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Abstract 

The objective of this study was to test the capability of a SW-NIR hyperspectral image 

technique to detect adulterations in wheat flour and bread with cheap grains, such us 

sorghum, oats and corn, and to compare the hyperspectral information with the 

physicochemical alterations in the properties of products. Wheat flour was adulterated at 

four different degrees (2.5, 5, 7.5 and 10%) with sorghum, oat and corn flours. Flours 

were prepared and used to make bread. Flours and breads were characterized according 

to several physicochemical parameters (pasting properties, water activity, mass loss 

during the baking process and texture profile analysis). Crumbs were extracted from 

breads and conditioned. Hyperspectral image captures were taken of both flours and 

conditioned crumbs. The data analysis was based on multivariate statistical process 

control method (MSPC), where the differentiation of adulterated samples was observed 

in all cases for both flours and crumbs. Finally, in order to relate the image analysis 

results and the adulterated sample properties, a correlation significance map was created 

between the physicochemical properties of samples and the multivariate statistical 

parameters. The SW-NIR image technique was capable of detecting adulterations in 

each case and high correlation significances were observed (α = 0.01) between 

wavelengths from specific spectra zones and the physicochemical properties of samples.  

 

Keywords: bread, adulteration, image analysis, MSPC, hyperspectral 
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1. Introduction 

Adulteration of food products (raw materials, intermediate products, authorized 

additives, end products, etc.) is of primary concern for consumers, food processors, 

regulatory agencies and industries. Adulteration typically involves replacing or diluting 

high-cost ingredients with cheap low-quality products (Kalivas et al., 2014). The history 

of food adulteration reports not only economic motives, but even criminal ones. Thus 

food frauds and adulterations may have economic implications for local authorities due 

to increased work load and costs to governments through loss of value-added taxes 

made from sales (Tähkäpää, Maijala, Korkeala, & Nevas, 2015). Therefore, rapid 

qualitative analyses are required to separate adulterated samples, followed by a 

quantitative analysis of this adulterant, if necessary.  

The development of non-destructive rapid analysis methods is an area in which interest 

increased a few years ago. Within this area, numerous methods based on different 

chemical and physical principles have been proposed to carry out both qualitative and 

quantitative determinations in laboratories and process chains. The methods which have 

demonstrated high versatility and robustness are those based on the simultaneous 

analysis of the large number of wavelengths of electromagnetic spectra, and in all their 

modes (reflectance, absorbance, interactance, etc.) (Wu & Sun, 2013). Specifically, the 

study of infrared spectra (IR) has been used for a vast number of determinations from 

multiple food matrices and analytes.  

Two of the main techniques used for this purpose are IR spectroscopy and spectral 

imaging analysis. Several recent IR spectroscopy applications for detecting 

adulterations, fraud and contaminants have included the detection of pork adulteration 

in veal products based on FT-NIR spectroscopy (Schmutzler, Beganovic, Böhler, & 
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Huck, 2015), minced lamb meat adulteration (Kamruzzaman, Sun, ElMasry, & Allen, 

2013), minced beef adulteration with turkey (Alamprese, Casale, Sinelli, Lanteri, & 

Casiraghi, 2013), fraudulent adulteration of chili powders with Sudan dye (Haughey, 

Galvin-King, Ho, Bell, & Elliott, 2014), adulteration of oil used in animal feed 

production (Graham et al., 2012), etc. Concretely, into the area of grain product 

adulterations, (Cocchi et al., 2006), developed a method to quantify the degree of 

adulteration of durum wheat flour with common bread wheat flour based on near-

infrared spectroscopy assisted by different multivariate calibration techniques. Although 

fewer works have been carried out using the spectral imaging analysis technique, it has 

also been used in a large number of applications to detect adulteration of beef and pork 

in raw meats (Ropodi, Pavlidis, Mohareb, Panagou, & Nychas, 2015), melamine in milk 

powders (Fu et al., 2014), gelatin adulteration in prawn (Wu, Shi, He, Yu, & Bao, 

2013), and for the pattern recognition for the categorization and authentication of red 

meat (Kamruzzaman, Barbin, Elmasry, Sun, & Allen, 2012), etc.  

