

Escola Tècnica Superior d’Enginyeria Informàtica

Universitat Politècnica de València

Testing security of html5: automated

scanning vulnerabilities

Trabajo Fin de Máster

Máster Universitario en Ingeniería Informática

Autor: Javier Gil Pascual

Tutor: Jose Ismael Ripoll Ripoll

Hugo Jonker (externo)

2016-2017

Testing security of HTML5: detecting and mitigating vulnerabilities

2

Resumen

HTML5 tiene varios nuevos componentes como XHR-Level2, DOM, Storage. Con esta
introducción de nuevas tecnologías, HTML5 también lleva consigo potenciales riesgos de
seguridad. Algunos originados de los elementos del estándar en sí, otros de la implementación
particular del estándar en cada navegador, y otros del cuidado que pongan los desarrolladores a
la hora de escribir código. . . En esta tesis vamos hablas de estas nuevas estrategias de ataque y
posibles amenazas. También cubriremos cómo detectar estas vulnerabilidad automatizando el
proceso. Esta tesis describe una serie de vulnerabilidad web, sobre las que hemos construido
unos test para probar las capacidad de algunas herramientas de pentesting. Basándonos en los
resultados observados, discutiremos futuros resultados.

Palabras clave: HTML5, pentesting, web, seguridad.

Abstract

HTML5 has several new components like XHR-Level2, DOM, Storage. With any major
introduction of new features, HTML5 also brings with it potential security vulnerabilities. It
allows crafting stealth attack vectors and adding risk to end client. Some originate from
elements of the standard itself, some from implementations of the standard in each browser, and
some from the care that developers do (or do not) take in building their HTML5 code. . . In this
thesis we are going to talk about this new attack surface and possible threats. We are also going
to cover how to automatically detect these possible vulnerabilities. This thesis describes a set of
HTML5 vulnerabilities, we build a test web and use this for test the capabilities of several open
source pen-testing tools. Based on the observed results, further work is also discussed.

Keywords : html5, pentesting, web, security.

3

Testing security of HTML5: detecting and mitigating vulnerabilities

4

Tabla de contenidos

Introducción 8

Motivation 8

Research Problem 9

Research Objectives 10

Thesis outline 11

Technological Background and Related Work 12

Technological background 12

HTML5 12

Single Page Application 15

Front-end and JavaScript Frameworks 16

Related Work with HTML5 issues 17

Pen testing Tools Background 18

Dynamic testing tools 18

Related Work DAST tools comparison 19

New HTML5 threats 20

Threat Models 20

CORS 21

Threats and security issue 21

How to test 23

Sandboxed Iframes 23

Threats and security issue 24

How to test 25

Based on XSS 25

XSS through HTML5 tags 26

DOM-based Cross-Site Scripting 27

WebStorage 28

5

Testing security of HTML5: detecting and mitigating vulnerabilities

WebMessaging 29

How to test 30

WebSocket hijacking 31

How to Test 31

Other vulnerabilities 32

Mitigations 33

HTML5 recap OWASP Top 10 35

Penetration testing tools 37

Open Source Prevention Tools 37

Licensed Tools 37

Other tools 38

Limitations 39

List of Chosen Web Application Scanners 40

Websites for tests 41

HTML5 Web Test 41

Other Web for Testing 41

Beachmark frameworks 43

Limitations and Websites Chosen 44

Conclusion 45

Test Conclusions 45

HTML5 test results 45

Crawling results 46

Main Conclusions 50

Future work 52

Bibliography 53

6

7

Testing security of HTML5: detecting and mitigating vulnerabilities

1. Introducción

The web of today has adopted HTML5 in order to give power to web applications and

take them to the next level. HTML5 is improving browser capabilities with several new

technologies. With the interest emerged towards html5, new security issues have also

begun to come up and novel attack point for malicious users [1]. These vulnerabilities

are hard to detect due to the complexity of the new interactions between browsers and

web servers. Furthermore, doing this analysis automatically adds an additional level of

challenge. Even though there are some companies that offer solutions specially

designed for test web vulnerabilities, the vast majority of them cannot deal with

modern web technologies, like the dynamic web apps loaded with JavaScript. It is

necessary evaluate all new threats and adapt or create new security tools for further

improvement of our security as internet users.

1.1. Motivation

In 1989 Tim Berners-Lee invented the World Wide Web, based on three main

technologies: a system of globally unique identifiers for resources on the Web and

elsewhere, the Uniform Resource Locator(URL); a way to send data between browser

and server, the Hypertext Transfer Protocol (HTTP); the publishing language Hypertext

Markup Language (HTML). HTML dictates the structure of a web page semantically.

The web started simple and with a lack of standard, in the browser wars of the 90s each

competitor launched their implementation of JavaScript As the years passed, some

companies like Microsoft and Adobe expanded their vision for an Internet of closed

source software, powered by their plugins Silverlight and Flash. But in 2008, the World

Wide Web consortium, published the HTML5 working draft. Steve Jobs said in 2010:

"HTML5... lets web developers create advanced graphics, typography, animations and

transitions without relying on third party browser plug-ins like Flash"[2]. Under the

new rules of HTML5, audio, video and complex graphics can be added or created

directly on a web page.

Web applications have travelled a significant distance in the last decade. Looking back,

it all started with CGI scripts and now we are witnessing the era of RIA[3] and Cloud

applications. HTML 5, DOM (that now with the DOM level 3 is integrated in the HTML

standard) and XHR (Level 2) are new specifications being implemented in the browser,

to make applications more effective, efficient and flexible. Hence, now we have three

important technology stacks in the browser[4] and each one of them has its own

security weaknesses and strengths.

However, new elements of HTML5 have expanded the range of possible attacks by third

parties and new web security vulnerabilities have been discovered in web applications

and sites that support HTML5[1].

8

https://paperpile.com/c/2sy68Y/3qOS
https://paperpile.com/c/2sy68Y/ikIB
https://paperpile.com/c/2sy68Y/yfHh
https://paperpile.com/c/2sy68Y/GUXq
https://paperpile.com/c/2sy68Y/3qOS

The typical web vulnerabilities, like SQL injection and XSS, are very widespread. We

can see that currently this is ones of the main problems on the internet, taking into

account the number of vulnerabilities reported to the database Common Vulnerabilities

and Exposures[5]. According to reports of Symantec, three quarters of websites contain

major security vulnerabilities in 2015 .

Nowadays this common vulnerabilities with HTML5 can be exploited through new ٠٠٠٠
ways. HTML5 security issues have drawn the attention of the European Network and

Information Security Agency (ENISA), which studied 13 HTML5 specifications, defined

by the World Wide Web Consortium (W3C), and identified 51 security threats.

In this scenario, guaranteeing and testing the website security is a must. A common

approach for testing web sites is to use a Dynamic Application Security Testing tool,

also known as “black box” testing tool(from now on DAST tools). These tools crawl over

web applications in order to enumerate all the existing pages they can reach and their

associated input vectors. Afterwards generate different crafted input values that are

submitted to the app. Then observe the response to determine if a vulnerability has

been triggered.

1.2. Research Problem

HTML5 is a relatively new standard in the field of web development where standard,

techniques and trends continuously evolve. Even though HTML5 security is better than

Flash and other third party plugins, there are no technologies that cannot be misused

from a security perspective. Security weaknesses can appear in any technology when

developers use it for reasons other than those for which it was originally intended.

%This could be explained by the fact that there are developers who are not so security

oriented and thus do not pay attention to security.

Lavakumar Kuppan[6], a security researcher explains: "HTML5 brings a lot of features

and power to the Web. You can do so much more [malicious work] with plain HTML5

and JavaScript now than it was ever possible before. That said, many of the new

features constitute threats on their own, due to how they increase the number of ways

an attacker could harness the user's browser to do harm of some sort.

The new web applications are constructed in a completely different way from what has

been seen so far, often as SPA (Single page application). These websites are the present

and possibly the future of internet, so it is essential to be able to guarantee a correct

evaluation of their security. This is where the DAST tools that we are going to evaluate

come into play. It is expected that the latest versions have added the functionalities or

extensions necessary to deal with web pages accompanied by extensive libraries in

javascript. Although, the reality in the world of web security is not always as expected.

Many of the tools we can count on are traditionally more geared towards finding highly

recognised vulnerabilities with greater fame, as it is the best way to prove their worth

against competitors (see owasp top 10). These vulnerabilities, for example XSS or

SQLinjection are basically based on forcing the inputs that the web sends to the server

to look for possible injections of malicious code or to alter the behaviour of the server.

9

https://paperpile.com/c/2sy68Y/yHOA
https://paperpile.com/c/2sy68Y/6Zwm

Testing security of HTML5: detecting and mitigating vulnerabilities

Something for which DAST tools are highly optimized. But it is not the same in new

web apps where communication does not have to be always client-server. New

vulnerabilities may manifest themselves in communications or actions on the part of

the client, which does not have to be transmitted to the server.

1.3. Research Objectives

Web security from the client side is becoming an important field of research that

emerged since the mid 2000s. Besides a broad overview of client-side Web security,

this thesis proposes a study of the new threads introduced by HTML5. As finding bugs

in software is better and cheaper the earlier it occurs, we focus strongly on autonomous

mechanisms to detect the vulnerabilities, like DAST tools. We provide a review of the

maturity of those tools solution.

The present thesis proposes a study of the new arising vulnerabilities in HTML5 and its

JavaScript API technologies. After researching and analysing a state of art example of

this issue we show what kind of defense mechanism exist for defending against

different threats. However, because the web is so complex some vulnerable points will

always exist, so we also provide a review of the most advanced web application

vulnerability scanners, focusing on what tools are there for detecting the different

threats and how these tools evolved to detect and deal with new technologies as single

page applications built with Ajax a rest APIs.

The present thesis proposes a study of the arising questions by new threats and web

technologies. The research question is:

Can we still use DAST open source tools for security evaluation of modern web apps?

And the Questions derived are:

● What are the new vulnerabilities in HTML5 technologies?

● Can these tools be used in a Single Page Application?

The main contribution of this thesis are:

1. We detected the most used HTML5 technologies.

2. We performed the most extensive evaluation of vulnerabilities regarding HTML5.

3. We choose the best 3 open source DAST tools base on input vectors support and

HTML5 features supported.

4. We perform a comparison of the crawling capabilities of this tools against a RIA web.

10

While the topic of how these new technologies can be exploited is a good research topic,

there are a growing list of new act scenarios and threats. Because of this we are unsure

if this will apply to new attack types or ways to confront older types of attacks.

1.4. Thesis outline

The first question will be answered in this work in Chapters 2 and 3. We will introduce

the new technologies in the second chapter and in Chapter 3 we will discuss the threats,

at least for the main new technologies. The list of news in html5 is long and we can not

cover all possible vulnerabilities.

The second question will be partially answered in Chapter 4. The tools and

characteristics of these aimed to discover the new html5 related threats are explained in

Chapter 4. We will prepare some test sets with the new HTML5 vulnerabilities and

build a realistic web application in Chapter 5 in order to put the tools to the test. More

precisely our web uses features of HTML5 but misconfigured to make easy a possible

attack. Learning how those vulnerabilities can be used for attack scenarios is important

to understand how to test them.

To answer the third question, we will launch the tools against some test of crawling. In

order to see how the tools deal with a Single Page Application a website with this

characteristics is chosen in Chapter 5.

The evaluation of the tools selected with several tests results is performed in Chapter 6.

Finally, we also conclude this thesis in Chapter 6.

11

Testing security of HTML5: detecting and mitigating vulnerabilities

2. Technological Background and

Related Work

In this Chapter we introduce the new technologies and background work related to

DAST tools.

2.1. Technological background

Modern web apps are growing in features, size and number of users. Newer features

require newer technologies explained in this section to comply with the growing needs.

In this chapter we present some background on the related technologies like HTML5,

web applications and dynamic testing tools scanners. We also briefly discuss related

work.

