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Resumen  

Desde la primera exfoliación del grafeno monocapa en 2004, la investigación sobre este material 

2D ha aumentado exponencialmente. El grafeno, una capa bidimensional de átomos de carbono 

dispuestos en una red hexagonal que se comporta claramente diferente al resto de materiales 

3D. El grafeno no sólo tiene propiedades mecánicas únicas, este material también tiene 

extraordinarias propiedades eléctricas y ópticas, debido principalmente a su sistema de bandas 

lineal y sin separación entre ellas (cero “bandgap”). Además, este material permite una fuerte 

interacción luz-materia, que puede ser explotada para la detección de luz o modulación. 

Asimismo, debido a esta fuerte interacción, se ha observado que una vez que la intensidad 

óptica alcanza un cierto umbral, aparece una saturación en la absorción de luz. Este fenómeno 

puede ser explotado para la implementación de láseres de bloqueo de modo, una técnica 

utilizada para producir pulsos de luz coherente y extremadamente cortos. 

El grafeno ya se ha utilizado con éxito para la implementación de láseres con bloqueo de modos 

en fibra, sin embargo, también se puede utilizar para la fabricación de láseres a escala de chip 

con pulsos de femtosegundos, mediante su deposición en guías integradas de silicio. Los 

investigadores de UGent (en estrecha colaboración con Imec) han estado trabajando en la 

integración del grafeno en estructuras fotónicas basasdas en Silicio sobre aislante (“Silicon-on-

Insulator”). Este grupo de investigación ya ha demostrado experimentalmente una absorción 

saturable eléctricamente sintonizable, que puede ser utilizada para realizar láseres con bloqueo 

de modos espontáneo integrados y con una duración de pulso eléctricamente sintonizable, 

haciendo que el sueño de un láser de femtosegundos a escala de chip casi una realidad. 

El objetivo de esta tesis es demostrar el mismo fenómeno de absorción saturable eléctricamente 

sintonizable, pero sobre guías de ondas de nitruro de silicio, que evita el efecto de absorción de 

dos fotones en las longitudes de onda de telecomunicaciones debido a su mayor “bandgap”. 

Este efecto es fuerte en las guías de onda de silicio, y limita la cantidad de potencia que puede 

propagarse en los enlaces ópticos. 

 

Resum 

Des de la primera exfoliació del grafè monocapa el 2004, la investigació sobre aquest material 

2D ha augmentat exponencialment. El grafè, una capa bidimensional d'àtoms de carboni 

disposats en una xarxa hexagonal que es comporta clarament diferent a la resta de materials 

3D. El grafè no només té propietats mecàniques úniques, aquest material també té 

extraordinàries propietats elèctriques i òptiques, a causa principalment del seu sistema de 

bandes lineal i sense separació entre elles (zero "bandgap"). A més, aquest material permet una 

forta interacció llum-matèria, que pot ser explotada per a la detecció de llum o modulació. Així 

mateix, a causa d'aquesta forta interacció, s'ha observat que una vegada que la intensitat òptica 

arriba a un cert llindar, apareix una saturació en l'absorció de llum. Aquest fenomen pot ser 

explotat per a la implementació de làsers de bloqueig de modes, una tècnica utilitzada per 

produir polsos de llum coherent i extremadament curts. 

El grafè ja s'ha utilitzat amb èxit per a la implementació de làsers amb bloqueig de modes en 

fibra, però, també es pot utilitzar per a la fabricació de làsers a escala de xip amb polsos de 

femtosegons, mitjançant la seva deposició en guies integrades de silici. Els investigadors de 

UGent (en estreta col·laboració amb Imec) han estat treballant en la integració del grafè en 



 
 

estructures fotòniques basasdas en Silici sobre aïllant ("Silicon-on-Insulator"). Aquest grup de 

recerca ja ha demostrat experimentalment una absorció saturable elèctricament sintonitzable, 

que pot ser utilitzada per realitzar làsers amb bloqueig de modes espontani integrats i amb una 

durada de pols elèctricament sintonitzable, fent que el somni d'un làser de femtosegons a escala 

de xip siga quasi una realitat. 

L'objectiu d'aquesta tesi és demostrar el mateix fenomen d'absorció saturable elèctricament 

sintonitzable, però sobre guies d'ones de nitrur de silici, que evita l'efecte d'absorció de dos 

fotons en les longituds d'ona de telecomunicacions a causa del seu major "bandgap". Aquest 

efecte és fort en les guies d'ona de silici, i limita la quantitat de potència que pot propagar-se 

en els enllaços òptics.

 

Abstract 

Since the first successful exfoliation of monolayer graphene in 2004, research interest in this 2D 

material has surged exponentially. Graphene, a two dimensional layer of carbon atoms arranged 

in a hexagonal lattice, behaves distinctly different from regular 3D materials. Not only does 

graphene have unseen mechanical properties, the material also has extraordinary electrical and 

optical properties, mainly originating from its linear and gapless band structure. Moreover, this 

material allows for a strong light-matter interaction, which can be exploited for light detection 

or modulation. Furthermore, due to this strong interaction, it has been observed that once 

optical intensity reaches a certain threshold saturable absorption takes place. This phenomenon 

can be exploited for mode locking lasers, a technique used to produce extremely short and 

coherent light pulses. 

 Graphene has already been successfully used for mode locking fiber lasers, however it can also 

be used to make chip scale femtosecond lasers by depositing it on integrated silicon waveguides. 

Researchers at UGent (in close cooperation with Imec) have been working on the integration of 

graphene with photonic structures on a Silicon-on-Insulator waveguides and they have 

experimentally demonstrated electrically tunable saturable absorption, which can be used for 

realizing integrated spontaneously mode locked lasers with an electrically tunable pulse 

duration, making the dream of a ultrashort chip scale femtosecond laser almost a reality. 

The objective of this thesis is to demonstrate the same phenomenon, but on top of a Silicon 

Nitride waveguide instead of SOI, which avoids the two-photon absorption effect at telecom 

wavelengths due to its larger bandgap. This effect is strong in SOI waveguides, where it limits 

the amount of power than can propagate in the photonic wires.
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1. Introduction 
 

1.1. Mode-locked Lasers 

Ultrashort pulsed lasers, producing pulses with pulse lengths on the order of femtoseconds, 

have become more and more important in the current research community [1]. Optical 

frequencies [2, 3], atomic and molecular spectra, lengths, distances [4], and displacements [5] 

are commonly measured with this kind of laser. Furthermore, they are nowadays also used to 

achieve in-vivo 3D imaging of the human retina, epidermis, and blood vessels [10]. Optical 

frequency combs produced by femtosecond lasers are also used to probe and manipulate the 

quantum state of gaseous atoms and molecules [11], and in all forms of condensed matter [12]. 

They are also used in astrophysics equipment, for example, to calibrate spectrometers with an 

incredible accuracy that allows for scientists to measure Doppler shifts of stellar objects with an 

error of about 1 cm/s [13, 14, 15]. Moreover, in the near future, fs-lasers could be used for 

timing synchronization in large particle accelerators [16]. The most common way to achieve a 

fs-laser is using passively mode-locked lasers with saturable absorbers [6, 7, 8, 9]. 

Stable ultrafast optical pulses are obtained from mode locked lasers. The simplest form is a pair 

of mirrors that only allows a half-integer number of wavelengths in an inside standing wave. The 

wave (or mode) number is the number of wavelengths in a specific standing wave. The gain 

crystal of the laser affects the number of allowed modes in the cavity. A certain number of waves 

allowed by the gain crystal and the cavity length can coexist without mode-locking and a 

constant out intensity. It is because their relative phase oscillates, but if the relative phase is 

fixed a mode-locked has been reached. It means that all these waves interfere constructively at 

regular intervals causing extremely short and high intensity pulses, while interferes destructively 

each other at the rest of time [53]. 

Furthermore, a mode locked laser can be made by putting a saturable absorber inside the cavity, 

allowing for absorption at low intensities. If the laser is not mode locked, the light fluctuates 

semi-randomly because of the constructively and destructively interferences between allowed 

waves. But if a saturable absorber is places into the cavity, the lower fluctuation will be absorbed 

at each round trip while high intensities pass through the saturable absorber with small loss. 

Due to this optical intensity dependence and the subsequently high intensity contrast, light 

begins to operate in the pulsed state.  

Figure 1 shows how a saturable absorber attenuates more the low intensities than higher ones, 

narrowing the pulses iteration by iteration.  The width of these pulses depends on the gain and 
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bandwidth of the material as well as to the response time of the saturable absorber. As more 

modes are allowed inside the cavity, narrower pulses could be achieved. In the same way, as a 

faster saturable absorber is used, shorten pulses are reached.  

 
Figure 1. How saturable absorber affects to a pulse shape [53]. 

 

1.2. Saturable absorber 

A saturable absorber can be described as a device that has low losses for high light intensity and 

higher losses for lower intensities. It can be thought as a material of which the absorption 

saturates at certain intensity causing a decrease in the losses. 

The firsts saturable absorbers were made in 70s and 80s, mode-locking was achieved without 

Q-switching instabilities integrating them in dye lasers. This method was first demonstrated by 

Shank and Ippen in 1974 [18], who obtained a pulse width of 0.5 – 1.0 ps by putting a couple of 

saturable absorbers and a gain medium of a single-free dye stream in the centre of the laser 

resonator [18]. Later, in 1976 Rudlock and Bradley got pulses of 0.3 ps using a similar approach, 

but only 5 year later Fork et al. [19] achieved the first sub-100 fs-laser. To get these ultra-short 

pulses, they implemented a mode locked dye laser using the interaction of two synchronized 

counter propagating pulses together with a thin saturable absorber. Despite all these reports, 

the technology used so far was not suitable to implement the best locked lasers because dye 

lasers have some important deficiencies, for example, these kind of lasers have a very short 

lifetime because of their high cross section gain [20]. 

As we can deduct from all this progress, the design of a mode locked laser, and specifically an 

artificial saturable absorber, caused a great interest in the scientific community. Thus, a new 

design was proposed in 1989 by Mark et al. [21] and Ippen et al. [22] in order to achieve shorter 

pulses. This new design was called additive pulse mode locking (APM) and makes use of the first 

artificial saturable absorber. An external cavity based on a single-mode fiber which is coupled to 

the laser cavity and has the same round trip. That way, the pulses from both cavities interfere 

at the coupling mirror such that they interfere constructively at the pulse centre and 
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destructively at the tails. In this manner, we can get narrower pulses. This effect is caused by the 

nonlinear phase shift that occurs in single mode fiber which is induced by the Kerr effect. This 

phase shift is larger at the temporal pulse centre, compared to both tails. Despite some papers 

having reported this method making mode locked lasers [23-25], it is quite difficult to achieve 

the same round trip in both external and main cavities. But, not only a high accuracy in adjusting 

the cavity lengths is needed, they must be interferometrically stabilized, too. These 

requirements make this technique a difficult challenge to achieve. 

Later, in 1991, Spence et al. [26] improved the state-of-the-art artificial saturable absorbers with 

the invention of Kerr lens mode locking (KLM), used to generate pulses with a duration below of 

10 ps. To implement this method, a nonlinear self-focusing effect is generated on the laser beam 

by using an active medium with Kerr nonlinearity. This Kerr effect can be described as the 

refractive index dependence on the light intensity. This active medium will act as a lensing device 

with an intensity dependent focusing power because of the gradients generated across the 

transverse mode profile in the gain medium. Thus, the Kerr effect becomes more important for 

this method than for others. This technique can be done in two different ways: soft aperture 

KLM and hard aperture KLM. In the first one, the Kerr lens reduces the beam radius in the gain 

medium and gives a better spatial overlap between the pump beam and the pulses, providing 

greater effective gain for the short pulses. For hard aperture KLM, the beam radius is also 

reduced by the Kerr lens but at the opening of the aperture, causing a reduction of the optical 

losses of short pulses [20]. This method has been investigated extensively, see references [27-

36]. With KLM technique pulse widths of 5.4 femtoseconds has been achieved in a Ti:sapphire 

laser with no external cavity pulse compression [29]. Despite that we can get ps mode locked 

pulses with the APM technique, KLM is definitely more convenient because there is no cavity 

stabilization needed. Nevertheless, KLM has some huge disadvantages such as difficulty in 

getting the mode locking self-starting process or the accuracy needed in the cavity aligning close 

to its stability limit to have a stable pulse operation. This causes limitations in the cavity designs 

and becomes more critical the more average output power and more massive cavities there are 

[20]. 

