
Development of a Source-to-Source
Compiler for Altera‘s SDK for

OpenCL on FPGAs

Johanna Rohde

Tutor: Rafael Gadea Gironés

Cotutor: Marcos Martinez Peiró

Trabajo Fin de Máster presentado en la Escuela Técnica Su-
perior de Ingenieros de Telecomunicación de la Universitat
Politècnica de València, para la obtención del T́ıtulo de Máster
en Ingenieŕıa de Telecomunicación

Curso 2015-16

Valencia, 4 de julio de 2016

Abstract:

This master thesis describes the SOCAO source-to-source compiler that translates
C/C++ input sources into an OpenCL accelerated program. The concept is to acceler-
ate a time consuming software function in a two step process. First it is transferred by the
SOCAO compiler into an OpenCL kernel. Afterwards the user can use the Altera SDK for
OpenCL to translate the kernel into a custom circuit that can be executed on an FPGA.
By using the SOCAO compiler, the software engineer can accelerate his program without
knowledge in the fields of parallel computing or hardware design. The compiler contains
functions and algorithms that analyze the input sources and autonomously make the best
suitable decisions for the user.

Results show a 50 % to 280 % increase of speed for three well-known algorithms. Nev-
ertheless this work also addresses the challenges that have to be faced when a sequential
program is translated into a parallel environment. Furthermore, the implementation of the
compiler, the user-guide and the outcomes of the project are also explained in this work.

Resumen:

Este trabajo fin de máster describe el compilador fuente-a-fuente SOCAO, el cual con-
vierte un programa escrito en C/C++ en un programa acelerado por OpenCL. El concepto
es acelerar una función software en dos pasos: Primero SOCAO traslada la función en un
kernel OpenCL. Después se usa el ”Altera SDK for OpenCL” para crear un circuito in-
tegrado para un FPGA. Le ventaja del compilador SOCAO es que el usuario no necesita
conocimientos en los campos de computación paralela o diseño de hardware. El compilador
contiene funciones y algoritmos que analizan los fuentes de entrada para tomar los mejores
decisiones de forma autónoma.

Los resultados muestran un incremento en tiempos de ejecución entre 50% y 280% para
tres algoritmos bien conocidos. Sin embargo, este trabajo también explica los dificultades
que aparecen cuando un programa secuencial es traducido a un entorno paralelo. Adicional-
mente se explica la implementación del compilador, el manual de usuario y los resultados
de este trabajo.

Resum:

Aquest treball fi de màster descriu el compilador font-a-font SOCAO, el qual converteix
un programa escrit en C / C ++ en un programa accelerat per OpenCL. El concepte
és accelerar una funció programari en dos passos: Primer SOCAO trasllada la funció en
executar un nucli OpenCL. Després es fa servir el ”Altera SDK for OpenCL” per crear
un circuit integrat per a un FPGA. Li avantatge del compilador SOCAO és que l’usuari
no necessita coneixements en els camps de computació paral·lela o disseny de maquinari.
El compilador conté funcions i algoritmes que analitzen els fonts d’entrada per prendre els
millors decisions de forma autònoma.

Els resultats mostren un increment en temps d’execució entre 50% i 280% per a tres
algoritmes ben coneguts. No obstant això, aquest treball també explica els dificultats que
apareixen quan un programa seqüencial és tradüıt a un entorn paral·lela. A més a s’explica
la implementació del compilador, el manual d’usuari i els resultats d’aquest treball.

Contents

1 Introduction 1

2 Technical Background 2

2.1 OpenCL . 2

2.1.1 Platform Model . 2

2.1.2 Execution Model . 3

2.1.3 Memory Model . 5

2.1.4 OpenCL Runtime . 6

2.2 FPGA . 10

2.2.1 Physical Layout . 10

2.2.2 Instruction-Level Parallelism . 12

2.2.3 Pipelining . 14

2.2.4 Altera’s DE1-SoC . 14

2.3 OpenCL for FPGAs . 15

2.4 Altera’s SDK for OpenCL . 17

2.5 Compiler . 18

2.5.1 Structure of a Compiler . 18

2.5.2 Context-Free Grammars . 19

2.5.3 Intermediate Representation . 20

2.5.4 ROSE Framework . 21

3 Design 23

3.1 User Interface . 24

3.1.1 File Preparation . 24

3.1.2 Console Interface . 26

3.1.3 Input File Restrictions . 27

ii

3.2 System Design . 29

4 Implementation 31

4.1 Analysis and Transformations . 31

4.1.1 Inline Transformation . 31

4.1.2 2D to 1D Transformation . 32

4.1.3 Constant Value Transformation . 33

4.1.4 Constant Folding Transformation . 34

4.1.5 Input/Output Analysis . 35

4.1.6 Constant Array Analysis . 35

4.1.7 Typedef Analysis . 36

4.1.8 Parameter Analysis . 36

4.1.9 Memory Analysis . 39

4.1.10 Loop Unrolling . 40

4.1.11 Inter Analysis and Transformation Dependencies 42

4.2 Host Program Transformation . 43

4.2.1 Global Variables . 44

4.2.2 Initialization and Cleanup Function 44

4.2.3 Main Function . 45

4.2.4 Target Function . 47

4.3 Kernel Creation . 48

4.3.1 Function Header . 48

4.3.2 Function Body . 51

4.3.3 Unparsing . 52

5 Evaluation 53

5.1 SHA-256 . 53

5.1.1 Compilation . 53

5.1.2 Area . 54

5.1.3 Execution Time . 55

5.2 AES . 55

5.2.1 Compilation . 55

5.2.2 Area . 56

5.2.3 Execution Time . 57

iii

5.3 FFT . 58

5.3.1 Compilation . 58

5.3.2 Area . 59

5.3.3 Execution Time . 59

5.4 CRC . 60

5.4.1 Compilation . 60

5.4.2 Area . 61

5.4.3 Execution Time . 61

5.5 Memory Performance . 61

5.5.1 Memory Allocation . 62

5.5.2 Internal Copy . 63

5.5.3 Global and Constant Address Space 65

5.6 Loop Unrolling . 66

5.7 File Scope Arrays . 68

6 Conclusion 70

A SHA-256 Source Code 72

B AES Source Code 80

C FFT 95

D CRC 104

Bibliography 112

iv

List of Figures

2.1 OpenCL platform model . 3

2.2 File level execution order . 3

2.3 Relationship between host, queues, context and devices 4

2.4 Two dimensional problem split into work-groups and work-items [14] 5

2.5 Vector addition implemented as regular program and OpenCL kernel 5

2.6 OpenCL memory model . 6

2.7 Program flow for OpenCL initiation . 7

2.8 Program flow for kernel execution . 8

2.9 Basic FPGA layout . 12

2.10 Reconfigurable interconnections between logic cells 12

2.11 Data flow graph to example program in Listing 2.6 13

2.12 Pipelining the example shown in Listing 2.6 14

2.13 Data flow graph to example program in Listing 2.7 16

2.14 Pipeline to example program in Listing 2.7 17

2.15 Altera SDK for OpenCL tool flow . 17

2.16 Structure of a compiler . 18

2.17 Syntax-tree for statement x=(a+1)*b; . 20

2.18 Abstract-syntax-tree for statement x=(a+1)*b; 21

2.19 Syntax-tree for statement x=(a+1)*b; . 22

3.1 File input and output . 23

3.2 Use diagram . 24

3.3 Design diagram of the SOCAO compiler . 29

4.1 Example of an inlined function . 32

4.2 Access pattern to data arranged in two dimensions 33

4.3 Example for constant value transformation 34

v

4.4 Memory analysis decision diagram . 41

4.5 Dependency diagram between analysis and transformations 43

4.6 Flow diagram of all analysis and transformation steps 43

4.7 Decision diagram for different buffer types 47

4.8 Decision diagram for the creation of parameter list 50

5.1 Execution time SHA-256 . 55

5.2 Execution time AES-CTR . 57

5.3 Breakdown execution time for the FFT example 59

5.4 Execution time CRC . 62

5.5 Speedup-factor for different types of memory allocation 63

5.6 Speedup-factor for kernels with or without internal copy 64

5.7 Execution time of the CRC algorithm with and without copy 64

5.8 Breakdown execution time for the FFT example 65

5.9 Execution time of the CRC algorithm using the constant or global address
space for runtime constant arrays . 66

5.10 Speedup-factor for kernels with or without loop unrolling 67

5.11 Speedup-factor for kernels with or without internal copy 68

vi

Chapter 1

Introduction

Great effort is put into the optimization of speed and energy consumption during the de-
sign and implementation of new software. Especially in embedded systems, FPGA accel-
erators can be used to implement time consuming calculations. Their advantage is their
reprogrammability and the low power consumption compared to GPU accelerators. Fur-
thermore, they exploit data parallelism on instruction level since execution is not limited
to one arithmetic logic unit (ALU). Nevertheless, their greatest disadvantage is that the
accelerator has to be implemented in a hardware description language such as VHDL or
Verilog.

In 2013 Altera introduced a software development kit (SDK) capable of synthesizing
OpenCL kernels into hardware. This solution shifts the problem into a different domain:
Programmers need knowledge in the field of parallel computing. Furthermore, already
existing sequential programs have to be rewritten in order to include OpenCL kernels. This
problem can be targeted by developing a source-to-source compilers that extracts OpenCL
kernels automatically from C/C++ code.

The task of this master thesis was to develop a source-to-source compiler named SOCAO
that incorporates OpenCL acceleration into a given C program by translating a target
function which was marked by the user into an accelerator. The generated code targets
Altera’s SDK for OpenCL on FPGAs.

The rest of this master thesis is structured as follows: Chapter 2 describes the technical
background. Afterwards, Chapter 3 explains the user interface and the over all design of
the compiler. The implementation of all analysis and transformation steps is explained in
Chapter 4. Finally, the SOCAO compiler is evaluated in Chapter 5.

1

Chapter 2

Technical Background

2.1 OpenCL

OpenCL is an open programming standard for heterogeneous parallel systems maintained
by the Khronos group, [14]. It is designed to support a variety of different platforms
such as CPUs, GPUs, DSPs and FPGAs and to simplify the process of integrating these
as accelerators into a system. Therefore certain calculations can be passed to different
processing devices depending on their characteristics and availability without having to
change the code of the program, [12].

The key idea of the OpenCL standard is to provide a common interface and programming
language while each vendor adapts the implementation and integration of the OpenCL
standard on his own.

The OpenCL architecture can be explained with three models: The platform model, the
execution model and the memory model [14, Chapter 3]. Section 2.1.1 to 2.1.3 will describe
these models. Afterwards Section 2.1.4 will explain the OpenCL runtime and its usage in
order to load and execute an OpenCL kernel.

2.1.1 Platform Model

The platform model describes a generic physical layout of a system using the OpenCL
standard. Figure 2.1 shows the schematic.

The system consists of two parts. The host and a number of independent computing
devices. These can be CPUs, GPUs, DSPs or FPGAs. Each device is connected directly
with the host. Internally each computing device is assumed to consist of multiple compute
units which for themselves contain various processing elements.

The task of the host is to manage the system. He has to send the data, invoke the kernel
execution and retrieve the results.

2

Host

Compute Device
Compute Unit

PE

PE

PE

PE

...

Compute Unit

PE

PE

PE

PE

...

Compute Unit

PE

PE

PE

PE

... ...

Figure 2.1: OpenCL platform model

2.1.2 Execution Model

Every OpenCL program consists of two parts: The host program executed on the host and
kernels which are executed on one or more devices. The execution model describes best
how kernels are executed in the OpenCL platform. Figure 2.2 shows this concept. The host
program is implemented in any programming language for which an OpenCL API exist.
In most cases this is C/C++ but it could also be Java or Python. The host program is
compiled by a regular compiler and then executed. The code calls the OpenCL API in order
to transfer data and invoke the kernel execution.

Device

kernel.cl

__kernel void
sum(__global const float *A,
__global const float *B,
__global float *res)
{
 int id = get_global_id(0);
 res[id] = A[id] + B[id];
}

OpenCL Compiler

Host

main.cpp
main()
{
 initOpenCL();
 initData();

 clEnqueueWriteBuffer();
 clEnqueueTask();
 clEnqueueReadBuffer();

 displayResult();
}

C/C++ Compiler

Figure 2.2: File level execution order

The kernel code can be either stored in a separate file or as a string within the host
code. It can be compiled beforehand, thus offline, or at runtime, thus online. This can
be used to keep the kernel implementation generic during the design phase and compile it
when the type of device is known during runtime.

Before executing a kernel, the host has to create a context which contains all objects
relevant to the execution. The OpenCL standard defines the content of a context as the
following [14, Chapter 3.2.1]:

3

• Devices: The collection of OpenCL devices to be used by the host.

• Kernels: The OpenCL functions that run on OpenCL devices.

• Program Objects: The program source and executable that implement the kernels.

• Memory Objects: A set of memory objects visible to the host and the OpenCL
devices. Memory objects contain values that can be operated on by instances of a
kernel.

Furthermore, the host has to create command queues in order to schedule the execution.
The command queues accept three types of commands:

1. Kernel execution: Starts kernel execution on a given device.

2. Memory transfer: Before and after kernel execution data has to be transferred to
and from the device using memory objects.

3. Synchronization: All functions concerning the command queues can be called as
blocking or non-blocking. Blocking function calls do not return until the command
is terminated while in the case of non-blocking calls, the call return directly and
events have to be used to synchronize the command queue and to create dependencies
between the commands.

Host

Device 1 Device 3Device 2

Work Group

Work
Item

Work
Item

Work
Item

Work
Item

...

Work Group

Work
Item

Work
Item

Work
Item

Work
Item

...

Work Group

Work
Item

Work
Item

Work
Item

Work
Item

...

Context

Queue 1 Queue 2 Queue 3

Figure 2.3: Relationship between host, queues, context and devices

Figure 2.3 shows the relationship between host, command queue, context and devices.
It has to be noted that every device has its own command queue associated. OpenCL
supports task parallel and data parallel programming as well as various combinations of
these. A task parallel program is split into individual tasks that can be sent to different
accelerators to be executed.

A data parallel program is split into work-groups and work-items in order to be executed
on one device. The data can be arranged as an N-dimensional problem, a so called NDRange.
N has to be a value between one and three. Figure 2.4 shows a two dimensional problem.
Within the NDRange, work-groups are arranged in a matrix. According to the number of
dimensions they are assigned x, y and z coordinates. Within the work-group work-items are
arranged accordingly. A kernel for a data parallel problem will access its work-group and
work-item id and do further calculation based on these values. The number of work-items
and the group size is set by the host dynamically.

4

 NDRange size Gx

NDRange size Gy

 work-group size Sx

 work-group size Sy

...

...

...

work
item
(0,0)

work-group (wx, wy)

(Sx-1,0)

work
item

(0,Sy-1)

work
item

(Sx-1,Sy-1)

work
item

Figure 2.4: Two dimensional problem split into work-groups and work-items [14]

This scheme can be used to split code with nested for-loops into individual problems
that can be executed in parallel.

1 void sum(int *A, int *B, int *←↩
C, int N)

{

3 for(int i =0; i<N; i++)

C[i] = A[i] + B[i];

5 }

Listing (2.1) Serial program

1 __kernel void sum(

__global const int *A,

3 __global const int *B,

__global int *C)

5 {

int idx = get_global_id (0);

7 C[idx] = A[idx] + B[idx];

}

Listing (2.2) Kernel program

Figure 2.5: Vector addition implemented as regular program and OpenCL kernel

Figure 2.5 shows an example implementation for a function adding two vectors. The
regular implementation is shown on the left in Listing 2.1. The for loop does not show any
data dependencies between the iterations. Therefore, they can be executed independently.
Inside the OpenCL kernel the for-loop is replaced by calls to the OpenCL API in order to
determine the position of the current work-item. Then a single addition is executed.

2.1.3 Memory Model

The memory model explains the different memory types that exist in the OpenCL standard.
The memory space is split into four groups: The global, constant, local and private memory,
[14, Chapter 6.5]. Furthermore, the host has its proper memory to which the computing
devices have no access. Figure 2.6 shows how the address spaces are arranged.

The global memory is shared between the host and the computing device. It is the
biggest memory but also the slowest since all work groups and work items within the same
device have access to this memory space. Its space is allocated by the host system. The
global memory is mainly used to transfer data from the host system to the kernel and vice

5

HOSTHost
Memory

DEVICE
Global
Memory

Constant
Memory

WORK GROUP

Local
Memory

WORK
ITEM
Private
Memory

WORK
ITEM
Private
Memory

...

Figure 2.6: OpenCL memory model

versa. Each device has its own global memory. Global variables or parameter are declared
with the global modifier. They have to be either a function parameter, declared at file
scope or a static variable inside a function.

The constant memory can only be written by the host and can be seen as a read-only
memory from the perspective of the accelerator containing constant values that don’t change
over the time of execution. Pointer to constant memory can either be passed as a function
parameter by the host or be declared in the outer most scope of a function or at file scope.
If the pointer is not passed by the host, the variable marked as constant has to be initialized
during declaration and the values have to be compile time constant. Constant variables are
declared with the constant modifier.

Each work group has access to its own local memory. This memory is not accessible by
the host system but the host system can reserve local memory for the work groups before
executing a kernel. Each work group is responsible on its own for transferring data from
the global memory to the local memory and vice versa. The space of the local memory
is usually limited. Local variables are declared with the local modifier. They can be
declared at three positions: As function paremeter, at file scope or at the outer most scope
within a function definition. For the two later the space has to be compile time constant.
Otherwise a pointer to the local memory can be passed as kernel argument by the host.

The smallest but also fasted memory is the private memory. It is associated with a
single work item an saves all intermediate results needed by one thread. Private memory
can be declared with the private modifier when needed. Otherwise, all variables declared
without address modifier within the kernel function are automatically marked as private.
Private memory can not be allocated dynamically and its size therefore has to be constant.

2.1.4 OpenCL Runtime

The program flow of the host program can be split into three phases: The initiation of the
OpenCL system, the execution of the kernel and the cleanup.

The steps taken during the initiation phase can be seen in figure 2.7 and are now
explained to further detail:

6

Get
Platforms

Create Memory
Objects

Get
Devices

Create
Context

Load
Program

Build
Program

Create
Queue

Create
Kernel

Figure 2.7: Program flow for OpenCL initiation

Get Platform First the host has to find all available OpenCL platforms using the
clGetPlatformIDs() function.

Get Devices Using one of the platform ids the host can call the clGetDeviceIDs()

function in order to find all computing devices available on this platform.

Create Context A context is created by passing one or multiple device ids to the
clCreateContext() function. As described in section 2.1.2, the context is used to manage
devices, programs, kernels and memory objects.

Load Program All OpenCL programs contain kernel and helper functions as well as
constant data that is used by these functions. OpenCL programs can be compiled online or
offline for the target device. Therefore, they can be loaded either as source or as a binary
with the clCreateProgramWithSource() or clCreateProgramWithBinary() functions re-
spectively.

Build Program The clBuildProgram() function is called in order to build the program
executable.

Create Queue In Section 2.1.2 it was already described that command queues are used
in order to schedule tasks such as transferring data, executing kernels and synchroniz-
ing tasks. They are assigned a context and a device when they are created with the
clCreateCommandQueue() function.

Create Kernel Using a given program executable, a kernel object can be created by
referring to the kernel function name. To do so, the OpenCL standard provides the
clCreateKernel() function.

Create Memory Objects The last step is to create the memory objects necessary to
transfer data to or from the computing device. Memory objects can be buffer or images.
Buffers are used to store elements in a sequential order. Images are 4-component vectors.
Their data storage format might vary from the format used inside the kernel. Since the
compiler that is developed in this project only uses regular buffer objects, image objects
are not explained to any further detail. Buffers are created with the clCreateBuffer()

function. They have to be assigned a context and a size. A flag can be passed to specify
allocation and usage information. Sometimes the creation of the memory objects is not

7

done until the execution of the kernel, especially when the size of the buffer is not known
during the initiation phase.

Memory can be allocated as shared or as non-shared memory. In case of shared memory,
an additional pointer has to be mapped to the buffer. This is done by enqueuing the
clEnqueueMapBuffer() function. The return value is a pointer which can be parsed and
assigned to a pointer in the host program.

Listing 2.3 shows an example for an initiation function under the assumption that there
is only one platform with one device present. The source file opencl kernel.cl is loaded
and built at runtime and the kernel function do something kernel is created. An additional
status value is checked after each step. If the execution was not successful, the host program
is terminated with an error message.

Enqueue
Write Buffer

Set Kernel
Argument

Enqueue
Kernel

Enqeueu
Read Buffer

Wait For
Finish

Release
Events

Figure 2.8: Program flow for kernel execution

The steps need in order to execute an OpenCL kernel can be seen in Figure 2.8 and are
explained in the following:

Enqueue Write Buffer In the beginning the host has to transfer all data to the com-
puting device. There are two options to do this, depending whether shared or non-shared
memory is used:

For non shared memory the clEnqueueWriteBuffer() function is called. Among others,
the function accepts a command queue reference, a memory object and a pointer to a local
buffer in the host memory. The command queue determines which device the data will be
written to. The data transfer can be executed as blocking or as non blocking operation. In
the case of a non blocking function call, an event reference can be set as function parameter
where the command queue will set the current execution status. Furthermore, in order to
indicate dependencies to earlier command queue tasks, the function accepts a number of
events which have to be finished before the transmission process can be started.

For shared memory a simple memcpy ca be used in order to copy the data from the host
memory to the shared pointer.

Set Kernel Argument The function arguments of the OpenCL kernel are set by the
clSetKernelArg() function. An argument can be either a memory object or a variable like
an integer. In the case of the later, the value is transferred as constant value to the kernel.

Enqueue Kernel The execution of the kernel is started through the command queue.
Depending whether a task parallel or a data parallel program was designed, a ker-
nel can be executed as task by calling clEnqueueTask() or as NDRange by calling
clEnqueueNDRangeKernel(). These functions accept like every process that is enqueued in

8

cl_platform_id platform;

2 cl_device_id device;

cl_context context;

4 cl_command_queue queue;

cl_program program;

6 cl_kernel kernel;

cl_mem input_buf , output_buf;

8 float input [100] , output [100];

10 void init_opencl () {

cl_int status;

12 char *program_buffer;

size_t program_size;

14

status = clGetPlatformIDs (1, &platform , NULL);

16 checkError(status ,"Failed to load platform");

18 status = clGetDeviceIDs(platforms ,CL_DEVICE_TYPE_ALL ,1,&device ,NULL);

checkError(status ,"Failed to load device");

20

context = clCreateContext (0,1,& device &oclContextCallback ,0,& status);

22 checkError(status ,"Failed to create context");

24 queue = clCreateCommandQueue(context ,device ,0,& status);

checkError(status ,"Failed to create command queue");

26

program_size = getFileSize("opencl_kernel.cl");

28 program_buffer = readSourceFile("opencl_kernel.cl");

program = clCreateProgramWithSource(context ,1,(const char **)&←↩
program_buffer ,& program_size ,& status);

30 checkError(status ,"Failed to create program");

32 status = clBuildProgram(program ,0,NULL ,"",NULL ,NULL);

checkError(status ,"Failed to build program");

34

kernel = clCreateKernel(program ,"do_something_kernel" ,&status);

36 checkError(status ,"Failed to create kerne");

38 input_buf = clCreateBuffer(context ,CL_MEM_READ_ONLY ,100* sizeof(float),←↩
NULL ,& status);

checkError(status ,"Failed to create buffer for input A");

40

output_buf = clCreateBuffer(context ,CL_MEM_WRITE_ONLY , 100* sizeof(float)←↩
,NULL ,& status);

42 checkError(status ,"Failed to create buffer for output");

}

Listing 2.3: Initiation Function for OpenCL

9

a command queue an array of events which have to be terminated before executing the cur-
rent one. Usually this are the events associated with the data transmission to the memory
buffer. The clEnqueueNDRangeKernel() function additionally accepts information about
the number of work items that have to be created and how many of them have to be assigned
to one work group. The execution of a kernel is always a non blocking command. Therefore
an event has to be assigned in order to determine when the execution has finished.

Enqueue Read Buffer After the execution of the kernel has finished the results have to
be transmitted back to the host memory. The clEnqueueReadBuffer() command behaves
similar to the clEnqueueWriteBuffer() function explained earlier. In case of shared mem-
ory the result can be accessed directly via the shared memory pointer. That assumes that
the user waits for the kernel to finish before accessing the memory.

Wait for Finish It is recommended to use the clWaitForEvents() functionality in order
to await that all enqueued tasks have been completed.

Release Events All events have to be released after they are no longer needed in order
to prevent unwanted behavior. Afterwards the execution process can start again.

Listing 2.5 shows an example function which runs the in Listing 2.3 loaded kernel as a
task. The function prototype can be seen in Listing 2.4.

1 __kernel do_something_kernel(float *input , float *output , int size);

Listing 2.4: OpenCL function prototype

2.2 FPGA

Field Programmable Gate Arrays (FPGAs) are reprogrammable integrated circuits. They
can be reconfigured at anytime to match any desired logical function or application. Thereby,
they differ from application specific integrated circuits (ASICs) which are manufactured to
perform one predefined task.

2.2.1 Physical Layout

The physical design of a FPGA is based on thousands of reconfigurable logic elements so
called adaptive logic modules (ALMs) as well as DSP and RAM blocks, [5]. Figure 2.9
shows how the elements are placed in a matrix based arrangement and are surrounded by
I/O logic that forms the interconnection between the FPGA and other external resources.

Every ALM has up to eight one bit inputs. The internal logic is reconfigurable to any
logic function that has one or two output bits. Optionally these bits can be stored in
registers before leaving the logic block. Therefore a group of ALMs can form arithmetic

10

1 cl_platform_id platform = NULL;

cl_device_id device = NULL;

3 cl_context context = NULL;

cl_command_queue queue = NULL;

5 cl_program program = NULL;

cl_kernel kernel;

7 cl_mem input_buf;

cl_mem output_buf;

9 float input [100] , output [100];

11 ...

13 void run_opencl ()

{

15 cl_int status;

cl_event kernel_event , finish_event , write_event;

17

status = clEnqueueWriteBuffer(queue , input_buf , CL_FALSE , 0, 100 * ←↩
sizeof(float), input , 0, NULL , &write_event);

19 checkError(status ,"Failed to transfer input");

21 status = clSetKernelArg(kernel , 0, sizeof(cl_event), &input_buf);

checkError(status ,"Failed to set argument");

23

status = clSetKernelArg(kernel , 1, sizeof(cl_event), &output_buf);

25 checkError(status ,"Failed to set argument");

27 status = clSetKernelArg(kernel ,2 ,sizeof(int), 100);

checkError(status ,"Failed to set argument");

29

status = clEnqueueTask(queue , kernel , 1, &write_event , &kernel_event);

31 checkError(status ,"Failed to launch kernel");

33 status = clEnqueueReadBuffer(queue , output_buf , CL_FALSE , 0, 100 * ←↩
sizeof(float), output , 1, &kernel_event , &finish_event);

checkError(status ,"Failed to transfer output");

35

clWaitForEvents (1, &finish_event);

37

clReleaseEvent(write_event);

39 clReleaseEvent(kernel_event);

clReleaseEvent(finish_event);

41 }

Listing 2.5: Execution of an OpenCL kernel

11

I/O

I/O

I/O

I/O

MEM

DSP

108 bit

64 bit

64 bit

74 bit

Logic Element
(Programmable)

1-bit
Register

Figure 2.9: Basic FPGA layout

operations such as addition, multiplication or shifts as well as custom operations specified
by the user.

DSP blocks are specialized blocks which accept a greater number of input bits and have
a cascade of arithmetic functions preimplemented. They are used in order to speed up more
complex calculations and in order to save area compared to an implementation using ALMs.
The user can define the internal interconnects between the arithmetic function blocks in
order to adapt the output function. Due to their size only a small number of DSP blocks is
integrated into each FPGA.

Dedicated memory blocks serve as on-chip RAM or ROM in order to store greater
amounts of data. They are also configurable and can behave as single-, simple-dual- or
true-dual-port memory.

The blocks are interconnected with wires. It can be seen in Figure 2.10 that a horizontal
and vertical net of routing resources lies between the grid of logic blocks. The interconnects
between the wires are also programmable. This way the data bits are routed between logic
cells.

Programmable
Interconnect

Figure 2.10: Reconfigurable interconnections between logic cells

2.2.2 Instruction-Level Parallelism

In the process of translating software code to hardware, every operation is mapped to an
independent arithmetic module which for itself can be implemented using the resources

12

described in Section 2.2.1. These modules are connected in execution order to pass the
results from one operation to the following one.

