p < ∞ and let E be a p-convex order continuous Banach

lattice. Then there exists a positive vector measure ν defined on a δ-ring and with

values in E such that Lp(ν) and E are order isometric.

Proof. Since E is an order continuous Banach lattice, it can be renormed in order

to have a p-convexity constant equal to 1 (see Proposition 1.d.8 in [15]) and there

exists a vector measure ν1 defined on a δ-ring and with values in E, such that the

space L1(ν1) of integrable functions with respect to ν1 is order isometric to E with

the new norm. More precisely, the integration operator Iν1
: L1(ν1)→ E is an order
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isometry ([11, Theorem 4 and Theorem 8]; see also [4, pp. 22-23]). Consequently

L1(ν1) is a p-convex and order continuous Banach lattice with p-convexity constant

equal to 1 (as above). Consider L
1
p (ν1), by Proposition 6 we have that ‖ · ‖ 1

p
is

actually a lattice norm and then L
1
p (ν) is a Banach lattice. Define the set function

ν2 : R → L
1
p (ν1) by A 7→ χA. Clearly, ν2 is additive. Moreover, if (Ai)i≥1 ⊂ R is a

pairwise disjoint sequence such that
⋃
i≥1Ai ∈ R, then by the order continuity of

L1(ν1) we have that∥∥∥ν2(
⋃
i≥1

Ai)−
n∑
i=1

ν2(Ai)
∥∥∥

1
p ,ν1

=
∥∥∥ν2(

⋃
i≥1

Ai)− ν2(

n⋃
i≥1

Ai)
∥∥∥

1
p ,ν1

= ‖ν2(
⋃
i≥n

Ai)
∥∥∥

1
p ,ν1

=
∥∥∥|χ⋃

i≥n Ai
|
1
p

∥∥∥p
ν1

=
∥∥∥χ⋃

i≥n Ai

∥∥∥
ν1
→ 0,

as n → ∞. Hence, ν2 is a countably additive vector measure. Consider now the

integration operator Iν2 : L1(ν2)→ L
1
p (ν1) which is linear and continuous and take

ϕ =
∑n
j=1 ajχAj ∈ S(R) (we assume that the sets Aj are pairwise disjoint). Then,

since L
1
p (ν1) is a Banach lattice and the vector measure ν2 is positive,

‖ϕ‖ν2 =
∥∥∥∫

Ω

|ϕ| dν2

∥∥∥
1
p ,ν1

=
∥∥∥ n∑
j=1

|aj |ν2(Aj)
∥∥∥

1
p ,ν1

=
∥∥∥ n∑
j=1

|aj |χAj
∥∥∥

1
p ,ν1

= ‖ϕ‖ 1
p ,ν1

.

On the other hand,

‖Iν2(ϕ)‖ 1
p ,ν1

=
∥∥∥ ∫

Ω

ϕdν2

∥∥∥
1
p ,ν1

= ‖ϕ‖ 1
p ,ν1

.

Consequently, ‖Iν2(ϕ)‖ 1
p ,ν1

= ‖ϕ‖ 1
p ,ν1

= ‖ϕ‖ν2 . Moreover, the integration operator

Iν2 over S(R) is the identity map. Extending now by density, we obtain that

L1(ν2) = L
1
p (ν1) with equal lattice norms. Therefore, again the identity map will

be an order isometry between Lp(ν2) and L1(ν1) and Lp(ν2) = L1(ν1) with equal

lattice norms. Hence, E and Lp(ν2) are order isometric. �

The properties of a vector measure ν defined on a δ-ring R influence the spaces

of integrable and weakly integrable functions L1(ν) and L1
w(ν) (see [10] and [3]).

We explain here the corresponding consequences on the spaces Lpw(ν) and Lp(ν)

with p > 1.

In the general case it is not true that a measure ν defined on a δ-ring is bounded,

that is ‖ν‖(Ω) = ‖χΩ‖ν < ∞ which is equivalent to the fact that χΩ ∈ L1
w(ν)

(see [10, Example 2.1]). Due to the ideal property of L1(ν) in Rloc, the space of

measurable bounded functions L∞(ν) is contained in L1(ν) if and only if χΩ ∈ L1(ν)

(see the comments after [10, Example 2.1]). Consequently, if ν is not bounded, this

premise fails to hold. It is clear that the same conclusion holds for Lp(ν), p > 1.

Moreover, recall that a measure ν is said to be strongly additive if (ν(An))n≥1

converges to zero whenever (An)n≥1 is a sequence of disjoint subsets ofR. Corollary

3.2 in [10] assures that ν is strongly additive if and only if χΩ ∈ L1(ν). Therefore,
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L∞(ν) ⊂ L1(ν) if and only if ν is strongly additive. Again, the same result holds

for Lp(ν), p ≥ 1.

A measure ν is said to be σ-finite if there exists a sequence (An)n≥1 in R and a

ν-null set N ∈ Rloc such that Ω = (∪n≥1An)∪N . Theorem 3.3 in [10] ensures that

the σ-finiteness of ν is equivalent to the existence of a weak unit in L1(ν). Clearly,

this is equivalent to the existence of a weak unit in Lp(ν) for any/some p > 1.

New requirements on the measure ν (introduced and study in [3]) influence the

structure of the spaces L1
w(ν) strongly. Locally σ-finiteness plays an important and

very special role as it gives the condition to L1(ν) to be super order dense in L1
w(ν).

