_TELECOM

il . UNIVERSITAT

POLITECNICA

Y DE VALENCIA

Communication between industrial
network and public network using Profinet
and MQTT protocol

Bachelor's degree final project

Author: Junyang, Bu

Tutor: Victor M.Sempere Paya

Trabajo Fin de Grado presentado en la Escuela Técnica Superior de Ingenieros de
Telecomunicacién de la Universitat Politecnica de Valéncia, para la obtencion del Titulo de
Graduado en Ingenieria de Tecnologias y Servicios de Telecomunicacion.

Valencia, 29 of June, 2016

Abstract

Connection has become the trend of development of world, since last century. From
Internet to 10T (Internet of things), more and more physical devices will be connected to the
network. However, industrial network as an important part of information source still can’t be
connected to public network easily and safety because of its complicated industrial
environment and particular communication requirements. Profinet as a standard based on
industrial Ethernet provides an integrated solution to industrial communication and MQTT is
becoming a potential protocol for M2M communication due to its lightweight and small code
footprint. In this project these two solutions are applied to connect the industrial network and
public network. Profinet is used for creating an industrial communication network and MQTT
is used for connecting the industrial network to public network.

In chapter of Methodology the Profinet and MQTT protocol are introduced in detail. In
following chapter development and results the configuration of Profinet and implementation
of MQTT protocol in PLC S7-300 is described step by step. Finally the conclusion of project
and its future work are discussed in chapter 6. In addition, all the source code (AWL) in this
project is appended to the last chapter.

Contenido

N) o Yo [V Tt A o] o H PO P PP PRRPRP 1
B @] oY1= ot 4 =TSRRI 5
S B \Y/ =14 e ToTe (o] [o =4V AU SSPRRNt 6
IR o o) T 1= O TR U ST PPTTOTRRO 6
3. 1.1 HiStOry OF PrOFINEL.......ooviieiiecieec e 6
3.1.2 Introduction Of Profinetcccviiiiiiiiiiiic e 7

B LB PIOFINEL O ..o 7
3.1.4 Profinet 10 device ClasSifiCatioNn...........ccccovieiiiiiiiiiiiccce 8
3.1.5 Communication in Profinet 1Occoiiiiiiiiieiee e 8
3.1.6 Profinet 10 addreSSiNgccveiuieieiiiicie sttt sttt reenaesreenes 9

320 \Y/ [0 I o o] o Yol o | FES PR 10
3.2 L INEFOTUCTION ..t 10
B.2.2 ClIBNES ...ttt 11
3.2.3 CONNECTION. ...ttt bbbkt b b ettt b n s 11
B2 PUBLISN ... 16
3.2.5 DISCONMNECTION ...ttt bbb n e 22
Bi2.8 SECUMLY ...ttt b ettt nb e n e 23

4. Development and reSUILS........ii it e e e et e e e e aae e e e e b e e e e e enrae e e enaaeaaan 23
4.1 Introduction Of PrOJECT ..cceiiii i s e e s e e e 23
4.2 Configuration of industrial NEtWOIKcccuveiiiiiiiiice e 23
4.2.1 Hardware CONFIQUIALIONcveiiiiiiiiiieiecite e 24
4.2.2. Software configuration of industrial NetWOrK...........c.cccoeee i, 32

4.3 Implementation of Communication between industrial network and MQTT broker.... 37

4.3.1 Implementation of connection (FB300, DB300)ccovviirinienieieisesesese e 38
4.3.2 Implementation of publish with QoS=0 (FB301, DB301)ccccecvevveierreierrenenn, 39
4.3.3 Implementation of publish with QoS=1 (FB302, DB302)cccccceivrivriririeriennen. 41
4.3.4 Implementation of publish with QoS=2 (FB303, DB303)ccccccvevverrerireeerrenenn, 43
4.3.5 Implementation of disconnection (FB304, DB304)ccccereriereiieiinininenieneenene 44

oI Lo [UT o a g V=T ol AU =T [Tt 45
DL HAIAWAIE .ttt sttt e b e b e b e s ae e st et ettt e b e e sheesanesareea 45

I A o] i 1V (=TT TR 45

6. Conclusion and Future wor
6.1 Main Conclusions.........
6.2 Future improvements..

7. Bibliography.....cccoeveeunnenn.

8. AppendiX.....ccceeererieeennnen,
8.1 Program in controller 1

8.2 Program in controller 2

K et e e

1. Introduction

Nowadays, with the development of IT the market changes faster and becomes more
unpredictable. The company needs to make fast and effective decision to adapt the changing
market. So the up-to-date information about process status in production field is important not
only for the production site but also for the management departments [5]. In the outside
environment the customers or chain partners also need the information of industry system.
Besides, as the development of 10T (Internet of Things) more and more information silos
should be broken and more data will be extracted for using and investigating. For these
purposes the industrial communication system should connect to commercial network system
in a larger range.

In fact the integration idea is not new. In the 1970s the computer integrated manufacturing
(CIM) concept was proposed, which already had included the integration idea. The past two
decades the commercial network system (e.g., Internet) and automation system both have
made great progress. The recent year many new technologies have appeared and try to
interconnect the two systems. For example, the vertical integration was a popular solution in
the past few years [6]. This solution is used in this project.

Until now the automation system can be designed very complex. To deal with the
complexity, depend on the different functionality the components are placed in different
places and structured into several hierarchical levels. Typically the hierarchical model is
known as the automation pyramid which contains 4 to 6 functional levels in different version.
However, in recent years with new technology, the structure is being simplified. Here we
divide the automation system into 5 levels [6]. Figure 1 represents the typical structure of
automation system with 5 levels.

To link those components an industrial communication system is necessarily, which
connects the equipment not only in the same level but also in the different level. In each level

there are appropriate protocols to use.

Enterprise

Level 4:
Enterprise

Application
Server
Workstations

Level 3: D!g
Production Control

Ethernet
(TCP/P)

, pr| Data —
% Historian [
Level 2: -
5 Engineering | ma——
Supervisory Control B g

J Work station ‘

[
Robot
Level 1: S [[m]m]]]] FLe |” I }

Sutomatic Control

Level 0: ISG"SD” [Sensorz Motor MT"‘@'T
Aot > [

Sensors and Actuators

Fig.1: Hierarchy of an industrial automation system [2]

The level 0 is constituted by sensors, actuators that sense and manipulate the production
process directly. The level 1 is an automatic control that contains typically hardware PLC,
robot, I-Device, etc. These 2 levels consist in field level that is the lowest level in system. The
communication is based on real-time system and the data are transmitted with a short but
recycle that has the range from 1us to 0.1s depends on the application. Profibus or Profinet
can be used for the network. From level 2 to level 4 usually they have the industrial
computers with software running based on IT. These computers form large scale networks to
gather, store and process industrial data by Ethernet communication. Level 3 is the production
level that gathers the management information from lower levels and manages the whole
automation system. Level 4 is the highest level in the system and it is in the environment of
enterprise. There is Internet or WAN for management information exchange using Ethernet
networks as a gateway to connect automation system [1] [2].

Now we focus on the industrial information flow of whole enterprise and outside context.
The figure 1 shows us that how the information flow circulates in a typical company.

Enterprise
context

Management S + BUSINISS COMPUTER
contest - NETWORK

INTERNET/WLAN
Department of [- |

- Praduction
| 3 no contest
lk'r#ﬂmrnl s T T CONTROL CENTER

Outside I
context |
aﬂ | | " |
Custon work] N [.\'ru’ll:u'nl u||' CONTROLLER UNITS
" markebing | PLODCSRTU
\ { i

S

Fig.2: Industrial information flow

Firstly the data are created from production field and transmitted to the controller units.
The controller units can be PLC, DCS or RTU units. After those controller units receive data,
some data will be processed and response immediately to the production component and some
data will be sent to the higher level the control center. The control center consists of
engineering workstations, data historian, control server, etc. It receives stores and processes
data from controller units. The data can be fed to data historian or after analysis of data the
control center may send commands to PLCs or RTU. Finally, through Internet or WLAN the
control center exchange information with business computer network [4]. Then the
information from industrial context comes to the management context and circulates in
different department.

From above explication there are some problems in the industrial information flow.
Firstly, for the outside environment is very difficult to gather industrial information, because
usually the communication with customers or chain partners is in charge of department of
marketing. The automation system or production processes is like a black box for outside
people. Secondly, not all the companies own the complete structure of automation system. So
usually they constitute their system according to the actual demand. For example, maybe they
only have the level 0 and level 1. In this case it’s difficult to connect to the business network if
they don’t add more level of system. Lastly, in pyramid structure the higher level manage the
whole automation system and also it connects to an open environment. That raises the risk of
attack and vulnerability can cause very serious damage to the whole industrial system. So the
security question always is the challenge for network interconnections.

In this project we try to use a simple and safe method to get the information from
industrial system, which is MQTT server. MQTT is a lightweight publish/subscribe messaging
protocol based on TCP/IP. It is designed for connection with remote locations in 1999 by
IBM. Because of its easy implementation and limited resource occupied, it becomes the
potential M2M connectivity protocol [7].

In figure 3 there is an example application in industrial communication system with
protocol MQTT. If we compare the figure 2 and figure 3, it is quite obvious that the
automation system is the same as before. The only thing that should be added is a small block

3

of MQTT communication that is used for sending data to MQTT server. The block is so small
and simple and can be installed in any level where uses TCP/IP based protocol for
communication. The component which is installed that block is named publisher who will
publish data to server. In other side of server the clients who will receive the message are
named subscribers. After the subscribers subscribe a topic, they will receive massage which
has that topic from publisher with real-time communication system. More detail will be
discussed in the project.

Now we can see the advantage of MQTT in this system. Firstly it is easy to implement,
we don’t have to add more device. Secondly, any component in any level can transmit data
from system. Thirdly, it is flexible for subscribers. They can receive the message that they
want to receive. Fourthly, it is safe for automation system because of unidirectional
communication mechanism. The publishers in automation system only send message will not
receive anything from outside.

Enterprise /'*"7“_"_"’_'\1
context - Subscribers =24
e -

Management

context BUSINISS COMPUTER

NETWORK
Department of

I
i el i
production =5 i I
e e INTERNET/WLAN
of maintenace _ _ | _ »!
1| T |
Department of o 7 i
store Je—— @ a 4 ‘
'z 2
Department of i —
A e CONTROL CENTER
o >
Department of |

marketing

al fe— MQTT <«—— Production :
.- -» Server context i

|¢————————— CONTROLLER UNITS
PLC/DCS/RTU

ol
H
: i
DNslss {
i
1
i
|
1

w
@
Outside & A UE
context |2 i i
S - / A
@ s i \
Customers < o i \
------ > g \
J 2
Others o

i

Fig3: Application of MQTT protocol in industrial communication system

The project is divided in four sections. The first sections describes the Profinet standard
and MQTT protocol. Their histories, theories, communication mechanisms, securities are
mentioned. In the second section an application is developed with Profinet and MQTT. It
shows the configuration of Profinet step by step and the implements of MQTT are also shown
in this section. The language of AWL is used for programming in this project. In the third
section the equipment that is used during this project is listed and the last section the
conclusion and its future work will be discussed.

2. Objectives

In this project the principal objective is to analyze, implement and verify the feasibility
and the reliability of connection between automation system and public network system using
MQTT server. Figure 4 shows the automation communication system that will be constructed.
In the part of field context simulation one workstation, two controllers and one 10-Device
consist in the hierarchical levels using protocol Profinet to set up communication network. The
other part is the public network simulation which contains three PCs with application
MQTTlens and an MQTT server to build a public network based on MQTT protocol. Finally
the feasibility and reliability of this communication system is verified by long time

experiments.

B i Public Network Pl confor
b= e e context simulation simulation
= e o

—
(o]
a

SUBSCRIBER 1 1 PUBLISHER 1

Controller 1

PUBLISHER 2

ontroller 2

<—— 1| PuUBLISH __ PUBLISH
é&ﬂ ususn warr

e Bl _._p Server
BUBSCRIBE

10-Device

I

rofinet
==

A

I

]

I

— i, e
Redundancy
line
k '

Fig.4: Automation communication system with MQTT

3. Methodology

3.1 Profinet
3.1.1 History of Profinet

If we want to the development history of Profinet, we should start with the Profibus and
Industrial Ethernet, because the Profinet can be considered as the combination of these two
standard systems.

Profibus is the abbreviation for process field bus. It is a standard for fieldbus
communication in automation system. The start was in 1986 when the field device interface
needs to be standardized because of the appearance of different technologies of fieldbus. It
was defined by 21 companies and institutes in Germany with the push of government in order
to create a uniform bit-serial fieldbus standard as an open national standard DIN 19245.
Thereafter, a number of voluntary enterprises which use the standard established the Profibus
User Organization (PNO) in 1989 to maintain and advance Profibus. Then a big group named
Profibus International was formed in 1995, which works to set standards, develops new
technologies and assures the quality [8]. Profibus can be divided into Profibus-DP, Profibus-
PA and Profibus-FMS according to the application. Profibus-DP (Decentralized Periphery) is
designed for the communication between the central automation devices and decentralized
field devices [21].

Profibus-PA (Process automation): It is used for the communication between measuring
and process equipment by the standard process of transmitting measured data in the process
automation application.

Profibus-FMS (Fieldbus Message Specification): It is to solve the problem of versatility in
workshop level communication providing a large number of communications services.

Meanwhile, in 1970s Ethernet became the standard solution of desktop communication
systems based on TCP/IP in the layer 1 and 2 of 1SO model. But because of its non-
deterministic response time and the possibility of lost and delay of frames, it can’t satisfy the t
requirements of automation network system that is based on the real-time control. To solve
this problem, the Industrial Ethernet has been created since 1990s. Compare to the Ethernet
the Industrial Ethernet uses a variety of methods to improve the performance and quality of
Ethernet to meet the requirements of industry. Regarding the Ethernet network congestion
problem, it uses Ethernet switch to reduce the conflict and erroneous transmission. To improve
the confidentiality of Ethernet it uses the high-speed Ethernet because the error rate can be
reduced greatly with the speed of transmission. To solve the problem of response time, the
IEEE1588 defines the clock synchronization protocol. Moreover, the link redundancy also was
added to Industrial Ethernet. Until now the Industrial Ethernet has become a big family with
different solution for different problems. According to the features, the real-time capability,
the QoS mechanism available etc., the appropriate solution in the family can be selected [21].

The Profinet is an Industrial Ethernet solution on the basis of Profibus developed by
Profinet International group. So it takes the advantages of Industrial Ethernet and Profibus. It

6

was started in 2000 and the first Profinet protocol is Profinet CBA which is designed to
integrate the different complex machine using M2M communication based on TCP/IP. Then
the second protocol is Profinet 10 which dedicates to deal with the more-demanding
distributed 1/0 [20].