The advantage of executing calculations this way is that all modules can operate inde-
pendently from each other. According, operations that are not directly depending on each
other can be calculated at the same time. This form of parallelism is called instruction-level
parallelism, [2].

1 x = (a+b)*(c+d);

y = x << 4;

3 z = x - e;

Listing 2.6: Example Program

Listing 2.6 shows an example code which uses four input values in order to calculate an
intermediate variable. This value is used in order to calculate the result values y and z.

The execution order of a regular CPU can be seen in Figure 2.11a. Since every instruc-
tion has to be fetched separately, a bottleneck is created and the code has to be executed
in a serial manner.

The data flow graph of the instruction-parallel execution order is displayed in Figure
2.11b. It can be seen that the addition of the variables a and b is independent of the
addition of the variables c and d. Therefore, they can be executed at the same time. The
same holds true for the shift operation in line 2 and the subtraction in line 3. They only
depend on the result of the multiplication. Therefore they are also calculated in parallel.
The direct comparison of both graphs shows that the calculation can be reduced from five
to three steps.

+

a b

*

<<

4

z

e

-

y

c d

+

time

(a) Serial execution order

+

a b c d

*

+

<< -

e4

yz
(b) Instruction parallel execution order

Figure 2.11: Data flow graph to example program in Listing 2.6

13

2.2.3 Pipelining

Most designs for FPGAs are implemented on the register transfer level (RTL). The IEEE
Standard for VHDL Register Transfer Level (RTL) Synthesis defines this abstraction level
as following: ”Register transfer level is a level of description of a digital design in which
the clocked behavior of the design is expressly described in terms of data transfers between
storage elements in sequential logic, which may be implied, and combinational logic, which
may represent any computing or arithmetic-logic-unit logic.”[1]

This means that in the RTL the knots of the data flow graph are implemented as logic
modules with tailing registers forming a pipeline of multiple stages. The data passes through
one stage each clock cycle leaving the remaining stages idle in the meanwhile.

In situation where the same calculation has to be performed multiple times indepen-
dently, a new set of data can be inserted into the pipeline each clock cycle.

Figure 2.12a shows the pipeline created from the data flow graph depicted in Figure
2.11b. It can be seen that the pipeline has three stages. The corresponding timing diagram
for four iterations is shown in Figure 2.12b. After the pipeline is completely filled, a new
result is produced every clock cycle.

*

+

a b

+

c d

-<<

4 e

(a) Pipeline at register transfer level

+/+ * <</-

+/+ * <</-

+/+ * <</-

+/+ * <</-

time

iteration 1:

iteration 2:

iteration 3:

iteration 4:

(b) Execution of filled pipeline

Figure 2.12: Pipelining the example shown in Listing 2.6

2.2.4 Altera’s DE1-SoC

Altera’s DE1-SoC board is a development board for system on chip (SoC) applications. It
contains a hard processor system (HPS) and a Cyclone V FPGA. The characteristics of
the HPS are summarized in Table 2.1. The processor is a dual core ARM Cortex-A9 which
runs at a 800 MHz clock and has access to 1 GB RAM, [16]. The development board has a
micro SD card slot which allows the user to boot an operating system.

The Cyclone V product family comes in different sizes and packages. Table 2.2 shows
that the FPGA used in the DE1-SoC board has 85 k logic elements and 32 k adaptive
logic modules (ALMs). It contains two types of memory cells. First, M10K cells that
are dedicated memory resources that hold 10 kb each and can be configured as RAM or
ROM. Second, Memory logic array blocks (MLAB) that are distributed memory cells which

14

Table 2.1: Hard processor system characteristics

Characteristic

Processor Dual-core ARM Cortex-A9
Clock 800 MHz
Memory 1 GB DDR3 SDRAM

Table 2.2: Cyclone V characteristics

Characteristic

Ordering Code 5CSEMA5F31C6
Logic Elements 85000
ALM 32075
M10K 397
MLAB 768
Memory total 4,45 Mb
DSP Blocks 87

consists of 10 ALMs each that have been configured accordingly. This leads to a total of
4450 kb. Finally the FPGA has access to 87 DSP blocks [8].

There are four different possibilities to reconfigure the FPGA, [16]:

• From the quad serial configuration device (EPCQ256) which is a flash memory on the
board.

• From the HPS system.

• While booting the HPS system with an image stored on the SD card.

• Via the JTAG chain using the Quartus II programmer on the development system.

2.3 OpenCL for FPGAs

FPGAs are usually programmed on register transfer level using a hardware description
language such as Verilog or VHDL. Highly specialized tools translate the code into logic
functions and map them onto the FPGA structure. A binary file is produced and can be
used by the user to reconfigure the FPGA in the field.

Due to the highly fine grained and massive parallel nature of FPGAs, these programming
languages follow their own logical order. This introduces a great barrier for developers who
want to incorporate FPGA acceleration into their system.

The idea of programming FPGA accelerators with OpenCL and using a specialized com-
piler to automatically create hardware tries to close this gap. Nevertheless, it is important
to understand how the high level description of an algorithm is translated into hardware in
order to exploit the features of an FPGA and prevent bottlenecks.

The OpenCL compiler creates pipelines as described in Section 2.2.2 and 2.2.3 in order to
exploit instruction parallelism. Section 2.1.2 explained that OpenCL kernel can be executed

15

as a range of work-items. These work items fill the pipeline exploiting pipeline parallelism.
For small designs, the kernel pipeline can be duplicated two or more times in order to
increase the number of work-items that are processed in parallel [6].

Not only work-items can be pipelined but also loops. The OpenCL compiler moves the
evaluation of the exit condition to the beginning of the pipeline [7, Page 1-33]. In an ideal
case, a new loop iteration is started every clock cycle but so call loop-carried dependencies
can prevent this. These are situation in which the result of an earlier iteration is needed
for a later one.

1 double A[10], B[10];

A[0] = 1;

3 for(int i = 1; i < 10; i++)

{

5 double x = B[i];

double res = 0.3*x*x+0.8*x+1.2;

7 A[i] = (A[i-1]+ res)/2;

}

Listing 2.7: Example for-loop with loop-carried dependencies

An example can be seen in Listing 2.7. In line 7 the loop accesses the value A[i-1]

which is produced in the previous iteration.

In order to assure that the variable is written and read in the correct order, a so called
initiation interval (II) is introduced. The initiation interval is defined as the number of
clock cycles between two consecutive iterations. It is obvious that it is desirable to keep the
initiation interval as small as possible for good kernel performance. The ideal value is one.

LOAD
B

**

LOAD
A

+

+

+ * -

i

0.8

1.2 0.3 i 1

STORE
A

>> i

1

Figure 2.13: Data flow graph to example program in Listing 2.7

Figure 2.13 shows the data flow graph to the example in Listing 2.7. It can be seen,
that the loop body can be translated into a pipeline with seven stages. The dashed line is
not a data flow edge but rather indicates the dependency between the store and the load
operation.

16

LOAD */* +/*/- + /
LOAD + >> STORE

time

LOAD */* +/*/- + /
LOAD + >>

+/*/- +

STORE

LOAD */*
+ /
LOAD >> STORE

Figure 2.14: Pipeline to example program in Listing 2.7

The seven stages of the pipeline are shown in Figure 2.14. The loop-carried dependency
is taken into account by delaying the second iteration by four clock cycles. This way that
the load operation is executed after the store operation. Hence, the loop has an initiation
interval of four. It is obvious that this pipeline works less efficient than the ideal pipeline in
Figure 2.12b. It is important to remember that the II influences the execution time linearly
with the number of iterations whereas the length of the pipeline only serves as an offset
that is does not influence the execution time anymore once the pipeline is filled

2.4 Altera’s SDK for OpenCL

Altera’s software development kit (SDK) for OpenCL was first introduced in 2013 and it is
conform to the OpenCL specification 1.0 [9, Appendix].

The tool flow of the SDK can be seen in Figure 2.15. The main part is the Altera
Offline Compiler (AOC) which compiles and synthesizes the OpenCL kernel into a xxx.aocx
FPGA configuration file that is loaded by the host program in order to reprogram the
FPGA [9, Chapter 1]. Furthermore, it generates a number of log and report files which
contain information about the created pipelines, the occupied area inside the FPGA and
the achieved clock frequency. On the left side of the figure it can be seen that Altera’s
embedded design suit (EDS) cross compiler has to be used to compile the host program
into an executable for ARM processors.

rose_program.cpp
main()
{
 float *A, *B, *C;
 initOpenCL();
 initData(A, B);

 sum(A, B, C);

 displayResult();
 cleanup();
}

Altera EDS
Cross

Compiler

AOC
Compiler

aocl_kernel.aocx
01010101010101
0101010101010100
01010101010101011
01010101010101010
01010101010101010
01010101010101010
01010101010101010
01010101010101010

rose_program

aocl_kernel.cl

__kernel void
sum(__global const float *A,
__global const float *B,
__global float *res)
{
 int id = get_global_id(0);
 res[id] = A[id] + B[id];
}

Figure 2.15: Altera SDK for OpenCL tool flow

Additionally, Altera provides a custom header files and the aocl utils namespace in
order to include system specific functions into the host program. These include routines in

17

order to load the .aocx file into the FPGA, check errors and to find a OpenCL platform by
name.

2.5 Compiler

Compiler are specialized tools that are used to translate, thus compile, a program written
in one programming language into another one. The input language are in most cases high
level programming languages such as C or Java while the output language can either be
another high level language or a low level machine language.

This section gives a conceptual overview over the design of compiler systems. In the
beginning the general structure of a compiler is explained. Afterwards Section 2.5.2 and
2.5.3 focus on how programming languages are defined and what effect this has on the
intermediate representation.

2.5.1 Structure of a Compiler

Compiler are complex systems that need good structuring in order to be manageable. Usu-
ally a compiler is split into three components which represent three phases of the compilation
process and which are executed consecutively. They are called front-end, middle-end and
back-end, [20, Chapter 1]. Figure 2.16 shows the conceptual structure of a compiler.

Front-end The front-end is used to interpret the input program and to transfer it into
an intermediate representation. Furthermore, it it assures the syntactic correctness of the
program.

Middle-end In the middle-end optimizations and transformations are taking place. Usu-
ally the aim of each compiler is to improve the efficiency of the program by reducing ex-
ecution time and/or memory consumption. During the transformation, the intermediate
representation is preserved and serves as interface to the back-end.

Back-end The back-end translates the program from its intermediate representation into
an output language. In most cases this refers to machine code and the output file is an
executable. In case the output is another high level programming language, the compiler is
called a source-to-source compiler. If the aim is to compile output files in different output
languages separate back-ends have to be implemented.

program.cpp
main()
{
 float *A, *B, *C;
 initData(A, B);

 sum(A, B, C);

 displayResult();
}

program

Front-end Middle-end Back-end

Compiler

Analysis
Phase

Optimization /
Transformation
Phase

Code
Generation

Figure 2.16: Structure of a compiler

18

The advantages of this structure are the clean separation of tasks and the precise in-
terfaces. The intermediate representation is ideally chosen independently of the input and
output language so that the front-end and back-end are replaceable. Nevertheless, the strict
separation is often just the ideal case.

2.5.2 Context-Free Grammars

Before understanding how the intermediate representation of a compiler is chosen, it is
important to understand how programming languages are designed.

The syntactic structure of a program is always described by a context-free grammar
which defines a number of symbols, so called nonterminals. According to a given number of
rules, they can be substituted by other symbols or regular expressions . Symbols that can
not be replaced any further are called terminals. They are normally either keywords such
as if, =, or ; or they are references to variables and values.

R. Wilhelm gives in [20, Chapter 3.2.1] the following definition for a context-free gram-
mar:

A context-free grammar (CFG for short) is a quadrupel G = (VN , VT , P , S) where
VN , Vt are disjoint alphabets, VN is the set of nonterminals, VT is the set of terminals,
P ⊆ VN × (VN ∪ VT)∗ is the finite set of production rules S ∈ VN is the start symbol.

In a simple example a context-free grammar could look like the following:

S → Stmt
Stmt → id = Exp ; | S t a t ; S t a t |

i f (Exp) {Stmt} e l s e {Stmt}
Exp → Exp + Exp | Exp − Exp | Exp ∗ Exp |

Exp / Exp | val | (Exp) | id

Each line represents one production rule. The right hand side defines a nonterminal
symbol while the left hand side shows a set of alternatives separated by the | character with
can be used to substitute the symbol. The start symbol is S and the terminals are keywords
or regular expressions for id in case of a variable name or val in case of a value.

Therefore, a simple expression might be derived in the following steps:

S
Stmt
id = Exp ;
x = Exp ∗ Exp ;
x = (Exp) ∗ id ;
x = (Exp + Exp) ∗ b ;
x = (id + v a l) ∗ b ;
x = (a + 1) ∗b ;

The process starts with the start symbol S which is replaced by the Stmt symbol for
which in turn the id = Exp; alternative is chosen. This process continues until all symbols

19

are replaced and the final expression x=(a+1)*b; is derived.

2.5.3 Intermediate Representation

The parser takes the input program and splits it into symbols representing keywords, vari-
ables and values. During the syntax analysis a tree is constructed by mapping the symbols
onto the syntactic structure defined by the context-free grammar. The tree is called syntax-
tree or parse-tree, [18, Chapter 2.2.1].

The root of the syntax-tree is the start node of the grammar. Descending from there
each node represents a symbol of the left hand side choice made in the down casting process.
Finally, the leafs are the terminals.

The x=(a+1)*b statement given as as example in Section 2.5.2 is parsed into the syntax-
tree shown in Figure 2.17.

S

Stmt

id

x

= Exp ;

Exp * Exp

(Exp) id

bExp + Exp

id Val

a 1

Figure 2.17: Syntax-tree for statement x=(a+1)*b;

The normal syntax-tree contains a lot of redundant and unnecessary information which
is no longer important after parsing. Especially keywords like parentheses and semicolons
are only useful during the syntax analysis in order to structure the syntax-tree itself but do
not have any effect on the output of the compiler thereafter. Therefore, most compiler use
a more dense form of the syntax-tree as intermediate representation, the so called abstract-
syntax-tree (AST), [18, Chapter 2.16.2].

The AST representation does not contain unnecessary nodes. Furthermore, nodes are
grouped in order to compress the information they are holding. This facilitates iterating
over the syntax-tree during the transformation and optimization phase in the middle-end.
The syntax-tree shown in 2.17 can therefore be represented by the AST shown in Figure
2.18.

The example shows that the statement node and its sub nodes where reduced to one
AssignStmt node. The same was done for the MulExpr node representing the multiplication
and the AddExpr node representing the addition. The information about the actual variable
identifier and the specific value were merged with the nodes identifying the type of expression
to be an identifier or value respectively.

Most compiler which are written in object oriented programming languages group the

20

S

AssignStmt

id(x) MulExpr

AddExpr id(b)

id(a) Val(1)

Figure 2.18: Abstract-syntax-tree for statement x=(a+1)*b;

different node types and implement them as inherited classes. In this case the AssignStmt
node would be an object of a child class to the class representing the Stmt node.

The advantage of the AST representation is that it can be easily converted into the
output language since it preserves the structure of the input grammar. Nevertheless it lacks
information about the actual program flow. Optimizations which rely on the execution order
of the statements are hard to implement using only the AST representation. Therefore, most
compiler switch for these type of analysis to a control-flow based representation.

For the analysis and optimization algorithms implemented in this work, the AST rep-
resentation is sufficient. For more information on control-flow-graphs see [15, Chapter 5]

2.5.4 ROSE Framework

The ROSE framework is an open-source compiler framework developed at the Lawrence
Livermore National Laboratory. It is written specifically for the development of source-to-
source compilers and supports a number of different input language, among others C, C++,
Python and Java [19].

Most importantly the ROSE framework contains implementations of the front- and
back-end as well as a variety of tools for transformation and analysis of the AST. The user
can include the library into his own project and only has to implement the routines that
analyze and modify the AST.

The intermediate representation (IR) is called SageIII and is auto-generated by the
ROSETTA tool which is distributed with the ROSE Framework. This tool generates classes
for all IR nodes that are necessary to support the variety of input and output languages.
The edges between the nodes as depicted in Figure 2.18 are implemented as pointer refer-
ences within the nodes. Furthermore the SageIII classes already implement a number of
functionalities needed to store or retrieve information as well as to copy nodes with all their
sub-nodes. A full list and description of all classes can be found in [4].

Figure 2.19 shows the AST from the example in Section 2.5.3 when parsed into the SageII
intermediate representation. It can be seen that all class names start with Sg for Sage. The
expression statement class SgExprStatement encapsulates an expression. Therefore the
edge has to be pointing to an SgExpression object. All binary operations such as assigns,
multiplications and additions are called SgXXX Op whereas the XXX is substituted by the
operation. They are derived from the SgBinaryOp class which in its turn is a child of
the SgExpression class. The SgVarRefExp class represents a variable reference while the

21

SgAssignOp

SgVarRefExp
name = x

SgMultiplyOp

lhs_operand rhs_operand

SgAddOp SgVarRefExp
name = b

lhs_operand rhs_operand

SgVarRefExp
name = a

SgIntVal
value = 1

lhs_operand rhs_operand

SgExprStatement

expression

Figure 2.19: Syntax-tree for statement x=(a+1)*b;

SgIntVal class stands for an integer value.

A complete AST contains more complex constructs as the example shown in Figure
2.19. Besides the edges that are determined by the grammar, a number of additional edges
and nodes are added in order to link information. This might be information about the
data type of a variable as well as a reference to the declaration statement or the parent
node. Incorrect or missing references can lead to segmentation faults during further AST
processing or can prevent the back-end from compiling the program. Therefore the ROSE
framework provides the SageBuilder and SageInterface namespaces. The SageBuilder

namespace provides high level functions that create additional AST nodes and which set
the references automatically according to information passed via the function arguments.
The SageInterface on the other hand contains functions which can be used to insert or
delete statements or replace whole sub-trees.

22

Chapter 3

Design

The SOCAO compiler adds an additional layer on top of the development flow described in
Section 2.3. As shown in Figure 3.1, the developed source-to-source compiler is a tool that
takes a C/C++ source file as input and automatically generates an Opencl host program
and a kernel. The kernel is designed to be executed as a task. The program structure of
the input program is automatically adapted to include the OpenCL routines described in
Section 2.1.4 to load and run the kernel. The output files can be compiled and executed as
if they were handwritten. The compiler targets specifically Altera’s SDK for OpenCL.

program.cpp
main()
{
 float *A, *B, *C;
 initData(A, B);

 sum(A, B, C);

 displayResult();
}

#ifndef __OPENCL
#define __OPENC
...

extern CL_API_ENTRY
 cl_int CL_API_CALL
 clGetPlatformIDs(...
...

#endif

OpenCL header

Source-to-Source Compiler

rose_program.cpp
main()
{
 float *A, *B, *C;
 initOpenCL();
 initData(A, B);

 sum(A, B, C);

 displayResult();
 cleanup();
}

Altera EDS
Cross

Compiler

AOC
Compiler

aocl_kernel.aocx
01010101010101
0101010101010100
01010101010101011
01010101010101010
01010101010101010
01010101010101010
01010101010101010
01010101010101010

rose_program

aocl_kernel.cl

__kernel void
sum(__global const float *A,
__global const float *B,
__global float *res)
{
 int id = get_global_id(0);
 res[id] = A[id] + B[id];
}

Figure 3.1: File input and output

The extraction of the kernel is function based. This allows better handling within the
compiler because a function declaration is always a root node to an AST containing all
further information like the function arguments and body. Therefore, only the root node

23

has to be passed to the analysis and transformations.

The idea is to move the execution of a function that is considerably time consuming to
an FPGA computing device. All function calls are redirected to calls to the OpenCL API.
The decision of which function is to be targeted is made by the user.

It is important to note that the output name of the host program can be chosen freely
whereas the kernel is always written to a file named aocl kernel.cl. This behavior is intended
since the compiled and synthesized kernel always has to be named aocl kernel.aocx in order
to be found and loaded by the host program.

3.1 User Interface

The user can use the SOCAO compiler following the steps shown in Figure 3.2. The process
consists of two parts: The preparation of the source file and the execution of the source-to-
source compiler using the console terminal. The preparation will be described in Section
3.1.1 while the required console commands are explained in Section 3.1.2.

Run Source-to-Source
Compiler

Choose
Function

Include:

#include "CL/opencl.h"
#include "AOCLUtils/aocl_utils.h"
#include <string.h>
using namespace aocl_utils;

Include:

//Altera_OpenCL_Accelerate
//Altera_OpenCL_size vector SIZE
//Altera_OpenCL_...

File Preparation

Execution

Figure 3.2: Use diagram

3.1.1 File Preparation

In the beginning the user has to choose which part of his program he wants to accelerate.
He has to outline this code into a separate function and replace the affected lines with a
function call. Furthermore, the user has to include the general and Altera specific OpenCL
header files and the aocl utils namespace. This is necessary for the compiler to find
OpenCL specific structures and functions. Additionally the string.h header is needed in
order to have access to the memcpy() function.

The compiler recognizes a number of comments that have to be placed in front of
the target function. The user has to use these in order to pass necessary and optional

24

information that allow the compiler to optimize the kernel. The order of the comments has
no importance as long as the same configuration is not made twice. In this case the first
comment is ignored.

The list of the comments is:

Altera OpenCL Accelerate The Altera OpenCL Accelerate comment marks the func-
tion which is supposed to be accelerated. A program may only contain one target function.

Altera OpenCL size [NAME] [SIZE] As a default value the compiler assumes that
every pointer used within the function points to an array with a single entry. In order to
adjust the size this comment has to be used. [NAME] has to be the name of the pointer and
[SIZE] has to be a single expression that can either be an integer number, a define identifier
or a variable. The compiler therefore supports static and and dynamic vector sizes. Due to
restrictions in the parser, a size given as a define identifier is not considered constant even
though the identifier might be associated with a constant value. Better optimizations can
always be achieved when the size is known at compile time.

Altera OpenCL max size [NAME] [VALUE] The compiler can optimize the mem-
ory management within the OpenCL kernel when the size of an array is statically known.
In some cases the size might be dynamic but an upper boundary is known to the user. In
this case this information can be passed to the compiler using the Altera OpenCL max size

comment. The [VALUE] parameter has to be an integer value. Note that the actual vector
size has to be known within the kernel. This is the case when the Altera OpenCL size

comment is used with a variable name as size parameter and when the variable itself is read
within the function. If this is not the case, the compiler issues a warning and ignores the
comment. Further information about the memory management can be found in Section
4.1.9.

Altera OpenCL const val [NAME] [VALUE] If the user is aware of any constant
values that are defined outside of the target function, he can use this comment. [VALUE]

can be a valid char, string, double or integer value as long as it fits the datatype of the
variable.

Altera OpenCL const vec [NAME] This comment announces a compile time con-
stant array accessed by the function. In this case the whole array definition is copied into
the OpenCL kernel file reducing the execution time since these values no longer have to be
moved to the computing device memory by the host before kernel execution. The effect of
copying constant arrays into the file scope of the kernel is evaluated in Section 5.7.

Altera OpenCL runtime const [NAME] The compiler can reduce data transmission
times when a buffer is not changed after the first call to the target function. Is this case,
the Altera OpenCL runtime const attribute can be assigned to an array. Note that the
size of this array can be dynamically defined by using a variable. The change of its value

25

after the first call to the target function will have no effect. More information on how the
compiler reduces the buffer transmission times can be found in Section 4.2.4

Altera OpenCL update flag [NAME] [FLAG] This comment assigns a flag that in-
dicates whether an array has been modified or not. In this case the elements of the buffer
belonging to the [NAME] variable are only updated if [FLAG] evaluates to true. [FLAG]

has to be a variable name or define identifier. No expressions are allowed due to parsing
restrictions of the ROSE framework. If the user wishes to use an expression he has to assign
this expression first to a define identifier and use this instead.

Altera OpenCL soc Indicates that the target platform is a system-on-chip platform like
the DE1-SoC. This influences the memory allocation strategy explained in Section 4.1.9.

3.1.2 Console Interface

The source-to-source compiler is run via console terminal. As described in Section 2.5.4, the
framework is compiled into a dynamic library that has to be loaded at runtime. Therefore,
the user has to add the ROSE installation folder to the PATH and the LD LIBRARY PATH

environment variables before running the compiler. He can do this using a script similar to
the one shown in Listing 3.1 whereas he has to substitute [path to installation] with
the path to the corresponding installation folder.

ROSE_INS =[path_to_installation]

2 PATH=$PATH:$ROSE_INS/bin

LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$ROSE_INS/lib

4 export PATH LD_LIBRARY_PATH

Listing 3.1: Example ROSE setup script

When calling the compiler the user has to make sure the compiler can find all header
files especially those belonging to the OpenCL API. It is not necessary to include source
files besides the main program since no actual compilation step is performed.

The ROSE framework itself proposes a variety of command line options but most of them
are irrelevant to the user who wishes to perform an OpenCL transformation. Nevertheless,
the following options might be helpful:

• -rose:o [FILENAME] sets the file name of the unparsed C++ code. This can also
include a relative or absolute path. The default name is rose xxx.cpp whereas xxx
refers to the input file name.

• -I[PATH] include path indicating the compiler where to look for header files besides
the source folder.

A whole list of command line options is available running the source-to-source compiler
with the --help option.

26

A sample compile command can be seen in Listing 3.2. It is assumed that the environ-
ment variable ALTERAOCLSDKROOT points to the Altera SDK installation directory while all
header files included as step two of the use diagram shown in Figure 3.2 are placed in a
folder with the relative path ../common/inc.

./socao -I../ common/inc -I$ALTERAOCLSDKROOT/host/include program.cpp

Listing 3.2: Example compile command

3.1.3 Input File Restrictions

Even though the OpenCL language used to write the kernels is based on the C99 standard
it includes several limitations. The SOCAO compiler is not able to overcome these without
changing the outcome of the program. Moreover Altera’s SDK for OpenCL and the design
of the source-to-source compiler itself also imply certain limitations. This imposes several
restrictions to the user who has to make sure that his input code is conform to the following
rules:

Multiple files. In the current version the compiler assumes that the main() function and
the target function are written in the same file.

C-Function. Altera SDK for OpenCL does not support C++ for OpenCL in their kernels.
Therefore the target function may not use any C++ specific constructs such as objects or
namespaces.

Function calls. The target function can contain function calls. Mathematical and printf

function calls specified in [9] are detected automatically. All remaining function calls are
inlined. Therefore, the function definition has to be accessible to the compiler and no
recursive functions are allowed. In case the inlining process is not successful, the compile
process is aborted. In accordance with the restriction on C++ constructs, object method
calls are not allowed. Furthermore, OpenCL does not allow the kernel to allocate dynamic
memory. Therefore calling malloc() is also forbidden.

Restricted Pointer. Restricted pointer management is key to a good kernel performance
in OpenCL for FPGA. Therefore every pointer must be handled as if it was restrict. Any
operation violating the restrict keyword is not allowed. This includes copying pointer such
as shown in line 3 of Listing 3.3. Note that the data referred to by two individual pointer
is transferred to two distinct buffer creating two equal copies. Furthermore, after kernel
execution both buffer are copied back to the same address causing the later to overwrite
the first. Nevertheless the user might take advantage of this if the values are read-only.

Pointer Arithmetic. Some users find it to be more efficient to use pointer manipulation
within their code. Even though changing the value of a pointer does not necessarily vio-
late the principle of restricted pointers, it might cause performance problems by creating

27

1 int A[15];

int *B;

3 B = A;

Listing 3.3: Forbidden direct pointer assignment

loop-carried dependencies. Furthermore pointer arithmetic - such as incrementing or decre-
menting a pointer - is strictly not allowed within any inlined function. Further explanations
can be found in Section 4.1.1.

Pointer to pointer. Pointer to pointer of any kind are not allowed since the actual value
would not be copied to an address space accessible by the kernel. This causes the pointer
to be invalid.

Two dimensional arrays. Two dimensional arrays are allowed as long as the values
are saved in consecutive order in the memory and the width of the array is set during
function declaration. OpenCL does not allow two dimensional arrays as function parameter.
Therefore any two dimensional array is flattened and their references are converted to one
dimension. Two dimensional arrays implemented as array of pointers are not supported as
this is a case of the previously mentioned pointer to pointer restriction. The implementation
of this transformation can be found in Section 4.1.2.

Structures and typedefs. Structures and typedefs are allowed with some restrictions.
The declaration has to be accessible to the compiler. Structures may not contain pointers,
since these would point to an address space not accessible to the kernel. Furthermore, the
Altera SDK does only support pointer to a single structure element as kernel argument, [6,
Chapter 1.52].