More concretely, recall that a measure ν is locally σ-finite if given B ∈ Rloc with

‖ν‖(B) <∞, B can be written as B = (∪n≥1An) ∪N, with An ∈ R and N ∈ Rloc

a ν-null set. Proposition 3.4 in [3] proves that ν is locally σ-finite if and only if

for every 0 ≤ f ∈ L1
w(ν), there exists a sequence (ϕn) ⊂ R such that 0 ≤ ϕn ↑ f

ν-a.e. This characterization allows us to use the same arguments as the ones in

Proposition 3.9 and Corollary 3.10 in [12], as well as certain well-known theorems

on general Banach lattices to prove the following proposition. We recall that a

Banach lattice E is a KB-space if every monotone sequence in BE is convergent.

Proposition 11. Let ν be a locally σ-finite vector measure on a δ-ring R. For

p > 1, the following conditions are equivalent:

(1) Lpw(ν) is order continuous.

(2) Lpw(ν) is a KB-space.

(3) Lpw(ν) is weakly sequentially complete.

(4) Lpw(ν) does not contain a (lattice) copy of c0.

(5) Lpw(ν) is reflexive.

(6) Lp(ν) is reflexive.

(7) Lp(ν) does not contain a (lattice) copy of c0.

(8) Lp(ν) is weakly sequentially complete.

(9) Lp(ν) is a KB-space.

(10) Lpw(ν) = Lp(ν).

(11) L1
w(ν) = L1(ν).

Remark that L1
w(ν) = L1(ν) holds if the space X where the vector measure takes

its values does not contain a copy of c0 ([14, Theorem 5.1]). This always happens

if X is a weakly sequentially complete Banach space (see [1, page 226]) and the

converse is also true for Banach lattices by Theorem 14.12 in [1]. This provides a

quite large list of examples which guarantees the equality L1
w(ν) = L1(ν).

Finally, let us note that there is a decomposition property for ν which implies

that the space L1
w(ν) has the Fatou property. It is the so called R-decomposability

of ν (see Definition 17). For a measure satisfying such property, Theorem 3.14 in

[3] assures that L1
w(ν) has the Fatou property and L1(ν) is an order dense ideal in

it. Thus, the order density of Lp(ν) in Lpw(ν) is an obvious consequence; clearly, we
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also get that under this requirement for ν the space Lpw(ν) has the Fatou property

for p > 1.

4. Multiplication operators

Let 1 < p < ∞ and consider a vector measure ν defined on a σ-algebra. It

is well-known that in this case Lp(ν) ⊂ Lpw(ν) ⊂ L1
w(ν) and Lp(ν) ⊂ L1(ν) ⊂

L1
w(ν). Moreover, by Proposition 3.1 and Corollary 3.2 in [12] a further inclusion

can be established: for p > 1, Lpw(ν) ⊂ L1(ν). Actually, Proposition 3.3 in [12]

establishes that this inclusion is an L-weakly compact operator (and so a weakly

compact operator). However, for vector measures on δ-rings these inclusions are

not necessarily true (for instance, Lp[0,∞] is not included in L1[0,∞]), but the

inclusions between the products of the corresponding spaces are still preserved;

for example the equality Lp[0,∞] · Lp′ [0,∞] = L1[0,∞] remains true. In this

section we analyze these inclusion relations and the compactness properties of the

multiplication operators that appear in a natural way. Let us start with two simple

examples related to Example 9.

Example 12. (a) Let Γ be an uncountable abstract set and R the δ-ring of finite

subsets of Γ. Clearly, Rloc = 2Γ. Consider the vector measure ν : R → `1(Γ)

defined by ν(A) :=
∑
γ∈A eγ , where eγ is the characteristic function of the point

γ ∈ Γ. It is obvious that the only ν-null set is the empty set. Since `1(Γ) does not

contain a copy of c0, we have that L1
w(ν) = L1(ν) (see the explanation at the end of

Section 3). Moreover L1
w(ν) = L1(ν) = `1(Γ) (see [10, Example 2.2] and Example

9). Take 1 < p < ∞, then Lpw(ν) = Lp(ν) = `p(Γ) and `p(Γ) 6⊂ `1(Γ). Therefore,

Lp(ν) = Lpw(ν) 6⊂ L1
w(ν) = L1(ν) and some of the inclusions above fail to be true.

(b) Let 1 < p < q, and consider again the previous example. Then Lp(ν) =

Lpw(ν) = `p(Γ) and Lq(ν) = Lqw(ν) = `q(Γ). Since `p(Γ) ⊂ `q(Γ), we have Lp(ν) ⊂
Lq(ν) which is just the opposite inclusion of the one that holds in the case of

σ-algebras.

The multiplication operators between Lp(ν) spaces have been studied recently

in a series of papers for the case of vector measures ν on σ-algebras (see [20, Ch.3],

[8], [9], [13] and [2]). In particular, the equality Lpw(ν) · Lp′(ν) = L1(ν) and the

compactness properties of the multiplication operators are nowadays well-known

in this case. In what follows we will study multiplication operators and some of

their properties in the context of vector measures defined on a δ-ring. We begin by

proving some inclusions without further requirements on the measure.

Lemma 13. Let p, p′ > 1 be conjugated exponents. Then

(1) Lpw(ν) · Lp′w (ν) = L1
w(ν), and

(2) Lp(ν) · Lp′(ν) = Lpw(ν) · Lp′(ν) = Lp(ν) · Lp′w (ν) = L1(ν).
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Proof. (1) Taking into account Lemma 3 we have that Lpw(ν) · Lp′w (ν) ⊂ L1
w(ν).