Due to the increasing interest in saturable absorbers, another kind of device appeared as an 

alternative to KLM, the semiconductor saturable absorber mirrors (SESAMs). The first SESAMs 

were reported by Keller et al. [37] in 1992, implemented in a Nd:YLF laser. This device has some 

important advantages such as self-starting or pure continuous wave passive mode locking 

without presenting any Q-switched instabilities. This invention aroused the interest of the 

scientific community and many other new designs of SESAMs were developed.  
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The current SESAMs work as an intra-cavity saturable absorber and are based on a set of non-

absorbing semiconductor layers grown on a Bragg semiconductor mirror, with quantum wells or 

bulk absorber enclosed between layers. This design, which mixes semiconductor layers and 

Bragg mirror, provides a Fabry-Perot structure [20]. Although with previous saturable absorbers 

was not possible, with SESAMs it became possible to set the linear and nonlinear optical 

properties by taking advantage of the already developed semiconductor growth technology and 

bandgap engineering. With these mature technologies the researchers are able to control all 

parameters of the SESAM, such as the wavelength, saturation fluence recovery time, absorber 

lifetime, modulation depth or saturation intensity. This almost absolute control of all parameters 

allows the researchers to implement pure passively Q-switched lasers, achieving pulses duration 

from microseconds to nanoseconds, or mode locked pulsed lasers with pulse durations from 

picoseconds to femtoseconds [38]. Moreover, as the SESAMs are so compact, the insertion 

losses introduced are quite low. 

As a result, nowadays SESAMs are one of the most common devices to get mode locked pulses 

with an operational wavelength from 800 to 1550 nm and the best results have been reported 

with multi-quantum wells (MQWs) SESAMs, which are implemented with III-V group binary and 

ternary elements [39-43]. The common method used for growing the SESAM on the Bragg 

reflector can be either molecular beam epitaxy (MBE) or metal-organic vapour phase epitaxy 

(MOVPE) [39, 44-46]. The design of these devices has been developing during the last 20 years 

and, in order to improve the achievements in ultrashort pulses generation, many researches 

have reported in this area [38, 40-52]. 

Despite all their advantages, SESAMs have some handicaps.  The optical damage threshold is 

low, so if the output pulse repetition rate is increased to high levels, this device is easily damaged 

and therefore its functional life expectancy is reduced [53, 54]. Another weak point of the 

SESAMs is the dependency of the minimum output pulse width on the carrier relaxation time of 

the absorber, that fact limits the pulse width engineering [53]. The complexity and cost of 

fabrication of these devices is another important drawback. Moreover, in its fabrication the 

process of high-energy heavy-ion implantation is used, this can cause some imperfections when 

decreasing the recovery time to picosecond scale. Also, after fabrication, it is quite difficult to 

remove this device from the crystalline substrate on which it has been grown, which also causes 

difficulties. 

When designing and integrating fiber-based SESAMs it is highly important to be compatible with 

fiber optic lasers, but when a larger size or higher saturation intensity than common SESAMs is 
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desired, this compatibility can be achieved but the output can be unstable. Moreover, the fiber-

based SESAMs are polarization dependent, that is usually undesired [55], and the wavelength 

tunability depends on the resonant nonlinearity, so that the wavelength range of operation is 

limited to a few nanometres [39-41, 45, 56-58] and is not suitable for broadband tunable pulse 

generation [59, 60]. 

After these achievements, demand of these kind of devices increased and the development of 

better saturable absorbers with new materials that enhanced their properties became 

necessary, such as wider wavelength range, simplicity, a reduction of the fabrication cost or easy 

packaging, always with strong ultrafast optical nonlinearities [39].  

While these SESAMs were developed, a new group of carbon materials were discovered, they 

are broadly known as carbon nanotubes (CNTs). This new material is basically a 1-D cylindrical 

structure of about 1 µm length and from 0.6 to 2 nm of diameter. The properties of these 

materials allows for getting beyond most of the previous technology (e.g., SESAMs) 

disadvantages, they can be simultaneously introduced in fiber-based devices and also in a simple 

way.  

There are many different ways to generate CNTs, among we can find laser vaporization [61], 

metal-catalysed disproportionation of carbon monoxide [62], arc discharge [63] or gas-phase 

pyrolysis [64]. With all these processes it is possible to get mass production of CNTs, which 

reduces the fabrication cost of the material [65]. It is also possible to implement fiber-end 

method, embedding CNTs into fiber-based optical lasers [66]. This technique can be done by 

putting a thin film of this polymer between two ferrules [67-70] or by direct synthetization and 

depositing of CNTs [65, 71-72]. Depending on the kind of structure this technology can be 

divided in two different classes: single walled carbon nanotubes (SWCNTs) and multi-walled 

carbon nanotubes (MWCNTs). As the single walled type is based in only one single cylinder, it 

has more singular optical properties compared to multi-walled nanotubes [65]. 

Compared to the previous saturable absorbers based on semiconductors (SESAMs), the most 

important advantages that this new technology brought to the scientific community were an 

inherently fast saturable absorption [55, 72, 73] together with a fast recovery time, typically less 

than 1ps [65], making it ideal to generate ultrashort pulse mode locked lasers [55]. But another 

important advantage is broad wavelength range, which starts from near infrared up to UV [39, 

74, 75]. This phenomenon is due to the bandgap properties of CNTs, where each synthetized 

nanotube has a certain radius or symmetry and therefore a different absorption bandgap [65]. 

This bandgap is estimated as inversely proportional to its diameter. [39, 76]. 
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In this way, the light is absorbed by the CNTs whose bandgap matches with the incident light 

energy and, as there is a wide range of CNTs diameters, the absorption wavelength range can 

be wide too. In other words, the CNTs absorption is determined by the bandgap energy, which 

is also dependent on the diameter of the CNTs [77]. Trying to use this phenomenon, many 

researches have been done to achieve tunable mode-locked fiber lasers based on carbon 

nanotubes [60, 78-80]. 

But these saturable absorbers based on CNTs are not perfect, they have some drawbacks. For 

example, they have a wide wavelength range which is important for tunable applications, but 

this also leads to extra insertion losses due to the CNTs of different bandgap [77, 81]. The extra 

linear absorption caused by the unused CNTs causes some difficulties to reach mode locked 

operation state. Another weakness is that CNTs tend to stack, what causes some scattering at 

these points [81] and deteriorates the mode locked laser behaviour. Hence, a novel material 

which solves these shortcomings became needed.   

Aside from carbon nanotubes, another carbon allotrope is Graphene, which has been widely 

researched and used in many applications, among others as saturable absorbers for broadband 

ultrafast lasers. It is heavily expected that Graphene will replace CNTs, SESAMs or any other kind 

of the previous technology [17]. Graphene is basically a single layer of carbon atoms forming a 

2-D net with hexagonal pattern. Due to its configuration and the links between atoms, this novel 

material has many extraordinary properties, not only in photonics but also in optoelectronics, 

chemistry, material science, space or even in biology [17]. 

The term “graphene” was used for first time in 1987 by Mouras et al. to describe a single sheet 

of graphite as one of the constituents and the IUPAC (International Union of Pure and Applied 

Chemistry) commission later replaced the term “graphite layers” with “graphene”. But a high 

quality single layer of graphene could not be achieved until 2004 [82], by Andre Geim and Kostya 

Novoselov and with which they got the Nobel Prize in 2010 [53]. According to the current 

definition, graphene is a 2-D monolayer of carbon atoms, which is the basic building block of 

graphitic materials such as fullerene, carbon nanotubes, graphite, etc. [17] 

The photo-excited carrier dynamics, and thus the saturable absorption [83], in graphene is 

related to Pauli blocking as illustrated in [77]. As we can see in the literature, graphene offers 

many interesting and useful properties that make this material a useful saturable absorber [53, 

77, 84-92]. One of these properties is the linear dispersion of Dirac electrons, this means that an 

electron-hole pair always exist for any excitation energy. It is caused by its gapless condition and 

provides a broad absorption which can be useful for broadband pulsed generation [77, 93] and 
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so the saturable absorption becomes independent to the wavelength [90, 94, 95]. Another 

interesting property of graphene is its ultrafast carrier dynamics [77, 96-98] which makes it so 

convenient for ultra-short and pulse generation lasers with high repetition rate [53, 101, 102], 

together with a large absorption of incident light per layer [77, 99, 100]. All these extraordinary 

properties make graphene a material to be potentially used for passively mode locked [81, 86, 

90] and Q-switched lasers [103, 104] with a wide wavelength range.  

Compared with SESAMs or CNTs, graphene has the advantage of not requiring bandgap 

engineering to enhance the saturable absorber behaviour [77]. Also, this material has a broader 

wavelength range than SESAMs or CNTs.  

Hence, graphene combines interesting characteristics related to saturation intensity, 

modulation depth, recovery time, saturation power and optical damage threshold and 

saturation fluence. All these unique properties required for a good saturable absorber makes 

that graphene will likely overthrow SESAMs and CNTs, overcoming their shortcomings [77]. 

Many ways to produce graphene have been successfully developed, from simple processes for 

small scale samples to complex methods for large scale production. The first process introduced 

was micromechanical exfoliation of graphite [105], which achieves the purest graphene with 

lowest defects. Nevertheless, it is impossible to use this method to produce large scale samples. 

But more complex methods have been developed to provide large areas, providing a firm supply 

of this material, such as Chemical Vapour Deposition (CVD) [106-109] or liquid phase exfoliation 

[110-112].  Moreover, graphene can be also produced by chemical synthesis [113, 114] and, as 

for CNTs, it is possible to integrate graphene in optical fiber systems making use of end-type 

methods. 

1.3.  Materials 

For the implementation of a saturable absorber, the material used on it should be possible to 

be integrated in a common CMOS chip, in order to safe as much space as possible, as well as 

make profit of this mature technology and reduce the costs, too. The main material used in 

CMOS technology is Silicon. This material has been already used for saturable absorption in 

graphene [107]. But in order to achieve a broaden wavelength range, the chosen material in this 

Thesis for the waveguides has been Silicon Nitride, which can also be integrated in a chip and 

avoids the Two Photon Absorption effect in telecom wavelengths, due to its larger bandgap. 

Due to its suitable properties above mentioned, the material chosen on this Thesis to achieve 

the saturable absorption effect has been graphene. 
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1.3.1. Silicon Nitride 

Nonlinear silicon photonics is drawing a lot of interest due to its potential applications in 

telecommunications and spectroscopy. The nonlinear parameter of silicon has been reported to 

be up to five orders of magnitude higher than for standard optic fibers, because of its intrinsically 

high nonlinear index and the high confinement offered in silicon-on-insulator platform. 

However, the telecom band lies below half of the bandgap of silicon, thus the two photon 

absorption (TPA) takes relatively high values. Also, as the recombination time in silicon is 

relatively slow, about 1 nanosecond, the subsequent free carrier absorption (FCA) disturbs the 

measurements of most nonlinear effects.  

Therefore, it is interesting to find the solution to overcome these drawbacks. The current ways 

taken in account are testing new materials compatible with common silicon platforms, taking 

out the carriers electrically and by using short pulses as the free carrier absorption becomes too 

low to have any influence.  