Function pointer. Function pointers are not allowed as they are not supported by
OpenCL [14, Chapter 6.8].

Reserved names. The SOCAO compiler adds two functions and various file scope vari-
ables to the source files. Their names are reserved.

Long and long long variables. The OpenCL standard defines the bitlength of long

variables to be 64 bit, [14, Chapter 6.1.1], whereas the ARM processor of the DE1-SoC
defines them to be 32 bit. This leads to malfunction. The user is advised to use the
int64 t data type instead since its size is equal in both systems.

size t function parameter. OpenCL does not allow function parameter to be of type
size t.

28

3.2 System Design

As described in Section 2.5, every compiler consist of three major parts: The front-end, the
middle-end and the back-end. Figure 3.3 shows that the SOCAO compiler can also be split
into these three blocks.

Front-end

Parse

Successful

Start

Abort

no

yes

Middle-end

Semantic Check

Passed

yes

no

Function detection

Function Analysis
& Transformation

Kernel Creation

Successful

yes

Successful

yes

Successful

yes

Found
yes

Abort

Back-end

Unparse

Successful

Abort

no

yes
End

no

no

no

no

Host Program
Transformation

Figure 3.3: Design diagram of the SOCAO compiler

The compile process starts with the front-end by parsing the input code into an AST.
In case of syntax errors, the parsing can not be terminated successfully and the compile
process is aborted.

Afterwards the AST is analyzed and modified in the middle-end. The first step is to
run an semantic check in order to assure that the code is free of static semantic errors.
Afterwards the function marked by the Altera OpenCL Accelerate comment is detected.

During the function analysis & transformation phase, all information necessary to build
an OpenCL kernel and a corresponding host program are collected. At this point most of
the information given by the user are taken into account in order to make the best decisions
on the structure of the kernel.

The next step is the Host Program Transformation phase. The original code of the target
function is removed from the AST in order to be replaced by the kernel call. The AST is
then further modified by inserting all variables and function calls described in Section 2.1.4.

In the final step of the middle-end, the kernel is created. The formerly removed code
is inserted into a new function and modified where needed. This function is unparsed
separately from the rest of the project and written to the aocl kernel.cl file.

29

The transformation process can only pass from one phase to another if the previous one
was completed successfully. Is this not the case, an error message is issued to the user, the
whole AST is dumped and the compile process is stopped.

In the back-end the unparser finally reverts the conversion made by the front-end. In
contrast to regular compilers, this source-to-source compiler does not compile the AST
into an executable but generates new source code. Nevertheless some information such as
spacing and formatting are lost during the AST generation process and therefore do not
appear in the output file.

30

Chapter 4

Implementation

The system described in Chapter 3 is implemented using the ROSE framework described
in Section 2.5.4. This library has all functionalities required by the front- and the back-end
as well as the semantic check already implemented. This chapter focuses therefore on the
manipulation and transformation of the abstract-syntax-tree(AST).

Figure 3.3 showed three major blocks in the middle-end: First the analysis and trans-
formation of the target function, followed by the transformation of the host program and
the creation of the OpenCL kernel. The implementations of these tasks are explained in
this chapter to further detail.

4.1 Analysis and Transformations

Ten analysis and transformation steps are performed on the target function. Each one of
them is explained in a separate section. Section 4.1.11 finally describes the dependencies
between the steps and shows the final program flow.

4.1.1 Inline Transformation

The inline transformation is used to inline all function calls within the target function. It
is the transformation that does the greatest changes to the AST of the target function.

The ROSE Framework already provides an inliner that can be called using the
doInline() function. This function accepts a reference to a function call expression and
returns a boolean value that indicates whether the inlining was successful or not.

The preimplemented inliner copies the AST of the function body into a separate basic
block at the position of the function call and adds local variables for the function parameter.
Afterwards these variables are renamed by adding a trailing number to their name in order
to prevent errors from similar naming. Every function call generates copies of the function
parameters, therefore the newly created variables are assigned the values from the function
call expression. In order to implement various return statements, a label is added to the end
of the function basic block and every return statement is replaced by a goto statement. If the
function has a return expression, an assign statement is added before the goto statement.

31

The preimplemented inliner showed one problem: If the function header contained point-
ers, their values would be copied into internal variables. As explained in Section 3.1.3 this
is against the principle of restricted pointer management.

In order to fix this problem, an additional restriction was opposed to the user by for-
bidding changes to the pointer itself within any inlined function. Now, assuming that the
pointer are read-only values, the pointer passed by the function call can be used directly
within the basic block of the inlined function code.

Since the inliner had to be modified, the original code was copied from the ROSE
framework’s sources to a separate file which was compiled with the sources of the SO-
CAO compiler. All relevant functions were renamed in order to prevent conflicts and the
corresponding lines were adapted in order to implement the above explained behavior.

1 void vector_process(char *input ,←↩
char value)

{

3 int i;

for(i = 0; i < 64; i++)

5 input[i] += value;

}

7

9 void vector_update(char *input , ←↩
int ilen)

{

11 ...

while(ilen >= 64)

13 {

vector_process(input , ’c’);

15 input += 64;

ilen -= 64;

17 }

...

19 }

Listing (4.1) Original program

1 void vector_update(char *input , ←↩
int ilen)

{

3 ...

while(ilen >= 64)

5 {

{

7 char value_1 = ’c’;

int i;

9 for(i = 0; i < 64; i++)

input[i] += value_1;

11 }

input += 64;

13 ilen -= 64;

}

15 ...

}

Listing (4.2) Result after inlining function
call

Figure 4.1: Example of an inlined function

An example of the functionality of the inliner can be seen in Figure 4.1. On the left
it shows the original program where the vector update() function contains a call to the
vector process() function. After the inlining, the function is located between the brackets
in lines 7 to 12. The char value is copied into a scope variable whereas the pointer is not
copied in order to prevent multiple pointer from pointing to the same data. No goto

statements were added since the original function does not contain any return statements.

4.1.2 2D to 1D Transformation

The OpenCL standard does not allow two dimensional arrays as function parameters.
Therefore, every two dimensional array has to be transformed to a one dimensional ar-
ray. According to the restrictions made to the user in section 3.1.3, it can be assumed that

32

every two dimensional array is stored in a sequential manner. Therefore, expressions like
vec[a][b] can be replaced by vec[a*WIDTH + b].

In the AST, array reference expression nodes are implemented by the SgPntrArrRefExp
class. They are binary operations. Therefore, the left hand side operand of this objects
always points to the variable expression while the right hand side operand points to the index
expression. For a two dimensional array reference, the left hand side points to another array
reference expression. Figure 4.2a shows the AST of the example expression vec[5][2].

The transformation is implemented as a separate pass over the target function. Every
node is compared to the above described pattern. In case of a match a new SgPntrArrRefExp

object with the pattern shown in figure 4.2b is created. The left hand operand now points
directly to the variable reference node while the index is composed of an addition and a
multiplication operator.

SgPntrArrRefExp

SgPntrArrRefExp SgIntVal
value = 2

SgVarRefExp
name = vec

SgIntVal
value = 5

lhs_operand rhs_operand

lhs_operand rhs_operand

(a) AST for expression vec[5][2]

SgPntrArrRefExp

SgVarRefExp
name = vec

SgAddOp

lhs_operand rhs_operand

SgMultiplyOp SgSgIntVal
value = 2

lhs_operand rhs_operand

SgIntVal
value = 5

SgVarRefExp
name = width

lhs_operand rhs_operand

(b) AST for expression vec[5*width + 2]

Figure 4.2: Access pattern to data arranged in two dimensions

The information about the width of a vector is obtained by analyzing the array type
object corresponding to the variable. The helper function getArrayDimensions() returns
a vector of expressions used in the declaration of the variable. It is assumed that the user
has declared at least the second dimension of the array, otherwise the transformation can
not be completed successfully.

The SageInterface provides a replaceExpression() function which replaces one ex-
pression node and its sub tree with another expression node.

Constant arrays are excluded from the transformation since their declaration is copied
directly to the file scope of the kernel function and they are therefore never passed as
function parameter.

4.1.3 Constant Value Transformation

The constant value transformation uses the information given by the
Altera OpenCL const val comments to substitute variable reference with their con-
stant values.

33

The first step is to parse the comments into their components. A vector of
pairs mapping the names of the variables to their values is then passed to the
replaceConstCommentValues() function of the SOCAO compiler.

The transformation pass traverses over the AST of the target function and tries to
downcast every node into a variable reference. If it succeeds the variable name is compared
to the variable names in the list. When a corresponding entry is found, the value string is
parsed into a value object. The subtype is determined by the type of the variable.

This optimization was implemented in order to give the user the chance to notify the
compiler about constant values which are declared in the file scope or as function parameter.
Since the kernel is compiled separately from the host code, the AOC can not find these
constant variables by running constant propagation.

Listing 4.3 shows an example of a function which sums two entries of an array
and divides the result by a factor. The factor is a constant declared in line 1. The
Altera OpenCL const val can be seen in line 6. Listing 4.4 shows the result. In this
particular case the transformation has great impact on the performance of the kernel since
the AOC will implement a division by two as a right shift which can be executed in less
time and with less resources.

const int factor = 2;

2

// Altera_OpenCL_Accelerate

4 // Altera_OpenCL_size in size

// Altera_OpenCL_size out size

6 // Altera_OpenCL_const_val factor←↩
2

void do_something(int *in, int *←↩
out , int size)

8 {

for(int i=1; i<size; i++)

10 {

out[i -1]=(in[i-1]+in[i])/←↩
factor;

12 }

}

Listing (4.3) Original function

1 const int factor = 2;

3 // Altera_OpenCL_Accelerate

// Altera_OpenCL_size in size

5 // Altera_OpenCL_size out size

// Altera_OpenCL_const_val factor←↩
2

7 void do_something(int *in, int *←↩
out , int size)

{

9 for(int i=1; i<size; i++)

{

11 out[i -1]=(in[i-1]+in[i])/2;

}

13 }

Listing (4.4) Result after transformation

Figure 4.3: Example for constant value transformation

4.1.4 Constant Folding Transformation

During the constant folding transformation, expressions containing only constant values are
evaluated, thus folded. This is normally the second step after constant propagation where
references of variables are replaced by their constant value.

The transformation is already implemented by the ROSE Framework and can be ac-
cessed through the SageInterface. The SageInterface::constantFolding() function
accepts an AST node as parameter and starts from there descending downwards to look for
unary and binary expressions that can be folded.

34

This transformation is only applied to the target function and its outcome is limited
since the aoc compiler itself has constant folding implemented too. Nevertheless, some other
analysis and transformation work more efficiently when constant expressions are already
folded limiting the amount of possible cases that have to be matched in order to search for
constant expressions.

4.1.5 Input/Output Analysis

The input/output analysis determines which variables are read and written within the target
function. The results are used in order to determine all function arguments of the kernel
function and to manage the data transfer to and from the kernel.

The analysis is implemented using the visitor pattern [13, Chapter 5].Different visit
functions are implemented for the main child classes of the SgNode class. Depending on the
exact subclass of a node it can be determined what kind of expression is present and what
operands are read or written.

For example, a SgAssignOp node can always be split into the left hand side operand
which is written and the right hand side operand which is read. On the other hand most
SgBinaryOp nodes such as additions and subtractions only contain operands that are read.
Nevertheless, every operand itself can be an expression. Therefore, the helper function
findBaseVariable() was implemented. This function filters expressions that are variable
references and strips array, dot and arrow operands.

The ROSE Framework provides the varID class in order to identify variables based on
their SgInitializedName object. This class links a SgVarRefExp node to the variable’s
definition. The varID found in the visitor functions are written into two different vectors:
One for variables that are read, thus input variables, and one for variables that are written,
thus output variables. The same variable can appear in both vectors if it is read and written.

It has to be noted that direct read and write operations to pointer are ignored. This is
caused by the fact, that only the data stored to an address can be returned by the target
function but never the pointer itself since it would point to a not accessible address space.

Figure 4.5 shows an example function which accumulates a given vector onto a result
vector. The result vector is declared at file scope and therefore not an input argument of
the target function. The results of the input/output analysis are the following:

Input Variables: {i, size, res, a}

Output Variables: {i, res}

It can be seen that the variables size and a are only read within the function. The
variable i is the iteration variable and therefore read and written. Line 9 also contains a
read and write access to the variable res which therefore is also listed in both lists.

4.1.6 Constant Array Analysis

The constant array analysis, searches the comments placed over the target function for the
Altera OpenCL const vec keyword. Then a list is created containing the variable symbols
of all constant arrays.

35

1 double *res;

3 // Altera_OpenCL_Accelerate

// Altera_OpenCL_size a size

5 // Altera_OpenCL_size res size

void vec_accumulate(double *a, int size)

7 {

for(int i = 0; i < size; i++)

9 res[i] = res[i]+a[i];

}

Listing 4.5: Vector accumulate example function for input/output analysis.

In order to check whether a string with a variable name coming from a comment line
actually matches any constant variable, the lookupVariableSymbolInParentScope() func-
tion is called and the variable symbol is retrieved. The array declaration will be copied into
the aocl kernel.cl file during the phase of kernel creation. This assumes that the array
is initialized at the declaration point. Therefore, the symbol is only added to the list of
constant arrays when the pointer to the initializer object is set to a non null location.

Constant arrays have to be treated differently by a number of analysis. For example,
they are excluded from the parameter list of the function header as well as from the 2D to
1D array transformation.

4.1.7 Typedef Analysis

The typedef analysis checks the type of all referenced variables within the target function
and detects those whose type pointer points to a SgTypedefType node. Then the definitions
of these types are added to the kernel file.

The analysis itself returns a string that contains all typedef declarations. This string is
later prepended to the unparsed kernel before it is written to the file.

A special case are the integer types defined in the cstdint header such as int32 t or
uint64 t. Their definitions depend on the target system in order to assure that the base
type has the correct bit width. The OpenCL standard itself defines the bit width of every
build-in scalar data type [14, Chapter 6]. This information was used to create corresponding
definitions to all data types from the cstdint header. Since they are used quite frequently
it was decided to include them in every OpenCL file per default. The full list of definitions
can be seen in Listing 4.6.

4.1.8 Parameter Analysis

The parameter analysis determines all function parameters of the kernel and generates for
each an OpenCL InOut object that contain all information. There exist three positions
which have to be analyzed for function parameter: the function parameter from the target
function, the variables used in the return statement and the results of the input/output
analysis described in Section 4.1.5. The input/output analysis does not distinguish between
variables declared inside and outside the target function. It is obvious that only the later

36

typedef long intmax_t;

2 typedef ulong uintmax_t;

typedef char int_least8_t;

4 typedef uchar uint_least8_t;

typedef short int_least16_t;

6 typedef ushort uint_least16_t;

typedef int int_least32_t;

8 typedef uint uint_least32_t;

typedef long int_least64_t;

10 typedef ulong uint_least64_t;

typedef char int_fast8_t;

12 typedef uchar uint_fast8_t;

typedef short int_fast16_t;

14 typedef ushort uint_fast16_t;

typedef int int_fast32_t;

16 typedef uint uint_fast32_t;

typedef long int_fast64_t;

18 typedef ulong uint_fast64_t;

20 typedef char int8_t;

typedef uchar uint8_t;

22 typedef short int16_t;

typedef ushort uint16_t;

24 typedef int int32_t;

typedef uint uint32_t;

26 typedef long int64_t;

typedef ulong uint64_t;

Listing 4.6: Typedef definitions to match data types declared in the cstdint header.

37

has to be added to the list of function parameters.

1 struct OpenCL_InOut{

const char *var_name;

3 SgType *type;

bool is_buffer;

5 const char *buffer_name;

unsigned long flags;

7 bool size_is_const;

size_t size;

9 bool size_is_define;

const char *size_param;

11 bool has_max_size;

size_t max_size;

13 bool is_global_ref;

bool is_trans_pntr;

15 bool local_cpy;

bool use_shared_memory;

17 bool is_runtime_const;

bool has_update_flag;

19 const char *update_flag;

};

Listing 4.7: OpenCL InOut struct used to collect information of the used function parameter

The definition of the OpenCL InOut struct can be seen in listing 4.7 and contains the
following fields:

var name The name of the original variable.
type Reference to the data type information.
is buffer This flag is set when the variable is a pointer or an array and the data has to be

transferred using a memory object.
buffer name This field is set in combination with the is buffer flag. It identifies the

name of the memory object used in the host code. The name is composed of a prefix,
the name of the variable and a suffix. The prefix can be either input , output or
inout depending on the results of the input/output analysis. The suffix is always
buf.

flags The flag describes whether a variable is read-only, write-only or read-write. As de-
scribed in Section 2.1.4 OpenCL defines a number of flags which categorize this behav-
ior and that can be used when creating memory objects. Even though the compiler
uses the flags defined by the OpenCL standard, this value is set not only for buffer but
also for scalar variables. The information is taken from the input/output analysis.

size is const Set to true when the value passed by the Altera OpenCL size comment is
an integer value.

size Static number of elements stored in a pointer or array.
size param Name of the size parameter if it is not an integer value.
has max size Set to true when the user passes an Altera OpenCL max size comment.
max size The maximum size of a vector.
is global ref Set to true when the array has to be declared at file scope of the kernel. This

is the case for constant vectors.
is trans pntr In some cases the target function writes scalar variables defined in the file

scope of the input source file. In order to retrieve the updated value from the kernel,

38

a memory object with only one entry has to be created. This leads to inconsistencies
within the function statements, since the variable now has to be treated as a pointer.
In order to avoid replacing all variable references, the transparent pointer concept was
created. A transparent pointer is a function parameter whose first element is copied
to and from a local variable at the beginning and at the end of the kernel. Therefore
the pointer is not visible to the original function code. Is such a situation detected,
the is trans pntr flag together with the is buffer flag are set to true.

use const memory If set to true, the memory object will be stored to the constant

address space.
local cpy Is set when the data of the buffer can be copied into the local memory of the

computing device. This flag is evaluated during the memory analysis explained in
Section 4.1.9.

use shared memory If set tu true, shared memory between host and OpenCL has to be
used to transfer the data.

is runtime const Is set to true if the user passes a Altera OpenCL runtime const com-
ment with name of the variables.

has update flag Is set to true if the user passes a Altera OpenCL update flag comment
associated with this variable name.

update flag Value passed by the Altera OpenCL update flag comment.

4.1.9 Memory Analysis

The memory analysis determines for every buffer which address space is used to transfer
the data, how the buffer is allocated and how the data is saved inside the kernel.

The data can be transferred using either the global or the constant address space. Altera
states that the global address space implements dedicated logic in order to compensate for
long access delays and to exploit consecutive memory access. On the other hand, data
located in the constant address space is loaded into a cache the first time they are read in
order to reduce further access times. This cache even persists between kernel executions [7,
Page 1-66].

The memory in both address spaces can be allocated either normally or as shared mem-
ory. For normal memory the data is transferred as described in Section 2.1.4 by using the
clEnqueueWriteBuffer() function while shared memory is mapped to a pointer inside the
host program which can be written using memcpy(). Altera recommends to use shared
memory for kernels running on one of their SoC platforms since this leads to a higher band-
width [9, Page 1-66]. Nevertheless, constant memory that is allocated as shared memory
can only be written once by the host and a new memory object has to be created every
time the data set changes.

Inside the kernel, the accessing global memory is more time consuming than accessing
local or private memory. Therefore, data should be transferred to a local or private copy
on which the calculations are performed. Using private memory increases the kernel size.
Therefore it is hard to control how much private memory can be declared within a kernel
before the limits of the FPGA are reached. The local memory is also limited but its size
is predefined for every OpenCL device. A test program can call the clGetDeviceInfo()

function with the CL DEVICE LOCAL MEM SIZE flag in order to retrieve the local memory
size. For the DE1-SoC the its is 16384 Byte. As described in Section 2.1.3, local memory

39

has to be declared with a static constant size within the kernel. Therefore, only buffer with
a know size or maximum size can be copied.

Table 4.1: Address space, allocation type and copy combinations

Transfer Allocation Internal

constant normal no copy
shared no copy

global normal no copy
local copy

shared no copy
local copy

Table 4.1 shows all valid combinations for transfer, allocation and internal representa-
tion. Data that is transferred in the constant address space is never copied whereas for data
in the global address space all four combinations are possible. The option to use constant
memory with internal copies is excluded since the data would be copied in a consecutive
order making the global memory the better choice.

Figure 4.4 shows the decision diagram that leads to the best adjustments for each buffer.
In the beginning it has to be determined whether a SoC is targeted or not. As described in
Section 3.1.1, this information is passed by the user via the Alter OpenCL soc comment.
The use shared memory field is set to true in every OpenCL InOut object if the comment is
present.

Afterwards it has to be determined, whether the local cpy field in the OpenCL InOut

object hast to be set. Arrays with a dynamic number of elements and without a maximum
size are excluded directly. A function to determine the static or maximum size of a buffer
was implemented. It has to be taken into account that the size and max size fields only
hold the number of elements but not the size in bytes. Therefore the function has to
analyze the data type of the buffer. The size for preimplemented data types is defined by
the OpenCL standard [14, Chapter 6.1] whereas typedef and struct types have to be split
into their base types. If it is not possible to determine the size, the function will return
a number higher than the limit of the local buffer. The result has to be compared to the
remaining size of the local memory. If the buffer fits, the local cpy field is set and the size
of the local memory is reduced accordingly. The analysis implements a first-come-first-serve
technique.

Finally, runtime constant buffer and buffer with update flag that do not have an internal
copy are stored in the constant address space while the rest is stored in the global address
space.

The effects of the decisions made by this analysis are evaluated in Section 5.5

4.1.10 Loop Unrolling

Altera’s SDK for OpenCL provides a unroll pragma which can be used in front of a for-
loop in order to indicate to the AOC that the loop has to be unrolled. It can be used with
a factor in order to unroll only the given number of iterations.

40

Start

is SoC?
noyes

normal
memory

allocation

shared
memory

allocation

no
internal

copy

local
internal

copy

is
size / max size

constant?

no

yes

is
size < local
memory?

no

yes

is runtime
constant?

no

yes

constant
address
space

global
address
space

Figure 4.4: Memory analysis decision diagram

41

This technique is useful in order to increase the pipeline size or to exploit continu-
ous memory access. For example, nested loops with loop-carried dependencies often have
significant initiation intervals and slow down the execution time of the surrounding loop.
Unrolling them, helps to exploit instruction level parallelism across iterations and to reduce
the initiation interval of the outer loop.

The loop unrolling analysis determines which loops shall be unrolled during the compile
process. The analysis implements an all-or-nothing approach. This means that either the
loop is unrolled as a whole or not at all. Furthermore, only the innermost for-loops in a
kernel are taken into account .

Therefore, in the beginning the analysis searches the target function for all for-loops
that do not contain any further loops. Afterwards a number of disqualification criteria are
checked:

• The number of iterations is not statically determinable

• The number of iterations exceeds 16.

• The loop body contains a call to a mathematical function that requires a lot of space.
This includes all trigonometric functions such as cos and sin as well as logarithmic
functions.

• The loop body contains a division with a divisor other than a value that is a power
of two.

If non of these criteria is met, the #pragma unroll statement is inserted in front of the
for-statement. The effect of the unroll analysis is evaluated in Section 5.6.

4.1.11 Inter Analysis and Transformation Dependencies

Figure 4.5 shows the dependency diagram between the analysis and transformation steps
explained in Sections 4.1.1 to 4.1.10.

It can be seen that most steps depend directly or indirectly on the inline transformation.
This is caused by the fact, that the inline transformation adds additional statements to
the target function and with that more variables and expressions. Each of them has to
by analyzed or might be part of a transformation. Only the constant array analysis is
independent of the inline transformation since it does not access the statement list of the
target function but the declaration statements of arrays declared at a higher scope.

It is the natural order that the constant folding transformation is executed after the
constant variables have been replaced by their constant value. The loop unrolling step
benefits from the constant folding since it tries to find loops with a constant number of
iterations.

As explained in Section 4.1.2, constant arrays are excluded from the 2D to 1D array
transformation. Therefore the names of the constant arrays have to be evaluated before the
transformation.

The input/output analysis explained in Section 4.1.5 is a crucial step in the analysis
process since it analyzes which variables are read and written within the target function.

42

Inline
Transformation

Typedef
Analysis

Loop
Unrolling

Parameter
Analysis

Constant Array
Analysis

2D to 1D Array
Transformation

Constant
Folding

Constant Value
Transformation

Input/Output
Analysis

Memory
Analysis

Figure 4.5: Dependency diagram between analysis and transformations

Therefore, all transformations which could add new variable references to the target function
have to be done beforehand.

The parameter analysis described in Section 4.1.8 depends on the information of the
input/output analysis. Furthermore it needs the results of the constant array analysis in
order to exclude all pointer elements accessible by the kernel through the file scope.

The memory analysis needs the vector of OpenCL InOut objects representing the function
parameter of the kernel function. Therefore the only direct dependency is to the parameter
analysis.

Inline
Transformation

Constant Value
Transformation

Constant
Folding

Constant Array
Analysis

2D to 1D Array
Transformation

Input/Output
Analysis

Typedef
Analysis

Parameter
Analysis

Loop
Unrolling

Memory
Analysis

Figure 4.6: Flow diagram of all analysis and transformation steps

The final program flow can be seen in figure 4.6. It was decided to start with the
inline transformation since this transformation is responsible for the greatest changes to
the target function. The loop unrolling step was implemented last since it adds OpenCL
specific pragmas to the code and could therefore also be moved to the kernel creation step.
The rest of the analysis and transformations are grouped by topics such as constant values
or arrays.

4.2 Host Program Transformation

The transformation of the input source file can be split into four tasks: The insertion of the
global variables, the insertion of an initialization and a cleanup function, the adjustment of
the main function and the modification of the target function.

43

4.2.1 Global Variables

Section 2.1.4 defines a number of objects that have to be initialized before a kernel can be
executed. They are defined in the file scope of the output source file since the initialization
and cleanup phase is separated from the execution phase. The initialization takes time
and therefore it is not desirable to recreate these object for each kernel execution. The
prototypes of the initialization and cleanup functions have to be inserted at the beginning
of the source file as well in order to insert the function definition without regard of the
position where these functions are called within the source code.

The first step of the process is to determine the insertion point within the statement
list of the program. They can not be simply written to the beginning of the file since the
OpenCL specific data types have to be read from the OpenCL header files first. Taking into
account the common practice of arranging C/C++ source files, it was decided to chose the
position above the first function definition as insertion point.

void cleanup ();

2 bool init_opencl(const char *file_name ,const char *kernel_name);

cl_platform_id platform;

4 cl_device_id device;

cl_context context;

6 cl_command_queue queue;

cl_program program;

8 cl_kernel kernel;

cl_mem output_output_buf = 0;

10 uint32_t *output_output_ptr = 0;

cl_mem input_input_buf = 0;

12 uint32_t *input_input_ptr = 0;

int aocl_input_old_size = 0;

Listing 4.8: Global variable and function declarations

The list of all global variables can be seen in Listing 4.8. The declarations in lines 1 to
8 are identical for every compile process, whereas the lower part depends on the structure
of the target function.

A cl mem object is created for every input and output buffer identified by the parameter
analysis described in section 4.1.8. The name of the buffer is taken from the buffer name

entry of the corresponding OpenCL InOut object. The memory objects are initialized with
0 in order to identify the first execution of the target function in which they have to be
initialized. Buffer that have the use shared memory flag set need an additional pointer to
safe the address of the shared memory. In the example shown in Listing 4.8 one input and
one output buffer are created. Both use shared memory hence two additional pointers are
added. An integer value like the one seen in line 13 is created for every buffer of variable
size. This way it can be determined if the memory object from the previous execution is
big enough to hold the new data.

4.2.2 Initialization and Cleanup Function

The initialization and cleanup functions are in most parts identical for all output programs.
They are named init opencl() and cleanup(). The name of the cleanup function is

44

predetermined by the checkError() function which internally calls a function with this
name.

The initialization of the memory objects is moved to the point right before kernel ex-
ecution leaving only the static objects to be initialized. Listing 4.9 shows the resulting
init opencl() function.

The cleanup function is used to delete all OpenCL related objects. Pointer to shared
memory have to be unmapped before the buffer is deleted. The statements in lines 11 to
23 of Figure 4.10 are implemented in every program whereas lines 3 to 9 depend on the list
of OpenCL InOut objects.