PROFidrive

Profibus DP-V2 and
Profibus Profibus DP and Profinet as PROFIsafe PROFlenerg
(o izati DIN part of 61158/IEC for Profibus y Profil was
was founded 1924 Part 3 Profibus PA 61784 available and Profinet specified
1989 1991 1993 1986 1998 1999 2002 2004 2005 2007 PAE] 2011
Profibus Profibus PROFisafe Frofinet 10 PROFIBUS- PROFINET
becomes becomes Profile for based on RT PA Profile v2.3 for
DIN 19245 Eurpean safety and IRT V3.02 was Process
Standard EN technology specified Automation
50170 and released

Fig.4: History of Profinet [11]
3.1.2 Introduction of Profinet

The Profinet is an Industrial Ethernet solution on the basis of Profibus developed by
Profinet International group. So it takes the advantages of Industrial Ethernet and Profibus.
Actually there are two versions of Profinet have been released. The first veision is Profinet
CBA (component-based automation) which is designed to integrate the different complex
components at higher level using M2M communication based on TCP/IP. The component in
Profinet CBA covers all mechanical, electrical and IT variables and can be repeated with
identifier or slightly modified. Every component can realize the required functionality by the
program in it. In fact this is an object-oriented programming concept with which the protocol
divides the whole system into different operating units. So in Profinet CBA these components
only need to be controlled the input signals and configured to constitute a component-based
architecture. Now the protocol is used in North American market and be considered a best
solution for plant supervising and control [20].

Then the second family is Profinet 10 (Input Output) which is dedicated to implement the
more-demanding distributed 1/0 peripheral devices [6]. The Profinet 10 is based on the
Profibus DP Industrial Ethernet automation standard. It supports all the communication type,
for example, the Non-RT, RT, RT class or IRT. The characteristics of this communication
type will be talked about in the following sections. In this project we will only use Profinet 10,
so we focus on Profinet 10 here [13].

3.1.3 Profinet 10

As we have mentioned before, Profinet 10 is designed on the Ethernet-based automation
international standard of PROFIBUS. Profinet 10 is based on Switched Ethernet full-duplex
operation with bandwidth of 100 Mbits/s. The following figure shows an example of Profinet
10 system.

Company management levels

Production levels

Switch

PROFINET 4
Industrial Ethernet
] [s
]
Machine unit 1 EE
od
CPU314C- | 1O controlier 10 device | ET2008 3
arer 10 device| ET200S i
i
| o [
DP master
Machine unit 2 |-Device
ET200 CPU314C- | 1O controlier I-Devica | CPU314(
(DP slave) 2PNIDP 2PNIDP)
el DE
PROFIBUS -] T -
e
DP master 10 device| ET2008
H=

Fig.5: Example of Profinet 10 system [18]

Compared with Profibus DP, some processes of data view are retained for migration to
Profinet 10, e.g. the I/O data, Data records and connection to a diagnostics system. Profinet
uses the provider/consumer model for data exchanges and the field devices in field level
provides process data to consumer [18].

3.1.4 Profinet 10 device classification

According to the function of devices, they can be divided into the following various
classes.

10 Supervisor: This kind of devices can be PG(Programming Device), PC (Personal
Computer), HMI(human machine interface), etc. They used for commissioning or diagnostic
purposes.

10 Controller: In 10 controller the typical device is PLC(Programmable Logic
Controller) and it controls automation system with program running.

10 Device: It refers to the 1/O field device distributed in field level [18].

3.1.5 Communication in Profinet 10

Profinet 10 is a communication system that works in scalable real time based on layer 2 of
fast Ethernet. RT communication is the basis for data exchange of Profinet 10. Just as we have
mentioned before, to satisfy the requirements of industrial field the industrial Ethernet is
developed from standard Ethernet. For example, in industrial automation the time behavior
and isochronous operation can not be satisfied by standard Ethernet. To resolve the problem
the Profinet 10 adopts a scalable RT approach. With different requirements of communication,

the different classes have been defined for data exchange. In terms of the performance, the
Profinet 10 differentiates the following classes.

Non-RT:

Non RT is non-time-critical data transmission based on TCP/IP and UDP/IP. It is used for
configuration and parameterization. For example the IT landscape.

RT communication:

In Profinet 10 the real-time communication uses standard Ethernet in devices and is used
for time-critical process data. The data packages are prioritized according to IEEE802.1Q and
the network components control the data flow on the basis of priority. The RT message frames
have priority 6, the second highest level, so it ensures the reliability of communication in
automation system. With RT it can realize the update time from 250us with RT. RT
communication in Profinet 10 is the optimum solution of for integrating 1/0 systems[17].

In terms of hardware it doesn’t need special hardware and uses commercially industrial
switches as component.

Isochronous RT:

IRT is suitable for particularly sophisticated Motion Control and high performance
application in automation system. IRT permits cycle times of up to 250us. To achieve that
performance the communication cycle is divided into a deterministic part and an open part by
reserving bandwidth, and then specified to the other station in the network by a sync master.
The data can be transmitted without interference[17].

3.1.6 Profinet 10 addressing

Every component in Profinet has three addresses, the MAC address, IP address and
Device name. Profinet is a protocol on basis of TCP/IP, so the MAC address and IP address
are essential for every module.

The MAC address is assigned by its factory as an identifier which is unique in all over the
word and it can't be changes. The MAC address contains 6 bytes data and it is divided into two
parts with 3 bytes. One part identifies factory and the other part identifies product. E.g. the
MAC address 08-00-06-6B-80-CO.

08-00-06 6B-80-CO

Factory Product

Tablel: Interpretation of MAC address

The IP address is dynamic and it can be changed according to the requirement of
network. It must be unique in one Network. The direction is consisted of 4 numbers
with the range from 0 to 255 and it is separated by 3 points. IP direction defines the
address of network and address of this device. E.g. a device has IP address 192.168.0.2 and
mascara 255.255.0.0.

IP address (Binary) | 11000000 | 10101000 | 00000000 | 00000010

Mascara(Binary) 11111111 | 11121111 | 00000000 | 00000000

Network address 11000000 | 10101000 | 00000000 | 00000000

Device address 00000000 | 00000000 | 00000000 | 00000010

Table 2: Interpretation of IP address

Device name is also an essential identifier for Profinet 10 device. This procedure has
been chosen, because name is much easier to handle than IP direction. The name has to be
assigned to Profinet 10 device by Profinet 10 controller.

3.2 MQTT protocol
3.2.1 Introduction

MQTT was invented by Andy Stanford-Clark of IBM and Arlen Nipper of Arcom in
1999. The background is that they wanted to create protocol with minimal battery loss and
minimal bandwidth cost for the connection between oil pipelines and satellite. They want the
protocol have the following characters [11]:

Easy to implement,
Provide a QoS data delivery,
Lightweight and bandwidth efficient
Data agnostic
Continuous Session Awareness

So these characters become the core of MQTT. It is a lightweight client server messaging
protocol with publish/subscribe model based on TCP/IP. It is designed lightweight, open,
simple and to be easy to implement [9] and in the context of M2M or IoT it becomes a
potential protocol. Then we will talk more detail about it. The figure 6 shows the principal
mechanism of MQTT. The client who sends the message is named publisher and who receives
the message is named subscribers and a client can be both subscriber and publisher. The
MQTT broker is like a distributor which selects the message and sends it to the subscriber who
has already subscribed the message. It means that the publishers and subscribers are
independents. So they don’t have to know the existence of each other. This project we will
establish the part of publisher, so we will focus on the publishers [9].

10

o Publishers
F ; ~
<_ Subscribers ~ »

=i
= -f)o PO
Subscriber 1 MQTT g
D Publish Broker p\;o\\
ubSC’ g M Pubhsh ¥
Su bscrlbpr 2 ?ub\‘E' -
Be Ubﬁ&/’
060“ ,

A

Fig.6: Publish/Subscribe mechanism

3.2.2 Clients

In introduction the clients are divided into publishers and subscribers according to their
functionality in the system. In this project the PLCs are publishers and the PCs are
subscribers.

3.2.3 Connection

e CONNECT

The MQTT is based on the basis of TCP/IP. It means that both client and broker need a
TCP/IP stack. Firstly we should realize the connection of TCP and then realize the connection
of MQTT. The figure 7 shows the mechanism of connection. The client sends a petition of
CONNECT first. After that the MQTT broker receives the message and there is no problem,
the broker will response a CONNACK. Then the connection has been established and until
the client send a disconnect message to drop the connection [9].

MQTT
Client Brr;ﬂf._ar
/7 O\ _Connect _ /
= | |
\ &= | CONNACK

z// \\._

Fig.7: Connection of MQTT

Now we focus on the CONNECT message, because we need to constitute it in the project. In
table 3 the message is divided into three parts the fixed header with 2 bytes, the variable
header with 11 bytes and the Payload with rest bytes [9].

11

Bytes 0 1 2 3 4 5 (] T 8 '] 10 1 12 13 14 15 16 17

Name Fixed header arible header Payload

Table3. Structure of CONNECT message [11]

In table 4 there is a simple example connect message.

Bit 7 L] 5 4 3 2 1 0] Type Value Comment

Byte 0 0 0 0 1 0 0 0 0 BYTE | B#16#10 HeaderFlags : MQTT control packet type, different

type of packet with different value.

(0] 0 0 1 3 1] 1 0 BYTE | B#16#1A Msglen : It defines the length from the next byte to

Japeay paxg

Byte 1
fin.
Byte 2 0 0 0 0 0 0 0 0 BYTE Bi#16#0 | Length MSB :
Byte 3 0 0 0 0 0 1 0 0 BYTE Bi#16#4 | Length LSB
Byte 4 0 1 0 0 1 1 0 1 CHAR ™M Protocol name
Byte 5 0 1 0 1 0] 1] 0 1 CHAR Q
5 | | | | 1 | 1

Byte 6 4 0 1 0 1 0 1 0 0 | CHAR e

=

g | | | | 1 | 1
Byte 7 & 0 1 0 1 8} 1 0 0 | CHAR HE=
Byte 8 1} 0 0 0 [0} 1 o] 0 BYTE Bi16#4 Version
Byte 9 0 0 0 0 a 1] 0 BYTE Bi16#2 ConnectFlags
Word 0 0 0 0 (0] Q 0] 0 Word B#16#3 KeepAlive
1112 c

0 0 1 1 1 1 0] 0

Waord 0 0 0 o] 0 0 0 0 Word B#16#E | StringLength
13-14

by

= 0 0 0 0 1 1 1 0

2
Bytes Chars | MQTT_F | ClientlD
14-27 X_Client

Table 4: Example of CONNECT message[11]

In the fixed header byte 0 is a header flags. In its position of bits 7-4 indicates the type of
packet and bits 3-0 is reserved for flags specific to this type. In table 6 shows the different
control packet types corresponding the value in bits 7-4. From the table we can see the
connect message CONNECT has the value 1, so in the position of bits 7-4 of CONNECT there
isal. The byte 1 indicates the remaining length that counts from the byte 2 to the final byte.

In the variable header the message consists of 4 fields, the protocol name, the protocol
level, the connect flags and keep alive. In table 4 the protocol name is from byte 2 to byte 7
using UTF-8 encoded string that represents “MQTT”. Usually the protocol name will not be
changed. The protocol level is used for checking the protocol vision with MQTT server. For
example here the protocol level is 4. If the server doesn’t support this level, is will response
code 0x01 and disconnect the client. The third segment is CONNECT flags. It contains 8
flags with each bit in byte 9. It specifies the behavior of the connection and the necessary field
in the payload. Table 5 shows the different flag in the different position of byte 9 [11].

12

Bit 7 6 5 4 3 2 1 0

Flag User Password Wwill Will QoS will Clean Reserved
Name Retain Flag | Session

Table 5: CONNECT flags [11]

User Name flag
0 : The payload must contain the name.
1 : The payload mustn’t contain the name.
Password
0 : The payload must contain the password.
1: The payload mustn’t contain the password.
Will Retain
0 : The server must publish the message as a hon-retain message.
1: The server mustn’t publish the message as retained message.
Will QoS
0 : The Will QoS flags must be 0.
1: The Will QoS flags can be 0, 1 or 2.
Clean Session
0 : The server must recover the communication with the client based on the state of
ession. If there is no session created for the client, the server must create now one.
1: The server must discard the previous session associated with this client and start the
new connection.

The keep alive parameter is a time interval in second and indicates the permitted maximum
time interval between the last finish of transmission of one control packet and next start of
transmission. If the the keep alive value is nonzero and the server doesn’t receive any control
packet from client within 1.5 times the keep alive value seconds, the server will consider that
the network is failed and disconnect the connection. So the client must ensure that the interval
time between two control packets doesn’t exceed the keep alive time period. The client can
send the Pingreq packet any time to keep the connection [11].

The fields in payload are specified by the connect flags. These possible fields can be
client identifier, will topic, will message, username or Password according to the flags.

e Client Identifier

The client identifier is unigue and identifies the client to the server. It is located in the first
field and encoded by UTF-8 string. In the figure 6 we can see the part of payload that only
contains the client identifier [11].

e Will topic
The will topic field will be represented, if the Will flag is set to 1. The will topic must be a
UTF-8 encoded string.

e User name

13

As same as will topic, when the user name flag is set to 1, the user name field will be
represented and will be a UTF-8 encoded string.

e Password

If the password flag is set to 1, the field of password need to be represented. The password

field contain 0 to 65535 bytes of binary data prefixed with two byte length field which
indicates the number of bytes of bytes [11].

Reserved 0 Reserved

CONNECT 1 Client request to connect
CONNACK 2 Connect acknowledgement
PUBLISH 3 Publish message

PUBACK 4 Publish acknowledgment
PUBREC 5 Publish received

PUBREL 5] Publish release
PUBCOMP 7 Publish complete
SUBSCRIBE 8 Client subscribe request
SUBACK 9 Subscribe acknowlegment
UNSUBSCRIBE 10 Unsubscribe request
UNSUBACK 1" Unsubscribe acknowledgment
PINGREQ 12 PING request

PINGRESP 13 PING response
DISCONNECT 14 Client is disconnecting
Reserved 15 Reserved

Table 6: MQTT control packet type [11]

14

* Frame 157: 82 bytes on wire (656 bits), 82 bytes captured (656 bits) on interface @
* Ethernet II, Src: HonHaiPr_29:cB:ed (74:29:af:29:c8:ed), Dst: Ciscolnc_f7:6c:@@ (@@:16:9c:f7:6c:0@)
» Internet Protocol Version 4, Src: 158.42.59.113, Dst: 198.41.36.241
* Transmission Control Protocol, Src Port: 49935 (49935), Dst Port: 1883 (1883), Seq: 1, Ack: 1, Len: 28
4 MQ) Telemetry Transport Protocol
4 Connect Command
4 @Al 8eae = Header Flags: 8x1@ (Connect Command)
@eal = Message Type: Connect Command (1)
veas B... = DUP Flag: Not set
veas BB, = Q05 Level: Fire and Forget (@)
....... @ = Retain: Not set
Msg Len: 26
Protocol Name: MQTT
Version: 4
4 @pea 88le = Connect Flags: @x@2
B v = User Name Flag: Mot set
cean Password Flag: Not set
..B. = Will Retain: Not set
..8 B... = Q05 Level: Fire and Forget (@)
.@.. = Will Flag: Mot set
+es. ..1l. = Clean Session Flag: Set
....... @ = (Reserved): Not set
Keep Alive: 6@
Client ID: MQTT_FX_Client

®
n

Fig. 8: CONNECT packet captured by Wireshark

e CONNACK

After that the server receives connect packet, the server will response a CONNACK
message to client. If the client does not receive a CONNACK packet in a period of time, the
client should close the connection and try again. Now we focus on the CONNACK packet in
table 9.