Now let f ∈ L1
w(ν). Then we can write f = sign(f)|f | = (sign(f)|f |

1
p ) · |f |

1
p′ ∈

Lpw(ν) · Lp′w (ν) and check the converse inclusion.

(2) Note that the same proof of (1) yields Lp(ν) · Lp′(ν) = L1(ν). We will prove

that Lpw(ν) · Lp(ν) = L1(ν). For this aim, let f ∈ Lpw(ν) and g ∈ Lp
′
(ν). We

can suppose without loss of generality that f, g ≥ 0 ν-a.e. Since f ∈ Lp
′

w (ν),

there exists a sequence (ψn)n≥1 in S(Rloc) such that 0 ≤ ψn ↑ f ν-a.e. and since

g ∈ Lp′(ν), there exists a sequence (ϕn)n≥1 in S(R) such that 0 ≤ ϕn ↑ g ν-a.e.

and in the norm of Lp
′
(ν). Note that for every n ∈ N, ψnϕn ∈ S(R) and that

fg ∈ Lpw(ν) · Lp′w (ν) = L1
w(ν), so it suffices to prove that ‖ψnϕn − fg‖ν → 0 as

n→∞ by the density of S(R) in L1(ν). Indeed

‖ψnϕn−fg‖ν =
∥∥∥fχsupp(f)(

ψn
fχsupp(f)

ϕn−g)
∥∥∥
ν
≤ ‖f‖Lpw(ν)·

∥∥∥ ψn
fχsupp(f)

ϕn−g
∥∥∥
Lp′ (ν)

,

where the last computation has been made taking into account that L∞(ν)·Lp′(ν) ⊂
Lp
′
(ν) due to the ideal property of Lp

′
(ν). Since 0 ≤ ψn

fχsupp(f)
ϕn ↑ g ν-a.e., the order

continuity of Lp
′
(ν) yields

∥∥∥ ψn
fχsupp(f)

ϕn − f
∥∥∥
Lp′ (ν)

→ 0. Hence ‖ψnϕn − fg‖ν → 0

and fg ∈ L1(ν). Finally, since L1(ν) = Lp(ν) ·Lp′(ν) ⊂ Lpw(ν) ·Lp′(ν), the equality

holds. Symmetry on the exponents p and p′ gives the final result. �

Remark 14. Note that in general Lpw(ν) ·Lp′w (ν) 6⊂ L1(ν). To see this, just consider

a vector measure ν such that L1(ν) 6= L1
w(ν) and take a function f ∈ L1

w(ν)\L1(ν).

Then f can be written as f = sign(f)|f | = (sign(f)|f |
1
p ) · |f |

1
p′ , but f /∈ L1(ν).

In fact, these spaces can be of a completely different size. Let us show an example.

Take a family of disjoint probability spaces (Ωγ ,Σγ , µγ)γ∈Γ for an uncountable set

of indexes Γ, the δ-ring R defined by finite unions B = ∪ni=1Aγi , Aγi ∈ Σγi and

the vector measure κ : R → c0(Γ) given by κ(B) =
∑n
i=1 µγi(Aγi)χ{γi}. Then a

direct extension of the arguments that are used in Example 9 ([10, Example 2.2])

gives that the space L1(κ) is the direct sum
⊕

c0(Γ) L
1(µγ). In particular, the

support of each elements of this space is contained in a countable union of sets Ωγ ,

γ ∈ Γ. However, L1
w(κ) =

⊕
`∞(Γ) L

1(µγ) and the functions of this space can be

even strictly positive in all points of
⋃
γ∈Γ Ωγ . (Notice that the notations

⊕
c0(Γ)

and
⊕

`∞(Γ) indicate that the support of each function in the first space is included

in a countable subset of indexes γ which do not happen in the case of the second

space).

Lemma 15. Let p, p′ > 1 be conjugated exponents and g ∈ Lp′(ν). Then

(1) Mg ∈ B(Lp(ν), L1(ν)), and

(2) Mg ∈ B(Lpw(ν), L1(ν)).

In both cases ‖Mg‖ coincides with ‖g‖Lp′ (ν).
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Proof. It is a consequence of Lemma 13. It suffices to prove (2) as Lp(ν) ⊂ Lpw(ν)

continuously. Let (fn)n≥1 in Lpw(ν) such that fn → f in Lpw(ν) and Mg(fn) =

gfn → h in L1(ν). Since fn → f in Lpw(ν), there exists a subsequence (that we

suppose to be the same for simplicity) such that fn → f ν-a.e. Similarly, gfn → h

ν-a.e. By the uniqueness of the order limit, gf = h ν-a.e. Hence, by the Closed

Graph Theorem, Mg ∈ B(Lpw(ν), L1(ν))

Moreover ‖Mg(f)‖L1(ν) = ‖gf‖L1(ν) ≤ ‖g‖Lp′ (ν) · ‖f‖Lpw(ν) for all f ∈ Lpw(ν),

thus ‖Mg‖ ≤ ‖g‖Lp′ (ν). For the other inequality, just take the function

f0 = ‖g‖−
p′
p

Lp′ (ν)
|g|p

′−1 ∈ BLp(ν).

�

The arguments used in the previous proof proves also the next lemma.

Lemma 16. Let p, p′ > 1 be conjugated exponents and g ∈ Lp′w (ν). Then

(1) Mg ∈ B(Lp(ν), L1(ν)), and

(2) Mg ∈ B(Lpw(ν), L1
w(ν).