1 bool init_opencl(const char *file_name ,const char *kernel_name)

{

3 cl_int status;

cl_device_id *curr_devices;

5 cl_uint num_devices;

cl_device_type cl_device_type_all = 0xffffffffUL;

7 cl_command_queue_properties cl_queue_profiling_enable = 0x2;

std:: string binary_file;

9 if (! setCwdToExeDir ()) {

return false;

11 }

platform = findPlatform("Altera");

13 if (platform == 0) {

printf("ERROR: Unable to find Altera OpenCL platform .\n");

15 return false;

}

17 curr_devices = getDevices(platform ,cl_device_type_all ,& num_devices);

device = curr_devices [0];

19 context = clCreateContext (0,1,&device ,& oclContextCallback ,0,& status);

checkError(status ,"Failed to create context");

21 queue = clCreateCommandQueue(context ,device ,cl_queue_profiling_enable ,&←↩
status);

checkError(status ,"Failed to create command queue");

23 binary_file = getBoardBinaryFile(file_name ,device);

program = createProgramFromBinary(context ,(binary_file.c_str ()) ,&device←↩
,1);

25 status = clBuildProgram(program ,0,0,"" ,0,0);

checkError(status ,"Failed to build program");

27 kernel = clCreateKernel(program ,kernel_name ,& status);

checkError(status ,"Failed to create kerne");

29 return true;

}

Listing 4.9: Initiation function

4.2.3 Main Function

The main function has to be modified in order to call the initialization and the cleanup
function.

Section 3 explained that the kernel is always written to the same output file. Therefore,
the strings passed to the parameter of the init opencl() function are static constant.

45

void cleanup ()

2 {

if (output_output_buf) {

4 clEnqueueUnmapMemObject(queue ,output_output_buf ,output_output_ptr←↩
,0,0,0);

clReleaseMemObject(output_output_buf);

6 }

if (input_input_buf) {

8 clEnqueueUnmapMemObject(queue ,input_input_buf ,input_input_ptr ,0,0,0);

clReleaseMemObject(input_input_buf);

10 }

if (kernel) {

12 clReleaseKernel(kernel);

}

14 if (program) {

clReleaseProgram(program);

16 }

if (queue) {

18 clReleaseCommandQueue(queue);

}

20 if (context) {

clReleaseContext(context);

22 }

return;

24 }

Listing 4.10: Cleanup function

A successful execution of the program is only possible if the initialization was successful.
Therefore the return value of the function call is checked and a return statement is inserted
in case the evaluation fails.

The cleanup function is called at the end of the program. This function call is straight
forward since the function does not accept any parameter.

The modified main() function can be seen in listing 4.11.

int main()

2 {

if (! init_opencl("aocl_kernel","aocl_generated_kernel")) {

4 printf("WARNING: COULDN ’T INITIALIZE OPENCL\n");

return -1;

6 }

8 // original code

10 cleanup ();

}

Listing 4.11: Changes made do the main Function

46

4.2.4 Target Function

The greatest manipulations have to be made to the target function: First, the function
body is stripped. This means that all statements are removed from the statement list. Only
variable declarations and the return statement are left. Afterwards statements implementing
the kernel execution routine explained in Section 2.1.4 are inserted. Since the initialization
of the memory buffer is moved from the initialization function to the target function, this
step is prepended to the other tasks.

The first statements created are variable declarations. Besides the status variable al-
ready known from the init opencl() and cleanup() functions, events have to be created in
order to track the data transfer to the kernel, the execution and the data transfer back from
the kernel. The number of events needed is determined by iterating the vector containing
the OpenCL InOut objects and evaluating the flags field.

The information is used to create two event arrays called write event and finish event

for the transfer to and from the kernel respectively. The execution of the kernel is a single
event and is therefore implemented as a variable called kernel event.

Start

is buffer?

yes

no
End

create
clCreateBuffer();

no
use

shared
memory?

is runtime
constant?

no

yes create
clEnqueueWriteBuffer();

size is
constant?

no

yes

End

create
if (size_old < size){
 clReleaseMemObject();
 clCreateBuffer();
}

is runtime
constant?

no
yescreate

memcpy();

size is
constant?

no

yes

End

create
if (size_old < size){
 clEnqueueUnmapMemObject();
 clReleaseMemObject();
 clCreateBuffer();
 clEnqueueMapBuffer();
}

yescreate
clCreateBuffer();
clEnqueueMapBuffer();

Figure 4.7: Decision diagram for different buffer types

In the next step the initialization of the buffer is implemented. Figure 4.7 shows the deci-
sion diagram the SOCAO compiler uses to generate the right code. For every OpenCL InOut

it is checked whether the is buffer flag is set. If not, the compiler continues to the next
object. It has to be distinguish whether the memory analysis described in Section 4.1.9 has
set the use shared memory flag or not. Shared memory uses a pointer to access the data.
Therefore the clEnqueueMapBuffer() function is called in order to map the pointer to the
shared memory.

On both sides of the decision diagram three buffer types can exist: runtime constant
buffers, variable size buffers and constant size buffers. For runtime constant buffer the data
has to be copied right after the creation point. This is either done using the memcpy()

function from the string.h header or the clEnqueueWriteBuffer() from the OpenCL
header. Constant size buffer have to be released and recreated when the size of the existing
buffer has become to small. In case of shared memory, the pointer has to be unmapped
before the memory can be freed. Constant size buffers do not need any further treatment.

47

Figure 4.12 shows the initiation code for the three buffer types under the assumption
that shared memory is used. The first buffer in lines 1 to 8 has a constant size. The second
buffer in lines 11 to 27 has a variable size determined by the size variable. Therefore the
size has to be checked every time the target function is called. The last buffer in lines 29 to
36 is runtime constant. The data is copied immediately after the buffer was created. The
size variable is not reevaluated since its value is not supposed to change.

In accordance with the program flow explained in section 2.1.4, the next step is the
transfer of the input data. In case shared memory is used, this is done by adding a memcpy()

function call expression. For non-shared memory the clEnqueueWriteBuffer() function is
used.

The compiler differentiates between two update behaviors: the first is updating the
data in a buffer every execution, the second is updating the data only if the update flag
is set. For the later the copy statement is inserted into an if-condition. In this case the
clEnqueueWriteBuffer() function is used, the blocking write parameter is set to true

because no event was created to track the termination of the write process. Afterwards the
SOCAO compiler inserts a clSetKernelArg() call for every OpenCL InOut object in the
function parameter vector.

The clEnqueueTask() function call is almost identical in every case. Only the number
of write events which have to be awaited before executing the command changes.

The number of function calls to copy the results of the OpenCL kernel also depends on
the parameter list. In order to insert them, the vector with OpenCL InOut elements is eval-
uated one more time and a clEnqueueReadBuffer() or memcpy() function call expression
is created for every output variable.

Finally the function call to await the termination of all finish event is added as well
as one clReleaseEvent() function call for every event.

An examples of an altered target function can be found in the appendix in Listing A.2
lines 53 to 101.

4.3 Kernel Creation

In order to successfully create the aocl kernel.cl file, the compiler needs the list with the ex-
tracted statements, the vector of OpenCL InOut elements and the results of the typedef and
constant array analysis. The whole process is implemented in the createOpenCLKernel()

function.

The function is split into three tasks: The creation of the function header with the
parameter list, the creation of the function body and the unparsing of the code into the
destination file.

4.3.1 Function Header

A function is defined by its name, a list of function parameter, a return value and optionally
a number of modifier keywords. Therefore, the first step is to create the function parameter
list from the vector of OpenCL InOut objects. The vector is traversed and for every entry

48

1 // constant size buffer

if (! input_constant_size_buf) {

3 input_constant_size_buf = clCreateBuffer(context , 0x4UL| ←↩
CL_MEM_ALLOC_HOST_PTR , 8* sizeof(float), 0, &status);

checkError(status , "Failed to create buffer");

5 input_constant_size_ptr = (float*) clEnqueueMapBuffer(queue ,←↩
input_constant_size_buf ,CL_TRUE ,0,0,8* sizeof(float) ,0,0,0,&status);

checkError(status , "Failed to map buffer");

7

}

9

// variable size buffer

11 if (! output_variable_buf) {

output_variable_buf = clCreateBuffer(context , 0x2U| ←↩
CL_MEM_ALLOC_HOST_PTRL , size*sizeof(float), 0, &status);

13 checkError(status , "Failed to create buffer");

output_variable_ptr = (float*) clEnqueueMapBuffer(queue ,←↩
output_variable_buf ,CL_TRUE ,0,0,size*sizeof(float) ,0,0,0,&status);

15 checkError(status , "Failed to map buffer");

aocl_variable_old_size = size;

17 }

else {

19 if (aocl_variable_old_size < size) {

clReleaseMemObject(output_variable_buf);

21 output_variable_buf = clCreateBuffer(context , 0x2UL| ←↩
CL_MEM_ALLOC_HOST_PTR , size*sizeof(float), 0, &status);

checkError(status , "Failed to create buffer");

23 output_variable_ptr = (float*) clEnqueueMapBuffer(queue ,←↩
output_variable_buf ,CL_TRUE ,0,0,size*sizeof(float) ,0,0,0,&status);

checkError(status , "Failed to map buffer");

25 aocl_variable_old_size = size;

}

27 }

29 // runtime constant buffer

if (! input_const_buf) {

31 input_const_buf = clCreateBuffer(context ,0x4UL| CL_MEM_ALLOC_HOST_PTR ,←↩
size * sizeof(float) ,0,&status);

checkError(status ,"Failed to create buffer");

33 input_const_ptr = (float *) clEnqueueMapBuffer(queue ,input_const_buf ,←↩
CL_TRUE ,0,0,size*sizeof(float) ,0,0,0,&status);

checkError(status , "Failed to map buffer");

35 memcpy(input_const_ptr , const , size);

}

Listing 4.12: Initiation code for different buffer types

49

the process shown in Figure 4.8 is followed to generate a SgInitializedName object.

strip modifier and
reference -, pointer-

and array-type

is buffer? yes build
SgPointerType

Start

is
trans_pntr?

append "_ptr"
to name

yes

no

needs
local copy?

append "_global"
to name

yes

no

set constant
modifier

is read
only variable?

yes

set restricted
modifier

no

set OpenCL
global

build
SgInitializedName

End

no

no

yes

is
read only?

yes set OpenCL
constant

no
use

shared
memory?

Figure 4.8: Decision diagram for the creation of parameter list

In the beginning the data type of the variable is striped to its base type. This means
removing all SgModifierType, SgReferenceType, SgPointerType and SgArrayType class
encapsulations. The stripType() function used to do so can strip various layers of encap-
sulation classes until only the base type is left.

The rest of the process is decided by the is buffer flag. A scalar variable does not
need to be further modified except of the const modifier in case the variable is read-only.
It has to be noted, that this is the case for most scalar variables.

Buffers are always passed as pointer. Therefore the first step after detecting a buffer
parameter is to create a new SgPointerType object with the stripped data type as base.
Afterwards the name of the buffer is changed where needed. The suffix ptr is appended
at the name for transparent pointers in order to distinguish the name from the original
variable which is used within the function body. Variables which have the local copy flag
set are copied later into an array with the original name located in the local address
space of the computing device. Therefore the name of the function parameter has to be
altered by appending the global suffix.

50

All buffers are restricted. Therefore a new SgModifierType encapsulating the pointer
is build and the restrict option is set. Finally the address space of the parameter is set in
accordance with the use const memory flag. The ROSE framework provides the functions
setOpenclConstant() and setOpenclGlobal() as part of the SgModifierType class.

With the variable type and name fully build and configured, a SgInitializedName

object can be created and appended at the parameter list.

The parameter list is used in the buildDefiningFunctionDeclaration() func-
tion to build the function definition of the kernel. The name is always set to
aocl generated kernel and the return type is void.

Every SgFunctionDeclaration object is linked to a modifier object that holds all infor-
mation about the modifier keywords that can prepended to the function header. By calling
the setOpenclKernel() function, the kernel keyword is set in front of the function
header.

Listing 4.13 shows a function prototype with three arguments generated to target a SoC
platform. Therefore, the input data that is passed as pointer is located in the global address
space.

__kernel void aocl_generated_kernel(uint32_t __global * __restrict__ ←↩
state_global ,unsigned char __global * __restrict__ input ,const uint64_t←↩
len);

Listing 4.13: OpenCL kernel header

4.3.2 Function Body

The function body is composed of three major blocks. In the beginning data is copied
from the global address space into the private or the local address space. Then the original
function body is executed. At the end the data is copied back.

In the beginning the compiler adds the statements which were striped from the target
function into the new function body and removes all preprocessing info and comments.

Afterwards the copy statements are created. First the compiler deals with the variable
which need a transparent pointer. A variable declaration has to be inserted in the beginning
of the function body, since the variable itself is no long declared in the function header. For
read-write variables an initiation value has to be copied from the transparent pointer. A
second assign statement is added at the end of the function body in order to copy the result
back into the global address space. The result can be seen in listing 4.14.

Finally the declaration and the copy statements for the data that has to be copied to and
from the local address space are generated. The results are similar to the example shown in
4.15. OpenCL does not support arrays of dynamic size, therefore, the arrays are declared
using either the constant size value from the size field or the maximum size value from the
max size field. This can be seen in line 4 of the example. Afterwards the for-loops used
to copy the data are created. For arrays with has max size property not the size field is
used as upper bound but the size param field containing the variable name which holds
the actual size. Variables that are write-only do not need the loop at the beginning of the

51

1 __kernel void aocl_generated_kernel(float __global * __restrict__ ←↩
error_ptr , ...)

{

3 float error = *error_ptr;

5 ...

7 error_ptr [0] = error;

}

Listing 4.14: Copy statements for transparent pointer

function for initialization while read-only variable do not need the loop at the end.

_kernel void aocl_generated_kernel(int __global * __restrict__ ←↩
state_global , ...)

2 {

int rose_it;

4 __local int state [8];

for (rose_it = 0; rose_it < 8; ++ rose_it) {

6 state[rose_it] = state_global[rose_it];

}

8

...

10

for (rose_it = 0; rose_it < 8; ++ rose_it) {

12 state_global[rose_it] = state[rose_it];

}

14 }

Listing 4.15: Copy statements for variables safed to the local address space

4.3.3 Unparsing

Unparsing and writing the aocl kernel.cl file are the final steps of the kernel creation.

In the beginning the file is opened and the typedef definitions found by the typedef
analysis are written into it. This also includes the definitions of the cstdint header file
which are always added to the output file. Afterwards the arrays identified by the constant
array analysis added.

The kernel function is first unparsed into a string by calling the
unparseToCompleteString() function on the SgFunctionDeclaration object. Un-
fortunately, the ROSE framework makes a mistake when unparsing the pointer function
arguments: The unparser attaches the star indicating a pointer type in front of the address
space identifier creating expressions like * global. These are detected by the aoc compiler
as syntax errors. Therefore, the unparsed string ins searched for these expressions and the
position of the star is moved to the end of the address space qualifier creating an expression
like global *.

Finally the string is written to the file to finish the process of creating the OpenCL
kernel. Example kernel can be found in Listings A.3, B.3, C.3 and D.3 in the appendix.

52

Chapter 5

Evaluation

The SOCAO compiler is evaluated by compiling four example programs and running them
on Altera’s DE1-SoC evaluation board.

Sections 5.1 to 5.4 describe the input test programs, their characteristics and the per-
formance results. Section 5.5 evaluated the performance impact of the memory types by
compiling different versions of the final OpenCL kernel and comparing them with each
other. The same is done in Sections 5.6 and 5.7 to show the effect of loop unrolling and the
use of constant file scope arrays.

5.1 SHA-256

The Secure Hash Algorithm (SHA) standard is defined by the National Institute of Stan-
dards and Technology (NIST) in [10]. In general hashing functions map a string of arbitrary
length onto a string of fixed length. They are used in the field of cryptography in order to
generate and verify digital signatures and message authentication codes. The SHA standard
most widely used is the SHA-2 standard. It also defines the SHA-256 algorithm which is
named after the number of bits the final hash consists of.

The calculation is split into two major steps: The preprocessing of the message and the
actual calculation of the hash tag.

5.1.1 Compilation

The implementation of the algorithm was taken from the mbed TLS library [17]. This
library provides cryptography functionalities for embedded systems. A target function was
extracted which takes the preprocessed message and calculates the hash tag. The source
code can be seen in Listing A.1 in the appendix.

It has to be noted that the algorithm contains two nested for-loops. Both show loop-
carried dependencies. The outer loop splits the input message in blocks of 512 bit and
depends on the accumulation of the state variable in line 65 of Listing A.1. The inner
loop executes the 64 iterations defined by the SHA-256 algorithm and shows read-write
dependencies for the A array in lines 59 to 61. The algorithm can therefore not be split

53

into work-items that work independently of each other. Hence, it is hard to find a good
way to accelerate the execution of the algorithm. Nevertheless the algorithm has a lot of
instruction parallelism an FPGA can exploit.

The header of the target function can be seen in Listing 5.1. Besides the obligatory
Altera OpenCL Accelerate, the Altera OpenCL size comment is used to indicate the el-
ement count of the input and the state pointer. The array K contains the constant values
defined in the SHA specification [10, Chapter 4.2.2]. Therefore, it is marked as constant
array. The last comment indicates that a SoC platform is targeted.

// Altera_OpenCL_Accelerate

2 // Altera_OpenCL_size input len

// Altera_OpenCL_size K 64

4 // Altera_OpenCL_size state 8

// Altera_OpenCL_const_vec K

6 // Altera_OpenCL_soc

void mbedtls_sha256_update_accelerated(uint32_t *state , const unsigned ←↩
char *input , uint64_t len)

Listing 5.1: SHA-256 target function header with Altera OpenCL comments

The resulting host program and OpenCL kernel can be seen in Listings A.2 and A.3.
The AOC compile log shows that the inner loop can be pipelined without initiation interval
despite the loop-carried dependencies. The outer loop has an initiation interval of two cycles
but the iterations have to be executed serially across the inner loop because each iteration
depends directly on the results of the previous iteration. This means that the outer loop is
de facto executed sequentially since it contains little more beside the inner loop.

5.1.2 Area

The area consumption within the FPGA after synthesis can be seen in Table 5.1. It shows,
that the kernel requires only 27 % of the total logic cells, 8 % of the available memory bits
and 17 % of the M10K memory blocks. No DSP blocks are needed as they are typically
used to implement floating point operations and complex mathematical functions from the
math library. The design runs with a clock frequency of 112MHz.

Table 5.1: Resources occupied by the SHA-256 OpenCL kernel

SHA-256

ALUTs 8,720
Registers 19,036
Logic utilization/[103] 8.72 / 32.0 (27 %)
Memory bits/[103] 327 / 4,065 (8 %)
M10K blocks 69 / 397 (17 %)
DSP blocks 0 / 87 (0 %)
Clock freq 112 MHz

The kernel is relatively small. This is caused by the fact that most operations within
the kernel are logic function such as AND and OR.

54

5.1.3 Execution Time

The execution time of the SHA-256 algorithm for different input sizes can be seen in Figure
5.1. It is obvious that the execution time increases linearly with the size of the input
message. This can be explained by the dependency of the outer for-loop on the message
size, whereas the number of iterations of the inner loop is constant.

0 100 200 300 400 500

0

5

10

15

20

25

Input Size/[kBytes]

E
x
ec

u
ti

on
T

im
e/

[m
s]

0.8

1

1.2

1.4

1.6

S
p

ee
d

u
p

-F
ac

to
r

Original SHA-256
OpenCL SHA-256

Speedup-Factor

Figure 5.1: Execution time SHA-256

The speedup is also shown in Figure 5.1. It is calculated as the execution time of the
original code divided by the execution time of the OpenCL optimized version. It can be
seen that the speedup depends greatly on the message size. For small messages the OpenCL
version runs slower than the original program. This is caused by the OpenCL overhead and
the time consumed to transfer the data. The maximum speedup is 1.54 and is reached for
a message size of around 300 kByte. The break even point is reach for a message size of
10 kBytes.

5.2 AES

The advances encryption standard (AES) was introduced by the NIST in 2011 and belongs
to the class of symmetric block cipher algorithms that can encrypt and decrypt data [11].

5.2.1 Compilation

The implementation was taken from the mbed TLS library as well [17]. The extracted
function encrypts the AES standard using counter mode (CTR) and a 128 bit key. CTR
refers to a block cipher operation mode where the key and a counter are used as input
values to the AES algorithm that calculates a unique bitstream. The data is encrypted and
decrypted by performing a bitwise xor operation with the bitstream.

Listing 5.2 shows the function header with the user comments for the SOCAO compiler.

55

The element count is only given for the pointer input, output and RK. The SOCAO compiler
is able to detect the static size of the remaining arrays. Furthermore, the AES algorithm
uses various constants which are marked as constant arrays in order to have them declared
directly in the OpenCL file.

1 // Altera_OpenCL_Accelerate

// Altera_OpenCL_size input length

3 // Altera_OpenCL_size output length

// Altera_OpenCL_size RK 68

5 // Altera_OpenCL_const_vec FT3

// Altera_OpenCL_const_vec FT2

7 // Altera_OpenCL_const_vec FT1

// Altera_OpenCL_const_vec FT0

9 // Altera_OpenCL_const_vec RT3

// Altera_OpenCL_const_vec RT2

11 // Altera_OpenCL_const_vec RT1

// Altera_OpenCL_const_vec RT0

13 // Altera_OpenCL_const_vec FSb

// Altera_OpenCL_const_vec RSb

15 // Altera_OpenCL_soc

int mbedtls_aes_crypt_ctr_nr10(uint32_t *RK , uint64_t length , unsigned ←↩
char nonce_counter [16], unsigned char stream_block [16], const unsigned ←↩
char *input , unsigned char *output)

Listing 5.2: AES-CTR target function header with Altera OpenCL comments

The complete input code can be seen in Listing B.1 in the appendix. It shows that
the target function has equally to the SHA-256 algorithm two nested for-loops. The outer
loop splits the message into blocks. The calculation of the AES algorithm depends only
on the key and the counter but not on the result of previous calculations. Therefore the
bitstream for each input block can be calculated independently. The inner for-loop shows
loop-carried dependencies since the variables X1, X2, X3 and X4 are read before they are
written.

The output from the SOCAO compiler can be seen in Listings B.2 and B.3. The loop
unroll analysis described in Section 4.1.10 added an unroll pragma in front of the for

statement in line 86 because of it is the inner loop and has a constant number of iterations.

The compile log of the AOC shows that the outer loop can be pipelined perfectly.

5.2.2 Area

Table 5.2 shows the resources occupied by the kernel. It can be seen that the design needs
31 % of the logic resources, 42 % of the memory bits and 78 % of the M10K memory blocks.
The kernel runs on a clock frequency of 141 MHz.

The AES kernel is significantly bigger than the SHA-256 kernel analyzed in Section 5.1.2.
The memory increase can be explained by the number of constant arrays which are needed
for the compilation of the bitstream. Eight arrays with 256 32 bit values and two arrays with
256 8 bit values are declared in the file scope of the OpenCL program. This alone equals
70 kbit of data that have to be stored. As stated in Section 5.2.1, the algorithm is translated
into a perfect pipeline. This means that a separate copy of the stream block, nonce count

56

Table 5.2: Resources occupied by the AES-CTR OpenCL kernel

AES-CTR

ALUTs 10,888
Registers 22,956
Logic utilization/[103] 10.1 / 32.0 (31 %)
Memory bits/[103] 1,709 / 4,065 (42 %)
M10K blocks 311 / 397 (78 %)
DSP blocks 0 / 87 (0 %)
Clock freq 141 MHz

and RK arrays declared at the beginning of the kernel function exists in every stage of the
pipeline. This increases the memory requirements with the length of the algorithm.

5.2.3 Execution Time

The execution times of the original and optimized AES-CTR program can be seen in Figure
5.2. The graph shows a linear dependency between input size and execution time because
the unrolled kernel only consists of one loop that depends on the message size.

0 100 200 300 400 500

0

10

20

30

Input Size/[kBytes]

E
x
ec

u
ti

o
n

T
im

e/
[m

s]

1

2

3

4

S
p

ee
d

u
p

-F
ac

to
r

Original AES-CTR
OpenCL AES-CTR

Speedup-Factor

Figure 5.2: Execution time AES-CTR

The maximum speedup-factor is 3.78. This means that the original program needs
3.78 times the time of the optimized program in order to execute one AES encryption.
The maximum speedup is reached at a message size of 300 kBytes. The OpenCL program
executes faster than the original version once the message size exceeds 3.3 kBytes.

It is obvious that the performance of the AES kernel is better than the SHA-256 kernel
seen in Section 5.1.3 because the outer loop is a perfect pipeline whereas in the SHA-256
algorithm it is only possible to pipeline the inner loop. Another factor is the clock frequency
with which the kernel runs. The SHA-256 kernel runs at 112 MHz whereas the AES-CTR
kernel uses a clock of 141 MHz.

57

5.3 FFT

The Fast Fourier Transformation (FFT) is an algorithm used to translate a discrete signal
from the time domain into the frequency domain.

5.3.1 Compilation

The implementation was taken from the Worst-Case Execution Time (WCET) research
group of the Mälardalen Real-Time Research Center which provides a large number of
benchmarks [3].

The implemented algorithm takes a fixed number of 2048 input samples in order to
calculate the FFT. The extracted target function contains the main loop of the FFT calcu-
lation. The prototype can be seen in Listing 5.3. The function arguments are a flag that
indicates whether the normal or inverted version of the FFT is calculated and the pi frac

pointer which holds the necessary fractions of π. The ar and ai arrays that hold the real
and imaginary input data are not shown in the function header. They are detected by the
parameter analysis explained in Section 4.1.8. Nevertheless it is obligatory to indicate their
size with the Altera OpenCL size comment. The fractions of π are calculated once before
the first execution of the FFT. Therefore, the array is marked as runtime constant.

// Altera_OpenCL_Accelerate

2 // Altera_OpenCL_size ar 2048

// Altera_OpenCL_size ai 2048

4 // Altera_OpenCL_size pi_frac ITER

// Altera_OpenCL_runtime_const pi_frac

6 // Altera_OpenCL_soc

void accelerate(int flag , float *pi_frac)

Listing 5.3: FFT target function header with Altera OpenCL comments

The complete input file can be seen in Listing C.1 in the Appendix. It is important to
notice that the target function displayed in lines 69 to 104 contains three nested for-loops.
Furthermore the inner most loop creates a loop-carried dependency by reading the arrays
ar and ai in lines 91 to 94 and then writing back to them in lines 97 to 100. Furthermore
the function calls the trigonometric functions sin and cos in lines 84 and 85.

The output file of the compilation is shown in Listing C.2. It can be seen in lines 96 to
103 that the pi frac pointer is initialized, mapped and copied only once.

The FFT kernel is displayed in Listing C.3. The ar and ai arrays occupy together
16284 Bytes which is exactly the size of the local memory. Therefore copies are created
for both of them. No loop fulfills the criteria for the loop unrolling analysis. Therefore no
#pragma unroll statement was added.

The AOC log shows that the for-loops can not be pipelined very effectively. The inner
most loop has an initiation interval of 24 cycled due to the loop-carried dependencies. The
middle loop is listed with an initiation interval of 2 cycles but the iterations are executed
serially over the region of the inner loop which will produce a lot of stalls in the pipeline.
Finally the outer loop is not pipelined at all.

58

5.3.2 Area

Table 5.2 shows the resource report of the FFT kernel. It can be seen that around one third
of logic and M10K blocks are occupied. Furthermore, the FFT kernel uses 14 DSP blocks.
They are mainly used to implement the sin and cos function calls in lines 84 and 85 of
Listing C.1.

Table 5.3: Resources occupied by the FFT OpenCL kernel

FFT

ALUTs 13,030
Registers 23,203
Logic utilization/[103] 10.8 / 32.0 (34 %)
Memory bits/[103] 628 / 4,065 (16 %)
M10K blocks 131 / 397 (33 %)
DSP blocks 14 / 87 (16 %)
Clock freq 125 MHz

5.3.3 Execution Time

No input size sweep can be made to evaluate the execution time since the implementation
uses a fix sample size.

O
rig

in
al

O
pe

nC
L

0

0.5

1

1.5

2

2.5

3

0.23

2.99

0.23

0.53

E
x
ec

u
ti

on
T

im
e/

[m
s]

Host

Kernel

Figure 5.3: Breakdown execution time for the FFT example

Figure 5.3 compares the execution time of the original program and the OpenCL en-
hanced program. It can be seen that the execution time of the modified version exceeds the
original program by a factor of 12.5. The breakdown even shows that the time spend to
execute the host program already exceeds the total execution time of the original algorithm.
This indicates that the break-even point has not been exceeded. In comparison, for an in-

59

put size of 16384 Byte the original SHA-256 algorithm needs 0.73 ms and the original AES
encryption needs 1.07 ms which equals three to four times the execution time of the original
FFT algorithm. This leaves enough time to compensate for the time needed to transfer
the data. Unfortunately, if the number of input samples in the FFT was increased any
further, the data would not fit into the local address space. The impact of this is discussed
in Section 5.5.2.