It is possible to make use of hydrogenated amorphous silicon waveguides, of which measured 

bandgap, is 1.6 eV, whereas for crystalline silicon it is 1.12 eV. Such bandgap matches with a 

wavelength of 1550 nm for the two-photon-absorption threshold and for that reason parametric 

amplification up to 26.5 dB at telecom wavelengths has been demonstrated [115]. But at such 

high optical powers the material degrades due to the Staebler-Wronski effect or, in other words, 

the recombination of carriers.    

As it is said before, there are known ways to overcome these problems. In order to reduce the 

TPA in these waveguides it is possible to increase the bandgap by doping the amorphous silicon 

with carbon. Another way could be to use another material with larger bandgaps such as III-V 

semiconductors, which can also be integrated in common silicon platforms (e.g. through 

bonding) and have similar high third order nonlinearities. Moreover, it is possible to overcome 

FCA by using short pulses [115]. Supercontinuum generation through soliton fission at telecom 

wavelengths also has been demonstrated. However, as FCA deteriorates the performance much 

more than TPA, it can be demonstrated that the continuous wave nonlinear effects could be 

detected if carriers are removed by integrating a reverse biased PIN junction.  

Unlike other research that has been done in silicon, in this thesis these problems will be avoided 

by making use of Silicon Nitride, which has a bandgap of 5 eV. In that way we can avoid FCA as 

well as TPA, getting a wider working wavelength range than for (amorphous) silicon or doped-

silicon.  
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1.3.2. Graphene  

Graphene has been considered as an extraordinary material because of both uniquely linear and 

nonlinear optical properties, as well as having outstanding thermal, mechanical and electronic 

properties. Also, due to its gapless band structure graphene has been considered a favourable 

material for broadband optoelectronic applications, such as saturable absorber with ultrafast 

recovery time. Unlike any other material on earth, graphene has a zero bandgap, which allows 

electrons to migrate from valence to unoccupied conduction band (and vice-versa) freely. It is 

even more promising since it is possible to tune its optical transparency by shifting the Fermi 

level, achieving a tunable absorption together with a low insertion losses. In fact, a graphene 

based electro absorption modulator with low insertion losses has been experimentally 

demonstrated in [125], developed on SOI at the typical telecom wavelength of 1550 nm, getting 

similar properties as silicon Mach-Zehnder interferometer modulators. But not only for 

modulators is graphene useful, this material can be also used for ultrafast pumped lasers such 

as in Ref. [116]. Another great advantage is its compatibility with current CMOS technology, 

which leads to cheap designs and fabrication. 

1.4. The Aim 

Saturable absorption of graphene integrated on SOI has been demonstrated [119], but not on 

Silicon Nitride. The aim of this thesis is to demonstrate the electrical tunability of graphene 

absorption in SiN, which avoids the drawback of TPA on silicon. This electrical tunability will 

allow a more control in the saturable absorption properties. If demonstrated, this kind of 

saturable absorbers would lead to more broadband devices in many applications, such as 

modulators or pulsed laser as mentioned above.  

2. General Background  

2.1. Band Level System 

To understand how saturable absorption works on semiconductors, it is first needed to 

understand its physics behaviour, specifically that according to quantum physics. This law says 

that electrons only can stay in particular states of material with certain energies. In most systems 

there are so many states that it can be approached to a continuum of states of energies allowed. 

Unlike in some conditions or materials they can touch each other, the difference between these 

energy levels where electrons cannot be present are called bandgaps [120]. Moreover, most of 

these bandgaps are so large that any electron would go to that levels, they just would go outside 

the entirely material. Thus, in practically all cases, only the two lowest levels will be taken in 
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account. The lowest energy band is called “valence band” and the second higher level is called 

“conduction band”. The space between these bands represents the set of momentums that 

correspond to the primitive unit cell for crystal in real space by Fourier Transform. The origin of 

this gap has an associated momentum usually called “Γ” and that point is also called “gamma 

point” [120]. On the other hand, the point with highest energy in the valence band is called “K” 

point and its associated momentum is usually named as “K”. The energy related to K point is 

also called “Dirac point”, but unless it is broadly known with this name, it is not the stander 

notation. Moreover, the Brillouin zone is defined as the inverse of the distance of the crystal, 

while the gap is defined by how strong the perturbation is of the lattice on the electrons. 

As its name indicate, these bands are closely related with the material conductivity. In this way 

electrons are called as fermions and the Pauli exclusion principle only allow one electron in 

exactly the same quantic state or, in order words, the same point of band level. The fermion (or 

electron) of the highest level is in at the highest “Fermi level”, or also named “Fermi energy”. 

This level is where there is 50% probability of being occupied by the highest electron, but when 

this thesis talks about Fermi level refers to highest Fermi level. As more fermions are added to 

the system, the Fermi level increases more and more. But once the Fermi level reaches the 

conduction band and is at the K level (if there are not any overlap between bands), there are 

not empty states in valence band where an electron can fit, unless it reaches the next band, 

which is at too much energy compared to single electron energy to break that bandgap. If it 

happens, means that there is no place for another electron and thus any current can flow 

through the material, even if a voltage V is applied. In this cases, this material is called “insulator” 

or that it is in a “insulating phase” [120].  

On the other hand, if the Fermi level is only near but above the conduction band, there are many 

places where the free electrons can be carried by applying certain voltage and thus a current 

flow can be achieved. If the material gets this state is said that it has reached an “electron 

conducting state” [53]. However, if the Fermi level is below the conduction band and is near the 

valence band, if an electron is excited it only has a few places to go, compared to if the Fermi 

level were near the conduction band. Thus, a “hole” (or lack of electron) appeared, which can 

be filled by any other electron, which in turn provoke another hole where it was. In 

consequence, if a certain voltage is properly applied, a current of holes can flow through the 

material. As these holes are actually an absence of electrons, they carry a positive charge and a 

material in this state is said that is in a “hole conduction phase” [53]. Also, as far the Fermi level 

is from the conducting band, higher conductivity the material has, because more holes there are 

to conduct.  
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Doing an analogy with the traffic on a highway, if the Fermi level is at the K point it means that 

all electrons are stuck in their own states because there is any place to move, as traffic jam 

where all the cars are in the same position because there is not any space to move, and therefore 

the material becomes an insulator (Figure 2.B). But if the Fermi level is in the conduction band, 

the material is in an electro-conducting phase and the electrons have many states where they 

can move if gets perturbed, this is kind of the same as an empty highway, where the cars con 

move with no retentions. (Figure 2.A) Finally, if the Fermi level is below the K point, near the 

valence band, electrons have a few spaces to move because the different states are almost full. 

In this way, holes (or empty spaces) can travel through the material (which is in a hole-

conducting phase) under an applied field. It is similar as a busy highway were there are some 

spaces that are filled by cars, and it seem like these empty spaces are moving through the 

highway (Figure 2.C). The cars are moving quite slowly, but this empty space moves quickly in 

the opposite direction.  

 
Figure 2. Different conduction phases as analogy of highway traffic. A) The Fermi level is above the K point 

in the conduction band. There are many states to occupy. B) The Fermi level is just at the K point. All states 

in valence band are full. C) The Fermi level is under the K point in the valence band. There are few states 

to be occupied and these holes moves through the material [121]. 

 

Also, if the valence and conducting bands overlaps (as in most of metals), there are many open 

spaces all the time where electrons can move, so this kind of material are conductors, too.  Also, 
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if the bandgap is relatively small and the Fermi level is between both levels, the material is 

semiconductor. This means that there are states above the Fermi level which can be occupied, 

switching thee material from insulating to conducting phase. If the bandgap is so large that the 

Fermi level often goes from the valence to the conducting band, assuming no charge-carrying 

electrons removed, this material is an insulator (see Figure 3). 

 
Figure 3. Band level system in different kind of material [121]. 

 

2.2. Saturable Absorption  

The complicated process and behaviour of saturable absorption can be described as a two-level 

system. It is considered two levels (𝐸0 and 𝐸1) with a gap between them of ΔE and infinite 

possible states for electrons in each level. But it is not taken in account the different electron 

momentums, just the kind of levels. In other words, there are two levels at two different specific 

energies, the lowest one (𝐸0) is at the valence band and the highest (𝐸1) is at the conduction 

band, and they have a separation of ΔE.  

Considering the system starts with the Fermi level at 𝐸0, if a photon with an energy of ΔE (which 

is related with Planck’s constant and wavelength as 𝐸 =
ℎ𝑐

𝜆
) hits the system, this photon can be 

absorbed with a certain probability. This phenomenon can cause that an electron can leave 

ground its state from 𝐸0 to 𝐸1 level. The photon momentum is added to this electron, but since 

it is negligible compared to the electron momentum, it can be assumed that the electron 

momentum will be the same. Therefore, the electron will occupy the analogous position in a 

higher level with 𝐸1 energy. This phenomenon is called absorption. If the photon energy is the 

same or larger as the bandgap energy (ΔE), there is a probability of the absorption phenomenon 

to happen and it is higher as more electrons are in the valence band. However, if the photon 

energy does not match to bandgap energy, absorption is impossible to occur. 
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If considering the Fermi level is at the conduction band level, all the electrons will start in the 

conduction band (see Figure 4.A). Although this consideration is just to model the saturable 

absorption effect, it must be said that it is physically impossible. There are usually many more 

electrons in the valence band and this state will be thermodynamically unstable, the electron 

will fell to 𝐸0 due to different processes such as fluorescence or electron-electron scattering. In 

this case, if a photon with ΔE energy hits the material, there is some probability that this photon 

causes an electron fell to ground level with a negligible momentum change, provoking in turn 

an emission of a second photon with exactly the same energy and momentum as the first one 

[53]. This process is known as stimulated emission (see Figure 4.B) and it is only possible when 

an electron is in the conduction band, and is more likely to occur as more electron are in this 

conduction band.  

 
Figure 4. A) Absorption. B) Stimulated emission. C) Saturable absorption. [53] 

 

But it is possible to reach a stable state between absorption and stimulated emission, where the 

same number of electrons are reached in both band levels. It is achieved when the rate of 

excited electrons due to absorption equal the amount of electrons that fell from 𝐸1 to  𝐸0 

because of stimulated emission and some other process such as electron-electron and electron-

photon scattering (see Figure 4.C).  This steady-state is named as saturable absorption and is the 

main cause of the higher order terms of the intensity absorption. This state depends on some 

inherit properties of the material and band level system, such as the tame it takes to an electron 

to decay from conduction band to ground level without stimulated emission, the relaxation time 

of the absorber (time takes the probability of stimulated emission in to decrease to zero) or 

saturation energy (energy or number of photons needed to decrease the probability of 

absorption to 1/e). 

For saturable absorbers, the pulse duration is much longer than the relaxation time of the 

absorber, so it makes sense that some percentage of the incident light is instantaneously 

absorbed by the saturable absorber. Therefore, according to the equations development in [53] 

a similar equation to Eq. 3 is given, but instead of in space, in time.  
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2.3. Graphene Band System 

As it has been previously mentioned, graphene is a 2D carbon crystal that forms a honeycomb 

lattice. But there are two sub-lattices according to carbon atom bond orientations (see Figure 

6.A). In graphene, the atoms are sp2 hybridized, which means that all atoms of the same layer 

are linked each other by three covalent σ-bonds (see Figure 5), which are known as the strongest 

chemical bond ever seen and is the cause of its enormous mechanical material strength [17]. 

The different layers are linked by π-bounds, which are less strong than the other ones. 

Moreover, most of graphene singular properties are due to its band structure, and thus that 

ones that are useful to implement a saturable absorber too. 

         

Figure 5. Various hybridizations of carbon  and schematic of the in-plane σ bonds and the π orbitals 

perpendicular to the plane of the graphene sheets [17]. 