Bit 7 6 5 4 3 2 1 0 Comment
Byte 0 0 0 1 0 0 0 0 0 MQTT control Packet Type
Byte 1 s} 0 0 1] 0 0 1 0 Remaining Length
Byte 2 0 0 0 0 0 0 0 X Connect Acknowledge Flags
Byte 3 x X x X X x X i Connect Return Code

Table 9: Structure of CONNACK Packet [11]

There are two parts in CONNACK, the fixed header with 2 bytes and the variable header
with 2 bytes. In the byte 0 these bits in position 7-4 indicate the type of packet. In figure 7 it
shows that the CONNACK has the value of 2. The byte 1 indicates the remaining length. In
the byte 2 of variable header it only uses the position of bit 0 which presents the session
present flag. If the MQTT server accepts a connection packet with clean session set to 1, the
flag of session present must be set to 0. If the server accepts a connection with clean session
set to 0 and the server has stored session state of the supplied client ID the session present
flags will be set to 0. If the server hasn't stored the session state, it will be set to 1. The last
byte contains connect return code from 0 to 5 and the each one represents one response. Table
10 shows the different connect return and its description [11].

15

Value Return Code Response Description

Q Connection Accepted Connection Accepted

1 . Connection Refused, unacceptable protocol : The server does not support the level of the MQTT protocol requested by the client.
2 Connection Refused, identifier rejected The client identifier is correct UTF-8 but not allowed by the Server
3 Connection Refused, Server unavailable The Network Connection has been made but the MQTT service is unavailable
4 Connection Refused, bad username or password The data in the user name or password is malformed
5 Connection Refused, not authorized. The Client is not authorized to connect
" 6-255 Reserved for future use

Table 10: Connect return code [11]

If the connect return code of CONNACK packet contains non-zero, it means that the
server is unable to process the connect packet for some reason. Then the server must close the
Network Connection.

> Frame 159: 68 bytes on wire (488 bits), 68 bytes captured (488 bits) on interface @
> Ethernet II, Src: Ciscolnc_f7:6c:8@ (@0:16:9c:T7:6c:@8), Dst: HonHaiPr_29:c8:ed (74:29:af:29:c3:ed)
> Internet Protocol Version 4, Src: 198.41.38.241, Dst: 158.42.59.113
» Transmission Control Protocol, Src Port: 1883 (1883), Dst Port: 49935 (49935), Seq: 1, Ack: 29, Len: 4
4 MQ Telemetry Transport Protocol
4 Connect Ack
4 @@1e PeA@ = Header Flags: @x2@ (Connect Ack)
2@1e = Message Type: Connect Ack (2)

. B... = DUP Flag: Not set
ce.. .88, = Q0S5 Level: Fire and Forget (@)
....... @ = Retain: Not set
Msg Len: 2

........ 2eee @088 = Connection Ack: Cennection Accepted (@)

Fig. 9: CONNACK packet captured by Wireshark

3.2.4 Publish

The MQTT offers 3 types of publish mechanism with different level of QoS. Figure 10,
11, 12 show the three mechanisms of publish with QoS 0,1,2.

MQTT
Client Broker
// - \\\ /'/.---_ h .‘\\
" PUBLISHQoSO / ﬂ
| | | |
l'-.\ / .-"I I"\‘ /F'.I
\\-_,_ S AN S

- -

Fig. 10: Publishing mechanism with QoS=0.

When the QoS has the value of 0, the client will guarantee a best effort delivery. The
server will not respond and acknowledge regardless the receiver has received the packet or
not. So the sender only guarantees the effort but don’t care about the safety of transmission.

16

MQTT
Cli?n Brofer

. PUBLISH QoS 1

% | __PUBACK H

" ~

Fig. 11: Publishing mechanism with QoS=1.

When the packet with the QoS level 1 is received correctly, the receiver needs to
acknowledge the sender. It is guaranteed that a message will be delivered at least once to the
receiver. But the sender has failed the transmission, it should send more than once.

MQTT

i PUBLISH QoS 2 Broker
PUBACK] / ’
‘ % PUBREL _':,._ ﬁ
./ Tpuscomp .

Fig. 12: Publishing mechanism with QoS=2.

The highest QoS level is 2. It is the safest type to transmit data, but with the lowest
quality of service level. It will do 2 times of acknowledge once for the publish packet and the
other for the puback. So it guarantees that each message is received only once by the
counterpart.

3.2.4.1 Packets in publishing process with QoS=0

The publish control packet is sent from a publisher to server or from a server to
subscriber. The principle function of the packet is to transmit the topic message information to
server or subscriber. The table 11 shows an example publish message.

Bit T L] 5 4 3 2 1 a Comment

Byte 0 = 0 Q 1 1 0 0 0 o MQTT control Packet type, DUP flag, QoS level, RETAIN
& i ! | | | |
Byte 1] 0] 0 1 1 0 0 0 Remaining Length
Byte 2 5 0 0 o 1] 0 0 0 0 Length MSB
! E—.; |
Byle 3 o 0 0 V] 1 0 1 0 0 Length LSB
. | 3
Byte 4-23 g ‘home/gardenifountain’
Byte 24 D 0 0 1 1 0 0 0 1 2
= ! | ! | !
B
Byte 25 o 0 0 i} 1 0 0 1 1 ¥

Table 11: The Publish Control Packet with QoS level 0 [11].

17

The message consists of three parts, the fixed header, the variable header and Payload.
The fixed header contains some important information about the message. The figure 12
illustrates the flags in byte 0.

Bit 7 6 5 4 3 2 1 0

Flag MQTT Control Packet type = DUP flag --

Table 12: The byte 0 [11]

In the position 7-4 of this byte 0 these bits indicate control packet type and in this case
the value is 3. In bit 3 if the UDP flag is set to 0, it means the message is the first occasion that
the client or server send and if the flag is set to 1, it means the message is redelivery of an
earlier attempt to send the Packet. In bits 2-1 contains the value of QoS level which indicates
the level of assurance for delivery of an application message [11].

QoS =0 : At most once delivery.
QoS =1: At least once delivery.
QoS = 2 : Exactly once delivery.

The last bit represents a retain flag. Firstly, we discuss the publish message which is sent
to server by client. If the retain flag of publish packet from client to server is set to 1, the
server must store the application message and its QoS and the server must deliver the message
to future subscribers whose subscriptions match its topic name. So when a new subscription is
established, the last retained message which match the topic will be sent to the subscriber. If
the client want to change the retain message, it should send a publish message with RETAIN
flag set to 1 and QoS set to 0. Then the server must discard any message retained for that
topic and store the new QoS 0 message as the new retain message for that topic. It may choose
to discard it at any time, if this happens there will be no retained message for that topic. A
publish message with a retain flag set to 1 and a payload containing zero bytes will be
processed as normal by the server, but any retained message with the same topic name must be
removed and there will be no retained message for that topic. When the message is sent to
client by server,the retain flag must to be set to 1, if the message is sent because of the a new
subscription being made by client. In other case, the retain flag must to be set to 0, no matter
how the flag was set in the message when is was received [11].

The byte 1 indicates length of variable header and payload. The variable header contains
topic name field and packet identifier field. The topic name must be present in the first filed
and be a UTF-8 encoded string. The packet identifier field is only used when the QoS is 1 or
2. So in table 11 there is no packet identifier. The last part is the payload. It contains the data
which is application specific. It is valid for a publish packet to contain a zero length payload
[11].

18

> Frame 1159: 8@ bytes on wire (64@ bits), 8@ bytes captured (648 bits) on interface @
» Ethernet II, Src: HonHaiPr_29:c8:ed (74:29:af:29:cB:ed), Dst: Ciscolnc_f7:6c:8@ (@@:16:9c:T7:6c:08)
> Internet Protocol Version 4, Src: 158.42.59.113, Dst: 198.41.38.241
> Transmission Control Protocol, Src Port: 49944 (49944), Dst Port: 1883 (1883), Seq: 3, Ack: 3, Len: 26
4 MQ Telemetry Transport Protocol
4 Publish Message
4 @@11 28e@ = Header Flags: @x3@ (Publish Message)
@811 = Message Type: Publish Message (3)
v... @... = DUP Flag: Not set
v... .B@. = Q0S Level: Fire and Forget (@)
,,,,,,, @ = Retain: Not set
Msg Len: 24
Topic: home/garden/fountain
Message: 13

@@ 16 9c f7 6c @@ 74 29 af 29 c3 ed @3 @@ 45 @8 PR S 5 TR DRV -
@@ 42 4b 33 40 @@ 8@ @6 f@ cc 9e 2a 3b 71 c6 29 LBKE@... ... *50.)
le f1 c3 18 @7 5b 36 c2 &8f fc 43 ef ee 54 50 18 vanaa[B. W CLLTP
@1 @3 d& 32 @@ @@ 3@ 18 @@ 14 68 6f 6d 65 2f &7 ven2..@8. .. home/g
61 72 64 65 6e 2f 66 6Ff 75 Ge 74 61 69 Ge 31 33 arden/fo untainl3

Fig.13: PUBLISH (QoS=0) packet captured by Wireshark
3.2.4.2 Packets in publishing process with QoS=1

e Publish packets with QoS=1
The publish packet with QoS level 1 is almost the same as the packet with QoS level 0.
The only field must be added is the packet identifier which is used for acknowledging the
packet.

Bit 7] 5 4 3 2 g (¢] ‘Comment
Byte O z 0 o | 1 Lt} o 0 (o} MQTT control Packet type, DUP flag, QoS level, RETAIN
L x
Byte 1 % & 8] o 0 1 1 0 0 [0} Remaining Length
Byte 2 § 0 0] 0 0] (1] ‘ 0 (8] Length MSB
é
Byte 3 m 0 0 0 1 o] 1 ‘ Q (8] Length LSB
g
Byle 4-23 & ‘hame/gardeni/fountain’
Byle 24 == 0 |0 0 0 0 0 o ‘ 1] Message Identifier 2
o
Byte 25 % 0o |o |o |o |o |1 |eo
Byte 26 2 0 o 4 1 1] 1] 0 1 1
H
Byte 27 e 1] i} 1 1 1] 0 1 1 3

Table 13: PUPLISH packet with QoS =1 [11].

19

» Frame 187: 82 bytes on wire (656 bits), 82 bytes captured (656 bits) on interface @
* Ethernet II, Src: HonHaiPr_29:c8:ed (74:29:af:29:c8:ed), Dst: Ciscolnc_f7:6c:00@ (@0:16:9c:f7:6c:08)
» Internet Protocol Version 4, Src: 158.42.59.113, Dst: 198.41.38.241
» Transmission Control Protocol, Src Port: 49944 (49944), Dst Port: 1883 (1883), Seq: 1, Ack: 1, Len: 28
4 MQ Telemetry Transport Protocol
4 publish Message
4 @@11 8@1le = Header Flags: @x32 (Publish Message)
8811 = Message Type: Publish Message (3)
. B... = DUP Flag: Not set
.81, = Q0S Level: Acknowledged deliver (1)
= Retain: Not set
Msg Len: 26
Topic: home/garden/fountain
Message Identifier: 2
Message: 13

Fig. 14: Capture of Publish (QoS=1) packet by Wireshark.

e Puback
The receiver must send a PUBACK, if it has received the publish message with QoS
level 1 and the sender will store the message until it gets the puback packet. If the sender
doesn’t receive the acknowledge in a reasonable amount of time, it will send the same
PUBLISH message one more time. If a sender receives the PUBACK message, it will
compare the packet identifiers in publish packet and puback packet to ensure the arrive of
publish message. Table 14 shows us the structure of PUBACK [11].

bit 7 6 5 4 3 2 1 0 Comment

Byte(ER 0 1 0 0 0 0 0] MQTT Control Packet type
g I
28

Byte1 2 0 0 0 0 0 0 1 o Remaining Length

Byte2 = 0 1] 0 1] 1] a 0 0 Packet |dentifier
)

Byte3 | & :g’ o 0o | o0 o |lo|o| 1o

Table 14: PUBACK Packet [11]

The packet only contains two headers, the fixed header and variable header. The fixed
header defines the type of packet and remaining length. In PUBACK packet variable header
only have 2 bytes, so the value of remaining length is 2. The variable header contains the
identifier of publish packet [11].

3.2.4.3 Packets in publishing process with QoS=2

e PUBLISH packet with QoS level 2
The publish message with QoS level 2 is the same as the message with QoS level 1

e PUBREC- Publish received
The publish received message is the same as the puback message in structure and only
changes the MQTT control packet type code to 2#0101.

20

bit i 6 & 4 3 2 1 0 Comment

0 i 0 1 0 0 (t] 0 MQTT Contral Packet type

Byte0 | - o
o 5
2 e
Byte1 g] 0 0 0 0 0 1] Remaining Length
Byte2 RO 8 N S R) | Packet Identifier
-
i
Byted | &5 | o |0 | o |0 |0o|o]| 1|0
]

Table 15: PUBREC packet [11]

» Frame 6@: 6@ bytes on wire (488 bits), 6@ bytes captured (488 bits) on interface @
» Ethernet II, Src: CiscoInc_f7:6c:@80 (@8:16:9c:f7:6c:88), Dst: HonHaiPr_29:cB8:ed (74:29:af:29:cB8:ed)
» Internet Protocol Version 4, Src: 198.41.36.241, Dst: 158.42.59.113
» Transmission Control Protocol, Src Port: 1883 (1883), Dst Port: 49953 (49953), Seq: 5, Ack: 57, Len: 4
4 MQ Telemetry Transport Protocol
4 Publish Received
4 plal @Pe0 = Header Flags: @x5@ (Publish Receiwved)
8181 = Message Type: Publish Received (5)
- A DUP Flag: Not set
.88. = Q05 Level: Fire and Forget (@)
weew ...B = Retain: Not set
Msg Len: 2
Message Identifier: 1

Fig. 15: Capture of PUBREC by Wireshark.

e PUBREL - Publish release
The publish release message is the same as the puback message in structure and only
changes the first byte code to 2#0110 0010.

bit 7 & 5 4 3 2 1 0 Comment

Byted = 7 0 1 1 0 0 0 1 0 MQTT Centrol Packet type
% 5 - | I
a
Byte1 = 0 6] (i} 0 0 0 1 0 Remaining Length
Byte2 o o 0 0 4] 0 (1] 0 Packet Identifier
Z5
25
Byte3] s 0 0 0 0 0 0 1 0

Table 16: PUBREL packet [11]

Frame 61: 58 bytes on wire (464 bits), 58 bytes captured (464 bits) on interface @
Ethernet II, Src: HonHaiPr_29:cB8:ed (74:29:af:29:cB8:ed), Dst: Ciscolnc_f7:6c:@@ (@@:16:9c:f7:6c:0@)
Internet Protocol Version 4, Src: 158.42.59.113, Dst: 198.41.38.241
Transmission Control Protocol, Src Port: 49953 (49953), Dst Port: 1883 (1883}, Seq: 57, Ack: 9, Len: 4
4 M) Telemetry Transport Protocol
4 publish Release
4 9118 @818 = Header Flags: 8x62 (Publish Release)
@118 = Message Type: Publish Release ()
. @... = DUP Flag: Not set
.81. = Q05 Level: Acknowledged deliver (1)

wess »..@ = Retain: Not set
Msg Len: 2
Message Identifier: 1

Fig. 16: Capture of PUBREL by Wireshark.