Another reason for the bad timing result can be found in the initiation interval of the
inner for-loop. The 24 clock cycles which have to pass between consecutive iterations are
multiplied by the total number of iterations that have to be performed. Since this loop is
enclosed by two more loops this number grows big quickly.

It has to be concluded that not every program is suitable for OpenCL acceleration.
First, programs which use the same array as input and output pointer should be considered
carefully since they are more likely to create loop-carried dependencies which result in
extensive initiation intervals. Second, programs which contain more than two nested loops
can result in bad performance since the AOC compiler has more problems pipelining these.
Last, the target function has to include sufficient operations in order to compensate for the
delay of the data transfer.

Nevertheless, the FFT example has certain characteristics which show effect once the
impact of internal copies are evaluated in Section 5.5.2.

5.4 CRC

The cyclic redundancy check (CRC) is a procedure used to detect errors during data trans-
mission. The algorithm calculates a checksum using a polynomial and appends this to the
data stream. The receiver repeats the calculation including the crc. In case of correct data
transmission the resulting value should be zero.

5.4.1 Compilation

Like the FFT, the implementation of the CRC was taken from the WCET benchmark
project [3]. The prototype of the target function can be seen in Listing 5.4. The algorithm
in the function body calculates the CRC for a char array of arbitrary length. The lin

array that is holding the data stream is a file scope variable and therefore not part of the
function header. The icrctb and rchr arrays contain the coefficients of the polynomial
function. Their values are initialized at the beginning of the main function. Therefore, they
are indicated as runtime constant.

The full input source code is printed in the appendix in Listing D.1. It can be seen in
lines 36 to 44 that the algorithm only contains one for-loop which iterates over the size
of the input message. The calculation consists mostly of xor and shift operations on the
input data. This can normally be done more efficiently by an FPGA than by an ALU.
Nevertheless, the access to the cword variable causes a loop-carried dependency.

The host program and OpenCL kernel generated by the SOCAO compiler can be seen
in listings D.2 and D.3. It has to be noted that the icrctb and rchr arrays are copied into
the local array since they fit the criteria of the memory analysis described in Section 4.1.9.

60

1 // Altera_OpenCL_Accelerate

// Altera_OpenCL_size lin len

3 // Altera_OpenCL_size icrctb 256

// Altera_OpenCL_size rchr 256

5 // Altera_OpenCL_runtime_const icrctb

// Altera_OpenCL_runtime_const rchr

7 // Altera_OpenCL_soc

unsigned short icrc(unsigned short crc , unsigned int len , short jinit , int←↩
jrev)

Listing 5.4: CRC target function prototype with Altera OpenCL comments

The AOC compile log shows that the loops can be pipelined perfectly even though the
loop has read-write dependencies for the cword variable.

5.4.2 Area

The results of the resource report can be seen in Table 5.4. In comparison to the kernel seen
in the previous sections, the CRC kernel occupies relatively few space. Only 27 % of the
logic and 16 % of the M10K memory blocks are utilized. The clock frequency is 143 MHz
which is comparable to the AES example.

Table 5.4: Resources occupied by the CRC OpenCL kernel

CRC

ALUTs 7,785
Registers 10,162
Logic utilization/[103] 5.52 / 32.0 (17 %)
Memory bits/[103] 258 / 4,065 (6 %)
M10K blocks 65 / 397 (16 %)
DSP blocks 0 / 87 (0 %)
Clock freq 143 MHz

5.4.3 Execution Time

The execution times for the original and optimized CRC program are shown in Figure 5.4.
A sweep from 5 to 500 kBytes input size is made in order to document the effect the OpenCL
overhead has on the execution time. It can be seen that the maximum speedup-factor is
3.74 and is reached at around 300 kBytes. Thereby it is similar to the AES example. The
break-even point is 4 kBytes which is slightly higher than the AES example but lower than
the SHA-256 algorithm.

5.5 Memory Performance

In this chapter the performances of the different address spaces and the different forms
of memory allocation are evaluated in order to justify the decisions implemented in the

61

0 100 200 300 400 500

0

10

20

30

Input Size/[kBytes]

E
x
ec

u
ti

on
T

im
e/

[m
s]

1

2

3

S
p

ee
d

u
p

-F
ac

to
r

Original CRC
OpenCL CRC

Speedup-Factor

Figure 5.4: Execution time CRC

memory analysis which was explained in Section 4.1.9. Therefore, different versions of the
test programs explained in Sections 5.1 and 5.2 are created and compared with each other.

5.5.1 Memory Allocation

As explained in Section 4.1.9, the first property evaluated by the memory analysis is whether
to use shared or non-shared memory allocation. Unfortunately, only the performance for
SoC platforms can be evaluated because hardware-wise only the DE1-SoC was available.

For the test, two new versions of the AES and SHA-256 program were created by deleting
the //Altera OpenCL soc comment in front of the target-function declaration. Thereby the
SOCAO compiler is forced to implement non-shared memory allocation.

The speedup is calculated for all four programs by dividing the execution time of the
original program by the execution time of the optimized program. The results are shown
in Figure 5.5.

It can be seen, that the maximum speedup is equal for both versions of the SHA-256
program. Nevertheless, for small message sizes, the speedup increases when shared memory
allocation is used. This also influences on the break even point which is 10 kBytes for shared
memory allocation and 15 kBytes for non-shared memory allocation.

For the AES-CTR algorithm, the maximum speedup increases from 3.7 to 3.8 when
shared memory allocation is used. The The break-even point is also reduced from 6 kBytes
for non-shared memory allocation to 3.8 kBytes for shared memory allocation.

The decrease in execution time is caused to the fact that the time for data transfer
is reduced. Especially the AES-CTR algorithm that has to transfer as many bytes from
the kernel back to the host system as it copies to the OpenCL device, profits from this
technique.

It can be concluded that shared memory allocation should be used whenever a SoC

62

0 100 200 300 400 500

1

2

3

4

Input Size/[kBytes]

S
p

ee
d

u
p

-F
a
ct

or
SHA-256 Shared

SHA-256 Non-Shared

AES-CTR Shared

AES-CTR Non-Shared

Figure 5.5: Speedup-factor for different types of memory allocation

platform is targeted. Even though it might not necessary result in a higher speed-up it
might increase the range of input data size for which the optimized program can be used.

5.5.2 Internal Copy

In this section the effect of copying data to the local memory is evaluated.

The SHA-256 uses the state array to transfer the results of an earlier function call in
order to resume a hashing process. This array holds exactly 256 bit divided into 8 32 bit
integer values. This array fulfills the requirements to create an internal copy that is used
inside the kernel function. Nevertheless, the kernel code in Listing A.3 shows that after
copying the data from the global to the local address space in lines 35 to 37 the data is
copied again to the private memory in lines 48 and 49. The AOC recognized the local copy
as unnecessary and optimized the code. The log states the warning: ’Compiler Warning:
Aggressive compiler optimization: removing unnecessary storage to local memory’.

The AES-CTR kernel in Listing B.3 has three array for which local copies are cre-
ated. The stream block and nonce counter arrays are used to like the state array in
the SHA-256 kernel in order to resume a previous calculation. The RK array contains the
key and is therefore constant. A closer look shows that the nonce counter is copied into
the int counter variable in line 57. Therefore the log of the AOC compiler states the
same warning as for the SHA-256 example. Furthermore, the kernel of the AES algorithm
forms a perfect pipeline. Longer access times to the memory will enlarge the pipeline but
not affect the initiation interval. In terms of execution time this results in an offset that
becomes unimportant once the pipeline is filled.

Figure 5.6 shows the speed-up factor for kernels that use local copies and those not. As
expected the difference is negligible.

A better example is the CRC algorithm. Once the internal copies are removed, the
polynomial coefficients have to be read from the global memory. As described in Section

63

0 100 200 300 400 500

1

2

3

4

Input Size/[kBytes]

S
p

ee
d

u
p

-F
a
ct

or
SHA-256 Without Copy

SHA-256 Local Copy

AES-CTR Without Copy

AES-CTR Local Copy

Figure 5.6: Speedup-factor for kernels with or without internal copy

2.1.3, the global memory is the slowest memory available. Furthermore, Altera states
that their implementation is optimized for consecutive memory access. However the CRC
algorithm accesses the rchr and icrctb arrays randomly. The AOC compile log indicates
that once the copy statements are removed, the main loop has an initiation interval of 165
clock cycles caused by the load operations.

0 100 200 300 400 500

0

200

400

600

Input Size/[kBytes]

E
x
ec

u
ti

on
T

im
e/

[m
s]

Origianal CRC

CRC Local Copy
CRC No Copy

Figure 5.7: Execution time of the CRC algorithm with and without copy

Figure 5.7 compares the execution times for the calculation on the ARM core, the
OpenCL kernel using local copies and the OpenCL kernel not using any internal copies.
The unoptimized kernel needs up to 18.5 times the time the ARM core needs and 69 times
the time the optimized kernel needs.

Another example that shows the difference between local and global memory perfor-
mance is the FFT explained in Section 5.3. While the AES and SHA-256 algorithms have

64

dedicated arrays for input and output, this algorithm reads and writes the same array cre-
ating a dependency between the statements in lines 91 to 94 and 97 to 100 in Listing C.3.
The compile log shows that the inner loop has an initiation interval of 24 cycles. Once the
local copies are removed the initiation interval increases to 470 cycles. The timing results
are shown in Figure 5.8. It can be seen that the execution time increases by a factor of 14.7
from 2.9 ms to 42.5 ms. It is interesting to notice that the execution time of the host stays
the same and only the kernel time increases. This is the case because the changes are only
inside the kernel and do not have any effect on the data that has to be transferred.

Local Copy No Copy

0

10

20

30

40

2.89

42.47

0.43 0.43

E
x
ec

u
ti

on
T

im
e/

[m
s]

Host

Kernel

Figure 5.8: Breakdown execution time for the FFT example

It can be concluded that local copies should be created whenever possible. In cases the
algorithm includes data dependencies or random memory access, this might have a great
effect on reducing the initiation interval. In cases the AOC detects them to be obsolete
they are optimized away. As explained in Section 4.1.9, the decision on which variables
are copied to the local memory, is implemented as first-come-first-serve. In the future this
could be optimized by taking into account which arrays are effected by data dependencies
or random memory access.

5.5.3 Global and Constant Address Space

Section 4.1.9 explained that runtime constant variables can be saved to the constant address
space. The only example that uses this concept with sufficient data is the CRC program.
Nevertheless, in the final version, the data is loaded into the local memory which performs
even better than the constant cache. Therefore, in order to compare the global and the
constant address space, the OpenCL kernel without local copies from Section 5.5.2 is used
as basis and modified further by changing the address space of the icrctb and the rchr

array to constant.

65

The AOC compile log of the new version shows that the initiation interval is reduced
from 165 to 11 clock cycles.

0 100 200 300 400 500

0

200

400

600

Input Size/[kBytes]

E
x
ec

u
ti

o
n

T
im

e/
[m

s]

Origianal CRC
CRC global

CRC constant

Figure 5.9: Execution time of the CRC algorithm using the constant or global address space
for runtime constant arrays

Figure 5.9 compares the execution times of all three versions. It can be seen that the
execution time of the OpenCL version using constant cache drops drastically. Compared
to the OpenCL program using the global address space, the kernel performs 3.2 times
faster. Nevertheless, the sequential program still runs faster than both OpenCL accelerated
versions.

Therefore, it can be concluded, that constant memory can make a significant change
to the kernel performance. Nevertheless, only a few situations are suitable. For once the
data has to be accessed more than once and be ideally even runtime constant in order to
exploit the constant cache that persists between kernel executions. On the other hand,
local memory should always be preferred and therefore, the number of situations is limited
further to those that use data too big to fit into the local address space or of unknown size.

5.6 Loop Unrolling

Section 4.1.10 explained the loop unrolling analysis that determines which loops should be
unrolled by the AOC and which not.

From the examples explained previously, only the AES algorithm contains a loop that
fits the requirements of the analysis. In order to evaluate the effect, a version of the kernel
is created that does not contain the #pragma unroll statement in line 86 of Listing B.3.

The new compile log shows that the inner loop has an initiation interval of 4 clock cycles
and the outer loop has one of 2 clock cycles. The reason for the initiation interval is the
access to the ROM memory.

Figure 5.10 shows the change in the speedup factor. It can be seen that the maximum

66

0 100 200 300 400 500
1

2

3

4

Input Size/[kBytes]

S
p

ee
d

u
p

-F
ac

to
r

AES Unrolled

AES Not Unrolled

Figure 5.10: Speedup-factor for kernels with or without loop unrolling

speedup factor drops from 3.78 to 3.54. Furthermore, the break-even point increases from
3.3 kBytes to 3.6 kBytes.

Table 5.5: Comparison of resources occupied by OpenCL kernels with or without loop
unrolling

AES-CTR
Not Unrolled/Unrolled

ALUTs 10,375 / 10,888
Registers 24,623 / 22,956
Logic utilization 32 % / 31 %
Memory bits 23 % / 42 %
M10K blocks 47 % / 78 %
DSP blocks 0 % / 0 %
Clock freq 134 MHz / 141 MHz

Table 5.5 compares the resource needed by the two OpenCL kernels. The amount of
memory bits increases from 23 % to 42 % and the amount of M10K blocks increases from
47 % to 78 % when loop unrolling is activated. This can be explained by the increase of the
pipeline structure.

The results show that loop unrolling is a powerful tool to increase the kernel performance.
Nevertheless, it has to be taken into account that including the unroll-pragma will increase
the kernel size and even might result in a solution that does not fit any longer into the FPGA.
Furthermore, an unrolled loop only exploit instruction parallelism. Therefore unrolling
perfectly pipelined loop might even reduce kernel performance. It can be concluded, that
further research has to be spend to improve the loop unrolling analysis in order to include
factors such as data dependencies, loop size and loop nesting.

67

5.7 File Scope Arrays

Section 3.1.1 explained that the user can declare static constant arrays by using the
Altera OpenCL const vec comment. These arrays are copied to the file scope of the
OpenCL kernel. This section evaluated the effect on the execution time and kernel size.

The AES and the SHA-256 examples use constant arrays. In the SHA-256 the K array
contains 64 values of 32 bit. By declaring them as constant arrays the 2 kbit of data are
stored into a ROM once the kernel is loaded into the FPGA instead of transferring them
every time the kernel is executed. The AES algorithm uses ten different constant arrays
leading to a total of 70 kbit. The FFT and CRC examples do not use any static constant
arrays. Therefore, they are not considered in this evaluation.

0 100 200 300 400 500

1

2

3

4

Input Size/[kBytes]

S
p

ee
d

u
p

-F
ac

to
r

SHA-256 Without

SHA-256 With

AES-CTR Without

AES-CTR With

Figure 5.11: Speedup-factor for kernels with or without internal copy

A new version of each program was created by deleting the Altera OpenCL const vec

statements from line 40 seen in Listing A.1 and lines 35 to 44 in Listing B.1. Figure
5.11 shows the change in the speedup-factor for both examples. It can be seen that the
maximum speedup-factor for the AES drops from 3.80 to 3.0 once the option is turned off.
Furthermore, the break-even point increases from 3.3 kBytes input size to 5.8 kBytes input
size. The effect on the SHA-256 algorithm is barely noticeable since the amount of data
declared as constant array is smaller than in the AES example.

Table 5.6 compares the change in resources. It can be seen that the implementation
without file scope arrays occupies more resources for both examples. Especially the number
of registers increases. The reason for this is that accessing the global address space requires
more logic than accessing the internal ROM memory. Furthermore, the maximum cock
frequency is decreasing.

It can be concluded that the Altera OpenCL const vec comment should be used when-
ever possible. Nevertheless the effect depends highly on the amount of data that is copied.

68

Table 5.6: Comparison of resources occupied by OpenCL kernels with or without file scope
arrays

SHA-256 AES-CTR
Without/With Without/With

ALUTs 10,481/ 8,720 15,601 / 10,888
Registers 20,742/ 19,036 52,342 / 22,956
Logic utilization 29 % / 27 % 58 % / 31 %
Memory bits 10 % / 8 % 32 % / 42 %
M10K blocks 21 % / 17 % 81 % / 78 %
DSP blocks 0 % / 0 % 0 % / 0 %
Clock freq 112 % / 112 MHz 128 MHz / 141 MHz

69

Chapter 6

Conclusion

A C/C++ source-to-source-compiler has been developed and evaluated successfully in this
work. It was shown that the SOCAO compiler is able to generate a working OpenCL
accelerated program which produces a noticeable speedup compared to the original version.
In the evaluated cases the maximum speedup was between 1.54 and 3.78. Nevertheless, this
project also showed that not every algorithm is suitable to be implemented as single-work-
item kernel.

The main challenge was to implement analysis and transformations that make the best
possible choices for any input program. Therefore, future work should focus on the im-
provement of the existing analysis and transformations and the implementation of new ones.
At the current point no form of data dependency analysis is implemented. Nevertheless,
loop-carried dependencies effect the kernel performance more than any other characteristic.
Therefore, a number of analysis and transformations could benefit when they are taken into
account.

One example is the loop unrolling analysis. The current analysis does not evaluate
enough characteristics. The size of the loop body, data dependencies, operation types and
the overall structure of the kernel have effects which determine whether unrolling a loop
might results into better or worse kernel performance. A bad choice here might result into
a kernel that is not compilable, to big to fit into the FPGA or runs even slower than the
original algorithm. Furthermore, the current analysis implements a all-or-nothing approach.
In some cases it might be useful to unroll a loop only to a certain extend in order exploit
consecutive memory access.

The other example is the memory analysis. Currently the data copied to the local
memory is chosen without any priority. Nevertheless, arrays that create a loop-carried
dependency should be preferred in order to reduce the initiation interval of the loop.

The SOCAO compiler only generates single-work-item kernel which are executed as
tasks. This introduces limitations on the algorithms that can be translated successfully
into OpenCL. Future work should therefore also focus on the automated generation of
NDRange kernel. Nevertheless, this also relies on a data dependency analysis.

Last, the introduced implementation focuses on the Altera’s SDK for Opencl 15.1. The
newer 16.0 version has some improvements for single work-item kernels implemented such
as the ivdep pragma that indicates that the access to memory does not conflict with

70

loop-carried dependencies. This introduces some interesting possibilities to improve the
automatically generated kernel. Nevertheless, the 16.0 version does not work out of the box
on the DE1-SoC platform since it requires newer libraries. Therefore it wasn’t taken into
account in this thesis.

71

Appendix A

SHA-256 Source Code

The SHA-256 input source code is part of the mbed TLS library [17]. Listing A.1 shows
the input source file and Listing A.2 the host program generated by the SOCAO compiler.
The OpenCL kernel can be found in Listing A.3.

For reasons of clarity, Listings A.1 and A.2 show only the relevant parts. The missing
functions can be downloaded directly from the homepage of the mbed TLS library [17].

#include <stdlib.h>

2 #include <stdio.h>

#include <string.h>

4 #include "CL/opencl.h"

#include "AOCLUtils/aocl_utils.h"

6 #include "mbedtls/sha256.h"

#include "mbedtls/platform.h"

8 #include "mbedtls/config.h"

using namespace aocl_utils;

10

#define SHR(x,n) ((x & 0xFFFFFFFF) >> n)

12 #define ROTR(x,n) (SHR(x,n) | (x << (32 - n)))

14 #define S0(x) (ROTR(x, 7) ^ ROTR(x,18) ^ SHR(x, 3))

#define S1(x) (ROTR(x,17) ^ ROTR(x,19) ^ SHR(x,10))

16

#define S2(x) (ROTR(x, 2) ^ ROTR(x,13) ^ ROTR(x,22))

18 #define S3(x) (ROTR(x, 6) ^ ROTR(x,11) ^ ROTR(x,25))

20 #define F0(x,y,z) ((x & y) | (z & (x | y)))

#define F1(x,y,z) (z ^ (x & (y ^ z)))

22

#define R(t) \

24 (\

W[t] = S1(W[t - 2]) + W[t - 7] + \

26 S0(W[t - 15]) + W[t - 16] \

)

28

#define P(a,b,c,d,e,f,g,h,x,K) \

30 { \

temp1 = h + S3(e) + F1(e,f,g) + K + x; \

32 temp2 = S2(a) + F0(a,b,c); \

d += temp1; h = temp1 + temp2; \

34 }

72

36 // Altera_OpenCL_Accelerate

// Altera_OpenCL_size input len

38 // Altera_OpenCL_size K 64

// Altera_OpenCL_size state 8

40 // Altera_OpenCL_const_vec K

// Altera_OpenCL_soc

42 void mbedtls_sha256_update_accelerated(uint32_t *state , const unsigned ←↩
char *input , uint64_t len)

{

44 uint64_t ilen = len;

for(int k = 0; (k+64) <= ilen; k+=64)

46 {

uint32_t temp1 , temp2 , W[64];

48 uint32_t A[8];

int j;

50 for(j = 0; j < 8; j++)

A[j] = state[j];

52 for(int i = 0; i < 64; i++)

{

54 if(i < 16)

W[i] = ((uint32_t)input[k+4 * i]) << 24 | ((uint32_t)input[k+4 *←↩
i + 1]) << 16 | ((uint32_t)input[k+4 * i + 2]) << 8 | ((uint32_t)←↩

input[k+4 * i + 3]);

56 else

R(i);

58

P(A[0], A[1], A[2], A[3], A[4], A[5], A[6], A[7], W[i], K[i]);

60 temp1 = A[7]; A[7] = A[6]; A[6] = A[5]; A[5] = A[4]; A[4] = A[3];

A[3] = A[2]; A[2] = A[1]; A[1] = A[0]; A[0] = temp1;

62 }

for(j = 0; j < 8; j++)

64 state[j] += A[j];

}

66 }

68 void mbedtls_sha256_update(mbedtls_sha256_context *ctx , const unsigned ←↩
char *input , size_t ilen)

{

70 size_t fill;

uint32_t left;

72

if(ilen == 0)

74 return;

76 left = ctx ->total [0] & 0x3F;

fill = 64 - left;

78

ctx ->total [0] += (uint32_t) ilen;

80 ctx ->total [0] &= 0xFFFFFFFF;

82 if(ctx ->total [0] < (uint32_t) ilen)

ctx ->total [1]++;

84 if(left && ilen >= fill)

{

86 for(int i = 0; i < fill; i++)

ctx ->buffer[left+i] = input[i];

88 mbedtls_sha256_process(ctx , ctx ->buffer);

input += fill; ilen -= fill; left = 0;

73

90 }

92 if(ilen > 64)

mbedtls_sha256_update_accelerated(ctx ->state ,input ,(uint64_t)ilen);

94

if(ilen % 64 > 0)

96 {

input += (ilen /64) *64;

98 for(int i = 0; i < ilen %64; i++)

ctx ->buffer[left+i] = input[i];

100 }

}

102

void mbedtls_sha256(const unsigned char *input , size_t ilen , unsigned ←↩
char output [32], int is224)

104 {

mbedtls_sha256_context ctx;

106 mbedtls_sha256_init(&ctx);

mbedtls_sha256_starts(&ctx , is224);

108 mbedtls_sha256_update(&ctx , input , ilen);

mbedtls_sha256_finish(&ctx , output);

110 mbedtls_sha256_free(&ctx);

}

112

114 int main (int argc , char *argv [])

{

116 int len;

if(argc > 1)

118 len= atoi(argv [1]);

else

120 len =64000;

122 unsigned char *max_message = (unsigned char*) malloc(len*sizeof(←↩
unsigned char));

memset(max_message , ’a’, len);

124 unsigned char output [32];

double timecounter;

126 timer_clear (0); timer_start (0);

for(int i = 0; i < 100; i++)

128 {

mbedtls_sha256(max_message , len*sizeof(unsigned char), output , false ←↩
);

130 }

timer_stop (0);

132 timecounter = timer_read (0);

printf("\tresult: %X %X %X\n", output [0], output [1], output [2]);

134 printf("\tTime [ms] \t= \t %f \n",timecounter *10);

}

Listing A.1: SHA-256 SOCAO input file

1 #include <string.h>

#include <stdlib.h>

3 #include <stdio.h>

#include "CL/opencl.h"

5 #include "AOCLUtils/aocl_utils.h"

#include "mbedtls/sha256.h"

7 #include "mbedtls/platform.h"

74

#include "mbedtls/config.h"

9 using namespace aocl_utils;

11 #define SHR(x,n) ((x & 0xFFFFFFFF) >> n)

#define ROTR(x,n) (SHR(x,n) | (x << (32 - n)))

13 #define S0(x) (ROTR(x, 7) ^ ROTR(x,18) ^ SHR(x, 3))

#define S1(x) (ROTR(x,17) ^ ROTR(x,19) ^ SHR(x,10))

15 #define S2(x) (ROTR(x, 2) ^ ROTR(x,13) ^ ROTR(x,22))

#define S3(x) (ROTR(x, 6) ^ ROTR(x,11) ^ ROTR(x,25))

17 #define F0(x,y,z) ((x & y) | (z & (x | y)))

#define F1(x,y,z) (z ^ (x & (y ^ z)))

19 #define R(t) \

(\

21 W[t] = S1(W[t - 2]) + W[t - 7] + \

S0(W[t - 15]) + W[t - 16] \

23)

25 #define P(a,b,c,d,e,f,g,h,x,K) \

{ \

27 temp1 = h + S3(e) + F1(e,f,g) + K + x; \

temp2 = S2(a) + F0(a,b,c); \

29 d += temp1; h = temp1 + temp2; \

}

31

void cleanup ();

33 bool init_opencl(const char *file_name ,const char *kernel_name);

cl_platform_id platform;

35 cl_device_id device;

cl_context context;

37 cl_command_queue queue;

cl_program program;

39 cl_kernel kernel;

cl_mem inout_state_buf = 0;

41 uint32_t *inout_state_ptr = 0;

cl_mem input_input_buf = 0;

43 int aocl_input_old_size = 0;

unsigned char *input_input_ptr = 0;

45

// Altera_OpenCL_Accelerate

47 // Altera_OpenCL_size input len

// Altera_OpenCL_size K 64

49 // Altera_OpenCL_size state 8

// Altera_OpenCL_const_vec K

51 // Altera_OpenCL_soc

53 void mbedtls_sha256_update_accelerated(uint32_t *state ,const unsigned char←↩
*input ,uint64_t len)

{

55 uint64_t ilen = len;

cl_int status;

57 cl_event kernel_event;

unsigned int argi = 0;

59 if (! inout_state_buf) {

inout_state_buf = clCreateBuffer(context ,0x1UL | ←↩
CL_MEM_ALLOC_HOST_PTR ,8 * sizeof(uint32_t) ,0,&status);

61 checkError(status ,"Failed to create buffer");

inout_state_ptr = ((uint32_t *)(clEnqueueMapBuffer(queue ,←↩
inout_state_buf ,CL_TRUE ,0,0,8 * sizeof(uint32_t) ,0,0,0,&status)));

63 checkError(status ,"Failed to map buffer");

75

}

65 if (! input_input_buf) {

input_input_buf = clCreateBuffer(context ,0x4UL | ←↩
CL_MEM_ALLOC_HOST_PTR ,len * sizeof(unsigned char) ,0,&status);

67 checkError(status ,"Failed to create buffer");

input_input_ptr = ((unsigned char *)(clEnqueueMapBuffer(queue ,←↩
input_input_buf ,CL_TRUE ,CL_MAP_READ ,0,len * sizeof(unsigned char)←↩
,0,0,0,&status)));

69 checkError(status ,"Failed to map buffer");

aocl_input_old_size = len;

71 }

else {

73 if (aocl_input_old_size < len) {

clEnqueueUnmapMemObject(queue ,input_input_buf ,input_input_ptr←↩
,0,0,0);

75 clReleaseMemObject(input_input_buf);

input_input_buf = clCreateBuffer(context ,0x4UL | ←↩
CL_MEM_ALLOC_HOST_PTR ,len * sizeof(unsigned char) ,0,&status);

77 checkError(status ,"Failed to create buffer");

input_input_ptr = ((unsigned char *)(clEnqueueMapBuffer(queue ,←↩
input_input_buf ,CL_TRUE ,CL_MAP_READ ,0,len * sizeof(unsigned char)←↩
,0,0,0,&status)));

79 checkError(status ,"Failed to map buffer");

aocl_input_old_size = len;

81 }

}

83 memcpy(inout_state_ptr ,state ,8 * sizeof(uint32_t));

memcpy(input_input_ptr ,input ,len * sizeof(unsigned char));

