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Abstract 
 
In this thesis a design optimization tool applied to computational fluid dynamics 

is presented. The aim is to develop a new optimization method using powerful 

free software such as Nimrod and OpenFOAM as well as automating the 

optimization process. The tool is tested on a two dimensional aerofoil were its 

three parameters are optimized to obtain its maximum lift-to-drag ratio. The 

optimization is carried out by Nimrod/O which executes a script in charge of 

integrating the process. Salome will first create the CAD model and mesh it 

using a Python script and the CFD toolbox OpenFOAM is then used to solve the 

mesh. Two different optimization algorithms are used and compared and the 

speed up is evaluated by running the process on several processors. 
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Chapter 1: Introduction 
 
 

A common procedure in engineering when designing a product is to 

build real prototypes and perform experiments on them. 

Computational science and engineering provides techniques which 

bring a different perspective to this way of engineering.  

 

A user can build a computational model which simulates the physical 

properties of the product to be engineered and perform experiments 

on it rather than building a prototype. This way several different 

scenarios can be explored and the user can study many design 

alternatives reducing the design cycle and even saving money and 

improving the quality of the product. 

 

However, these computational models are computationally expensive 

and require the use of plenty of computational power to achieve 

accurate results. These models must be executed many times during 

the optimization process and for that reason it’s interesting to be able 

to run the executions concurrently. Large clusters of computers can 

be used for this purpose or, even better, the Grid. 

 

Grid computing has become a field of increasing research and has 

expanded the possibilities for computing, allowing users to share 

resources and therefore having access to more computational power 

and storage. Therefore grid computing has become a field of interest 

when dealing with computational intense problems such as design 

optimization and is already being applied for this purpose.  

 

For all this, it is interesting to create a tool which allows the user not 

only to automate the optimization process, but to give him at the 

same time the resources to do it efficiently. 
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Chapter 2: Literature review 
 

2.1 Aerodynamic concepts 
 

2.1.1 Aerofoil parameters 
 

 
A cross-section of an aircraft wing is called an aerofoil, as shown in 

figure 1. Many efforts are put on finding the optimal shape of an 

aerofoil according to specific design requirements. Three parameters 

are of special importance in this project: camber, thickness and angle 

of attack.   

 

 

Figure 1: Aerofoil structure [3] 
 

As said in [1] and [2], a straight line drawn from the aerofoil’s 

leading edge to its trailing edge is called the chord line and the length 

of this line is known as the chord. If a curved line is drawn, 

equidistant between the upper and lower surfaces of the aerofoil and 

from one edge to the other, this line is called the mean camber line. 

The camber of an aerofoil is the maximum distance between its chord 

line and its mean camber line, measured perpendicular to the chord 

line. The thickness is the distance between the upper and lower 

surfaces of the aerofoil, and is also measured perpendicular to the 
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chord line. The angle of attack is the angle between the chord line 

and the direction of arrival of the relative wind, defined in [2] as ―the 

flow velocity far ahead of the body‖. 

 

2.1.2 Forces 
 

 
According to [2], aerodynamic forces on a body are due to two 

sources: the pressure distribution over the body surface, which is 

perpendicular to it, and the shear stress distribution over the body 

surface, which is parallel to it. The sum of the net effect of these 

distributions result in an aerodynamic force which can be split into 

two components. Lift is defined as the component of this force which 

is perpendicular to the flow direction, while drag is defined as the 

component of this force which is parallel to the flow direction. 

 

 
Figure 2: Lift and drag forces [4] 

 

A very important matter in aeroplane design is the lift-to-drag ratio, 

as it is a measure of the aerodynamic efficiency of the aeroplane. As 

said in [5], ―it only makes sense that maximum aerodynamic 

efficiency should lead to minimum thrust required‖. The lift-to-drag 
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ratio is also said to represent the aeroplane’s benefit-to-cost-ratio, as 

lift represents the economic value of the aeroplane and drag the cost 

of providing the economic value. [1] 

 

As it can be seen in figures 3 and 4, lift and drag are related to angle 

of attack. For small values of angle of attack, lift increases linearly 

while drag does it very gradually. At higher angles of attack lift starts 

to increase slower and at some point it reaches its maximum value. 

Drag starts to increase faster with higher angles of attack. When the 

point of maximum lift is reached, further increases in the angle of 

attack will result in less lift, a phenomenon which is called stall. 

 

  

     Figure 3: Lift coefficient curve [6]           Figure 4: Drag coefficient curve [6] 

 

2.2 Algorithms applied in design optimization 
 

 
Many are the techniques and algorithms which have been applied in 

engineering for optimization purposes. In the field of aerodynamics, 

many efforts have been put in shape optimization of aerofoils. 

 

2.2.1 Gradient-based methods 
 

Gradient-based methods use gradient information and are very 

efficient when the derivative information of the problem can be easily 
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obtained. Their main advantage is that they are fast search methods 

as low number of function evaluations are needed. However, they 

can’t be applied directly to many problems. [7] 

 

Gradient-based methods are very popular and have been widely 

applied. In [8] a gradient-based method using the steepest descent 

was implemented. The objective was to reduce the drag coefficient on 

an aerofoil keeping the lift coefficient within some established ranges. 

In [9] an adjoint-based method was applied to aerodynamic 

optimization. According to the author, this method has several 

advantages relative to other gradient-based methods as ―the 

computational effort required to calculate the gradients is 

independent of the number of the design variables.‖  

 

Although these methods can be very efficient, they may not be 

efficient for design automation. The reason for this is that they don’t 

ensure a global optimum, as they search for a local optimum. 

Therefore, the optimization process must be started repeatedly from 

different initial points in order to find a global optimum. [9] 

 

2.2.2 Evolutionary algorithms 
 

 
Evolutionary algorithms appeared from the interest of imitating 

nature to develop new algorithms and they are based on the idea of 

using the theory of evolution as an algorithm [10] [11].  

 

Genetic algorithms are probably the best well known evolutionary 

algorithms. A population of individuals is maintained where only the 

fittest individuals survive. The individuals evolve due to mutation and 

crossover operations, finally converging to the best individual [10].  

Contrary to gradient-based methods, genetic algorithms search the 
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design space from multiple points and work on function evaluations 

alone, which makes them robust and suitable to parallel computing 

[9].  

 

Genetic algorithms have been widely applied to aerodynamic 

optimization [9] [12] [13]. However, one of their weaknesses is that 

they require many function evaluations which lead to poor 

computational efficiency. Due to this, they have been coupled with 

other optimization techniques in order to preserve their benefits but 

improving the computational efficiency, as can be seen in [14] where 

a genetic algorithm was used with a gradient-based method. 

 

2.3 Grid computing in design optimization 
 

 
Many engineering optimization design problems, as shape 

optimization of aerofoils, require great amounts of computational 

power. CFD simulations, for instance, must be called repetitively 

while searching through the design space. These simulations, which 

take most of the optimization process´ time, are computationally 

expensive and can require hours of computation. 

 

Grid computing is a type of distributed computing which focuses on 

large-scale resource sharing. Users can share resources such as 

computational power which allow to overcome problems that were 

infeasible with previous technologies. [15] 

 

Therefore grid computing is being taken into account as an 

interesting solution when dealing with computational intense 

problems [16] [17] [18] [19] [20]. In [18], for example, grid 

computing was used to overcome the computational cost of using 

genetic algorithms by means of parallelization and distributed 
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executions while in [16] and [19] grid computing was applied to 

computational fluid dynamics optimizations which require high 

computational power. 

 

2.4 Nimrod as an automatic design optimization tool 
 
 

Nimrod supports distributed executions and optimizations in one tool. 

Nimrod has been successfully applied in several studies. In [21] 

Nimrod was applied to a number of parameterized computational 

experiments where Nimrod efficiently distributed the work and 

therefore reduced the execution time of the experiments.  

