
Page 1 of 63

CRANFIELD UNIVERSITY

Nicholai Chapman

Grid-Based CFD Optimization

SCHOOL OF ENGINEERING

MSc THESIS

Page 2 of 63

CRANFIELD UNIVERSITY
School of Engineering

MSc THESIS

ACADEMIC YEAR 2007-2008

Nicholai Chapman

Grid-Based CFD Optimization

Supervisor: Karl Jenkins

September 2009

This thesis is submitted in partial fulfilment of the requirements

for the degree of Master of Science

© Cranfield University 2009. All rights reserved. No part of this publication may be reproduced without

the written permission of the copyright owner.

Page 3 of 63

Acknowledgements

I am grateful to my supervisor Dr. Karl Jenkins for giving me the

possibility to do this project and for his guidance and assistance.

I am very thankful to Mike Riley for his valuable assistance since the

beginning of the project and all his suggestions.

I am also very thankful to Naveed Akram for sharing his knowledge

on OpenFOAM with me and helping me through the meshing process.

I am thankful to the AMAC department for allowing me to use a

computer in the PhD lab during this project.

I am also thankful to Germán Moltó for accepting to be my supervisor

in my home university and for his time and suggestions.

Also thanks to Patrick Verdin for his assistance when needed.

I would also like to thank the Nimrod Toolkit development team at

Monash University for providing the use of Nimrod.

I want to express my thanks to my friends Hafida Boutahar, Helena

Delgado and Iván Rodríguez for their company and support during

my thesis which made things much easier.

I am also very thankful to Estela Ajenjo for her faithful support even

in the distance.

Page 4 of 63

Finally I am extremely grateful to my mother and grandmother to

whom I owe everything and have encouraged me all my life to

become what I am now.

Page 5 of 63

Abstract

In this thesis a design optimization tool applied to computational fluid dynamics

is presented. The aim is to develop a new optimization method using powerful

free software such as Nimrod and OpenFOAM as well as automating the

optimization process. The tool is tested on a two dimensional aerofoil were its

three parameters are optimized to obtain its maximum lift-to-drag ratio. The

optimization is carried out by Nimrod/O which executes a script in charge of

integrating the process. Salome will first create the CAD model and mesh it

using a Python script and the CFD toolbox OpenFOAM is then used to solve the

mesh. Two different optimization algorithms are used and compared and the

speed up is evaluated by running the process on several processors.

Page 6 of 63

Contents

Acknowledgements ... 3

Abstract .. 5

Chapter 1: Introduction ... 8

Chapter 2: Literature review .. 9

2.1 Aerodynamic concepts ... 9

2.1.1 Aerofoil parameters ... 9

2.1.2 Forces .. 10

2.2 Algorithms applied in design optimization 11

2.2.1 Gradient-based methods .. 11

2.2.2 Evolutionary algorithms .. 12

2.3 Grid computing in design optimization 13

2.4 Nimrod as an automatic design optimization tool 14

Chapter 3: Software Description ... 15

3.1 Nimrod .. 15

3.1.1 Nimrod/O ... 15

3.1.2 Algorithms .. 16

3.2 OpenFOAM ... 18

3.3 Salome .. 19

3.3.1 Dump Study ... 19

3.4 CommandLineToIGES .. 19

Chapter 4: Nimrod Installation and Test 21

4.1 Installation .. 21

4.2 Test .. 22

Chapter 5: Process Description ... 26

5.1 Overview ... 26

5.2 Constructing the CAD model .. 27

5.3 Generating the mesh ... 30

Page 7 of 63

5.4 Dump Study and Batch Mode ... 35

5.5 Solving in OpenFOAM .. 36

5.6 Running Nimrod/O .. 39

Chapter 6: Experimentation ... 40

6.1 Camber and thickness optimization 40

6.2 Angle of attack optimization ... 41

6.3 AoA, camber and thickness optimization using simplex 43

6.4 AoA, camber and thickness optimization using BFGS 45

6.5 Speedup .. 47

Chapter 7: Conclusions and further work 49

References .. 51

Appendix A: C++ programs ... 54

Appendix B: Scripts .. 58

Appendix C: Nimrod schedule file ... 63

Page 8 of 63

Chapter 1: Introduction

A common procedure in engineering when designing a product is to

build real prototypes and perform experiments on them.

Computational science and engineering provides techniques which

bring a different perspective to this way of engineering.

A user can build a computational model which simulates the physical

properties of the product to be engineered and perform experiments

on it rather than building a prototype. This way several different

scenarios can be explored and the user can study many design

alternatives reducing the design cycle and even saving money and

improving the quality of the product.

However, these computational models are computationally expensive

and require the use of plenty of computational power to achieve

accurate results. These models must be executed many times during

the optimization process and for that reason it’s interesting to be able

to run the executions concurrently. Large clusters of computers can

be used for this purpose or, even better, the Grid.

Grid computing has become a field of increasing research and has

expanded the possibilities for computing, allowing users to share

resources and therefore having access to more computational power

and storage. Therefore grid computing has become a field of interest

when dealing with computational intense problems such as design

optimization and is already being applied for this purpose.

For all this, it is interesting to create a tool which allows the user not

only to automate the optimization process, but to give him at the

same time the resources to do it efficiently.

Page 9 of 63

Chapter 2: Literature review

2.1 Aerodynamic concepts

2.1.1 Aerofoil parameters

A cross-section of an aircraft wing is called an aerofoil, as shown in

figure 1. Many efforts are put on finding the optimal shape of an

aerofoil according to specific design requirements. Three parameters

are of special importance in this project: camber, thickness and angle

of attack.

Figure 1: Aerofoil structure [3]

As said in [1] and [2], a straight line drawn from the aerofoil’s

leading edge to its trailing edge is called the chord line and the length

of this line is known as the chord. If a curved line is drawn,

equidistant between the upper and lower surfaces of the aerofoil and

from one edge to the other, this line is called the mean camber line.

The camber of an aerofoil is the maximum distance between its chord

line and its mean camber line, measured perpendicular to the chord

line. The thickness is the distance between the upper and lower

surfaces of the aerofoil, and is also measured perpendicular to the

Page 10 of 63

chord line. The angle of attack is the angle between the chord line

and the direction of arrival of the relative wind, defined in [2] as ―the

flow velocity far ahead of the body‖.

2.1.2 Forces

According to [2], aerodynamic forces on a body are due to two

sources: the pressure distribution over the body surface, which is

perpendicular to it, and the shear stress distribution over the body

surface, which is parallel to it. The sum of the net effect of these

distributions result in an aerodynamic force which can be split into

two components. Lift is defined as the component of this force which

is perpendicular to the flow direction, while drag is defined as the

component of this force which is parallel to the flow direction.

Figure 2: Lift and drag forces [4]

A very important matter in aeroplane design is the lift-to-drag ratio,

as it is a measure of the aerodynamic efficiency of the aeroplane. As

said in [5], ―it only makes sense that maximum aerodynamic

efficiency should lead to minimum thrust required‖. The lift-to-drag

Page 11 of 63

ratio is also said to represent the aeroplane’s benefit-to-cost-ratio, as

lift represents the economic value of the aeroplane and drag the cost

of providing the economic value. [1]

As it can be seen in figures 3 and 4, lift and drag are related to angle

of attack. For small values of angle of attack, lift increases linearly

while drag does it very gradually. At higher angles of attack lift starts

to increase slower and at some point it reaches its maximum value.

Drag starts to increase faster with higher angles of attack. When the

point of maximum lift is reached, further increases in the angle of

attack will result in less lift, a phenomenon which is called stall.

 Figure 3: Lift coefficient curve [6] Figure 4: Drag coefficient curve [6]

2.2 Algorithms applied in design optimization

Many are the techniques and algorithms which have been applied in

engineering for optimization purposes. In the field of aerodynamics,

many efforts have been put in shape optimization of aerofoils.

2.2.1 Gradient-based methods

Gradient-based methods use gradient information and are very

efficient when the derivative information of the problem can be easily

Page 12 of 63

obtained. Their main advantage is that they are fast search methods

as low number of function evaluations are needed. However, they

can’t be applied directly to many problems. [7]

Gradient-based methods are very popular and have been widely

applied. In [8] a gradient-based method using the steepest descent

was implemented. The objective was to reduce the drag coefficient on

an aerofoil keeping the lift coefficient within some established ranges.

In [9] an adjoint-based method was applied to aerodynamic

optimization. According to the author, this method has several

advantages relative to other gradient-based methods as ―the

computational effort required to calculate the gradients is

independent of the number of the design variables.‖

Although these methods can be very efficient, they may not be

efficient for design automation. The reason for this is that they don’t

ensure a global optimum, as they search for a local optimum.