85 status = clSetKernelArg(kernel ,argi++,sizeof(cl_event) ,&inout_state_buf←↩
);

checkError(status ,"Failed to set argument");

87 status = clSetKernelArg(kernel ,argi++,sizeof(cl_event) ,&input_input_buf←↩
);

checkError(status ,"Failed to set argument");

89 status = clSetKernelArg(kernel ,argi++,sizeof(uint64_t) ,&len);

checkError(status ,"Failed to set argument");

91 status = clEnqueueTask(queue ,kernel ,0,0,& kernel_event);

checkError(status ,"Failed to launch kernel");

93 clWaitForEvents (1,& kernel_event);

memcpy(state ,inout_state_ptr ,8 * sizeof(uint32_t));

95 clReleaseEvent(kernel_event);

}

97

int main (int argc , char *argv [])

99 {

101 if (! init_opencl("aocl_kernel","aocl_generated_kernel")) {

printf("WARNING: COULDN ’T INITIALIZE OPENCL\n");

103 return -1;

}

105 int len;

if(argc > 1)

107 len= atoi(argv [1]);

else

109 len =64000;

111 unsigned char *max_message = (unsigned char*) malloc(len*sizeof(←↩
unsigned char));

memset(max_message , ’a’, len);

76

113 unsigned char output [32];

double timecounter;

115 timer_clear (0); timer_start (0);

for(int i = 0; i < 100; i++)

117 {

mbedtls_sha256(max_message , len*sizeof(unsigned char), output , false ←↩
);

119 }

timer_stop (0);

121 timecounter = timer_read (0);

printf("\tSize = \t%d\n", len);

123 printf("\tresult: %X %X %X\n", output [0], output [1], output [2]);

printf("\tTime [ms] \t= \t %f \n",timecounter *10);

125 printf("\tTime kernel [ms] \t= \t %f \n",total_time_kernel /1000000.0);

cleanup ();

127 }

129 bool init_opencl(const char *file_name ,const char *kernel_name)

{

131 cl_int status;

cl_device_id *curr_devices;

133 cl_uint num_devices;

cl_device_type cl_device_type_all = 0xffffffffUL;

135 cl_command_queue_properties cl_queue_profiling_enable = 0x2;

std:: string binary_file;

137 if (! setCwdToExeDir ()) {

return false;

139 }

platform = findPlatform("Altera");

141 if (platform == 0) {

printf("ERROR: Unable to find Altera OpenCL platform .\n");

143 return false;

}

145 curr_devices = getDevices(platform ,cl_device_type_all ,& num_devices);

device = curr_devices [0];

147 context = clCreateContext (0,1,&device ,& oclContextCallback ,0,& status);

checkError(status ,"Failed to create context");

149 queue = clCreateCommandQueue(context ,device ,cl_queue_profiling_enable ,&←↩
status);

checkError(status ,"Failed to create command queue");

151 binary_file = getBoardBinaryFile(file_name ,device);

program = createProgramFromBinary(context ,(binary_file . c_str ()) ,&←↩
device ,1);

153 status = clBuildProgram(program ,0,0,"" ,0,0);

checkError(status ,"Failed to build program");

155 kernel = clCreateKernel(program ,kernel_name ,& status);

checkError(status ,"Failed to create kerne");

157 return true;

}

159

void cleanup ()

161 {

if (inout_state_buf) {

163 clEnqueueUnmapMemObject(queue , inout_state_buf , inout_state_ptr←↩
,0,0,0);

clReleaseMemObject(inout_state_buf);

165 }

if (input_input_buf) {

167 clEnqueueUnmapMemObject(queue , input_input_buf , input_input_ptr , 0, 0,←↩

77

0);

clReleaseMemObject(input_input_buf);

169 }

if (kernel) {

171 clReleaseKernel(kernel);

}

173 if (program) {

clReleaseProgram(program);

175 }

if (queue) {

177 clReleaseCommandQueue(queue);

}

179 if (context) {

clReleaseContext(context);

181 }

return ;

183 }

Listing A.2: SHA-256 host program

1 typedef long intmax_t;

typedef ulong uintmax_t;

3 typedef char int_least8_t;

typedef uchar uint_least8_t;

5 typedef short int_least16_t;

typedef ushort uint_least16_t;

7 typedef int int_least32_t;

typedef uint uint_least32_t;

9 typedef long int_least64_t;

typedef ulong uint_least64_t;

11 typedef char int_fast8_t;

typedef uchar uint_fast8_t;

13 typedef short int_fast16_t;

typedef ushort uint_fast16_t;

15 typedef int int_fast32_t;

typedef uint uint_fast32_t;

17 typedef long int_fast64_t;

typedef ulong uint_fast64_t;

19

typedef char int8_t;

21 typedef uchar uint8_t;

typedef short int16_t;

23 typedef ushort uint16_t;

typedef int int32_t;

25 typedef uint uint32_t;

typedef long int64_t;

27 typedef ulong uint64_t;

29

__constant const uint32_t K[] = { ... };

31

__kernel void aocl_generated_kernel(uint32_t __global * __restrict__ ←↩
state_global ,unsigned char __global * __restrict__ input ,const uint64_t←↩
len)

33 {

int rose_it;

35 __local uint32_t state [8];

for (rose_it = 0; rose_it < 8UL; ++ rose_it) {

37 state[rose_it] = state_global[rose_it];

78

}

39 uint64_t ilen = len;

for (int k = 0; (k + 64) <= ilen; k += 64) {

41 uint32_t temp1;

uint32_t temp2;

43 uint32_t W[64];

uint32_t A[8];

45 int j;

47 #pragma unroll

for (j = 0; j < 8; j++)

49 A[j] = state[j];

for (int i = 0; i < 64; i++) {

51 if (i < 16) {

W[i] = ((uint32_t)input[k + 4 * i]) << 24 | ((uint32_t)input[k +←↩
4 * i + 1]) << 16 | ((uint32_t)input[k + 4 * i + 2]) << 8 | ((←↩

uint32_t)input[k + 4 * i + 3]);

53 }

else {

55 W[i] = (((W[i - 2] & 0xffffffffu) >> 17 | W[i - 2] << 15) ^ ((W[i ←↩
- 2] & 0xffffffffu) >> 19 | W[i - 2] << 13) ^ (W[i - 2] & 0xffffffffu) ←↩
>> 10) + W[i - 7] + (((W[i - 15] & 0xffffffffu) >> 7 | W[i - 15] << 25)←↩
^ ((W[i - 15] & 0xffffffffu) >> 18 | W[i - 15] << 14) ^ (W[i - 15] & 0←↩

xffffffffu) >> 3) + W[i - 16];

}

57 {

temp1 = A[7] + (((A[4] & 0xffffffffu) >> 6 | A[4] << 26) ^ ((A[4] ←↩
& 0xffffffffu) >> 11 | A[4] << 21) ^ ((A[4] & 0xffffffffu) >> 25 | A[4]←↩
<< 7)) + (A[6] ^ A[4] & (A[5] ^ A[6])) + K[i] + W[i];

59 temp2 = (((A[0] & 0xffffffffu) >> 2 | A[0] << 30) ^ ((A[0] & 0←↩
xffffffffu) >> 13 | A[0] << 19) ^ ((A[0] & 0xffffffffu) >> 22 | A[0] <<←↩
10)) + (A[0] & A[1] | A[2] & (A[0] | A[1]));

A[3] += temp1;

61 A[7] = temp1 + temp2;

}

63 ;

temp1 = A[7];

65 A[7] = A[6];

A[6] = A[5];

67 A[5] = A[4];

A[4] = A[3];

69 A[3] = A[2];

A[2] = A[1];

71 A[1] = A[0];

A[0] = temp1;

73 }

75 #pragma unroll

for (j = 0; j < 8; j++)

77 state[j] += A[j];

}

79 for (rose_it = 0; rose_it < 8UL; ++ rose_it) {

state_global[rose_it] = state[rose_it];

81 }

}

Listing A.3: SHA-256 kernel

79

Appendix B

AES Source Code

The AES input source code is part of the mbed TLS library [17]. Listing B.1 shows the
input source file and Listing B.2 the host program generated by the SOCAO compiler. The
OpenCL kernel can be found in Listing B.3.

For reasons of clarity, Listings B.1 and B.2 show only the relevant parts. The missing
functions can be downloaded directly from the homepage of the mbed TLS library [17].
Furthermore, the constant values of the OpenCL function in Listing B.3 were removed in
order to reduce the print size.

#include <stdlib.h>

2 #include <stdio.h>

#include <string.h>

4 #include "CL/opencl.h"

#include "AOCLUtils/aocl_utils.h"

6 #include "mbedtls/config.h"

#include "mbedtls/platform.h"

8 #include "mbedtls/aes.h"

using namespace aocl_utils;

10

#ifndef GET_UINT32_LE

12 #define GET_UINT32_LE(n,b,i) \

{ \

14 (n) = ((uint32_t) (b)[(i)]) \

| ((uint32_t) (b)[(i) + 1] << 8) \

16 | ((uint32_t) (b)[(i) + 2] << 16) \

| ((uint32_t) (b)[(i) + 3] << 24); \

18 }

#endif

20

#ifndef PUT_UINT32_LE

22 #define PUT_UINT32_LE(n,b,i) \

{ \

24 (b)[(i)] = (unsigned char) (((n)) & 0xFF); \

(b)[(i) + 1] = (unsigned char) (((n) >> 8) & 0xFF); \

26 (b)[(i) + 2] = (unsigned char) (((n) >> 16) & 0xFF); \

(b)[(i) + 3] = (unsigned char) (((n) >> 24) & 0xFF); \

28 }

#endif

30

// Altera_OpenCL_Accelerate

80

32 // Altera_OpenCL_size input length

// Altera_OpenCL_size output length

34 // Altera_OpenCL_size RK 68

// Altera_OpenCL_const_vec FT3

36 // Altera_OpenCL_const_vec FT2

// Altera_OpenCL_const_vec FT1

38 // Altera_OpenCL_const_vec FT0

// Altera_OpenCL_const_vec RT3

40 // Altera_OpenCL_const_vec RT2

// Altera_OpenCL_const_vec RT1

42 // Altera_OpenCL_const_vec RT0

// Altera_OpenCL_const_vec FSb

44 // Altera_OpenCL_const_vec RSb

// Altera_OpenCL_soc

46 int mbedtls_aes_crypt_ctr_nr10(uint32_t *RK , uint64_t length , unsigned ←↩
char nonce_counter [16], unsigned char stream_block [16], const unsigned ←↩
char *input , unsigned char *output)

{

48 uint32_t int_counter = ((uint32_t)nonce_counter [12]) << 24 | ((uint32_t←↩
)nonce_counter [13]) << 16 | ((uint32_t)nonce_counter [14]) <<8 | ((←↩

uint32_t)nonce_counter [15]) << 0;

uint64_t k;

50 for(k = 0; k < length; k+=16)

{

52

uint32_t X0, X1, X2, X3, Y0, Y1, Y2, Y3;

54 GET_UINT32_LE(X0 , nonce_counter , 0); X0 ^= RK[0];

GET_UINT32_LE(X1 , nonce_counter , 4); X1 ^= RK[1];

56 GET_UINT32_LE(X2 , nonce_counter , 8); X2 ^= RK[2];

X3 = ((int_counter >> 24) & 0xff) | ((int_counter <<8) & 0xff0000) | ((←↩
int_counter >> 8) & 0xff00) | ((int_counter <<24) & 0xff000000);

58 X3 ^= RK[3];

int i;

60 for(i = 0; i < 4; i++)

{

62 int idx = i*8;

// printf ("idx = %d\t", idx);

64 Y0 = RK[idx + 4] ^ FT0[X0 & 0xFF] ^ FT1[X1 >> 8 & 0xFF] ^ FT2[X2 >>←↩
16 & 0xFF] ^ FT3[X3 >> 24 & 0xFF];

Y1 = RK[idx + 5] ^ FT0[X1 & 0xFF] ^ FT1[X2 >> 8 & 0xFF] ^ FT2[X3 >>←↩
16 & 0xFF] ^ FT3[X0 >> 24 & 0xFF];

66 Y2 = RK[idx + 6] ^ FT0[X2 & 0xFF] ^ FT1[X3 >> 8 & 0xFF] ^ FT2[X0 >>←↩
16 & 0xFF] ^ FT3[X1 >> 24 & 0xFF];

Y3 = RK[idx + 7] ^ FT0[X3 & 0xFF] ^ FT1[X0 >> 8 & 0xFF] ^ FT2[X1 >>←↩
16 & 0xFF] ^ FT3[X2 >> 24 & 0xFF];

68

X0 = RK[idx + 8] ^ FT0[Y0 & 0xFF] ^ FT1[Y1 >> 8 & 0xFF] ^ FT2[Y2 >>←↩
16 & 0xFF] ^ FT3[Y3 >> 24 & 0xFF];

70 X1 = RK[idx + 9] ^ FT0[Y1 & 0xFF] ^ FT1[Y2 >> 8 & 0xFF] ^ FT2[Y3 >>←↩
16 & 0xFF] ^ FT3[Y0 >> 24 & 0xFF];

X2 = RK[idx + 10] ^ FT0[Y2 & 0xFF] ^ FT1[Y3 >> 8 & 0xFF] ^ FT2[Y0 ←↩
>> 16 & 0xFF] ^ FT3[Y1 >> 24 & 0xFF];

72 X3 = RK[idx + 11] ^ FT0[Y3 & 0xFF] ^ FT1[Y0 >> 8 & 0xFF] ^ FT2[Y1 ←↩
>> 16 & 0xFF] ^ FT3[Y2 >> 24 & 0xFF];

74 }

int idx = 36;

76

Y0 = RK[idx] ^ FT0[X0 & 0xFF] ^ FT1[X1 >> 8 & 0xFF] ^ FT2[X2 >> 16 & ←↩

81

0xFF] ^ FT3[X3 >> 24 & 0xFF];

78 Y1 = RK[idx + 1] ^ FT0[X1 & 0xFF] ^ FT1[X2 >> 8 & 0xFF] ^ FT2[X3 >> ←↩
16 & 0xFF] ^ FT3[X0 >> 24 & 0xFF];

Y2 = RK[idx + 2] ^ FT0[X2 & 0xFF] ^ FT1[X3 >> 8 & 0xFF] ^ FT2[X0 >> ←↩
16 & 0xFF] ^ FT3[X1 >> 24 & 0xFF];

80 Y3 = RK[idx + 3] ^ FT0[X3 & 0xFF] ^ FT1[X0 >> 8 & 0xFF] ^ FT2[X1 >> ←↩
16 & 0xFF] ^ FT3[X2 >> 24 & 0xFF];

82

X0 = RK[idx + 4] ^ \

84 ((uint32_t) FSb[(Y0) & 0xFF]) ^

((uint32_t) FSb[(Y1 >> 8) & 0xFF] << 8) ^

86 ((uint32_t) FSb[(Y2 >> 16) & 0xFF] << 16) ^

((uint32_t) FSb[(Y3 >> 24) & 0xFF] << 24);

88

X1 = RK[idx + 5] ^ \

90 ((uint32_t) FSb[(Y1) & 0xFF]) ^

((uint32_t) FSb[(Y2 >> 8) & 0xFF] << 8) ^

92 ((uint32_t) FSb[(Y3 >> 16) & 0xFF] << 16) ^

((uint32_t) FSb[(Y0 >> 24) & 0xFF] << 24);

94

X2 = RK[idx + 6] ^ \

96 ((uint32_t) FSb[(Y2) & 0xFF]) ^

((uint32_t) FSb[(Y3 >> 8) & 0xFF] << 8) ^

98 ((uint32_t) FSb[(Y0 >> 16) & 0xFF] << 16) ^

((uint32_t) FSb[(Y1 >> 24) & 0xFF] << 24);

100

X3 = RK[idx + 7] ^ \

102 ((uint32_t) FSb[(Y3) & 0xFF]) ^

((uint32_t) FSb[(Y0 >> 8) & 0xFF] << 8) ^

104 ((uint32_t) FSb[(Y1 >> 16) & 0xFF] << 16) ^

((uint32_t) FSb[(Y2 >> 24) & 0xFF] << 24);

106

PUT_UINT32_LE(X0 , stream_block , 0);

108 PUT_UINT32_LE(X1 , stream_block , 4);

PUT_UINT32_LE(X2 , stream_block , 8);

110 PUT_UINT32_LE(X3 , stream_block , 12);

112

int_counter ++;

114

int c = input[k];

116 output[k] = ((unsigned char)(c ^ stream_block [0]));

if (k + 1 < length) {

118 c = input[k + 1];

output[k+1] = ((unsigned char)(c ^ stream_block [1]));

120 }

if (k + 2 < length) {

122 c = input[k + 2];

output[k+2] = ((unsigned char)(c ^ stream_block [2]));

124 }

if (k + 3 < length) {

126 c = input[k + 3];

output[k+3] = ((unsigned char)(c ^ stream_block [3]));

128 }

if (k + 4 < length) {

130 c = input[k + 4];

output[k+4] = ((unsigned char)(c ^ stream_block [4]));

132 }

82

if (k + 5 < length) {

134 c = input[k + 5];

output[k+5] = ((unsigned char)(c ^ stream_block [5]));

136 }

if (k + 6 < length) {

138 c = input[k + 6];

output[k+6] = ((unsigned char)(c ^ stream_block [6]));

140 }

if (k + 7 < length) {

142 c = input[k + 7];

output[k+7] = ((unsigned char)(c ^ stream_block [7]));

144 }

if (k + 8 < length) {

146 c = input[k + 8];

output[k+8] = ((unsigned char)(c ^ stream_block [8]));

148 }

if (k + 9 < length) {

150 c = input[k + 9];

output[k+9] = ((unsigned char)(c ^ stream_block [9]));

152 }

if (k + 10 < length) {

154 c = input[k + 10];

output[k+10] = ((unsigned char)(c ^ stream_block [10]));

156 }

if (k + 11 < length) {

158 c = input[k + 11];

output[k+11] = ((unsigned char)(c ^ stream_block [11]));

160 }

if (k + 12 < length) {

162 c = input[k + 12];

output[k+12] = ((unsigned char)(c ^ stream_block [12]));

164 }

if (k + 13 < length) {

166 c = input[k + 13];

output[k+13] = ((unsigned char)(c ^ stream_block [13]));

168 }

if (k + 14 < length) {

170 c = input[k + 14];

output[k+14] = ((unsigned char)(c ^ stream_block [14]));

172 }

if (k + 15 < length) {

174 c = input[k + 15];

output[k+15] = ((unsigned char)(c ^ stream_block [15]));

176 }

}

178

nonce_counter [12] = (unsigned char) (int_counter >> 24);

180 nonce_counter [13] = (unsigned char) (int_counter >> 16);

nonce_counter [14] = (unsigned char) (int_counter >> 8);

182 nonce_counter [15] = (unsigned char) (int_counter);

return(0);

184 }

186 int main (int argc , char *argv [])

{

188 int len;

if(argc > 1)

190 len= atoi(argv [1]);

else

83

192 len =64000;

194 printf("\tSize = \t%d\n", len);

unsigned char *max_message = (unsigned char*) malloc(len*sizeof(unsigned ←↩
char));

196 unsigned char *output_message = (unsigned char*) malloc(len*sizeof(←↩
unsigned char));

memset(max_message , ’a’, len);

198 memset(output_message , 0, len);

200 mbedtls_aes_context ctx;

mbedtls_aes_init(&ctx);

202 unsigned char key [32];

204 unsigned char nonce_counter [16];

unsigned char stream_block [16];

206 memset(key , 0, 32);

memcpy(key , aes_test_ctr_key [0], 16);

208 memset(nonce_counter , 0, 16);

210 uint64_t offset = 0;

mbedtls_aes_setkey_enc(&ctx , key , 128);

212 double timecounter;

timer_clear (0); timer_start (0);

214 for(int i = 0; i < 100; i++)

{

216 mbedtls_aes_crypt_ctr_nr10(ctx.rk, (uint64_t)len , nonce_counter , ←↩
stream_block , max_message , output_message);

}

218 timer_stop (0);

timecounter = timer_read (0);

220 printf("\tresult: %X %X %X\n", output_message [0], output_message[len/2],←↩
output_message[len -1]);

printf("\tTime [ms] \t= \t %f \n",timecounter *10);

222 return 0;

}

Listing B.1: AES SOCAO input file

1 #include <stdlib.h>

#include <stdio.h>

3 #include <string.h>

#include "CL/opencl.h"

5 #include "AOCLUtils/aocl_utils.h"

#include "mbedtls/config.h"

7 #include "mbedtls/platform.h"

#include "mbedtls/aes.h"

9 using namespace aocl_utils;

11 #ifndef GET_UINT32_LE

#define GET_UINT32_LE(n,b,i) \

13 { \

(n) = ((uint32_t) (b)[(i)]) \

15 | ((uint32_t) (b)[(i) + 1] << 8) \

| ((uint32_t) (b)[(i) + 2] << 16) \

17 | ((uint32_t) (b)[(i) + 3] << 24); \

}

19 #endif

84

21 #ifndef PUT_UINT32_LE

#define PUT_UINT32_LE(n,b,i) \

23 { \

(b)[(i)] = (unsigned char) (((n)) & 0xFF); \

25 (b)[(i) + 1] = (unsigned char) (((n) >> 8) & 0xFF); \

(b)[(i) + 2] = (unsigned char) (((n) >> 16) & 0xFF); \

27 (b)[(i) + 3] = (unsigned char) (((n) >> 24) & 0xFF); \

}

29 #endif

31 void cleanup ();

bool init_opencl(const char *file_name ,const char *kernel_name);

33 cl_platform_id platform;

cl_device_id device;

35 cl_context context;

cl_command_queue queue;

37 cl_program program;

cl_kernel kernel;

39 cl_mem input_RK_buf = 0;

uint32_t *input_RK_ptr = 0;

41 cl_mem inout_nonce_counter_buf = 0;

unsigned char *inout_nonce_counter_ptr = 0;

43 cl_mem inout_stream_block_buf = 0;

unsigned char *inout_stream_block_ptr = 0;

45 cl_mem input_input_buf = 0;

int aocl_input_old_size = 0;

47 unsigned char *input_input_ptr = 0;

cl_mem output_output_buf = 0;

49 int aocl_output_old_size = 0;

unsigned char *output_output_ptr = 0;

51

// Altera_OpenCL_Accelerate

53 // Altera_OpenCL_size input length

// Altera_OpenCL_size output length

55 // Altera_OpenCL_size RK 68

// Altera_OpenCL_const_vec FT3

57 // Altera_OpenCL_const_vec FT2

// Altera_OpenCL_const_vec FT1

59 // Altera_OpenCL_const_vec FT0

// Altera_OpenCL_const_vec RT3

61 // Altera_OpenCL_const_vec RT2

// Altera_OpenCL_const_vec RT1

63 // Altera_OpenCL_const_vec RT0

// Altera_OpenCL_const_vec FSb

65 // Altera_OpenCL_const_vec RSb

// Altera_OpenCL_soc

67 int mbedtls_aes_crypt_ctr_nr10(uint32_t *RK ,uint64_t length ,unsigned char ←↩
nonce_counter [16], unsigned char stream_block [16], const unsigned char *←↩
input ,unsigned char *output)

{

69 uint32_t int_counter = ((uint32_t)nonce_counter [12]) << 24 | ((uint32_t←↩
)nonce_counter [13]) << 16 | ((uint32_t)nonce_counter [14]) << 8 | ((←↩

uint32_t)nonce_counter [15]) << 0;

uint64_t k;

71 cl_int status;

cl_event kernel_event;

73 unsigned int argi = 0;

if (! input_RK_buf) {

75 input_RK_buf = clCreateBuffer(context ,0x4UL | CL_MEM_ALLOC_HOST_PTR ,68←↩

85

* sizeof(uint32_t) ,0,&status);

checkError(status ,"Failed to create buffer");

77 input_RK_ptr = ((uint32_t *)(clEnqueueMapBuffer(queue ,input_RK_buf ,←↩
CL_TRUE ,CL_MAP_READ ,0,68 * sizeof(uint32_t) ,0,0,0,&status)));

checkError(status ,"Failed to map buffer");

79 }

if (! inout_nonce_counter_buf) {

81 inout_nonce_counter_buf = clCreateBuffer(context ,0x1UL | ←↩
CL_MEM_ALLOC_HOST_PTR ,16 * sizeof(unsigned char) ,0,&status);

checkError(status ,"Failed to create buffer");

83 inout_nonce_counter_ptr = ((unsigned char *)(clEnqueueMapBuffer(queue ,←↩
inout_nonce_counter_buf ,CL_TRUE ,0,0,16 * sizeof(unsigned char) ,0,0,0,&←↩
status)));

checkError(status ,"Failed to map buffer");

85 }

if (! inout_stream_block_buf) {

87 inout_stream_block_buf = clCreateBuffer(context ,0x1UL | ←↩
CL_MEM_ALLOC_HOST_PTR ,16 * sizeof(unsigned char) ,0,&status);

checkError(status ,"Failed to create buffer");

89 inout_stream_block_ptr = ((unsigned char *)(clEnqueueMapBuffer(queue ,←↩
inout_stream_block_buf ,CL_TRUE ,0,0,16 * sizeof(unsigned char) ,0,0,0,&←↩
status)));

checkError(status ,"Failed to map buffer");

91 }

if (! input_input_buf) {

93 input_input_buf = clCreateBuffer(context ,0x4UL | CL_MEM_ALLOC_HOST_PTR←↩
,length * sizeof(unsigned char) ,0,&status);

checkError(status ,"Failed to create buffer");

95 input_input_ptr = ((unsigned char *)(clEnqueueMapBuffer(queue ,←↩
input_input_buf ,CL_TRUE ,CL_MAP_READ ,0,length * sizeof(unsigned char)←↩
,0,0,0,&status)));

checkError(status ,"Failed to map buffer");

97 aocl_input_old_size = length;

}

99 else {

if (aocl_input_old_size < length) {

101 clEnqueueUnmapMemObject(queue ,input_input_buf ,input_input_ptr ,0,0,0)←↩
;

clReleaseMemObject(input_input_buf);

103 input_input_buf = clCreateBuffer(context ,0x4UL | ←↩
CL_MEM_ALLOC_HOST_PTR ,length * sizeof(unsigned char) ,0,&status);

checkError(status ,"Failed to create buffer");

105 input_input_ptr = ((unsigned char *)(clEnqueueMapBuffer(queue ,←↩
input_input_buf ,CL_TRUE ,CL_MAP_READ ,0,length * sizeof(unsigned char)←↩
,0,0,0,&status)));

checkError(status ,"Failed to map buffer");

107 aocl_input_old_size = length;

}

109 }

if (! output_output_buf) {

111 output_output_buf = clCreateBuffer(context ,0x2UL | ←↩
CL_MEM_ALLOC_HOST_PTR ,length * sizeof(unsigned char) ,0,&status);

checkError(status ,"Failed to create buffer");

113 output_output_ptr = ((unsigned char *)(clEnqueueMapBuffer(queue ,←↩
output_output_buf ,CL_TRUE ,CL_MAP_WRITE ,0,length * sizeof(unsigned char ←↩
) ,0,0,0,&status)));

checkError(status ,"Failed to map buffer");

115 aocl_output_old_size = length;

}

86

117 else {

if (aocl_output_old_size < length) {

119 clEnqueueUnmapMemObject(queue ,output_output_buf ,output_output_ptr←↩
,0,0,0);

clReleaseMemObject(output_output_buf);

121 output_output_buf = clCreateBuffer(context ,0x2UL | ←↩
CL_MEM_ALLOC_HOST_PTR ,length * sizeof(unsigned char) ,0,&status);

checkError(status ,"Failed to create buffer");

123 output_output_ptr = ((unsigned char *)(clEnqueueMapBuffer(queue ,←↩
output_output_buf ,CL_TRUE ,CL_MAP_WRITE ,0,length * sizeof(unsigned char ←↩
) ,0,0,0,&status)));

checkError(status ,"Failed to map buffer");

125 aocl_output_old_size = length;

}

127 }

memcpy(input_RK_ptr ,RK ,68 * sizeof(uint32_t));

129 memcpy(inout_nonce_counter_ptr ,nonce_counter ,16 * sizeof(unsigned char)←↩
);

memcpy(inout_stream_block_ptr ,stream_block ,16 * sizeof(unsigned char));

131 memcpy(input_input_ptr ,input ,length * sizeof(unsigned char));

status = clSetKernelArg(kernel ,argi++,sizeof(cl_event) ,&input_RK_buf);