 

More specifically, Nimrod/O was applied in [22] to a mechanical 

design problem where it was able to find multiple local optima by 

performing several searches in parallel, starting from different initial 

points. In [23] Nimrod/O was tested in a number of different case 

studies using the P-BFGS algorithm, showing that speedup can be 

achieved for some problems. 

 

Nimrod has also been used in the design of aerofoils. In [3] Nimrod/O 

was used to optimize a two dimensional aerofoil which was governed 

by three parameters where the goal was to maximize the lift to drag 

ratio. The aerofoil was meshed with Gambit and solved with Fluent, 

and two different strategies where applied to the optimization: 

simplex and P-BFGS. According to the authors, the experiments were 

a success as the results were better than those previously obtained 

without the use of Nimrod/O. Moreover, Nimrod/O gave the 

possibility to test the experiment with two different algorithms by just 

changing the plan file. 
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Chapter 3: Software Description 
 

3.1 Nimrod 
 

 

Nimrod is a specialized parametric modeling system developed by 

Monash University. It provides a simple declarative language which 

allows the user to create parametric experiments which can be 

executed across distributed computers. Nimrod manages the whole 

experiment and provides tools which automate the process, 

distributing the necessary files to run the experiment, running it, 

monitoring it and finally gathering the results. 

 

3.1.1 Nimrod/O 
 

 
Nimrod/O ―allows a user to run an arbitrary computational model as 

the core of a non-linear optimization process‖ [24]. It accepts a 

declarative plan file in which the user can specify the domain and 

type of the parameters, any constraints imposed on the solution, the 

tasks to perform the experiment, the output variable to be optimized 

and the optimization method to use out of the four built-in 

optimization algorithms which it currently employs: Simplex, BFGS, 

Divide and Conquer and Simulated Annealing.  

 

Nimrod/O uses Nimrod in order to perform distributed executions. 

The jobs are passed to Nimrod/G or EnFuzion which allow them to be 

run in the Grid or in a cluster of computers. A cache is placed 

between Nimrod/O and Nimrod which reduces the number of 

calculations if it receives a set of parameters which have already been 

calculated. A persistent database is attached to this cache in case the 

Nimrod/O is terminated prematurely. 
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Figure 5: Nimrod/O architecture [25] 

 

3.1.2 Algorithms 
 
 

Two of the algorithms supplied in Nimrod have been used in this 
project. 

 

3.1.2.1 Simplex 
 
 

The algorithm is based on the method of Nelder and Mead. A simplex 

is ―a geometrical figure consisting, in N dimensions, of N+1 points, or 

vertices, and all their interconnecting line segments.‖ [24] For 

example, in two dimensions a simplex is a triangle and in three 

dimensions it’s a tetrahedron.  

 

The algorithm is started with N+1 points and their associated cost 

function evaluations. It then iterates replacing at each step the worst 

vertex by a better one until the cost function values at all points fall 

within a desired tolerance of each other. For example, if the simplex 

is a triangle as shown in figure 6, and the worst point is w, n is the 

next worst and b is the best, a straight line would be drawn between 

w and c, being c the middle point between n and b. On this line we 



Page 17 of 63 

 

consider four new points which are candidates to replace w in the 

simplex: 

 

 p: the reflection of w in c  

 q: the midpoint of p and c  

 r: the midpoint of w and c  

 s: a point past p and equally far from p as p is from c 

[26] 

 

 

Figure 6: Simplex example [26] 

 

3.1.2.2 BFGS 
 
 

This algorithm is based on a quasi-Newton method. The BFGS 

method maintains an approximation to the inverse of the Hessian, H, 

of f, where: 

 

Hij  = 2f / xixj 

New approximations to the solution vector x are derived by: 

 

 Computing a search direction, d = -H-1


 f(x) 
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 Finding a new solution vector x using a line search, i.e. x+ = x 

+ d 

 Updating the inverse of H using the current approximation to H, 

x and x+ 

[24] 

 

3.2 OpenFOAM 
 

 

OpenFOAM is a free and open source CFD toolbox developed by 

OpenCFD Ltd. It is basically a set of C++ libraries which are used to 

create applications. These applications are solvers, which are 

designed to solve specific problems in engineering mechanics, and 

utilities, which are designed to perform pre- and post-processing 

tasks involving data manipulation, such as mesh generation or data 

visualisation. [27] [28] 

 

OpenFOAM contains numerous solvers, utilities and libraries which 

cover a wide range of problems. However, one of the main 

advantages of using OpenFOAM is that the user can create new 

solvers and utilities as it is open. [27] 

 

Figure 7: Overview of OpenFOAM structure [27] 
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3.3 Salome 
 

 
Salome is a free and open source platform for numerical simulation. 

It provides a number of modules which allow the user to work on CAD 

models and mesh them. It also provides a user interface and a 

Python console through which all the functionalities of Salome are 

accessible. [29] 

 

Among its several modules two of them are used in this project: the 

GEOM and the SMESH modules. The GEOM module allows the user to 

create or modify a CAD model as well as importing or exporting the 

models in several formats. With the SMESH module the user can 

import or export a mesh from and into several formats or create its 

own mesh with a number of different algorithms and hypothesis 

which it supplies according to the dimensions of the model. 

 

3.3.1 Dump Study 
 
 

Salome can be launched in batch mode and operated with the use of 

Python scripts. It comes with an option called Dump study which 

automatically generates a set of Python scripts from data created 

with Salome GUI. It is highly useful as there is no need for the user 

to script himself. The scripts can be stored and loaded later to re-

create the content of the original study. [29] 

 

3.4 CommandLineToIGES 
 

 
In this project a command-line aerofoil generator which was 

previously created for another project has been used. It depends on 

Open Cascade libraries and this version is Linux based.   
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This code uses the NACA 4-digit standard to generate the vertices 

before interpolating these to create the aerofoil's outline. The 

program receives as an input the Angle of Attack (degrees), which 

rotates around the leading edge, Thickness [0-100]% and Camber 

[0-100]%. It is also possible to specify the chord, which is set to 0.5 

meters as default. Other options are implemented such as specifying 

the output path or the output filename of the aerofoil. The use is as 

follows: 

 

CommandLineToIges --AoA 1 --camber 8 --thickness 8 --chord 1.25  

--outputPath /root/my_foils --outputFilename sample 

[30]  
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Chapter 4: Nimrod Installation and Test 
 

4.1 Installation 
 

 

All the steps are in the Nimrod/O Users’ Guide. 

 

Once Nimrod/O has been downloaded, the archive must be expanded 

using the following command: 

 

tar xvf nimrodo.<version>.tar 

 

This creates the following directory structure: 

 

nimrodo.<ver> ----- source ---------- nimrodo 

        | 
        |--- nimcache 

        | 
        |--- nimdisp 

        | 
        |--- beader 

 

Then, to configure and install Nimrod/O for a Unix system: 

 

1. Go to the source subdirectory. Enter 

 

./configure --prefix=<installation_dir> 

 

Here <installation_dir> is the directory where Nimrod/O will be 

installed. This directory must already exist. 

 

2. Enter  

 

make install 
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This process should create the following directory structure 

 

<installation_dir> ----------- bin 

    | 
    |-- lib --- nimrodo --- test 

 

 

To test that Nimrod/O is working (independently of enFuzion and 

Nimrod/G ): 

 

1. Ensure that <installation_dir>/bin is in your path. 

 

2. Move to the directory <installation_dir>/lib/nimrodo/test (or 

copy the contents of that directory into your current directory). 

 

 

3. Enter the command 

 

nimrodo -t 2 -d s 

[26] 

 

As the experiments were going to be run locally, there was no need 

to install Nimrod/G or enFuzion. 

 

4.2 Test 
 
 

In order to get familiarized with Nimrod/O, it was first tested with a 

simple mathematical function. A simple C++ code was first developed 

which, given parameters x and y, gives as an output the result of the 

objective function for those two parameters. As Nimrod/O looks for 

the minimum as default and the aim was to maximize the objective 

function, the result had to be multiplied by -1. By doing this 

Nimrod/O would search for the biggest negative answer, which will be 
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the maximum.  