Therefore, the optimization process must be started repeatedly from

different initial points in order to find a global optimum. [9]

2.2.2 Evolutionary algorithms

Evolutionary algorithms appeared from the interest of imitating

nature to develop new algorithms and they are based on the idea of

using the theory of evolution as an algorithm [10] [11].

Genetic algorithms are probably the best well known evolutionary

algorithms. A population of individuals is maintained where only the

fittest individuals survive. The individuals evolve due to mutation and

crossover operations, finally converging to the best individual [10].

Contrary to gradient-based methods, genetic algorithms search the

Page 13 of 63

design space from multiple points and work on function evaluations

alone, which makes them robust and suitable to parallel computing

[9].

Genetic algorithms have been widely applied to aerodynamic

optimization [9] [12] [13]. However, one of their weaknesses is that

they require many function evaluations which lead to poor

computational efficiency. Due to this, they have been coupled with

other optimization techniques in order to preserve their benefits but

improving the computational efficiency, as can be seen in [14] where

a genetic algorithm was used with a gradient-based method.

2.3 Grid computing in design optimization

Many engineering optimization design problems, as shape

optimization of aerofoils, require great amounts of computational

power. CFD simulations, for instance, must be called repetitively

while searching through the design space. These simulations, which

take most of the optimization process´ time, are computationally

expensive and can require hours of computation.

Grid computing is a type of distributed computing which focuses on

large-scale resource sharing. Users can share resources such as

computational power which allow to overcome problems that were

infeasible with previous technologies. [15]

Therefore grid computing is being taken into account as an

interesting solution when dealing with computational intense

problems [16] [17] [18] [19] [20]. In [18], for example, grid

computing was used to overcome the computational cost of using

genetic algorithms by means of parallelization and distributed

Page 14 of 63

executions while in [16] and [19] grid computing was applied to

computational fluid dynamics optimizations which require high

computational power.

2.4 Nimrod as an automatic design optimization tool

Nimrod supports distributed executions and optimizations in one tool.

Nimrod has been successfully applied in several studies. In [21]

Nimrod was applied to a number of parameterized computational

experiments where Nimrod efficiently distributed the work and

therefore reduced the execution time of the experiments.

More specifically, Nimrod/O was applied in [22] to a mechanical

design problem where it was able to find multiple local optima by

performing several searches in parallel, starting from different initial

points. In [23] Nimrod/O was tested in a number of different case

studies using the P-BFGS algorithm, showing that speedup can be

achieved for some problems.

Nimrod has also been used in the design of aerofoils. In [3] Nimrod/O

was used to optimize a two dimensional aerofoil which was governed

by three parameters where the goal was to maximize the lift to drag

ratio. The aerofoil was meshed with Gambit and solved with Fluent,

and two different strategies where applied to the optimization:

simplex and P-BFGS. According to the authors, the experiments were

a success as the results were better than those previously obtained

without the use of Nimrod/O. Moreover, Nimrod/O gave the

possibility to test the experiment with two different algorithms by just

changing the plan file.

Page 15 of 63

Chapter 3: Software Description

3.1 Nimrod

Nimrod is a specialized parametric modeling system developed by

Monash University. It provides a simple declarative language which

allows the user to create parametric experiments which can be

executed across distributed computers. Nimrod manages the whole

experiment and provides tools which automate the process,

distributing the necessary files to run the experiment, running it,

monitoring it and finally gathering the results.

3.1.1 Nimrod/O

Nimrod/O ―allows a user to run an arbitrary computational model as

the core of a non-linear optimization process‖ [24]. It accepts a

declarative plan file in which the user can specify the domain and

type of the parameters, any constraints imposed on the solution, the

tasks to perform the experiment, the output variable to be optimized

and the optimization method to use out of the four built-in

optimization algorithms which it currently employs: Simplex, BFGS,

Divide and Conquer and Simulated Annealing.

Nimrod/O uses Nimrod in order to perform distributed executions.

The jobs are passed to Nimrod/G or EnFuzion which allow them to be

run in the Grid or in a cluster of computers. A cache is placed

between Nimrod/O and Nimrod which reduces the number of

calculations if it receives a set of parameters which have already been

calculated. A persistent database is attached to this cache in case the

Nimrod/O is terminated prematurely.

Page 16 of 63

Figure 5: Nimrod/O architecture [25]

3.1.2 Algorithms

Two of the algorithms supplied in Nimrod have been used in this
project.

3.1.2.1 Simplex

The algorithm is based on the method of Nelder and Mead. A simplex

is ―a geometrical figure consisting, in N dimensions, of N+1 points, or

vertices, and all their interconnecting line segments.‖ [24] For

example, in two dimensions a simplex is a triangle and in three

dimensions it’s a tetrahedron.

The algorithm is started with N+1 points and their associated cost

function evaluations. It then iterates replacing at each step the worst

vertex by a better one until the cost function values at all points fall

within a desired tolerance of each other. For example, if the simplex

is a triangle as shown in figure 6, and the worst point is w, n is the

next worst and b is the best, a straight line would be drawn between

w and c, being c the middle point between n and b. On this line we

Page 17 of 63

consider four new points which are candidates to replace w in the

simplex:

 p: the reflection of w in c

 q: the midpoint of p and c

 r: the midpoint of w and c

 s: a point past p and equally far from p as p is from c

[26]

Figure 6: Simplex example [26]

3.1.2.2 BFGS

This algorithm is based on a quasi-Newton method. The BFGS

method maintains an approximation to the inverse of the Hessian, H,

of f, where:

Hij = 2f / xixj

New approximations to the solution vector x are derived by:

 Computing a search direction, d = -H-1


 f(x)

Page 18 of 63

 Finding a new solution vector x using a line search, i.e. x+ = x

+ d

 Updating the inverse of H using the current approximation to H,

x and x+

[24]

3.2 OpenFOAM

OpenFOAM is a free and open source CFD toolbox developed by

OpenCFD Ltd. It is basically a set of C++ libraries which are used to

create applications. These applications are solvers, which are

designed to solve specific problems in engineering mechanics, and

utilities, which are designed to perform pre- and post-processing

tasks involving data manipulation, such as mesh generation or data

visualisation. [27] [28]

OpenFOAM contains numerous solvers, utilities and libraries which

cover a wide range of problems. However, one of the main

advantages of using OpenFOAM is that the user can create new

solvers and utilities as it is open. [27]

Figure 7: Overview of OpenFOAM structure [27]

Page 19 of 63

3.3 Salome

Salome is a free and open source platform for numerical simulation.

It provides a number of modules which allow the user to work on CAD

models and mesh them. It also provides a user interface and a

Python console through which all the functionalities of Salome are

accessible. [29]

Among its several modules two of them are used in this project: the

GEOM and the SMESH modules. The GEOM module allows the user to

create or modify a CAD model as well as importing or exporting the

models in several formats. With the SMESH module the user can

import or export a mesh from and into several formats or create its

own mesh with a number of different algorithms and hypothesis

which it supplies according to the dimensions of the model.

3.3.1 Dump Study

Salome can be launched in batch mode and operated with the use of

Python scripts. It comes with an option called Dump study which

automatically generates a set of Python scripts from data created

with Salome GUI. It is highly useful as there is no need for the user

to script himself. The scripts can be stored and loaded later to re-

create the content of the original study. [29]

3.4 CommandLineToIGES

In this project a command-line aerofoil generator which was

previously created for another project has been used. It depends on

Open Cascade libraries and this version is Linux based.

Page 20 of 63

This code uses the NACA 4-digit standard to generate the vertices

before interpolating these to create the aerofoil's outline. The

program receives as an input the Angle of Attack (degrees), which

rotates around the leading edge, Thickness [0-100]% and Camber

[0-100]%. It is also possible to specify the chord, which is set to 0.5

meters as default. Other options are implemented such as specifying

the output path or the output filename of the aerofoil. The use is as

follows:

CommandLineToIges --AoA 1 --camber 8 --thickness 8 --chord 1.25

--outputPath /root/my_foils --outputFilename sample

[30]

Page 21 of 63

Chapter 4: Nimrod Installation and Test

4.1 Installation

All the steps are in the Nimrod/O Users’ Guide.