133 checkError(status ,"Failed to set argument");

status = clSetKernelArg(kernel ,argi++,sizeof(uint64_t) ,&length);

135 checkError(status ,"Failed to set argument");

status = clSetKernelArg(kernel ,argi++,sizeof(cl_event) ,&←↩
inout_nonce_counter_buf);

137 checkError(status ,"Failed to set argument");

status = clSetKernelArg(kernel ,argi++,sizeof(cl_event) ,&←↩
inout_stream_block_buf);

139 checkError(status ,"Failed to set argument");

status = clSetKernelArg(kernel ,argi++,sizeof(cl_event) ,&input_input_buf←↩
);

141 checkError(status ,"Failed to set argument");

status = clSetKernelArg(kernel ,argi++,sizeof(cl_event) ,&←↩
output_output_buf);

143 checkError(status ,"Failed to set argument");

status = clEnqueueTask(queue ,kernel ,0,0,& kernel_event);

145 checkError(status ,"Failed to launch kernel");

clWaitForEvents (1,& kernel_event);

147 memcpy(nonce_counter ,inout_nonce_counter_ptr ,16 * sizeof(unsigned char)←↩
);

memcpy(stream_block ,inout_stream_block_ptr ,16 * sizeof(unsigned char));

149 memcpy(output ,output_output_ptr ,length * sizeof(unsigned char));

cl_ulong time_start , time_end;

151 clReleaseEvent(kernel_event);

return 0;

153 }

155 int main (int argc , char *argv [])

{

157 if (! init_opencl("aocl_kernel","aocl_generated_kernel")) {

printf("WARNING: COULDN ’T INITIALIZE OPENCL\n");

159 return -1;

}

161 int len;

if(argc > 1)

163 len= atoi(argv [1]);

else

165 len =64000;

87

167 unsigned char *max_message = (unsigned char*) malloc(len*sizeof(←↩
unsigned char));

unsigned char *output_message = (unsigned char*) malloc(len*sizeof(←↩
unsigned char));

169 memset(max_message , ’a’, len);

memset(output_message , 0, len);

171

mbedtls_aes_context ctx;

173 mbedtls_aes_init(&ctx);

unsigned char key [32];

175

unsigned char nonce_counter [16];

177 unsigned char stream_block [16];

memset(key , 0, 32);

179 memcpy(key , aes_test_ctr_key [0], 16);

memset(nonce_counter , 0, 16);

181

183 uint64_t offset = 0;

mbedtls_aes_setkey_enc(&ctx , key , 128);

185 double timecounter;

timer_clear (0); timer_start (0);

187 for(int i = 0; i < 100; i++)

{

189 mbedtls_aes_crypt_ctr_nr10(ctx.rk, (uint64_t)len , nonce_counter , ←↩
stream_block , max_message , output_message);

}

191 timer_stop (0);

timecounter = timer_read (0);

193 printf("\tresult: %X %X %X\n", output_message [0], output_message [16000] ,←↩
output_message[len -1]);

printf("\tTime total [ms] \t= \t %f \n",timecounter *10);

195 printf("\tTime kernel [ms] \t= \t %f \n",total_time_kernel /1000000.0);

cleanup ();

197 return 0;

}

199

bool init_opencl(const char *file_name ,const char *kernel_name)

201 {

cl_int status;

203 cl_device_id *curr_devices;

cl_uint num_devices;

205 cl_device_type cl_device_type_all = 0xffffffffUL;

cl_command_queue_properties cl_queue_profiling_enable = 0x2;

207 std:: string binary_file;

if (! setCwdToExeDir ()) {

209 return false;

}

211 platform = findPlatform("Altera");

if (platform == 0) {

213 printf("ERROR: Unable to find Altera OpenCL platform .\n");

return false;

215 }

curr_devices = getDevices(platform ,cl_device_type_all ,& num_devices);

217 device = curr_devices [0];

context = clCreateContext (0,1,&device ,& oclContextCallback ,0,& status);

219 checkError(status ,"Failed to create context");

queue = clCreateCommandQueue(context ,device ,cl_queue_profiling_enable ,&←↩

88

status);

221 checkError(status ,"Failed to create command queue");

binary_file = getBoardBinaryFile(file_name ,device);

223 program = createProgramFromBinary(context ,(binary_file . c_str ()) ,&←↩
device ,1);

status = clBuildProgram(program ,0,0,"" ,0,0);

225 checkError(status ,"Failed to build program");

kernel = clCreateKernel(program ,kernel_name ,& status);

227 checkError(status ,"Failed to create kerne");

return true;

229 }

231 void cleanup ()

{

233 if (input_RK_buf) {

clEnqueueUnmapMemObject(queue ,input_RK_buf ,input_RK_ptr ,0,0,0);

235 clReleaseMemObject(input_RK_buf);

}

237 if (inout_nonce_counter_buf) {

clEnqueueUnmapMemObject(queue ,inout_nonce_counter_buf ,←↩
inout_nonce_counter_ptr ,0,0,0);

239 clReleaseMemObject(inout_nonce_counter_buf);

}

241 if (inout_stream_block_buf) {

clEnqueueUnmapMemObject(queue ,inout_stream_block_buf ,←↩
inout_stream_block_ptr ,0,0,0);

243 clReleaseMemObject(inout_stream_block_buf);

}

245 if (input_input_buf) {

clEnqueueUnmapMemObject(queue ,input_input_buf ,input_input_ptr ,0,0,0)←↩
;

247 clReleaseMemObject(input_input_buf);

}

249 if (output_output_buf) {

clEnqueueUnmapMemObject(queue ,output_output_buf ,output_output_ptr←↩
,0,0,0);

251 clReleaseMemObject(output_output_buf);

}

253 if (kernel) {

clReleaseKernel(kernel);

255 }

if (program) {

257 clReleaseProgram(program);

}

259 if (queue) {

clReleaseCommandQueue(queue);

261 }

if (context) {

263 clReleaseContext(context);

}

265 return;

}

Listing B.2: AES SOCAO output file

2 typedef long intmax_t;

typedef ulong uintmax_t;

4 typedef char int_least8_t;

89

typedef uchar uint_least8_t;

6 typedef short int_least16_t;

typedef ushort uint_least16_t;

8 typedef int int_least32_t;

typedef uint uint_least32_t;

10 typedef long int_least64_t;

typedef ulong uint_least64_t;

12 typedef char int_fast8_t;

typedef uchar uint_fast8_t;

14 typedef short int_fast16_t;

typedef ushort uint_fast16_t;

16 typedef int int_fast32_t;

typedef uint uint_fast32_t;

18 typedef long int_fast64_t;

typedef ulong uint_fast64_t;

20

typedef char int8_t;

22 typedef uchar uint8_t;

typedef short int16_t;

24 typedef ushort uint16_t;

typedef int int32_t;

26 typedef uint uint32_t;

typedef long int64_t;

28 typedef ulong uint64_t;

30

__constant const uint32_t FT3 [256] = { ... };

32 __constant const uint32_t FT2 [256] = { ... };

__constant const uint32_t FT1 [256] = { ... };

34 __constant const uint32_t FT0 [256] = { ... };

__constant const uint32_t RT3 [256] = { ...};

36 __constant const uint32_t RT2 [256] = { ... };

__constant const uint32_t RT1 [256] = { ... };

38 __constant const uint32_t RT0 [256] = { ... };

__constant const unsigned char FSb [256] = { ... };

40 __constant const unsigned char RSb [256] = { ... };

42 __kernel void aocl_generated_kernel(uint32_t __global * __restrict__ ←↩
RK_global ,const uint64_t length ,unsigned char __global * __restrict__ ←↩
nonce_counter_global ,unsigned char __global * __restrict__ ←↩
stream_block_global ,unsigned char __global * __restrict__ input ,←↩
unsigned char __global * __restrict__ output)

{

44 int rose_it;

__local unsigned char stream_block [16];

46 for (rose_it = 0; rose_it < 16UL; ++ rose_it) {

stream_block[rose_it] = stream_block_global[rose_it];

48 }

__local unsigned char nonce_counter [16];

50 for (rose_it = 0; rose_it < 16UL; ++ rose_it) {

nonce_counter[rose_it] = nonce_counter_global[rose_it];

52 }

__local uint32_t RK [68];

54 for (rose_it = 0; rose_it < 68UL; ++ rose_it) {

RK[rose_it] = RK_global[rose_it];

56 }

uint32_t int_counter = ((uint32_t)nonce_counter [12]) << 24 | ((uint32_t←↩
)nonce_counter [13]) << 16 | ((uint32_t)nonce_counter [14]) << 8 | ((←↩

uint32_t)nonce_counter [15]) << 0;

90

58 uint64_t k;

for (k = 0; k < length; k += 16) {

60 uint32_t X0;

uint32_t X1;

62 uint32_t X2;

uint32_t X3;

64 uint32_t Y0;

uint32_t Y1;

66 uint32_t Y2;

uint32_t Y3;

68 {

X0 = ((uint32_t)nonce_counter [0]) | ((uint32_t)nonce_counter [1]) ←↩
<< 8 | ((uint32_t)nonce_counter [2]) << 16 | ((uint32_t)nonce_counter←↩
[3]) << 24;

70 }

;

72 X0 ^= RK[0];

{

74 X1 = ((uint32_t)nonce_counter [4]) | ((uint32_t)nonce_counter [5]) ←↩
<< 8 | ((uint32_t)nonce_counter [6]) << 16 | ((uint32_t)nonce_counter←↩
[7]) << 24;

}

76 ;

X1 ^= RK[1];

78 {

X2 = ((uint32_t)nonce_counter [8]) | ((uint32_t)nonce_counter [9]) ←↩
<< 8 | ((uint32_t)nonce_counter [10]) << 16 | ((uint32_t)nonce_counter←↩
[11]) << 24;

80 }

;

82 X2 ^= RK[2];

X3 = int_counter >> 24 & 0xFF | int_counter << 8 & 0xff0000 | ←↩
int_counter >> 8 & 0xff00 | int_counter << 24 & 0xff000000;

84 X3 ^= RK[3];

int i;

86 #pragma unroll

for (i = 0; i < 4; i++) {

88 int idx = i * 8;

Y0 = RK[idx + 4] ^ FT0[X0 & 0xFF] ^ FT1[X1 >> 8 & 0xFF] ^ FT2[X2 >> ←↩
16 & 0xFF] ^ FT3[X3 >> 24 & 0xFF];

90 Y1 = RK[idx + 5] ^ FT0[X1 & 0xFF] ^ FT1[X2 >> 8 & 0xFF] ^ FT2[X3 >> ←↩
16 & 0xFF] ^ FT3[X0 >> 24 & 0xFF];

Y2 = RK[idx + 6] ^ FT0[X2 & 0xFF] ^ FT1[X3 >> 8 & 0xFF] ^ FT2[X0 >> ←↩
16 & 0xFF] ^ FT3[X1 >> 24 & 0xFF];

92 Y3 = RK[idx + 7] ^ FT0[X3 & 0xFF] ^ FT1[X0 >> 8 & 0xFF] ^ FT2[X1 >> ←↩
16 & 0xFF] ^ FT3[X2 >> 24 & 0xFF];

X0 = RK[idx + 8] ^ FT0[Y0 & 0xFF] ^ FT1[Y1 >> 8 & 0xFF] ^ FT2[Y2 >> ←↩
16 & 0xFF] ^ FT3[Y3 >> 24 & 0xFF];

94 X1 = RK[idx + 9] ^ FT0[Y1 & 0xFF] ^ FT1[Y2 >> 8 & 0xFF] ^ FT2[Y3 >> ←↩
16 & 0xFF] ^ FT3[Y0 >> 24 & 0xFF];

X2 = RK[idx + 10] ^ FT0[Y2 & 0xFF] ^ FT1[Y3 >> 8 & 0xFF] ^ FT2[Y0 >>←↩
16 & 0xFF] ^ FT3[Y1 >> 24 & 0xFF];

96 X3 = RK[idx + 11] ^ FT0[Y3 & 0xFF] ^ FT1[Y0 >> 8 & 0xFF] ^ FT2[Y1 >>←↩
16 & 0xFF] ^ FT3[Y2 >> 24 & 0xFF];

}

98 int idx = 36;

Y0 = RK[idx] ^ FT0[X0 & 0xFF] ^ FT1[X1 >> 8 & 0xFF] ^ FT2[X2 >> 16 & 0←↩
xFF] ^ FT3[X3 >> 24 & 0xFF];

100 Y1 = RK[idx + 1] ^ FT0[X1 & 0xFF] ^ FT1[X2 >> 8 & 0xFF] ^ FT2[X3 >> 16←↩

91

& 0xFF] ^ FT3[X0 >> 24 & 0xFF];

Y2 = RK[idx + 2] ^ FT0[X2 & 0xFF] ^ FT1[X3 >> 8 & 0xFF] ^ FT2[X0 >> 16←↩
& 0xFF] ^ FT3[X1 >> 24 & 0xFF];

102 Y3 = RK[idx + 3] ^ FT0[X3 & 0xFF] ^ FT1[X0 >> 8 & 0xFF] ^ FT2[X1 >> 16←↩
& 0xFF] ^ FT3[X2 >> 24 & 0xFF];

X0 = RK[idx + 4] ^ ((uint32_t)FSb[Y0 & 0xFF]) ^ ((uint32_t)FSb[Y1 >>←↩
8 & 0xFF]) << 8 ^ ((uint32_t)FSb[Y2 >> 16 & 0xFF]) << 16 ^ ((uint32_t←↩
)FSb[Y3 >> 24 & 0xFF]) << 24;

104 X1 = RK[idx + 5] ^ ((uint32_t)FSb[Y1 & 0xFF]) ^ ((uint32_t)FSb[Y2 >>←↩
8 & 0xFF]) << 8 ^ ((uint32_t)FSb[Y3 >> 16 & 0xFF]) << 16 ^ ((uint32_t←↩
)FSb[Y0 >> 24 & 0xFF]) << 24;

X2 = RK[idx + 6] ^ ((uint32_t)FSb[Y2 & 0xFF]) ^ ((uint32_t)FSb[Y3 >>←↩
8 & 0xFF]) << 8 ^ ((uint32_t)FSb[Y0 >> 16 & 0xFF]) << 16 ^ ((uint32_t←↩
)FSb[Y1 >> 24 & 0xFF]) << 24;

106 X3 = RK[idx + 7] ^ ((uint32_t)FSb[Y3 & 0xFF]) ^ ((uint32_t)FSb[Y0 >>←↩
8 & 0xFF]) << 8 ^ ((uint32_t)FSb[Y1 >> 16 & 0xFF]) << 16 ^ ((uint32_t←↩
)FSb[Y2 >> 24 & 0xFF]) << 24;

{

108 stream_block [0] = ((unsigned char)(X0 & 0xFF));

stream_block [1] = ((unsigned char)(X0 >> 8 & 0xFF));

110 stream_block [2] = ((unsigned char)(X0 >> 16 & 0xFF));

stream_block [3] = ((unsigned char)(X0 >> 24 & 0xFF));

112 }

;

114 {

stream_block [4] = ((unsigned char)(X1 & 0xFF));

116 stream_block [5] = ((unsigned char)(X1 >> 8 & 0xFF));

stream_block [6] = ((unsigned char)(X1 >> 16 & 0xFF));

118 stream_block [7] = ((unsigned char)(X1 >> 24 & 0xFF));

}

120 ;

{

122 stream_block [8] = ((unsigned char)(X2 & 0xFF));

stream_block [9] = ((unsigned char)(X2 >> 8 & 0xFF));

124 stream_block [10] = ((unsigned char)(X2 >> 16 & 0xFF));

stream_block [11] = ((unsigned char)(X2 >> 24 & 0xFF));

126 }

;

128 {

stream_block [12] = ((unsigned char)(X3 & 0xFF));

130 stream_block [13] = ((unsigned char)(X3 >> 8 & 0xFF));

stream_block [14] = ((unsigned char)(X3 >> 16 & 0xFF));

132 stream_block [15] = ((unsigned char)(X3 >> 24 & 0xFF));

}

134 ;

int_counter ++;

136 int c = input[k];

output[k] = ((unsigned char)(c ^ stream_block [0]));

138 if (k + 1 < length) {

c = input[k + 1];

140 output[k + 1] = ((unsigned char)(c ^ stream_block [1]));

}

142 if (k + 2 < length) {

c = input[k + 2];

144 output[k + 2] = ((unsigned char)(c ^ stream_block [2]));

}

146 if (k + 3 < length) {

c = input[k + 3];

148 output[k + 3] = ((unsigned char)(c ^ stream_block [3]));

92

}

150 if (k + 4 < length) {

c = input[k + 4];

152 output[k + 4] = ((unsigned char)(c ^ stream_block [4]));

}

154 if (k + 5 < length) {

c = input[k + 5];

156 output[k + 5] = ((unsigned char)(c ^ stream_block [5]));

}

158 if (k + 6 < length) {

c = input[k + 6];

160 output[k + 6] = ((unsigned char)(c ^ stream_block [6]));

}

162 if (k + 7 < length) {

c = input[k + 7];

164 output[k + 7] = ((unsigned char)(c ^ stream_block [7]));

}

166 if (k + 8 < length) {

c = input[k + 8];

168 output[k + 8] = ((unsigned char)(c ^ stream_block [8]));

}

170 if (k + 9 < length) {

c = input[k + 9];

172 output[k + 9] = ((unsigned char)(c ^ stream_block [9]));

}

174 if (k + 10 < length) {

c = input[k + 10];

176 output[k + 10] = ((unsigned char)(c ^ stream_block [10]));

}

178 if (k + 11 < length) {

c = input[k + 11];

180 output[k + 11] = ((unsigned char)(c ^ stream_block [11]));

}

182 if (k + 12 < length) {

c = input[k + 12];

184 output[k + 12] = ((unsigned char)(c ^ stream_block [12]));

}

186 if (k + 13 < length) {

c = input[k + 13];

188 output[k + 13] = ((unsigned char)(c ^ stream_block [13]));

}

190 if (k + 14 < length) {

c = input[k + 14];

192 output[k + 14] = ((unsigned char)(c ^ stream_block [14]));

}

194 if (k + 15 < length) {

c = input[k + 15];

196 output[k + 15] = ((unsigned char)(c ^ stream_block [15]));

}

198 }

nonce_counter [12] = ((unsigned char)(int_counter >> 24));

200 nonce_counter [13] = ((unsigned char)(int_counter >> 16));

nonce_counter [14] = ((unsigned char)(int_counter >> 8));

202 nonce_counter [15] = ((unsigned char)int_counter);

for (rose_it = 0; rose_it < 16UL; ++ rose_it) {

204 nonce_counter_global[rose_it] = nonce_counter[rose_it];

}

206 for (rose_it = 0; rose_it < 16UL; ++ rose_it) {

stream_block_global[rose_it] = stream_block[rose_it];

93

208 }

}

Listing B.3: AES OpenCL kernel

94

Appendix C

FFT

The FFT input source code was taken from the WCET research group which provides a
large number of benchmarks [3]. Listing C.1 shows the input source file and Listing C.2
the host program generated by the SOCAO compiler. The OpenCL kernel can be found in
Listing C.3.

1 #include <stdlib.h>

#include <stdio.h>

3 #include <math.h>

#include "CL/opencl.h"

5 #include "AOCLUtils/aocl_utils.h"

7 using namespace aocl_utils;

9 #define SIZE 2048

#define PI 3.14159

11 #define ITER 11

float ar[SIZE];

13 float ai[SIZE] = {0., };

15 void fft1(int flag ,float *pi_frac);

void timer_clear(int n);

17 void timer_start(int n);

void timer_stop(int n);

19 float timer_read(int n);

21

int main()

23 {

int i, n = SIZE , flag , chkerr1 , chkerr2 , iter = ITER , xp2 = SIZE;

25 float* pi_frac;

double timecounter;

27

pi_frac = (float*) malloc(iter*sizeof(float));

29 for(i = 0; i < iter; i++)

{

31 xp2 /= 2;

pi_frac[i] = PI/xp2;

33 }

35 for(i = 0; i < n; i++)

ar[i] = cos (2* M_PI*i/n);

95

37

timer_clear (0);

39 timer_start(0);

for(i = 0; i < 100; i++)

41 {

/* forward fft */

43 flag = 0;

chkerr1 = fft1(flag , pi_frac);

45 /* inverse fft */

flag = 1;

47 chkerr2 = fft1(flag , pi_frac);

}

49

timer_stop(0);

51 timecounter = timer_read(0);

53 printf("Results: \n");

printf("\tSIZE = \t\t%d\n" ,2048);

55 for (i = 0; i < 8; i++)

printf("\tar[%d] = \t\t%f\n",i,ar[i]);

57 printf("\tTime [ms] = \t%f\n",timecounter *5);

delete pi_frac;

59 return 0;

}

61

63 // Altera_OpenCL_Accelerate

// Altera_OpenCL_size ar 2048

65 // Altera_OpenCL_size ai 2048

// Altera_OpenCL_size pi_frac ITER

67 // Altera_OpenCL_runtime_const pi_frac

// Altera_OpenCL_soc

69 void accelerate(int flag , float *pi_frac)

{

71 int j, k, it;

73 /* Main FFT Loops */

float sign = ((flag == 1) ? 1.0 : -1.0);

75 int xp2 = SIZE;

for(it = 0; it < ITER; it++)

77 {

int xp = xp2;

79 xp2 /= 2;

float w = pi_frac[it];

81 for(k = 0; k < xp2; k++)

{

83 float arg = k * w;

float wr = cos(arg);

85 float wi = sign * sin(arg);

int i = k - xp;

87 for(j = xp; j <= SIZE; j += xp)

{

89 int j1 = j + i;

int j2 = j1 + xp2;

91 float dr1 = ar[j1];

float dr2 = ar[j2];

93 float di1 = ai[j1];

float di2 = ai[j2];

95 float tr = dr1 - dr2;

96

float ti = di1 - di2;

97 ar[j1] = dr1 + dr2;

ai[j1] = di1 + di2;

99 ar[j2] = tr * wr - ti * wi;

ai[j2] = ti * wr + tr * wi;

101 }

}

103 }

}

105

void fft1(int flag , float *pi_frac)

107 {

int i, j;

109 accelerate(flag , pi_frac);

111 /* Digit Reverse Counter */

int j1 = SIZE / 2;

113 int j2 = SIZE - 1;

j = 1;

115 for(i = 1; i <= j2; i++)

{

117 if(i < j)

{

119 float tr = ar[j-1];

float ti = ai[j-1];

121 ar[j-1] = ar[i-1];

ai[j-1] = ai[i-1];

123 ar[i-1] = tr;

ai[i-1] = ti;

125 }

int tmp = j1;

127 while(tmp < j)

{

129 j -= tmp;

tmp /= 2;

131 }

j += tmp;

133 }

135 if(flag)

{

137 int w = SIZE;

for(i = 0; i < SIZE; i++)

139 {

ar[i] /= w;

141 ai[i] /= w;

}

143 }

}

Listing C.1: FFT SOCAO input file

#include <stdlib.h>

2 #include <stdio.h>

#include <math.h>

4 #include "CL/opencl.h"

#include "AOCLUtils/aocl_utils.h"

6 using namespace aocl_utils;

97

8 #define SIZE 2048

#define PI 3.14159

10 #define ITER 11

float ar [2048];

12 float ai [2048] = {(0.)};

void fft1(int flag ,float *pi_frac);

14 void timer_clear(int n);

void timer_start(int n);

16 void timer_stop(int n);

double timer_read(int n);

18 void cleanup ();

bool init_opencl(const char *file_name ,const char *kernel_name);

20

cl_platform_id platform;

22 cl_device_id device;

cl_context context;

24 cl_command_queue queue;

cl_program program;

26 cl_kernel kernel;

cl_mem input_pi_frac_buf = 0;

28 float *input_pi_frac_ptr = 0;

cl_mem inout_ar_buf = 0;

30 float *inout_ar_ptr = 0;

cl_mem inout_ai_buf = 0;

32 float *inout_ai_ptr = 0;

34 int main()

{

36 if (! init_opencl("aocl_kernel","aocl_generated_kernel")) {

printf("WARNING: COULDN ’T INITIALIZE OPENCL\n");

38 return -1;

}

40 int i;

int n = 2048;

42 int flag;

int chkerr1;

44 int chkerr2;

int iter;

46 int xp2 = 2048;

float *pi_frac;

48 double timecounter = 0;

iter = 11;

50 pi_frac = ((float *)(malloc(iter * sizeof(float))));

for (i = 0; i < iter; i++) {

52 xp2 /= 2;

pi_frac[i] = (3.14159 / xp2);

54 }

for (i = 0; i < n; i++)

56 ar[i] = (cos(2 * 3.14159265358979323846 * i / n));

timer_clear (0);

58 timer_start (0);

for(i = 0; i < 100; i++)

60 {

/* forward fft */

62 flag = 0;

fft1(flag ,pi_frac);

64 /* inverse fft */

flag = 1;

66 fft1(flag ,pi_frac);

98

}

68 timer_stop (0);

timecounter = (timer_read (0));

70 printf("Results: \n");

printf("\tSIZE = \t\t%d\n" ,2048);

72 for (i = 0; i < 8; i++)

printf("\tar[%d] = \t\t%f\n",i,ar[i]);

74 printf("\tTime [ms] = \t%f\n",timecounter *5);

delete pi_frac;

76 cleanup ();

return 0;

78 }

80 // Altera_OpenCL_Accelerate

// Altera_OpenCL_size ar 2048

82 // Altera_OpenCL_size ai 2048

// Altera_OpenCL_size pi_frac ITER

84 // Altera_OpenCL_runtime_const pi_frac

// Altera_OpenCL_soc

86 void accelerate(int flag ,float *pi_frac)

{

88 int j;

int k;

90 int it;

/* Main FFT Loops */

92 float sign = (flag == 1?1.0 : -1.00000);

int xp2 = 2048;

94 cl_int status;

cl_event kernel_event;

96 unsigned int argi = 0;

if (! input_pi_frac_buf) {

98 input_pi_frac_buf = clCreateBuffer(context ,0x4UL | ←↩
CL_MEM_ALLOC_HOST_PTR ,ITER * sizeof(float) ,0,&status);

checkError(status ,"Failed to create buffer");

100 input_pi_frac_ptr = ((float *)(clEnqueueMapBuffer(queue ,←↩
input_pi_frac_buf ,CL_TRUE ,CL_MAP_READ ,0,ITER * sizeof(float) ,0,0,0,&←↩
status)));

checkError(status ,"Failed to map buffer");

102 memcpy(input_pi_frac_ptr ,pi_frac ,ITER * sizeof(float));

}

104 if (! inout_ar_buf) {

inout_ar_buf = clCreateBuffer(context ,0x1UL | CL_MEM_ALLOC_HOST_PTR←↩
,2048 * sizeof(float) ,0,&status);

106 checkError(status ,"Failed to create buffer");

inout_ar_ptr = ((float *)(clEnqueueMapBuffer(queue ,inout_ar_buf ,←↩
CL_TRUE ,0,0 ,2048 * sizeof(float) ,0,0,0,&status)));

108 checkError(status ,"Failed to map buffer");

}

110 if (! inout_ai_buf) {

inout_ai_buf = clCreateBuffer(context ,0x1UL | CL_MEM_ALLOC_HOST_PTR←↩
,2048 * sizeof(float) ,0,&status);

112 checkError(status ,"Failed to create buffer");

inout_ai_ptr = ((float *)(clEnqueueMapBuffer(queue ,inout_ai_buf ,←↩
CL_TRUE ,0,0 ,2048 * sizeof(float) ,0,0,0,&status)));

114 checkError(status ,"Failed to map buffer");

}

116 memcpy(inout_ar_ptr ,ar ,2048 * sizeof(float));

memcpy(inout_ai_ptr ,ai ,2048 * sizeof(float));

118 status = clSetKernelArg(kernel ,argi++,sizeof(int) ,&flag);

99

checkError(status ,"Failed to set argument");

120 status = clSetKernelArg(kernel ,argi++,sizeof(cl_event) ,&←↩
input_pi_frac_buf);

checkError(status ,"Failed to set argument");

122 status = clSetKernelArg(kernel ,argi++,sizeof(cl_event) ,&inout_ar_buf);

checkError(status ,"Failed to set argument");

124 status = clSetKernelArg(kernel ,argi++,sizeof(cl_event) ,&inout_ai_buf);

checkError(status ,"Failed to set argument");

126 status = clEnqueueTask(queue ,kernel ,0,0,& kernel_event);

checkError(status ,"Failed to launch kernel");

128 clWaitForEvents (1,& kernel_event);

memcpy(ar,inout_ar_ptr ,2048 * sizeof(float));