The objective of this work was to study the feasibility of an SW-NIR hyperspectral 

image technique to detect adulterations in wheat flour and bread with other cheap 

grains, such as sorghum, oat and corn, and to compare the hyperspectral information 

with the adulteration repercussions for flour and bread properties.  

 

2. Material and Methods 

 

2.1 Flour types and raw materials 

The commercial wheat flour (WF) used was obtained from a local producer (Molí de 

Picó-Harinas Segura S.L. Valencia, Spain), whose chemical composition was: 
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12.7±0.6% of proteins, 1.0±0.03% of fat, 13.09±0.5% of moisture, and 0.32±0.1% of 

ash (w.b). The alveographic parameters were also facilitated by the company, which 

were P = 94±2 (maximum pressure (mm)), L = 128±5 (extensibility (mm)), W = 

392±11 (strength (J-4)) and P/L= 0. 73. Oat and corn flours were obtained from a local 

supermarket (La Carabasseta, Valencia, Spain). Their composition was 11.3±0.1% of 

proteins, 8.0±0.1% of fat, 12.6±0.6% of moisture and 0.92±0.1% of ash (w.b), and 

8.3±0.1% of proteins, 2.8 ±0.1% of fat, 12.89±0.6% of moisture and 0.38±0.1% of ash 

(w.b), respectively. Sorghum flour was obtained from a commercial bakery (Integral 

Food S.A. Barcelona, Spain), whose composition was 10±0.1% of proteins, 1.7±0.5% 

of fat, 12.6±0.6% of moisture and 1.74±0.1% of ash (w.b). In order to maintain particle 

size homogeneity, grain flours were analyzed and remilled in a stainless steel grinder, 

whenever necessary (Retsch GmbH, ZM 200, Haan, Germany), until particle size 

distribution with no significant differences was achieved with the wheat flour used. The 

particle size of flours was measured 6 times by laser scattering in a Mastersizer 2000 

(Malvern, Instruments, UK), equipped with a Scirocco dry powder unit. The results 

were expressed as a maximum size in µm at 10%, 50% and 90% (d (0.1), d (0.5) and d 

(0.9), respectively) of the total volume of the analyzed particles as their averages (D [4, 

3]). The average results were d (0.1) = 25.5±1.1, d (0.5) = 92.0±0.6, d (0.9) = 180.6±0.8 

and D [4, 3] = 99.4±1.2. Having ensured homogeneous particle size, in order to simulate 

possible adulterations, binary mixes were made by adding different percentages of 

sorghum, oat or corn to wheat flour. Specifically, adulterations were 2.5, 5, 7.5 and 10% 

(w/w) of wheat flour with all the different flour grain types.  

The other ingredients to make bread were sunflower oil (maximum acidity 0.2º 

Koipesol Semillas, S.L., Spain), pressed yeast (Saccharomyces cerevisiae, Lesafre 

Ibérica, S.A., Spain), white sugar (≥ 99.8% of saccharose, Azucarera Ebro, S.L., Spain) 
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and salt (refined marine salt ≥ 97% NaCl Salinera Española S.A., Spain), which were 

purchased in local stores. 

 

2.2 Bread-making process 

The formulation used to prepare bread dough was based on previous works (Verdú, 

Vásquez, et al., 2015) and was as follows: 56% flour (pure wheat flour or the 

adulterated versions), 2% refined sunflower oil, 2% commercial pressed yeast, 4% 

white sugar 1.5% salt and 34.5% water. The process was carried out by mixing all the 

ingredients in a food mixer (Thermomix® TM31, Vorwerk, Germany) according to the 

following method: in the first phase, liquid components (water and oil), sugar and salt 

were mixed for 4 minutes at 37 ºC. Pressed yeast was added in the next phase to be 

mixed at the same temperature for 30 seconds. Finally, flour was added and mixed with 

the other ingredients according to a default bread dough mixing program, which makes 

homogeneous dough. The program system centers on mixing ingredients with random 

turns of the mixer helix in both directions (550 revolutions/minute) to obtain 

homogeneous dough. This process was applied for 4.5 minutes at 37 ºC. Then 450 g of 

dough were placed in the metal mold (8x8x30cm) for fermentation. Height was 

approximately 1 cm.  