Once Nimrod/O has been downloaded, the archive must be expanded

using the following command:

tar xvf nimrodo.<version>.tar

This creates the following directory structure:

nimrodo.<ver> ----- source ---------- nimrodo

 |
 |--- nimcache

 |
 |--- nimdisp

 |
 |--- beader

Then, to configure and install Nimrod/O for a Unix system:

1. Go to the source subdirectory. Enter

./configure --prefix=<installation_dir>

Here <installation_dir> is the directory where Nimrod/O will be

installed. This directory must already exist.

2. Enter

make install

Page 22 of 63

This process should create the following directory structure

<installation_dir> ----------- bin

 |
 |-- lib --- nimrodo --- test

To test that Nimrod/O is working (independently of enFuzion and

Nimrod/G):

1. Ensure that <installation_dir>/bin is in your path.

2. Move to the directory <installation_dir>/lib/nimrodo/test (or

copy the contents of that directory into your current directory).

3. Enter the command

nimrodo -t 2 -d s

[26]

As the experiments were going to be run locally, there was no need

to install Nimrod/G or enFuzion.

4.2 Test

In order to get familiarized with Nimrod/O, it was first tested with a

simple mathematical function. A simple C++ code was first developed

which, given parameters x and y, gives as an output the result of the

objective function for those two parameters. As Nimrod/O looks for

the minimum as default and the aim was to maximize the objective

function, the result had to be multiplied by -1. By doing this

Nimrod/O would search for the biggest negative answer, which will be

Page 23 of 63

the maximum.

Once the C++ code was working, the following schedule file was

made:

The first part of this schedule file lists the parameters which

constitute the design space. For each parameter its data type and

domain are specified.

The second part defines the constraints. The constraints can be hard,

in which case they can’t be violated, or soft, which can be violated

but will then give a penalty value to the objective function which is

proportional to the dimension of the violation. In this case the

constraints are hard, which is the default option. The syntax for a

constraint is:

example1.shd

parameter x integer range from 0 to 25

parameter y integer range from 0 to 25

constraint 2*x+y <= 18

constraint 2*x+3*y <= 42

constraint 3*x+y <= 24

constraint x >= 0

constraint y >= 0

task main

 copy nimrodexample1 node:nimrodexample1

 node:execute ./nimrodexample1 $x $y > result

 copy node:result output.$jobname

endtask

method simplex

 starts 1

 tolerance 0.000

 endstarts

end method

Page 24 of 63

constraint [hard|soft] <constraint_condition>

The third part specifies the tasks which must be carried out by the

dispatcher to compute the objective function. Here the C++ program

will be copied from the root to a node which will then execute it and

copy back the result to the root. However, when working locally there

is no need to move files between nodes. When the file is copied back

to the root it is given a unique name as determined by the dispatcher

jobname. Nimrod/O requires that the objective value is the first string

in the file output.$jobname.

The last part specifies the optimization method to be used. In this

case a simplex search will be started from one random point with the

specified tolerance. The initial points can also be selected manually

and more than one optimization method can be specified. [26]

This schedule file was first run locally, with the following results:

As the optimum is 33 with (x,y) = (3,12) so the result wasn’t the

expected one, Nimrod/O was ran again changing the starts of the

simplex method to 5 and 10, finally obtaining the optimum values

after 10 starts.

-------------- Final Results: Block '1 (unnamed)' ------------

Starting point Optimum At Point Iters. Evals. Batches

(2,8) -32 (4,10) 7 8 (21) 5 (8)

-------------- Final Results: Block '1 (unnamed)' -----------

Starting point Optimum At Point Iters. Evals. Batches

(2,8) -32 (4,10) 7 8 (21) 5 (8)

(5,4) -31 (5,8) 9 13 (30) 6 (10)

(5,1) -30 (6,6) 9 15 (32) 7 (11)

(0,2) -32 (4,10) 14 19 (35) 8 (15)

(4,3) -28 (6,5) 7 8 (21) 5 (8)

Page 25 of 63

-------------- Final Results: Block '1 (unnamed)' -----------

Starting point Optimum At Point Iters. Evals. Batches

(2,8) -32 (4,10) 7 8 (21) 5 (8)

(5,4) -31 (5,8) 9 13 (30) 6 (10)

(5,1) -30 (6,6) 9 15 (32) 7 (11)

(0,2) -32 (4,10) 14 19 (35) 8 (15)

(4,3) -28 (6,5) 7 8 (21) 5 (8)

(3,8) -33 (3,12) 9 11 (28) 5 (10)

(0,9) -33 (3,12) 57 11 (370) 6 (107)

(3,12) -33 (3,12) 5 2 (9) 2 (5)

(0,13) -26 (0,13) 6 6 (23) 4 (7)

(1,1) -27 (7,3) 12 14 (40) 7 (14)

Page 26 of 63

Chapter 5: Process Description

5.1 Overview

In figure 8 we can see a structure of the workflow.

Figure 8: Workflow

Nimrod/O governs the optimization generating a new set of

parameters for each evaluation. CommandLineToIGES takes these

new set of parameters as an input and generates the aerofoil file.

Nimrod/O

Aerofoil
Generator

Parameters

Salome

OpenFOAM

Aerofoil

Mesh

L/D

Page 27 of 63

This file is imported into Salome, which creates the final CAD model

and meshes it, finally exporting the mesh to the OpenFOAM directory

which will solve it and output the lift and drag coefficients which are

used to calculate the lift-to-drag ratio and give the value to

Nimrod/O. All this process is run on a AMD Phenom(tm) 9850 Quad-

Core Processor with a 2’5MHz frequency.

5.2 Constructing the CAD model

The aerofoil file created with CommandLineToIGES must be first

imported into Salome’s geometry module:

File -> Import (IGES files)

Then a face is created using the imported aerofoil which will be used

to work with:

New Entity -> Build -> Face

A quadrangle must be built around the aerofoil. An appropriate size

for this quadrangle would be of five chord length distance for inlet,

bottom and top walls and 10 chord length distance for the outlet wall.

However, this would lead to a mesh with a huge amount of elements,

which would take a very long time to solve in OpenFOAM. Due to time

restrictions, the accuracy of the results is not an aim of this project

so the quadrangle was reduced to one chord length for inlet, top and

bottom and two for outlet, which will lead to a much smaller mesh.

To create the quadrangle the following steps must be followed:

1. Four points must be created around the aerofoil:

Page 28 of 63

New Entity -> Basic -> Point

In this case the points were created in (-500, 500, 0), (-500,

-500, 0), (1500, -500, 0) and (1500, 500, 0)1

2. A quadrangle face is created using the previous points:

New Entity -> Blocks -> Quadrangle Face

At this point some problems which must be explained arose.

OpenFOAM works with 3D meshes but in this project a 2D aerofoil

was going to be solved. The procedure to solve a 2D case in

OpenFOAM is to create a 3D mesh which is just one cell thick in the

third dimension.

The first approach to do this was to mesh the 2D geometry and once

done that extrude it:

Modification -> Extrusion

selecting the whole mesh, using a vector on the z direction and

selecting number of steps = 1. By doing so, the expected mesh was

achieved but the problem was that groups of faces for the boundary

conditions could not be created. This was due to the fact that the

original geometry was 2D and therefore wasn't composed by faces.

A different approach was then tried out which consisted in creating an

extrusion mesh. The first step to do this is to convert the geometry

into 3D. Both of the previously created faces must be extruded. To do

so a vector is created:

1
 A chord length is 0,5 m which is represented as 500 in Salome.

Page 29 of 63

New Entity -> Basic -> Vector

in the extrusion direction (z in this case). Then both faces can be

extruded:

New Entity -> Generation -> Extrusion

selecting the face to extrude as the base shape and the previously

created vector.

At this point the aerofoil is in 3D as well as the quadrangle around it

but one final operation must be made to obtain the final geometry as

the aim is to mesh the surface around the aerofoil:

Operations -> Boolean -> Cut

selecting the extruded quadrangle as the main object and the

extruded aerofoil as the tool object.

Figure 9: Cut1

Page 30 of 63

After this operation a volume is obtained with an empty aerofoil

shape in the middle, as can be seen in figure 9, and the geometry is

now ready to be meshed. This final geometry will be referred from

now on as Cut1.

Although the geometry is ready to be meshed, some further

operations must be done which will be used during the mesh

generation. First a group must be created which is composed by the

edges of Cut1 in the extrusion direction. This will be used to create a

mesh which is one cell thick. To do so, right click on Cut1 and select:

Create Group

selecting edges as elements type and adding the correct edges to the

group.

In order to be able to select these edges, Cut1 must be exploded

first:

New Entity -> Explode

selecting Cut1 as the main object and ―edges‖ in Sub Shapes Type.

Also, the same operation must be done for ―faces‖, as it will be used

later.