In what follows we need further requirements on the measure space (Ω,R, ν).

We will assume that ν is R-decomposable. This is a vector measure extension of a

well-known decomposition property for scalar measure spaces that is called to be

decomposable (or strictly localizable) (see [22, Definition 46]). Let us consider a

δ-ring R of subsets of Ω and a vector measure ν on it. Then Zorn’s Lemma gives a

class of pairwise disjoint sets {Ai : i ∈ I} ⊆ R and a disjoint ν-null subset N ⊆ Ω

such that A = ∪i∈IAi ∪N .

Definition 17. A vector measure ν over a δ-ring R of subsets of Ω is said to be

R-decomposable if there exists a maximal decomposition of Ω as before given by

(Ωα)α∈∆ in R and a ν-null N such that

(1) for every arbitrary family (Aα)α∈∆ of elements or R such that Aα ⊂ Ωα

for all α ∈ ∆, the union ∪α∈∆Aα is in Rloc, and

(2) for every arbitrary family of ν-null sets (Zα)α∈∆ in R such that Zα ⊂ Ωα

for all α ∈ ∆, the union ∪α∈∆Zα is ν-null.

For an R-decomposable vector measure, Theorem 3.14 in [3] assures that

Theorem 18. Let R be a δ-ring of subsets of Ω, X a Banach space and ν : R → X

an R-decomposable vector measure. Then L1
w(ν) has the Fatou property and L1(ν)

is an order dense ideal in it.

Consequently, in such case for every p > 1, Lpw(ν) has also the Fatou property

and Lp(ν) is an order dense ideal. We will use this result in the sequel.

Theorem 19. Let p, p′ > 1 be conjugated exponents and let g ∈ M(Rloc). If ν is

R-decomposable, then the following statements are equivalent.
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(1) g ∈ Lp′w (ν).

(2) Mg ∈ B(Lp(ν), L1(ν)).

(3) Mg ∈ B(Lp(ν), L1
w(ν).

(4) Mg ∈ B(Lpw(ν), L1
w(ν)).

In such a case, ‖Mg‖ coincides with ‖g‖
Lp
′
w (ν)

.

Proof. By Lemma 16 we have that (1) ⇒ (2). Let us see the converse. Assume

that Mg ∈ B(Lp(ν), L1(ν)) and so ‖Mg‖ <∞. Consider

A := {f ∈ Lp
′

w (ν) : 0 ≤ f ≤ |g|}.

By Lemma 16 for f ∈ Lp
′

w (ν), Mf ∈ B(Lp(ν), L1(ν)) and ‖Mf‖ = ‖f‖Lp′ (ν). In

particular, this is the case for f ∈ A. We order A to see it as an upwards directed

system where f1, f2 ∈ A are majorized by f1 ∨ f2 ∈ Lp
′

w (ν) ∩ A. We use (A,∨) to

denote it. Then, we have an upwards directed system such that

sup
f∈(A,∨)

‖f‖
Lp
′
w (ν)

= sup
f∈(A,∨)

‖Mf‖ ≤ ‖M|g|‖ = ‖Mg‖ <∞.

The Fatou property of Lp
′

w (ν) ensures that there exists f0 := supf∈(A,∨) f ∈ Lp
′

w (ν)

and that

‖f0‖Lp′w (ν)
= sup
f∈(A,∨)

‖f‖
Lp
′
w (ν)

= sup
f∈(A,∨)

‖Mf‖.

We claim that f0 = |g| ν-a.e. Suppose that this is not the case. Then the set

B := {ω ∈ Ω : f0(ω) 6= |g|(ω)} ⊂ Rloc satisfies that ‖ν‖(B) > 0. By Lemma 3.4

in [18], ‖ν‖(B) = supD∈R∩2B ‖ν‖(D). Thus, there exists D ∈ R, D ⊂ B such that

0 < ‖ν‖(D) <∞. Note that D ⊂ supp(|g| − f0), then D ∩ supp(|g| − f0) 6= ∅ ν-a.e.

We know that 0 ≤ |g| − f0 ∈ M(Rloc), therefore, there exists a sequence (ϕn)n≥1

in S(Rloc) such that ϕn ↑ |g| − f0 ν-a.e. This implies that ϕnχD ↑ (|g| − f0)χD

ν-a.e. and so that ϕnχD + f0χD ↑ |g|χD ν-a.e.

On the other hand, there exists n ∈ N such that ϕnχD 6= 0 ν-a.e. In other case,

if for all n ∈ N ϕnχD = 0 ν-a.e., then supp(ϕn ∩D) = ∅ ν-a.e. for all n ∈ N, thus(⋃
n≥1 supp(ϕn)

)
∩D = ∅ ν-a.e., a contradiction. Let k ∈ N such a number. We

have that ϕkχD+f0χD ≤ f0χD = (supf∈(A,∨) |f |)χD where ϕkχD+f0χD ∈ Lp
′

w (ν),

which contradicts the definition of the supremum. Consequently, f0 = |g| ν-a.e. and

g ∈ Lqw(ν).

Concerning the norms, we have already proved that ‖g‖
Lp
′
w (ν)

≤ ‖Mg‖. On

the other hand, from Hölder’s Inequality, we have that ‖Mg(f)‖L1(ν) ≤ ‖g‖Lp′w (ν)
·

‖f‖Lp(ν) for all f ∈ Lp(ν), and hence ‖Mg‖ ≤ ‖g‖Lp′w (ν)
.

The proof of (1)⇐⇒ (3) is analogous.