2.1.1. HTML5

HTML stands for HyperText Markup Language, and it is the authoring language used

to create documents on the World Wide Web. HTML is used to define the structure and

layout of a Web page, how a page looks and any special functions. HTML does this by

using tags that have attributes.

On 28 October 2014, the W3C officially published HTML5 as a Web standard (or

recommendation of HTML5). HTML5 is the fifth major revision of the format used to

build Web pages and applications.

HTML5 contains powerful capabilities for Web-based applications with more

interaction, video support, graphics, more styling effects, and a full set of APIs. HTML5

adapts to any device, be it a desktop, mobile, tablet, or television device. HTML5 is an

open platform developed under royalty free licensing terms.

People use the term HTML5 in two ways:

● to refer to a set of technologies that together form the future Open Web

Platform. These technologies include HTML5 specification, CSS3, SVG,

MathML, Geolocation, XmlHttpRequest, Context 2D, Web Fonts (WOFF) and

others. The boundary of this set of technologies is informal and changes over

time.

● to refer to the HTML5 specification, which is, of course, also part of the Open

Web Platform.

12

According to recent statistics published by Powermapper[7], more than 70% of the web

pages analysed use the HTML5 DOCTYPE. This means that they are HTML5 web

applications.

HTML5 let developers to move more and more code towards the client side. This has an

effect on increasing power on the client side, providing more user features and reducing

the server load at the same time. But at the same time this new rich client side

introducing some attack vectors. Before analysing the possible vectors of attack, we

must understand the logical layers of modern browsers, depicted in figure 1.1.

Figure 1.1: Logic layers web browser

We have 4 layers:

● Presentation layer, witch contains the native implementation of HTML5

● Logic layer, where the core of the browser resides which allows DOM, threads,

and Javascript

● Network layer, which allows connectivity to the Internet and Domain/Cross

Domain calls across networks. HTML 5 supports WebSocket and XHR(Level-2)

calls.

● Policies layer, that controls and allows overall security to end users. Policies like

SOP and CORS are defined here.

HTML5 within the Open Web Platform featured technologies than are being introduced

in all www by de developers are detailed below. New communication mechanism are:

13

https://paperpile.com/c/2sy68Y/Ecrd

Testing security of HTML5: detecting and mitigating vulnerabilities

CORS: Cross Origin Resource Sharing or CORS is a mechanism that enables a web

browser to perform "cross-domain" requests using the XMLHttpRequest L2 API in a

controlled manner. In the past, the XMLHttpRequest L1 API only allowed requests to

be sent within the same origin as it was restricted by the same origin policy.

WebSockets: Traditionally the HTTP protocol only allows a TCP connection

request/response. AJAX technology provides connections to the server without the

page having to be refreshed, however AJAX requires the client to initiate the request

and wait for the server response (half-duplex).

HTML5 WebSockets introduce the possibility that the client or server can create a

full-duplex communication channel, which gives the two parties total freedom to

communicate asynchronously without waiting. The initial request of the Websocket

protocol is http, is an upgrade because after the affirmative response leaves opens the

communication channel over TCP, the Websocket channel.

To extend client functionality HTML5 brings to scene several new JavaScript API.

Modern web browsers have a good support for these APIs nowadays\cite{5}. Further

security concerns and threats of this specification is given in section 3. The new

JavaScript APIs are:

WebStorage: Before HTML5 web applications could only store data on the client

using cookies. But cookies are very limited in space and quantity. To address these

limitations and support offline applications, the concept of local storage as web storage

appears. Web storage has the possibility of storing data in the client and having access

to them later through javascript. There are two types of local storage:

● Local storage: you can store any type of data in tuples. The data is stored until it

is explicitly deleted. Closing the browser does not erase the data. Access is

protected with SOP.

● Storage session: similar to a local storage but data is deleted when the browser

is closed.

Another difference that local storage has to the cookie system is that the local storage

variables are not sent to the server in each request, they do not have an expiration date

like the cookies and that the local storage objects are separated by the SOP policy.

Values saved through HTTP can not be accessed by HTTPS. Cookies, although

established by HTTP, are also sent with HTTPS, if the domain is the same.

WebMessaging:New feature-rich websites typically include javascript applications

embedded in iframes. These iframes are secure but are isolated from the other

domains. In HTML5 a secure communication mechanism through domains is called

Cross Document Messaging. This API introduced in the WHATWG HTML5 draft

specification, allows documents to communicate with one another across different

origins.

To use the messaging api, HTML5 has introduced a postMessage function. With this

function, plain text messages can be sent from one domain to another. First the author

14

obtains the Window object of the receiving document. Therefore, messages can be

posted to the following:

● other frames or iframes within the sender document's window

● windows the sender document explicitly opens through JavaScript calls

● the parent window of the sender document

● the window which opened the sender document

WebWorkers: WebWorkers give you the ability to run Javascript in the background.

They are similar to known threads in programming languages. With Web Workers you

can run a heavy JavaScript task, such as accessing network resources, while the web

page continues to respond to the user, without blocking.

A fact that we were interested in was the popularity of Web technologies among the

recent year showed by developers. \ref{fig:stack} shows the relation between the recent

years and the interest/number of searches of some topic within stackoverflow.com, the

website where Web developers discuss about programming. The diagram clearly shows

that popularity of new web technologies are arising, and more likely to utilize Web

technologies than not so popular ones.

Figure 1.2: Interest/questions related to new APIs

From the graphics we can figure out that HTML5 is being used extensively in web

development. The first graph show the comparison with other relevant web

technologies. In the second graph we can se that the most important technologies

within HTML5 are CORS, Websockets, local-storage and the iframes.

2.1.2. Single Page Application

A single-page application (SPA) is a web application or web site that fits on a single web

page with the goal of providing a user experience similar to that of a desktop

application. SPAs aren't a fundamentally different model, just a new way for allowing

users to interact with a web application in a manner that takes advantage of modern

browser capabilities to provider a better user experience.

SPA applications use framework for render the html pages in the client that usually

filter and validate all inputs, but this does not mean that are not immune to CSRF, XSS,

15

Testing security of HTML5: detecting and mitigating vulnerabilities

or other normal attacks. The interaction between the client and the server still dealing

with HTTP requests and responses that usually are formatted as JSON.

However you cannot rely on JavaScript in the browser for things like input validation

and function authorization. If it is on the client, it doesn't belong to you. Any validation

and authorization that happens on the client is UX, not application security. Your

endpoints on the server are responsible for ensuring the security of the data and the

application.

2.1.3. Front-end and Java script Frameworks

In software design the front-end is the part of the software that interacts with the user

(s) and the back-end is the part that processes the input from the front-end. The

separation of the system in front-ends and back-ends is a type of abstraction that helps

to keep different parts of the system apart.

In the front, the developers have to integrate html, JavaScript and css in their web

application to generate an interface with which the user can interact. One of the

challenges associated with front end development is that the technologies used are

continuously changing and these should be alert that possible security consequences

may have to use a certain library or framework. The truth is that on the client side,

JavaScript is ubiquitous. Anywhere you look there is something created with javascript.

This is due to ease of use and distribution since JavaScript is an open source. In

addition, modern browsers that support HTML5 allows you to move more logic from

the application and the interface to the client side, for which JavaScript reduces the

amount of code to write.

Some examples of more popular open-source libraries are jQuery, Prototype, YUI,

ExtJS, MooTools, which allow developers to create shortcuts to work with elements in

the Document Object Model (DOM). Later frameworks such as AngularJS, EmberJS or

BackboneJS also have frameworks like Backbone.js, Angular.js, and Ember.js, which

ensure that the content will be viewed correctly regardless of the device in which they

are executed, and facilitate the development of new SPO that can often be a challenge.

In a Single Page application, all the code needed to render the page is included in a

single application load. This includes all CSS, HTML and JavaScript. The page is not

reloaded so you will need dynamic interactions with the web server. Ajax, a very

widespread technique for downloading content from the server allows these dynamic

uploads through JavaScript With the development of AJAX (Asynchronous JavaScript

+ XML) a new way of creating interfaces in web applications was introduced. With

AJAX you can send and receive information asynchronously without having to refresh

the page that is shown to the user.

This paradigm shift is known as Web 2.0, and became famous when major Internet

products (such as GMail or Google Maps) adopted it. These new techniques extend the

frontiers of web vulnerabilities by opening the possibility to perform serious attacks as

seen in Chapter 3.

16

2.1.4. Related Work with HTML5 issues

The background related with this thesis come from three main points, the security

concerns of HTML5, new novel tool for testing new vectors and articles of traditional

comparisons of pen testing tools. In this section we present some work from other

paper related with HTML5 Javascript API and communication mechanisms.

For several of the new capabilities added to modern Web browsers, insecure usage

scenarios or security issues have been identified. We list a selection of them.

In [8] the author tested a local storage vulnerability, illegitimate use of storage capacity

of clients to store compromised data. With a modelled web that takes a file, encrypts it,

and slices it up into 26 parts to distribute it to as many client systems as possible show

how to achieve a reliable recovery rate of the whole file afterwards. Moreover also

regarding to local storage in [9] the author identify the problem of caching code into

local storage as a practice that creates new attack vectors for adversaries. Traditional

Anti-XSS mechanisms are not applicable for cached code because they make cached

code unusable . Instead of filtering and validating the code inserted, the author

proposes a lightweight integrity preserving mechanism for Web Storage transparently

using API wrappers, that implies only a small overhead.

Furthermore, [10] have shown that the postMessage API can be used insecurely, if a

JavaScript that accepts postMessage-events does not verifies the origin of the incoming

data carefully.

In addition [11] studies if there are new vulnerabilities in the WebSocket

protocol/implementation and the defense mechanism against different arise threats.

This paper [12] proposes Threat Detector for WebSocket and Web Storage (TD-WS), a

dynamic taint tracking- based threat detector for WebSocket and Web Storage. TD-WS

tracks the unsafe data flows and detects potential privacy leaks and XSS vulnerabilities

in the client-side WebSocket and Web Storage applications.

%After reviewing the available defenses, we propose a JavaScript-based defense to use

until browser support for a solution such as X-FRAME-OPTIONS is widely deployed.

There are some other articles that show some tools dealing with new XSS faults

[13–15]. Abuseada [16] proposes an alternative methodology to detect DOM-XSS by

building-up on the existing approach used by web scanners in detecting general XSS.

In [17] Doupe et al propose a novel way of inferring the web application’s internal state

machine from the outside—that is, by navigating through the web application,

observing differences in output, and incrementally producing a model representing the

web application’s state. They utilize the inferred state machine to drive a black-box web

application vulnerability scanner. We implemented our technique in a prototype

crawler and linked it to the fuzzing component from an open-source web vulnerability

scanner.

17

https://paperpile.com/c/2sy68Y/mzSX
https://paperpile.com/c/2sy68Y/kuyj
https://paperpile.com/c/2sy68Y/mbfD
https://paperpile.com/c/2sy68Y/iJbL
https://paperpile.com/c/2sy68Y/TsvU
https://paperpile.com/c/2sy68Y/dXMw+dXBB+MmO3
https://paperpile.com/c/2sy68Y/4yz1
https://paperpile.com/c/2sy68Y/sxkg

Testing security of HTML5: detecting and mitigating vulnerabilities

2.2. Pen testing Tools Background

In this section we present an introduction to a kind of pen-testing tools and some work

from other paper related with traditional comparisons of pen testing tools.

2.2.1. Dynamic testing tools

Web Applications nowadays have become extremely complex with new features being

added on daily basis. It's almost impossible to achieve complexity and Security at the

same time. Developers and security experts have been aware of this situation and need

to focus to focus more security resources on web applications, so 79 percent of

developers and security are now more concerned and apply security resources to

public-facing web applications as we can see in the 2015 sans whitepaper [18].