5.3 Generating the mesh

The mesh is created changing to the mesh module, selecting:

Mesh -> Create Mesh

Page 31 of 63

on Cut1 and applying the following algorithms:

 3D Algorithm: 3D extrusion (doesn't require hypothesis)

 2D Algorithm: Quadrangle (doesn't require hypothesis)

 1D Algorithm: Wire discretisation

 1D Hypothesis: Average Length = 15

If the mesh is computed at this point it would give an error. Some

more steps are required. As a mesh which is only one cell thick is

needed, a submesh must be created. The group formed by the edges

of Cut1 in the extrusion direction, which has been created previously

in the geometry module, is used to create a submesh:

Mesh -> Create Sub-mesh

The following algorithm and hypothesis must be applied:

 1D algorithm: Wire discretisation

 1D hypothesis: Nb. Segments = 1

One more step must be done before computing the mesh. Two more

submeshes must be created selecting as the geometry first the face

of Cut1 which represents the initial face (the face representing the

quadrangle face and the aerofoil before the extrusion) and second the

face of Cut1 which represents the equivalent to the initial face after

the extrusion or destination face. These faces are obtained with the

explode operation which has been done previously in the geometry

module. The first submesh is created selecting the initial face and

applying the following algorithm and hypothesis:

 2D Algorithm: Triangle (Mefisto)

 2D Hypothesis: Length From Edges

Page 32 of 63

The second submesh is created selecting the destination face and

applying:

 2D Algorithm: Projection 2D

 1D Hypothesis: Source Face

selecting the initial face as ―Face‖ for the hypothesis.

Now the mesh is ready to be computed by doing right click on the

mesh and selecting:

Compute

Figure 10: Mesh

Although this mesh is ready to be solved in OpenFOAM, a further

refinement can be made to it. The highest point of interest are the

elements around the aerofoil so we can refine the mesh to obtain

more elements around it. To do so, some steps should be made in

the geometry module before generating the mesh. The initial face

and the destination face of Cut1 must be exploded into edges. Then a

Page 33 of 63

submesh can be created to refine the elements around the aerofoil by

selecting first as the geometry the edge which represents the aerofoil

in the initial face and applying:

 1D Algorithm: Wire discretisation

 1D Hypothesis: Average length = 3

and a second submesh selecting as the geometry the edge which

represents the aerofoil in the destination face and applying:

 1D Algorithm: Projection 1D

 1D Hypothesis: Source Edge

The mesh can be then computed and smaller elements around the

aerofoil will be obtained, as seen in figure 11. This mesh, which will

be used for the optimizations, will have approximately 40000

elements.

Figure 11

The value for the average length depends on how small the elements

are wanted. At the beginning, an average length = 1 was used. The

Page 34 of 63

aim was to refine these elements as much as possible as it was the

point of maximum interest. The first tests were running as expected

but at some point some problems started to arise as sometimes

Salome was being unable to compute the mesh, which wasn't

allowing the optimization process to continue. The problem was

coming from this step as the elements around the aerofoil were being

refined too much. Changing this value to a higher one was solving the

problem and Salome was again being able to compute the mesh. The

value was changed to three and Salome started working without

problems.

Finally, some groups of faces for the boundary conditions in

OpenFOAM must be created by using the previously exploded faces of

Cut1. Doing right click on the mesh, selecting Create Group and

following these steps:

 Element Type = Face

 Group Type = Group on geometry

 Geometrical object = face which represents the aerofoil

Figure 12: Aerofoil faces

Page 35 of 63

In this case the faces of the aerofoil are selected, as shown in figure

12. These steps must be repeated for inlet, outlet, top, bottom, right

(initial face) and left (destination face).

Now the mesh is completed and ready to be exported to the

OpenFOAM directory:

File -> Export -> UNV file

5.4 Dump Study and Batch Mode

Once the mesh is generated, the process has to be automated using

a script. Salome’s option Dump study (File -> Dump Study) is used to

generate automatically a python script of the session, which will be

run in batch mode. Salome is run in batch mode using the option –t

and to load a script the option –u is used:

./runSalome -t -u myscript.py

The option -k is also used to kill all the Salome running sessions and

& to run it in background:

./runSalome -t -u myscript.py -k &

The reason to run Salome in background is that when it is run in

batch mode the prompt of the terminal changes, which doesn’t allow

the following instructions in the script to be executed. To overcome

this problem it is run in background. However, the rest of the

instructions must not be executed until Salome has finished

generating the mesh. Therefore, a simple C++ program was coded

which waits for Salome to create the file with the mesh before the

Page 36 of 63

rest of instructions can be executed (see wait_for_unv.cc)

One final change must be done before the Python script is ready.

Salome has an option in its Geometry Module named “Basic

properties” which gives the length, surface and volume of an object.

The value of the surface of the walls around the aerofoil is needed to

change a file later in OpenFOAM. Salome provides a command to

obtain these values:

geompy.BasicProperties(Shape)

This command is used to add to the script the necessary lines to

obtain the surface and write the value into a file.

5.5 Solving in OpenFOAM

The Python script outputs the mesh into .unv format. The first step is

to convert this mesh to OpenFOAM:

ideasUnvToFoam mymesh.unv

One important observation must be now made. Salome and

OpenFOAM don’t work with the same units. While OpenFOAM is

working in meters, Salome does it in millimeters. Therefore the points

must be converted before starting to work with the mesh:

area = geompy.BasicProperties(Face_3)

f = open('/home/nicky/Simulation/workfile','w')

s = str(area[1])

f.write(s)

f.close()

Page 37 of 63

transformPoints -scale "(0.001 0.001 0.001)"

Some changes must be made to some files before solving the case.

When the mesh is converted to OpenFOAM, by default the boundaries

in /constant/polyMesh/boundary receive type patch. A C++ program

was coded (see edit_boundary.cc) to change some of these

boundaries. The aerofoil, top and bottom boundaries must be of type

wall, while right and left boundaries must be of type empty.

Also, the value Aref in the /system/controlDict file must be updated

using the surface value which the Python script writes into a file. This

is also done with a C++ program (see edit_controldict.cc).

These changes must be done in each evaluation during the

optimization process. Some other changes are done just once before

starting the optimization. The number of iterations is set to 3000 in

the /system/controlDict file (endTime field) as it was proved during

the tests to be enough to converge. Also, the tolerance for the

solution is set to 1e-04 in the /system/fvSolution file. Finally, in the

/system/controlDict file must be specified that the forces must be

calculated (see controlDict) as the aim is to obtain the lift and drag

coefficients.

The case must now be prepared to run in parallel. The method of

parallel computing used by OpenFOAM is known as domain

decomposition, in which the geometry and associated fields are

broken into pieces and allocated to separate processors for solution.

To run a parallel case the first step required is therefore to

decompose the domain using the decomposePar utility. There is a

dictionary associated with decomposePar named decomposeParDict.

This dictionary must be copied into the system folder of the case and

Page 38 of 63

edited depending on the number of subdomains into which the case

will be decomposed, four in this case, which is done by editing the

number in the entry “numberOfSubdomains” [27]. The method used

to distribute the work among the processors can also be selected. In

this case metis has been used, distributing the work equally among

all the processors.

The decomposePar utility is executed by typing:

decomposePar

and now the case is ready to run in parallel, which is done with the

following command:

mpirun -np 4 simpleFoam -parallel > log

were the number of processors (4) are specified, the solver used

(simpleFoam) and the output is sent to a log file.

Once the case has completed running, the decomposed fields and

mesh must be reassembled for post-processing using the

reconstructPar utility. [4] This is executed by typing:

reconstructPar

Finally, the lift and drag coefficients are written into the

forceCoeffs/1/forceCoeffs.dat file. A C++ program (see lift_drag.cc)

will extract these coefficients and return the lift-to-drag ratio which

Nimrod/O will copy as a result.

Page 39 of 63

5.6 Running Nimrod/O

Nimrod/O is run using the following command:

nimrodo –f schedule.shd -l

were –l is used to run the optimization locally and schedule.shd is the

schedule file used.

In the schedule file the angle of attack, camber and thickness are

specified. As the camber range is set from 0-12, a constraint is set so

that the camber must be higher than zero.

The first task of the schedule file is to execute the script which

automates all the process of creating the CAD, the mesh and solving

it. This script accepts the angle of attack, camber and thickness as an

input. Once the script has finished its job, the lift_drag program is

executed to obtain the lift-to-drag ratio. This value is copied into a

file named result, which is copied into a final filename which identifies

it.

Finally the optimization method is specified, with the number of starts

and the tolerance which has been set to 0.01.