 

The band structure of graphene was first studied by Phillip Russel Wallace in 1947 and later 

studied by Neto et al. They deduced that the energy required to a photon to hop from one atom 

to another atom in next lattice atom is about 2.8 eV. But the energy required to an electron to 

hop from one atom to another in the same lattice is approximately 0.1 eV. Figure 6.B shows the 

graphene band structure around the Brillouin zone. As it is shown in this figure, unlike most 

materials, graphene has some points (actually six) where conducting and valence band touches 

each other all at the same energy without overlapping. The energy where the bands meet is 

called the Dirac point and these point are called K points. Therefore, graphene has no bandgap 

at the K points and for that reason is widely called as “zero bandgap semiconductor”. This 

property has the consequence that any photon that hit the material, no matter what energy it 

has, has a probability to be absorbed. This means that graphene’s response is broadly flat in 

terms of wavelength.  
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Figure 6. A) Graphene’s honeycomb lattice and sub-lattices. B) Graphene band structure. C) Graphene 

band structure near the Dirac point. 

 

The band structure of graphene can be linearly approximated near the Dirac point, where 𝑣𝑓 ≈

1 · 106𝑚/𝑠 is the Fermi velocity (velocity at which electrons can travel through the material). 

One singular property of graphene is that Fermi velocity does not depend on energy or 

momentum of the electron. The Fermi velocity depends linearly on momentum, which in turn 

depends on the electron energy. This means that for any energy below approximately 4 eV, 

electrons have a massless behaviour such as photons, which have a fixed speed [53]. This 

property makes graphene to have an extremely high conductivity and this linear behaviour also 

makes graphene to have a 2.3% linear absorption for energies below 4 eV [53]. This absorption 

is also proportional to the number of layers. Also, as the space between conducting and valence 

band and the density of states scale linearly with momentum, the absorption probability is the 

same for a broad range of photon energies. The band structure of graphene near the K points is 

shown in Figure 6.C. Near the Dirac point it looks like both cones that touches each other at one 

point. It is because, as it is above mentioned, the energy of charge-carrier scales linearly with 

the absolute value of momentum. 

2.4. Graphene Saturable Absorption 

First, it is assumed that graphene starts in an insulating phase because, as two particles cannot 

be in the same place and all places at conduction band are full (see Figure 7.a), any electron 

could be excited from valence band to any empty place in conduction band by any photon. Also, 

as the stimulated emission generates another photon with the same characteristics, it is only 

possible if there is an empty place in valence band. When an incident photon excites an electron 

from the valence band to the conduction band (see figure 7.b), that electron losses lots of its 

energy due to electron (at femtosecond scale) and lattice (at picoseconds scale) scattering (see 
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Figure 7.c). Thus, this electron will not decay back to the valence band and will make space to 

more electrons be excited into the conduction band at the same energy. Furthermore, for high 

enough peak intensities and pulse rates, so many electrons have been excited into the valence 

band that there are no open spaces in the lower energy conduction band, avoiding absorption 

or stimulating emission. This means that saturable absorption has been reached. 

 
Figure 7. Saturable absorption process in graphene.  

 

Due to the two timescales for electrons relaxation times named above the relaxation time for 

graphene as a saturable absorber has two components The fastest one is caused by electron-

electron scattering and it is in the order of 7 fs [53], so it can be approximated as a fast saturable 

absorber. The slowest component is mostly caused by electrons falling into the spaces they left 

in the valence band by dropping into the valence band through the K point. This component can 

be approximated as a slow saturable absorber, but for simplicity graphene is considered a fast 

saturable absorber.  

2.5. Graphene Doping 

One of the greatest advantage of SESAM saturable absorber is its optical properties tunability 

during production., such as linear absorption, relaxation time or saturable loss. Thus, to compete 

with SESAMs graphene must have these properties tunability too. On way to achieve this 

properties tunability is modifying the Fermi level of graphene. It is possible to block absorption 

shifting graphene either to an electron or hole conduction phase. If graphene is shifted to 

electron conduction phase, no electrons can be excited from the valence to conduction band 

because there are not open states at required energy in the conduction band for electrons to be 

excited. On the other hand, if graphene is shifted to hole conduction phase, neither any electron 

can be excited from valence to conduction band, but this time because there are no electrons 
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in the valence band at the required energy to be excited. This state is named as “state blocking” 

[53].  

For semiconductor, in order to modify Fermi level, it is needed to immobilize charges in the 

material removing carriers from band structure. This immobilization can be done adding some 

stationary charges to the material and thus, attract these carriers and removing them from the 

bands system. This method is called “doping”. Figure 8 shows how H+ ions contact the material 

and attract electrons to the surface forming dipoles between each other. In that way, the 

number of charge carriers (electrons) are removed from the bad system and thus, the Fermi 

level decreases and the material becomes hole-doping (or p-doping). In case of holes were 

immobilized a similar process will be taken, but in this case the material will become electron-

doping (or n-doping). For graphene an analogous process occurs, but due to its two dimensional 

structure it is much more complicated to illustrate.  

 
Figure 8. Hole doping of a bulk semiconductor [53]. 

 

Less electrons in the valence band means lower probability for an electron to be excited to 

conduction band and therefore the absorption also decreases. In other words, as the Fermi level 

shifts away from the K point the absorption decreases continuously, even if the full state block 

state is not reached. This means the optical absorption can be continuously tuned. Furthermore, 

as state blocking only affect to photons with twice energy the difference between K point and 

Fermi level, doped graphene has no constant linear absorption and, in this way, Fermi level can 

be determined by the absorption spectrum.  

But chemical doping is not the only way to modify the Fermi level, also and electrostatically 

doping can be done. To achieve that, graphene can be placed between an electrode and a 

dielectric material in a capacitor. Then, when a voltage is applied, the dielectric material 

polarizes and a charge density is carried out, which behaves as the H+ ions in chemical doping. 

This charge density attracts and immobilize graphene charges, achieving its doping.  
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In neutral graphene, the Fermi level is just at the charge neutrality point, that mean that the 

valence band is fully occupied and the conduction band is empty, but it only occurs at T=0°K. At 

room temperature, an intrinsic doping makes the Femi level to be placed either somewhere in 

the valence or in the conduction band. This intrinsic doping can be caused by many factors, such 

as the presence of several thermal excited carriers at band edge, graphene absorption on a 

metal substrate or even when a gate bias is applied [123].  Figure 9 shows the band structure 

for the three different regimes. 

 

 
Figure 9. a) Under zero bias condition an incoming photon can be absorbed. b) For positive bias satisfying 

the transition threshold condition carriers cannot be switched. c) For enough negative bias, there is no 

open space in the conduction band to an electron be excited [124].  

 

3. Chip Structure 

For the graphene characterization, the graphene is patterned as a set of waveguides, which 

allows a significant light-matter interaction due to the coupling between the evanescent tail of 

the highly confined waveguide mode and the graphene over a relatively long length. Moreover, 

this implementation also allows us to control the length and thus the interaction strength.  

The silicon nitride design is basically a set of straight waveguides of different widths and lengths. 

One (at right side) is formed by long waveguides with wides from 1200 nm up to 2400 nm in 

steps of 200 nm in sets of each 10 waveguides. The other (at left hand side) is formed by two 

arrays of short waveguides which wides are from 1200 nm up to 2500 nm in steps of 100 nm 

and also forming groups of 10 waveguides with the same width. Added to this design we 

transferred and patterned different lengths of graphene, but only one out of two waveguides. 

The length of the deposited graphene goes from 50 µm to 1600 µm. For the first chips these 

lengths were [100, 200, 400, 800, 1600] µm for long waveguides and [25, 50, 100, 200, 400] µm 

for short ones. For later chips, the graphene lengths for long ones were changed to [50, 100, 

200, 400, 800] µm because 1600 µm of graphene introduced so much losses that measurements 

were under the power meter detection level. 
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The length of these waveguides are 500 µm for short ones and 2185 µm for long ones, added to 

a pair of tapers of 400 µm. Moreover, to couple the light, a pair of grating coupler are added to 

each waveguide. However, later chips will be cleaved close to these grating couplers in order 

reduce coupling losses. Therefore, light will be coupled horizontally using lensed fibers. This will 

only be done for the large waveguides.   

 
Figure 10. Overall view of waveguides and graphene pattern. 

 

The cross-section is similar to the one in Ref. [117]. Basically, a set of strip LPCVD SiN waveguides 

of 330 nm thickness is patterned on a top of 3 µm buried oxide layer on a silicon handle wafer 

(this process is made in a CMOS pilot line). Then the sample is covered with a LPCVD oxide layer 

of 1 µm that is later thinned down by a combination of chemical polishing, Reactive Ion Etching 

and wet etching, but a residual oxide layer of about 35 nm thick is remaining. The strip structure 

also has a residual layer of SiN of about 30 nm, too. After that, a single layer of graphene is grown 

by Chemical Vapour Deposition (CVP) by an external Spanish company called Graphenea [118] 

and transferred to the chip, then the previously mentioned graphene patterning is achieved by 

photolithography and oxygen plasma etching so that different waveguides were covered with 

different lengths of graphene. 
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(a) SEM image of the cross-section of a SiN 

waveguide. 

 

 
 (b) TE mode profile (amplitude of the E-field, 

COMSOL Multiphysics®). The waveguide 

width is 1200 nm, the wavelength λ = 1550 

nm.

Figure 11: (a) Cross-section of a waveguides and (b) the simulated first order TE mode. 

 

To dope the graphene (or change the Fermi level) and modify its saturable absorption by an 

electrical voltage, a set of titanium-gold (Ti/Au; ≈ 5 nm/300 nm) metallic contacts are deposited 

by lift-off with the pattern show in Figure 12. In order to no affect characterization 

measurements because of sample manipulating or any possible effect of this metallic contacts, 

the titanium-gold pattern will be deposited after the characterization of coupling losses and 

graphene saturable absorption without any applied voltage. 

   
a) Overall view of contact pattern.     b) Zoom to area of interest. 

Figure 12. Image of contact electrodes pattern. 

 

Finally, all the structure is covered with a polymer electrolyte consisting of 𝐿𝑖𝐶𝑙𝑂4 and polyethylene 

oxide (PEO) in proportion of 0.1 to 1, each other. This allows to electrostatically change carrier 

density, and thus, the Fermi level of graphene. Figure 13 shows the cross section of the final sample 

and gating scheme. In that scheme it appears a little resistance in graphene when applying a certain 

𝑉𝐷𝑆 voltage.  
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Figure 13. Sample cross section and gating scheme [112]. 

 

When applying a gate voltage 𝑉𝐺𝑆 the carrier density of the graphene can be tuned. According to 

[122], the dependence of Fermi energy 𝐸𝐹  on the gate voltage 𝑉𝐺𝑆 is approximately: 

𝑉𝐺𝑆 − 𝑉𝐷𝑆 =  𝑠𝑔𝑛(𝐸𝐹)
𝑒 𝐸𝐹

2

ћ2 𝑣𝐹
2 𝜋 𝐶𝐸𝐷𝐿

+
𝐸𝐹

𝑒
    (1) 

With e as the electron charge, 𝑣𝑓 ≈ 106  𝑚/𝑠 the Fermi velocity and 𝐶𝐸𝐷𝐿 the electric double layer 

capacitance. 𝑉𝐷 the Dirac point, the voltage at which graphene becomes intrinsic and at which the 

conductance reaches the minimum.  This Eq. 1 is derived at T=0K, but at room temperature, the 

difference is negligible.  

 

4. Linear Loss Characterization 

4.1. Setup and Modelling 

The first step is the characterization of the chip, specifically graphene losses per unit of length and 

coupling losses. To get these parameters we must measure the transmission for each wavelength 

and for different graphene lengths, and the chosen setup is shown in Figure 14. 

Figure 14. Linear loss measurements setup. 