Moreover application security (AppSec) is maturing for most organizations

To be effective, application security has to be included throughout the complete

development life cycle; Use dynamic analysis (DAST), static analysis (SAST), are

creating a new way to build applications, also called the application Secure Software

Development Life Cycle (SSDLC).

Dynamic application security testing (DAST) technologies are designed to detect

conditions indicative of a security vulnerability in a application in its running state.

Most of these solutions can test only the exposed HTTP and HTML interfaces of

Web-enabled applications, and many also test Web services such as Simple Object

Access Protocol (SOAP) or representational state transfer (REST).

However, the main advantage of the dynamic scanners is the fact that they form a

general analysis solution. As indicated, the dynamic scanners can operate on any

language and framework.

There are a wide range of DAST tools on the market with both commercial and

open-source solutions. Unfortunately, the evolution of web application into rich client

interfaces have left behind most application security scanners, dynamic scanners have

some limitations and drawbacks, which we discuss in chapter 4.

Automated Scanners won't necessarily protect your Web applications. As both of them

do not understand Business Logic of the Application. In depth defence principles

should be followed to ensure security in all layers.

2.2.2. Related Work DAST tools comparison

Here are two research papers that summarize the state of the art in this area:

[19] Adam Doupe et al evaluates 11 black-box web vulnerability scanners, both

commercial and open-source, and compares their effectiveness on a sample application.

[20]Jason Bau et al in his paper evaluates 8 black-box web vulnerability scanners, and

tests their effectiveness on several web applications.

18

https://paperpile.com/c/2sy68Y/Ha5A
https://paperpile.com/c/2sy68Y/ziCV
https://paperpile.com/c/2sy68Y/RKKm

Additional information on previous benchmarks, comparisons and assessments in the

field of web application vulnerability scanners are in [21], where the author published

the results of his own Benchmark.

19

https://paperpile.com/c/2sy68Y/G3Yg

Testing security of HTML5: detecting and mitigating vulnerabilities

3. New HTML5 threats

The previous section introduced several new technologies of modern Web apps. This

chapter lists the vulnerabilities we figure the tools could test. For each vulnerability an

overview will be given, followed by one example or way to exploit these new

technologies especially crafted for the convenience of the tools.

Misuse of new HTML5 elements and features may cause vulnerabilities to be built into

web sites. Besides, web applications that had been considered secure in the past may

become vulnerable since new enhanced featured may make older mitigation measures

useless or inconvenient. We want to select some features where DAST tools could help.

Moreover many times vulnerabilities appear in browser specific implementations.

According to Symantec 2.4 browser vulnerabilities were discovered per day in 2016,

more than 800 in the 4 major browsers[22].

The list of news in HTML5 is long and we can not cover all possible vulnerabilities so

we review the ones we consider most suitable for testing according to the most popular

technologies among developers showed in Chapter 2.

3.1. Threat Models

Before going into depth with the vulnerabilities let's define our threat model. This

section presents relevant threat models for client-side security, also explaining its

general capabilities. We can distinguish two kinds of malign users willing to exploit any

vulnerability exposed. These models are the most relevant for the discussion of client

side Web security, and as simpler as any user can become an active attacker with only a

bit of knowledge of the victim system

Forum Poster: This model represents a user of an existing Web application. This user

can supply limited kinds of content, can issue requests from the honest site’s origin

Web Attacker: A web attacker is a malicious principal who owns a domain name, e.g.

attacker.com, has a valid HTTPS certificate for attacker.com, and operates a web server.

These capabilities can all be obtained for 10 euros. If the user visits attacker.com, the

attacker can mount a CSRF attack by instructing the user’s browser to issue cross-site

requests using both the GET and POST methods.

For clarify is interesting define what is a threat vs vulnerability. The former generally

can not be controlled, rather threats need to be identified. It may be an expressed or

demonstrated intent to harm an asset or cause it to become unavailable. The latter are

weaknesses we should take proactive measures against and correct. A vulnerability is a

flaw in the measures you take to secure an asset.

20

https://paperpile.com/c/2sy68Y/on5c

3.2. CORS

Prior to HTML5 websites were limited to making a http or Ajax request, the Same

Origin Policy restricts the communications within their origin domain. An origin is

defined by the combination of the following three properties: protocol, domain, and

port. If all of these are same for two hosts, communication is allowed. This is especially

problematic for web applications which are loading data from different origins.

As stated in section 2.1 with HTML5 this changed, a new standard called CORS was

introduced. CORS makes it possible to send cross domain http requests, and more

importantly, XHR (XMLHttpRequest) across domains using a new http header called

"Access-Control-Allow-Origin". With this header a domain can specify which origins

can process its data. The UA makes the decision if the JavaScript is allowed to show the

response or not. For example a header "like Access-Control-Allow-Origin:

http://webA.com" means that only the website with origin webA.com is allowed to

access the web providing this header.

3.2.1. Threats and security issue

HTML5 and CORS give new ways to bypass the Same-Origin Policy. The central

security problem is that XHR are sent without the user's permission. This can be used

to break the security of an authenticated session, and make requests on behalf of the

victim. Another problem with CORS is that now the origin of data can came from

anywhere bypassing server validations. This untrusted data needs to be validated on

client.

For example, if the response returns a wildcard mask in the http header as it is in the

following example, this indicates that access from all origins is permitted.

Access-Control-Allow-Origin: *

Assume that in a intranet an internal web site defines the access control header

wrongly, with the *. Accessing internal websites from the internet is possible. If a

internal user accesses to this website and in the same session is tricked to open an

attacker controlled malicious website in the internet with malicious JavaScript code,

this JavaScript code makes a background XHR request in the UA to the internal

website. Because the intranet website has the access control header is set to *,

JavaScript can parse the result and send the content back to the attacker controlled web

server.

Other ways to exploit CORS basically are due to misconfiguration of the http headers.

In some cases this is because of the web trust the null origin. This origin is for the

21

Testing security of HTML5: detecting and mitigating vulnerabilities

origins from the filesystem (load call come from file:// URL). This is great for attackers,

because any website can easily obtain the null origin using a sandboxed iframe:

<iframe

sandbox="allow-scripts allow-top-navigation allow-forms"
src=''data:text/html,<script>*cors stuff here*</script>>
</iframe>

A severe security vulnerability found on Facebook uses this kind of technique [23].

In other cases websites reflect the origin header without attempting to validate the

origin or make wrong validations, for example a domain called somedomain.net trusts

all origins that start with https://somedomain.net, including

https://somedomain.net.evil.net [24].

Cross Site Request Forgery (CSRF) is defined in the Owasp CSRF Prevention Cheat

Sheet as "occurs when a malicious web site, email, blog, instant message or program

causes a user’s web browser to perform an unwanted action on a trusted site for which

the user is currently authenticated”[25].

In another example a CSRF attack is possible. The page apart from return the CORS

header with a wildcard(*) or another misconfigured header, has a CSRF token in the

response. Any domain can perform XHR request and fetch the required data. To extract

the CSRF token, we can craft a web to send the website an AJAX request that will crawl

the code and copy the token.

xmlhttp.open("GET","https://site.com/",false);
xmlhttp.send();

if(xmlhttp.status==200)
{

var str=xmlhttp.responseText;
var n=str.search("csrf-token");
var c=str.substring(n+30,n+74);
var url = "http://badSite.com/grab.php?c="
+ encodeURIComponent(c);
xmlhttp.open("GET", url, true);
xmlhttp.send();

}

A more realistic example of stealing the CRSF-token can be found in [26], where the

author discovered this vulnerability on a real web site and shows a proof of concept

where successfully exploited it to grab the users authenticity token.

22

https://paperpile.com/c/2sy68Y/KczW
https://paperpile.com/c/2sy68Y/VbpH
https://paperpile.com/c/2sy68Y/Y8me
https://paperpile.com/c/2sy68Y/ZrE7

We found also that an attacker can exploit old websites which load files using

XMLHttpRequest creating a page on a remote server that allows cross-domain requests

from the particular origin of the victim website, or all origins using CORS. It is a new

kind of Remote File Inclusion. If there is no url validation we can inject a remote script

passed after the \# character in the URL and create a Content injection. In this example

some web load content using the fragment, originally from the same domain:

http://website.com/#/a/page

xhr.open("GET", "/a/page");

But an attacker can place content in a domain whith CORS configured incorrectly, like

the following PHP scrip, name it remotexss.php:

<?php header('Access-Control-Allow-Origin: *');
?>

<div id="main">
<imgsrc=x onerror=alert(document.domain) /> </div>

Now if you enter to the link

"http://website.com/\#http://example.com/remotexss.php" the content was

successfully loaded, triggering an alert.

3.3.1. How to test

Access-Control-Allow-Origin is a response header added by a server to allow some

domains to read the response, but it is up to the client to determine whether the client

has to show the response data based on this header. From a penetration testing

perspective we can look for insecure configurations as for example using a "*" as value

of the Access-Control-Allow-Origin header. Another insecure example is when the

server generate the origin header based on your input and returned back without

proper validations.

We can use the dynamic tools to check the http headers to understand how CORS is

used, more particularly what Origin headers are allowed. Also check for the new

possibility of client side remote file inclusion is important. The tools can try to inject

some crafted file with ACAO * header.

3.3. Sandboxed Iframes

23

Testing security of HTML5: detecting and mitigating vulnerabilities

A normal iframe loads all the contents from the destination, this include HTML CSS

and JavaScript HTML5 to introduce the attribute. This new feature allows us to specify

what content should be loaded to the iframe, forbidding the execution of JavaScript or

popup windows. The aim of the of the html5 attribute sandbox is to allow embed the

required third party component and give it only the minimum level of capability

necessary to do its task. In addition it is possible to give back the privileges with:

● allow-forms: allows form submission.

● allow-popups: allows popups (window.open(), showModalDialog(),

target=”_blank”, etc.).

● allow-pointer-lock: allows pointer lock.

● allow-same-origin: allows the document to maintain its origin; pages

loaded from https://example.com/ will retain access to that origin’s

data.

● allow-scripts: allows JavaScript execution, and also allows features to

trigger automatically.

● allow-top-navigation: allows the document to break out of the frame

by navigating the top-level window.

3.3.1. Threats and security issue

Although sandbox iframe was implemented as an innovative feature to address security

problems, there are some security concerns bound to it.

Clickjacking [27] is a typical attack that allows an evil page to click on a “victim site” on

behalf of the visitor, which the attacker's page overlays the target application's interface

with a different interface provided by the attacker. One old defence, Frame busting, it is

one of the recommended defense against clickjacking\cite{Clickjac57:online}. It use a

frame busting code such as:

if (top != self) {
 top.location = self.location;
}

If the window finds out that it’s not on the top, then it automatically makes itself the

top. This code prevent the page to be loaded into an iframe. However that’s not reliable

anymore, because in sandboxed iframes we can prevent the execution of Javascript so

the above code would not work. Even if we include allow-scripts permission the code

will still not work, the navigation is forbidden and the change of top.location won’t

24

https://paperpile.com/c/2sy68Y/zGyY

work, "the framed website can still execute JavaScript - but has no privileges to modify

the top frame's location."[28].

Modern web browser prevent websites from being loaded into an iframe checking the

X-frame-options header. If a page fails to set an appropriate X-Frame-Options %or

Content-Security-Policy HTTP header it might be possible for a page controlled by an

attacker to load it within an iframe in order to enable a clickjacking attack.

As the x-frame options are set to same-origin it still may be vulnerable to clickjacking

attacks due to it only checks the top level frame. This means that if you have nested

frames, i.e. frames within frames, it is still possible for another origin to include a site

with a X-Frame-Options: SAMEORIGIN header. In this regard the header

Content-Security-Policy: frame-ancestors 'self' is better, because it checks all frame

ancestors[29].

Also another vulnerability appear due to a security misconfiguration. Setting both

allow-scripts and allow-same-origin is not recommended, because it effectively enables

an embedded page to break out of all sandboxing. Avoid the usage of allow-same-origin

and allow-scripts at the same time.