A file called nimdisp.options must also be created in the working

directory. This file will contain the line:

concurrency 1

which will set the number of concurrent jobs to one.

Page 40 of 63

Chapter 6: Experimentation

6.1 Camber and thickness optimization

The aim of the first experiment was to test the process and make

sure that the optimization process was working correctly. Therefore

only two parameters, camber and thickness, were optimized,

maintaining a constant angle of attack of 0 degrees. The inlet velocity

is set to 73.45 m/s. The results are shown in table 1 and the progress

of the optimization is shown in figure 13.

Starting

point

L/D Camber Thickness Eval Time

(10.9626,

10.3086)

38.6014 4.54541 1.5 59 5:40:06

Table 1

Figure 13

Page 41 of 63

The starting point was decided randomly by Nimrod/O. The L/D value

was acceptable and the process ended without problems.

In figure 13 a negative value for L/D can be seen. This is due to a

failed evaluation which crashed, returning the L/D value according to

the coefficient at the moment of the crash. This can happen

sometimes when working in parallel.

6.2 Angle of attack optimization

In the next experiment the angle of attack had to be included to the

optimization. However, before doing this, another experiment was

made to check that the angle of attack optimization was working

correctly. To do this the optimum values of camber and thickness in

the previous experiment were used, keeping these values constant

and optimizing only the angle of attack. As said in the literature

review, as the angle of attack increases the L/D increases too until

the stall angle is reached. Therefore, a better L/D value than in the

previous experiment should be obtained after this optimization as the

angle of attack was zero before. The results are shown in table 2.

Starting

point

L/D AoA Camber &

Thickness

Eval Time

3.65419 43.7026 0.85419 (4.54541,

1.5)

17 1:47:49

Table 2

As expected, a higher value for L/D was obtained, being the optimal

angle of attack of 0.85419. In figure 14 can be seen how the L/D

increases with the angle of attack until certain value where it begins

to decrease again. Figure 15 shows the progression of the

Page 42 of 63

optimization, where it can be seen how the values increase

progressively as the algorithm finds better values of the parameters.

Figure 14

Figure 15

Page 43 of 63

6.3 AoA, camber and thickness optimization using simplex

As everything was working correctly, an optimization was done for all

three parameters using the simplex method. The results are shown in

table 3.

Starting

point

L/D AoA, Camber, Thickness Eval Time

(3.65419,
8.45624,
12.6781)

26.913 (1.01795, 11.9062, 1.5) 60 5:43:07

Table 3

The result obtained in this optimization was poor as the value

obtained for L/D was much lower than the one in the first

experiment. This evidences that the optimization is sensitive to the

starting point. Several optimizations must be started from different

initial points to search the design space and find the global optimum.

The same optimization was repeated starting from a different point.

The results are shown in table 4.

Starting

point

L/D AoA, Camber, Thickness Eval Time

(0, 4, 2) 43.569 (0.912346, 4.62593, 1.5) 40 3:50:20

Table 4

The L/D value was much better than in the previous experiment and

the optimum values of the parameters were very close to the ones in

experiment 1 and 2. However, as the initial point was close to the

optimum values, this optimization required much less evaluations,

saving almost two hours of computation.

Page 44 of 63

Once again a new optimization was carried out with a closer initial

point to the optimum values in the last experiment than the initial

point in that same experiment. The results are shown in table 5.

Starting

point

L/D AoA, Camber, Thickness Eval Time

(1, 5, 2) 42.3841 (1.12099, 4.74815, 1.61111) 47 4:34:41

Table 5

The optimum values were quite similar, obtaining a slightly lower

L/D. Although the initial point was closer to the optimum than in the

previous experiment, the optimization took some more evaluations to

finish.

This time the experiment was done again from an initial point close to

the previous optimums. The results are shown in table 6.

Starting

point

L/D AoA, Camber, Thickness Eval Time

(1, 4, 1.5) 43.1336 (1, 5.2, 1.5) 23 2:09:10

Table 6

This optimization took much less evaluations and the L/D value was

slightly higher than before. It can be seen that the initial point of the

optimization is very important.

A last experiment was done with a starting point which was further to

the range of solutions which were being obtained than the initial

points of the previous experiments. The results are shown in table 7.

Page 45 of 63

It can be seen that the L/D value and the optimum angle of attack,

camber and thickness are similar to the ones in the previous

experiments. However the number of evaluations is higher, as the

starting point is far from the optimum solution.

Starting

point

L/D AoA, Camber, Thickness Eval Time

(3, 6, 8) 43.0906 (1.04444, 4.53333, 1.5) 51 4:37:51

Table 7

After all this experiments it can be concluded that the choice of the

initial point is very important to obtain best results, as the solution is

sensitive to this choice.

The best solution after these experiments was of 43.569 for L/D,

while angle of attack, camber and thickness were of 0.912346,

4.62593 and 1.5 respectively. The angle of attack and thickness have

similar values to the ones in [3], although the value of the camber is

quite different. The value of the L/D is higher in [3], but these results

can’t be compared to those as the experiment may be set with

different parameters such as the inlet velocity.

6.4 AoA, camber and thickness optimization using BFGS

An optimization was also done using the BFGS algorithm. The results

are shown in table 8.

Starting

point

L/D AoA, Camber, Thickness Eval Time

(1, 10, 2) 32.2171 (1.28356, 9.74414, 1.5) 108 11:35:29

Table 8

Page 46 of 63

This optimization shows that the BFGS algorithm requires much more

evaluations than the simplex method to find the solution. The idea

was to do more optimizations using the BFGS method from different

starting points, and also to do those same optimizations with the

simplex method to compare their results from the same starting

points. However, the optimization when using the BFGS algorithm

only finished for the starting point used in this optimization.

This not only happened for the BFGS algorithm, although it happened

much more often than when using the simplex method. The problem

occurs because Salome is unable to mesh the aerofoil and the whole

optimization is waiting for it to do it. The error happened often when

performing the cut operation. After loading the aerofoil into Salome

to see its shape, sometimes an abnormal aerofoil had been

generated, as shown in figure 16, which was the source of the error.

In other cases the aerofoil seemed to be perfectly alright, but Salome

was still unable to mesh it.

Figure 16: abnormal aerofoil

As only one optimization using the BFGS algorithm finished, the

results are not conclusive and they can’t be compared to the simplex

method. However, during some of the failed optimizations it could be

Page 47 of 63

observed, before the optimization failed, how the BFGS algorithm

needed more evaluations than the simplex method.

6.5 Speedup

Finally, one of the previous optimizations was repeated using

different number of processors to test the speedup. The optimizations

were done using the simplex method and with (0,4,2) as a starting

point. After 40 evaluations, the time needed for the optimizations is

shown in table 9.

Num proc Time

1 12:33:06

2 7:01:49

4 3:50:20

Table 9

Figure 17: speedup

Page 48 of 63

The speedup using two processors is of 1.78 and of 3.27 for four

processors. These results suggest the potential of running the

experiments under a grid environment. Moreover, when running

more complex computational models the speed up will be more

decisive as the bulk of the time is spent on computing the CFD code.

Figure 18: efficiency

Page 49 of 63

Chapter 7: Conclusions and further work

A new automatic design optimization tool has been developed and

has been applied successfully to a two dimensional aerofoil. During

the experiments, the importance of selecting the initial point when

doing the optimization has been evidenced. Also, the time of doing

the optimization using different number of processors has been

compared, evidencing a significant speedup when increasing its

number.

Although the different programs involved have been successfully

integrated, the tool is not yet as robust as it should be. A problem

has been noticed during the meshing process, where several aerofoils

could not be meshed. Further work must be done at this stage to

clearly identify the source of the error.

Highly accurate results were not an aim of this project and therefore

the mesh can be improved to achieve more accurate results. The

boundary walls of the CAD model can be expanded and a mesh with

more and better distributed elements can be generated.

The process has been tested on a single computer with four

processors. Installing Nimrod/G will allow the user to execute the

process on a computational grid and achieve significant speedup. This

will not only speed up the actual optimization, but will also allow

working with more complex meshes which give better results.

New parameters can also be introduced to the aerofoil. By doing so a

different program to generate the aerofoils must be used or

implemented, or the one used in this thesis can be improved. Again

this would increase the time required for the optimization and the

Page 50 of 63

installation of Nimrod/G becomes important to use as much

computational power as possible.

Page 51 of 63

References

[1] Brandt, Steven A. (2004), Introduction to aeronautics: a design

perspective (2nd ed), American Institute of Aeronautics and

Astronautics, Reston.