Dough fermentation was carried out in a chamber with controlled humidity and 

temperature (KBF720, Binder, Tuttlingen, Germany). The fermentation process 

conditions were 37 °C and 90% relative humidity (RH). Samples were fermented for 1 

h. The baking process was carried out at the end of fermentation. Metal molds were 

placed in the middle of the oven (530x450x340, grill power 1200W, internal volume 
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32L, Rotisserie, DeLonghi, Italy) plate, which was preheated to 180 ºC. Baking time 

was 35 minutes. 

 

2.3 Crumb conditioning 

Having baked the breads, crumbs were extracted and processed to be analyzed as so: 

crumbs from central bread zones (the middle third of total bread length) were removed 

from the crust and dried in a food dryer (Excalibur 3900B Deluxe Dehydrator) at 50 ºC 

to obtain the same moisture of raw flours (approx. 13% of moisture). Dried crumbs 

were milled in a stainless steel grinder (Retsch GmbH, ZM 200, Haan, Germany) until 

particle size distribution with no significant differences was achieved with the flours 

used. 

 

2.4 SW-NIR data acquisition and processing 

Images of both groups of samples (flours and crumbs from pure wheat and adulterated 

versions) were taken with a Photonfocus CMOS camera, model MV1-D1312 40gb 12 

(Photonfocus AG, Lachen, Switzerland), and using a SpecimImSpector V10 1/2″ filter 

(Specim Spectral Imaging, LTD., Oulu, Finland), which works as a linear hyperspectral 

camera. The illuminant was an ASD illuminator reflectance lamp (ASD Inc, Boulder, 

USA), which produces stable illumination over the full working spectral range. Fifteen 

grams of sample were placed into a glass Petri dish (10 cm diameter) and a 

homogeneous surface and height were maintained (approx. 0.75 cm). Spectra were 

collected directly at room temperature. Four samples of each flour, mix and crumb 

flours were prepared. Five images of each were acquired by rotating 1.04 radians each 

time around its normal axis. Twenty image acquisitions of each case were obtained. The 
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position of the illuminant and camera in relation to the sample was always constant in 

order to control lighting conditions and to obtain a constant image size. In order to 

avoid any heat transfer to the sample, the distance between the illuminant and the 

sample was 0.5 m. The distance between the camera and the sample was 0.15 m. The 

obtained image (scanned line) comprised 256 gray levels (8 bits). The diffuse 

reflectance spectrum was collected with 53 different wavelengths (each wavelength was 

digitalized with 8 bits). These wavelengths were distributed at intervals of 11.2 nm 

within the 400-1000 nm range. The scanned line comprised 1312 points, so an image 

was recorded with a resolution of 1312 x 1082 pixels. Image reflectance calibration and 

preprocessing were performed as described in (Verdú, Ivorra, Sánchez, Barat, & Grau, 

2015). The camera was operated by a software, developed based on SDK Photonfocus-

GigE_Tools, and programming language C++ was used. 

 

2.3 Physico-chemical parameters 

2.3.1 Pasting properties of flours 

For the purpose of evaluating the influence of different adulterations on flours, pasting 

properties were analyzed using the viscosity profile obtained by the RVA (Rapid Visco 