<iframe src="link "
sandbox="allow-top-navigation allow-same-origin allow-scripts\">
</iframe>

3.3.2. How to test

Described the two ways to protect a Webpage in front of Clickjacking with iframes, the

JavaScript code and the http header, we are going to consider only the http header.

Naturally, both defenses should be implemented. The header defense is aimed towards

modern browsers, while the JavaScript defense protects legacy browsers.

The lack of the X-frame-options header is considered a CWE-693 vulnerability:

Protection Mechanism Failure. We can use the dynamic tools to check if the http

x-Frame-Options is present, and inform of the possibly embedding capability of the

current tested website.

Also is important to check that an iframe doesn't allow the attributes allow-same-origin

and allow-script at the same time, the tools can inform us of this misconfiguration in

the http response.

3.4. Based on XSS

The vulnerabilities in this section are strongly related with XSS, where JavaScript is

getting more and more important.

3.4.1. XSS through HTML5 tags

25

https://paperpile.com/c/2sy68Y/pNMg
https://paperpile.com/c/2sy68Y/lZIc

Testing security of HTML5: detecting and mitigating vulnerabilities

HTML5 has several new tags and attributes that can brake XSS filters. Before to

HTML5 if you found a XSS hole within a input that has some filers for < > symbols you

could not exploit it automatically. However HTML5 lets us execute expressions, for

example:

<input type="text" AUTOFOCUS onfocus=alert(1)>

Here with the "autofocus" feature we focus on the element and then the onfucus event

to execute our XSS. This works with a lot of tags. You can use this method in any form

based element[30]:

<input autofocus onfocus=alert(1)>
<select autofocus onfocus=alert(1)>
<textarea autofocus onfocus=alert(1)>
<keygen autofocus onfocus=alert(1)>

Also new tags introduced with HTML5 broke XSS filters. In case we can not inject

common tags such as <script>, <iframe> because they are blocked by a blacklist filter,

HTML5 has introduced lots of new tags that can be used to bypass the blacklists. Here

are couple of examples:

Vectors Browsers

 all

CLICK ME<a> all

<video src=_ onloadstart="alert(1)"> all

<input onfocus=write("pepe") autofocus> all

<svg><animate href=\#x attributeName=href all

In other cases, with the introduction of the "formaction" attribute with button in

HTML5, we can use it in order to execute Javascript.

<button formation='javascript:alert(1)">text</button></form>

In order to protect against all types of XSS, secure input handling must be performed in

both the server-side code and the client-side code.

26

https://paperpile.com/c/2sy68Y/L2DT

Since this thesis is more focused on HTML5 attacks rather than XSS attacks, we don't

go into more depth with this topic. In html5sec.org lists a dozen new XSS vectors are

listed.

3.4.2. DOM-based Cross-Site Scripting

DOM Based XSS or also called "type-0 XSS" is an XSS attack wherein the attack

payload is executed as a result of modifying the DOM, so in order to understand DOM

XSS, we need to describe a bit what DOM is, and why is it relevant to this context. The

DOM is a convention for working with objects in an HTML document. When a web

page is loaded, the browser creates a Document Object Model of the page with which

JavaScript can manipulate and create dynamic HTML [31].

DOMXSS first was documented in a paper by Amit Klein in 2005 and has risen in

relevance over the last years due to affecting specifically the client side.

DOM xss happens when untrusted data is added to DOM (or eval’d) through unsafe

JavaScript call. Either can be Stored or Reflected, untrusted data can come from client

or server. Some of these attacks never reach the server side, and thus cannot be

detected by server side code.

Sources and Sinks are two terms that give meaning to this attack, defined hereafter.

Sources: The source is the injection point for the malicious JavaScript. With DOM

XSS, the sources are on the client. Payloads including malicious JavaScript code

injected into sources with or without some processing could then reflect in the DOM or

execute.

Examples of DOM XSS sources are document.URL, cookies, referer header.

Sinks: The sink is the reflection point that eventually executes (or helps with execution

of) the malicious JavaScript injected through the source. These are usually locations on

the DOM or Browser Object that can change and invoke code, or they are JavaScript

routines that allow direct JavaScript execution.

Examples of easy-to-exploit sinks are eval, document.write, setTimeout.

Figure 3.1: Common sinks/sources[32]

But at the same time this new rich client side introduces some attack vectors. The

common flows of DOM XSS are depicted in \ref{fig:sinks}. HTML5 lets attackers do

27

https://paperpile.com/c/2sy68Y/rO99
https://paperpile.com/c/2sy68Y/wkjl

Testing security of HTML5: detecting and mitigating vulnerabilities

persistent DOM XSS storing not validated data inside local Storage. This kind of attack

are described in the next subsections.

A basic example of DOM Xss:

var hash = document.location.hash //source
firstName=hash.slice(1)
document.write(firstName) //sink

Few more examples on different contexts of this type of XSS can be found on 1

3.4.3. WebStorage

The main security concern with Local Storage is that the user is not aware of the kind of

data that is stored in Local Storage. The user is not able to control Storage respectively

access to data stored in Local Storage. The whole access is performed through

JavaScript code and, therefore, it is sufficient to execute some JavaScript code in the

correct domain context to access all items stored in Local Storage transparently for the

user.

Some concern related with the security are derived from how developers could misuse

the Webstorage:

● The data in the web storage is not encrypted. This means that any sensitive

information stored inside the web storage, such as cookies and code, does not

guarantee any integrity of the data.

● If the web application is vulnerable to XSS, the attacker can steal information

from the web storage of the website user.

● Web storages do not have HTTPOnly and SecureFlag like cookies. An

HTTPOnly flag instructs the browser that only “http” requests should be able to

access the cookies, hence preventing cross-site scripting vulnerabilities since the

XSS attack vectors heavily rely upon JavaScript. Since web storage is a

JavaScript API, it would, by design, allow JavaScript to access the web storage,

raising security concerns. Along with HTTPOnly flags, the web storage also does

not support SecureFlag.

● If the data stored inside the web storage is being written to the page by using a

vulnerable sink, it will result in DOM based XSS vulnerability. A similar issue

happens with web messaging.

One example of an insecure implementation of local storage could be the code below,

where assignment from localStorage could lead to XSS:

1 https://github.com/eoftedal/writings/blob/master/published/owasp_top_

10_for_js_-_xss.md

28

function action(){
var resource = location.hash.substring(1);
localStorage.setItem("item",resource);
item = localStorage.getItem("item");
document.getElementById("div1").innerHTML=item;
}

</script>
<body onload="action()">
<div id="div1"></div>
</body>

In the example above the item extracted without any validation is passed to the

innerHTML value.

Other ways to exploit web storage is through a flaw in browsers implementation, that

lets unlimited storage using sudbomains upon disc full[33]. Nowadays, the browser

patches this attack to negate it.

Further real examples of domXSS vulnerabilities leveraging with localStorage are

exposed in[34,35]

Here is an example of illegitimate use of storage capacity of clients to store

compromised data [8].

3.4.4. WebMessaging

HTML5 PostMessages (also known as: Web Messaging, or Cross Domain Messaging) is

a method of passing arbitrary data between domains. The Messaging API introduced

the postMessage() method, with which plain-text messages can be sent cross-origin. It

consists of two parameters, message and domain.

However if not implemented correctly it can lead to sensitive information disclosure or

cross-site scripting vulnerabilities as it leaves origin validation up to the developer. If

the origin is not being checked, any window which can interact with the window will be

allowed to send a message regardless of whether it's trusted or not.

Another problem with Cross Window Messaging is the use of insecure DOM methods to

display the data, which would obviously result in DOM XSS[36]:

//Listener on http://www.examplereceiver.com/

29

https://paperpile.com/c/2sy68Y/0rm4
https://paperpile.com/c/2sy68Y/W4KR+WCy5
https://paperpile.com/c/2sy68Y/mzSX
https://paperpile.com/c/2sy68Y/RPxf

Testing security of HTML5: detecting and mitigating vulnerabilities

window.addEventListener("message", function(message){
//Inexistent or inefective message.origin check

document.getElementById("message").innerHTML =
message.data;

});

To conclude this section, WebMessaging have created a new attack vector for exploiting

XSS. Further examples of how harmful could be a bad use of postMessage can be found

on [37].

3.4.5. How to test

Blackbox testing for DOM-Based XSS is not usually performed since access to the

source code is always available as it needs to be sent to the client to be executed.

The JavaScript web applications differ significantly from other types of applications

because they are often dynamically generated by the server. We need to crawl the web

to determine all the instances of JavaScript being executed and where user input is

accepted. Some inputs obtained from client-side JavaScript objects are

window.location, window.referer, etc. If some function was a sink and used one of the

former inputs, then the exploitability would depend on the encoding done by the

browser.

Automated testing has had only very limited success at identifying and validating

DOM-based XSS as it usually identifies XSS by sending a specific payload and attempts

to observe it in the server response. Due to their nature, DOM-based XSS

vulnerabilities can be executed in many instances without the server being able to

determine what is actually being executed. This may make many of the general XSS

filtering and detection techniques impotent to such attacks.

The tools need to have knowledge of what is going on with the page on the JavaScript

Engine level, static analysis is not reliable anymore for DOM Xss detecting.

To detect DOM XSS automatically, is necessary instrumentation of the browsing

engine, especially the JavaScript execution engine, to detect the passage of strings from

sources to sinks. This is known as the taint propagation method. All the strings passed

from possible sources have to be tracked to see if they land on sinks. Much tools do not

implement those techniques what makes impossible for them to detect DOM

vulnerabilities.

For our test we are going to consider only cases of DOM XSS that include some of the

HTML5 features we are discussing in this chapter. Hence our test cases include

examples of DOM XSS where the sink are either local storage or postmessage.

30

https://paperpile.com/c/2sy68Y/CZiX

Even though we consider that test the other variant of XSS are also important in our

research. The exploitation of some HTML5 features depends directly in the presence of

a XSS vulnerability. This XSS might leverage an attacker to get a chained attack

poisoning local storage for example. Hence a good evaluation of the evolved capabilities

of detecting XSS in general is worth for the testing section.

3.5. WebSocket hijacking

An important concern with WebSockets is that WebSockets are not restrained by the

same-origin policy. Thus an attacker can easily initiate a WebSocket request. The user

is not able to control or block a request from a malicious webpage targeting the ws:// or

wss:// endpoint URL of the attacked service. Due to the fact that the request starts with

a HTTP(s) handshake, if the user is authenticated with some cookie the browsers send

these cookies and authentication headers along, even cross-site.

Hence, new threat concerning WebSockets are possible. Christian Schneider describes

that during the handshake operation, where the handshake request is sent using

HTTP-protocol, the hijacking of the WebSocket connection is possible. Hence the name

for the attack: Cross-site WebSocket Hijacking (CSWSH). In CSWSH, it is possible to

establish a WebSocket connection to a legitimate service from outside the original

application, whether or not it uses HTTPS.

A good and quick way to see what is happening within the WebSocket protocol is use

through the use of the chrome devtools , that in the recent previous have been adapted
2

and redefined for best support.

Some mitigations that modern browsers introduce like chrome are detections of

insecure connexion with WebSockets. The web browser blocks insecure connections

with ws:// unencrypted protocol within a web using the protocol https due to a mixed

content fault, and prompt the next message in console:

"websocket:17 Mixed Content: The page at 'https://example.com' was
loaded over HTTPS, but attempted to connect to the insecure
WebSocket endpoint 'ws://echo.websocket.org/'. This request has been
blocked; this endpoint must be available over WSS".

3.5.1. How to Test

Commonly available web security testing tools such as Burp Suite or OWASP ZAP are

unsuitable for testing the security of a WebSocket implementation automatically[38].

This leaves it as a manual task requiring extensive knowledge of how the

implementations work, what the common security issues in them are, and how they can

be security tested.