 

In that way, with Eq. 2 and Eq. 3 it is possible to get the desired data. Moreover, it will be done with 

the help of a frequency sweep with a continuous tunable laser to get the values in a wide range of 

wavelengths and show a more complete behaviour (see code in Annex I).  
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(2) 

   (3) 

In Eq 1. the input power of the graphene waveguide 𝑃𝑖𝑛 is calculated as the relation in decibels 

between the output power in both arms of the splitter, added to the detected power in reference 

detector (𝑃𝑟𝑒𝑓) and the losses caused by the grating coupler (𝐿𝑔).  On the other hand, the 

transmission of the graphene waveguide (understood as the relation between input and put power) 

is calculated as the difference between the previous input power and the power detected after the 

waveguide (𝑃𝐷), added to grating coupler losses. 

Then we can process the measured data (see Annex II). The most interesting graph represent the 

measured losses versus the graphene length, for each wavelength. From this graph we can deduce 

the graphene losses per unit of length fitting the points with the simple equation            𝑦 = 𝛼 · x + 

𝐿𝑐  ,where 𝐿𝑐  is the coupling losses and |α| is the graphene losses per length unit. But can also plot 

the coupling losses (n) for all wavelengths and obtain the response of grating couplers, which should 

have a maximum at designed and desired wavelength. Another graph could plot graphene losses (α) 

for each wavelength, as previous. This last plot should be flat, as graphene has a flat response for a 

wide range of frequencies, and from simulations we know we should get a value between 0,01 and 

0,1 dB/cm.  

4.2. Linear Loss Measurements 

The first step is the characterization of the linear loss of the graphene-covered waveguides: the 

coupling losses and graphene attenuation. As we can see in Figure 15.a, for telecom wavelength of 

1550.0 nm and for waveguides with a width of 1800 nm the graphene loss is 0.0403 dB/µm, which is 

an expected value by simulation. Furthermore, Figure 15.b shows the graphene losses for different 

wavelengths, which is flat, as it was expected because of the flat response of graphene. For different 

widths, the shape is almost the same, but for different chips, graphene or coupling coupler losses can 

differ, due to differences in the fabrication process. To check if the coupling coupler losses are 

correct, it is possible to measure the losses in some waveguides without graphene and assuming 

negligible losses inside the waveguide. It must also be mentioned that this graphs have been done in 

butt coupling setup. 

T [dB] = (𝑃𝐷 + 𝐿𝑔) − 𝑃𝑖𝑛   

𝑃𝑖𝑛 = 10 · log10 (
𝑇𝑟𝑒𝑓

𝑇𝑚𝑎𝑖𝑛
) + 𝑃𝑟𝑒𝑓 − 𝐿𝑔  
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a) Total insertion loss at 1550 nm. b) Graphene losses vs. wavelength.

Figure 15. Waveguides characterization in butt coupling setup for 1800 nm width waveguides. 

 

In case of butt coupling, as the wavelength response is flat, the linear characterization is simpler. 

First, the fiber-to-fiber power without any sample is measured and taken as input power (𝑃𝑖𝑛). 

Then, the transmission is calculated as shown in Eq. 3, with 𝐿𝑔= 0. The code used is shown in 

Annex I and II. 

5. Saturable Absorption Characterization 

5.1. Setup and Modelling 

To observe the saturable absorption effect we implement a similar setup than for the 

characterization, but using a variable attenuator and a pulsed laser instead of continuous one 

(see Figure 16). To observe this effect, a large peak optical power is needed and the simplest 

way to achieve that is by using a pulsed laser. Also, a continuous wave laser with such high power 

will burn the deposited graphene.  

Figure 16. Saturable absorption scheme. 

 

But the use of femtosecond lasers carries some inconveniences since fiber dispersion broadens 

the pulses and reduces its peak power. For that reason, it is necessary to reduce the fiber lengths 

as much as possible. One possibility in account is to use a pair of collimators and a variable 
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wheel-attenuator in order to avoid the fiber length of a typical variable misalignment-

attenuator. Moreover, fiber lengths in the splitter, polarization controller and fiber sections has 

been shortened by making fusion splices if necessary. Therefore, the resulting setup looks like 

in Figure 17. 

 

Figure 17. Real implemented setup. 

 

To ensure that the peak power coupled into the waveguide is sufficient to observe the saturable 

absorption, a previous simulation of pulse propagation along this set up is carried out. For that, 

a Matlab code provided by Photonics Research Group of Ghent University is used.  

As for the shortest Calmar laser pulse widths the matlab code is not accurate, a 100 mA of pump 

current in pulsed laser is taken. The simulated values are shown in Table 1 and each step of 

simulation is shown in Figure 18.  

 

Point 0 1 2 3 4 5 6 

P_peak [W] 1630 1375 434.8 112.4 53.80 52.71 3.33 

P_peak [dBm] 62.12 61.38 56.38 50.51 47.31 47.22 35.22 

FWHM [ps] 0.197 0.2243 0.2243 0.8208 0.8208 0.5863 0.5863 

𝜏 [ps] 0.12725 0.12725 0.12725 0.46565 0.46565 0.33261 0.33261 

P_avg [mW] 7.30 7.01 2.22 2.10 1.00 0.70 0.056 

P_avg [dBm] 8.63 8.46 3.46 3.22 0.02 -1.53 -13.53 

Table 1. Simulated values of broadening pulse. 
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Figure 18. Simulated points for broadening analysis. 

 

This analysis is just to have an idea of the peak power values. Taking [119] as reference, we can 

assume that a simulated value of 46.10 dBm is enough to observe graphene saturable 

absorption. In [109] a similar research has been carried out, but employing silicon waveguides, 

not SiN. Nevertheless, as we can use more input power, to ensure that we will detect saturable 

absorption, the pumped current used will be 200 mA for all next measurements, taking care of 

not exposing graphene to this high optical power, in order to not burn the material.  

Figure 19 shows how a pulse of 197 femtoseconds width is broaden after 2 meters of standard 

monomode fiber optic. This pulse width corresponds to an EDFA pumped current of 100 mA (see 

Table 2) used in the previous simulation. 
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Figure 19. Pulse propagation simulation for 0.045 dB/m losses,  𝛽2 = 22.91 · 10−3𝑃𝑠2/𝑚, 𝑛2 = 2.2 ·
10−20𝑚2/𝑊, 𝐴𝑒𝑓𝑓 = 85 · 10−12𝑚2, λ = 1549 nm, τ = 0.11193 ps, 2 m of fiber length and with Raman 

effects included. The fiber specifications are taken from Corning SMF-28 fiber. 

 

5.2. Saturable Absorption Measurements 

Figure 20 clearly shows the saturable absorption effect. The low power of -6 dBm is expected  

since the graphene loss is about 6 dB (100 µ𝑚 · 0.06 𝑑𝐵
µ𝑚⁄ = 6 𝑑𝐵 ). In that sample has been 

taken in account an input power about 11.6 dBm and 11.2 dB losses for each grating coupler, 

added to 5.5 dB losses due to connectors and intermediate devices. The input power inside the 

waveguide is the average power of the pulse train, not the peak power, as obtaining an exact 

value of this data would require a full knowledge of each setup device behaviour and a process 

data for each abscissa point would take too long time without providing much more information.  

 

Figure 20. Data from waveguide with 1.9 µm width, 100 µm graphene length and 200 mA of pump current 

in the pulsed laser. The vertical axis is the transmission (dB) in terms of average input and output power 

and the horizontal axis is the average input power (dBm). 

 

Theoretically, saturable absorption would increase to achieve full transmission, but getting a 

power increase of 2 dB, as shown in Figure 20, is still a great result. This effect has been 
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demonstrated for the rest of waveguides, too.  Nevertheless, graph points present so much 

dispersion because of the measurement system, but it can be reduced averaging in stretches 

and plotting the typical deviation (see Annex IV). 

5.3. Saturable Absorption Tunability 

The next step that is carried out is gating the graphene in order to tune the saturable absorption. 

To observe this result a set of different voltages has been applied to the waveguides, from 0 mV 

1200 mV in steps of 100 mV. Also, as it is mentioned in section 2, firstly an ionic gel above 

graphene is deposited in order to be able to control the saturable absorption. 

 
Figure 21. Average input power vs. transmitted power for 1200 nm width waveguide and 100 µm 

graphene, measured with 200 mA of pump current in pulsed laser and gating voltages from 0V to 1.2 V 

negative connected. 

 

Figure 21 clearly shows how the graphene saturable absorptions is modified by applying a 

voltage and thus gating it and shifting its femi-level. As the graphene length is only 100 µm, the 

change is not as intense as for longer lengths, as it is seen comparing with Figure 22. It must be 

mentioned that the total absorption has been normalized, estimating grating coupling losses 

and it can be slightly different, moving all the plotted data up or down.  
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Figure 22. Average input power vs. transmitted power for 1200 nm width waveguide and 200 µm 

graphene, measured with 200 mA of pump current in pulsed laser and gating voltages from 0V to 1,2 V 

negative connected. 

 

As it is seen in Figure 21 and 22, for high doping and high input power, the graphene does not 

behave as a saturable absorber. According to [126], the reason is that multiphoton process come 

into play.  

To simulate how the absorption is modified by the voltage and to be able to fit a suitable shape 

to these graphs, the phenomenological model in Eq. 4 is used [120]. This equation shows how 

the attenuation α depends on power (P) at any position. Therefore, the main parameters that 

must been deduced to characterize  that tunability are 𝛼0 (the low-power limit of the 

attenuation) and 𝑃0 (the saturation power limit). 

𝛼(𝑃) =
𝛼0

1+
𝑃(𝑧)

𝑃0

   (4) 

In order to deduce these two parameters, an integral equation (Eq. 5)  must be solved, where 

𝑃|𝑤 = 𝑎𝑏𝑠(𝐴|𝑉)2. To get it deduced it is necessary to integrate as seen in Figure 23.  

𝜕𝐴

𝜕𝑧
 =  −

𝛼(𝑃)

2
· 𝐴   (5) 
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Figure 23. Scheme of input power dependant losses integral equation for a waveguide. 

If we integrate Eq. 5 numerically as shown in Figure 23 we can approximate it by obtain Eq. 6 

and therefore it will be possible to obtain the output power as function of input power, graphene 

length and parameters 𝛼0 and 𝑃0, where 𝛼|𝑑𝐵𝑚/𝑚 = 𝛼|1/𝑚 · 10 · 𝑙𝑜𝑔10(𝑒) and 𝛼(𝑃) =
𝛼(𝐴)

2
. It 

is also known that 𝑇 =
𝑃𝑜𝑢𝑡|𝑤

𝑃𝑖𝑛|𝑤
, which is proportional to 

1

𝛼
. It is implemented in a Python code as 

shown in Annex V. 

𝐴(𝑧 + 𝑑𝑧)|𝑉 ≈ 𝐴(𝑧)|𝑉  −  
𝛼[𝐴(𝑧)]|1/µ𝑚

2
· 𝐴(𝑧)|𝑉 · ∆𝑧|µ𝑚  (6) 

However, in order to achieve higher on-chip powers and go further obtaining better graphs, it is 

interesting to avoid grating couplers, which introduce high insertion losses. For that reason, the 

chip is cleaved next to these grating couplers for the longer waveguides. However, there can be 

a mismatch between the field profile coupled into the waveguide and the field of the waveguide 

mode. Hence, this overlap is simulated for different waveguide widths in Lumerical software. 

The used code can be seen in Annex VI.  

As it is shown in Figure 24, the overlap losses are about 3.5 dB, which is much lower than 

calculated values for grating couplers. 
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Figure 24. Overlap between waveguide and coupling field simulated with Lumerical software. 

 

6. Technical specification 

6.1. Detector 

The detector used for all setups is the model Hewlett Packard (HP) 8153A, with which two equal 

power sensors have been used. These power sensors are the model HP 815131A, which have a 

wavelength range from 800 to 1700 nm. 

 

Figure 25. Power meter HP 8153A. 

For low input powers we can reach the sensitivity level of the power sensor and the 

measurements could be affected as an increasing transmitivity for low input powers, as has been 

seen in some measurements. For that reason, to ensure that this increasing is due to the power 

meter sensitivity and not to other causes, we implement the same setup, but replacing the SiN-

graphene waveguide by another variable attenuator, as we can see in next figure. In that way 
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we can simulate the waveguide and coupling losses adjusting the variable attenuator and avoid 

the saturable absorption effect of the waveguides, too. 