21

e PUBCOMP - Publish complete
The publish complete message is the same as the PUBACK message in structure and
only changes the MQTT control packet type code to 2#0111.

bit [6 5 4 3 2 1 0 Comment

ByteQ T 0 1 1 1 0 1} 0 0 MQTT Control Packet type
3 é | | | | |

Bytel] 0 0 0 0 0 0 1 0 Remaining Length

Byle2 = 0 0 0 0 0 0 (1] (1] Packet Identifier
§s

5t 5 S T S A o)

]

Table 17: PUBCOMP packet.

* Frame 63: 6@ bytes on wire (458 bits), 6@ bytes captured (48@ bits) on interface @
> Ethernet II, Src: CiscoInc_f7:6c:@0 (@0:16:9c:T7:6c:@8), Dst: HonHaiPr_29:c8:ed (74:29:af:29:cB:ed)
 Internet Protocol Version 4, Src: 198.41.36.241, Dst: 158.42.59.113
» Transmission Control Protocol, Src Port: 1883 (1883), Dst Port: 49953 (49953), Seq: 9, Ack: 61, Len: 4
4 M) Telemetry Transport Protocol
4 Publish Complete
4 @111 @988 = Header Flags: @x7@ (Publish Complete)
8111 = Message Type: Publish Complete (7)
veu. B... = DUP Flag: Not set
veas o8B, = Q05 Level: Fire and Forget (@)
....... @ = Retain: Not set
Msg Len: 2
Message Identifier: 1

Fig. 17: Capture of PUBCOMP by Wireshark.

3.2.5 Disconnection

The disconnect packet is used for closing the connection and is sent from client to server.
The figure 25 shows the structure of disconnect packet. There is only a fixed header. The
remaining length value is 0, because there is no variable header.

bit 7 6 5 4 3 v 1 0 Comment

ByteO 1 1 1 i} 0 o 0 1] MQTT Control Packet type
Bytel 0 Q 0 0 0 1] 0 0 Remaining Length

Table 18: DISCONNECT packet.

* Frame 17: 6@ bytes on wire (488 bits), 68 bytes captured (488 bits) on interface @
* Etherpet II, Src: Siemens_3@:56:eb (@@:1b:1b:38:56:eb), Dst: Dell_34:808:5c (5c:26:8a3:34:88:5c)
» Internet Protocol Version 4, Src: 192.168.8.33, Dst: 192.168.6.16
* Transmission Control Protocel, Src Port: 49159 (49159), Dst Port: 1883 (1883), Seq: 69, Ack: 5, Len: 2
4 M) Telemetry Transport Protocol

4 Disconnect Req

»+ 111@ @888 = Header Flags: @xe® (Disconnect Req)
Msg Len: @

Fig.18: Capture of DISCONNECT packet

22

3.2.6 Security

As we have mentioned before, this project is trying to connect between automation system
and business network and the automation system likes a brain of factory, so the attack of the
communication system can harm the machine even the operator. In other hand, the some kind
of data is important and maybe we don’t want to share to the outside people, so the
information security is also an aspect to be considered. The security of industrial
communication is always an important aspect that should be thought before application.

Security in MQTT is divided into different layers, the network level, the transport level and
the application level. On the network level the VPN provides a trusty way of connection
between broker and clients. On the transport level TLS/SSL can be used to encrypt messages
in order to that except both sides nobody can read the messages. On the application level the
MQTT provides the authentication mechanism. In MQTT protocol, the client identifier and
username/password credentials are used to authenticate the client [11].

4. Development and results

4.1 Introduction of project

In this chapter the theories of chapter 3 are applied to realize the project. Firstly, the
industrial network is constituted using Profinet 10 system in part 4.2. Then the MQTT
protocol is implemented in PLC with AWL in part 4.3. The fig.4 shows the profile of the
project which contains two parts, the industrial network and public network.

4.2 Configuration of industrial network

The following figure shows the industrial network that is designed. It contains one
workstation, two controllers and a 10-Device. These devices consist in a redundancy topology
which has 3 hierarchical levels the supervisory control, the automatic control and sensors and
actuators.

23

Field context
simulation

Q Workstation

| I Controller 1

III]"[" I Controller 2

Redundancy

line

Fig. 19: Design of industrial network

4.2.1 Hardware configuration

wNE e

Here there are two kinds of the interface to be used, the Broadcom NetLink(TM) of
Ethernet and CP 5512 of MPI. Each of both can be used to connect PLC and STEP 7
perfectly. Nevertheless, they are totally different communication protocols. So they use

Device;

Using CPU314-2PN/DP + CP343-1 Advanced as Controller 1
Using CPU314-2PN/DP as Controller 2

Using IM-131-3PN as un lo-Device

Configuration steps:
Adjust interfaz of STEP 7
Herramientas > Ajuste interfaz PG/PC

o SIMATIC Manager - Config 01
Archive Ldaén Insertar Sistema de destine ver RTINS Vertana Ayuda

Predemeraias.. ChrlvARoE =V BB mEM ¥
Proteccidn de scomio *
e —

Ubrerias do bexten 3

kot fuarn vissaksadones. .
Gastionar testos 8N varks kbomas

Diakers e referencin 3

Cenfigurar rad

Corapmar diagreinticn dm procmisn

it S

Fig. 20: Interface PG/PC

different cable and for MPI it needs an adapter. For industrial Ethernet it uses the connector of
RS485 without adapter and for MPI it uses D-sub 9 pins with adapter of SIMATIC NET. Once
the interface is set, it shows in the status bar.

2. Create a project named IDE_CPU_MQTT

24

Archivo > Nuevo

SIMATIC Manager - [Ide_CPU_Pro_MQTT -- C:\Archivos de programa\Siemsd

%Archivo Edicion Insertar Sistema de destino Wer Herramientas Wentana Ayuda

Dw |29 4 2r|d|le 2] 2% = @ || <sintivo >

-5 lde_CPU_Pro_MGTT EPI)

P

Nuevo Proyecto

Proyectos de usuario | Liblen’asl Multiproyectos

Mombre | Ruta e]
%A‘I 24+00 C:\Archivos de programat\SiemensiStep?ht
@ABB_TEW_V‘IB C:Mdrchivos de programatSiemenshStep 7t
@ actividades C:varchivos de programatSiemenshStep?h:

@ E_pry_Ethemnet_ni_1 C:\Archivos de programahSiemenshStep7hs
Borja_Ethemet_In_1 C:M\Archivos de programatSiemenshStep7hs
@ Bu_Ejer_Profi_CP_... C:\Archivos de programahSiemenshStep7h: 2

[e = O Pl debin i A e s D i Chan T

< il |

I~ Insettar en multiproyecta actusl

Maombre: Tipo:
I IPrDyecto -
I~ LibrerfaF

Ubicacidn [ruta) :

IE:\Archwos de programa‘Siemens\Step s Tproj Examinar... |
Aceptar | Cancelar | Apuda |

=

Fig.21: Creation of project/

Fill in the namespace with the name of 1IDE_CUP_MQTT. Then accept the dialog, the
project will be created. The next step is to insert new object to the project.

3. Insert object

Right-click the project > Insertar nuevo objeto > SIMATIC 300

i SIMATIC Manager - [1IDE_CPU_MQTT -- C:WArchivos de programaiSiemens

&9 archive Edicion Insertar Sistemadedestino Wer Herramientas ventana Ayuda

Dw|[87a| & B=i a2 2] 2[5 | [< st >

FMPI[T]

Cortar Chrl+
Copiar Chrl+C
Pegar Chrl+y
Borrar Supr

SIMATIC 400
SIMATIC 300
Equipo H SIMATIC
Equipo PC SIMATIC
Ctro squipo
SIMATIC 55

PGIPC

Sistema de destino

Cambiar nombre Fz2
Propiedades del objeto... Al+Entrar

MPI
PROFIBUS
Industrial Ethernet
PTP

Foundation Fieldbus

Programa 57
Programa M7

Fig. 22: SIMATIC Station

The following picture shows the project that has been created.

Q SIMATIC Manager - [1IDE_CPU_MQTT -- C:\Mrchivos de programa\SiemensiStep7is7projilde_CP_1] El@lgl

%Archlvo Edicidn Insertar Sistemade destino Wer Herramientas Yentana Ayuda =
D= | 87 g || @ Bo ek < sin filra > |7 8 =R

=8 1IDE_CPU_MOTT Bl aidwre

SIMATIC 30001)

Pulse F1 para obtener ayuda, TCR{IP{Auko) -> Broadoom MetLink (THM)

Fig.23: SIMATIC Manager.
4. Insertion of the component of hardware

Double-click the hardware icon in windows, and then it shows the window of
configuration of hardware. There are three parts in the window. At the upper part of left side
it shows the component that is selected and installed and at the lower part of the left side it
shows more detail about the component, for example, the serial number of product, the
memory address etc. On the right side it is the hardware catalog. Here we can choose the
component.

SEHW Confi - [SBATIC 300(1) (Contiguracking - 1I0E CPU_MOTT]

Equps Edodn [ngertar Sotemadedesting Ver Herramentas Ventana Syuds - ®x
N s-9 & o DO W W

~ al=

Buscer | i

Eett [Eqtindy =l

« [l SIMATIC P Based Control 300400
2 »

] simamic 3001)

S |
I

|.. Y A T i)
|0 PT con SIMATIC 1

[Pubie F1 para otkener ayada.

Fig. 24: HW configuration window.

According to the real equipment insert the SP, CPU and other module. Usually the first
component is rack and each rack has several slots to install equipment. The following picture
shows the complete configuration of hardware.

26

é E=§
| i— H
— — &
==
=g 1=
=g —
PS
Jeris ||| Puanad \
JorzA || Poaro2 cPU
25 Di24D0T6
25 AP5AD2 I
27 I /
28 Posconamaio Empty slot
3 ~a}
4 DIED016:24VA5,

Funcion module

Fig. 25: HW configuration

Slot 1: The power supply
Slot 2: CPU 314C-2
Slot 3: Free slot (Reserved for the interface module)
Slot 4: IN/OUT 16 digital module
Right click on controller 2 and select the insert Profinet 10 system like the following
picture. The Profinet 10 system connects with 10-Device.

PS 307 5&
& CPU 314C-2 PN/DP
MAADE

comfrolador-2

|2

LAB0TE
AdbA02

Poziciomamianto

4 DIE/DOT Ex240 A0,
5 Insertar siskema PROFINET IC
g

Separar sistema PROFIMNET IO

PROFIMET I Damain Management. ..
Topologia PROFINET I0..,

Dispositivos inkercarmbiables PROFIMET 10, ..
Modao isdcrono PROFINET IO —

Fig.26: Add Profinet 10 system.

The Profinet 10 system has been created in fig.27 and if we want, the Profinet 10 hame can

be changed.

27

Ethemet(1): Sisterna PROFINET 10 (100)

25 Di24/D078

26 AIFAOZ

27 Contoje

23 Posicionamiento 1
3

[l DI16/D016:24V/0.54

5

3 v

Fig.27: Profinet 10

Now the IM151 should be inserted into the Profinet 10 system. In the hardware catalog
window, select the IM151 and add it to Profinet 10 system. Then drag the 10 components to
IM151 system like fig.28.

e ln e bk e bwme e bk

CEbibE Be magc ¥y

) JEEE | S ST S sl
| T
| T T

| T Y o

Wee o e S W R Ve
DEs® % & ook DO W

Pt [Gas
z G 3106 PO e
L — TODCHNEAST
DODCUE ST

b

]
i
]

Fig.28: Configuration of 10-Device

6. Configuration of name and IP of controller 2

Double-click controller 2 and the next dialog windows can set the CUP name. Here the
PLC is set name as controlador-2. Then click on property in this dialog IP and MAC can be set
easily. If it needs a specific router, the router should be selected and the direction should be
filled in.

28

Sincronizackin heraria

2 [I8] CPU 314C-2 PH/DP. sl

5 i
) Ir Set the name
X2PIR
xzrza]
25 i R
26 | [A0z
27 Contaye.
28
DI16/D 01 B24v/0 54
i Tipo: Ethernet Propiedades - Interface Ethernet PN-I0 (B0/S2.2)
N dispostivo: o il | Fateas
Direccitn 192.188.0.33
P Corectada ol Propisdades. .
Comentaric:
50w
@ Meduo erencia
T Reutng
14 PS 307 54] Disgasidrri fls2168.0.5] s
[[fcPu 21ac 2 omror | Set the IP Miscaraie g 25 550 o
7 MELOF Conouter
A s Aceptar Acignar diecciée IP por obia via ’—
ATFIR Rerta I 1 [Setthe MAG —1 Dreccir
soezn [Aewr | Set the T s
25 DIDOTE I e 7w 7w 1 e DU otaia B ted G
26 BT a8 an.
a5 Lurvae 876, 837 818 83 Propiedades. .
28 : o B2 84T FiF B
Bona
DIB/D 01624y /0 54 BES7 323-1BLOO-0MAD 9..10 3.10
|
Ceplal &t
A Cancel Ayuds

Fig. 29 : Configuration of the name and IP of controller 2.

For the IM151 firstly click on the icon of component. Then in the dialog window we can
set name and go on to click on the property to set IP or Router like before.

e v
Wk e il A PROPAET FL 4 151 TP B [ERTEC s -
e s £1 S, (oot o econes. eies
PR 33 oo ek il 4 b g s it i
| + B G
asr _— Set the nama « ¥ penE:
Fanke o125 e ol | - -
MO i
i s | freias |2
dun
p—— [r—————) Rk | [F e
| Setthe 1P
- s
fep—
Hele [=] oo goop R | sy
. e RO [ty gl
: B -}
- Comcen
T i

Fig. 30: Configuration of the name and IP of 10-Device.

7. Then the changes configuration should be saved and compiled. If there is no problem of
configuration, download the configuration to the PLC2.

Until now the configuration of fig. 31 has been finished.

Controller 2

10-Device

Fig. 31: Connection of controller 2 and 10-Device

8. Add another station of SIMATIC 300

29

7 SHARTIC Manapsr - [1IDE MOTT -- CVArchivos de programa\Siemens\Step s 7profide_CP_1]

b [cmmey =% e BEM N

A NEESETS

|~ e

Tiruet e ra it |

e e dan * T
Q00 H SIMAT

Corrdins resrben F2 = chpanpdad ’

Erpagm P SIMATIC
Prophdsdes dal objets.., ARHIrTar o

Fig. 32: Add station of SIMATIC 300
9. Hardware configuration of controller 1

The processes are the same as controller 1. The only component that should be added is
CP 343 module. The following figure shows the complete configuration of controller 1.