2 http://octogence.com/blog/websocket-security/

31

https://paperpile.com/c/2sy68Y/FoQT

Testing security of HTML5: detecting and mitigating vulnerabilities

3.6. Other vulnerabilities

Apart from the vulnerabilities detailed above, other vulnerabilities with different

degrees of severity emerge which, although not derived directly from an html5

technology, have been expanded or are notorious because of them. They will be

mentioned and given a solution.

As in other technologies, frameworks javascripts are exempt from vulnerabilities. As we

can see some of them have different CVEs Failure to update or use one of these
34

frameworks that contains vulnerabilities may lead to one of the risks of OWASP top 10,

more specifically A9, Using Components with Known Vulnerabilities.

On the other hand a well-established CSP guarantee code separation and can help us

mitigate widespread vulnerabilities like XSS. But if we do not take into account the

guidelines or recommendations when setting the header we may be exposing ourselves

to an A5 Security Misconfiguration. Furthermore, the specification for this header has

evolved over time. It was implemented as X-Content-Security-Policy in Firefox until

version 23 and in IE until version 10, and was implemented as X-Webkit-CSP in

Chrome until version 25. Both of the names are deprecated in favor of the now standard

name Content Security Policy.

The following are misconfiguration scenarios:

● If default-src is not set or set to wildcard and/or other directives are set to

wildcard we have a policy that is too permissive.

● Multiple instances of this header are allowed in same response. Depending on

the version of the browser this will understand ones and ignore others. Hence,

in order to achieve desired support it is essential that the response include an

identical policy with all three names.

● If a directive is repeated within the same instance of the header, all subsequent

occurrences are ignored.

I would argue that SPAs are more vulnerable to JSON Hijacking (which is a form of
5

CSRF) because many of these applications rely on JSON to pass information. This is an

attack that allows a malicious site to retrieve and process data instead of the one way

communication you typically see with CSRF. But nowadays browser improvements to

do not allow this kind of specific attack.

3.7. Mitigations

Until now we have been showing the bad face of html5 but, as the author states in his

research we can improve Modern Web Application Defenses Using HTML5. There are

big efforts within html5 to improve the overall security of the web, and in contrast with

3 https://www.cvedetails.com/vulnerability-list/vendor_id-6538/Jquery.html
4 https://www.cvedetails.com/vulnerability-list/vendor_id-6541/Prototypejs.html
5 http://haacked.com/archive/2009/06/25/json-hijacking.aspx/

32

the last sections is this one we are going to show this new security features, that can

prevent some of the previous attacks.

We define the main ways to defend HTML 5 webs as follows :

● Strong solutions:

Clickjacking -- X-Frame-Options

● Mitigating solutions:

HTML injection -- Content Security Policy

 Mixed-Origin content -- CORS, CSP, <iframe> sandbox

Sniffing -- HSTS

● Implementation-specific solutions:

CSRF -- specific implementations with tokens

This means we defeat exploits rather than vulnerabilities . The mitigations include
6

some secure headers that are getting more and more common. In regards to the

adoption of secure headers, the owasp have a great tool for getting usage statics . Use
7

this headers enforce some policies in the browser. Some security headers that if used

properly enhance the security of HTML5 applications are:

X-XSS-Protection

Internet Explorer and Google Chrome has inbuilt XSS protection framework, which

prevents XSS attack from being executed. These features are enabled in the default

state. The X-XSS-Protection header asks the browser to enable or disable those plugins.

● X-XSS-Protection: This prevents XSS from being executed

● X-XSS-Protection: This allows XSS to execute

X-Frame-Options

In the "Sandboxe Iframes" section, we show the possibility of bypassing clickjacking

protections af JavaScript framebusting. X-Frame-Options header countless clickjacking

vulnerability. The X-Frame-Options header has been made obsolete by the

frame-ancestors directive from Content Security Policy Level 2. If a resource has both

policies, the frame-ancestors policy SHOULD be enforced and the X-Frame-Options

policy SHOULD be ignored . 8

Strict-Transport-Security

6
https://deadliestwebattacks.files.wordpress.com/2013/09/using-html5-to-make-javascript-mo

stly-harmless.pdf
7 https://github.com/oshp/headers
8 https://www.w3.org/TR/CSP2/\#directive-frame-ancestors

33

Testing security of HTML5: detecting and mitigating vulnerabilities

HTTP Strict-Transport-Security (HSTS) enforces secure (HTTP over SSL/TLS)

connections to the server. This reduces the impact of bugs in web application leaking

session data through cookies and external links and defends against Man-in-the-middle

attacks. HSTS also disables the ability for user's to ignore SSL negotiation warnings.

Simple example, using a long (1 year) max-age. This example is dangerous since it lacks

includeSubDomains.

 Strict-Transport-Security: max-age=31536000

Content-security-policy

HTML 5 introduces the concept of Content Security Policy (CSP). CSP is a HTTP header

with directives delivered from the server. Using these directives the authors establish a

baseline about what can, and should not, be trusted by the client. In this case, even if an

attacker can inject some malicious script, unless it conforms to the defined CSP then

the browser will ignore that script.

On the one hand, one problem of CSP is the case that an attacker alter the stream (such

as with a classic man in the middle attack) they can simply eliminate, or alter, HTTP

headers that define the CSP. By using HTTPS applications this problem can be avoided

to a great extent, but communications over HTTP may still be vulnerable to attack.

On the other hand, a CSP disallows any inline JavaScript from executing. This is a good

architectural policy to separate instructions from data, making HTML more readable

and maintainable.

One advantage of using the new CSP is that you can not only prevent XSS, but you can

also detect it .
9

HTTP header enforce, in the client, a least-privilege environment for script and other

content using a series of policy directives. The directives below are available as of CSP

version 1.0. Each one of them limits the origins from where you can get such content.

The frame-ancestors directive of Content Security Policy (introduced in version 1.1) can

allow or disallow embedding of content by potentially hostile pages using iframe.

Setting this directive to 'none' is similar to X-Frame-Options: DENY (which is also

supported in older browers).

A Best Practice for CSP implementation is establishing a default-src directive. It is
10

always better to start with full lockdown and then start allowing resources that are

absolutely needed. To do that set the default-src directive to ‘self’ or ‘none’ and then

start adding other directives like script-src, media –src etc. as needed. This would help

in making the web application secure at the roots with additional directives serving as

exceptions added in order to maintain functionality. This also help in achieving

9 http://www.madirish.net/556
10 https://www.html5rocks.com/en/tutorials/security/content-security-policy/

34

flexibility because if any new source location has to be added/removed, it can be done

very easily.

Google has a tools to improve CSP protection for Web Apps . This online tool is very
11

useful for developers because it validates the CSP headers and warns you about bad

practices.

3.7. HTML5 recap OWASP Top 10

OWASP top 10 is by far the leading application security standard or guideline followed

by builders who took this survey \cite{SANS_Survey2015-io},

\cite{SANSSurv17:online}. In this section we present a classification of the

vulnerabilities described referring to Owasp top 10.

Looking through the OWASP list we can see a few interesting security risks. We could

discard A1 (Injection) (the WebSql is deprecated), A2 (Broken authentication and

session management), A4 (Insecure direct object references) and A7 (Missing function

level access control). These risks contains backend implementations and we could not

find any usage of these risk with HTML5 functionality. Even though we did not find any

usage of these risk this does not mean that they can’t be exploited using HTML5.

The classification of the vulnerabilities exposed before referencing the owasp top 10 are

the following:

● A3-XSS

TestCors1 (Cors rfi)

TestDomXssWMessaging

TestDomXssWStorage

● A5-Security Misconfiguration

TestCors2 (ACAO headers misuses)

TestIframe2 (To permissive sandboxing directives)

Content security policy misconfiguration

● A6-Sensitive Data Exposure}

11 https://cspvalidator.org

35

Testing security of HTML5: detecting and mitigating vulnerabilities

TestCors2 (ACAO headers misuses)

● A8-CSRF

TestWebsocketsHijacking

● A9-Using Known Vulnerable Components

The use of vulnerable javascripts frameworks

● A10-Unvalidated Redirects

TestIframe1

36

4. Penetration testing tools

This chapter presents the options available for security web analysis, which dynamic

scanners there are, which ones we have chosen and why. Also for each to we provide

extra information about what features or plugins provide the tools for test the test cases

we expose in chapter 5.

4.1. Open Source Prevention Tools

W3af: w3af is an open-source program written in Python. All functionalities within

w3af are implemented as plugins. These functionalities are divided into three different

types of plugins. Firstly, crawl plugins are responsible for finding new URLs, forms, and

other injection points. The web spider plugin is one of the crawl plugins. It is a classic

web spider designed to navigate through the application and extract all URLs from web

pages it encounters.

Arachni: Open source pen testing framework written in Ruby and is highly extensible.

One of Arachni's most lauded attributes is its scalability and modularity; the tool can be

used as a simple command line scanner utility or configured in a high performance

scanner grid to support large-scale application security testing routines.

Arachni can handle complex modern web applications providing internally a headless

browser-cluster (for apps with lots of JS). Support for JavaScript/DOM/HTML5/AJAX.

Also detection of DOM-based vulnerabilities tracing of data and execution flows of

DOM and JavaScript environments. Extra tracing optimizations for common

JavaScript frameworks

Zap Proxy: Zap is an open source project within the OWASP community. One of the

extras of zap is the REST api accessible whenever the java program be working. For

extract the results You can access this information via the ZAP API, which has a (basic)

HTML interface. Point your browser to the host/port your instance of ZAP is listening

on and select: "Local API" / "spider" / "fullResults" Then enter '0' for the scanId and

press the 'fullResults' button. You may also need to supply your API key, which is

available from the ZAP Options / API screen. You can also change the format of the

results if you want - HTML, JSON and XML are all supported.

ZAP provide several plugins that make the tool able to detect and handle with modern

web technologies.

4.2. Licensed Tools

37

Testing security of HTML5: detecting and mitigating vulnerabilities

Netsparker: Full HTML5 Support The Netsparker scanners have a state of art Chrome

based crawler that enables them to simulate JavaScript and DOM on pages, thus they

can fully understand and crawl all types of modern Web 2.0, HTML5 web applications

and Single Page Applications and identify vulnerabilities and security flaws in them.

Netsparker is also able to identify web application vulnerabilities which are typically

associated with modern HTML5 web applications, such as DOM based cross-site

scripting. The vulnerabilities that detect or warn are Misconfigured

Access-Control-Allow-Origin Header, DOM based Cross-site Scripting (XSS),

Misconfigured Frame

Acunetix: Is a commercial tool that provide a Web Interface and windows program. It

has support for AJAX, WSDL and their results can now be imported into a Web

Application Firewall (WAF). Acunetix DeepScan also supports scanning of Single Page

Applications (SPA). They claim to be able to crawl and then scan this technologies,

thanks to its DeepScan technology, Acunetix can crawl any website and web

application, even modern Single Page Application (SPAs) developed using HTML5,

JavaScript and RESTful APIs. Acunetix DeepScan crawls even the most advanced web

applications by replicating user actions and executing JavaScript just like a real browser

does. Acunetix also includes a fully automated web browser that can understand, and

interact with complex web technologies. This internal browser crawl and scan HTML5

web applications, and execute JavaScript like a real browser. Interacts with AJAX,

SOAP/WSDL, SOAP/WCF, REST/WADL, XML, JSON, Google Web Toolkit (GWT) and

CRUD operations. Analyses web applications developed in Ruby on Rails and Java

Frameworks including Java Server Faces (JSF), Spring and Struts.

Burp Suit: Burp is a graphical tool for testing Web application security. The tool is

written in Java and developed by PortSwigger Security. Similar to Zap, burp offer a

proxy to intercept to request in the free version. A full version also have crawling and

automating testing capabilities.