Analyser Super 4, Newport Scientific) viscometer. To this end, the method was 

approved by the AACC (America Association of Cereal Chemists), whose reference is 

the “General Pasting Method for Wheat or Rye Flour of Starch Using the RVA. AACC 

2000 number 76-21” was used. Samples of 3 g±0.01g were weighed and 25 g±0.01g of 

water were incorporated. The test started at 50 °C and 960 RPM, and was then slowed 

down to 160 RPM at 10 s. Temperature was maintained during the first minute, and 

went from 50 °C to 95 °C to then increase during the next 4 minutes to reach 95 °C at 
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minute 5 in a second step. The third step involved maintaining the temperature at 95 °C 

until minute 7.5. The fourth step was to lower the temperature to 50 °C, which was 

reached at minute 11. The last step entailed maintaining a temperature of 50 °C until 

minute 13. Measurements were taken in triplicate. The obtained pasting parameters 

were pasting temperature (Tp), peak viscosity (Pv), trough viscosity (Tv), breakdown 

viscosity (Bv), final viscosity (Fv), setback viscosity (Sv) and peak time (Pt). 

 

2.3.2 Baking loss, water activity and texture profile analysis of breads 

To evaluate the effect of adulteration on the end product, some of most relevant bread 

properties were studied. In this phase, mass loss during the baking process (∆Mb) was 

concluded by the difference between the pre-baking dough weight and the finished 

bread weight (both bread products were cooled at room temperature for 1 h). This 

parameter was called “baking loss”. The water activity of raw crumbs (aw) was 

determined in an Aqualab® dew point hygrometer (DECAGÓN Aqualab CX-2, 

Pullman, WA, USA). The texture profile analysis (TPA) was performed following the 

method used by (Miñarro, Albanell, Aguilar, Guamis, & Capellas, 2012), where two 

12.5-mm-thick cross-sectional slices were obtained from the center of each bread 

product. The texture profile analysis was carried out in a TA-TX2 texture analyzer 

(Stable Micro Systems, Surrey, UK). A 25-kg load cell (35-mm diameter) was used. 

The assay speed was set at 1.7 mm/s to compress the bread crumb center at 50% of its 

previous height. The time between compressions was 5 s. The studied parameters were 

hardness (D), springiness (S), cohesiveness (C), gumminess (G), chewiness (Ch) and 

resilience (R).  

2.4 Statistical analysis  
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The study of the hyperspectral results was based on Multivariate Statistical Process 

Control (MSPC). This method derives from the Univariate Control Process, and offers 

the possibility of including a large number of variables and the interactions among them 

at the same time. The objective of MSPC is to create a model based on the required 

features of samples and the generation of thresholds (confidence limit), which 

determines the conformity of new samples according to the pre-established 

specifications (normal conditions) to then maintain the system under control (Bersimis, 

Psarakis, & Panaretos, 2007). The process can used by including new multivariate data 

in the created model, and evaluating the distance of any new samples from the model by 

studying T2-statistic (Hotellings), and Q-statistic (Q-residuals). The situation of these 

parameters within the confidence limit indicates samples according to the pre-

established requirements, and then under control (samples of pure wheat flour and pure 

wheat flour breads). On the contrary, any samples situated beyond the confidence limits 

imply that something occurred under the controlled conditions which caused a deviation 

from the model (adulterated samples, if applicable). Any T2-statistic beyond the control 

is interpreted as both new samples that present an unusual distance from the center of 

the model, and alterations in the values of some of their variables. Any Q-statistic 

beyond the control represents samples that the model is incapable of describing, which 

means the presence of some irregularities in the control variables that first allow the 

identification and then separation from the samples under the control.  

The physicochemical parameters obtained from flours (Tp, Pv, Tv, Bv, Fv, Sv, Pt) and 

breads (∆Mb, aw and TPA (H, S, C, G, Ch)) were studied by a one-way variance study 

(ANOVA). In those cases in which the effect was significant (P-value < 0.05), means 

were compared with Fisher’s least significant difference (LSD) procedure.  
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Procedures were performed with PLS Toolbox, 6.3 (Eigenvector Research Inc., 

Wenatchee, Washington, USA), a toolbox extension in the Matlab 7.6 computational 

environment (The Mathworks, Natick, Massachusetts, USA). 