=il
1 P75 07 5, - Dyscar m]ﬂ
z CPU 31462 PH/DT =
X7 AT [(T =]
ﬁ!‘ﬂ? “"W"’;""“’ + B Evacuin L SIMATIC
[= ng « B2 FROFIBUS 0P
o | Bz hm” FROFIBUS P4,
o e « B FROFINET 10
e e ———————— o [l SMATIC 300
2 w [l SMATIC 400
= o [l SMATIC T Bared Cortred 3
] [Y
5 FCP 3401 Advanced
[
1T P T
contolad T
XIPTR Pt T a
»
=] ouR
Skt Mo Mieterencia Fomwvwe | DiecciénMP | Diecckin | Dieecctins | Co.
L 57 07 TEADTORAD =
CPU 31402 PH/DP 57 314 GEHOA 0ABD 3 I
Fi T
i
P
o »
P
o T i H
-

Fig. 32: Hardware configuration of controller 1
10. Setting IP in PLC1

In PLC1 the communication module CP343-1 will be used for consisting in a
redundancy circle. Click on c1 in module CP434-1. The configuration is as the same as before.
There are 3 processes, set name, IP controllerl and Mac. In the following picture show the
steps.

30

Propiedades - confrolador-1 (RO/S3.3)

Wb | Sircongain
Goed | Diecsons |

Noatre abieizdy PO

Cofguacit P | PROANET

3

b |
P e

8 Extacil
v L FROFR

Redudwciadenedos |

Set the name

e

T Eenel
p ke 0

Diesin 121805

Momtre dizpestiva; \;mw.| la—

¥ Soptersusthuciénd cispostives 5 mech ce amacenamiznin sl

Conestaci s Fropedades. ||
Comsia h

B proRE
w B PROAN
o B SweTi
o B Swan

e
Prapiedades - Interface Ethernel PH-I0 (B0/S5.3)

Gerel Patns |
™ date cecest MAC ¢ Ul protacels 190

DressénHar:

Fiethrg

| Diesine o [19216008 L% S
‘ Set the IP W TH Contous
Set the MAC ot

Dieceiin:

-~ CCnezlach 3 ted -

Hugva.

Popiedades...

[| |
73

I

Ban

Fig. 33: Configuration of IP and name in PLC1

In the CPU module the IP, MAC and name are also need to be set. But because we will

use a specific router to connect to the server, the router selection should be selected and the

router address should be filled.

 HIF Coaly - [oanryladon:) [asfiguiociin - LCAUNQILYY)

D@9 & &

Ll L =R

Frdpdmea mesm

Kosbeesbrende PNAD

reonmandn oy
ey legccisret PROFRET et
b | I

Wontsdgentos | Frmimted

T (tatnr e o fupesties i sha via

By it

Iomtaca

L Etnre

Mg 1

Chmicde: 18042100

Lanus W

| Setthe IP

| Setthe MAC
oty |

B _W_*

I
—

Peepladades - Isterisce Diharset P

B Parlmenus |

J = "red
%. ;

Fig. 33: Configuration of IP and name in PLC1 with specific router

11. Port connection

Hardware configuration must correspond to the real equipment. If not, the system will
show the system error. Fig.34 shows the hardware that will be configurated. The port 1 of
controller 1 connects to port 1 of 10-Device, the port 2 of controller 1 connects to port 1 of
controller 2 and the port 2 of controller 2 connects to the port 2 of 10-Device. Finally, the

cables form a redundancy ring.

| Set IP of Router |

31

Controller 1

Controller 2

Fig. 34: Connection of ports

To connect the port firstly the hardware configuration window should be opened and
double-click the port that we want to configure. The following figure shows how to configure
the port 1 of controller 1. In the dialog of property of Portl, the port partner offers us the
possible port that we can choose.

K4\ SIMATIC Manager - [IDE_CPA)_WOTT - C
& fechive Edckin Ireartar Sktema de cesina

D@ i LR e
-39 IDE_CPU_MGTT
= conhiolade |
o @ conheladr2 X1 Ao
X confrobador-?
F1A Pelo]
2R Pugtlp) e
25 il _H Prupiedud ladur 1 - Puerty 1 RO/ P B
2 A5A07 Propiedades - controbadur-1 - Puerbo 1 RSS2 P R
27 o Girenal| Do lasowsls | oo
: TR 2 Conmiéndd puee
js Paiulad ||.|l||.ln.||'-'|\:1||i||l.¢)|-'| 1°F 331 s\ Fusalo 1 [FVSE/2 F1R)
Hocin Fumtmied [Tobe | Puspatny ke
4 DIB/D01E24V/1 54 R =
5
E Patrmr |
Pt parinar:
7

.

Datos delinzs

 Longud de frey ez s propagndes seiat KD |

100 =
—_—

Fig. 35: Selection of port

4.2.2. Software configuration of industrial network

Until now the hardware configuration has been finished and software configuration will
be started. The software configuration determines the communication and functionality of
system automation. In this network MRP is used for enhancing the security of communication

32

line and enlace is used for supporting the communication between two controllers. Fig.36
displays the network that should be configured.

cantrolador-1

TP [BPIDP Goims [OF [GET | Sme
2l |s1cet fbdor- 3431 | $ldar-
PHDP m |edmci iy
=] ‘| ‘| m

4

Ethernet{1)
Industrial Ethernet

3 ™
2 |sice!

controlador-2

dispositivo-

Fig. 36: Software configuration of industrial network.

4.2.2.1 Configuration of redundancy ring

One redundancy ring needs an administrator and others are clients. In this case the

controller 2 is used as administer. The following configures show the configuration of
different CUPs.

In controller 1 and 2 :

Propiedades - controlador-2 {RO/S2.2)
PS5 307 54
il CPU 314C-2 PN/DP General | Direcciones IDevice | Sincrorizacien |
Redurdancia de medios Sincronizacisa haraia | Dpciones |
Corfiguracian MAP
Deminio: -
Funcidr: | &dminiztrader (automatico] =l
4 DIT6/D0] GR28v/0.54
G
G I Alamas ds diagnéstico
v
it LT
il J - Mecido dHiefeer
i PS 307 54 GES7 307-1EADT 0440
- 4 CPU 314C-2 PN/DP GES7 314-6EHO4-0ABO
X7 AL
X 7
smer s [A |_Aceotar | Cancelar Ayuda
AEFER Frewi

In 10-Device :

Fig. 37: Configuration of redundancy ring in controller

33

;. HV Config - [contralador-2 (Configuracidn) - IDE_CPU_MOTT]
 Trrrr— e

DFE-2 8 & - r daDOB W

General | Direcionss | Si ién| Cicloin | chos |
Confaraciin MAF.
+ ||
Do [pdomain 1 =l
Fureién [Cierte. =~

17g &3 taciin del sl
Cherte

I Alarmas de diagntstico

Fig. 38: Configuration of redundancy ring in 10-Device
4.2.2.2 Creation of enlace between controller 1 and controller 2

Firstly open the platform of NetPro and click right of the CUP of controller 1 like the
config 39.

i NetPro - [IDE_CPU_MOTT (Red) -- C:Archivos de programak...\IDE_CPU

%g Red Edicién Inserkar Sistemade desting Mer Herramientas Yentana Avuda

S B g =0 dd $ 0SBl
1

MPI(1)
MP|
controladar-1
Chrl+h
Marcar 3
Ethermet(1) Cargar »
Industrial Ethernet .
— F.EOFQArizar
Propiedades del objeta,.. Alt+Entrar
I

Fig. 39: Creation of new enlace

Select insertar nuevo enlace,

34

Insertar nuevo enlace §

Interlocutor

=1-{&] D&l propecta actual
=-&p IDE_CPU_MBTT
= controladar-2
CPU 314C-2 FN/DP
cificach

especificado)

nes de broadcast
. Todas las estaciones multicast
Bp De otio propecta

Ty
Proyecta: [IDE_CPU_MGTT -
Equipo: [controladar-2
M bdulo: [EFU 31402 FN/DF
Enlace
Tipo |Erlace 57 =
Enlace IS0-on-TCF -~

¥ Mastrar prof Ejoce PTP

Fig. 39: Selection of type of enlace.

Here the enlace S7 will be selected, although there are more different enlaces, e.g. the
TCP, UDP etc. Every kind of enlace can realize the communication perfectly. But each kind of
enlace has its FB/FCs to use. The above figure shows the characteristics of FB/FCs in S7
enlace.

Blogue Interlocutor: S$7-300 Interlocutor: S7-400
PUT / GET 160 bytes 400 bytes

USEND / URCV 160 bytes 440 bytes

BSEND / BRCV 32768/65534 bytes 65534 bytes
PUT_E/GET_E 160 bytes no existe

USEND E/URCV_E 160 bytes no existe

Table 19: FB/FC in S7

Once click the accept, the following dialog will appear.

Via de enlace

Local Irdnriociton

contraladon 2/

cortralador 1/
e o |rn1 A2 PR |[HIZ]NI:.'}I'!U|1P

Irkeil ace. |CP 3831 Advanced. conticladon 1w | [CPU 31402 PN/DF. cormoladon2iRt |

Subuad [Evhomeii1] findustis E themat] [Ethemeti1] indsiea Eieenat]
Dinceidne EEETES TR TER0 T3
Disceionst...
Carceln | Apnts |

Fig. 40: Configration of enlace

The ID defines the enlace identifier. When the FB/FC is called to communicate, the
FB/FC should know which enlace will be used. Other important selection is initiative local
that defines which side will solicit enlace first. Usually the side which will send a message
should be marked as an initial local and other side will be passive local. Here two enlaces are

35

created in table 20, one for sending and the other one for receiving.

] IC local |ID del interlocutor |Inter|0c:utor |Tip0 |Inic:iativa local |Subred Direccidn local Direccion del interlo
1 1 controlador-2 f CPU 314C-2 PNIDP Enlace 57 = Ethernet(1) [IE] 192.168.0.35 1921658.0.33
2 2 controlador-2 f CPU 314C-2 PNIDP Enlace 57 no Ethernet(1) [IE] 192.168.0.35 1921658.0.33

Table 20: Information of enlace
4.2.2.3 Program for testing industrial network communication

For testing the industrial network that is configured before the program should be
created in both controllers. Fig. 41 and fig. 42 display structures of the program and fig.43
present flowchart in controller 1 and 2. In controller 1 DB112 stores the data that will be sent
to controller2 and DB 13 stores the date that has been received. FB8 is used for sending data
and FB9 is used for receiving data. In controller 2 the program has the same structure and
flowchart in terms of communication with controllerl. Due to the connection with 10-Device,
controller 2 should communicate with 10-Device. The 10-Device works as extended module
of controller 2. The source code of AWL is appended to the chapter 8.

& DEz
--O F&s, DES
A DEL12 O sFCzo0
=-[] FB&, DBLS O =FCs1
0 sFcsa O s=Fea
0 sFcse O sFss
0 sFczo O sFs9
--O FB9, CE1% --O0 FE9, DB
0 sFczo O sFCzo0
0 sFcst O =FCs1
0 sreo O s=Fe9
0 sFcsa O sFss
0 cer O oe?
0 sFcse O sFs9
A DBL3 B DB

Fig. 41: Structure of program in controller 1 ~ Fig. 42: Structure of program in controller 2

Programa in controlador

<= REQ? =

FBQ{URCV}

FBB(USEND) |Dn>

J]Hl

OUTF’UT AB137

T

Fin

Programa in controlador 2

[start]

LOAD
::;E&@_" —
1
””" 1 FBS{USEND]

933
—| FBO(U RCV)

[©OuTPUT AB137 |

(Fin }

1O-Device

—/{ OUTPUT ABO

36

Fig 43: Flowchart of program in controller 1 and 2.

Fig. 44 represents the re result of testing. The first picture shows that every equipment
works correctly without error; controller 1 is receiving data from controller 2; controller 2 is
receiving data from 1; 10 device is receiving data from controller 2. The picture 2, 3 and 4
exhibit the function of redundancy ring. E.g. the picture 2 shows the result of the system, when
the connection between 10-Device and controller 2 has been removed. We can see that
obviously the industrial system is still working, although it appears SF error. As the same as
picture 2, picture and picture 4 show the same testing result. It reveals the configuration of
industrial network is successful.

Fig. 44: Result of the testing of industrial network

4.3 Implementation of Communication between industrial network and MQTT
broker

This section shows how to implement the communication between PLCs and server
MQTT. The CPU of controller 1 is used as client and publishes the message to HIVEWQ
server. Fig 25 and fig 46 demonstrate the structure and flowchart of the program. There are
five FBs, FB 300 for connection, FB 301 for publishing with O0S=0, FB 301 for publishing
with O0S=0, FB 301 for publishing with O0S=0 and FB 304 for disconnection. Firstly, the
controller 1 sets up connection between PLCs and MQTT broker with FB300. Secondly,
controller 1 publishes message according to the set of QoS level. If the signal of disconnection

37

is active, it will close the connection. More details will be discussed in the following parts and

the source code of AWL is appended to the chapter 8.

O FE300, DE3O0
O rFe301, DB3O01
O Fez02, DE30Z
O FE303, DE303
O Fe304, DE304

+--[H--[F-[FH-F

Fig45: Structure of OB1.

|F5300‘D5300(c0nnect) ‘

0 ? 2

FB301,DB301 FB302,0B302 | [FB303,DB303
(Publish 1) (Publish 2) (Publish 3)

1

FB304,DB304
(Disconnect)

J

Fig. 46: Flowchart of communication between PLCs and MQTT broker.
4.3.1 Implementation of connection (FB300, DB300)

From the part 3.5 we know that in mechanism of connection the client sends a
CONNECT packet and then receives a CONACK. In PLC there is no SFB/SFC for MQTT
transmission, so it should be programmed and fig.47 shows the structure of functional block
CONNECTS. FB1 is a functional block for constituting CON.

S W B FEZO0, DESO0
-] FB1, DB111
= DBz
—-1-[J FB=z, DE=2
/= DBz
- FB&S, DEGS
O =FCz4
O oer
FE&S, DEGS
(] Sheic
FB&4, DES4
DB

Qo0

Fig.47: Structure of FB300

38

The following fig. reveals the mechanism of connection. Firstly, the PLC establishes the
connection TCP with server. FB65 is functional block for the connection of TCP. Secondly,
PLC sends a packet of CONNECT to broker. Lastly, the PLC will wait for the CONNACK
packet. If all the processes have been finished without error, the connection of MQTT will be

accomplished. The Fig.48 exhibits the capture a successful connection between controller 1
and MQTT broker.

0B1

FB65 (TCON)
@ 0 | Error code
FB63(TSEND)

Done_TSEND

Done_TRCV J

1

W Error code
0
ouT=1

Error code

Fig.47: Flowchart of connection

mEe RERe==FaszEFaaalE
[H]t
END‘ Time Source Destination Protocol Leng! Info
e e e 192.168.0.16 TCP 6@ 49150 -+ 1883 [SYN] Seq=0 Win=8192 Len=d MS5=1468
| 19 L. 192.168.9.10 192.168.9.33 TCP 58 1883 + 49159 [SYN, ACK] Seq=8 Ack=1 Win=8192 Len=@ MS5-1468
| | 11 1.. 192.168.8.33 192.168.9.18 TCP 6@ 49159 =+ 1883 [ACK] Seq=1 Ack=1 Win=8192 Len=@
| 121. 192.168.0.33 192.168.0.16 MOTT 82 Connect Command
13 1. 192.168.9.10 192.168.8.33 MoTT 58 Connect Ack
| 14 1. 192.168.8.33 192.168.0.16 Tep 66 49159 » 1883 [ACK] Seq=29 Ack=5 Win=8188 Len=0

Fig.48: Capture of connection with Wireshark

4.3.2 Implementation of publish with QoS=0 (FB301, DB301)

When QoS = 0, it means the packet will be delivered at most once. The sender only cares
about the effort but not the safety of transmission. The receiver will not respond and
acknowledge to sender.