List contains the definitions of all issues that can be detected by Burp Scanner can be

found on . This list include several HTML5 related vulnerabilities.
12

4.3. Other tools

DOMinator Pro is a great semi-automated tool for identifying DOM XSS. Is a tool or
13

rather a runtime analyzer written with Nodejs that use a chrome browser to discover

DOM Xss issues. Is worth mention this tools because is the only one that can deal with

complex JavaScript environment that contain DOM Xss.

12 https://portswigger.net/knowledgebase/issues
13 https://www.blueclosure.com/

38

Despite being used in the most popular websites that we frequent, JavaScript does,

unfortunately, come with its own unique risks. Dynamic code analysis is the best way to

ensure that security vulnerabilities don’t make it into your Javascript code. % and that

security is a top priority in every element of the software development life cycle.

4.4. Limitations

This research is subjected to several limitations. First of all, the experiments we

conducted with several dynamic vulnerability scanners were done with no prior

knowledge or experience with those scanners. We cannot guarantee that our use of the

scanners is the optimal way, and therefore all findings are merely ours and do not

necessarily reflect findings of other developers.

In addition, if you generate results for a commercial tool, be careful who you distribute

it to. Each tool has its own license defining when any results it produces can be

released/made public. It is likely to be against the terms of a commercial tool's license

to publicly release that tool's score against your own tests or Benchmark.

In the Owasp web it is not recommended Black box testing for issues within the new

HTML5 technologies since access to the source code is always available as it needs to be

sent to the client to be executed.

Furthermore, crawling some web app are becoming a problem for some tools. This tools

in most cases do no support the navigation method of recent JavaScript frameworks.

Web scanners general approach is to inject payload in the web page inputs and check

the received HTML response for possible cross-site scripting vulnerabilities, but for

instance in a DOM based XSS this does not works because of the fact that the

vulnerability take place during the rendering of the page, injected data appears only in

the rendered response.

39

Testing security of HTML5: detecting and mitigating vulnerabilities

4.5. List of Chosen Web Application Scanners

The following open source scanners were covered in the benchmark and tests. These

scanners have been chosen for further analysis due to the easy access of their source

code and because the wide range of supported input vectors as we can se on table

\ref{table:inputVectors}. The input delivery method (a.k.a the input vector) is the

method used by the HTML/Flash/Applet/Silverlight application to deliver

user-originating input from the client to the server. In the investigating field of DAST

tools, Is considered the scanner's to support as much as application input delivery

method for testing. Consequently this is a significant aspect in the selection process of

any scanner.

The selected tools are all free, without any restriction or limitation what make easy the

task of install the tools. Also all this tools have multiplatform support:

● Zed Attack Proxy (ZAP) v2.6.0 , changed to ZAP Multi-2017-06-05 (OWASP)

● W3AF v1.7.6 revision 27b1516a3f (The W3AF team)

● arachni v 1.5.1 webUI 0.5.12(Tasos Laskos)

40

5. Websites for tests

After defining the limitations of the tools with respect to the new technologies in this

section we are going to find, compare and define a set of tests to evaluate the reliability

and improvements made to the tools during the past years to face the vulnerabilities.

Testing the tools consist of several tests. We have created a small test to show the

support of HTML5 features by the tools, two existing benchmarks, and two web

applications.

5.1. HTML5 Web Test

From the extracted test sets that we presented in chapter 3 we have implemented a

website. The vulnerabilities are implemented in its simplest form in order to guarantee

some basic principles:

● Each test case focuses on a specific property, thus

having a clear test goal which is more convenient in

evaluation.

● The test cases omit all vulnerability-irrelevant language

features and external dependencies, making

them easier to deploy.

● The test cases scale are not realistic applications, which reduces the cost of

detecting and facilitates rapid testing

Some other vulnerabilities reviewed like CRSF with CORS are not implemented

because it depends on an specific conditions that rather in any web are satisfied. Even

trying to implement this deliberately are difficult, the browsers don't allow ACAO *

header with allow credentials for secure reasons, so if the user is authenticated, this

session cookie or header wouldn't be send to the server. CORS can't lead to a real CRSF

attack unless this attack take place in a non authorised web or the server would be

misconfigured echoing the origin of any CORS request submitted.

5.2. Other Web for Testing

This sections provides an updated list of vulnerable web applications which you can

test the pen-testing tools. The vulnerable web applications have been classified in three

categories: offline, VMs/ISOs, and online. For each web we also show the technologies

that implement. Another category are the case of the websites for benchmarking

purposes.

41

Testing security of HTML5: detecting and mitigating vulnerabilities

Wackopickto: is a website written by Adam Doupé. It contains known and common

vulnerabilities (XSS vulnerabilities, SQL injections, command-line injections, sessionID

vulnerabilities, file inclusions, parameters manipulation, ...). It is intended to be a

realistic website.

bodgeId: The bodgeId is an open source vulnerable web designed as a simulation of a

webshop to help people learn about penetration testing.

bWAPP: free and open source deliberately insecure web application. Written in PHP

uses a MySQL database. It has over 100 web bugs including some related to HTML5 but

only for CORS. The source code is accessible for downloading. Another possibility is to

download the bee-box, a custom Linux VM pre-installed with bWAPP .
14

SecurityTweets: web application was built as a Single Page Application (SPA) using

modern web technologies such as AngularJs, Bootstrap, CouchDB, Flask and Nginx. Is

the web test of acunetix.

Juice Shop: is written in Node.js, Express and AngularJS. It was the first application

written entirely in JavaScript listed in the OWASP VWA Directory. There is an online

version but also the source code is disposable in github for local deploying. The web
15

imitates a real online shop with some challenges for security learning.

Hackazon: Hackazon is a vulnerable test site that is an online storefront built with the

same technologies used in modern client and mobile applications. Hackazon has an

AJAX interface and RESTful API’s used by a companion mobile app. Hackazon enables

users to configure each area of the application in order to change the vulnerability

landscape to prevent well known vulnerabilities. The application have a online version

and also the code are disponible in github in order to install it locally.
16

Figure 5.1: Summary of webs classified by technologies

14 http://www.itsecgames.com/
15 https://juice-shop.herokuapp.com
16 https://github.com/rapid7/hackazon

42

Other web apps might be webgoat or multillidae 2, but all of these have the problem

that are designed for training and they don't implement vulnerabilities from new of

HTML5.

5.3. Beachmark frameworks

In order to see the level of performance of each tool is interesting compare these with

some kind of test suite designed to evaluate the speed, coverage, and accuracy. There

are already several Beachmarks, we also review this benchmark projects in order to

show the most recent results for the tools selected.

WIVET: [39]an open-source benchmark for web link extractors includes a set of tests

which test different methods that can be used to access a website. When scanners are

mainly used in a point-and-shoot scenario, where is preferible as much automation as

possible, a high WIVET score will be the second most important feature you should

follow. WIVET tests Link Extraction capabilities of the tools.. WIVET contains 54 tests

and assigns a final score to a crawler based on the percent of tests that it passes. The

tests require scanners to analyze simple links, multi-page forms, links in comments and

JavaScript actions on a variety of HTML elements. There are also AJAX-based tests as

well as Flash-based tests. In our tests, we used WIVET version number 129.

WAVSEP: is vulnerable web application designed to help assessing the features,

quality and accuracy of web application vulnerability scanners. This evaluation

platform contains a collection of unique vulnerable web pages that can be used to test

the various properties of web application scanners[21].

OWASP Benchmark:The OWASP Benchmark for Security Automation (OWASP

Benchmark) is a free and open test suite designed to evaluate the speed, coverage, and

accuracy of automated software vulnerability detection tools and services. You can use

the OWASP Benchmark with Static Application Security Testing (SAST) tools, Dynamic

Application Security Testing (DAST) tools like OWASP ZAP and Interactive Application

Security Testing (IAST) tools. The benchmark includes false positives test cases that

used cookies as a source of data that flowed into XSS vulnerabilities. The Benchmark

treated these tests as False Positives because the Benchmark team figured that you'd

have to use an XSS vulnerability in the first place to set the cookie value, and so it

wasn't fair/reasonable to consider an XSS vulnerability whose data source was a cookie

value as actually exploitable

5.4. Limitations and Websites Chosen

A considerable number of vulnerable web applications already existed before. We have

give a list of these applications. Most of them are only server-side rendered

applications. But Rich Internet Application (RIA) or Single Page Application (SPA)

style applications were already a commodity at that time. Juice Shop is constructed as

SPA as was meant to fill that gap.

43

https://paperpile.com/c/2sy68Y/La3M
https://paperpile.com/c/2sy68Y/G3Yg

Testing security of HTML5: detecting and mitigating vulnerabilities

We have not chose Juice Shop because at the moment Zap proxy POST Data field

supports only application/x-www-form-urlencoded. You cannot authenticate this web

that expect a post with JSON.

As far as zap is concerned, automatic crawling of web typo ecommerce applications,

where there are lists of products that are updated based on ajax requests (such as the

hackazon testing website) is not feasible. Having no clear way to add redundant urls,

the application iterated infinitely by the different url of the products (url example).

In addition, the rules have been limited to look for vulnerability to XSS types only

because when activating all rules, the process could take hours or even not finish. This

decision of only executing a test for XSS will be maintained for other applications, and

although it limits the capacities of the tools very much. We assume that for this thesis it

is a correct decision, as it has been mentioned before, the XSS vulnerabilities continue

being the most exploited today and are key to obtaining information from the client.

Also we do not use the hackazon page because it has some vulnerabilities that have to

be exploited in a specific workflow. They cannot be directly attacked without respecting

the order of execution.

For test the crawling capabilities we have chosen WIVET because it is easy to deploy.

Also for see the effective crawling in a more realistic web we use SecureTweets. Lastly

we using OWASP benchmark to get an idea of the overall accuracy of the tools.

44

6. Conclusion

In this Chapter we show the results of the test and give a conclusion.

6.1. Test Conclusions

In this section we are going to show the test result. Of the we only talk about the most

significant ones. Other test are performed also but without the expected results.

6.1.1. HTML5 test results

HTML5 Test

In this test the three tools have been executed against the HTML5 test cases designed

in section 5.1. This evaluate several test case of HTML5 vulnerabilities. As we can see

from the table 6.1 of obtained results, w3af cannot discover any of the vulnerabilities

related with manipulations of the DOM. Any tool are able to execute the Javascript code

to reveal the client file inclusion of the TestCors1. Even though Zap and Arachni have

reported the Dom vulnerabilities, does not mean those can discover any DOM xss. The

test cases implemented only consider a basic flow of this vulnerability taking as source

the url query parameter. In another more complex attach the vulnerability might not

have been detected. As regards the detection of websocket hijacking, any tool can

automatically detecting it. w3af even though having a plugin for this purpose, only

report the presence of websockets link. Zap allows you to interact manually with

websockets using a plugin.

Figure 6.1: HTML5 test features results

45

Testing security of HTML5: detecting and mitigating vulnerabilities

6.1.2. Crawling results

WIVET Test

We tested the scanners on WIVET. For each connection received, WIVET will create a

session, which needs to be maintained throughout the test.

There are 2 ways that a session can be disconnected:

*Click on the Logout link (/logout.php)

*Browse to /pages/100.php

So each tool should be setup in a specific way. For instance w3af can see a cookie

session using a file that contains the value of the cookie. Arachni has a argument if you

execute this from the command line "-http-cookie-string="PHPSESSID=".

In the WIVET test the clear winner is arachni. Thanks to its internal browser, arachni

can monitor the DOM to see changes or new events, execute them and find hidden links

in them.

Following is Zap Proxy, although in our own test we found a bug in the ajax spider that

has been reported , we take as a reference the results of the page where zap
17 18

developers publish for each new version some updated results. The ajax Spider crash

while crawling a given a url where an alert box is displayed.

We started using the app specific installation for mac os, but after several problems

regarding about connecting the app with web browsers and out of memory problems,

we get the multiplatform java executable. This is lauched using a script that tune the

memory levels and contain all the latest selenium driver to automate external browser

direct control.

It has very complex interface and I have encountered some accessibility problems while

working with it.