[2] Anderson, John David (2007), Fundamentals of aerodynamics

(4th ed), McGraw-Hill Higher Education, Boston.

[3] Abramson, D., Lewis, A., Peachey, T., Fletcher, C. (2001), An
automatic design optimization tool and its application to

computational fluid dynamics, SuperComputing 2001.

[4] http://www.free-online-private-pilot-ground-

school.com/images/forces_airfoil.gif, accessed 03/08/09.

[5] Anderson, John D. (2005), Introduction to flight (5th ed),
McGraw-Hill, Boston.

[6] http://www.apstraining.com/images_remote/video-lift-drag-

curve.jpg, accessed 05/08/09.

[7] Kalyanmoy, Deb. (2005), Optimization for engineering design:
algorithms and examples, Prentice Hall, New Delhi.

[8] Garcia, M.J., Boulanger, P., Giraldo, S. (2008), CFD based wing

shape optimization through gradient-based method, in EngOpt
2008 - International Conference on Engineering Optimization,

01-05 June 2008, Rio de Janeiro, Brazil.

[9] Oyama, A., Obayashi, S., Nakahashi, K., Nakamura, T. (2000),

Aerodynamic optimization of transonic wing design based on
evolutionary algorithm, in third International Conference on

nonlinear problems in Aviation and Aerospace, 10-12 May
2000, Daytona Beach, FL, USA.

[10] Gen, M., Cheng, R. (2000), Genetic algorithms & engineering

optimization, John Wiley, Chichester.

[11] Ashlock, D. (2006), Evolutionary computation for modeling and
optimization, Springer, New York.

[12] Epstein, B., Peigin, S. (2006), Optimization of 3D wings based

on Navier-Stokes solutions and genetic algorithms,

International Journal of Computational Fluid Dynamics, 20:2,
75 — 92.

http://www.free-online-private-pilot-ground-school.com/images/forces_airfoil.gif
http://www.free-online-private-pilot-ground-school.com/images/forces_airfoil.gif
http://www.apstraining.com/images_remote/video-lift-drag-curve.jpg
http://www.apstraining.com/images_remote/video-lift-drag-curve.jpg

Page 52 of 63

[13] Obayashi, S., Tsukahara, T., Nakamura, T. (2000),

Multiobjective genetic algorithm applied to aerodynamic design
of cascade airfoils, IEEE TRANSACTIONS ON INDUSTRIAL

ELECTRONICS, VOL. 47, NO. 1.

[14] Vicini, A., Quagliarella, D. (1998), Airfoil and wing design

through hybrid optimization strategies, in AIAA Applied
Aerodynamics Conference No16, 15 June 1998, Albuquerque,

NM, USA.

[15] Foster, I., Kesselman, C., Tuecke, S. (2001), The Anatomy of
the Grid: Enabling Scalable Virtual Organizations, International

Journal of High Performance Computing Applications, 15 (3).
200-222. 2001.

[16] Song, W., Keane, A., Cox, S. (2003), CFD-based shape

optimisation with grid-enabled design search toolkits, in
Proceedings of UK e-Science All Hands Meeting 2003, 2-4

September 2003, Nottingham, UK, EPSRC, 619-627.

[17] Lad, B.S., Pillai, M.U., Gupta, Y. (2006), A grid computing tool

for engineering simulations.

[18] Song, W., Ong, Y.S., Ng, H.K., Keane, A., Cox, S., Lee, B.S.
(2004), A service-oriented approach for aerodynamic shape

optimization across institutional boundaries, In, Proceedings of
the 8th ICARCV Control, Automation, Robotics and Vision

Conference, Institute of Electrical and Electronics Engineers,
New York, USA.

[19] Katsaros, G., Campos, F., Kyriazis, D., Varvarigou, T., CFD

automatic optimisation using OpenFOAM in grid environments,
in OpenFOAM International Conference 2007, 26-27 November

2007, Beaumont House, Old Windsor, UK.

[20] Song, W., Keane, A.J., Eres, M.H., Pound, G.E., Cox., S.J.

(2003), Two Dimensional Airfoil Optimisation Using CFD in a
Grid Computing Environment, Euro-Par 2003 Parallel

Processing, Lecture Notes in Computer Science, 525-532.

[21] Lewis, A., Abramson, D., Sosic, R., Giddy, J. (1995), Tool-
based parameterisation: an application perspective.

[22] Peachey, T., Abramson, D., Lewis, A., Kurniawan, D., Jones, R.

(2003), Optimization using Nimrod/O and its application to
robust mechanical design.

[23] Abramson, D., Lewis, A., Peachey, T., (2001), Case studies in

Page 53 of 63

automatic design optimisation using the P-BFGS algorithm, P-

BFGS Algorithm‖, 2001 High Performance Computing
Symposium (HPC'01), Advanced Simulation Technologies

Conference, 22-26 April 2001, pp 104 – 109.

[24] Abramson, D., Lewis, A., Peachey, T., Nimrod/O: a tool for

automatic design optimization using parallel and distributed
systems.

[25] Monash eScience and grid engineering laboratory (MeSsAGE),

20 July 2009, MeSsAGE Lab - Nimrod Toolkit, accessed
05/08/09 http://messagelab.monash.edu.au/NimrodO.

[26] T. C. Peachey and Monash University, Nimrod/O Users' Guide

for Version 2.6.x.

[27] OpenCFD Limited, OpenFOAM UserGuide.

[28] OpenCFD Limited, OpenFOAM® - The Open Source

Computational Fluid Dynamics (CFD) Toolbox, accessed
06/08/09, http://www.opencfd.co.uk/openfoam/.

[29] OPEN CASCADE SAS (OCC), Salome-Meca, http://www.salome-

platform.org/ex/doc3.2.6/GUI/doc/salome/gui/GUI/index.htm,
accessed 03/08/09.

[30] Mike Riley, Linux-based aerofoil IGES generator.

http://messagelab.monash.edu.au/NimrodO
http://www.opencfd.co.uk/openfoam/
http://www.salome-platform.org/ex/doc3.2.6/GUI/doc/salome/gui/GUI/index.htm
http://www.salome-platform.org/ex/doc3.2.6/GUI/doc/salome/gui/GUI/index.htm

Page 54 of 63

Appendix A: C++ programs

wait__for_unv.cc

#include <iostream>

#include <fstream>

using namespace std;

main (int argc, char ** argv){

 ifstream fitx;

 do{

 fitx.open("/home/nicky/OpenFOAM/Simulations/Aerofoil/mesh.unv");

 }while(!fitx);

 fitx.close();

}

lift_drag.cc

#include <iostream>

#include <fstream>

#include <string.h>

using namespace std;

main (int argc, char ** argv){

 ifstream fitx;

 double drag, lift, result;

fitx.open("/home/nicky/OpenFOAM/Simulations/Aerofoil/forceCoeffs/1/fil

e.txt");

 if(!fitx)

 cerr << "error!";

 fitx >> drag >> lift;

 result = (lift/drag)*(-1);

 cout << result << endl;

 fitx.close();

}

Page 55 of 63

edit_controldict.cc

#include <iostream>

#include <fstream>

#include <string.h>

using namespace std;

main (int argc, char ** argv){

 ifstream fitx1, fitx2;

 FILE *fp;

 char buffer[128];

 char buffer2[16];

 int i=0;;

 fitx1.open("workfile");

 if(!fitx1)

 cerr << "error!";

fitx2.open("/home/nicky/OpenFOAM/Simulations/Aerofoil/system/controlDi

ct");

 if(!fitx2)

 cerr << "error!";

fp=fopen("/home/nicky/OpenFOAM/Simulations/Aerofoil/system/controlDict

", "r+");

 while(fitx2.getline(buffer, 256)) {

 if(i==70){

 strcpy(buffer, "Aref ");

 fwrite(buffer, 1, strlen(buffer), fp);

 fitx1.getline(buffer,16);

 fwrite(buffer, 1, strlen(buffer), fp);

 strcpy(buffer, ";");

 fwrite(buffer, 1, strlen(buffer), fp);

 strcpy(buffer, "\n");

 fwrite(buffer, 1, strlen(buffer), fp);

 }

 else{

 fwrite(buffer, 1, strlen(buffer), fp);

 strcpy(buffer, "\n");

 fwrite(buffer, 1, strlen(buffer), fp);

 }

 i++;

 }

 fitx1.close();

 fitx2.close();

 fclose(fp);

}

Page 56 of 63

edit_boundary.cc

#include <iostream>

#include <fstream>

#include <string.h>

using namespace std;

main (int argc, char ** argv){

 ifstream fitx;