The following figure shows structure of FB301. There are only a FB3 for making publish
packet DB25 and FB 63 for sending the publish packet.

39

=R W RrE=01, DE301
-] FE3, DE333
B DBzs
B DBzs
O FEss3, DBES

Fig.49: Structure of FB301

From fig 50 we know that firstly the FB301 calls FB3 to make DB25. If there is no
problem, it calls FB63 to send the packet to server. If there are errors during these processes of
sending, it will keep the error code and returns it to OB1, then the maintenance can know the
error and repair it.

0OB1

Cons_pub_done
1

0 | Error code

Fig.50: Flowchart of FB301

Fig 51 shows the capture of publish (QoS=0) with Wireshark. Now the automation
system is connected to MQTT broker HIVEMQ and publishes messages every 2 seconds. Start
up the MQTTlens and subscribe the topic “A”. Then the MQTTlens gets the message “Hello,
I am BU” from MQTT broker. Fig 52 shows the experiment of publish with HIVEMQ broker.
During the experiment of one week, controller 1 sends message perfectly without loss.

15 1. 192.168.6.33 192.168.0.10 MOTT 94 Publish Message
16 1. 192.168.0.18 192.168.8.33 TP 54 1833 + 49159 [ACK] Seq=5 Ack=69 Win=64200 Len=0

Fig 51: Capture of publish (QoS=0) with Wireshark

40

P MQTTlens Version 0.0.8

Connections +A| £

*1 [ren
Topic: "A" Showieg the -+ (i e s
Time Tophe QoS
o O °
age 8]
o o -

Fig 52: Experiment of publish (QoS=0) with HIVEMW broker.
4.3.3 Implementation of publish with QoS=1 (FB302, DB302)

Just as it has been discussed before, when the publish packet with QoS level 1, the
receiver needs to acknowledge to sender. If the first time of send has failed, the sender
should send more than once to guarantee the safety of transmission. So this kind of publish is
called “at least once delivery”. In figure 52 shows the structure of FB302. There are FB3 for
constituting DB25, FB63 for sending packet and FB64 for receiving packet.

-0 FB30Z, DBE30Z
-I-[J FB3, CB26
= DeZS
= DB2S
O Fes3, DEGS
O Fes4, BG4
i
= DE33=

Fig 52: Structure of FB302

Fig.53 shows the mechanism of FB302. Firstly the FB3 constitutes a publish packet
with QoS=1. Then FB 63 TSEND sends the packet to broker. Due to the second level of QoS,
the broker will return an acknowledge PUBACK. So the FB 302 receives the PUBACK
message with TRCV. When FB 302 receives the message, it should check the correction of
message. If there is no error during these processes, the publish FB will be finished and go
back to OB1, otherwise, the publish FB will return error code.

41

OB1

Cons_con_done

Error code

————

Error code

Done_TRCV

1
CHK
1

Fg.53: Flowchart of FB302

0 Error code

The experiment is as the same as before. Firstly Wireshark captures the data flow and
check the correction of processes. Fig 54 demonstrates the result of capture. Then we connect
the PLCs to HIVEMQ broker. Start up the MQTTlens and subscribe the topic “B”. Then the
MQTTlIens gets the message “This is message with QoS=1 by BU” from MQTT broker. Fig
55 shows the experiment of publish with HIVEMQ broker. During the experiment of one
week, controller 1 sends message perfectly without lost.

A 0 LDRB e>=F B aqan
[Ttep
Mo. Time: - Source Destination Protocol Len¢ Info
187 8.868862 158.42.59.113 198.41.38.241 MQTT 82 Publish Message
114 8.298207 198.41.30.241 158.42.59.113 TCP 6@ 1833 + 49944 [ACK] Seq=1 Ack=29 Win=229 Len=@
115 8.381829 198.41.38.241 158.42.59.113 MQTT 6@ Publish Ack
116 8.351611 158.42.59.113 198.41.30.241 TCP 54 49944 + 1883 [ACK] Seq=29 Ack=5 Win=259 Len=@
175 11.195178 198.41.38.241 158.42.59.113 TCP 6@ 1883 = 49944 [FIN, ACK] Seq=5 Ack=29 Win=229 Len=0
176 11.195241 158.42.59.113 198.41.30.241 TCP 54 49944 » 1833 [ACK] Seq=29 Ack=6 Win=259 Len=@

Fig 54: Capture of PUBLISH (QoS=1) with Wireshark

P MQTTlens Version 0.0.8
Connections + At <
L L & W |connection: HIVE
- 0 et [0
Subscriptions
Topie: "B" Showng the st 5 messages — § O A
Time Topic QoS
=0 O L
Message: ™ B S

Fig 55: Experiment of publish (QoS=1) with HIVEMW broker.
42

4.3.4 Implementation of publish with QoS=2 (FB303, DB303)

This kind of publish is the safest type to transmit data and the lowest quality of service
level. It will do 2 times of acknowledge. It also use FB3 to constitute publish packet, FB63 to
send packet y FB 64 to receive packet. Fig 56 displays the structure of FB302.

- FB303, DE303
= FB3, DEZ7
1 DBz
5 DB2S
0O res3, DB63
O Fes4, DB64
= DB9
5 DB27
= DE10
= DB11

Fig 56: Structure of FB302

This kind of publish is more complicated than the others two. The first step is also to
constitute a publish packet with QoS=2. Then the packet is sent to broker by TSEND. Now if
the broker receives the packet, it will return a PUBREC message to sender as
acknowledgment. After the sender gets the PUBREL, it compares the packet identifier of
PUBREC with the packet identifier of publish packet. Until now if there is no error, the FB303
will send a PUBREL packet to MQTT Broker. After the broker gets the PUBREL, it can
discard stored state and return a PUBCOMP message. Then the FB 303 receives the
PUBCOMP packet with TRCV and checks its packet identifier as before. During these
processes the FB303 will not discard its stored state until the second successful check of
identifier, because the sender will send more time, if some packets loses.

0OB1

Cons_con_done

FBE3(TSEND)
d Error code

1

FB64(TRCV,

Error code

CHI:1 0 Error code

FBG3(TSEND
0

Done_TSEND
1

FB65(TRCV
1
chkz -2

1

Error code

Error code

Error code

43

Fig.57: Flowchart of FB303

The experiment is as the same as before. Firstly Wireshark captures the data flow and
check the correction of processes. Fig 58 demonstrates the result of capture. Then we connect
the PLCs to HIVEMQ broker. Start up the MQTTlens and subscribe the topic “C”. Then the
MQTTlens gets the message “This is message with QoS=2 by BU” from MQTT broker. Fig
59 shows the experiment of publish with HIVEMQ broker. During the experiment of one
week, controller 1 sends message perfectly without loss.

32 4.. 158.42.59.113 198.41.36.241 TCP 54 49953 » 1883 [ACK] 5eq=29 Ack=5 Win=66384 Len=@

58 1. 158.42.59.113 198.41.38.241 MQTT 82 Publish Message

68 l. 198.41.30.241 158.42.59.113 MQTT 6@ Publish Received

61 1. 158.42.59.113 198.41.38.241 MQTT 58 Publish Release

63 1. 198.41.38.241 158.42.59.113 MQTT 68 Publish Complete

64 1.. 158.42.59.113 198.41.368.241 TCP 54 43953 » 1883 [ACK] Seq=61 Ack=13 Win=66384 Len=8

116 1. 198.41.3@8.241 158.42.59.113 TP 6@ 1883 » 49953 [FIN, ACK] Seq=13 Ack=61 Win=14656 Len=@

Fig. 58: Capture of PUBLISH (QoS=2) with Wireshark.

p MQTTlens \ersion 0.0.8
Connections +,.| b
@ & W |Connection: HIVE
~
~
s e D
Subscriptions
Topic: "C" showing the st § messges — 4 § o
#Time Topic QoS)
@ @
Message: |

Fig 59: Experiment of publish (QoS=2) with HIVEMW broker.

4.3.5 Implementation of disconnection (FB304, DB304)

FB304 is used for closing network connection. It only sends a packet of disconnect to
broker, so the structure is simple in fig. 60 and the fig. 61 shows the mechanism of FB304. It
sends the disconnect packet to MQTT broker, then the network connection will be closed and
the client will not do anything.

-1~ FB304, DBE304
O Fes3, DEG3
B oBl2

Fig.60: Structure of FB304

44

OB1

FB63(TSEND)

0 | Error code

Done_TSEND

Fig.61: Flowchart of FB304

16 1.. 192.168.8.10 192.168.8.33 TCP 54 1883 » 49159 [ACK] Seq=5 Ack=63 Win=64288 Len=0
17 1l.. 192.168.8.33 192.168.9.10 MOTT 6@ Disconnect Req

1883 [ACK] 71 Ack=6 Win=8

21 1. 192.168.8.10 192.168.8.33 VHEE 54 1883 + 49159 [ACK] Seg=b Ack=72 Win=64198 Len=@

Fig 62: Capture of disconnection with Wireshark.

5. Equipment used

5.1 Hardware

PS307 x2

SIEMENS PLC 300 314C-2PN/DP x2
DI16/D0O16xDC24V x2

SIEMENS SITOP 120/230V-500V 50/60Hz
10 IM 151-3PN

o rwbdE

5.2 Software

1. Step 7 V5.5
2. Server MQTT mosquitto.
3. MQTT lens of Google application

45

4. Proneta

5. SIMATIC TIA PORTAL 12.0
6. HIVEMQ MQTT server

7. Wireshark

6. Conclusion and Future work

6.1 Main Conclusions

An industrial communication system using Profinet protocol and MQTT protocol has been
successfully developed in this project. The feasibility and the reliability of interconnection
between industrial system and public network system using Profinet protocol and MQTT
protocol have been completely proved.

6.2 Future improvements

Despite the project success, in order to offer better service it is impossible to include more
improvements in the project. Firstly, in the part of automation system the following
improvements can be included:

1. Optimize the algorithm to improve the performance of calculation.

2. Complete the diagnostic system to improve the reliability of operation.

In the part of business network the application MQTT lens is used during this project for
subscribing. It is very simple application for testing and can’t be applied in the real industrial
context. So an application of data-using will be necessary in the future. The following figure
shows the application of data-using.

46

Enterprise .~ T :

context L _bubsc:nt:crr‘ \
=y

Management

context

n of PUBLISH

production

Depariment SUBSCRIBE

of
mAInienance
Dey of
store

e ———

i
. Publishers
po i ,H>3

MaTT >
Server

L of
quality

2
2
Distributor of data

Outside
context

Customers +——m
R - S =

Others v I

Fig.63: Application of data-using

The distributor of data is used to distribute different data to the different clients. On the
one hand it can improve efficiency in the using of data, because in a company there are several
departments and each department needs different information. For example, for apartment
maintenance they need the data of machine. However, the quality apartment only needs
product data .on the other hand it can protect important data, because with this tool the clients
can only see the data that the company wants to offer.

7. Bibliography
[1] Abdu Idris Omer Taleb M.M., PhD *“ARCHITECTURE OF INDUSTRIAL
AUTOMATION SYSTEMS” European Scientific Journal January 2014

[2] IGOR BELAI, PETER DRAHOS “THE INDUSTRIAL COMMUNICATION
SYSTEMS PROFIBUS AND PROFInet” Applied Natural Sciences 2009

[3] Rockwell Automation “Safety and Security Standards Development and
Implementation”

[4] “SCADA”
47

https://en.wikipedia.org/wiki/SCADA#SCADA _architectures [Online].

[5] DACFEY DZUNG, MEMBER, IEEE, MARTIN NAEDELE, THOMAS P. VON
HOFF, AND MARIO CREVATIN, MEMBER, IEEE *“Security for Industrial
Communication Systems”

[6] Thilo Sauter, Stefan Soucek, Martin Wollschlaeger, “Vertical integration”
The industrial electronics handbook industrial communication system

[7]1 “MQTT”

https://en.wikipedia.org/wiki/MQTT [Online].

[8] “Profinet”

http://www.rtaautomation.com/technologies/profibus/ [Online]

[9] “MQTT Essentials: Part 1 — Introducing MQTT”
http://www.hivemq.com/blog/mqtt-essentials-part-1-introducing-mqtt [Online]
[10] “MQTT Version 3.1.1”
http://docs.oasis-open.org/matt/mqtt/v3.1.1/csprd02/mqtt-v3.1.1-csprd02.html [Online]
[11] Bernd Lieberth, “Figures Profibus Profinet Proflenergy”

[13] Dept. of Electron. for Autom., Brescia Univ., Italy “Experimental evaluation of Profinet
performance”

[14] “PROFINET”
https://en.wikipedia.org/wiki/PROFINET [Online].

[15] “Get smart: The I-Device functionality”
https://w3.siemens.com/mcms/automation/en/industrial-
communications/profinet/Documents/articles/en/profinet-innovations-2010-2.html [Online].