Assume now that ν is R-decomposable. (4) ⇒ (3) is evident so let us show

now that (3) ⇒ (4). For this aim we consider for every I ⊂ ∆ finite the set

ΩI = ∪α∈IΩα. Consider 0 ≤ f ∈ Lpw(ν) and choose (ϕn)n≥1 ⊂ S(Rloc) such that

0 ≤ ϕn ↑ f . For each n ≥ 1 and I ⊂ ∆ finite, we define ξ(n,I) = ϕnχΩI ∈ S(R).
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Then (ξ(n,I))(n,I) ⊂ Lp(ν) is an upwards directed system 0 ≤ ξ(n,I) ↑ f . Moreover

sup(n,I) ξ(n,I) = f . By (3) we have that 0 ≤ |g|ξ(n,I) = sign(g)gξ(n,I) ∈ L1
w(ν).

Moreover, it is clear that |g|ξ(n,I) ↑ |g|f ∈ Rloc and that for every n ∈ N,∥∥|g|ξ(n,I)∥∥L1
w(ν)

= ‖Mg(ξ(n,I))‖L1
w(ν) ≤ ‖Mg‖ · ‖ξ(n,I)‖Lp(ν) ≤ ‖Mg‖ · ‖f‖Lpw(ν).

The Fatou property of L1
w(ν) yields that |g|f ∈ L1

w(ν) and so that gf ∈ L1
w(ν).

The extension to the general case is routine. Therefore Mg : Lpw(ν)→ L1
w(ν) is well

defined and the continuity is guaranteed since it is a difference of positive operators

between Banach lattices. �

Theorem 20. Let p, p′ > 1 be conjugate exponents and let g ∈ M(Rloc). If ν is

R-decomposable then the following conditions are equivalent:

(1) g ∈ Lp′(ν).

(2) Mg ∈ B(Lpw(ν), L1(ν)).

Proof. By Lemma 15 we have that (1) ⇒ (2). Let us see (2) ⇒ (1). Suppose that

Mg ∈ B(Lpw(ν), L1(ν)). Then also Mg ∈ B(Lp(ν), L1(ν)) so g ∈ Lp′w (ν) by Theorem

19. That is, |g|p′ ∈ L1
w(ν) which clearly implies that |g|p′−1 ∈ Lpw(ν). Therefore,

|g|p
′

= |g| · |g|p
′−1 ∈M|g|(Lpw(ν)) = Mg(L

p
w(ν)) ⊂ L1(ν).

Consequently, g ∈ Lp′(ν). The coincidence of the norms has been already estab-

lished in Lemma 15. �

We finish this section by analyzing the compactness properties of the multipli-

cation operators.

Theorem 21. Let p, p′ > 1 conjugate exponents and let g ∈ M(Rloc). If ν is

R-decomposable then the following statements are equivalent:

(1) g ∈ Lp′(ν).

(2) Mg ∈ B(Lpw(ν), L1(ν)).

(3) Mg ∈ L(Lpw(ν), L1(ν)).

(4) Mg ∈ L(Lp(ν), L1(ν)).

(5) Mg ∈ L(Lpw(ν), L1
w(ν)).

(6) Mg ∈ L(Lp(ν), L1
w(ν)).

(7) Mg ∈ W(Lpw(ν), L1(ν)).

(8) Mg ∈ W(Lp(ν), L1(ν)).

(9) Mg ∈ W(Lpw(ν), L1
w(ν)).

(10) Mg ∈ W(Lp(ν), L1
w(ν)).

Proof. The equivalence (1)⇐⇒ (2) is precisely Theorem 20. Let us see (1)⇒ (3).

We already have that Mg ∈ B(Lpw(ν), L1(ν)). We want to see that Mg(BLpw(ν)) is

an L-weakly compact set in L1(ν), that is, Mg(BLpw(ν)) is norm-bounded and such

that ‖hn‖L1(ν) → 0 as n→∞ for every disjoint sequence (hn)n≥1 contained in the
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solid hull of Mg(BLpw(ν)). Note that Mg(BLpw(ν)) is clearly norm-bounded by the

continuity of Mg. Moreover, the solid hull of Mg(BLpw(ν)) is itself, since Mg(BLpw(ν))

is solid in L1(ν). In fact, let |h| ≤ |h̃|, with h ∈ L1(ν) and h̃ ∈ Mg(BLpw(ν)). We

have that h̃ = gf with f ∈ BLpw(ν) and then |h| ≤ |gf |. Thus,

|h|
|g|
χsupp(g) ≤ |f |χsupp(g) ≤ |f |.

The ideal property of Lpw(ν) yields that h
gχsupp(g) ∈ Lpw(ν) and so ‖hgχsupp(g)‖Lpw(ν) ≤

‖f‖Lpw(ν) ≤ 1. Then h = g hgχsupp(g) ∈Mg(BLpw(ν)). Finally let (hn)n be such a se-

quence and consider for each n ∈ N the set supp(hn) ∈ Rloc. As (hn)n is a disjoint

sequence (supp(hn))n is a disjoint family in Rloc. On the other hand, for every

n ∈ N there exists fn ∈ BLpw(ν) such that hn = Mg(fn) = gfn = gχsupp(hn)fn. By

Hölder’s Inequality

‖Mg(fn)‖L1(ν) = ‖hn‖L1(ν) ≤ ‖fn‖Lpw(ν) · ‖gχsupp(hn)‖Lp′ (ν) ≤ ‖gχsupp(hn)‖Lp′ (ν),

but ‖gχsupp(hn)‖Lp′ (ν) → 0 since (gχsupp(hn))n is an order bounded disjoint sequence

in the order continuous space Lp
′
(ν). The implication (3) ⇒ (2) is evident and so

we close the chain (1)⇐⇒ (2)⇐⇒ (3).