The last one would be w3af, that without having a spider that interprets JavaScript, is

only able to extract static links of the http response code.

Therefore in the graph\ref{fig:coverage}, the tool that dominates all would be aranchni,

and links extracted by Zap would be a subset of its parent node, just as it occurs with

w3af.

17 https://github.com/zaproxy/zaproxy/issues/3412
18 http://zapbot.github.io/zap-mgmt-scripts/scans.html

46

Figure 6.2: Coverage wivet

SPA Test

Today a large number of web applications are template-driven, meaning the same code

or path generates millions of URLs. For a security scanner, it just needs one of the

millions of URLs generated by the same code or path.

The test HTML 5 website, SecureTweets, was built as a SPA web application. Its URLs

are designed to look like:

● http://testhtml5.vulnweb.com/\#/popular

● http://testhtml5.vulnweb.com/\#/latest

● http://testhtml5.vulnweb.com/\#/latest/page/1

● http://testhtml5.vulnweb.com/\#/carousel

● http://testhtml5.vulnweb.com/\#/archive

● http://testhtml5.vulnweb.com/\#/about

All the URLs shown above are using the location hash to determine the target page.

There is only one real page (/) and this is page is loading various sections of the website

by using the value of the location hash parameter. The web server doesn't see any of the

URLs above, everything is happening only in the client's browser and the page is not

reloaded.

47

http://testhtml5.vulnweb.com/%5C#/popular
http://testhtml5.vulnweb.com/%5C#/latest
http://testhtml5.vulnweb.com/%5C#/latest/page/1
http://testhtml5.vulnweb.com/%5C#/carousel
http://testhtml5.vulnweb.com/%5C#/archive
http://testhtml5.vulnweb.com/%5C#/about

Testing security of HTML5: detecting and mitigating vulnerabilities

Zap Proxy results:

http://testhtml5.vulnweb.com/

http://testhtml5.vulnweb.com/favicon.ico

http://testhtml5.vulnweb.com/login

http://testhtml5.vulnweb.com/logout

http://testhtml5.vulnweb.com/static/app/app.js

http://testhtml5.vulnweb.com/static/app/controllers/controllers.js

http://testhtml5.vulnweb.com/static/app/libs/sessvars.js

http://testhtml5.vulnweb.com/static/app/post.js

http://testhtml5.vulnweb.com/static/app/services/itemsService.js

http://testhtml5.vulnweb.com/static/css/style.css

http://testhtml5.vulnweb.com/static/img/logo2.png

Crawling SPA is failing in zap proxy. Zap does not recognize the fragment links that are

not a complete page in html as another page or state. The ajax spider Zap is unreliable,

through a browser automatically managed by the drivers selenium, it tries to click and

fill forms to reach all possible pages. This implementation is more like a program to test

the usability of the U.I. than a crawler.

Arachni results:

By utilizing client-side code through its built-in browser, Arachni is able to crawl not

only static links in the HTML code, but also DOM links created by arbitrary client-side

48

code. This form of link can not be detected by just statically analyzing received HTML.

Since Arachni also analyses changes to the DOM, it is able to detect these. As we see in

the arachni results, arachni get the best result crawling SecureTweets.

Automatic scanning of SecureTweets with w3af is not feasible. Their crawling spider

only has the ability to find links in static HTML. It does not handle dynamic links

created through Javascript events or ajax requests. It also does not understand pages

created with templates. For example, in SecureTweets through the index received after

the \# a request is made that downloads a partial HTML that angular renders. W3af

does not interpret these partial changes as new pages.

Benchmark OWASP Test

In this test the three tools have been executed against the benchmark designed by

Owasp. This benchmark evaluates several categories of vulnerabilities, in our case we

have evaluated only those related to xss. More specifically the page has a total of 455

vulnerabilities reflected XSS.

There are four possible test outcomes in the Benchmark:

● Tool correctly identifies a real vulnerability (True Positive - TP)

● Tool fails to identify a real vulnerability (False Negative - FN)

● Tool correctly ignores a false alarm (True Negative - TN)

● Tool fails to ignore a false alarm (False Positive - FP)

Formulas:

True Positive Rate (TPR) = TP / (TP + FN)

False Positive Rate (FPR) = FP / (FP + TN)

False Positive Rate (FPR) = FP / (FP + TN)

It should be noted that w3af was not included for evaluation in this test because

the benchmark do not provide a parser for its results. In figure 6.4 we can see a

graphical representation that describes how close is the tool to the ideal XSS detection

rate[40].

49

https://paperpile.com/c/2sy68Y/2oII

Testing security of HTML5: detecting and mitigating vulnerabilities

Figure 6.4: XSS accuracy results OWASP benchmark

In table 6.4 we can see the detailed values of true positives, false negatives, false

positives, true negatives and the corresponding rates.

6.2 Main Conclusions

What are the new vulnerabilities in HTML5 technologies?

Unless there are a lot of information regarding of security in HTML5 this is very

widespread and difficult to search. The results were somewhat were discouraging. We

could not find a good vulnerable code example and most security commentaries boiled

down to either “there is no major risk” or “if developers use HTML5 properly there is no

risk.”.

Moreover When I started this work, I did not realize that new technologies like APIs

and frameworks are maybe more important than new HTML5 features. As we see the

50

nowadays modern webs are getting more and more dependent of APIs. The APIs are

the foundation of a secure web so is more important to understand the risks of those.

Nevertheless, HTML5 brings new risks and preserves old vulnerabilities in new and

interesting ways, but a large responsibility for those weaknesses lies with developers

who would misuse an HTML5 feature in the same way they might have misused XHR

and JSONP in the past. From our research we can figure out some new possible attacks

like stealing credentials with CORS request, or more sophisticated XSS exploits using

WebMessaging and WebSockets to scour data from a compromised browser.

The vulnerabilities detected by the tools are based on the well-known OWASP Top Ten,

or CWE. We have seen that currently some specific HTML5 vulnerabilities like the ones

related with websocket, still without a good testing support within the different

scanners.

Can the tools crawling new javascript frameworks aka SPA webpages?

This thesis has shown that none of the web scanners are perfect doing his task in a SPA.

Traditionally, crawlers use Unified Resource Locators (URLs) to navigate through the

web. But in a Single Page Application JavaScript manipulates de DOM and crate new

pages dynamically. The states of the web page are not based on the url anymore. To do

effective crawling, DAST tools should adopt features like the DOM Crawling of Arachni.

One disadvantage of this approach is that consume a lot more time.

It has been observed that the main limitation of these tools is crawling web application

with javascript frameworks like angular

We realized that the DAST tool use relatively highs amounts of process power due to in

some webs the rate of request/response sent can become of more than 20 per second.

Hence this tools need a better environment to work well, desktop pc with at least 8

gigas of RAM and multicore CPU.

Another finding is the lack of effective automated tools client side. There currently are

not any automated tools that effectively scan client-side and server-side JavaScript,

performing dataflow analysis and not just pattern-matching, and understanding the

thousand and one frameworks.

Some tools like Zap have already a good support of pluggins for check some of the

threads exposed in Chapter 3. But from the perspective of a inexperienced user, the

process to manage this plugins are not user friendly and requires a little of knowledge.

Other tools like arachni have more client side technologies support but any of the tools

can testing in a automated way Websockets technology

Overall discussion for the research question

The tools have limitation understanding modern web apps. There are simply too many

vulnerabilities in modern HTML5 webs which requires a certain logic. DAST tools are

51

Testing security of HTML5: detecting and mitigating vulnerabilities

recommended as an initial check for a modern web app but together with a manual

penetration test.

Application technologies overlooked by most web application scanners include JSON

and REST. The application language is one of the factors when choosing a web scanner.

For example, if the application uses extensive AJAX code, a scanner that cannot crawl

AJAX will not be a good choice. Dynamic technologies, such AJAX, generally challenge

DAST tools. DAST tools send requests to the application and analyse responses. Since

AJAX is used on the client-side to create asynchronous web applications, a DAST tool

have to execute

AJAX scripts before it can send a request. In classic web application, when a

vulnerability is discovered, DAST tools would reference the page and parameter where

the issue was found. This cannot be applied to AJAX application because everything is

often presented as a single page with many possible user events. The vulnerability may

rely on a certain combination of steps to occur before it exists, which makes automated

scanning a challenge. To detect a vulnerability hidden behind AJAX/JSON code, a

scanner needs to execute AJAX code and process and analyse JSON parameters.

6.3. Future work

One future work is a evaluation of the tools in terms of some requirements

specification. Different metrics can be used to compare the web scanners. For example,

only comparing the amount of false positives. Another way is by comparing the

vulnerabilities found by the scanners with the actual vulnerabilities that exists on the

custom built website. A custom built web application is required to run the scanners on.

The most interesting would be do an evaluation on a more realistic web application.

One idea is make one web app based on some other website for testing, for instance

Wackopicko, but Migrating this to a modern web app with more recent technologies.

Regarding the HTML5 vulnerabilities, would be interesting build an extension plugin

for some tool like Zap, consisting in a audit plugin for HTML5 features.

Other idea is use well known realistic test webs used in other paper like wackopicko,

bodgeit, all of them MPA. Test again this webs with the tools might give an idea of how

the tools have improved. Maybe the maturity of scanners has reached the point where

they are able to detect almost all of this well-know pages.

Because commercial tools have the latest state of art, features Performing an evaluation

of the commercial scanners would be very interesting as these are presumably the most

effective web scanners.

52

Bibliography

1. Shah S. Html5 top 10 threats stealth attacks and silent exploits. BlackHat Europe.

2012;

2. Jobs S. Thoughts on flash, Apple. 2010; Available:

https://www.apple.com/hotnews/thoughts-on-flash

3. Fraternali P, Rossi G, Sánchez-Figueroa F. Rich internet applications. IEEE

Internet Comput. IEEE; 2010;14: 9–12.

4. WHATWG Living Standard [Internet]. Available:

https://html.spec.whatwg.org/multipage/

5. CVE - Common Vulnerabilities and Exposures (CVE) [Internet]. Available:

https://cve.mitre.org/

6. Kuppan - Presentation at Black Hat L, 2010. Attacking with HTML5.

media.blackhat.com. 2010; Available:

https://media.blackhat.com/bh-ad-10/Kuppan/Blackhat-AD-2010-Kuppan-Attac

king-with-HTML5-slides.pdf

7. Powermapper. HTML Version Statistics [Internet]. Available:

https://try.powermapper.com/Stats/HtmlVersions

8. Bogaard D, Johnson D, Parody R. Browser web storage vulnerability investigation:

html5 localstorage object. Proceedings of the International Conference on Security

and Management (SAM). The Steering Committee of The World Congress in

Computer Science, Computer Engineering and Applied Computing (WorldComp);

2012. p. 1.

9. Lekies S, Johns M. Lightweight Integriti Protection for Web Storage-driven

Content Caching [Internet]. Available:

http://www.w2spconf.com/2012/papers/w2sp12-final8.pdf

10. Son S, Shmatikov V. The postman always rings twice: Attacking and defending

postmessage in html5 websites. 2013.