 FILE *fp;

 char buffer[128];

 int i=0;

fitx.open("/home/nicky/OpenFOAM/Simulations/Aerofoil/constant/polyMesh

/boundary");

 if(!fitx)

 cerr << "error!";

fp=fopen("/home/nicky/OpenFOAM/Simulations/Aerofoil/constant/polyMesh/

boundary", "r+");

 while(fitx.getline(buffer, 256)) {

 switch(i) {

 case 21:

 strcpy(buffer, " type wall;");

 fwrite(buffer, 1, strlen(buffer), fp);

 strcpy(buffer, "\n");

 fwrite(buffer, 1, strlen(buffer), fp);

 break;

 case 39:

 strcpy(buffer, " type wall;");

 fwrite(buffer, 1, strlen(buffer), fp);

 strcpy(buffer, "\n");

 fwrite(buffer, 1, strlen(buffer), fp);

 break;

 case 45:

 strcpy(buffer, " type wall;");

 fwrite(buffer, 1, strlen(buffer), fp);

 strcpy(buffer, "\n");

 fwrite(buffer, 1, strlen(buffer), fp);

 break;

 case 51:

 strcpy(buffer, " type empty;");

 fwrite(buffer, 1, strlen(buffer), fp);

 strcpy(buffer, "\n");

 fwrite(buffer, 1, strlen(buffer), fp);

 break;

 case 57:

 strcpy(buffer, " type empty;");

 fwrite(buffer, 1, strlen(buffer), fp);

 strcpy(buffer, "\n");

 fwrite(buffer, 1, strlen(buffer), fp);

Page 57 of 63

 break;

 default:

 fwrite(buffer, 1, strlen(buffer), fp);

 strcpy(buffer, "\n");

 fwrite(buffer, 1, strlen(buffer), fp);

 }

 i++;

 }

 fitx.close();

 fclose(fp);

}

Page 58 of 63

Appendix B: Scripts

script

cd /home/nicky

./CommandLineToIges --AoA $1 --camber $2 --thickness $3 --outputPath

/home/nicky/Simulation/ --outputFilename aerofoil

rm /home/nicky/OpenFOAM/Simulations/Aerofoil/mesh.unv

rm -r /home/nicky/OpenFOAM/Simulations/Aerofoil/processor*

cd /opt/SALOME-MECA-2008.1-GPL/SALOME/SALOME3/V3_2_9NoDebug

./runSalome-debianForSalome -t -u mesh.py -k &

cd /home/nicky/Simulation

./wait_for_unv

sleep 3

cd /home/nicky/OpenFOAM/Simulations/Aerofoil

ideasUnvToFoam mesh.unv

transformPoints -scale "(0.001 0.001 0.001)"

cd /home/nicky/Simulation

./edit_boundary

./edit_controldict

sleep 2

cd /home/nicky/OpenFOAM/Simulations/Aerofoil

decomposePar

sleep 2

mpirun -np 4 simpleFoam -parallel > log

sleep 2

reconstructPar

cd /home/nicky/OpenFOAM/Simulations/Aerofoil/forceCoeffs/1

tail -1 forceCoeffs.dat | awk '{print $2}' > file.txt

tail -1 forceCoeffs.dat | awk '{print $3}' >> file.txt

mesh.py

This file is generated by SALOME automatically by dump python

functionality

import sys

import salome

salome.salome_init()

sys.path.insert(0, '/opt/SALOME-MECA-2008.1-

GPL/SALOME/SALOME3/V3_2_9NoDebug')

import mesh_GEOM

mesh_GEOM.RebuildData(salome.myStudy)

import mesh_SMESH

mesh_SMESH.RebuildData(salome.myStudy)

if salome.sg.hasDesktop():

 salome.sg.updateObjBrowser(1)

Page 59 of 63

mesh_GEOM.py

This file is generated by SALOME automatically by dump python

functionality

of GEOM component

import geompy

import math

def RebuildData(theStudy):

 geompy.init_geom(theStudy)

 global Face_5, Edge_20, Edge_2, Group_1, Edge_19, Face_7,

Edge_18, Face_1, Edge_9, Edge_1, Edge_15, Vertex_3, Edge_8, Edge_22,

Edge_14, Edge_21, Vertex_4, Edge_7, Face_2, Edge_13, Face_4, Vertex_1,

Extrusion_2, Edge_6, Face_6, Edge_25, Edge_12, Cut_1, Edge_24, Face_8,

Vertex_2, Edge_5, Edge_23, Edge_11, Quadrangle_Face_1, Edge_17,

Edge_4, Edge_16, Extrusion_1, aerofoil_igs_1, Edge_3, Face_3,

Vector_1, Edge_10

 aerofoil_igs_1 =

geompy.Import("/home/nicky/Simulation/aerofoil.igs", "IGES")

 Vertex_1 = geompy.MakeVertex(-500, 500, 0)

 Vertex_2 = geompy.MakeVertex(-500, -500, 0)

 Vertex_3 = geompy.MakeVertex(1500, -500, 0)

 Vertex_4 = geompy.MakeVertex(1500, 500, 0)

 Vector_1 = geompy.MakeVectorDXDYDZ(0, 0, 1)

 Face_1 = geompy.MakeFaceWires([aerofoil_igs_1], 1)

 Quadrangle_Face_1 = geompy.MakeQuad4Vertices(Vertex_1, Vertex_2,

Vertex_3, Vertex_4)

 Extrusion_1 = geompy.MakePrismVecH(Quadrangle_Face_1, Vector_1,

5)

 Extrusion_2 = geompy.MakePrismVecH(Face_1, Vector_1, 5)

 Cut_1 = geompy.MakeCut(Extrusion_1, Extrusion_2)

 [Face_2,Face_3,Face_4,Face_5,Face_6,Face_7,Face_8] =

geompy.SubShapeAllSorted(Cut_1, geompy.ShapeType["FACE"])

 [Edge_1,Edge_2,Edge_3,Edge_4,Edge_5,Edge_6,Edge_7,Edge_8,Edge_9,

Edge_10,Edge_11,Edge_12,Edge_13,Edge_14,Edge_15] =

geompy.SubShapeAllSorted(Cut_1, geompy.ShapeType["EDGE"])

 listSubShapeIDs = geompy.SubShapeAllIDs(Cut_1,

geompy.ShapeType["EDGE"])

 None

 [Edge_16,Edge_17,Edge_18,Edge_19,Edge_20] =

geompy.SubShapeAllSorted(Face_5, geompy.ShapeType["EDGE"])

 Cut_1 = geompy.GetMainShape(Face_5)

 Cut_1 = geompy.GetMainShape(Face_5)

 None

 [Edge_21,Edge_22,Edge_23,Edge_24,Edge_25] =

geompy.SubShapeAllSorted(Face_6, geompy.ShapeType["EDGE"])

 Cut_1 = geompy.GetMainShape(Face_6)

 Cut_1 = geompy.GetMainShape(Face_6)

 None

 Face_5 = geompy.GetMainShape(Edge_17)

 None

 Face_6 = geompy.GetMainShape(Edge_22)

 area = geompy.BasicProperties(Face_3)

 area2 = area[1]/1000000

 f = open('/home/nicky/Simulation/workfile','w')

 s = str(area2)

 f.write(s)

 f.close()

 Group_1 = geompy.CreateGroup(Cut_1, geompy.ShapeType["EDGE"])

 geompy.UnionIDs(Group_1, [6, 9, 16, 23, 44])

Page 60 of 63

 Cut_1 = geompy.GetMainShape(Group_1)