The implication (3) ⇒ (4) is clear because Lp(ν) is continuously contained in

Lpw(ν) and the composition of a continuous operator (to the right) with an L-weakly

compact is an L-weakly compact operator. Let us show now (4) ⇒ (1) and close

the equivalences from (1) to (4). Assume that Mg ∈ L(Lp(ν), L1(ν)). In particular,

Mg ∈ B(Lp(ν), L1(ν)) and Theorem 19 yields that g ∈ Lp′w (ν).

In order to show that g ∈ Lp′(ν), we consider, for every I ⊂ ∆ finite, the set

ΩI = ∪α∈IΩα and the σ-algebra ΣI =
{
∪α∈I Aα : Aα ∈ Σα for all α ∈ I

}
of ΩI

where Σα = R ∩ Ωα. Note that ΩI ⊂ Ω and ΣI ⊂ R. Denote by νI : ΣI → X the

restriction of ν to ΣI . For each f ∈ M(Rloc), denote by f I the function resulting

from the restriction of f to ΩI . For every f ∈ L1
w(ν) we have that fχΩI ∈ L1

w(ν)

and f I ∈ L1
w(νI) with ‖f I‖νI = ‖fχΩI‖ν (see the proof of Theorem 3.14 in [3]).

Moreover, for every f ∈ L1(ν) we have that fχΩI ∈ L1(ν) and f I ∈ L1(νI) (see

[11]). If Z is a ν-null set then Z ∩ΩI is νI -null. Conversely, each function in L1(νI)

(respectively in L1
w(νI)) can be considered as a function in L1(ν) (respectively

L1
w(ν)) with the same corresponding relationships.

Define now Bk := {ω ∈ Ω : 0 ≤ |g(ω)| < k}, for k ∈ N, and consider (|g|χBk)I ∈
L∞(νI) ⊂ Lp

′
(νI). Then |g|χBkχΩI ∈ Lp

′
(ν). Clearly, |g|χBkχΩI ↑ |g| ν-a.e.

We claim that the upwards directed system (|g|χBkχΩI ) is a Cauchy system in

Lp
′
(ν); in this case it is also convergent in norm to the suprema, that is convergent

to g (see Theorem 100.8 in [24]) and then g ∈ Lp
′
(ν). Otherwise, there would

exist a number ε > 0 and an increasing sequence (|g|χBkχΩIk
)k in (|g|χBkχΩI )

such that
∥∥|g|χBk+1

χΩIk+1
− |g|χBkχΩIk

∥∥
Lp′ (ν)

> ε for all n ∈ N, i.e. such that∥∥|g|χCk∥∥Lp′ (ν)
> ε where Ck := (Bk+1 ∩ ΩIk+1

) \ (Bk ∩ ΩIk) (note that Ck 6= ∅).
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Let fk :=
∥∥g∥∥− p′p

Lp
′
w (ν)
|g|p′−1χCk ∈ BLp(ν). Then ‖Mg(fk)‖L1(ν) → 0 as k → ∞ due

to the L-weakly compactness of Mg, but

Mg(fk) = g|g|p
′−1‖g‖−

p′
p

Lp
′
w (ν)

χCk = sign(g)|g|p
′
‖g‖−

p′
p

Lp
′
w (ν)

χCk ,

and hence ‖Mg(fk)‖L1(ν) =
∥∥|g|p′χCk∥∥L1(ν)

‖g‖−
p′
p

Lp
′
w (ν)

. Therefore

∥∥|g|χCk∥∥Lp′ (ν)
= ‖Mg(fk)‖L1(ν) · ‖g‖

p′
p

Lp
′
w (ν)

→ 0

as k →∞, that gives a contradiction.

Clearly, (3) ⇒ (5) since L1(ν) is continuously included in L1
w(ν) and the impli-

cation (5)⇒ (6) follows by the same argument as the one used to prove (3)⇒ (4).

We will show now that (6) ⇒ (4). Assume that Mg ∈ L(Lp(ν), L1
w(ν)). In par-

ticular, Mg ∈ B(Lp(ν), L1
w(ν)). Theorem 19 yields that Mg ∈ B(Lp(ν), L1(ν)) and

then Mg(L
p(ν)) ⊂ L1(ν) which gives Mg ∈ L(Lp(ν), L1(ν)). We already have the

equivalences (1) to (6).

Since every L-weakly compact operator is weakly compact, (3) ⇒ (7). Again,

since L1(ν) ⊂ L1
w(ν) with equal norms, (7)⇒ (9). The same argument that proves

(3) ⇒ (4) gives (9) ⇒ (10). (10) ⇒ (8) can be proved in the same way that

(6) ⇒ (4). Only (8) ⇒ (1) is needed to close the chain. Let us see this. Suppose

Mg ∈ W(Lp(ν), L1(ν)), thenMg ∈ B(Lp(ν), L1(ν)) and g ∈ Lp′w (ν). Let Ak := {ω ∈
Ω : k − 1 ≤ |g(ω)|p′ < k}, for k ∈ N, and consider (|g|p′χAk)I ∈ L∞(νI) ⊂ L1(νI)

(we follow the notation in the proof of (4) ⇒ (1)). Then |g|p′χAkχΩI ∈ L1(ν).