 

 
Figure 26. Setup for testing power meter. 

 

First set both variable attenuators to get -35 dBm in Detector 1 and -65 dBm in Detector 2, 

because these are the values obtaining while measuring a real waveguide. Then, the first 

variable attenuator is moved in order to get similar measurements, which are plotted in Figure 

27.  

 
Figure 27. Measurements Power Meter HP 8153A.  

To take a value as threshold, it is assumed that measurements from -25 dBm detected in 

Detector to downwards are not accurate.  

6.2. Tunable Continuous-wave Laser 

For aligning, characterization of devices, etc. a standard tunable laser has been used. Such as 

Tunics Laser model T100S-HP, Syntune Laser model S7600 or Santec model TSL-510. 
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6.3. Pulsed Laser 

To see the saturable absorption phenomenon a high peak power is needed. For that reason, a 

pulsed laser is used for the measurements, instead of using a continuum one. This kind of lasers 

achieves a train of pulses with a very high power but with very short widths. The femtosecond 

laser used to plot the graphs in this thesis has been the Calmar Laser model Mendocino. The 

specifications of this laser can be viewed in Table 2. 

Table 2. Specification Calmar Femtosecond Pulsed Laser. 

This table has been taken the data form attached laboratory catalogue and so the shape of the 

pulses shown in Eq. 7. For 𝑆𝑒𝑐ℎ2 pulses, the peak power can be written as Eq. 8, where the pulse 

energy is 𝑃𝑎𝑣𝑔 multiplied by T (repetition rate) for regular trains and negligible power between 

pulses. 

𝑃(𝑡) = 𝑃𝑝 · sech2(𝑡/𝜏) =
𝑃𝑝

cosh2(𝑡/𝝉)
  (7) 

𝑃𝑝𝑒𝑎𝑘 ≈ 0.88 ·
𝑃𝑢𝑙𝑠𝑒 𝐸𝑛𝑒𝑟𝑔𝑦

𝐹𝑊𝐻𝑀
  (8) 

 

6.4. Lensed Fibers 

The lensed fibers used to couple the light are from OZ-Optics. These are single mode Tapered 

fibers, see Figure 28. The main parameter is the beam radius at the focus length, which is 2.5 

µm. 

 
Figure 28. Lensed Fiber from OZ-Optics. 

Pump Current 

EDFA (mA) 

Wavelength 

(nm) 

Spectrum 

width (nm) 

P_avg 

(mW) 

Pulse width 

FWHM (ps) 

Repetition 

Rate (MHz) 

P_peak 

(KW) 

50 1548.93 9.49 2.8 0.327 20 0.377 

100 1548.75 15.49 7.3 0.197 20 1.630 

150 1548.77 22.86 11.2 0.119 20 4.141 

200 1549.14 30.67 14.6 0.080 20 8.030 

239 1549.78 33.69 17.0 0.074 20 10.108 
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6.5. Splitter 

The splitter used in the setups is a fiber based 90/10 divisor. It simply splits the power in both 

sides at different proportion. In order to avoid pulse broadening due to dispersion as much as 

possible, the fiber lengths have been shortened as much as possible, using fusion to splice them.  

 
Figure 29. Divisor used in setups. 

7. Conclusion and Future Works 

7.1. Conclusion 

In conclusion, saturable absorption in graphene-covered silicon nitride waveguides has been 

demonstrated in this thesis. For achieve this result, a series of setups have been implemented 

in order to improve the graphs. Since simulations shows that such a short pulses broadening can 

affect the measurements, the fiber lengths in these setups have been reduced as much as 

possible so that the pulse does not broaden through the fiber due to dispersion effects, and thus 

reducing the peak power. For that reason, a manually variable attenuator based on a fiber 

misalignment has been substituted by a couple of collimators between which a wheel attenuator 

is placed. Also, the fiber length of the splitter, as well as all fiber connections, have been shorten 

with fusion splices as much as possible. Moreover, as the grating coupling losses were quite high 

(minimum value got of 8.6 dB per grating coupler), the samples have been cleaved by the long 

waveguides. Therefore, the vertical measured system was replaced by a horizontal one, based 

on lensed fibers instead of grating couplers. 

After a large set of measurements in a set of samples, where the manually variable attenuation 

can affect the measurements by appearing a kind of hysteresis, the saturable absorption 

concept has been demonstrated. As it was expected, the measured graphene losses got are 

between 0.04 and 0.07 dB/µm. But not only graphene saturable absorption has been tested but 
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also its electrical tenability. Is has been observed that with a few hundreds of millivolts, a great 

absorption variation is achieved.  

In the chip fabrication, graphene and gold-titanium mask have been designed by IPKISS software 

run in Python code and then patterned in the samples. Python code has been also used to 

process all measured data, as well as to plot all the graphs and to remotely control the laboratory 

equipment. 

All these conceptual demonstrations allow the main goal of implement a mode-locked fiber laser 

and. But the highest interest is, once achieved it, get a possible fully integrated laser which uses 

graphene for mode-locking and makes profit of its unique properties. 

 

7.2. Future Tasks 

Once the saturable absorption phenomenon has been demonstrated, it can be used for a mode 

locked laser which avoids two photon absorption effect at telecom wavelengths, due to its larger 

gap. But it would be first needed to improve the results obtained, optimizing the graphene 

length and waveguide width, as well as a full electrical tunability characterization. 

Another possibility is to deduce the drain current in graphene. To achieve that, a set of different 

electrodes have been implemented in the lithography mask for some waveguides. As the chip 

has a large set of waveguides, we can dedicate some of them to this purpose, specifically it was 

carried out for the some of the short ones. Also it has been done to different waveguide widths 

(see Figure 30). 

  

a) Overall view of lito mask.             b) Zoom to interest zone.

Figure 30. Set of electrodes for drain current measurements.  
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Annexes 

Annex I 
Code used for getting data in order to characterize chip waveguides: 
 

import numpy as np 

from pymeasure.units.unit import NANOMETER, PICOMETER,  

MILLISECOND, DBM, SECOND, MILLIWATT 

from pymeasure.instruments.Santec.tunable_laser import  

SantecTunableLaserTSL510 

from pymeasure.instruments.HP.power_meter import  

HPPowerMeter8153A 

import pylab as pl 

import csv 

import time 

def example():     

    name='53st_W2200_L100_1' 

    wls=np.arange(1500, 1630, 1) 

    #  initialize instruments 

    L = SantecTunableLaserTSL510( name = "Santec Laser", address  

= "GPIB::25") 

    L.power = 10*DBM 

    L.wavelenth = wls[0] 

    PM = HPPowerMeter8153A( name = "HP 8153A Powermeter",  

address = "GPIB::30")     

    PM.initialize()    

    PM.channel='B' 

    PM.wavelength = 1550 * NANOMETER                       

    PM.averaging_time = 100 * MILLISECOND 

    PM.range = 'AUTO' 

    PM.power_unit = DBM     

    PM.channel='A' 

    PM.wavelength = 1550 * NANOMETER                       

    PM.averaging_time = 100 * MILLISECOND 

    PM.range = 'AUTO' 

    PM.power_unit = DBM 

    powers=np.zeros(np.size(wls)) 

    i=0 

    for wl in wls: 

 print wl 

 L.current_frequency = wl * NANOMETER 

 L.wavelenth = wl 

 time.sleep(0.2)  

 powers[i] = PM.get_power().get_value() 

 i=i+1 

    pl.plot(wls, powers,'-')       

    pl.xlabel('Wavelength (nm)') 

    pl.ylim(-55, -10) 

    pl.ylabel('Transmitted power (dBm)') 

    pl.grid(True) 

    pl.savefig(name+'.png') 

    pl.show() 

    pl.clf()   

    with open(name+'.csv', 'wb') as csvfile: 

     writer = csv.writer(csvfile, delimiter='\t')   

     i=0 

     for wl in wls: 

      writer.writerow([wl, powers[i]])  

      i=i+1             

example()  
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Annex II 
Code used to process data for waveguide characterization: 

import pylab 

import os 

import numpy as np 

import matplotlib.pyplot as plt 

import matplotlib.patches as mpatches 

from os import listdir 

from os.path import isfile, join 

import csv 

 

path="C:\Users\Miguel\Desktop\TFM_Gent_24_05_2017\Mesurements\se 

tup 10 Horizontal_Santec" 

norm_file = 'normalizationF2F.csv' 

W=1200.0 

L=[50, 100, 200, 400, 800] 

 

def Plotear(x, y, figura="", Titulo="", ColorPlot='b',  

Marcador='None', TipoPlot="-", Etiqueta=None, 

LocEtiqueta=(0.10, 0.1), xlabel='xxlabel', 

ylabel='yylabel', orden=None): 

    plt.ioff() 

    fig=plt.figure(figura) 

    plt.suptitle(Titulo) 

 

    if Etiqueta!=None: 

        red_patch = mpatches.Patch(color=ColorPlot,  

label=Etiqueta) 

        plt.legend(bbox_to_anchor=LocEtiqueta, loc=2,  

borderaxespad=0, handles=[red_patch]) 

 

    plt.plot(x, y, color=ColorPlot, linestyle=TipoPlot,  

zorder=orden, marker=Marcador) 

    ax = fig.add_subplot(1,1,1) 

 

    plt.tick_params(which='major', width=2, length=10,  

direction='out') 

    plt.tick_params(which='minor', width=1, length=5,  

direction='out') 

 

    #and a corresponding grid 

    ax.grid(which='both') 

    # or if you want differnet settings for the grids: 

    ax.grid(which='minor', alpha=0.1) 

    ax.grid(which='major', alpha=0.5) 

    ax.get_yaxis().get_major_formatter().set_useOffset(False) 

    plt.ylabel(ylabel) 

    plt.xlabel(xlabel) 

 

 

def takeData(): 

    os.chdir(path)  # Set the path where are the mesurements 

    mypath = os.getcwd() 

    onlyfiles = [f for f in listdir(mypath) if  

isfile(join(mypath, f))]   

 

    #take the normalization data 

    wavelength=[] 

    pot_norm=[] 

    with open(norm_file, 'rb') as csvfile: 
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        reader = csv.reader(csvfile, dialect='excel', delimit  

  ter='\t') 

        for row in reader: 

            wavelength.append(float(row[0])) 

            pot_norm.append(float(row[1])) 

 

    data_all = np.zeros((len(L), len(wavelength))) 

    for i in range(len(L)):  #for each length of graphene 

        filensearched = "_W" + str(int(W)) + "_L" +  

str(int(L[i])) 

        for file in onlyfiles: #search in all files 

            if file.endswith('.csv')==True and (filensearched in  

file)==True: 

                #Take data from files 

                with open(file, 'rb') as csvfile: 

                    reader = csv.reader(csvfile,  

dialect='excel', 

delimiter='\t') 

                    count=0 

                    for row in reader: 

                        data_all[i][count] = float(row[1]) –  

pot_norm[count]  

                        count+=1 

    return data_all, wavelength 

 

 

def alpha(lamb): 

    data, wavelengths = takeData() 

    power = [] 

    count = 0 

    for i in range(np.shape(data)[0]):  # for each length 

        count = 0 

        for j in range(np.shape(data)[1]): 

            if (wavelengths[j] < lamb): 

                count += 1 

 

        Xo = wavelengths[count - 1] 

        Yo = data[i][count - 1] 

        X1 = wavelengths[count] 

        Y1 = data[i][count] 

        X = lamb 

        Y = Yo + (X - Xo) * ((Y1 - Yo) / (X1 - Xo)) #Linear int. 

        power.append(Y) 

 

    coef = np.polyfit(L, power, 1) 

    alpha = coef[0] 

    axis_cut = coef[1] 

 