 Cut_1 = geompy.GetMainShape(Group_1)

 geomObj_1 = geompy.GetSubShape(Cut_1, [6])

 geomObj_2 = geompy.GetSubShape(Cut_1, [9])

 geomObj_3 = geompy.GetSubShape(Cut_1, [16])

 geomObj_4 = geompy.GetSubShape(Cut_1, [23])

 geomObj_5 = geompy.GetSubShape(Cut_1, [44])

 geompy.addToStudy(aerofoil_igs_1, "aerofoil.igs_1")

 geompy.addToStudy(Vertex_1, "Vertex_1")

 geompy.addToStudy(Vertex_2, "Vertex_2")

 geompy.addToStudy(Vertex_3, "Vertex_3")

 geompy.addToStudy(Vertex_4, "Vertex_4")

 geompy.addToStudy(Vector_1, "Vector_1")

 geompy.addToStudy(Face_1, "Face_1")

 geompy.addToStudy(Quadrangle_Face_1, "Quadrangle Face_1")

 geompy.addToStudy(Extrusion_1, "Extrusion_1")

 geompy.addToStudy(Extrusion_2, "Extrusion_2")

 geompy.addToStudy(Cut_1, "Cut_1")

 geompy.addToStudyInFather(Cut_1, Face_2, "Face_2")

 geompy.addToStudyInFather(Cut_1, Face_3, "Face_3")

 geompy.addToStudyInFather(Cut_1, Face_4, "Face_4")

 geompy.addToStudyInFather(Cut_1, Face_5, "Face_5")

 geompy.addToStudyInFather(Cut_1, Face_6, "Face_6")

 geompy.addToStudyInFather(Cut_1, Face_7, "Face_7")

 geompy.addToStudyInFather(Cut_1, Face_8, "Face_8")

 geompy.addToStudyInFather(Cut_1, Edge_1, "Edge_1")

 geompy.addToStudyInFather(Cut_1, Edge_2, "Edge_2")

 geompy.addToStudyInFather(Cut_1, Edge_3, "Edge_3")

 geompy.addToStudyInFather(Cut_1, Edge_4, "Edge_4")

 geompy.addToStudyInFather(Cut_1, Edge_5, "Edge_5")

 geompy.addToStudyInFather(Cut_1, Edge_6, "Edge_6")

 geompy.addToStudyInFather(Cut_1, Edge_7, "Edge_7")

 geompy.addToStudyInFather(Cut_1, Edge_8, "Edge_8")

 geompy.addToStudyInFather(Cut_1, Edge_9, "Edge_9")

 geompy.addToStudyInFather(Cut_1, Edge_10, "Edge_10")

 geompy.addToStudyInFather(Cut_1, Edge_11, "Edge_11")

 geompy.addToStudyInFather(Cut_1, Edge_12, "Edge_12")

 geompy.addToStudyInFather(Cut_1, Edge_13, "Edge_13")

 geompy.addToStudyInFather(Cut_1, Edge_14, "Edge_14")

 geompy.addToStudyInFather(Cut_1, Edge_15, "Edge_15")

 geompy.addToStudyInFather(Face_5, Edge_16, "Edge_16")

 geompy.addToStudyInFather(Face_5, Edge_17, "Edge_17")

 geompy.addToStudyInFather(Face_5, Edge_18, "Edge_18")

 geompy.addToStudyInFather(Face_5, Edge_19, "Edge_19")

 geompy.addToStudyInFather(Face_5, Edge_20, "Edge_20")

 geompy.addToStudyInFather(Face_6, Edge_21, "Edge_21")

 geompy.addToStudyInFather(Face_6, Edge_22, "Edge_22")

 geompy.addToStudyInFather(Face_6, Edge_23, "Edge_23")

 geompy.addToStudyInFather(Face_6, Edge_24, "Edge_24")

 geompy.addToStudyInFather(Face_6, Edge_25, "Edge_25")

 geompy.addToStudyInFather(Cut_1, Group_1, "Group_1")

 pass

Page 61 of 63

mesh_SMESH.py

This file is generated by SALOME automatically by dump python

functionality of SMESH component

import salome, SMESH

import smesh

import GEOM dump file ##

import string, os, sys, re

sys.path.insert(0, os.path.dirname(__file__))

exec("from "+re.sub("SMESH$","GEOM",__name__)+" import *")

def RebuildData(theStudy):

 aFilterManager = smesh.smesh.CreateFilterManager()

 smesh.smesh.SetCurrentStudy(theStudy)

 import StdMeshers

 pattern = smesh.GetPattern()

 Mesh_1 = smesh.Mesh(Cut_1)

 Regular_1D = Mesh_1.Segment()

 Average_length_1 = Regular_1D.LocalLength(15)

 Quadrangle_2D = Mesh_1.Quadrangle()

 Prism_3D = Mesh_1.Prism()

 Nb_Segments_1 = smesh.smesh.CreateHypothesis('NumberOfSegments',

'libStdMeshersEngine.so')

 Nb_Segments_1.SetNumberOfSegments(1)

 Nb_Segments_1.SetDistrType(0)

 SubMesh_1 = Mesh_1.GetSubMesh(Group_1, 'SubMesh_1')

 status = Mesh_1.AddHypothesis(Regular_1D,Group_1)

 status = Mesh_1.AddHypothesis(Nb_Segments_1,Group_1)

 MEFISTO_2D = Mesh_1.Triangle(geom=Face_5)

 SubMesh_2 = MEFISTO_2D.GetSubMesh()

 Length_From_Edges_2D_Hyp_for_Triangulator__1 =

MEFISTO_2D.LengthFromEdges()

 Projection_2D = Mesh_1.Projection2D(geom=Face_6)

 SubMesh_3 = Projection_2D.GetSubMesh()

 Source_Face_1 =

Projection_2D.SourceFace(Face_5,None,None,None,None,None)

 Average_length_2 = smesh.smesh.CreateHypothesis('LocalLength',

'libStdMeshersEngine.so')

 Average_length_2.SetLength(3)

 SubMesh_4 = Mesh_1.GetSubMesh(Edge_17, 'SubMesh_4')

 status = Mesh_1.AddHypothesis(Regular_1D,Edge_17)

 status = Mesh_1.AddHypothesis(Average_length_2,Edge_17)

 Projection_1D = Mesh_1.Projection1D(geom=Edge_22)

 SubMesh_5 = Projection_1D.GetSubMesh()

 Source_Edge_1 = Projection_1D.SourceEdge(Edge_17,None,None,None)

 isDone = Mesh_1.Compute()

 Face_3_1 = Mesh_1.Group(Face_3)

 Face_2_1 = Mesh_1.Group(Face_2)

 Face_8_1 = Mesh_1.Group(Face_8)

 Face_7_1 = Mesh_1.Group(Face_7)

 Face_4_1 = Mesh_1.Group(Face_4)

 Face_6_1 = Mesh_1.Group(Face_6)

 Face_5_1 = Mesh_1.Group(Face_5)

 Mesh_1.ExportUNV('/opt/OpenFOAM/Simulations/Aerofoil/mesh.unv'

)

Page 62 of 63

 ## set object names

 isGUIMode = 1

 if isGUIMode and salome.sg.hasDesktop():

 smesh.SetName(Mesh_1.GetMesh(), 'Mesh_1')

 smesh.SetName(Regular_1D.GetAlgorithm(), 'Regular_1D')

 smesh.SetName(Average_length_1, 'Average length_1')

 smesh.SetName(Quadrangle_2D.GetAlgorithm(),

'Quadrangle_2D')

 smesh.SetName(Prism_3D.GetAlgorithm(), 'Prism_3D')

 smesh.SetName(Nb_Segments_1, 'Nb. Segments_1')

 smesh.SetName(SubMesh_1, 'SubMesh_1')

 smesh.SetName(MEFISTO_2D.GetAlgorithm(), 'MEFISTO_2D')

 smesh.SetName(SubMesh_2, 'SubMesh_2')

 smesh.SetName(Length_From_Edges_2D_Hyp_for_Triangulator__1,

'Length From Edges (2D Hyp. for Triangulator)_1')

 smesh.SetName(Projection_2D.GetAlgorithm(),

'Projection_2D')

 smesh.SetName(SubMesh_3, 'SubMesh_3')

 smesh.SetName(Source_Face_1, 'Source Face_1')

 smesh.SetName(Average_length_2, 'Average length_2')

 smesh.SetName(SubMesh_4, 'SubMesh_4')

 smesh.SetName(Projection_1D.GetAlgorithm(),

'Projection_1D')

 smesh.SetName(SubMesh_5, 'SubMesh_5')

 smesh.SetName(Source_Edge_1, 'Source Edge_1')

 smesh.SetName(Face_3_1, 'Face_3')

 smesh.SetName(Face_2_1, 'Face_2')

 smesh.SetName(Face_8_1, 'Face_8')

 smesh.SetName(Face_7_1, 'Face_7')

 smesh.SetName(Face_4_1, 'Face_4')

 smesh.SetName(Face_6_1, 'Face_6')

 smesh.SetName(Face_5_1, 'Face_5')

 salome.sg.updateObjBrowser(0)

 pass

Page 63 of 63

Appendix C: Nimrod schedule file

schedule.shd

parameter aoa float range from 0 to 4

parameter camber float range from 0 to 12

parameter thickness float range from 1.5 to 14

constraint camber>0

task main

execute ./script $aoa $camber $thickness

execute ./lift_drag > result

copy result output.$jobname

endtask

method simplex

starts 1

tolerance 0.01

endstarts

endmethod