Define

S(n,I) :=

n∑
k=1

∫
Ω

|g|p
′
χAkχΩI dν =

∫
Ω

g(sign(g))

n∑
k=1

|g|p
′−1χAkχΩI dν.

If we write f(n,I) := sign(g)
∑n
k=1 |g|p

′−1χAkχΩI (note that f(n,I) ∈ Lp(ν)), we

have S(n,I) =
∫

Ω
gf(n,I) dν = Iν ◦ Mg(f(n,I)). The ideal property of the weakly

compact operators gives that S(n,I) ∈ W(Lp(ν), X). Since |f(n,I)|p ≤ |g|p
′
, we

have that ‖f(n,I)‖Lp(ν) ≤ ‖g‖Lp′w (ν)
, and hence (f(n,I))(n,I) ⊂ ‖g‖Lp′w (ν)

· BLp(ν);

that is (f(n,I))(n,I) is included in a multiple of BLp(ν). Therefore, (S(n,I))(n,I) is

contained in a relatively weakly compact subset of X. Consequently, there exists

(S̃(n,I))(n,I) ⊂ (S(n,I))(n,I) weakly convergent to some x0 ∈ X. On the other

hand, recall that each weakly ν-integrable function has an integral belonging to

X∗∗ (this fact can be easily proved following the same arguments as in Corollary 3

and definitions in page 224 in [23]). So there is an element x′′0 ∈ X∗∗ such that for

every x∗ ∈ X∗

x∗(S(n,I)) =

∫
Ω

gf(n,I) dx
∗ν →

∫
Ω

|g|p
′
dx∗ν = x∗(x′′0)
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due to the order continuity of L1(|x∗ν|). Hence (S(n,I))(n,I) converges in the weak*

topology of X∗∗ to x′′0 . Since the weak* topology of X∗∗ coincides in X with the

weak topology of X, we can take x0 := x′′0 ∈ X. This assures the existence of

x0 ∈ X such that x∗(x0) =
∫

Ω
|g|p′ dx∗ν. So the second condition in the definition

of L1(ν) is verified and we conclude the result. �

Remark 22. Following the results in [8], the previous theorem can be extended to the

corresponding cases of semi-compact and M-weakly operators. For the definitions

we refer to [19, Definition 3.6.9] and for the proof check Theorem 7 in [8].

5. Lp and Lpw as intermediate spaces

It is well-known that in the case of σ-finite measures, the inclusions L1(µ) ∩
L∞(µ) ⊂ Lp(µ) ⊂ L1(µ) + L∞(µ) substitute for many purposes the inclusions

L∞(µ) ⊂ Lp(µ) ⊂ L1(µ) that hold for finite measures. To finish the paper, in

this section we analyze the inclusion between the spaces L1(ν)∩L∞(ν), Lp(ν) and

L1(ν) + L∞(ν), and also for the corresponding weak spaces.

Proposition 23. Let 1 < p ≤ ∞. Then the following (continuous) inclusions hold.

(1) L1
w(ν) ∩ L∞(ν) ⊂ Lpw(ν) ⊂ L1

w(ν) + L∞(ν).

(2) L1(ν) ∩ L∞(ν) ⊂ Lp(ν) ⊂ L1(ν) + L∞(ν).

Proof. (1) Consider the Banach lattices L1
w(ν) ∩ L∞(ν) and L1

w(ν) + L∞(ν) with

the ν-a.e. order and the usual lattice norms

‖f‖L1
w(ν)∩L∞(ν) = max{‖f‖L1

w(ν), ‖f‖∞}, and

‖h‖L1
w(ν)+L∞(ν) = inf{‖f‖L1

w(ν) + ‖g‖∞ : h = f + g, f ∈ L1
w(ν), g ∈ L∞(ν)},

respectively.

For every f ∈ L1
w(ν)∩L∞(ν) we have that |f(ω)| ≤ ‖f‖∞ ≤ ‖f‖L1

w(ν)∩L∞(ν) for

ν-almost all ω ∈ Ω, so ‖f‖−1
L1
w(ν)∩L∞(ν)|f(ω)| ≤ 1, ν-a.e and then

‖f‖−pL1
w(ν)∩L∞(ν)|f(ω)|p ≤ ‖f‖−1

L1
w(ν)∩L∞(ν)|f(ω)|, ν−a.e.

Hence, |f(ω)|p ≤ ‖f‖p−1
L1
w(ν)∩L∞(ν) · |f(ω)|, ν-a.e. The ideal property of L1

w(ν) yields

that |f |p ∈ L1
w(ν), and therefore f ∈ Lpw(ν).

On the other hand, let 0 ≤ f ∈ Lpw(ν). For an arbitrary ε > 0 define the

measurable set Aε := {ω ∈ Ω : f(ω) > ε}. Note that if ω ∈ Aε, then f(ω)p > εpχAε .

Therefore,

∞ > sup
x∗∈BX∗

∫
Ω

|f |p d|x∗ν| ≥ εp sup
x∗∈BX∗

∫
Ω

χAε d|x∗ν| = εp‖χAε‖L1
w(ν) = εp‖ν‖(Aε),

that is ‖ν‖(Aε) < ∞. In particular, χAε ∈ Lp
′

w (ν). Write f = fχAε + fχΩ\Aε .