 

Once the C++ code was working, the following schedule file was 

made: 

 

 

 

 
 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 
The first part of this schedule file lists the parameters which 

constitute the design space. For each parameter its data type and 

domain are specified.  

 

The second part defines the constraints. The constraints can be hard, 

in which case they can’t be violated, or soft, which can be violated 

but will then give a penalty value to the objective function which is 

proportional to the dimension of the violation. In this case the 

constraints are hard, which is the default option. The syntax for a 

constraint is: 

 

example1.shd 

 

parameter x integer range from 0 to 25 

parameter y integer range from 0 to 25 

 

constraint 2*x+y <= 18 

constraint 2*x+3*y <= 42 

constraint 3*x+y <= 24 

constraint x >= 0 

constraint y >= 0 

 

task main 

 copy nimrodexample1 node:nimrodexample1 

 node:execute ./nimrodexample1 $x $y > result 

 copy node:result output.$jobname 

endtask 

 

method simplex 

 starts 1 

  tolerance 0.000 

 endstarts 

end method 
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constraint [hard|soft] <constraint_condition> 

 

The third part specifies the tasks which must be carried out by the 

dispatcher to compute the objective function. Here the C++ program 

will be copied from the root to a node which will then execute it and 

copy back the result to the root. However, when working locally there 

is no need to move files between nodes. When the file is copied back 

to the root it is given a unique name as determined by the dispatcher 

jobname. Nimrod/O requires that the objective value is the first string 

in the file output.$jobname.  

 

The last part specifies the optimization method to be used. In this 

case a simplex search will be started from one random point with the 

specified tolerance. The initial points can also be selected manually 

and more than one optimization method can be specified. [26] 

 

This schedule file was first run locally, with the following results: 

 

 

 

 

 

 
As the optimum is 33 with (x,y) = (3,12) so the result wasn’t the 

expected one, Nimrod/O was ran again changing the starts of the 

simplex method to 5 and 10, finally obtaining the optimum values 

after 10 starts. 

 

 
 
 

 

 

 

 
 

 

-------------- Final Results:  Block '1 (unnamed)' ------------ 

Starting point Optimum At Point Iters. Evals.  Batches 

(2,8)             -32  (4,10)    7      8 (21)  5 (8) 

-------------- Final Results:  Block '1 (unnamed)' ----------- 

Starting point Optimum At Point Iters. Evals.   Batches 

(2,8)             -32  (4,10)    7      8 (21)   5 (8) 

(5,4)             -31  (5,8)     9      13 (30)  6 (10) 

(5,1)             -30  (6,6)     9      15 (32)  7 (11) 

(0,2)             -32  (4,10)    14     19 (35)  8 (15) 

(4,3)             -28  (6,5)     7      8 (21)   5 (8) 
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-------------- Final Results:  Block '1 (unnamed)' ----------- 

Starting point Optimum At Point Iters. Evals.    Batches 

(2,8)             -32  (4,10)    7      8 (21)    5 (8) 

(5,4)             -31  (5,8)     9      13 (30)   6 (10) 

(5,1)             -30  (6,6)     9      15 (32)   7 (11) 

(0,2)             -32  (4,10)    14     19 (35)   8 (15) 

(4,3)             -28  (6,5)     7      8 (21)    5 (8) 

(3,8)             -33  (3,12)    9      11 (28)   5 (10) 

(0,9)             -33  (3,12)    57     11 (370)  6 (107) 

(3,12)            -33  (3,12)    5      2 (9)     2 (5) 

(0,13)            -26  (0,13)    6      6 (23)    4 (7) 

(1,1)             -27  (7,3)     12     14 (40)   7 (14) 
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Chapter 5: Process Description 
 

5.1 Overview 
 

 

In figure 8 we can see a structure of the workflow.  

 

 

Figure 8: Workflow 

 

Nimrod/O governs the optimization generating a new set of 

parameters for each evaluation. CommandLineToIGES takes these 

new set of parameters as an input and generates the aerofoil file. 

Nimrod/O

Aerofoil
Generator

Parameters

Salome

OpenFOAM

Aerofoil

Mesh

L/D
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This file is imported into Salome, which creates the final CAD model 

and meshes it, finally exporting the mesh to the OpenFOAM directory 

which will solve it and output the lift and drag coefficients which are 

used to calculate the lift-to-drag ratio and give the value to 

Nimrod/O. All this process is run on a AMD Phenom(tm) 9850 Quad-

Core Processor with a 2’5MHz frequency. 

 

5.2 Constructing the CAD model 
 
 

The aerofoil file created with CommandLineToIGES must be first 

imported into Salome’s geometry module: 

 

File -> Import (IGES files) 

 

Then a face is created using the imported aerofoil which will be used 

to work with: 

 

New Entity -> Build -> Face 

 

A quadrangle must be built around the aerofoil. An appropriate size 

for this quadrangle would be of five chord length distance for inlet, 

bottom and top walls and 10 chord length distance for the outlet wall. 

However, this would lead to a mesh with a huge amount of elements, 

which would take a very long time to solve in OpenFOAM. Due to time 

restrictions, the accuracy of the results is not an aim of this project 

so the quadrangle was reduced to one chord length for inlet, top and 

bottom and two for outlet, which will lead to a much smaller mesh. 

 

To create the quadrangle the following steps must be followed: 

 

1. Four points must be created around the aerofoil: 
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New Entity -> Basic -> Point 

 

In this case the points were created in (-500, 500, 0), (-500,  

-500, 0), (1500, -500, 0) and (1500, 500, 0)1 

 

2. A quadrangle face is created using the previous points: 

 

New Entity -> Blocks -> Quadrangle Face 

 

At this point some problems which must be explained arose. 

OpenFOAM works with 3D meshes but in this project a 2D aerofoil 

was going to be solved. The procedure to solve a 2D case in 

OpenFOAM is to create a 3D mesh which is just one cell thick in the 

third dimension. 

 

The first approach to do this was to mesh the 2D geometry and once 

done that extrude it: 

 

Modification -> Extrusion 

 

selecting the whole mesh, using a vector on the z direction and 

selecting number of steps = 1. By doing so, the expected mesh was 

achieved but the problem was that groups of faces for the boundary 

conditions could not be created. This was due to the fact that the 

original geometry was 2D and therefore wasn't composed by faces. 

 

A different approach was then tried out which consisted in creating an 

extrusion mesh. The first step to do this is to convert the geometry 

into 3D. Both of the previously created faces must be extruded. To do 

so a vector is created:  

 

                                                           
1
 A chord length is 0,5 m which is represented as 500 in Salome. 
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New Entity -> Basic -> Vector 

 

in the extrusion direction (z in this case). Then both faces can be 

extruded: 

 

New Entity -> Generation -> Extrusion 

 

selecting the face to extrude as the base shape and the previously 

created vector. 

 

At this point the aerofoil is in 3D as well as the quadrangle around it 

but one final operation must be made to obtain the final geometry as 

the aim is to mesh the surface around the aerofoil: 

 

Operations -> Boolean -> Cut 

 

selecting the extruded quadrangle as the main object and the 

extruded aerofoil as the tool object.  

 

 

Figure 9: Cut1 
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After this operation a volume is obtained with an empty aerofoil 

shape in the middle, as can be seen in figure 9, and the geometry is 

now ready to be meshed. This final geometry will be referred from 

now on as Cut1. 

 

Although the geometry is ready to be meshed, some further 

operations must be done which will be used during the mesh 

generation. First a group must be created which is composed by the 

edges of Cut1 in the extrusion direction. This will be used to create a 

mesh which is one cell thick. To do so, right click on Cut1 and select: 

 

Create Group 

 

selecting edges as elements type and adding the correct edges to the 

group. 