[16] “Round and round: the Media Redundancy
Protocol”’https://w3.siemens.com/mcms/automation/en/industrial-
communications/profinet/Documents/articles/en/profinet-innovations-2010-4.html

[17] SIEMENS “PROFINET answers for industry”

[18] SIEMENS “SIEMENS SIMATIC PROFINET System Description”
[19] “MQTT Security Fundamentals Wrap-Up”
http://www.hivemg.com/blog/mqtt-security-fundamentals-wrap-up [Online]

[20] Max Felser, Paolo Ferrari, Alessandra Flammini “Profienet” The industrial electronics
handbook industrial communication system

48

https://en.wikipedia.org/wiki/SCADA%23SCADA_architectures
https://en.wikipedia.org/wiki/MQTT
http://www.rtaautomation.com/technologies/profibus/
http://www.hivemq.com/blog/mqtt-essentials-part-1-introducing-mqtt
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/csprd02/mqtt-v3.1.1-csprd02.html
https://w3.siemens.com/mcms/automation/en/industrial-communications/profinet/Documents/articles/en/profinet-innovations-2010-2.html
https://w3.siemens.com/mcms/automation/en/industrial-communications/profinet/Documents/articles/en/profinet-innovations-2010-2.html
https://w3.siemens.com/mcms/automation/en/industrial-communications/profinet/Documents/articles/en/profinet-innovations-2010-4.html
https://w3.siemens.com/mcms/automation/en/industrial-communications/profinet/Documents/articles/en/profinet-innovations-2010-4.html
http://www.hivemq.com/blog/mqtt-security-fundamentals-wrap-up

[21] Max Felser, Ron Mitchell “Profibus” The industrial electronics handbook industrial
communication system

8. Appendix

8.1 Program in controller 1

o o o o O O o O g 8 8 5 5
0B1 0B&2 0B&3 0B100 OB121 FB1 FB2 FB3 FBs FB3 FB12 FEE3 FBE4
g o o o o o &g & & o o o o
FEEE FB300 FB301 FB302 FB303 FB304 FC11 FC12 FC38 DBl DEZ DB3 DE4
1t I 1t I 1t I 1t - I - I - I -
DES DEBEG DET DEB DE9 DE10 DE11 DE12 DE13 DE18 DE19 DEZ22 DB23 DE25
It - It - It - It - It - It - It -
DB2E DB27 DBE3 DBE4 DBER DEEE DE100 DE111 DB112 DE300 DB301 DE302 DB303 DE304
c S e SO s S i ST i S i ST o S i SRS o SR o TR SU o TR o S
DB333 upT1 upT2 unT3 upTa uoTh UDTE uoT? UDTES SFB3 SFC20 SFC24 SFCH1 SFCHE
)
SFC53
/I PULSE to active REQ
OBI1:
CALL FB 8, DB18
/ICommunication between Controlador 1 /I Enviar DB112 a controlador2
y2 REQ :=M42.0
L MB 10 ID :=W#16#1
T "Sendto Co2".E R_ID :=DW#16#1
UN M 420 DONE :=M40.0
L S5T#10MS ERROR :=M40.1
SE T 0 STATUS:=MW43
U T 0 SD 1 :=P#DB112.DBX0.0 BYTE 2
= M 420

49

CALL FB 9,DB19

EN_R =TRUE

ID =WH#H16#2

R_ID :=DW#16#2

NDR :=M40.2

ERROR :=M40.3
STATUS:=MW45

RD_1 :=P#DB13.DBX0.0 BYTE 2

L "Receive from Co02".G
T AB 137

// Communication of MQTT

//Reset system

E 136.1
"PUBLISHO_DONE"
E 136.1
"CON_MQTT_DONE"
E 136.1
"PUBLISH1_DONE"
E 136.1
"PUBLISH2_DONE"
E 136.1
"DISCONNECT_DONE"
E 136.1
"conCleanFlag"

E 136.1
"pubCleanFlag"

E 136.1
"Cons_con_done"

E 136.1
"Cons_pub_done"

DCXCIHVCITCHWCOVCHUWCIHOWCAHC

/[-CONNECT_MQTT-------

U "CON_MQTT_DONE"

U "CON_MQTT_DONE"

SPB SEL
/I If the connection is done, it will jump to
publish block

u M 107
FP "Detecta_start"
= "CON_start"

CALL "FB300", DB300
INIT_COM:="CON_start"
ABORT :=E136.1

FIN :="Detect CON_FIN"
FAILED :="Failed_Conne"
FA_CODE :="CON_FA_CODE"
ER_CODE :="CON_RR_CODE"

/
S

E

/
1

"Detect CON_FIN"
"CON_MQTT_DONE"
"CON_MQTT_DONE"

noc

U "CON_MQTT_DONE"
SPB SEL
BEA

EL: L 2#1100000000000000
L EW 136

uw

SRW 14

T "Type PUB" I/ Sacar

136.7 y E136.8
L "Type PUB"
SPL ERR
SPA PUBO
SPA PUB1
SPA PUB2
SPA PUB3

-PUBLIS_MQTT

ERR: SPA FIN
PUBO: SPA FIN
PUBL:U E 136.1
SPB DIS

u M 107

FP "Detecta_start"
= "pubStart"

CALL FB 301, DB301

STA :="pubStart"

FIN :="PUBLISHO_DONE"
FAILED :="PUB_FAI"
ER_CODE:="PUB_RR_CODE"
BEA

PUB2: U E 136.1
SPB DIS

u M 107

FP "Detecta_start"
= "pubStart"

CALL FB 302, DB302
STA :="pubStart"

FIN :="PUBLISH1 DONE"
FAILED :="PUB_FAI"

50

FA_CODE:="PUB_FA_CODE"
RR_CODE:="PUB_RR_CODE"
BEA

PUB3:U E 136.1
SPB DIS

u M 107

FP "Detecta_start"
= "pubStart"

U "PUBLISH2_DONE"
CALL FB 303, DB303

STA :="pubStart"

FIN :="PUBLISH2_DONE"
FAILED :="PUB_FAI"
FA_CODE:="PUB_FA_CODE"
RR_CODE:="PUB_RR_CODE"
BEA

//----
/[--constitute connect packet------

//-----DISCONNECT_MQTT---
DIS: CLR
U "DISCONNECT_DONE"
SPB FIN
u M 107
FP "Detecta_start"
= "pubStart"

CALL FB 304, "DISCONNEC"
STA :=TRUE

FIN :="DISCONNECT_DONE"
FAILED :="PUB_FAI"
RR_CODE:="PUB_RR_CODE"
BEA

FIN: BEA

FB300:

I/ Reset the FIN flag
SET
R #FIN

U #ABORT
R #FAILED

CALL "TDISCON", "DB66"
// To quit the connection

REQ :=#ABORT

ID :=#ENLACE.id

DONE :=#DIS_DONE
BUSY =#DIS_BUSY
ERROR :=#DIS_ERROR
STATUS:=#DIS_STATUS

U #FAILED
SPB FINF

U "Cons_con_done"
SPB STAT

CALL FB 1,DB111

Ver =#Ver

KeepAlive :=#KeepAlive
ConnectFlags:=#ConnectFlags
ClientlD :=#ClientlD
WillTopic :=#WillTopic
WillMessage :=#WillMessage
UserName :=#UserName
Password :=#Password

DONE :="Cons_con_done"
U "Cons_con_done"

SPB STAT

BEA

STAT: U "Estado CON"

/I If it finishes the connection, it jJump to

/Tsend

SPB SEND

CALL "TCON", DB65
REQ

=#COMMUNICATION_START

ID =#ENLACE.id
DONE :=#CON_DONE
BUSY :=#CON_BUSY
ERROR :=#CON_ERROR
STATUS :=#CON_STATUS
CONNECT:=#ENLACE

/I Information of enlace

U #CON_DONE
FP "Detecta_ CON_DONE
O "Estado CON"
= "Estado CON"
/I State of connection

U "Estado CON"
// CUANDO HA TERMINADO
LA CONEXION,Saltar a Tsend

o1

SPB SEND
U #INIT_COM
UN #CON_BUSY
/I If PLC has finished the connection of
TCP, it will not active the TCOM
= #COMMUNICATION_START
U #CON_ERROR
O #CON_BUSY
SPB EFN1

U #CON_ERROR

/1 SI TIENE ERROR, GUARDAMOS
ERROR PARA ANALIZAR.

L #CON_STATUS

T #CON_STATUS_SAVE

BEA

EFN1: L #CON_STATUS_SAVE
/I If the connection has failed, it will out
put the error code.

T #ER_CODE

L 1

T #FA CODE

SET

S #FAILED

BEA

SEND: U "ESTADO_TSEND"
SPB RCV

CALL "TSEND", DB63

REQ :=#SEND_REQ

ID :=#ENLACE.id

LEN :=MW52

DONE :=#SEND_DONE

BUSY :=#SEND_BUSY

ERROR :=#SEND_ERROR

STATUS:=#SEND_STATUS

DATA :=P#DB23.DBX0.0 BYTE
196

U #SEND_DONE

FP "DETECTA_TSEND"

O "ESTADO_TSEND"

= "ESTADO_TSEND"

U "ESTADO_TSEND"

SPB RCV

U "Ciclo(0.1s)" /Il CADA
CIETO TIEMPO PEDIR UNA VEZ DE
ENVIACION

FP "Detecta_cilco(0.1s)"

UN #SEND_BUSY

= #SEND_REQ

U #SEND_REQ
ZV "COUN_SEN_CON"
L "COUN_SEN_CON"

L 5

>|

SPB EFN2

U #SEND_ERROR /1Sl
HAY ERROR O HA TERMINADO, NO
VAMOS A ENVIAR

O #SEND_DONE

R #SEND_REQ

U #SEND_ERROR /1Sl
TIENE ERROR, GUARDAMOS ERROR
PARA ANALIZAR.

L #SEND_STATUS

T #SEND_STATUS_SAVE

BEA

EFN2: L #SEND STATUS SAVE
/I If the connection has failed, it will out
put the error code.

T #ER _CODE

L 2

T #FA _CODE

SET

S #FAILED

SET

R "COUN_SEN_CON"

SET

R "Estado CON"

BEA

RCV: U "ESTADO_RCV" 1!
T no va a reiniciar el RLO
SPB CHEK
CALL "TRCV", "DB64"
EN R :=#RCV_START
ID :=#ENLACE.id
LEN =4
NDR :=#RCV_NDR
BUSY :=#RCV_BUSY
ERROR :=#RCV_ERROR
STATUS :=#RCV_STATUS
RCVD_LEN:=#RCV_RLEN
DATA :="CONACK".CONACK

U #RCV_NDR /I Hay
gue poner adelande

FP "DETECTA_RCV"

O "ESTADO_RCV"

52

= "ESTADO_RCV"

U "ESTADO_RCV" T

no va a reiniciar el RLO

SPB CHEK

U "Ciclo(0.1s)"

FP "Detectaciclo(0.1)_rec"
UN #RCV_BUSY

= #RCV_START

U #RCV_START

ZV "COUN_REV_CON"
L "COUN_REV_CON"

L 5

>|

SPB EFN3

L #RCV_RLEN

T #RCV_RLEN_SAVE

L #RCV_STATUS

T #RCV_STATUS_SAVE

SET
R "ESTADO_TSEND"
SET
R "ESTADO_RCV"
BEA

FIN: SET
R "Cons_con_done"
SET
R "Estado CON"
SET
R "ESTADO_TSEND"
SET
R "ESTADO RCV"
SET
S #FIN
SET
R "COUN_SEN_CON"
SET
R "COUN_REV_CON"

BEA L O
T #ER _CODE

EFN3: L #RCV_STATUS SAVE L O
/I If the connection has failed, it will out T #FA CODE
put the error code. SET

T #ER _CODE R #FAILED

L 3 BEA

T #FA_CODE FINF: BEA

SET

S #FAILED FB301:

SET SET

R "COUN_REV_CON" R #Done

SET AUF "PublishOVersion2"

R "Estado_CON" // Clean the DB

SET U "pubCleanFlag"

R "ESTADO_TSEND" SPB STAR

BEA L O
/I Check out the connection T #PointDB
CHEK: L L 197

"CONACK".CONACK.ConnectReturncod LID: T #Conuter

e L O
L O T DBB [#PointDB]
== L 8
SPB FIN L #PointDB
L +D
"CONACK".CONACK.ConnectReturncod T #PointDB
e L #Conuter
T #ER_CODE LOOP LID
L 4 SET
T #FA_CODE S "pubCleanFlag"
SET U "pubCleanFlag"
S #FAILED SPB STAR
SET BEA

R "Estado_CON"

STAR: L #HeaderFlags

T DBB 0
[[-mmmmmmm e
/l Len

L 2

T DBB 1
[[-mmmmmmm e
Il Topic

L P##Topic

LAR1

L BJ[ARLP#1.0]

T DBW 2
length

L DBW 2

L DBB 1

+1

T DBB 1
Len

L 32

T #PointDB
DB en DBB4

L B [ARLP#1.0]
L1: T #Conuter

L B [ARLP#2.0]

T DBB [#PointDB]

L 8

+AR1

L 8

L #PointDB

+D

T #PointDB

L #Conuter

LOOP L1

DBB 1

L #ldentifier

T DBW [#PointDB]
L 16

L #PointDB

Il Topic

/I Calculate

/1 Start fill

/I Calculate

+D

T #PointDB
[~mm e
/IMessage
IDE: L P##Message

LAR1

L BJ[ARLP#1.0]

L DBB 1

+1

T DBB 1

/I Calculate Len
L B[ARLP#1.0]
L2: T #Conuter
L B [AR1P#2.0]
T DBB [#PointDB]
L 8
+AR1
L 8
L #PointDB
+D
T #PointDB
L #Conuter
LOOP L2
SET
S #Done
BEA

FB302:
SET
R #FIN

/I Constitute publishOPacket
U "Cons_pub_done"
SPB TSE
CALL FB 3,DB26
QoS :=1

Done:="Cons_pub_done"

U "Cons_pub_done"
SPB TSE
BEA

TSE: U #Estado TS MQTT

SPB RCV

/I Si ha realizado el envio, va a saltar a

SOQL.

L "PublishOVersion2".Len

T #lLengthT
L 2

L #LengthT
+l

T #lengthT

CALL "TSEND", DB63

REQ :=#SEND_REQ

ID :=#ENLACE.id

LEN :=#LengthT

DONE :=#SEND_DONE

BUSY :=#SEND_BUSY

ERROR :=#SEND_ERROR

STATUS:=#SEND_STATUS

DATA :=P#DB25.DBX0.0 BYTE
196
/I CADA CIETO TIEMPO PEDIR UNA
VEZ DE ENVIACION

U #STA

FP #Detecta_ciclo

UN #SEND_BUSY

= #SEND_REQ
#SEND_DONE
#Dectar_ TS_MQTT
#Estado_TS_MQTT
#Estado TS MQTT
#Estado TS MQTT

SPB RCV
/I SI TIENE ERROR, GUARDAMOS
ERROR PARA ANALIZAR.

L #SEND_STATUS

T #SEND_STATUS_SAVE

U #SEND _ERROR

SPB FNR1

BEA
FNR1: SET

S #FAILED

L #SEND_STATUS_SAVE

T #RR_CODE

L 1

T #FA_CODE

BEA
RCV: U "Ciclo(0.1s)"

FP #Detectaciclo

UN #RCV_BUSY

UN #ESTADO_RCV

= #RCV_START

U #RCV_START

ZzN zZz 1

L z 1

L 5

>|

SPB FNR2

CALL "TRCV", "DB64"

EN_R =#RCV_START

ID :=#ENLACE.id

LEN :=4

NDR :=#RCV_NDR

BUSY =#RCV_BUSY

ERROR :=#RCV_ERROR

STATUS =#RCV_STATUS

I [
cnoxpc

RCVD_LEN:=#RCV_RLEN
DATA :="PUBACK".PUBACK

U #RCV_NDR
// Hay que poner adelande

FP #DETECTA_RCV

O #ESTADO_RCV

= #ESTADO_RCV

U #ESTADO_RCV
/I'T no va a reiniciar el RLO

SPB CHEK

L #RCV_RLEN

T #RCV_RLEN_SAVE

L #RCV_STATUS

T #RCV_STATUS_SAVE

BEA
FNR2: L #RCV_STATUS SAVE
/I If the connection has failed, it will out
put the error code.

T #RR_CODE
L 2
T #FA_CODE
SET
S #FAILED
SET
R z 1
SET
R #Estado TS MQTT
BEA

CHEK: L

"Publish_1".Publish_1.Messageldentifier
L
"PUBACK".PUBACK.Messgeldentifier

SPB FIN

L
"PUBACK".PUBACK.Messgeldentifier

T #RR_CODE

L 3

T #FA_CODE

SET

S #FAILED

SET

R #Estado_TS_MQTT
SET

R #ESTADO_RCV

R z 1

L 0 /1 1 the

connection has failed, it will out put the
error code.

BEA
FIN: SET

R #Estado TS MQTT

95

SET

R #ESTADO _RCV

SET

S #FIN

SET

R z 1

L O
/I If the connection has failed, it will out
put the error code.