3. Results  

3.1 MSPC results 

Figure 1 provides the MSPC statistical analysis results in Q-residuals terms applied to 

spectra data. This statistic was used to observe the capability of the created models 

(based on pure wheat flour and pure wheat flour bread crumbs) to place the adulterated 

samples beyond the confidence limit. Both the flours and adulterated bread crumbs were 

located beyond the 95% confidence limit of their respective pure wheat models, 

regardless of the cereal type used for adulteration and percentage. The percentage of 

adulteration revealed evolution across the Q-residuals axis following the degree, where 

the cases with 2.5% came close to the limit, while those with 10% were the most distant 

ones. Of the adulterated flours, sorghum and corn presented a clear differentiation 

among the obtained adulteration percentages, but oat showed more agglomeration in its 

points. The behavior of crumbs was the same as the adulteration degree, but cereal type 

appeared to have an influence. Crumbs from the breads adulterated with sorghum 

remained well beyond the model limit in all cases, with even a wider separation 

compared to its analog flour, and the same occurred with oat, but its position was closer 

to the limit compared to sorghum. Crumbs from the bread adulterated with corn showed 

more differences compared to their analog flours. The degrees of 2.5% and 5% came 

into contact with the limit line, and even caused problems for detecting some samples. 

 Then the baking process influenced the response of the hyperspectral technique. 

Sorghum and oat presented minor differences between the flour and crumb results, but 
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the bread-making process apparently made it difficult to detect corn in some bread 

crumbs at low adulteration percentages, although corn was detected in most samples.  

The results showed that the used technique has reached a detection sensibility until 

2.5% of adulteration for all grains. In early works, durum wheat flour adulterer with soft 

wheat flour was detected with a sensibility of 0.5% using NIR spectroscopy (Cocchi et 

al., 2006). In the same way, detection of soft wheat had also been addressed using other 

methods as the determination of alkylresorcinol composition in pasta, obtaining a 

sensibility of 5% (Knödler, Most, Schieber, & Carle, 2010), as well as DNA 

microsatellite region method, where until 1% of adulteration was detected in durum 

wheat semolina, pasta and bread (Sonnante et al., 2009). Moreover, adulterations with 

other flours have been detected at 0.1%, concretely in the case of lupin seed flour, by 

real-time PCR method (Scarafoni, Ronchi, & Duranti, 2009). In comparison to works 

reported previously, the sensibility of the present method is within high intermediate 

place, taking into account that it was configured as online inspection tool. 
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Figure 1. The Q-residuals results for adulterated flour samples (A) and crumb samples (B). The dashed horizontal red line indicates 

a 95% confidence limit. Red corresponds to sorghum, blue to oat, gray to corn and black to wheat. The series of shapes are arranged 

according to the percentage of adulteration: ● 2.5%, □ 5%, x 7.5% and ○ 10%. 

 

To study the exclusion process of adulterated samples, the Q-contributions of each 

variable (wavelength) per sample were compared. The Q-contribution plots report 

information about the causes of the disturbance to the process in terms of the original 

variables’ influence. A high absolute Q-contribution value for a given variable means a 

problem with that specific variable (Westerhuis, Gurden, & Smilde, 2000). Figure 2 

shows the plotted mean results of the Q-contributions based on each adulteration of 

cereal. The Q-contributions for the pure flours of sorghum, oat and corn were included 

in the adulterated flours plots to compare their results with the adulterated wheat flour 

and their main peaks within the spectra. First, a main peak across spectra appeared in 

both the visible and the infrared zones for all the cereal types. Flours presented an 

increment in contributions following the increase in the degree of adulteration for all the 

cereals (Figure 2 (left plots)), which brought about the most marked peaks for sorghum, 

while corn obtained the least marked one. There were common spectra zones with high 
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values for all the cereals, but with different intensities. The corresponding variables of 

these peaks were wavelengths 490, 556, 612, 792 and 904 nm for sorghum and oat. 

Corn presented the same wavelengths, but by adding 859 nm and removing 612 nm.  