 

In order to be able to select these edges, Cut1 must be exploded 

first: 

 

New Entity -> Explode 

 

selecting Cut1 as the main object and ―edges‖ in Sub Shapes Type. 

Also, the same operation must be done for ―faces‖, as it will be used 

later. 

 

5.3 Generating the mesh 
 

 
The mesh is created changing to the mesh module, selecting: 

 

Mesh -> Create Mesh 
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on Cut1 and applying the following algorithms: 

 

 3D Algorithm: 3D extrusion (doesn't require hypothesis) 

 2D Algorithm: Quadrangle (doesn't require hypothesis) 

 1D Algorithm: Wire discretisation 

 1D Hypothesis: Average Length = 15 

 

If the mesh is computed at this point it would give an error. Some 

more steps are required. As a mesh which is only one cell thick is 

needed, a submesh must be created. The group formed by the edges 

of Cut1 in the extrusion direction, which has been created previously 

in the geometry module, is used to create a submesh: 

 

Mesh -> Create Sub-mesh 

 

The following algorithm and hypothesis must be applied: 

 

 1D algorithm: Wire discretisation 

 1D hypothesis: Nb. Segments = 1 

 

One more step must be done before computing the mesh. Two more 

submeshes must be created selecting as the geometry first the face 

of Cut1 which represents the initial face (the face representing the 

quadrangle face and the aerofoil before the extrusion) and second the 

face of Cut1 which represents the equivalent to the initial face after 

the extrusion or destination face. These faces are obtained with the 

explode operation which has been done previously in the geometry 

module. The first submesh is created selecting the initial face and 

applying the following algorithm and hypothesis: 

 

 2D Algorithm: Triangle (Mefisto) 

 2D Hypothesis: Length From Edges 
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The second submesh is created selecting the destination face and 

applying: 

 

 2D Algorithm: Projection 2D 

 1D Hypothesis: Source Face 

 

selecting the initial face as ―Face‖ for the hypothesis. 

 

Now the mesh is ready to be computed by doing right click on the 

mesh and selecting: 

 

Compute 

 

 

Figure 10: Mesh 

 

Although this mesh is ready to be solved in OpenFOAM, a further 

refinement can be made to it. The highest point of interest are the 

elements around the aerofoil so we can refine the mesh to obtain 

more elements around it. To do so, some steps should be made in 

the geometry module before generating the mesh. The initial face 

and the destination face of Cut1 must be exploded into edges. Then a 
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submesh can be created to refine the elements around the aerofoil by 

selecting first as the geometry the edge which represents the aerofoil 

in the initial face and applying: 

 

 1D Algorithm: Wire discretisation 

 1D Hypothesis: Average length = 3 

 

and a second submesh selecting as the geometry the edge which 

represents the aerofoil in the destination face and applying: 

 

 1D Algorithm: Projection 1D 

 1D Hypothesis: Source Edge 

 

The mesh can be then computed and smaller elements around the 

aerofoil will be obtained, as seen in figure 11. This mesh, which will 

be used for the optimizations, will have approximately 40000 

elements. 

 

 

Figure 11 

 

The value for the average length depends on how small the elements 

are wanted. At the beginning, an average length = 1 was used. The 
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aim was to refine these elements as much as possible as it was the 

point of maximum interest. The first tests were running as expected 

but at some point some problems started to arise as sometimes 

Salome was being unable to compute the mesh, which wasn't 

allowing the optimization process to continue. The problem was 

coming from this step as the elements around the aerofoil were being 

refined too much. Changing this value to a higher one was solving the 

problem and Salome was again being able to compute the mesh. The 

value was changed to three and Salome started working without 

problems. 

 

Finally, some groups of faces for the boundary conditions in 

OpenFOAM must be created by using the previously exploded faces of 

Cut1. Doing right click on the mesh, selecting Create Group and 

following these steps: 

 

 Element Type = Face 

 Group Type = Group on geometry 

 Geometrical object = face which represents the aerofoil 

 

 

Figure 12: Aerofoil faces 
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In this case the faces of the aerofoil are selected, as shown in figure 

12. These steps must be repeated for inlet, outlet, top, bottom, right 

(initial face) and left (destination face). 

 

Now the mesh is completed and ready to be exported to the 

OpenFOAM directory: 

 

File -> Export -> UNV file 

 

5.4 Dump Study and Batch Mode 
 

 
Once the mesh is generated, the process has to be automated using 

a script. Salome’s option Dump study (File -> Dump Study) is used to 

generate automatically a python script of the session, which will be 

run in batch mode. Salome is run in batch mode using the option –t 

and to load a script the option –u is used: 

 

./runSalome -t -u myscript.py 

 

The option -k is also used to kill all the Salome running sessions and 

& to run it in background: 

 

./runSalome -t -u myscript.py -k & 

 

The reason to run Salome in background is that when it is run in 

batch mode the prompt of the terminal changes, which doesn’t allow 

the following instructions in the script to be executed. To overcome 

this problem it is run in background. However, the rest of the 

instructions must not be executed until Salome has finished 

generating the mesh. Therefore, a simple C++ program was coded 

which waits for Salome to create the file with the mesh before the 
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rest of instructions can be executed (see wait_for_unv.cc) 

 

One final change must be done before the Python script is ready. 

Salome has an option in its Geometry Module named “Basic 

properties” which gives the length, surface and volume of an object. 

The value of the surface of the walls around the aerofoil is needed to 

change a file later in OpenFOAM. Salome provides a command to 

obtain these values: 

 

geompy.BasicProperties(Shape) 

 

This command is used to add to the script the necessary lines to 

obtain the surface and write the value into a file. 

 

 
 

 

 

 
 

 

 

 

5.5 Solving in OpenFOAM 
 
 

The Python script outputs the mesh into .unv format. The first step is 

to convert this mesh to OpenFOAM: 

 

ideasUnvToFoam mymesh.unv 

 

One important observation must be now made. Salome and 

OpenFOAM don’t work with the same units. While OpenFOAM is 

working in meters, Salome does it in millimeters. Therefore the points 

must be converted before starting to work with the mesh: 

area = geompy.BasicProperties(Face_3) 

f = open('/home/nicky/Simulation/workfile','w') 

s = str(area[1]) 

f.write(s) 

f.close() 
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transformPoints -scale "(0.001 0.001 0.001)" 

 

Some changes must be made to some files before solving the case. 

When the mesh is converted to OpenFOAM, by default the boundaries 

in /constant/polyMesh/boundary receive type patch. A C++ program 

was coded (see edit_boundary.cc) to change some of these 

boundaries. The aerofoil, top and bottom boundaries must be of type 

wall, while right and left boundaries must be of type empty. 

 

Also, the value Aref in the /system/controlDict file must be updated 

using the surface value which the Python script writes into a file. This 

is also done with a C++ program (see edit_controldict.cc). 

 

These changes must be done in each evaluation during the 

optimization process. Some other changes are done just once before 

starting the optimization. The number of iterations is set to 3000 in 

the /system/controlDict file (endTime field) as it was proved during 

the tests to be enough to converge. Also, the tolerance for the 

solution is set to 1e-04 in the /system/fvSolution file. Finally, in the 

/system/controlDict file must be specified that the forces must be 

calculated (see controlDict) as the aim is to obtain the lift and drag 

coefficients. 

 

The case must now be prepared to run in parallel. The method of 

parallel computing used by OpenFOAM is known as domain 

decomposition, in which the geometry and associated fields are 

broken into pieces and allocated to separate processors for solution. 

To run a parallel case the first step required is therefore to 

decompose the domain using the decomposePar utility. There is a 

dictionary associated with decomposePar named decomposeParDict. 

This dictionary must be copied into the system folder of the case and 
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edited depending on the number of subdomains into which the case 

will be decomposed, four in this case, which is done by editing the 

number in the entry “numberOfSubdomains” [27]. The method used 

to distribute the work among the processors can also be selected. In 

this case metis has been used, distributing the work equally among 

all the processors. 