130 memcpy(ai,inout_ai_ptr ,2048 * sizeof(float));

clReleaseEvent(kernel_event);

132 }

134 void fft1(int flag ,float *pi_frac)

{

136 int i;

int j;

138 accelerate(flag ,pi_frac);

140 /* Digit Reverse Counter */

int j1 = 2048 / 2;

142 int j2 = 2048 - 1;

j = 1;

144 for (i = 1; i <= j2; i++) {

if (i < j) {

146 float tr = ar[j - 1];

float ti = ai[j - 1];

148 ar[j - 1] = ar[i - 1];

ai[j - 1] = ai[i - 1];

150 ar[i - 1] = tr;

ai[i - 1] = ti;

152 }

int tmp = j1;

154 while(tmp < j){

j -= tmp;

156 tmp /= 2;

}

158 j += tmp;

}

160

if (flag) {

162 int w = 2048;

for (i = 0; i < 2048; i++) {

164 ar[i] /= w;

ai[i] /= w;

166 }

}

168 }

170 bool init_opencl(const char *file_name ,const char *kernel_name)

{

172 cl_int status;

cl_device_id *curr_devices;

174 cl_uint num_devices;

cl_device_type cl_device_type_all = 0xffffffffUL;

176 cl_command_queue_properties cl_queue_profiling_enable = 0x2;

100

std:: string binary_file;

178 if (! setCwdToExeDir ()) {

return false;

180 }

platform = findPlatform("Altera");

182 if (platform == 0) {

printf("ERROR: Unable to find Altera OpenCL platform .\n");

184 return false;

}

186 curr_devices = getDevices(platform ,cl_device_type_all ,& num_devices);

device = curr_devices [0];

188 context = clCreateContext (0,1,&device ,& oclContextCallback ,0,& status);

checkError(status ,"Failed to create context");

190 queue = clCreateCommandQueue(context ,device ,cl_queue_profiling_enable ,&←↩
status);

checkError(status ,"Failed to create command queue");

192 binary_file = getBoardBinaryFile(file_name ,device);

program = createProgramFromBinary(context ,(binary_file . c_str ()) ,&←↩
device ,1);

194 status = clBuildProgram(program ,0,0,"" ,0,0);

checkError(status ,"Failed to build program");

196 kernel = clCreateKernel(program ,kernel_name ,& status);

checkError(status ,"Failed to create kerne");

198 return true;

}

200

void cleanup ()

202 {

if (input_pi_frac_buf) {

204 clEnqueueUnmapMemObject(queue ,input_pi_frac_buf ,input_pi_frac_ptr←↩
,0,0,0);

clReleaseMemObject(input_pi_frac_buf);

206 }

if (inout_ar_buf) {

208 clEnqueueUnmapMemObject(queue ,inout_ar_buf ,inout_ar_ptr ,0,0,0);

clReleaseMemObject(inout_ar_buf);

210 }

if (inout_ai_buf) {

212 clEnqueueUnmapMemObject(queue ,inout_ai_buf ,inout_ai_ptr ,0,0,0);

clReleaseMemObject(inout_ai_buf);

214 }

if (kernel) {

216 clReleaseKernel(kernel);

}

218 if (program) {

clReleaseProgram(program);

220 }

if (queue) {

222 clReleaseCommandQueue(queue);

}

224 if (context) {

clReleaseContext(context);

226 }

return ;

228 }

Listing C.2: FFT SOCAO output file

typedef long intmax_t;

101

2 typedef ulong uintmax_t;

typedef char int_least8_t;

4 typedef uchar uint_least8_t;

typedef short int_least16_t;

6 typedef ushort uint_least16_t;

typedef int int_least32_t;

8 typedef uint uint_least32_t;

typedef long int_least64_t;

10 typedef ulong uint_least64_t;

typedef char int_fast8_t;

12 typedef uchar uint_fast8_t;

typedef short int_fast16_t;

14 typedef ushort uint_fast16_t;

typedef int int_fast32_t;

16 typedef uint uint_fast32_t;

typedef long int_fast64_t;

18 typedef ulong uint_fast64_t;

20 typedef char int8_t;

typedef uchar uint8_t;

22 typedef short int16_t;

typedef ushort uint16_t;

24 typedef int int32_t;

typedef uint uint32_t;

26 typedef long int64_t;

typedef ulong uint64_t;

28

__kernel void aocl_generated_kernel(const int flag ,float __constant * ←↩
__restrict__ pi_frac ,float __global * __restrict__ ar_global ,float ←↩
__global * __restrict__ ai_global)

30 {

int rose_it;

32 __local float ai [2048];

for (rose_it = 0; rose_it < 2048UL; ++ rose_it) {

34 ai[rose_it] = ai_global[rose_it];

}

36 __local float ar [2048];

for (rose_it = 0; rose_it < 2048UL; ++ rose_it) {

38 ar[rose_it] = ar_global[rose_it];

}

40 int j;

int k;

42 int it;

float sign = (flag == 1?1.0 : -1.00000);

44 int xp2 = 2048;

for (it = 0; it < 11; it++) {

46 int xp = xp2;

xp2 /= 2;

48 float w = pi_frac[it];

for (k = 0; k < xp2; k++) {

50 float arg = k * w;

float wr = (cos(arg));

52 float wi = (sign * sin(arg));

int i = k - xp;

54 for (j = xp; j <= 2048; j += xp) {

int j1 = j + i;

56 int j2 = j1 + xp2;

float dr1 = ar[j1];

58 float dr2 = ar[j2];

102

float di1 = ai[j1];

60 float di2 = ai[j2];

float tr = dr1 - dr2;

62 float ti = di1 - di2;

ar[j1] = dr1 + dr2;

64 ai[j1] = di1 + di2;

ar[j2] = tr * wr - ti * wi;

66 ai[j2] = ti * wr + tr * wi;

}

68 }

}

70 for (rose_it = 0; rose_it < 2048UL; ++ rose_it) {

ar_global[rose_it] = ar[rose_it];

72 }

for (rose_it = 0; rose_it < 2048UL; ++ rose_it) {

74 ai_global[rose_it] = ai[rose_it];

}

76 }

Listing C.3: FFT OpenCL kernel

103

Appendix D

CRC

The CRC input source code was taken from the WCET research group [3]. Listing D.1
shows the input source file and Listing D.2 the host program generated by the SOCAO
compiler. The OpenCL kernel can be found in Listing D.3.

For reasons of clarity, only the relevant parts are printed. The missing functions can be
downloaded directly from the homepage of the WCET [3].

#include <stdlib.h>

2 #include <stdio.h>

#include "CL/opencl.h"

4 #include "AOCLUtils/aocl_utils.h"

using namespace aocl_utils;

6

#define LOBYTE(x) ((unsigned char)((x) & 0xFF))

8 #define HIBYTE(x) ((unsigned char)((x) >> 8))

10 unsigned short icrctb [256];

unsigned char rchr [256];

12

void timer_clear(int n);

14 void timer_start(int n);

void timer_stop(int n);

16 double timer_read(int n);

18 unsigned char *lin;

20 // Altera_OpenCL_Accelerate

// Altera_OpenCL_size lin len

22 // Altera_OpenCL_size icrctb 256

// Altera_OpenCL_size rchr 256

24 // Altera_OpenCL_runtime_const icrctb

// Altera_OpenCL_runtime_const rchr

26 // Altera_OpenCL_soc

unsigned short icrc(unsigned short crc , unsigned int len , short jinit , int←↩
jrev)

28 {

unsigned short tmp1 , tmp2 , cword=crc;

30 unsigned int j;

32 if (jinit >= 0) cword =((unsigned char) jinit) | (((unsigned char) jinit)←↩
<< 8);

104

else if (jrev < 0)

34 cword=rchr[HIBYTE(cword)] | rchr[LOBYTE(cword)] << 8;

36 for (j=1;j<len;j++) {

if (jrev < 0) {

38 tmp1 = rchr[lin[j]]^ HIBYTE(cword);

}

40 else {

tmp1 = lin[j]^ HIBYTE(cword);

42 }

cword = icrctb[tmp1] ^ LOBYTE(cword) << 8;

44 }

if (jrev >= 0) {

46 tmp2 = cword;

}

48 else {

tmp2 = rchr[HIBYTE(cword)] | rchr[LOBYTE(cword)] << 8;

50 }

return tmp2;

52 }

54 int main (int argc , char *argv [])

{

56 int n;

if(argc > 1)

58 n= atoi(argv [1]);

else

60 n = 64000;

62 unsigned short i1,i2;

double timecounter;

64

lin = (unsigned char*) malloc ((n+2)*sizeof(unsigned char));

66 memset(lin , ’a’, n*sizeof(unsigned char));

lin[n]=0;

68 init();

timer_clear(0);

70 timer_start(0);

for(int i = 0; i < 100; i++)

72 {

i1=icrc(0,n,(short)0,1);

74 lin[n]= HIBYTE(i1);

lin[n+1]= LOBYTE(i1);

76 i2=icrc(i1,n+2,(short)0,1);

}

78

timer_stop(0);

80 timecounter = timer_read(0);

printf("Results: \n");

82 printf("\ti1 = \t\t%d\n", i1);

printf("\ti2 = \t\t%d\n", i2);

84 printf("\tTime [ms] = \t%f\n", timecounter *5);

return 0;

86 }

Listing D.1: CRC SOCAO input file

#include <stdlib.h>

2 #include <stdio.h>

105

#include <string.h>

4 #include "CL/opencl.h"

#include "AOCLUtils/aocl_utils.h"

6 using namespace aocl_utils;

#define LOBYTE(x) ((unsigned char)((x) & 0xFF))

8 #define HIBYTE(x) ((unsigned char)((x) >> 8))

unsigned short icrctb [256];

10 unsigned char rchr [256];

void timer_clear(int n);

12 void timer_start(int n);

void timer_stop(int n);

14 double timer_read(int n);

unsigned char *lin;

16 void cleanup ();

bool init_opencl(const char *file_name ,const char *kernel_name);

18 cl_platform_id platform;

cl_device_id device;

20 cl_context context;

cl_command_queue queue;

22 cl_program program;

cl_kernel kernel;

24 cl_mem output_tmp2_buf = 0;

unsigned short *output_tmp2_ptr = 0;

26 cl_mem input_rchr_buf = 0;

unsigned char *input_rchr_ptr = 0;

28 cl_mem input_lin_buf = 0;

int aocl_lin_old_size = 0;

30 unsigned char *input_lin_ptr = 0;

cl_mem input_icrctb_buf = 0;

32 unsigned short *input_icrctb_ptr = 0;

34 // Altera_OpenCL_Accelerate

// Altera_OpenCL_size lin len

36 // Altera_OpenCL_size icrctb 256

// Altera_OpenCL_size rchr 256

38 // Altera_OpenCL_runtime_const icrctb

// Altera_OpenCL_runtime_const rchr

40 // Altera_OpenCL_soc

unsigned short icrc(unsigned short crc ,unsigned int len ,short jinit ,int ←↩
jrev)

42 {

unsigned short tmp1;

44 unsigned short tmp2;

unsigned short j;

46 unsigned short cword = crc;

cl_int status;

48 cl_event kernel_event;

unsigned int argi = 0;

50 if (! output_tmp2_buf) {

output_tmp2_buf = clCreateBuffer(context ,0x2UL | CL_MEM_ALLOC_HOST_PTR ,1←↩
* sizeof(unsigned short) ,0,&status);

52 checkError(status ,"Failed to create buffer");

output_tmp2_ptr = ((unsigned short *)(clEnqueueMapBuffer(queue ,←↩
output_tmp2_buf ,CL_TRUE ,CL_MAP_WRITE ,0,1 * sizeof(unsigned short)←↩
,0,0,0,&status)));

54 checkError(status ,"Failed to map buffer");

}

56 if (! input_rchr_buf) {

input_rchr_buf = clCreateBuffer(context ,0x4UL | CL_MEM_ALLOC_HOST_PTR←↩

106

,256 * sizeof(unsigned char) ,0,&status);

58 checkError(status ,"Failed to create buffer");

input_rchr_ptr = ((unsigned char *)(clEnqueueMapBuffer(queue ,←↩
input_rchr_buf ,CL_TRUE ,CL_MAP_READ ,0,256 * sizeof(unsigned char)←↩
,0,0,0,&status)));

60 checkError(status ,"Failed to map buffer");

memcpy(input_rchr_ptr ,rchr ,256 * sizeof(unsigned char));

62 }

if (! input_lin_buf) {

64 input_lin_buf = clCreateBuffer(context ,0x4UL | CL_MEM_ALLOC_HOST_PTR ,len←↩
* sizeof(unsigned char) ,0,&status);

checkError(status ,"Failed to create buffer");

66 input_lin_ptr = ((unsigned char *)(clEnqueueMapBuffer(queue ,←↩
input_lin_buf ,CL_TRUE ,CL_MAP_READ ,0,len * sizeof(unsigned char)←↩
,0,0,0,&status)));

checkError(status ,"Failed to map buffer");

68 aocl_lin_old_size = len;

}

70 else {

if (aocl_lin_old_size < len) {

72 clEnqueueUnmapMemObject(queue ,input_lin_buf ,input_lin_ptr ,0,0,0);

clReleaseMemObject(input_lin_buf);

74 input_lin_buf = clCreateBuffer(context ,0x4UL | CL_MEM_ALLOC_HOST_PTR ,←↩
len * sizeof(unsigned char) ,0,&status);

checkError(status ,"Failed to create buffer");

76 input_lin_ptr = ((unsigned char *)(clEnqueueMapBuffer(queue ,←↩
input_lin_buf ,CL_TRUE ,CL_MAP_READ ,0,len * sizeof(unsigned char)←↩
,0,0,0,&status)));

checkError(status ,"Failed to map buffer");

78 aocl_lin_old_size = len;

}

80 }

if (! input_icrctb_buf) {

82 input_icrctb_buf = clCreateBuffer(context ,0x4UL | CL_MEM_ALLOC_HOST_PTR←↩
,256 * sizeof(unsigned short) ,0,&status);

checkError(status ,"Failed to create buffer");

84 input_icrctb_ptr = ((unsigned short *)(clEnqueueMapBuffer(queue ,←↩
input_icrctb_buf ,CL_TRUE ,CL_MAP_READ ,0 ,256 * sizeof(unsigned short)←↩
,0,0,0,&status)));

checkError(status ,"Failed to map buffer");

86 memcpy(input_icrctb_ptr ,icrctb ,256 * sizeof(unsigned short));

}

88 memcpy(input_lin_ptr ,lin ,len * sizeof(unsigned char));

status = clSetKernelArg(kernel ,argi++,sizeof(unsigned short) ,&crc);

90 checkError(status ,"Failed to set argument");

status = clSetKernelArg(kernel ,argi++,sizeof(unsigned int) ,&len);

92 checkError(status ,"Failed to set argument");

status = clSetKernelArg(kernel ,argi++,sizeof(short) ,&jinit);

94 checkError(status ,"Failed to set argument");

status = clSetKernelArg(kernel ,argi++,sizeof(int) ,&jrev);

96 checkError(status ,"Failed to set argument");

status = clSetKernelArg(kernel ,argi++,sizeof(cl_event) ,&output_tmp2_buf);

98 checkError(status ,"Failed to set argument");

status = clSetKernelArg(kernel ,argi++,sizeof(cl_event) ,&input_rchr_buf);

100 checkError(status ,"Failed to set argument");

status = clSetKernelArg(kernel ,argi++,sizeof(cl_event) ,&input_lin_buf);

102 checkError(status ,"Failed to set argument");

status = clSetKernelArg(kernel ,argi++,sizeof(cl_event) ,&input_icrctb_buf)←↩
;

107

104 checkError(status ,"Failed to set argument");

status = clEnqueueTask(queue ,kernel ,0,0,& kernel_event);

106 checkError(status ,"Failed to launch kernel");

clWaitForEvents (1,& kernel_event);

108 memcpy (&tmp2 ,output_tmp2_ptr ,1 * sizeof(unsigned short));

clReleaseEvent(kernel_event);

110 return tmp2;

}

112

int main (int argc , char *argv [])

114 {

if (! init_opencl("aocl_kernel","aocl_generated_kernel")) {

116 printf("WARNING: COULDN ’T INITIALIZE OPENCL\n");

return -1;

118 }

int n;

120 if(argc > 1)

n= atoi(argv [1]);

122 else

n = 64000;

124 unsigned short i1;

unsigned short i2;

126 double timecounter;

lin = (unsigned char*) malloc ((n+2)*sizeof(unsigned char));

128 memset(lin ,’a’,n * sizeof(unsigned char));

lin[n] = 0;

130 init();

timer_clear (0);

132 timer_start (0);

for (int i = 0; i < 100; i++) {

134 i1 = icrc(0,n,((short)0) ,1);

lin[n] = ((unsigned char)(i1 >> 8));

136 lin[n + 1] = ((unsigned char)(i1 & 0xFF));

i2 = icrc(i1,n + 2,((short)0) ,1);

138 }

timer_stop (0);

140 timecounter = timer_read (0);

printf("Results: \n");

142 printf("\ti1 = \t\t%d\n",i1);

printf("\ti2 = \t\t%d\n",i2);

144 printf("\tTime [ms] = \t%f\n",timecounter *5);

cleanup ();

146 return 0;

}

148

bool init_opencl(const char *file_name ,const char *kernel_name)

150 {

cl_int status;

152 cl_device_id *curr_devices;

cl_uint num_devices;

154 cl_device_type cl_device_type_all = 0xffffffffUL;

cl_command_queue_properties cl_queue_profiling_enable = 0x2;

156 std:: string binary_file;

if (! setCwdToExeDir ()) {

158 return false;

}

160 platform = findPlatform("Altera");

if (platform == 0) {

162 printf("ERROR: Unable to find Altera OpenCL platform .\n");

108

return false;

164 }

curr_devices = getDevices(platform ,cl_device_type_all ,& num_devices);

166 device = curr_devices [0];

context = clCreateContext (0,1,&device ,& oclContextCallback ,0,& status);

168 checkError(status ,"Failed to create context");

queue = clCreateCommandQueue(context ,device ,cl_queue_profiling_enable ,&←↩
status);

170 checkError(status ,"Failed to create command queue");

binary_file = getBoardBinaryFile(file_name ,device);

172 program = createProgramFromBinary(context ,(binary_file . c_str ()) ,&←↩
device ,1);

status = clBuildProgram(program ,0,0,"" ,0,0);

174 checkError(status ,"Failed to build program");

kernel = clCreateKernel(program ,kernel_name ,& status);

176 checkError(status ,"Failed to create kerne");

return true;

178 }

180 void cleanup ()

{

182 if (output_tmp2_buf) {

clEnqueueUnmapMemObject(queue ,output_tmp2_buf ,output_tmp2_ptr ,0,0,0);

184 clReleaseMemObject(output_tmp2_buf);

}

186 if (input_rchr_buf) {

clEnqueueUnmapMemObject(queue ,input_rchr_buf ,input_rchr_ptr ,0,0,0);

188 clReleaseMemObject(input_rchr_buf);

}

190 if (input_lin_buf) {

clEnqueueUnmapMemObject(queue ,input_lin_buf ,input_lin_ptr ,0,0,0);

192 clReleaseMemObject(input_lin_buf);

}

194 if (input_icrctb_buf) {

clEnqueueUnmapMemObject(queue ,input_icrctb_buf ,input_icrctb_ptr ,0,0,0)←↩
;

196 clReleaseMemObject(input_icrctb_buf);

}

198 if (kernel) {

clReleaseKernel(kernel);

200 }

if (program) {

202 clReleaseProgram(program);

}

204 if (queue) {

clReleaseCommandQueue(queue);

206 }

if (context) {

208 clReleaseContext(context);

}

210 return ;

}

Listing D.2: CRC SOCAO output file

1 typedef long intmax_t;

typedef ulong uintmax_t;

3 typedef char int_least8_t;

typedef uchar uint_least8_t;

109

5 typedef short int_least16_t;

typedef ushort uint_least16_t;

7 typedef int int_least32_t;

typedef uint uint_least32_t;

9 typedef long int_least64_t;

typedef ulong uint_least64_t;

11 typedef char int_fast8_t;

typedef uchar uint_fast8_t;

13 typedef short int_fast16_t;

typedef ushort uint_fast16_t;

15 typedef int int_fast32_t;

typedef uint uint_fast32_t;

17 typedef long int_fast64_t;

typedef ulong uint_fast64_t;

19

typedef char int8_t;

21 typedef uchar uint8_t;

typedef short int16_t;

23 typedef ushort uint16_t;

typedef int int32_t;

25 typedef uint uint32_t;

typedef long int64_t;

27 typedef ulong uint64_t;

29 __kernel void aocl_generated_kernel(const unsigned short crc ,const ←↩
unsigned int len ,const short jinit ,const int jrev ,unsigned short ←↩
__global * __restrict__ tmp2_ptr ,unsigned char __global * __restrict__ ←↩
rchr_global ,unsigned char __global * __restrict__ lin ,unsigned short ←↩
__global * __restrict__ icrctb_global)

{

31 int rose_it;

__local unsigned short icrctb [256];

33 for (rose_it = 0; rose_it < 256UL; ++ rose_it) {

icrctb[rose_it] = icrctb_global[rose_it];

35 }

__local unsigned char rchr [256];

37 for (rose_it = 0; rose_it < 256UL; ++ rose_it) {

rchr[rose_it] = rchr_global[rose_it];

39 }

unsigned short tmp1;

41 unsigned short tmp2;

unsigned int j;

43 unsigned short cword = crc;

if (jinit >= 0) {

45 cword = (((unsigned char)jinit) | ((unsigned char)jinit) << 8);

}

47 else {

if (jrev < 0) {

49 cword = (rchr[(unsigned char)(cword >> 8)] | rchr[(unsigned char)(←↩
cword & 0xFF)] << 8);

}

51 }

for (j = 1; j < len; j++) {

53 if (jrev < 0) {

tmp1 = (rchr[lin[j]] ^ ((unsigned char)(cword >> 8)));

55 }

else {

57 tmp1 = (lin[j] ^ ((unsigned char)(cword >> 8)));

}

110

59 cword = (icrctb[tmp1] ^ ((unsigned char)(cword & 0xFF)) << 8);

}

61 if (jrev >= 0) {

tmp2 = cword;

63 }

else {

65 tmp2 = (rchr[(unsigned char)(cword >> 8)] | rchr[(unsigned char)(←↩
cword & 0xFF)] << 8);

}

67 tmp2_ptr [0] = tmp2;

}

Listing D.3: CRC OpenCL kernel

111

Bibliography

[1] IEEE Standard for VHDL Register Transfer Level (RTL) Synthesis. IEEE Std 1076.6-
2004 (Revision of IEEE Std 1076.6-1999), pages 1–112, 2004.

[2] Timothy J. Callahan and John Wawrzynek. Instruction-Level Parallelism for Recon-
figurable Computing. In Proceedings of the 8th International Workshop on Field-
Programmable Logic and Applications, From FPGAs to Computing Paradigm, FPL
’98, pages 248–257, London, UK, UK, 1998. Springer-Verlag.

[3] Mälardalen Real-Time Research Centre. WCET project / Benchmarks [Online]. http:
//www.mrtc.mdh.se/projects/wcet/benchmarks.html.

[4] ROSE compiler infrastructure. ROSE HTML References [online]. http://

rosecompiler.org/ROSE_HTML_Reference/index.html. Accessed: Jun 2016.

[5] Altera Corp. White Paper - FPGA Architecture [online]. https://www.altera.com/

en_US/pdfs/literature/wp/wp-01003.pdf, 2006.

[6] Altera Corp. White Paper - Implementing FPGA Design with the OpenCL Standard
[online]. https://www.altera.com/en_US/pdfs/literature/wp/wp-01173-opencl.
pdf, Nov 2013.

[7] Altera Corp. Altera SDK for OpenCL Best Practices Guide [online].
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/

literature/hb/opencl-sdk/aocl_optimization_guide.pdf, May 2015.

[8] Altera Corp. Cyclone V Device Overview [online]. https://www.altera.com/en_US/
pdfs/literature/hb/cyclone-v/cv_51001.pdf, Dec 2015.

[9] Altera Corp. Altera SDK for OpenCL - Programming Guide [online].
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/

literature/hb/opencl-sdk/aocl_programming_guide.pdf, May 2016.

[10] Secure Hash Standard (SHS). Federal Information Processing Standards Publication
FIPS Pub 180-4, March 2012.

[11] Announcing the ADVANCED ENCRYPTION STANDARD (AES). Federal Informa-
tion Processing Standards Publication FIPS Pub 197, November 2011.

[12] J. A. Fraire, A. Ferreyra, and C. Marques. OpenCL Overview, Implementation, and
Performance Comparison. IEEE Latin America Transactions, 11(1):274–280, Feb 2013.

112

http://www.mrtc.mdh.se/projects/wcet/benchmarks.html
http://www.mrtc.mdh.se/projects/wcet/benchmarks.html
http://rosecompiler.org/ROSE_HTML_Reference/index.html
http://rosecompiler.org/ROSE_HTML_Reference/index.html
https://www.altera.com/en_US/pdfs/literature/wp/wp-01003.pdf
https://www.altera.com/en_US/pdfs/literature/wp/wp-01003.pdf
https://www.altera.com/en_US/pdfs/literature/wp/wp-01173-opencl.pdf
https://www.altera.com/en_US/pdfs/literature/wp/wp-01173-opencl.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/hb/opencl-sdk/aocl_optimization_guide.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/hb/opencl-sdk/aocl_optimization_guide.pdf
https://www.altera.com/en_US/pdfs/literature/hb/cyclone-v/cv_51001.pdf
https://www.altera.com/en_US/pdfs/literature/hb/cyclone-v/cv_51001.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/hb/opencl-sdk/aocl_programming_guide.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/hb/opencl-sdk/aocl_programming_guide.pdf

[13] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of
Reusable Object-Oriented Software. Pearson Education, 1994.

[14] Khronos OpenCL Working Group. The OpenCL Specification, Version 1.0, Document
Revision 48. https://www.khronos.org/registry/cl/specs/opencl-1.0.pdf, Oct
2009.

[15] D. Grune, K. van Reeuwijk, H.E. Bal, C.J.H. Jacobs, and K. Langendoen. Modern
Compiler Design. Springer New York, 2012.

[16] Terasic Inc. DE1-SoC User Manual (rev.F Board). http://www.terasic.com, Aug
2015.

[17] ARM Limited. mbed TLS [Online]. https://tls.mbed.org/.

[18] T.Æ. Mogensen. Introduction to Compiler Design. Undergraduate Topics in Computer
Science. Springer, 2011.

[19] Dan Quinlan and Chunhua Liao. The ROSE Source-to-Source Compiler Infrastructure.
In Cetus Users and Compiler Infrastructure Workshop, in conjunction with PACT
2011, October 2011.

[20] R. Wilhelm, H. Seidl, and S. Hack. Compiler Design: Syntactic and Semantic Analysis.
Springer Berlin Heidelberg, 2013.

113

https://www.khronos.org/registry/cl/specs/opencl-1.0.pdf
http://www.terasic.com
https://tls.mbed.org/

	Introduction
	Technical Background
	OpenCL
	Platform Model
	Execution Model
	Memory Model
	OpenCL Runtime

	FPGA
	Physical Layout
	Instruction-Level Parallelism
	Pipelining
	Altera's DE1-SoC

	OpenCL for FPGAs
	Altera's SDK for OpenCL
	Compiler
	Structure of a Compiler
	Context-Free Grammars
	Intermediate Representation
	ROSE Framework

	Design
	User Interface
	File Preparation
	Console Interface
	Input File Restrictions

	System Design

	Implementation
	Analysis and Transformations
	Inline Transformation
	2D to 1D Transformation
	Constant Value Transformation
	Constant Folding Transformation
	Input/Output Analysis
	Constant Array Analysis
	Typedef Analysis
	Parameter Analysis
	Memory Analysis
	Loop Unrolling
	Inter Analysis and Transformation Dependencies

	Host Program Transformation
	Global Variables
	Initialization and Cleanup Function
	Main Function
	Target Function

	Kernel Creation
	Function Header
	Function Body
	Unparsing

	Evaluation
	SHA-256
	Compilation
	Area
	Execution Time

	AES
	Compilation
	Area
	Execution Time

	FFT
	Compilation
	Area
	Execution Time

	CRC
	Compilation
	Area
	Execution Time

	Memory Performance
	Memory Allocation
	Internal Copy
	Global and Constant Address Space

	Loop Unrolling
	File Scope Arrays

	Conclusion
	SHA-256 Source Code
	AES Source Code
	FFT
	CRC
	Bibliography