For the crumb results (Figure 2 (right plots)), the degrees of adulteration also followed 

the position order in the plot. Peaks presented differences in regard to flours. In this 

case, the common variables with a heavy weight were wavelengths 523, 747, 848, 926 

and 948 nm. In the same way as flours, sorghum presented the most marked peaks and 

corn the least marked one. However, wavelength 814 showed the inverse behavior as it 

achieved considerable importance for oat and corn. 

Although the fundamental composition of the adulterated flours and crumbs was the 

same, the bread-making process influenced the response of the hyperspectral image 

device. 

 

3.2 Repercussions of adulteration on flour and bread properties, and its relationship 

with hyperspectral detection 

 

Adulteration can be detected by the hyperspectral image technique. Nevertheless, in 

order to ensure that the observed statistical results were related to the real effect of 

adulteration on the product, and was not produced by any uncontrolled factor, some 

physicochemical properties of both flours and breads were tested and related with the 

MSPC results.  

First, a battery of physicochemical analyses was carried out to characterize pure wheat 

flour and bread, and their adulterated versions with the different cereals. On the one 

hand, flours were characterized according to their pasting properties with the RVA. On 
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the other hand, whole breads were analyzed in terms of baking loss, water activity and 

texture properties based on the TPA. Table 1 contains the physicochemical analysis 

results. 

Table 1. Results of the physicochemical characterization of flours and breads 

0 68.9±0.6a 2245±15a 1421±4a 823±10a 2660±5a 1238±10a 6.1±0.2a 33.5±3.5a 0.955±0.003a 9.3±0.1a 0.98±0.04 a 0.81±0.01a 7.5±0.7a 7.4±0.8a 0.44±0.01a

2.5 68.9±0.5a 2164±7a 1308±48a 856±26b 2614±58a 1306±10b 6.04±0.05 a 36,1±2.8a 0.956±0.003b 8.2±0.1a 0.98±0.02 a 0.80±0.01b 6.5±0.8a 6.4±0.9a 0.43±0.01a 

5 87.2±0.1b 2225±19b 1369±7b 856.5±26b 2742±6b 1373±13c 6.13±0.01a 37±2.5ab 0.958±0.003b 9.3±0.2a 0.96±0.04 a 0.79±0.01b 7.4±0.7a 7.2±0.9a 0.43±0.01 a

7.5 87.2±0.1b 2214±18b 1339±12b 875±5bc 2833±6c 1494±19d 6±0.04a 38,2±3.7b 0.959±0.003c 9.6±1.4a 0.98±0.02a 0.80±0.01b 7.7±1.1a 7.6±1.0a 0.44±0.01 a

10 87.±0.5b 2306±199c 1422±7b 884±26c 3029±47d 1607±54e 6.07±0.09a 38,6±4b 0.960±0.002c 10.5±1.5a 0.97±0.03a 0.78±0.07b 8.2±1.1a 8.0±1.1a 0.43±0.01 a

2.5 69.3±1.1a 2194±26a 1396.5±37a 798±11a 2564±54a 1168±16a 6.17±0.05a 38,3±2.9b 0.957±0.002a 6.3±1.0b 0.94±0.07a 0.82±0.01ab 5.2±0.8b 4.9±0.9b 0.45±0.01ab 

5 70.18±0.1a 2245±31a 1426±9a 819±41a 2658±45a 1232±55a 6.17±0.05a 38,8±3.2b 0.961±0.008a 6.7±0.7b 0.98±0.01a 0.82±0.01b 5.5±0.6b 5.4±0.6b 0.45±0.01ab 

7.5 84.73±0.1b 2246±44a 1429±45a 817±1a 2675±25a 1246±19a 6.14±0.09a 37,8±3.5b 0.961±0.001c 6.1±0.9b 0.97±0.08a 0.82±0.01b 5.0±0.7b 4.9±1.0b 0.45±0.01ab 

10 85.15±0.1b 2266±12a 1476±36a 790±24a 2715±14a 1239±22a 6.2±0.1b 39,2±0.7b 0.969±0.002d 4.8±1.0c 0.92±0.11a 0.83±0.01b 4.0±0.8c 3.7±0.9c 0.45±0.01b 