 

The decomposePar utility is executed by typing: 

 

decomposePar 

 

and now the case is ready to run in parallel, which is done with the 

following command: 

 

mpirun -np 4 simpleFoam -parallel > log 

 

were the number of processors (4) are specified, the solver used 

(simpleFoam) and the output is sent to a log file. 

 

Once the case has completed running, the decomposed fields and 

mesh must be reassembled for post-processing using the 

reconstructPar utility. [4] This is executed by typing: 

 

reconstructPar 

 

Finally, the lift and drag coefficients are written into the 

forceCoeffs/1/forceCoeffs.dat file. A C++ program (see lift_drag.cc) 

will extract these coefficients and return the lift-to-drag ratio which 

Nimrod/O will copy as a result. 
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5.6 Running Nimrod/O 
 

 
Nimrod/O is run using the following command: 

 

nimrodo –f schedule.shd -l 

 

were –l is used to run the optimization locally and schedule.shd is the 

schedule file used.  

 

In the schedule file the angle of attack, camber and thickness are 

specified. As the camber range is set from 0-12, a constraint is set so 

that the camber must be higher than zero. 

 

The first task of the schedule file is to execute the script which 

automates all the process of creating the CAD, the mesh and solving 

it. This script accepts the angle of attack, camber and thickness as an 

input. Once the script has finished its job, the lift_drag program is 

executed to obtain the lift-to-drag ratio. This value is copied into a 

file named result, which is copied into a final filename which identifies 

it. 

 

Finally the optimization method is specified, with the number of starts 

and the tolerance which has been set to 0.01. 

 

A file called nimdisp.options must also be created in the working 

directory. This file will contain the line: 

 

concurrency 1 

 

which will set the number of concurrent jobs to one. 
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Chapter 6: Experimentation 
 

6.1 Camber and thickness optimization 
 

 

The aim of the first experiment was to test the process and make 

sure that the optimization process was working correctly. Therefore 

only two parameters, camber and thickness, were optimized, 

maintaining a constant angle of attack of 0 degrees. The inlet velocity 

is set to 73.45 m/s. The results are shown in table 1 and the progress 

of the optimization is shown in figure 13. 

 

Starting 

point 

L/D Camber Thickness Eval Time 

(10.9626, 

10.3086) 

38.6014 4.54541 1.5 59 5:40:06 

 

Table 1 

 

 

Figure 13 
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The starting point was decided randomly by Nimrod/O. The L/D value 

was acceptable and the process ended without problems.  

 

In figure 13 a negative value for L/D can be seen. This is due to a 

failed evaluation which crashed, returning the L/D value according to 

the coefficient at the moment of the crash. This can happen 

sometimes when working in parallel. 

 

6.2 Angle of attack optimization 
 

 
In the next experiment the angle of attack had to be included to the 

optimization. However, before doing this, another experiment was 

made to check that the angle of attack optimization was working 

correctly. To do this the optimum values of camber and thickness in 

the previous experiment were used, keeping these values constant 

and optimizing only the angle of attack. As said in the literature 

review, as the angle of attack increases the L/D increases too until 

the stall angle is reached. Therefore, a better L/D value than in the 

previous experiment should be obtained after this optimization as the 

angle of attack was zero before. The results are shown in table 2. 

 

Starting 

point 

L/D AoA Camber & 

Thickness 

Eval Time 

3.65419 43.7026 0.85419 (4.54541, 

1.5) 

17 1:47:49 

 

Table 2 

 

As expected, a higher value for L/D was obtained, being the optimal 

angle of attack of 0.85419. In figure 14 can be seen how the L/D 

increases with the angle of attack until certain value where it begins 

to decrease again. Figure 15 shows the progression of the 
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optimization, where it can be seen how the values increase 

progressively as the algorithm finds better values of the parameters. 

 

 

Figure 14 

 

Figure 15 
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6.3 AoA, camber and thickness optimization using simplex 
 

 
As everything was working correctly, an optimization was done for all 

three parameters using the simplex method. The results are shown in 

table 3. 

 

Starting 

point 

L/D AoA, Camber, Thickness Eval Time 

(3.65419, 
8.45624, 
12.6781) 

26.913 (1.01795, 11.9062, 1.5) 60 5:43:07 

 

Table 3 

 

The result obtained in this optimization was poor as the value 

obtained for L/D was much lower than the one in the first 

experiment. This evidences that the optimization is sensitive to the 

starting point. Several optimizations must be started from different 

initial points to search the design space and find the global optimum. 

 

The same optimization was repeated starting from a different point. 

The results are shown in table 4. 

 

Starting 

point 

L/D AoA, Camber, Thickness Eval Time 

(0, 4, 2) 43.569 (0.912346, 4.62593, 1.5) 40 3:50:20 

 

Table 4 

 

The L/D value was much better than in the previous experiment and 

the optimum values of the parameters were very close to the ones in 

experiment 1 and 2. However, as the initial point was close to the 

optimum values, this optimization required much less evaluations, 

saving almost two hours of computation. 
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Once again a new optimization was carried out with a closer initial 

point to the optimum values in the last experiment than the initial 

point in that same experiment. The results are shown in table 5. 

 

Starting 

point 

L/D AoA, Camber, Thickness Eval Time 

(1, 5, 2) 42.3841 (1.12099, 4.74815, 1.61111) 47 4:34:41 

 

Table 5 

 

The optimum values were quite similar, obtaining a slightly lower 

L/D. Although the initial point was closer to the optimum than in the 

previous experiment, the optimization took some more evaluations to 

finish. 

 

This time the experiment was done again from an initial point close to 

the previous optimums. The results are shown in table 6. 

 

Starting 

point 

L/D AoA, Camber, Thickness Eval Time 

(1, 4, 1.5) 43.1336 (1, 5.2, 1.5) 23 2:09:10 

 

Table 6 

 

This optimization took much less evaluations and the L/D value was 

slightly higher than before. It can be seen that the initial point of the 

optimization is very important. 

 

A last experiment was done with a starting point which was further to 

the range of solutions which were being obtained than the initial 

points of the previous experiments. The results are shown in table 7. 
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It can be seen that the L/D value and the optimum angle of attack, 

camber and thickness are similar to the ones in the previous 

experiments. However the number of evaluations is higher, as the 

starting point is far from the optimum solution. 

 

Starting 

point 

L/D AoA, Camber, Thickness Eval Time 

(3, 6, 8) 43.0906 (1.04444, 4.53333, 1.5) 51 4:37:51 

 

Table 7 

 

After all this experiments it can be concluded that the choice of the 

initial point is very important to obtain best results, as the solution is 

sensitive to this choice. 

 

The best solution after these experiments was of 43.569 for L/D, 

while angle of attack, camber and thickness were of 0.912346, 

4.62593 and 1.5 respectively. The angle of attack and thickness have 

similar values to the ones in [3], although the value of the camber is 

quite different. The value of the L/D is higher in [3], but these results 

can’t be compared to those as the experiment may be set with 

different parameters such as the inlet velocity. 

 

6.4 AoA, camber and thickness optimization using BFGS 
 

 
An optimization was also done using the BFGS algorithm. The results 

are shown in table 8. 
 

Starting 

point 

L/D AoA, Camber, Thickness Eval Time 

(1, 10, 2) 32.2171 (1.28356, 9.74414, 1.5) 108 11:35:29 

 

Table 8 
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This optimization shows that the BFGS algorithm requires much more 

evaluations than the simplex method to find the solution. The idea 

was to do more optimizations using the BFGS method from different 

starting points, and also to do those same optimizations with the 

simplex method to compare their results from the same starting 

points. However, the optimization when using the BFGS algorithm 

only finished for the starting point used in this optimization.  

 

This not only happened for the BFGS algorithm, although it happened 

much more often than when using the simplex method. The problem 

occurs because Salome is unable to mesh the aerofoil and the whole 

optimization is waiting for it to do it. The error happened often when 

performing the cut operation. After loading the aerofoil into Salome 

to see its shape, sometimes an abnormal aerofoil had been 

generated, as shown in figure 16, which was the source of the error. 