    '''#Print data 

    Lextend=L[:] 

    Lextend.extend([-50, 850]) 

    yfit=[] 

    for i in range(len(Lextend)): 

        yfit.append(axis_cut+alpha*Lextend[i]) 

 

    Plotear(L, power) 

    Plotear(Lextend, yfit, TipoPlot='--', ColorPlot='r',  

Etiqueta='alpha= ' + str(alpha), Titulo=str(lamb)+'nm 

'+ ' and  W= '+ str(W)+'nm', xlabel='L', 

ylabel='dBm') 

    plt.plot(L,power, 'ro') 
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    plt.show()''' 

 

    return alpha, axis_cut 

 

def alpha2(lamb): 

    data, wavelengths = takeData() 

    power = [] 

    count = 0 

    for i in range(np.shape(data)[0]):  # for each length 

        count = 0 

        for j in range(np.shape(data)[1]): 

            if (wavelengths[j] < lamb): 

                count += 1 

 

        Xo = wavelengths[count - 1] 

        Yo = data[i][count - 1] 

        X1 = wavelengths[count] 

        Y1 = data[i][count] 

        X = lamb 

        Y = Yo + (X - Xo) * ((Y1 - Yo) / (X1 - Xo)) #Linear int. 

        power.append(Y) 

 

    power2=[-17.4, -18.9, -23.6, -38.2, -46.8] #for W=1200 

    #power2 = [-17.1, -24.0, -14.8, -50.8, -56.0]  # for W=1400 

 

    coef = np.polyfit(L, power, 1) 

    coef2 = np.polyfit(L, power2, 1) 

 

    alpha = coef[0] 

    alpha2 = coef2[0] 

    axis_cut = coef[1] 

    axis_cut2 = coef2[1] 

 

    #Print data 

    Lextend=L[:] 

    Lextend.extend([-50, 850]) 

    yfit=[] 

    yfit2 = [] 

    for i in range(len(Lextend)): 

        yfit.append(axis_cut+alpha*Lextend[i]) 

        yfit2.append(axis_cut2 + alpha2 * Lextend[i]) 

 

    Plotear(L, power) 

    Plotear(L, power2, ColorPlot='r') 

    Plotear(Lextend, yfit, TipoPlot='--', ColorPlot='b') 

    Plotear(Lextend, yfit2, TipoPlot='--', ColorPlot='r',  

Etiqueta='alpha= ' + str(alpha) + '  alpha2= ' + 

str(alpha2), 

Titulo=str(lamb) + 'nm ' + ' and  W= ' + str(W) + 

'nm', xlabel='L', ylabel='dBm') 

    plt.plot(L,power, 'bo') 

    plt.plot(L, power2, 'ro') 

    plt.show() 

 

    return alpha, axis_cut, alpha2, axis_cut2, 

 

def grapheneLosses(): #shape for each lambda 

    wavelengths = np.linspace(1500.0, 1629.0, 100) 

    alphas = [] 

    for i in range(len(wavelengths)): 

        alphas.append(alpha(wavelengths[i])[0]) 
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    Plotear(wavelengths, alphas, xlabel='nm', ylabel='dB/um',   

Titulo='W='+str(W)+'nm' ) 

    plt.show() 

 

 

def couplingLosses(): #cuts with 0 for each lambda 

    wavelengths = np.linspace(1500.0, 1629.0, 100) 

    axis_cuts = [] 

    for i in range(len(wavelengths)): 

        axis_cuts.append(alpha(wavelengths[i])[1]) 

 

    Plotear(wavelengths, axis_cuts , Titulo='W='+str(W)+'nm' ,  

xlabel='nm', ylabel='dBm') 

    x_cut2=alpha2(1550)[3] 

    x_cut2_array= np.ones(len(wavelengths))*x_cut2 

    plt.plot(wavelengths, x_cut2_array, 'r') 

    plt.show() 

 

    ''''# Save data 

    filename = "GrattingLosses_W_"+str(W)[: 4] + ".txt" 

    outfile = open(filename,'w') 

    counter = 0 

    for wl in wavelengths: 

       print >> outfile, wl, axis_cuts[counter]  

       outfile.flush() 

       counter = counter + 1 

    outfile.close''' 

 

#print alpha2(1550) 

#grapheneLosses() 

#couplingLosses() 
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Annex III 
Code used to measure saturable absorption. Basically takes data from channel A and B 

periodically, get the transmitivity and then save data in a text file. 

from pymeasure.instruments.Syntune import * 

import time 

import pylab as pl 

import csv 

 

def example(): 

    wls = 1549.0 

    name = "gatting_3er_shortWaveguides_Left_200mA_Voltage_0mV" 

    numPoints = 800 

     

    Lg=12.0 

    #Lg=8.3 

    L_PC=0.6 

    divisor=90 

     

    #  initialize instruments 

PM = HPPowerMeter8153A(name="HP 8153A Powermeter",  

address="GPIB::30") 

    PM.initialize() 

    PM.wavelength = 1549 * NANOMETER 

    PM.averaging_time = 100 * MILLISECOND 

    PM.range = 'AUTO' 

    PM.channel = 'A' 

    PM.power_unit = DBM 

    PM.averaging_time = 0.05 * SECOND     

    PM.channel = 'B' 

    PM.range = 'AUTO' 

    PM.power_unit = DBM 

    PM.averaging_time = 0.05 * SECOND     

    

    powersA = np.zeros(numPoints)  

    powersB= np.zeros(numPoints)   

    for j in range(numPoints): 

        PM.channel = 'A' 

        powersA[j] = PM.get_power().get_value() 

        PM.channel = 'B' 

        powersB[j] = PM.get_power().get_value() 

        print 'iteration ' + str(j) + '/' + str(numPoints) + "  

move" 

        time.sleep(0.2) #time in seconds 

     

    peaks=np.zeros(numPoints)  

    T=np.zeros(numPoints)  

     

    for i in range(numPoints): 

        #peaks[i] = 10*np.log10(divisor/(100-divisor)) +  

powersB[i] - Lg + L_PC 

        peaks[i] = 8.78 + powersB[i] - Lg + L_PC #experimentally 

        T[i] = (powersA[i] + Lg) - peaks[i] 

        #T[i] = ( powersB[i]+Lg) - ( 10*np.log10(divisor/(100- 

divisor)) + powersA[i] - Lg ) 

 

    pl.scatter(peaks, T) 

    pl.xlabel('peak power input') 

    pl.ylabel('Transmitted power (dB)') 

    pl.grid(True) 

    pl.show() 
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    pl.scatter(peaks, T) 

    pl.xlabel('average power input') 

    pl.ylabel('Transmitted power (dB)') 

    pl.grid(True) 

    pl.axis([-40, -5, -10, 0]) 

    pl.savefig(name + '.png') 

    pl.clf() 

 

    with open(name + '.csv', 'wb') as csvfile: 

        writer = csv.writer(csvfile, delimiter='\t') 

        k = 0 

        for k in range(numPoints): 

            writer.writerow([powersA[k], powersB[k], peaks[k],  

  T[k]]) 

            k = k + 1 

 

example() 
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Annex IV 
Code used to process data when averaging in stretches and gating graphene. 

import numpy as np 

import matplotlib 

import matplotlib.pylab as pl 

import csv 

import matplotlib.colors 

import matplotlib.cm as cm 

from scipy.optimize import curve_fit 

 

window=3.0  #dB at the x-axis 

Lg=11.2 #dB losses of the gratting coupler 

L_PC = 0.6 #dB losses of the polarization controller and the  

 piece of cable to the gratting 

 

def readfile(filename): 

    T=[] 

    inputpower=[] 

    DA=[] 

    DB=[] 

    with open(filename, 'rb') as csvfile: 

        reader=csv.reader(csvfile, dialect='excel',  

     delimiter='\t') 

        for row in reader: 

            DA.append(float(row[0])) 

            DB.append(float(row[1])) 

            inputpower.append(float(row[2])) 

            T.append(float(row[3])) 

    return DA, DB, inputpower, T 

 

def quiterrors(data, weigth):  #we can asume data in dB 

    mean = np.mean(data) 

    thresholdUp = mean + weigth 

    thresholdDown = mean - weigth 

    for i in range(len(data)): 

        if data[i]> thresholdUp: 

            data[i] = mean 

        elif data[i]<thresholdDown: 

            data[i] = mean 

    return data 

 

def order(x, y): 

  n=len(x) 

  for i in range(0, n - 1): 

      k = i 

      t = x[i] 

      for j in range(i, n): 

          if x[j] <= t: 

              k = j 

              t = x[j] 

              t_y=y[j] 

      x[k] = x[i] 

      y[k] = y[i] 

      x[i] = t 

      y[i] = t_y 

  return x, y 

 

def smoothing(x, y): 

    x_windows = np.arange(round(min(x))-window/2.0,  

max(x)+window/2.0, window) 
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    x_axis = np.arange(round(min(x)), max(x)+window, window) 

    means=[] 

    typdev=[] 

    for i in x_windows: 

        segment = [] 

        for j in range(len(x)): 

            if x[j]>=i and x[j]<i+window : 

                segment.append(y[j]) 

        if segment==[]: 

            index=np.where(x_axis==i+window/2.0) 

            x_axis=np.delete(x_axis, index) 

        else: 

            segment=quiterrors(segment, 4.0) 

            means.append(np.mean(segment)) 

            typdev.append(np.std(segment)) 

 

    return x_axis, means, typdev 

 

def onePlot(): 

    fichero="pulsed_12LastShortLeftWaveguide_90_10_200mA.csv" 

    DB, DA, inputpower, T_measuring = readfile(fichero) 

 

    Trans = np.zeros(len(DA)) 

    Pinput_avg = np.zeros(len(DA)) 

    for i in range(len(DA)): 

        # Pinput_avg[i] = 10*np.log10(divisor/(100-divisor)) +  

DB[i] - Lg - PC 

        Pinput_avg[i] = 8.78 + DB[i] - Lg - L_PC #experimentally 

        Trans[i] = (DA[i] + Lg) - Pinput_avg[i] 

    #T_order, inPower_order = order(Pinput_avg, Trans) #not need 

    x_axis, means, typdev = smoothing(Pinput_avg, Trans)   

 

    fig, ax = pl.subplots() 

    #ax.plot(x_axis, means, 'r-*', label='Fitted') 

    #ax.plot(x_axis, typdev, 'g-*', label='Fitted') 

    ax.errorbar(x_axis, means, yerr=typdev, fmt='r-o',  

label='Fitted') 

    ax.scatter(Pinput_avg, Trans, color='skyblue',  

label='Measured') 

    ax.set_xlabel('Average Input Power (dBm)') 

    ax.set_ylabel('Average Transmission Power (dB)') 

    ax.grid() 

    pl.show() 

 

def gatingPlots(): 

    #voltages = ['0V', 'neg100mV', 'neg200mV', 'neg400mV',  

# 'neg600mV', 'neg800mV', 'neg1000mV',  

# 'neg1200mV', 'pos100mV', 'pos200mV', 

                # 'pos300mV', 'pos400mV', 'pos500mV'] 

    voltages = ['0V', 'neg100mV', 'neg200mV', 'neg400mV',  

'neg600mV', 'neg800mV', 'neg1000mV', 'neg1200mV'] 

    prefix = "gatting_5er_shortWaveguides_Right_200mA_Voltage_" 

 

    fig, ax = pl.subplots(num=None, figsize=(16, 12), dpi=80,  

facecolor='w', edgecolor='k') 

    cmap1 = pl.cm.hot 

    cmap2 = pl.cm.cool 

    color=0 

 

    for v in voltages: 

        filename=prefix + v + '.csv' 
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        try: 

            DA, DB, inputpower, T_measuring = readfile(filename) 

 

            Trans = np.zeros(len(DA)) 

            Pinput_avg = np.zeros(len(DA)) 

            for i in range(len(DA)): 