11. Karlström J. The WebSocket Protocol and Security: Best Practices and Worst

Weaknesses. 2015;

12. Bai J, Wang W, Lu M, Wang H, Wang J. TD-WS: a threat detection tool of

WebSocket and Web Storage in HTML5 websites. Security and Communication

Networks. Wiley Online Library; 2016;

13. Dong G, Zhang Y, Wang X, Wang P, Liu L. Detecting cross site scripting

vulnerabilities introduced by HTML5. 2014 11th International Joint Conference on

Computer Science and Software Engineering (JCSSE). 2014. pp. 319–323.

doi:10.1109/JCSSE.2014.6841888

14. Kim I-A, Cho K-H, Yim H-J, Kim H-K, Lee K-C. Hadoop-based Crawling and

53

http://paperpile.com/b/2sy68Y/3qOS
http://paperpile.com/b/2sy68Y/3qOS
http://paperpile.com/b/2sy68Y/ikIB
https://www.apple.com/hotnews/thoughts-on-flash
http://paperpile.com/b/2sy68Y/yfHh
http://paperpile.com/b/2sy68Y/yfHh
http://paperpile.com/b/2sy68Y/GUXq
https://html.spec.whatwg.org/multipage/
http://paperpile.com/b/2sy68Y/yHOA
https://cve.mitre.org/
http://paperpile.com/b/2sy68Y/6Zwm
http://paperpile.com/b/2sy68Y/6Zwm
https://media.blackhat.com/bh-ad-10/Kuppan/Blackhat-AD-2010-Kuppan-Attacking-with-HTML5-slides.pdf
https://media.blackhat.com/bh-ad-10/Kuppan/Blackhat-AD-2010-Kuppan-Attacking-with-HTML5-slides.pdf
http://paperpile.com/b/2sy68Y/Ecrd
https://try.powermapper.com/Stats/HtmlVersions
http://paperpile.com/b/2sy68Y/mzSX
http://paperpile.com/b/2sy68Y/mzSX
http://paperpile.com/b/2sy68Y/mzSX
http://paperpile.com/b/2sy68Y/mzSX
http://paperpile.com/b/2sy68Y/mzSX
http://paperpile.com/b/2sy68Y/kuyj
http://paperpile.com/b/2sy68Y/kuyj
http://www.w2spconf.com/2012/papers/w2sp12-final8.pdf
http://paperpile.com/b/2sy68Y/mbfD
http://paperpile.com/b/2sy68Y/mbfD
http://paperpile.com/b/2sy68Y/iJbL
http://paperpile.com/b/2sy68Y/iJbL
http://paperpile.com/b/2sy68Y/TsvU
http://paperpile.com/b/2sy68Y/TsvU
http://paperpile.com/b/2sy68Y/TsvU
http://paperpile.com/b/2sy68Y/dXMw
http://paperpile.com/b/2sy68Y/dXMw
http://paperpile.com/b/2sy68Y/dXMw
http://paperpile.com/b/2sy68Y/dXMw
http://dx.doi.org/10.1109/JCSSE.2014.6841888
http://paperpile.com/b/2sy68Y/dXBB

Testing security of HTML5: detecting and mitigating vulnerabilities

Detection of New HTML5 Vulnerabilities on Public Institutions’ Web Sites. Indian

J Sci Technol. 2015;8.

15. Gupta S, Gupta BB. JS-SAN: defense mechanism for HTML5-based web

applications against JavaScript code injection vulnerabilities. Security and

Communication Networks. Wiley Online Library; 2016;9: 1477–1495.

16. AbuSeada W. Alternative Approach to Automate Detection of DOM-XSS

Vulnerabilities.

17. Doupé A, Cavedon L, Kruegel C, Vigna G. Enemy of the State: A State-Aware

Black-Box Web Vulnerability Scanner. Presented as part of the 21st USENIX

Security Symposium (USENIX Security 12). Bellevue, WA: USENIX; 2012. pp.

523–538. Available:

https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presenta

tion/doupe

18. SANS Survey A. 2015 State of Application Security: Closing the Gap [Internet].

May 2015. Available:

https://www.sans.org/reading-room/whitepapers/analyst/2015-state-application-

security-closing-gap-35942

19. Doupé A, Cova M, Vigna G. Why Johnny can’t pentest: An analysis of black-box

web vulnerability scanners. International Conference on Detection of Intrusions

and Malware, and Vulnerability Assessment. Springer; 2010. pp. 111–131.

20. Bau J, Bursztein E, Gupta D, Mitchell J. State of the art: Automated black-box web

application vulnerability testing. Security and Privacy (SP), 2010 IEEE Symposium

on. IEEE; 2010. pp. 332–345.

21. Chen S. A Comparison of Prices vs. Features of Web Application Vulnerability

Scanners - WAVSEP Benchmark [Internet]. Available:

http://www.sectoolmarket.com/price-and-feature-comparison-of-web-application

-scanners-unified-list.html

22. Symantec. Internet Security Threat Report [Internet]. Available:

https://www.symantec.com/content/dam/symantec/docs/reports/istr-21-2016-en

.pdf

23. Cynet. Critical Issue Opened Private Chats of FACEBOOK MESSENGER Users up

to Attackers [Internet]. Available: http://www.cynet.com/blog-facebook-originull/

24. PortSwigger Web Security Blog: Exploiting CORS Misconfigurations for Bitcoins

and Bounties [Internet]. Available:

http://blog.portswigger.net/2016/10/exploiting-cors-misconfigurations-for.html

25. Dave Wichers ES Paul Petefish. Cross-Site Request Forgery (CSRF) Prevention

Cheat Sheet - OWASP [Internet]. Available:

https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)_Prevent

ion_Cheat_Sheet

26. Aboukir Y. Security impact of a misconfigured CORS implementation [Internet].

Available:

http://yassineaboukir.com/blog/security-impact-of-a-misconfigured-cors-implem

54

http://paperpile.com/b/2sy68Y/dXBB
http://paperpile.com/b/2sy68Y/dXBB
http://paperpile.com/b/2sy68Y/MmO3
http://paperpile.com/b/2sy68Y/MmO3
http://paperpile.com/b/2sy68Y/MmO3
http://paperpile.com/b/2sy68Y/4yz1
http://paperpile.com/b/2sy68Y/4yz1
http://paperpile.com/b/2sy68Y/sxkg
http://paperpile.com/b/2sy68Y/sxkg
http://paperpile.com/b/2sy68Y/sxkg
http://paperpile.com/b/2sy68Y/sxkg
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/doupe
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/doupe
http://paperpile.com/b/2sy68Y/Ha5A
http://paperpile.com/b/2sy68Y/Ha5A
https://www.sans.org/reading-room/whitepapers/analyst/2015-state-application-security-closing-gap-35942
https://www.sans.org/reading-room/whitepapers/analyst/2015-state-application-security-closing-gap-35942
http://paperpile.com/b/2sy68Y/ziCV
http://paperpile.com/b/2sy68Y/ziCV
http://paperpile.com/b/2sy68Y/ziCV
http://paperpile.com/b/2sy68Y/RKKm
http://paperpile.com/b/2sy68Y/RKKm
http://paperpile.com/b/2sy68Y/RKKm
http://paperpile.com/b/2sy68Y/G3Yg
http://paperpile.com/b/2sy68Y/G3Yg
http://www.sectoolmarket.com/price-and-feature-comparison-of-web-application-scanners-unified-list.html
http://www.sectoolmarket.com/price-and-feature-comparison-of-web-application-scanners-unified-list.html
http://paperpile.com/b/2sy68Y/on5c
https://www.symantec.com/content/dam/symantec/docs/reports/istr-21-2016-en.pdf
https://www.symantec.com/content/dam/symantec/docs/reports/istr-21-2016-en.pdf
http://paperpile.com/b/2sy68Y/KczW
http://paperpile.com/b/2sy68Y/KczW
http://www.cynet.com/blog-facebook-originull/
http://paperpile.com/b/2sy68Y/VbpH
http://paperpile.com/b/2sy68Y/VbpH
http://blog.portswigger.net/2016/10/exploiting-cors-misconfigurations-for.html
http://paperpile.com/b/2sy68Y/Y8me
http://paperpile.com/b/2sy68Y/Y8me
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)_Prevention_Cheat_Sheet
http://paperpile.com/b/2sy68Y/ZrE7
http://paperpile.com/b/2sy68Y/ZrE7
http://yassineaboukir.com/blog/security-impact-of-a-misconfigured-cors-implementation/

entation/

27. Clickjacking - OWASP [Internet]. Available:

https://www.owasp.org/index.php/Clickjacking

28. Cure93. HTML5 Security Cheatsheet [Internet]. Available: https://html5sec.org/

29. Security SLWA. Headers to block iframe loading [Internet]. Available:

https://www.sjoerdlangkemper.nl/2016/07/20/block-iframe-loading/

30. Exploiting XSS - Injecting into Tag Attributes | Burp Suite Support Center

[Internet]. Available:

https://support.portswigger.net/customer/en/portal/articles/2325988-exploiting-

xss---injecting-into-tag-attributes

31. HTML5 DOM w3schools [Internet]. 2017. Available:

https://www.w3schools.com/js/js_htmldom.asp

32. Lekies S, Stock B, Johns M. 25 million flows later: large-scale detection of

DOM-based XSS. Proceedings of the 2013 ACM SIGSAC conference on Computer

& communications security. ACM; 2013. pp. 1193–1204.

33. Introducing the HTML5 Hard Disk Filler API » Feross.org [Internet]. Available:

https://feross.org/fill-disk/

34. Web Storage Security - WhiteHat Security [Internet]. Available:

https://www.whitehatsec.com/blog/web-storage-security/

35. How a Platform Using HTML5 Can Affect the Security of Your Website - Security

Musings [Internet]. Available:

http://securitymusings.com/article/3159/how-a-platform-using-html5-can-affect-

the-security-of-your-website

36. The pitfalls of postMessage [Internet]. Available:

https://labs.detectify.com/2016/12/08/the-pitfalls-of-postmessage/

37. postMessage XSS on a million sites [Internet]. Available:

https://labs.detectify.com/2016/12/15/postmessage-xss-on-a-million-sites/

38. Kuosmanen H, Others. Security Testing of WebSockets. Jyväskylän

ammattikorkeakoulu; 2016;

39. Tatli Eİ, Urgun B. WIVET—Benchmarking Coverage Qualities of Web Crawlers.

Comput J. Oxford University Press; 2017;60: 555–572.

40. Benchmark - OWASP [Internet]. Available:

https://www.owasp.org/index.php/Benchmark

55

http://yassineaboukir.com/blog/security-impact-of-a-misconfigured-cors-implementation/
http://paperpile.com/b/2sy68Y/zGyY
https://www.owasp.org/index.php/Clickjacking
http://paperpile.com/b/2sy68Y/pNMg
https://html5sec.org/
http://paperpile.com/b/2sy68Y/lZIc
https://www.sjoerdlangkemper.nl/2016/07/20/block-iframe-loading/
http://paperpile.com/b/2sy68Y/L2DT
http://paperpile.com/b/2sy68Y/L2DT
https://support.portswigger.net/customer/en/portal/articles/2325988-exploiting-xss---injecting-into-tag-attributes
https://support.portswigger.net/customer/en/portal/articles/2325988-exploiting-xss---injecting-into-tag-attributes
http://paperpile.com/b/2sy68Y/rO99
https://www.w3schools.com/js/js_htmldom.asp
http://paperpile.com/b/2sy68Y/wkjl
http://paperpile.com/b/2sy68Y/wkjl
http://paperpile.com/b/2sy68Y/wkjl
http://paperpile.com/b/2sy68Y/0rm4
https://feross.org/fill-disk/
http://paperpile.com/b/2sy68Y/W4KR
https://www.whitehatsec.com/blog/web-storage-security/
http://paperpile.com/b/2sy68Y/WCy5
http://paperpile.com/b/2sy68Y/WCy5
http://securitymusings.com/article/3159/how-a-platform-using-html5-can-affect-the-security-of-your-website
http://securitymusings.com/article/3159/how-a-platform-using-html5-can-affect-the-security-of-your-website
http://paperpile.com/b/2sy68Y/RPxf
https://labs.detectify.com/2016/12/08/the-pitfalls-of-postmessage/
http://paperpile.com/b/2sy68Y/CZiX
https://labs.detectify.com/2016/12/15/postmessage-xss-on-a-million-sites/
http://paperpile.com/b/2sy68Y/FoQT
http://paperpile.com/b/2sy68Y/FoQT
http://paperpile.com/b/2sy68Y/La3M
http://paperpile.com/b/2sy68Y/La3M
http://paperpile.com/b/2sy68Y/2oII
https://www.owasp.org/index.php/Benchmark