In other cases the aerofoil seemed to be perfectly alright, but Salome 

was still unable to mesh it.   

 

Figure 16: abnormal aerofoil 

 

As only one optimization using the BFGS algorithm finished, the 

results are not conclusive and they can’t be compared to the simplex 

method. However, during some of the failed optimizations it could be 
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observed, before the optimization failed, how the BFGS algorithm 

needed more evaluations than the simplex method. 

 

6.5 Speedup 
 

Finally, one of the previous optimizations was repeated using 

different number of processors to test the speedup. The optimizations 

were done using the simplex method and with (0,4,2) as a starting 

point. After 40 evaluations, the time needed for the optimizations is 

shown in table 9. 

 

Num proc Time 

1 12:33:06 

2 7:01:49 

4 3:50:20 

 

Table 9 

 

 

Figure 17: speedup 
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The speedup using two processors is of 1.78 and of 3.27 for four 

processors. These results suggest the potential of running the 

experiments under a grid environment.  Moreover, when running 

more complex computational models the speed up will be more 

decisive as the bulk of the time is spent on computing the CFD code. 

 

 

Figure 18: efficiency 
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Chapter 7: Conclusions and further work 
 
 

A new automatic design optimization tool has been developed and 

has been applied successfully to a two dimensional aerofoil. During 

the experiments, the importance of selecting the initial point when 

doing the optimization has been evidenced. Also, the time of doing 

the optimization using different number of processors has been 

compared, evidencing a significant speedup when increasing its 

number. 

 

Although the different programs involved have been successfully 

integrated, the tool is not yet as robust as it should be. A problem 

has been noticed during the meshing process, where several aerofoils 

could not be meshed. Further work must be done at this stage to 

clearly identify the source of the error.     

 

Highly accurate results were not an aim of this project and therefore 

the mesh can be improved to achieve more accurate results. The 

boundary walls of the CAD model can be expanded and a mesh with 

more and better distributed elements can be generated. 

 

The process has been tested on a single computer with four 

processors. Installing Nimrod/G will allow the user to execute the 

process on a computational grid and achieve significant speedup. This 

will not only speed up the actual optimization, but will also allow 

working with more complex meshes which give better results. 

 

New parameters can also be introduced to the aerofoil. By doing so a 

different program to generate the aerofoils must be used or 

implemented, or the one used in this thesis can be improved. Again 

this would increase the time required for the optimization and the 
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installation of Nimrod/G becomes important to use as much 

computational power as possible. 
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Appendix A: C++ programs 
 

 

wait__for_unv.cc 

 

#include <iostream> 

#include <fstream> 

 

using namespace std; 

 

main (int argc, char ** argv){ 

 

  ifstream fitx; 

 

  do{ 

    fitx.open("/home/nicky/OpenFOAM/Simulations/Aerofoil/mesh.unv"); 

  }while(!fitx); 

 

  fitx.close(); 

} 

 

 

lift_drag.cc 

 

#include <iostream> 

#include <fstream> 

#include <string.h> 

 

using namespace std; 

 

main (int argc, char ** argv){ 

 

  ifstream fitx; 

  double drag, lift, result; 

 

  

fitx.open("/home/nicky/OpenFOAM/Simulations/Aerofoil/forceCoeffs/1/fil

e.txt"); 

  if(!fitx) 

    cerr << "error!"; 

 

  fitx >> drag >> lift; 

 

  result = (lift/drag)*(-1); 

 

  cout << result << endl; 

 

  fitx.close(); 

} 
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edit_controldict.cc 

 

#include <iostream> 

#include <fstream> 

#include <string.h> 

 

using namespace std; 

 

main (int argc, char ** argv){ 

 

  ifstream fitx1, fitx2; 

  FILE *fp; 

  char buffer[128]; 

  char buffer2[16]; 

  int i=0;; 

 

  fitx1.open("workfile"); 

  if(!fitx1) 

    cerr << "error!"; 

  

  

fitx2.open("/home/nicky/OpenFOAM/Simulations/Aerofoil/system/controlDi

ct"); 

  if(!fitx2) 

    cerr << "error!"; 

 

  

fp=fopen("/home/nicky/OpenFOAM/Simulations/Aerofoil/system/controlDict

", "r+"); 

  while(fitx2.getline(buffer, 256)) { 

    if(i==70){ 

      strcpy(buffer, "Aref "); 

      fwrite(buffer, 1, strlen(buffer), fp); 

      fitx1.getline(buffer,16); 

      fwrite(buffer, 1, strlen(buffer), fp); 

      strcpy(buffer, ";"); 

      fwrite(buffer, 1, strlen(buffer), fp); 

      strcpy(buffer, "\n"); 

      fwrite(buffer, 1, strlen(buffer), fp); 

    } 

    else{ 

      fwrite(buffer, 1, strlen(buffer), fp); 

      strcpy(buffer, "\n"); 

      fwrite(buffer, 1, strlen(buffer), fp); 

    } 

    i++; 

  } 

 

  fitx1.close(); 

  fitx2.close(); 

  fclose(fp); 

 

} 
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edit_boundary.cc 

 

#include <iostream> 

#include <fstream> 

#include <string.h> 

 

using namespace std; 

 

main (int argc, char ** argv){ 

 

  ifstream fitx; 

  FILE *fp; 

  char buffer[128]; 

  int i=0; 

   

  

fitx.open("/home/nicky/OpenFOAM/Simulations/Aerofoil/constant/polyMesh

/boundary"); 

  if(!fitx) 

    cerr << "error!"; 

 

  

fp=fopen("/home/nicky/OpenFOAM/Simulations/Aerofoil/constant/polyMesh/

boundary", "r+"); 

  while(fitx.getline(buffer, 256)) { 

    switch(i) { 

    case 21: 

      strcpy(buffer, "        type            wall;"); 

      fwrite(buffer, 1, strlen(buffer), fp); 

      strcpy(buffer, "\n"); 

      fwrite(buffer, 1, strlen(buffer), fp); 

      break; 

       

    case 39: 

      strcpy(buffer, "        type            wall;"); 

      fwrite(buffer, 1, strlen(buffer), fp); 

      strcpy(buffer, "\n"); 

      fwrite(buffer, 1, strlen(buffer), fp); 

      break; 

 

    case 45: 

      strcpy(buffer, "        type            wall;"); 

      fwrite(buffer, 1, strlen(buffer), fp); 

      strcpy(buffer, "\n"); 

      fwrite(buffer, 1, strlen(buffer), fp); 

      break; 

 

    case 51: 

      strcpy(buffer, "        type            empty;"); 

      fwrite(buffer, 1, strlen(buffer), fp); 

      strcpy(buffer, "\n"); 

      fwrite(buffer, 1, strlen(buffer), fp); 

      break; 

 

    case 57: 

      strcpy(buffer, "        type            empty;"); 

      fwrite(buffer, 1, strlen(buffer), fp); 

      strcpy(buffer, "\n"); 

      fwrite(buffer, 1, strlen(buffer), fp); 
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      break; 

 

    default: 

      fwrite(buffer, 1, strlen(buffer), fp); 

      strcpy(buffer, "\n"); 

      fwrite(buffer, 1, strlen(buffer), fp); 

     

    } 

    i++; 

  } 

 

  fitx.close(); 

  fclose(fp); 

 