T #RR_CODE

L O

T #FA CODE

SET

R #FAILED

BEA

FB303:
SET
R #FIN

I/ Constitute publishOPacket
U "Cons_pub_done"
SPB TSE

CALL FB 3, DB27
QoS =2
Done:="Cons_pub_done"
U "Cons_pub_done"
SPB TSE

BEA

TSE: U #Estado TS MQTT
SPB REC
/I Si ha realizado el envio, va a saltar a
SOQ1.
L "PublishOVersion2".Len
T #LengthT
L 2
L #lLengthT
+l
T #LengthT

CALL "TSEND", DB63

/I #SEND_REQ
REQ :=#SEND_REQ
ID :=#ENLACE.id
LEN :=#lLengthT
DONE :=#SEND_DONE
BUSY :=#SEND_BUSY
ERROR :=#SEND_ERROR
STATUS:=#SEND_STATUS

DATA :=P#DB25.DBX0.0 BYTE
196

U #STA

FP #Detecta_ciclo

UN #SEND_BUSY

= #SEND_REQ
#SEND_DONE
#Dectar TS MQTT
#Estado TS _MQTT
#Estado TS MQTT
#Estado_ TS _MQTT

SPB REC
/I SI TIENE ERROR, GUARDAMOS
ERROR PARA ANALIZAR.

L #SEND_STATUS

T #SEND_STATUS_SAVE

U #SEND_ERROR

SPB FNR1

BEA
FNR1: SET

S #FAILED

L #SEND_STATUS_SAVE

T #RR_CODE

L 1

T #FA_CODE

BEA

crnomc!

REC: U #ESTADO_RCV
SPB CEK1
U "Ciclo(0.1s)"
FP #RCV_DETECTA_CICLO
UN #RCV_BUSY
UN #ESTADO_RCV
= #RCV_START
U #RCV_START

I/ 1t will try 5 times
ZN Z 4
L z 4
L 5
>|
SPB FNR2
CALL "TRCV","DB64"
EN_R :=#RCV_START
ID :=#ENLACE.id
LEN =4
NDR :=#RCV_NDR
BUSY :=#RCV_BUSY
ERROR :=#RCV_ERROR
STATUS =#RCV_STATUS
RCVD_LEN:=#RCV_RLEN
DATA :="PUBREC".PUBREC
U #RCV_NDR

// Hay que poner adelande

56

FP #DETECTA_RCV

O #ESTADO _RCV

= #ESTADO RCV

U #ESTADO RCV
/I T no vaareiniciar el RLO

SPB CEK1

L #RCV_RLEN

T #RCV_RLEN_SAVE

L #RCV_STATUS

T #RCV_STATUS SAVE

BEA
FNR2: L #RCV_STATUS_SAVE
/I If the connection has failed, it will out
put the error code.

T #RR_CODE
L 2
T #FA_CODE
SET
S #FAILED
SET
R Z 4
SET
R #Estado TS _MQTT
BEA
S —
CEK1: L

"Publish_2".Publish_2.Messageldentifier
L
"PUBREC".PUBREC.Messgeldentifier
SPB REL
/'1f is not equal
L
"PUBREC".PUBREC.Messgeldentifier
/[If the connection has failed, it will out
put the error code.

T #RR_CODE

L 3

T #FA_CODE
SET

S #FAILED

SET

R Z 4

SET

R #Estado TS _MQTT
SET

R #ESTADO_RCV
BEA

REL: U #Estado TS MQTT_1
SPB COP

/! Si ha realizado el envio, va a saltar a

SOQL1.

CALL "TSEND", DB63

/I #SEND_REQ
REQ :=#SEND_REQ 1
ID :=#ENLACE.id
LEN :=4
DONE :=#SEND_DONE_1
BUSY :=#SEND_BUSY 1
ERROR :=#SEND_ERROR_1
STATUS:=#SEND_STATUS 1
DATA :="PUBRELEA" Release

U "Ciclo(0.1s)" /I CADA
CIETO TIEMPO PEDIR UNA VEZ DE
ENVIACION

FP #Detecta ciclo_1

UN #SEND_BUSY_1

= #SEND_REQ_1

U #SEND_REQ_1

N Z 5

L Zz 5

L 5

>|

SPB FNR4

U #SEND_DONE_1

FP #Dectar TS MQTT_1

O #Estado TS MQTT_1

= #Estado TS MQTT_1

U #Estado TS MQTT_1

SPB COP
/I SI TIENE ERROR, GUARDAMOS
ERROR PARA ANALIZAR.

L #SEND_STATUS 1

T #SEND_STATUS_SAVE_1

BEA
FNR4: L #SEND_STATUS_SAVE_1
/I If the connection has failed, it will out
put the error code.

T #RR_CODE

L 4

T #FA_CODE

SET

S #FAILED

SET

R Z 4

SET

R zZ 5

SET

R #Estado TS MQTT
SET

R #ESTADO_RCV
BEA

COP: U #ESTADO_RCV_1

o7

SPB CEK2

U "Ciclo(0.1s)"

FP #RCV_DETECTA CICLO_1
UN #RCV_BUSY_1

UN #ESTADO RCV_1

= #RCV_START_1

U #RCV_START 1 It
will try 5 times
ZN Z 6
L Z 6
L 5
>|
SPB FNR5
CALL "TRCV","DB64"
EN_R :=#RCV_START_1
ID :=#ENLACE.id
LEN =4
NDR :=#RCV_NDR_1
BUSY :=#RCV_BUSY_1
ERROR :=#RCV_ERROR_1
STATUS :=#RCV_STATUS 1
RCVD_LEN:=#RCV_RLEN_1
DATA :=DB11.PUBCOM
U #RCV_NDR_1
// Hay que poner adelande
FP #DETECTA_RCV_1
O #ESTADO RCV_1
= #ESTADO _RCV_1
U #ESTADO RCV_1
/I T no va a reiniciar el RLO
SPB CEK2
L #RCV_RLEN_1
T #RCV_RLEN_SAVE_1
L #RCV_STATUS 1
T #RCV_STATUS SAVE 1
BEA

FNR5: L #RCV_STATUS SAVE 1
/I If the connection has failed, it will out
put the error code.

T #RR_CODE
L 5

T #FA_CODE
SET

S #FAILED
SET

R Z 4
SET

R Z 5
SET

R Z 6

SET

R #Estado TS _MQTT
SET

R #ESTADO_RCV
SET

R #Estado TS MQTT_1
BEA

CEK2: L
"PUBRELEA".Release.Messgeldentifier
L DB11.DBW 2

SPB FIN

L DB11.DBW 2
/I If the connection has failed, it will out
put the error code.

T #RR_CODE
L 6
T #FA_CODE
SET
S #FAILED
SET
R zZ 4
SET
R zZ 5
SET
R Z 6
SET
R #Estado TS MQTT
SET
R #ESTADO_RCV
SET
R #Estado TS MQTT_1
BEA
[[-mmmm -
FIN: SET
R #Estado TS MQTT
SET
R #ESTADO_RCV
SET
R #Estado TS MQTT_1
SET
R #ESTADO _RCV_1
SET
S #FIN
SET
R #FAILED
SET
L O
T #FA_CODE
L O
T #RR_CODE

58

SET
R Z 4
SET
R Z 5
SET
R Z 6
BEA

FB304:
SET
R #FIN

CLR
U #Estado TS MQTT
SPB FIN
/I Si ha realizado el envio, va a saltar a
SOQ1.
CALL "TSEND", DB63
REQ :=#SEND_REQ
ID :=#ENLACE.id
LEN :=2
DONE :=#SEND_DONE
BUSY :=#SEND_BUSY
ERROR :=#SEND_ERROR
STATUS:=#SEND_STATUS
DATA :=DB12.DISCONNEC

U #STA

FP #Detecta_ciclo
UN #SEND_BUSY
= #SEND_REQ

#SEND_DONE
#Dectar_ TS_MQTT
#Estado TS MQTT
#Estado TS MQTT
#Estado TS MQTT
SPB FIN
/I SI TIENE ERROR, GUARDAMOS
ERROR PARA ANALIZAR.
L #SEND_STATUS
T #SEND_STATUS_SAVE
U #SEND_ERROR
SPB FNR
BEA
FNR: SET
S #FAILED
L #SEND_STATUS_SAVE
T #RR_CODE
BEA
FIN: SET
R #Estado TS MQTT

I
choxgc

SET
S #FIN
SET
R #FAILED
L 0
T #RR_CODE
BEA
FB1:
SET

L #Ver
T "connectVersion2".Vers
#ConnectFlags

#KeepAlive

L
T "connectVersion2".ConnextFlags
L
T

"connectVersion2".KeepAlive

/MNniciar el DB
U "conCleanFlag"
SPB STAR
AUF "connectVersion2"
L P#12.0
T #PointDire
L 185

// Length of string

LID: T #Ini_counter

0
DBB [#PointDire]

8
#PointDire

+ - 4dr

D

T #PointDire

L #Ini_counter
LOOP LID

SET

S *"conCleanFlag"

/ICONSTITUTE ClientID part

STAR: CALL "InsertPayload" , DB22
Payload:=#ClientID
LastDir:=12
newDir ;=

L P##ConnectFlags
LAR1

/I CONSTITUTE other payload

U [ARLP#0.2]
SPB WILL

59

TUSE:U [AR1,P#0.7]

SPB USER

TPAS:U [ARL,P#0.6]

SPB PASS

MAIN: SET

S #DONE
BEA

WILL: CLR

CALL "InsertPayload" , DB22
Payload:=#WillTopic
LastDir:=MW52

newDir :=

CALL "InsertPayload" , DB22
Payload:=#WillMessage
LastDir:=MW52

newDir ;=

PA TUSE

USER: CLR

CALL "InsertPayload" , DB22
Payload:=#UserName
LastDir:=MW52

newDir :=

SPA TPAS

PASS: CLR

CALL "InsertPayload" , DB22
Payload:=#Password
LastDir:=MW52

newDir :=

SPA MAIN

FB2:

AUF "connectVersion2"
L #LastDir
L 8
*D
T #PointerDir
L 8
L #PointerDir
+D
/I Calculate the last bit
T #PointerDir
L P##Payload
LAR1
L P#1.0
+AR1
L BJ[ARLP#0.0]
/I Cache the length of Payload
T DBB [#PointerDir]

L B [ARLP#0.0]

I/ Cache the length of Payload

L #LastDir
+1

MW 52
MW 52
2

MW 52
MW 52
DBB 1
DBB 1
2

r—rd4rH4+rr 4

DBB 1
B [AR1,P#0.0]
// Length of string
LID: T "CounterByte"
L 8
+AR1
L 8
L #PointerDir
+l

|

#PointerDir

B [AR1,P#0.0]
DBB [#PointerDir]
"CounterByte"

1

r—d4r 4

L "CounterByte"
LOOP LID
BEA
FB3:
SET
R #Done
AUF "PublishOVersion2"

/I Clean the DB
U "pubCleanFlag"
SPB STAR
L O
T #PointDB
L 197
LID: T #Conuter

0
DBB [#PointDB]

8
#PointDB

+ 4

D

T #PointDB

L #Conuter
LOOP LID

SET

S "pubCleanFlag"
U "pubCleanFlag"
SPB STAR

BEA

60

STAR: L #HeaderFlags

T DBB 0
e
/I Len

L 2

T DBB 1
Jf-mmmmmmm e --
Il Topic

L P##Topic

LAR1

L B[AR1,P#1.0]

T DBW 2
/I Topic length

L DBW 2

L DBB 1

+l

T DBB 1
Il Calculate Len

L 32

T #PointDB

/Il Start fill DB en DBB4
L B [ARLP#1.0]
L1: T #Conuter
L B [ARLP#2.0]
T DBB [#PointDB]
L 8
+AR1
L 8
L #PointDB
+D
T #PointDB
L #Conuter
LOOP L1

/lldentifier
L #QoS
L O

C T

(u=3] Opgz opa3 0e100 FEB

sistema

g 8 8 8 8 &

SFB3 SFBE15 SFC20 SFCS1 SFC58 SFC53

OB1:

g 5 & o o

L 2

L DBB 1

+l

T DBB 1
/I Calculate Len

L #ldentifier

T DBW [#PointDB]

L 16

L #PointDB

+D

T #PointDB

/IMessage
IDE: L
LAR1
L B[AR1P#1.0]
L DBB 1
+l
T DBB 1
/I Calculate Len
L B[ARLP#1.0]
L2: T #Conuter
L B[ARLP#2.0]
T DBB [#PointDB]
L 8
+AR1
L 8
L #PointDB
+D
T #PointDB
L #Conuter
LOOP L2
SET
S #Done
BEA

P##Message

o o 4

FE1S DBz DB3 Deg =] DE1S

/l Comunicacion entre IM151 y
controlador_2
L MB 200

&

SFed

61

T AB 0

U E 00

= A 136.0
/l Comunicacion entre controlador 1y
controlador 2

L MB 200

T DB2.DBB 0
Il Leer entrada de MB200

UN M 20

L S5T#10MS

SE T O

u T O

= M 20
/I PULSO para activa USEND

CALL "USEND", DB8
// Enviar DB2 a CP

REQ :=M2.0

ID =W#16#2 R_ID
=DW#16#2

DONE :=M0.0

ERROR :=M0.1

STATUS:=MW3

SD_1 :=P#DB2.DBX0.0 BYTE 2

CALL "URCV", DB9
// Recibir datos a DB3
EN_R :=TRUE
ID :=W#16#1
R_ID :=DW#16#1
NDR :=M0.2
ERROR :=M0.3
STATUS:=MW5
RD_1 :=P#DB3.DBX0.0 BYTE 2

L DB3.DBB 0

/l Mostrar los datos a salida
T AB 137
BEA

62

	1. Introduction
	2. Objectives
	3. Methodology
	3.1 Profinet
	3.1.1 History of Profinet
	3.1.2 Introduction of Profinet
	3.1.3 Profinet IO
	3.1.4 Profinet IO device classification
	3.1.5 Communication in Profinet IO
	3.1.6 Profinet IO addressing

	3.2 MQTT protocol
	3.2.1 Introduction
	3.2.2 Clients
	3.2.3 Connection
	3.2.4 Publish
	3.2.4.1 Packets in publishing process with QoS=0
	3.2.4.2 Packets in publishing process with QoS=1
	3.2.4.3 Packets in publishing process with QoS=2

	3.2.5 Disconnection
	3.2.6 Security

	4. Development and results
	4.1 Introduction of project
	4.2 Configuration of industrial network
	4.2.1 Hardware configuration
	4.2.2. Software configuration of industrial network
	4.2.2.1 Configuration of redundancy ring
	4.2.2.2 Creation of enlace between controller 1 and controller 2
	4.2.2.3 Program for testing industrial network communication

	4.3 Implementation of Communication between industrial network and MQTT broker
	4.3.1 Implementation of connection (FB300, DB300)
	4.3.2 Implementation of publish with QoS=0 (FB301, DB301)
	4.3.3 Implementation of publish with QoS=1 (FB302, DB302)
	4.3.4 Implementation of publish with QoS=2 (FB303, DB303)
	4.3.5 Implementation of disconnection (FB304, DB304)

	5. Equipment used
	5.1 Hardware
	5.2 Software

	6. Conclusion and Future work
	6.1 Main Conclusions
	6.2 Future improvements

	7. Bibliography
	8. Appendix
	8.1 Program in controller 1
	8.2 Program in controller 2