                # Pinput_avg[i] = 10*np.log10(divisor/(100- 

   divisor)) + DB[i] - Lg - PC 

                Pinput_avg[i] = 8.78 + DB[i] - Lg - L_PC   

                Trans[i] = (DA[i] + Lg) - Pinput_avg[i] 

            x_axis, means, typdev = smoothing(Pinput_avg, Trans)   

            if color < 8: 

                pl.plot(x_axis, means, '-*', label=v,  

c=cmap1(color * 20)) 

                #pl.errorbar(x_axis, means, yerr=typdev, fmt='- 

o', label=v) 

            else: 

                pl.plot(x_axis, means, '-*', label=v,  

c=cmap2((color - 8) * 100)) 

                #pl.errorbar(x_axis, means, yerr=typdev, fmt='- 

o', label=v) 

        except: 

            print 'error openning fie: ' + filename 

        color += 1 

 

    ax.set_xlabel('Average Input Power (dBm)') 

    ax.set_ylabel('Average Transmission Power (dB)') 

    ax.set_title(prefix) 

    ax.grid(True) 

    ax.set_xlim([-40, 0]) 

    ax.set_ylim([-2, 2]) 

 

    pl.legend(bbox_to_anchor=(0.97, 0.75), loc=2,  

borderaxespad=0.) 

    pl.show() 

 

onePlot() 

gatingPlots() 
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Annex V 
Code used for fitting saturable absorption data with theoretically derivative equations. 

import numpy as np 

import matplotlib.pylab as pl 

import csv 

from scipy.optimize import curve_fit 

from pylab import * 

from mpl_toolkits.mplot3d import Axes3D 

import matplotlib.cm as cm 

 

filename="gatting_5er_shortWaveguides_Left_200mA_Voltage_  

0mV.csv" 

Lg = 8.3  #losses of gratting coupling 

PC = 0.6  #losses of Polarization controller 

 

numPoints = 201  # number of points to calculate the  

differential equation 

L = 100.0  # um -> length of the graphene 

powerStep = 0.5 

 

def plotgraph1(x1, y1, x2, y2, type): 

    fig, ax = pl.subplots() 

    ax.plot(x1, y1, 'ob', label='Fitting') 

    ax.plot(x2, y2, type, label='Measured') 

    pl.xlabel('Pin (dBm)') 

    pl.ylabel('T (dB)') 

    pl.title('test') 

    pl.grid(True) 

    pl.show() 

 

def alpha(P0, Alpha0, A): 

    #A=sqrt(P) 

    Alpha0_m = Alpha0 / (10.0*np.log10(np.e))  

    return Alpha0_m/(1.0+((A**2.0)/P0))  

 

def integral(A0, numPoints, P0, Alpha0, dz): 

    A = [A0] 

    for i in range(numPoints): 

        dA = A[i] - (alpha(P0, Alpha0, A0) / 2.0) * A[i] * dz 

        A.append(dA) 

    return A[-1] 

 

def loadfile(): 

    T = [] 

    inputpower = [] 

    DA = [] 

    DB = [] 

  #Read the file 

    with open(filename, 'rb') as csvfile: 

        reader = csv.reader(csvfile, dialect='excel',  

delimiter='\t') 

        for row in reader: 

            DA.append(float(row[0])) 

            DB.append(float(row[1])) 

            inputpower.append(float(row[2])) 

            T.append(float(row[3])) 

  #Calculate T and average InputPower 

    T_correct = np.zeros(len(DA)) 

    Pinput_avg = np.zeros(len(DA)) 

    for i in range(len(DA)): 
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        Pinput_avg[i] = 8.78 + DB[i] - Lg - PC   

        T_correct[i] = (DA[i] + Lg) - Pinput_avg[i] 

    return Pinput_avg, T_correct 

 

def smoothing(x, y): 

    x_windows = np.arange(round(min(x))-powerStep/2.0,  

max(x)+powerStep/2.0, powerStep) 

    x_axis = np.arange(round(min(x)), max(x)+powerStep,  

powerStep) 

    means=[] 

    typdev=[] 

    for i in x_windows: 

        segment = [] 

        for j in range(len(x)): 

            if x[j]>=i and x[j]<i+powerStep : 

                segment.append(y[j]) 

        if segment==[]: 

            index=np.where(x_axis==i+powerStep/2.0) 

            x_axis=np.delete(x_axis, index) 

        else: 

            means.append(np.mean(segment)) 

            typdev.append(np.std(segment)) 

    return x_axis, means, typdev 

 

def diffEql(x, P0, Alpha0): 

  #Initial values 

    dz= L/(numPoints-1) #spacing between points 

 

    #P0 = 0.0  #dBM 

    P0 = 10.0**(P0/10.0) * 1e-3  # in Watts 

 

    Pin = np.arange(round(min(x)), max(x) + powerStep,  

powerStep) 

    Pout=[] 

    T=[] 

    for Pj in Pin: 

        A0= np.sqrt( 10.0**(Pj/10.0) * 1e-3)    

        Aout=integral(A0, numPoints, P0, Alpha0, dz)   

        Pout_aux = (Aout)**2.0  #in wats 

        Pout_aux = 30.0 + 10.0*np.log10(Pout_aux) #in dBm 

        Pout.append(Pout_aux)  #add value 

        T.append(Pout_aux-Pj) 

 

    return Pin, Pout, T 

 

 

 

def fittingP0(P0, Alpha0): #P0 -> dBM  #Alpha0 -> dBm/um 

    Pinput_meas, T_meas = loadfile() 

    x_axis, means, typdev = smoothing(Pinput_meas, T_meas) 

    P0_array=np.linspace(P0*0.75, P0*1.25, 50) 

    Pin_eq, Pout_eq, T_eq = diffEql(x_axis, P0, Alpha0)  

    plotgraph1(Pin_eq, T_eq, x_axis, means, type='-b') 

    error = [] 

    for p in P0_array: 

        Pin_eq, Pout_eq, T_eq = diffEql(x_axis, p, Alpha0) 

        index_meas=0 

        sum_error = 0 

        for x in x_axis:  

            index_calc=np.where(Pin_eq==x)  

            sum_error += ((( means[index_meas] –  
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T_eq[int(index_calc[0])]))**2) 

            index_meas+=1 

        error.append(sum_error) 

    error_min=min(error) 

    index=int(np.where(error==error_min)[0]) 

    plotgraph1(P0_array, error, x2=P0_array[index],  

y2=error_min, type='or') 

    P0_fit = P0_array[index] 

    Pin_eq, Pout_eq, T_eq = diffEql(x_axis, P0_fit, Alpha0) 

    plotgraph1(Pin_eq, T_eq, x_axis, means, type='-r') 

    return P0_fit, error_min 

 

def fittingA0(P0, Alpha0): #P0 -> dBM  #Alpha0 -> dBm/um 

    Pinput_meas, T_meas = loadfile() 

    x_axis, means, typdev = smoothing(Pinput_meas, T_meas) 

    Alpha0_array=np.linspace(Alpha0*0.75, Alpha0*1.25, 50) 

    Pin_eq, Pout_eq, T_eq = diffEql(x_axis, P0, Alpha0)  

    plotgraph1(Pin_eq, T_eq, x_axis, means, type='-b') 

    error = [] 

    for a in Alpha0_array: 

        Pin_eq, Pout_eq, T_eq = diffEql(x_axis, P0, a) 

        index_meas=0 

        sum_error = 0 

        for x in x_axis:  

            index_calc=np.where(Pin_eq==x)  

            sum_error += ((( means[index_meas] –  

T_eq[int(index_calc[0])]))**2) 

            index_meas+=1 

        error.append(sum_error) 

    error_min=min(error) 

    index=int(np.where(error==error_min)[0]) 

    plotgraph1(Alpha0_array, error, x2=Alpha0_array[index],  

y2=error_min, type='or') 

    Alpha0_fit = Alpha0_array[index] 

    Pin_eq, Pout_eq, T_eq = diffEql(x_axis, P0, Alpha0_fit) 

    plotgraph1(Pin_eq, T_eq, x_axis, means, type='-r') 

    return Alpha0_fit, error_min 

 

def initial(P0, Alpha0): 

    Pinput_meas, T_meas = loadfile() 

    x_axis, means, typdev = smoothing(Pinput_meas, T_meas) 

    index_meas = 0 

    sum_error = 0 

    Pin_eq, Pout_eq, T_eq = diffEql(x_axis, P0, Alpha0) 

    error = [] 

    for x in x_axis:  # 

        index_calc = np.where(Pin_eq == x)   

        sum_error += (((means[index_meas] –  

T_eq[int(index_calc[0])])) ** 2) 

        index_meas += 1 

    error.append(sum_error) 

    error_min = min(error) 

    plotgraph1(Pin_eq, T_eq, x_axis, means, type='-b') 

    return error_min 

 

print initial(P0=0.201, Alpha0=0.05969) 

#print fittingP0(P0=0.201, Alpha0=0.05969) 

#print fittingA0(P0=0.201, Alpha0=0.05969) 
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Annex VI 
Lumerical code used obtaing the overlap between coupling and waveguide field. 
 

switchtolayout; 

deleteall; 

clear; 

um=10^(-6); #unit 

nm=10^(-9); #unit 

 

#_____Silicon Oxide_____# 

addrect; 

set("name", "Silicon Oxide"); 

set("x",0); 

set("y",-1.8*um); 

set("z",0); 

set("x span", 20.0*um); 

set("y span", 4.0*um); 

set("z span", 0); 

set("material", "SiO2 (Glass) - Palik"); 

 

#_____Silicon Nitride_____# 

addrect; 

set("name", "Silicon Nitride"); 

set("x",0); 

set("y",0); 

set("z",0); 

set("x span", 1.2*um); 

set("y span", 330*nm); 

set("z span", 0); 

set("index", 1.9963); 

 

#_____Residual Nitride_____# 

addrect; 

set("name", "Residual Nitride"); 

set("x",0); 

set("y",-0.15*um); 

set("z",0); 

set("x span", 20.0*um); 

set("y span", 30*nm); 

set("z span", 0); 

set("index", 1.9963); 

 

#_____Silicon_____# 

addrect; 

set("name", "Silicon"); 

set("x",0); 

set("y",-5.8*um); 

set("z",0); 

set("x span", 20.0*um); 

set("y span", 4.0*um); 

set("z span", 0); 

set("material", "Si (Silicon) - Palik"); 

 

#__________SOLVER___________# 

addfde; 

set("x",0); 

set("y",2*um); 

set("z",0); 

set("x span", 18*um); 

set("y span", 10*um); 
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#set("z span", 10*um); #the requested property is inactive 

set("x min BC", "Metal"); 

set("x max BC", "Metal"); 

set("y min BC", "Metal"); 

set("y max BC", "Metal"); 

 

#__________MESH___________# 

addmesh; 

set("name", "FineCenterMesh"); 

set("x",0); 

set("y",2*um); 

set("z",0); 

set("x span", 18*um); 

set("y span", 10*um); 

set("z span", 0); 

set("dx",0.04*um); 

set("dy",0.04*um); 

 

#__________SET ANLAYSIS___________# 

setanalysis("number of trial modes", 1); 

setanalysis("search", "near n"); 

setanalysis("use max index", 0); 

setanalysis("n", 1.9963); 

 

#__________SET BEAM___________# 

setanalysis("use fully vectorial thin lens beam profile", 0); 

setanalysis("waist radius", 1.25*um); 

setanalysis("sample resolution", 400); 

beamname=createbeam; 

 

#__________CHANGE WIDTHS___________# 

widths=(100*nm):(50*nm):(1200*nm); 

 

for(x=widths) { 

    switchtolayout; 

    setnamed("Silicon Nitride","x span", x); 

    findmodes; 

    out=overlap("mode1", "gaussian1"); 

    write("sweepLumerical2.txt",num2str(x));   

    write("sweepLumerical2.txt",num2str(out(2))); 

    run; 

} 

 

 

 