} 
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Appendix B: Scripts 
 

script 

 

cd /home/nicky 

./CommandLineToIges --AoA $1 --camber $2 --thickness $3 --outputPath 

/home/nicky/Simulation/ --outputFilename aerofoil 

rm /home/nicky/OpenFOAM/Simulations/Aerofoil/mesh.unv 

rm -r /home/nicky/OpenFOAM/Simulations/Aerofoil/processor* 

cd /opt/SALOME-MECA-2008.1-GPL/SALOME/SALOME3/V3_2_9NoDebug 

./runSalome-debianForSalome -t -u mesh.py -k & 

cd /home/nicky/Simulation 

./wait_for_unv 

sleep 3 

cd /home/nicky/OpenFOAM/Simulations/Aerofoil 

ideasUnvToFoam mesh.unv 

transformPoints -scale "(0.001 0.001 0.001)" 

cd /home/nicky/Simulation 

./edit_boundary 

./edit_controldict 

sleep 2 

cd /home/nicky/OpenFOAM/Simulations/Aerofoil 

decomposePar 

sleep 2 

mpirun -np 4 simpleFoam -parallel > log 

sleep 2 

reconstructPar 

cd /home/nicky/OpenFOAM/Simulations/Aerofoil/forceCoeffs/1 

tail -1 forceCoeffs.dat | awk '{print $2}' > file.txt 

tail -1 forceCoeffs.dat | awk '{print $3}' >> file.txt 

 

mesh.py 

 

### This file is generated by SALOME automatically by dump python 

functionality 

 

import sys 

import salome 

 

salome.salome_init() 

 

sys.path.insert( 0, '/opt/SALOME-MECA-2008.1-

GPL/SALOME/SALOME3/V3_2_9NoDebug') 

 

import mesh_GEOM 

mesh_GEOM.RebuildData(salome.myStudy) 

import mesh_SMESH 

mesh_SMESH.RebuildData(salome.myStudy) 

 

if salome.sg.hasDesktop(): 

 salome.sg.updateObjBrowser(1) 
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mesh_GEOM.py 

 
### This file is generated by SALOME automatically by dump python 

functionality 

### of GEOM component 

 

import geompy 

import math 

 

def RebuildData(theStudy): 

 geompy.init_geom(theStudy) 

 global Face_5, Edge_20, Edge_2, Group_1, Edge_19, Face_7, 

Edge_18, Face_1, Edge_9, Edge_1, Edge_15, Vertex_3, Edge_8, Edge_22, 

Edge_14, Edge_21, Vertex_4, Edge_7, Face_2, Edge_13, Face_4, Vertex_1, 

Extrusion_2, Edge_6, Face_6, Edge_25, Edge_12, Cut_1, Edge_24, Face_8, 

Vertex_2, Edge_5, Edge_23, Edge_11, Quadrangle_Face_1, Edge_17, 

Edge_4, Edge_16, Extrusion_1, aerofoil_igs_1, Edge_3, Face_3, 

Vector_1, Edge_10 

 aerofoil_igs_1 = 

geompy.Import("/home/nicky/Simulation/aerofoil.igs", "IGES") 

 Vertex_1 = geompy.MakeVertex(-500, 500, 0) 

 Vertex_2 = geompy.MakeVertex(-500, -500, 0) 

 Vertex_3 = geompy.MakeVertex(1500, -500, 0) 

 Vertex_4 = geompy.MakeVertex(1500, 500, 0) 

 Vector_1 = geompy.MakeVectorDXDYDZ(0, 0, 1) 

 Face_1 = geompy.MakeFaceWires([aerofoil_igs_1], 1) 

 Quadrangle_Face_1 = geompy.MakeQuad4Vertices(Vertex_1, Vertex_2, 

Vertex_3, Vertex_4) 

 Extrusion_1 = geompy.MakePrismVecH(Quadrangle_Face_1, Vector_1, 

5) 

 Extrusion_2 = geompy.MakePrismVecH(Face_1, Vector_1, 5) 

 Cut_1 = geompy.MakeCut(Extrusion_1, Extrusion_2) 

 [Face_2,Face_3,Face_4,Face_5,Face_6,Face_7,Face_8] = 

geompy.SubShapeAllSorted(Cut_1, geompy.ShapeType["FACE"]) 

 [Edge_1,Edge_2,Edge_3,Edge_4,Edge_5,Edge_6,Edge_7,Edge_8,Edge_9,

Edge_10,Edge_11,Edge_12,Edge_13,Edge_14,Edge_15] = 

geompy.SubShapeAllSorted(Cut_1, geompy.ShapeType["EDGE"]) 

 listSubShapeIDs = geompy.SubShapeAllIDs(Cut_1, 

geompy.ShapeType["EDGE"]) 

 None 

 [Edge_16,Edge_17,Edge_18,Edge_19,Edge_20] = 

geompy.SubShapeAllSorted(Face_5, geompy.ShapeType["EDGE"]) 

 Cut_1 = geompy.GetMainShape(Face_5) 

 Cut_1 = geompy.GetMainShape(Face_5) 

 None 

 [Edge_21,Edge_22,Edge_23,Edge_24,Edge_25] = 

geompy.SubShapeAllSorted(Face_6, geompy.ShapeType["EDGE"]) 

 Cut_1 = geompy.GetMainShape(Face_6) 

 Cut_1 = geompy.GetMainShape(Face_6) 

 None 

 Face_5 = geompy.GetMainShape(Edge_17) 

 None 

 Face_6 = geompy.GetMainShape(Edge_22) 

 area = geompy.BasicProperties(Face_3) 

 area2 = area[1]/1000000 

 f = open('/home/nicky/Simulation/workfile','w') 

 s = str(area2) 

 f.write(s) 

 f.close() 

 Group_1 = geompy.CreateGroup(Cut_1, geompy.ShapeType["EDGE"]) 

 geompy.UnionIDs(Group_1, [6, 9, 16, 23, 44]) 
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 Cut_1 = geompy.GetMainShape(Group_1) 

 Cut_1 = geompy.GetMainShape(Group_1) 

 geomObj_1 = geompy.GetSubShape(Cut_1, [6]) 

 geomObj_2 = geompy.GetSubShape(Cut_1, [9]) 

 geomObj_3 = geompy.GetSubShape(Cut_1, [16]) 

 geomObj_4 = geompy.GetSubShape(Cut_1, [23]) 

 geomObj_5 = geompy.GetSubShape(Cut_1, [44]) 

 geompy.addToStudy( aerofoil_igs_1, "aerofoil.igs_1" ) 

 geompy.addToStudy( Vertex_1, "Vertex_1" ) 

 geompy.addToStudy( Vertex_2, "Vertex_2" ) 

 geompy.addToStudy( Vertex_3, "Vertex_3" ) 

 geompy.addToStudy( Vertex_4, "Vertex_4" ) 

 geompy.addToStudy( Vector_1, "Vector_1" ) 

 geompy.addToStudy( Face_1, "Face_1" ) 

 geompy.addToStudy( Quadrangle_Face_1, "Quadrangle Face_1" ) 

 geompy.addToStudy( Extrusion_1, "Extrusion_1" ) 

 geompy.addToStudy( Extrusion_2, "Extrusion_2" ) 

 geompy.addToStudy( Cut_1, "Cut_1" ) 

 geompy.addToStudyInFather( Cut_1, Face_2, "Face_2" ) 

 geompy.addToStudyInFather( Cut_1, Face_3, "Face_3" ) 

 geompy.addToStudyInFather( Cut_1, Face_4, "Face_4" ) 

 geompy.addToStudyInFather( Cut_1, Face_5, "Face_5" ) 

 geompy.addToStudyInFather( Cut_1, Face_6, "Face_6" ) 

 geompy.addToStudyInFather( Cut_1, Face_7, "Face_7" ) 

 geompy.addToStudyInFather( Cut_1, Face_8, "Face_8" ) 

 geompy.addToStudyInFather( Cut_1, Edge_1, "Edge_1" ) 

 geompy.addToStudyInFather( Cut_1, Edge_2, "Edge_2" ) 

 geompy.addToStudyInFather( Cut_1, Edge_3, "Edge_3" ) 

 geompy.addToStudyInFather( Cut_1, Edge_4, "Edge_4" ) 

 geompy.addToStudyInFather( Cut_1, Edge_5, "Edge_5" ) 