2.5 69.33±0.1a 2210±10a 1363.5±14a 847±4b 2577±26a 1214±11a 6.07±0.01b 37,9±3.6ab 0.957±0.008a 7.2±0.1b 0.96±0.04a 0.81±0.01a 5.9±0.5a 5.7±0.6b 0.44±0.01ab 

5 85.95±0.1b 2219±14a 1374.5±7b 844±21b 2651±12a 1277±19b 6.04±0.05c 38,2±1.6b 0.960±0.002a 5.2±1.1c 0.95±0.05a 0.83±0.01ab 4.3±0.8b 4.1±0.9b 0.45±0.01 ab

7.5 85.15±0.5b 2201.5±31a 1374±35b 867±3c 2669±44a 1335±9c 5.93±0.02d 40,2±2bc 0.960±0.002a 4.7±1.3c 0.94±0.07a 0.84±0.01ab 4.0±1.0b 3.8±1.1b 0.45±0.01ab 

10 84.83±0.4b 2260±14a 1379.5±24b 890±10d 2728±25b 1358.5±50d 5.97±0.14d 40,4±1.1c 0.966±0.005b 5.6±0.8c 0.95±0.05a 0.85±0.05b 4.8±0.6b 4.6±0.7b 0.45±0.01b 

Breads

Cereal Bv

Sorghum

Wheat flour

SD C G Ch R∆M b a w

Oats

Flours

Corn

% adulteration Tp Pv Tv Fv Sv Pt

 

Tp: pasting temperature, Pv: peak viscosity, Tv: trough viscosity, Bv: breakdown viscosity, Fv: final viscosity, Sv: setback viscosity, Pt: peak time. ∆Mb: baking loss, aw: water 

activity, D: hardness, S: springiness, C: cohesiveness, G: gumminess, Ch: chewiness, R: resilience. Letters in columns mean significant differences at a p-value < 0. 05 of each 

adulteration cereal compared only to wheat flour. 
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Figure 2. The Q-contributions plots for the adulterated flours (left) and crumbs (right) for each cereal. The dashed red lines 

represent pure wheat, while the dashed black lines denote the standard deviation of the pure wheat contributions. The dashed 

blue lines correspond to pure cereal flour adulteration. The red line indicates 10% of adulteration, the green line corresponds 

to 7.5%, the purple line to 5% and the blue line to 2.5%. 
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The physicochemical analysis results verified the influence of degree of adulteration 

and the type of cereal used. The effects of pasting properties led to differences 

depending on the cereal used. In general terms, some pasting properties, e.g. pasting 

temperature, was affected by them all from 7.5% of adulteration, and even from 5% for 

sorghum and corn. Some properties had no influence in any case, such as peak 

viscosity, breakdown viscosity or setback for oat. Breads also presented significant 

modifications to ∆Mb, aw and to some textural properties, such as hardness and 

cohesiveness. However, some textural properties were not affected by any cereal or 

degree of adulteration, such us springiness.  

Having collected the information about the physicochemical properties of samples, a 

study of whether these results agreed with the previously observed hyperspectral results 

was conducted. Here the objective was not to find dependencies between hyperspectral 

data and physicochemical properties to develop a prediction model, but to ensure that 

the imaging analysis response was in accordance with the measurable influence of 

adulteration on products. For this purpose, a correlation coefficient was calculated 

between the Q-contribution values from all the wavelengths and the studied 

physicochemical variables of flours and breads for each degree of adulteration. By way 

of example, Figure 3 shows the correlation of several variables from flours and breads 

for the Q-contributions of the wavelengths for sorghum adulteration. The correlation 

level differed for each variable. Setback viscosity (Sv) and pasting temperature (Tp) 

maintained a similar correlation level for each wavelength, and setback viscosity was 

slightly high. Although peak viscosity (Pv) tended to obtain a high correlation 

coefficient at the same wavelengths, it presented a high or equal correlation at the 0.80 

level in only a few cases (Figure 3-A). Bread variables also exhibited irregular behavior, 

where the same peaks and zones with the maximum correlation level across the spectra 
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for baking loss (∆Mb) and water activity (aw) were observed, while hardness (D) 

presented quite less peaks above the 0.80 level (Figure 3-B).  