Clearly, fχΩ\Aε ∈ L∞(ν). Moreover, by Lemma 13, Lpw(ν) · Lp′w (ν) = L1
w(ν) with

p, p′ conjugate exponents. Hence, fχAε ∈ L1
w(ν) and we conclude that f ∈ L1

w(ν)+

L∞(ν). The extension to the general case is routine. Finally, the continuity of
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the inclusions is clear, since it is a positive operator between Banach lattices. The

inclusions L1(ν) ∩ L∞(ν) ⊂ Lp(ν) ⊂ L1(ν) + L∞(ν) in (2) follow by the same

arguments, using in this case the identification Lp(ν) · Lp′w (ν) = L1(ν) for proving

the second one. �

In general these relations cannot be improved by changing spaces of weakly

integrable functions by spaces of integrable functions. The inclusions L1
w(ν) ∩

L∞(ν) ⊂ Lp(ν) and Lpw(ν) ⊂ L1(ν) + L∞(ν) fail sometimes, as the following

examples show.

Example 24. Let Γ = (0,∞) and consider the δ-ringR of the finite subsets of Γ. Let

1 < p <∞ and ν : R → c0(Γ) be the vector measure given by ν(A) :=
∑
γ∈A χ{γ}.

The corresponding spaces of integrable functions can be calculated easily and are

L1(ν) = Lp(ν) = c0(Γ) and L1
w(ν) = `∞(Γ) (see Example 9, Example 12 and

[10, Example 2.2]). Note also that L∞(ν) = `∞(Γ). Therefore L1
w(ν) ∩ L∞(ν) =

`∞(Γ) 6⊂ c0(Γ) = Lp(ν).

Example 25. Consider an uncountable index set I and a family of disjoint non

atomic probability spaces (Ωi,Σi, µi)i∈I . Consider the vector measure ν : R →
c0(I) constructed as the one in Remark 14. Let 1 < p < ∞. The spaces L1(ν)

and Lpw(ν) can be identified with the spaces
⊕

c0(I) L
1(µi) and

⊕
`∞(I) L

p(µi),

respectively, and the space L∞(ν) is
⊕

`∞(I) L
∞(µi). Take an element of Lpw(ν)

defined by a set of functions (fi)i∈I , each fi with support in Ωi, with 0 < fi ∈
Lp(µi) \L∞(µi) for all i ∈ I and supi∈I ‖fi‖Lp(µi) <∞. Then it cannot be written

as a sum of elements of L1(ν) and L∞(ν) since the elements of L1(ν) are 0 in

each Ωi except in a countable subset of indexes of I. Moreover, the functions in

{fi : i ∈ I} are not essentially bounded, so fi does not belong to L∞(µi) for any i.

Consequently, Lpw(ν) 6⊂ L1(ν) + L∞(ν).

However, an improvement is still possible in the right hand side inclusion by

defining a new space. For this aim, denote

L1
w,0(ν) := L1

w(ν) ∩ L∞(ν)
L1
w(ν)
⊂ L1

w(ν).

Remark that L1(ν) ⊂ L1
w,0(ν) since S(R) ∈ L1

w(ν) ∩ L∞(ν) and S(R) is a dense

set in L1(ν). We claim that,

Theorem 26. Let 1 < p <∞. Then the (continuous) inclusion Lpw(ν) ⊂ L1
w,0(ν)+

L∞(ν) holds.

Proof. Let 0 ≤ f ∈ Lpw(ν) and fix ε > 0. Consider again the sets Aε := {ω ∈
Ω : f(ω) > ε} of the previous proof, and recall that ‖ν‖(Aε) < ∞ and f =

fχAε + fχΩ\Aε ∈ L1
w(ν) + L∞(ν). Define now for every n ∈ N, Bε,n := {ω ∈

Ω : fχAε(ω) ≤ n} ∈ Rloc and fn := fχBε,n . Note that ‖ν‖(Bε,n) < ∞. Then
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fn ∈ L1
w(ν)∩L∞(ν). We claim that ‖fχAε − fn‖L1

w(ν) → 0 as n→∞. To see this,

use Hölder’s Inequality

‖fχAε − fn‖L1
w(ν) = ‖fχAε (χAε − χBε,n)‖L1

w(ν) ≤ ‖f‖Lpw(ν) · ‖χAε − χBε,n‖Lp′w (ν)
.

Let Cn := Aε \Bε,n, n ∈ N. Let us see that (Cn)n ↓
⋂
n Cn and ‖χCn‖Lp′w (ν)

→ 0 as

n → ∞. Otherwise, there would exist a number δ > 0 such that ‖ν‖(Cn) > δ for

an infinite subset M of N. Since ‖ν‖(Cn) = supC∈R∩2Cn ‖ν‖(C) (see Lemma 3.4

in [18]) there would exist also Cn,δ ⊂ Cn with Cn,δ ∈ R such that ‖ν‖(Cn,δ) > δ,

n ∈M . But nχCn,δ ≤ fχCn,δ for all n ∈ N, thus nδ < n‖χCn,δ‖Lpw(ν) ≤ ‖f‖Lpw(ν) <

∞, which is a contradiction.

Consequently, ‖fχAε − fn‖L1
w(ν) → 0 as n → ∞, hence fχAε ∈ L1

w,0(ν). The

extension to non positive functions is clear. �

Remark 27. Consider the case where the vector measure is defined on a σ-algebra.

Then, L1
w(ν)∩L∞(ν) = L∞(ν) ⊂ L1(ν) which is closed in L1

w(ν). Hence, L1
w,0(ν) =

L1(ν) and the inclusion in the theorem gives Lpw(ν) ⊂ L1(ν). Therefore, Theorem

26 is a generalization of Proposition 3.1 in [8].
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