 geompy.addToStudyInFather( Cut_1, Edge_6, "Edge_6" ) 

 geompy.addToStudyInFather( Cut_1, Edge_7, "Edge_7" ) 

 geompy.addToStudyInFather( Cut_1, Edge_8, "Edge_8" ) 

 geompy.addToStudyInFather( Cut_1, Edge_9, "Edge_9" ) 

 geompy.addToStudyInFather( Cut_1, Edge_10, "Edge_10" ) 

 geompy.addToStudyInFather( Cut_1, Edge_11, "Edge_11" ) 

 geompy.addToStudyInFather( Cut_1, Edge_12, "Edge_12" ) 

 geompy.addToStudyInFather( Cut_1, Edge_13, "Edge_13" ) 

 geompy.addToStudyInFather( Cut_1, Edge_14, "Edge_14" ) 

 geompy.addToStudyInFather( Cut_1, Edge_15, "Edge_15" ) 

 geompy.addToStudyInFather( Face_5, Edge_16, "Edge_16" ) 

 geompy.addToStudyInFather( Face_5, Edge_17, "Edge_17" ) 

 geompy.addToStudyInFather( Face_5, Edge_18, "Edge_18" ) 

 geompy.addToStudyInFather( Face_5, Edge_19, "Edge_19" ) 

 geompy.addToStudyInFather( Face_5, Edge_20, "Edge_20" ) 

 geompy.addToStudyInFather( Face_6, Edge_21, "Edge_21" ) 

 geompy.addToStudyInFather( Face_6, Edge_22, "Edge_22" ) 

 geompy.addToStudyInFather( Face_6, Edge_23, "Edge_23" ) 

 geompy.addToStudyInFather( Face_6, Edge_24, "Edge_24" ) 

 geompy.addToStudyInFather( Face_6, Edge_25, "Edge_25" ) 

 geompy.addToStudyInFather( Cut_1, Group_1, "Group_1" ) 

 pass 
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mesh_SMESH.py 

 

### This file is generated by SALOME automatically by dump python 

functionality of SMESH component 

 

import salome, SMESH 

import smesh 

 

## import GEOM dump file ##  

import string, os, sys, re 

sys.path.insert( 0, os.path.dirname(__file__) ) 

exec("from "+re.sub("SMESH$","GEOM",__name__)+" import *") 

 

 

def RebuildData(theStudy): 

 aFilterManager = smesh.smesh.CreateFilterManager() 

 smesh.smesh.SetCurrentStudy(theStudy) 

 import StdMeshers 

 pattern = smesh.GetPattern() 

 Mesh_1 = smesh.Mesh(Cut_1) 

 Regular_1D = Mesh_1.Segment() 

 Average_length_1 = Regular_1D.LocalLength(15) 

 Quadrangle_2D = Mesh_1.Quadrangle() 

 Prism_3D = Mesh_1.Prism() 

 Nb_Segments_1 = smesh.smesh.CreateHypothesis('NumberOfSegments', 

'libStdMeshersEngine.so') 

 Nb_Segments_1.SetNumberOfSegments( 1 ) 

 Nb_Segments_1.SetDistrType( 0 ) 

 SubMesh_1 = Mesh_1.GetSubMesh( Group_1, 'SubMesh_1' ) 

 status = Mesh_1.AddHypothesis(Regular_1D,Group_1) 

 status = Mesh_1.AddHypothesis(Nb_Segments_1,Group_1) 

 MEFISTO_2D = Mesh_1.Triangle(geom=Face_5) 

 SubMesh_2 = MEFISTO_2D.GetSubMesh() 

 Length_From_Edges_2D_Hyp_for_Triangulator__1 = 

MEFISTO_2D.LengthFromEdges() 

 Projection_2D = Mesh_1.Projection2D(geom=Face_6) 

 SubMesh_3 = Projection_2D.GetSubMesh() 

 Source_Face_1 = 

Projection_2D.SourceFace(Face_5,None,None,None,None,None) 

 Average_length_2 = smesh.smesh.CreateHypothesis('LocalLength', 

'libStdMeshersEngine.so') 

 Average_length_2.SetLength( 3 ) 

 SubMesh_4 = Mesh_1.GetSubMesh( Edge_17, 'SubMesh_4' ) 

 status = Mesh_1.AddHypothesis(Regular_1D,Edge_17) 

 status = Mesh_1.AddHypothesis(Average_length_2,Edge_17) 

 Projection_1D = Mesh_1.Projection1D(geom=Edge_22) 

 SubMesh_5 = Projection_1D.GetSubMesh() 

 Source_Edge_1 = Projection_1D.SourceEdge(Edge_17,None,None,None) 

 isDone = Mesh_1.Compute() 

 Face_3_1 = Mesh_1.Group(Face_3) 

 Face_2_1 = Mesh_1.Group(Face_2) 

 Face_8_1 = Mesh_1.Group(Face_8) 

 Face_7_1 = Mesh_1.Group(Face_7) 

 Face_4_1 = Mesh_1.Group(Face_4) 

 Face_6_1 = Mesh_1.Group(Face_6) 

 Face_5_1 = Mesh_1.Group(Face_5) 

 Mesh_1.ExportUNV( '/opt/OpenFOAM/Simulations/Aerofoil/mesh.unv' 

) 

 



Page 62 of 63 

 

 ## set object names   

 isGUIMode = 1 

 if isGUIMode and salome.sg.hasDesktop(): 

  smesh.SetName(Mesh_1.GetMesh(), 'Mesh_1') 

  smesh.SetName(Regular_1D.GetAlgorithm(), 'Regular_1D') 

  smesh.SetName(Average_length_1, 'Average length_1') 

  smesh.SetName(Quadrangle_2D.GetAlgorithm(), 

'Quadrangle_2D') 

  smesh.SetName(Prism_3D.GetAlgorithm(), 'Prism_3D') 

  smesh.SetName(Nb_Segments_1, 'Nb. Segments_1') 

  smesh.SetName(SubMesh_1, 'SubMesh_1') 

  smesh.SetName(MEFISTO_2D.GetAlgorithm(), 'MEFISTO_2D') 

  smesh.SetName(SubMesh_2, 'SubMesh_2') 

  smesh.SetName(Length_From_Edges_2D_Hyp_for_Triangulator__1, 

'Length From Edges (2D Hyp. for Triangulator)_1') 

  smesh.SetName(Projection_2D.GetAlgorithm(), 

'Projection_2D') 

  smesh.SetName(SubMesh_3, 'SubMesh_3') 

  smesh.SetName(Source_Face_1, 'Source Face_1') 

  smesh.SetName(Average_length_2, 'Average length_2') 

  smesh.SetName(SubMesh_4, 'SubMesh_4') 

  smesh.SetName(Projection_1D.GetAlgorithm(), 

'Projection_1D') 

  smesh.SetName(SubMesh_5, 'SubMesh_5') 

  smesh.SetName(Source_Edge_1, 'Source Edge_1') 

  smesh.SetName(Face_3_1, 'Face_3') 

  smesh.SetName(Face_2_1, 'Face_2') 

  smesh.SetName(Face_8_1, 'Face_8') 

  smesh.SetName(Face_7_1, 'Face_7') 

  smesh.SetName(Face_4_1, 'Face_4') 

  smesh.SetName(Face_6_1, 'Face_6') 

  smesh.SetName(Face_5_1, 'Face_5') 

 

  salome.sg.updateObjBrowser(0) 

 

 pass 
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Appendix C: Nimrod schedule file 
 

schedule.shd 

 

parameter aoa float range from 0 to 4 

parameter camber float range from 0 to 12 

parameter thickness float range from 1.5 to 14 

 

constraint camber>0 

 

task main 

execute ./script $aoa $camber $thickness 

execute ./lift_drag > result 

copy result output.$jobname 

endtask 

 

method simplex 

starts 1  

tolerance 0.01 

endstarts 

endmethod 

 

 

 