The results showed that the hyperspectral information indeed was influenced by the 

variations caused by the adulteration effects. In order to ensure the observed 

relationships, a decision was made to determine the degree of significance for each 

correlation. The results were studied at three degrees of significance (α=0.05, α=0.025 

and α=0.01) based on the t-statistic. Figure 3-C and 3-D graphically depict the results of 

the level of significance for the physicochemical variables used as an example of 

sorghum adulteration (Figure 3-A and 3-B). We can see how the significance of the 

correlations presented variability for the coefficients that presented no differences.  

 

 

Figure 3. The correlation coefficient spectra between the Q-contributions of each wavelength and some physicochemical parameters 

of flour (A) and bread (B) adulterated with sorghum flour; Tp: pasting temperature, Pv: peak viscosity, Sv: setback viscosity, ∆Mb: 

baking loss, aw: water activity, D: hardness. The dashed black line in A and B marks the positive and negative threshold for the 

correlation level = 0.80. Lower images (C and D) represent the level of significance based on the t-statistic test for each correlation 

coefficient of the previous correlations. The dashed black lines represent confidence levels of 95, 97.5 and 99%. 
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This procedure was carried out for each cereal and physicochemical variable to obtain a 

correlation significances map and to observe the differences among them. Table 2 

shows a map of the level of significance map for correlation according to the gray tones.   

The correlation results influenced cereal type and whether the analyzed matrix was flour 

or bread from the same degree of adulteration. With flours, the cereal with higher 

correlations, and at the same time, higher correlation significances at the 99% 

confidence level, was sorghum, followed by corn and oats, and presented fewer 

significant correlations. With breads, the adulteration with oats presented the highest 

correlation levels of significance, followed by sorghum and corn. In general, the 

common correlations observed for the pasting properties of all the adulterated flours lay 

inside the visible and infrared zones. The common visible wavelengths zones were 

around 422, 467 and 523 nm, while the infrared wavelengths zones were about 724-792, 

860-915 and 982 nm. Breads also presented common zones within the visible and 

infrared zones. Specifically, 411, 456-478, 501-568 nm for the visible and the infrared 

zones presented almost all the wavelengths from 700 to 980.  

Not all the physicochemical variables and cereal types had the same number of high 

correlations with spectra, although the results sufficed to conclude that the relationship 

between the hyperspectral data and the physicochemical data was observed. This means 

that the recognized pattern based on MSCP was produced neither randomly nor by 

uncontrolled factors, but was due to the influence of the adulteration levels on products.  

 

5. Conclusions  
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The capability of the hyperspectral imaging technique used herein to detect 

adulterations in the tested products at the proposed levels was successful. The bread-

making process did not affect detection, but could generate false-negatives in low 

adulteration percentages in bread with corn. Sorghum was the least affected by this 

process. The relationship between the hyperspectral data and the physicochemical data 

indicated that detection was actually based on the modifications produced by 

adulteration. The results proved that a tool based on this principle could be useful for 

detecting adulterations of this type. Experiments that include more grain types and other 

flour products would be interesting to help advance in developing a plausible inspection 

tool.   

 

Figure 4. Correlation map. Gray marks the correlation’s level of significance:            95%,          97.5%,         99%.  The positions in 

white indicate a non-significant correlation. Tp: pasting temperature, Pv: peak viscosity, Tv: trough viscosity, Bv: breakdown 

viscosity, Fv: final viscosity, Sv: setback viscosity, Pt: peak time. ∆Mb: baking loss, aw: water activity, D: hardness, S: springiness, 

C: cohesiveness, G: gumminess, Ch: chewiness, R: resilience. 
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